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Abstract. Competitive location problems can be characterized by 
the fact that the decisions made by others will affect our own 
payoffs. In this paper, we address a discrete competitive location 
game in which two decision-makers have to decide 
simultaneously where to locate their services without knowing 
the decisions of one another. This problem arises in a franchising 
environment in which the decision-makers are the franchisees 
and the franchiser defines the potential sites for locating services 
and the rules of the game. At most one service can be located at 
each site, and one of the franchisees has preferential rights over 
the other. This means that if both franchisees are interested in 
opening the service in the same site, only the one that has 
preferential rights will open it. We consider that both franchisees 
have budget constraints, but the franchisee without preferential 
rights is allowed to show interest in more sites than the ones she 
can afford. We are interested in studying the influence of the 
existence of preferential rights and overbidding on the outcomes 
for both franchisees and franchiser. A model is presented and an 
algorithmic approach is developed for the calculation of Nash 
equilibria. Several computational experiments are defined and 
their results are analysed, showing that preferential rights give its 
holder a relative advantage over the other competitor. The 
possibility of overbidding seems to be advantageous for the 
franchiser, as well as the inclusion of some level of asymmetry 
between the two decision-makers. 

Keywords. Location, game theory, competitive location 
problems, simultaneous decisions, Nash-equilibria. 



  

1 Introduction 

Competitive location problems have been receiving the attention of 

researchers at least since 1929, when Hotelling introduced the problem of 

two competitors that wanted to maximize the demand captured by their 

own facilities (one facility each), located along a line where customers 

were uniformly distributed (Hotelling, 1929). 

Many authors have addressed sequential location problems in which 

facilities compete with one another. Hakimi (1983, 1986) considers 

problems in which we want to find a set of optimal locations that will 

compete with the ones previously installed. Plastria & Vanhaverbeke 

(2008) consider a discrete competitive location problem, where the 

objective is to maximize the coverage and the leader takes into account that 

a follower will enter the market. Küçükaydin et al. (2012) study a 

sequential problem where the leader locates considering not only the 

already existing facilities of the follower, but also the follower’s reaction 

that can consist of opening, closing or adjusting the attractiveness of his 

facilities. Aboolian et al. (2009) consider the discrete problem of optimally 

locating m new facilities, considering the existence of already opened 

facilities that will compete for the customer demand. For a review of 

sequential competitive location problems see, for instance, Eiselt & Laporte 

(1996); Kress & Pesch (2012); Plastria (2001) . 

Other authors have analysed the simultaneous location of multiple facilities 

that compete with each other. Rhim et al. (2003) consider a three-stage 

discrete competitive location game with location, production capacity and 

production quantity decisions that can be made either simultaneously or 

sequentially. Sáiz & Hendrix (2008) consider a two-stage competitive 

network location problem, where only nodes are potential locations for 

services. In the first stage, decision-makers simultaneously decide where to 

locate a supplying service and in the second stage decision-makers define 



  

the quantity to be produced. Sáiz et al. (2011) consider a location-quality 

problem in continuous space with two competitors deciding 

simultaneously. First, the competitors decide the location of the facilities 

and then they define the quality. Díaz-Báñez et al (2011) consider a planar 

location problem with two decision-makers and simultaneous location 

decisions. The authors assume that the competitors sell similar products, 

and customers choose the supplier that makes a smaller delivered price. 

First, the decision-makers decide the location of the facilities and then they 

define the prices. 

In this paper we consider a two-player competitive discrete location game, 

designed for the analysis of a franchising situation. There is a franchiser 

who defines a discrete set of potential sites where services can be opened, 

and two franchisees that have to simultaneously choose where to locate 

their services, without knowing the decisions made by the other. We 

consider that one of the franchisees has preferential rights over the other. 

This means that co-location is not allowed, and if both franchisees show 

interest in the same potential site, only the one with preferential rights is 

able to open the service at that site. Furthermore, we consider that both 

franchisees have budget constraints, but we allow the one without 

preferential rights to overbid (show interest in more sites than the ones she 

can afford). Demand is assigned to the closest open service. We are 

interested in studying the consequences of considering preferential rights 

and overbidding on this simultaneous location game. Particularly, we want 

to find the answer to the following questions: 

  Is it advantageous for the franchiser to give preferential rights to one 

of the franchisees? 

  If one franchisee has preferential rights, is it advantageous for the 

franchiser to allow the other one to show interest in more sites than 

she can afford?  



  

  How great is the advantage that preferential rights provide to the 

franchisee? 

  To what extent does the possibility of overbidding offset the 

advantage given by preferential rights? 

  How do the answers to the above questions change with some 

particular parameters of the problem (number of sites available to 

each franchisee, budget, average fixed cost of a service, asymmetry 

between players)? 

In order to analyse this situation, we present a model and an algorithmic 

approach for calculating a Nash equilibrium. We define a set of 

computational experiments, run them and analyse the results. 

Most of the literature dedicated to location problems with simultaneous 

decisions considers location in the plane. The problem we consider belongs 

to the class of simultaneous discrete location games, but there are several 

features that distinguish it from other games of this class: the context we 

consider leads to a single-stage game, since only the location decision is 

relevant; the number of services that may be opened by any decision-maker 

is neither pre-determined nor unlimited but it is determined by budget 

restrictions considering the investment costs required by different 

locations; the decision-makers do not have equal status, since one of them 

has preferential rights over the other.  

The competitive discrete location problem that we are tackling can be 

interpreted as a problem of strategic resource allocation among a set of 

possible locations, a type of games usually known as Colonel Blotto games 

(Roberson, 2006, Kovenock & Roberson, 2010). The Colonel Blotto game 

considers a situation where two decision-makers (colonels) have to 

simultaneously decide how to allocate their limited resources to n 

independent locations (battlefields). Each battlefield is won by the colonel 

that allocates the greatest amount of resources to that battlefield. We can 



  

think of the two franchisers as being the two colonels, and the potential 

locations for services to be the battlefields. Unlike what happens in Colonel 

Blotto games, in this case the decision of each player is a binary decision: 

should resources be allocated to this location or not? Moreover, we are 

considering as possible the relaxation of the budget restriction for one of 

the colonels, making it possible to allocate more resources than the ones he 

has available. The same resource can thus be allocated to more than one 

battlefield because the resource will only be used if he wins that battle. 

Unlike what happens in Colonel Blotto games, the payoff of our game is 

not a direct function of the number of battlefields won but has to do with 

the demand that is assigned to that location, which depends on the contest 

results of all other battlefields. 

The paper is organized as follows: in Section 2 we describe the problem, 

which is presented in a formal way in Section 3. In Section 4 we describe 

the algorithmic approach. We then outline the experiments in Section 5 and 

we present and analyse the computational results in Section 6. In Section 7, 

some conclusions are drawn and future paths of research are devised. 

2 General setting and research questions 

Consider a company that wants to enter in a new market, but it does not 

have complete information about the demand patterns of this market. The 

company has already defined a discrete set of potential sites to open a 

service, and the company is willing to open at most one service in each 

potential site. The definition of this set of potential sites can be made by 

applying a range of different criteria: minimum number of inhabitants, the 

existence of competitors, the existence of a dynamic commercial district, 

and so on. The company is interested in finding local investors who will 

decide by themselves what the most interesting sites are. The company is 

the franchiser and the local investors are the franchisees. 



  

Let us assume that there are two interested investors, that is, two 

franchisees. The company will make known to both franchisees the set of 

potential sites, and they have to decide simultaneously which of them they 

are interested in. This means that there is the possibility of them both 

showing interest in the same site. To break this tie, and to choose which of 

the franchisees has the opportunity of opening the service, the franchiser 

performs an analysis of the investors’ profiles and decides to give 

preferential rights to one of them. For the sake of simplicity, let us call this 

investor franchisee 1. The chosen franchisee may be the one with great 

financial capacity, or an investor that the franchiser already knows. She 

may even be already a franchisee, with opened services in this or other 

markets.  Whenever both franchisees show interest in the same site, 

franchisee 1 is the chosen one. 

We assume that all services are offering the same products at the same 

price. This means that the only criterion that can justify the preference of 

one customer by one particular service in detriment of another is distance: 

customers always patronize the closest open service. We consider that 

demand does not increase with distance. This means that the further away 

the closest opened service is from a customer, the smaller the 

corresponding total demand is. If the profit is a constant percentage of 

sales, then maximizing the total demand is equivalent to maximizing the 

profit. The franchiser payoff is a percentage of the sales made by opened 

services. 

There are fixed costs associated with the opening of a service, which can be 

different between franchisees, but that are known by both. Each franchisee 

is aware of its costs and the costs of the competitor she is dealing with. 

They both are aware of the demand patterns, which will depend on the 

distance between each customer and the closest open service. We also 

assume that each franchisee has a maximum budget to spend. 



  

We consider that, by showing interest in a given site, each franchisee will 

enter a binding agreement in which she agrees to open the service in case 

the franchiser allows her to do so. Considering the budgets available to 

both investors, it is clear that franchisee 1 will not be able to bid for more 

locations than the ones she can afford, due to the fact that she knows she 

will open all services she shows interest in. However, things are not so 

simple regarding franchisee 2, as she can bid for locations that she will not 

be able to open, since some of the sites she chooses may be given to 

franchisee 1 instead. Here, two different rules can be employed: including a 

hard budget constraint that will not allow franchisee 2 to bid for more sites 

than the ones she can afford, or dropping this constraint in the bidding 

phase, and allowing her to bid for more sites than the ones she can afford. 

The reasoning underlying this latter approach takes into account that, in 

some cases, franchisee 2 will know beforehand that she will not be able to 

open services in all of her chosen locations, because some locations are 

chosen by franchisee 1. In such cases, it may be rational for her to bid for 

more sites than she can pay for, if she knows that she will only win a subset 

of these sites that fits her budget. 

As an example, consider the case in which there are only two potential 

sites, with equal investment costs, and the budget of each franchisee allows 

her to open one service only. As they will decide simultaneously, 

franchisee 2 does not know which site franchisee 1 will choose. However, 

franchisee 2 knows that franchisee 1 will choose one site only, so she may 

bid for both potential sites in order to ensure that she will keep the site that 

is not chosen by franchisee 1. Franchisee 2 can thus bid for more sites than 

she can afford, as long as she can be sure that she will only be given a set 

of sites that she can afford. This paper investigates the consequence of 

overbidding. In related works, Godinho & Dias (2010), address the case in 

which the franchiser allows more than one franchisee to open a service at a 



  

given site, and the case in which franchisee 2 cannot show interest in more 

sites than the ones she can afford (Godinho & Dias, 2012). 

We are in the presence of a game, the rules of which are defined by the 

franchiser. Our first goal is finding out which rules are more advantageous 

to the franchiser: 

  Is it advantageous for the franchiser to give preferential rights to 

franchisee 1? 

  If franchisee 1 has preferential rights, is it advantageous for the 

franchiser to allow franchisee 2 to show interest in more sites than 

the ones she can afford?  

The two franchisees are the players of the game, each one having a finite 

set of actions. An action is defined here as the set of chosen sites. Our 

second goal is to investigate how the rules defined by the franchiser will 

impact the expected return of both franchisees: 

  How great is the advantage that preferential rights provide to the 

franchisee? 

  To what extent does the possibility of overbidding offset the 

advantage given by preferential rights? 

The answers to the previous questions may be affected by some particular 

characteristics of the situation being considered, like the number of sites 

available to each franchisee, the budget of each franchisee, the average 

fixed cost of a service and the level of asymmetry between players. The 

final goal is to get an idea of how these parameters may impact the answers 

to the previous questions: 

  How do the answers to the above questions change with the 

particular parameters of the problem? 

An analysis of the general setting allowed us to formulate several 

hypotheses concerning the research questions: 



  

  If the franchiser gives preferential rights to franchisee 1, we expect it 

should be better for her to allow franchisee 2 to overbid. In fact, 

allowing franchisee 2 to overbid should increase the expected 

number of services to be opened, increasing the total assigned 

demand and the franchiser payoff. 

  We expect that preferential rights will benefit franchisee 1 in 

detriment of franchisee 2, and the possibility of overbidding will 

allow franchisee 2 to mitigate this disadvantage, but will not cancel it 

completely. When overbidding is allowed, franchisee 1 will still be 

able to choose the best sites, but it will be more difficult to keep 

franchisee 2 far from these sites. 

  We expect that decreasing the number of potential sites or increasing 

the budget of each franchisee will increase the advantage provided 

by preferential rights. In both cases franchisee 1 is expected to have 

an increased ability to keep franchisee 2 far from the best sites, thus 

increasing the asymmetry between them. 

  We expect that reducing the budget of any of the franchisees, or the 

number of potential sites available to her, will reduce her payoff. 

Reducing the budget of a franchisee is also expected to reduce the 

payoff of the franchiser, since the franchisee is expected to be able to 

open fewer services, leading to a reduction of the total demand and 

harming the payoff of the franchiser. 

There are some important aspects about which we do not have prior 

expectations. In particular, we don't have prior expectations concerning the 

first research question: we do not have any reason to think that giving 

preferential rights to a franchisee may benefit or harm the franchiser. In 

order to determine whether our hypotheses are correct, and to get answers 

for the questions for which we were not able to formulate expectations, we 

will define a model and make the necessary computational experiments. 



  

3 Model description 

In this location game there are two players (the franchisees) that want to 

locate services among a predefined set of potential sites. Franchisee 2 may 

not get all the sites that she shows interest in, so we will distinguish 

between the sites in which she shows interest (we will say that she bids for 

opening a service at those sites), and the sites in which she may actually 

open a service. We now define the notation used.  

 

Number of sites and customers: 

n1 − number of potential sites for new services; 

n2 − number of pre-existing opened services that belong to franchisee 1; 
 m − number of customers. 

 

Indices: 

i  − index of potential sites for new services (i=1,…,n1) and pre-existing 

opened services that belong to franchisee 1 (i= n1+1,…, n1+n2); 

j  − index of customers, j=1,…,m; 

p  − index of franchisees, p=1,2. 

 

Data: 

ijd − demand associated with customer j when he is assigned to a service 

located at site i, expressed as the value of sales to the customer, i= 1,…, 

n1+n2; j=1,…,m; 

ijc − distance between customer j and site i, i=1,…, n1+n2; j=1,…,m; 

ipf − fixed cost associated with franchisee p opening the service at site i, 

i=1,…, n1; p=1,2; 

α  − payment to the franchiser by the franchisees, expressed as a percentage 

of their total sales; 



  

pO  − maximum budget available to franchisee p, p=1,2. 

 

Decision variables 

1 2

1,  if franchisee 1 opens a service at site  or has a 
, 1,...,    pre-existing opened service at site 

0,  otherwise
i

i
y i n ni

⎧
⎪= ∀ = +⎨
⎪⎩  

1

1,  if franchisee 2 bids for opening a service at site 
, 1,...,

0,  otherwisei

i
w i n⎧= ∀ =⎨

⎩  
 

Auxiliary variables 

1

1,  if franchisee 2 opens a service at site 
, 1,...,

0,  otherwisei

i
z i n⎧

= ∀ =⎨
⎩  

1 2

1, if customer  is assigned to service  of franchisee 1
,  1,..., ; 1,...,

0,  otherwiseij

j i
x i n n j m

⎧
= ∀ = + =⎨

⎩
 

1

1, if customer  is assigned to service  of franchisee 2
,  1,..., ; 1,...,

0,  otherwiseij

j i
u i n j m

⎧
= ∀ = =⎨

⎩
 

penalization incurred by franchiser 2 if she bids for more services than the ones she can afford
      and then she is not able to keep her side of the agreement
v =

 
The pricing policy is not defined by the franchisees. We can consider that 

we are in the presence of a mill pricing policy (Eiselt, 2011), since the price 

in each location is fixed and the customers provide for their own 

transportation. The price is independent of the chosen sites and is fixed by 

the franchiser. The fact that the customers provide for their own 

transportation justifies the fact that the demand will not increase with 

distance, and customers will always patronize the closest service. This 

means that: 

 1 2 1 2, 1,..., ; 1,..., ; 1,...,ij kj ij kjc c d d i n n k n n j m≤ ⇒ ≥ ∀ = + = + =    (1) 

 

The rules of the game can be defined as follows: 

1. The pre-established services of franchisee 1 remain open. 
1 1 21, 1, ...,iy i n n n= = + +         (2) 

 



  

 
2. Whenever both franchisees are interested in locating a service at a given 

site i, only franchisee 1 is able to do so, i.e. co-location does not take 
place. So, if 1iy =  and 1,iw = i= 1,…,n1, we have 0.iz =  Let y  be a binary 
vector with n1+n2 elements, such that the ith element corresponds to 
variable iy , and let w  be a binary vector with n1 elements, such that the 
ith element corresponds to variable iw . Then this rule can be formally 
stated as: 

( ) ( ) 1, 1 , 1,....,i i iz w y i n= × − ∀ ∈w y
     

(3) 
 
 

3. Customers will always patronize the closest opened service.  
( ) 1 2

,  if  : 0
, , 1,..., ; 1,...,

0,  otherwise
i kj ij k k

ij

y c c w y
x i n n j m

∀ < + =⎧
= = + =⎨

⎩
w y   

 
(4)

 

( ) ( )
1

, ,  if : 0
, , 1,..., ; 1,...,

0,  otherwise
i kj ij k k

ij

z c c w y
u i n j m

∀ < + =⎧
= = =⎨

⎩

w y
w y    (5)

 
 

4. Franchisee 1 has the budget constraint. 
1

1 1
1

n

i i
i

f y O
=

≤∑
        

 (6) 

 
5. Franchisee 2 is allowed to bid for more locations than the ones she can 

afford, but she is heavily penalized if she is not able to keep her side of 
the agreement, opening all services that she chooses and are allocated to 
her. This penalty can be calculated as follows: 

( ) ( )
1

2 2
1

,  if ,
,

0,  otherwise

n

i i
i

f z O
v =

⎧
∞ >⎪= ⎨

⎪⎩

∑ w y
w y

       
(7) 

 
 

Both franchisees are interested in maximizing their own payoffs. 

 
Franchisee 1 

 ( ) ( )
1 2

1
1 1

 , (1 ) ,
n n m

ij ij
i j

Max d xπ α
+

= =

= − ∑ ∑w y w y
  

 (8) 

Franchisee 2 

 ( ) ( ) ( )
1

2
1 1

 , (1 ) , ,
n m

ij ij
i j

Max d u vπ α
= =

= − −∑ ∑w y w y w y
  

 (9) 



  

 

In the context of a Nash game, y  is an action for franchisee 1 and w is an 

action for franchisee 2, who we will refer to as player 1 and player 2 in the 

sequel. We want to make predictions concerning the outcome of the game. 

In some cases, we will be able to find an action for each player such that 

each player's action is the best response to the other one's action – that is, 

even if one of the players could guess the action of the other one, she 

would not change her chosen action, and this is valid for both of them.  

However, in some settings of the game, each player may want to adjust her 

actions to the actions of the other player, while keeping the other player 

from outguessing her actions. Assume there are 3 potential sites for new 

services, located on the vertices of an equilateral triangle, and 3 customers, 

each one located near a potential site and all with the same demand 

patterns. Assume also that the budget of each franchisee allows her to open 

one service only. In this setting, franchisee 1 will want to choose the same 

site as franchisee 2, in order to prevent franchisee 2 from being able to 

open a service, and franchisee 2 will want to choose a different site from 

franchisee 1, in order to capture some demand (franchisee 2 will not bid for 

two locations, since she would risk going over her budget). Each franchisee 

would like to outguess the other one, while preventing her to guess her own 

choice. This means that we cannot find a pair of actions that are the best 

response to each other, although it is fairly easy to define how the 

franchisees will play, in the form of probability distributions over the 

actions. In this case we refer to mixed strategies: a mixed strategy is a 

probability distribution over a player's actions (Osborne, 2009, p. 107). In 

this context, a pure strategy can be defined as the deterministic choice of an 

action by a player. A Nash equilibrium is the choice of a strategy by each 

player such that each player's strategy is the best response to the other one's 

strategy. Nash theorem guarantees the existence of a Nash equilibrium, 



  

possibly involving mixed strategies for one or both players, in every finite, 

non-cooperative game, such as the one we are considering. Notice that by 

considering mixed strategies we are not assuming that the franchisees will 

choose an action at random, only that the action of each franchisee can be 

seen as random by the other franchisee and by the franchiser (see, e.g., 

Gibbons, 1992, p. 39).  

In some location games it is possible to prove that a pure strategy Nash 

equilibrium does exist, that is, an equilibrium in which each player plays a 

pure strategy (see, for example, Díaz-Bañez et al., 2011). In other location 

games, the authors have chosen to focus on pure strategy equilibria, and 

disregard the cases in which there are only mixed strategy equilibria (e.g, 

Sáiz et al., 2011). In this work, we take a different view. In the 

computational experiments that we performed, we found a significant 

percentage of cases in which we could find no pure strategy equilibrium. 

By considering only pure strategies, we would be unable to analyze such 

situations. Notice that mixed strategies provide answers to our research 

questions just as pure strategies do: predictions are made in the form of 

probability distributions defined over the actions. 

4 Computing Nash equilibria  

In this section, we define a procedure to find equilibria for the game. 

Considering mixed strategies makes it harder to find Nash equilibria for 

this game and, in fact, there is no obvious procedure for calculating Nash 

equilibria for it. Moreover, since the set of feasible actions of each 

franchisee is usually very large, the use of methods based on the complete 

set of actions, like the Lemke-Howson algorithm (Lemke & Howson, 

1964) or the method proposed by Porter et al. (2008), will lead to very long 

computational times. 



  

Similarly to Lemke & Howson (1964) and Porter et al. (2008), we set out 

to compute sample Nash equilibria for the game. In order to calculate an 

equilibrium, we resort to an algorithm originally described in Godinho & 

Dias (2010). This algorithm is based on the best responses of each player to 

the strategy of the other and uses the Lemke-Howson algorithm on some 

restricted sets of actions. This algorithm is guaranteed to reach a Nash 

equilibrium. We will now present the algorithm and in Subsection 4.2 we 

will explain how to calculate the best response of a franchisee to a strategy 

of the other one. 

4.1 The algorithm 

The algorithm starts with an arbitrary feasible action of one of the players, 

and sequentially determines the best response of each player to the last 

action of the other one. So, if the initial action belongs to player 1, the 

algorithm determines player 2 best response, then it computes player 1 best 

response to player 2 action, and so on. The algorithm goes on in this way 

until it reaches a situation in which each player's action is the best response 

to the other one's (in this case we have a pure strategy Nash equilibrium), 

or until it reaches a cycle with more than one action for each player. 

If a pure strategy Nash equilibrium has been determined, the algorithm 

stops. If a cycle is reached, then it considers a restricted set of actions with 

all the actions belonging to the cycle, and computes a possibly mixed Nash 

equilibrium taking into account only this restricted set of actions. This 

Nash equilibrium can be computed, for example, with the Lemke-Howson 

algorithm (Lemke & Howson, 1964). We will thus get an equilibrium 

( )1 2,σ σ , where 1σ  and 2σ  are the possibly mixed strategies of players 1 and 

2, respectively. These mixed strategies are represented as vectors, in which 

each value refers to the probability of playing a given action by the player. 



  

This equilibrium is obtained with a restricted set of actions; therefore, it 

may be the case that it is not an equilibrium for the initial game. In order to 

find out whether ( )1 2,σ σ  is an equilibrium for the initial game, we compute 

the pure strategy best response of each player to the strategy of the other – 

that is, we compute the action that leads to a larger payoff when the other 

player follows her strategy. If the best response of each player j leads to an 

identical payoff to the one she achieves with strategy jσ , then ( )1 2,σ σ  is a 

Nash equilibrium for the initial game, and the algorithm stops. Otherwise, 

for each player who may improve her payoff by changing her strategy, we 

take her pure strategy best response to the other player’s strategy and add it 

to her restricted set of actions. A Nash equilibrium is then computed for the 

new restricted set(s) of actions, and the process is repeated. The algorithm 

is only capable of calculating one Nash equilibrium at a time. We will now 

present a more formal definition of the algorithm. 

 

1. (Initialize the actions for both players) 
1.1. Let 1←t , and let 1y  be an arbitrary feasible action for player 1 (for 

example, the action in which no new services are opened by the 
player). 

1.2. Let 1w  be a pure strategy best response of player 2 to 1y  (meaning 
that 1w  is an action). 

2. (Find the best responses of both players, and check whether an 
equilibrium or a cycle was reached) 
2.1. Let 1t t← + . Let ty  be a pure strategy best response of player 1 to 

t-1w . 
2.2. Let tw  be a pure strategy best response of player 2 to ty . 
2.3. If  =t t -1w w  then ( ),t ty w  is a Nash equilibrium for the simultaneous 

decision location game. Stop. 
2.4. If t uw = w , for any 1< −u t  then let { }1 :← < ≤S u v tvy  and let 

{ }2 :← < ≤S u v tvw . Go to step 3. 
2.5. Go to 2.1. 

3. (Compute a Nash equilibrium for the game defined by the restricted sets 
1S  and 2S , and check whether it is an equilibrium for the complete game) 



  

3.1. Compute a Nash equilibrium ( )1 2,σ σ  for the game in which the 
actions of player 1 are restricted to the ones in 1S  and the actions of 
player 2 are restricted to the ones in 2S . This equilibrium may be 
computed, for example, with the Lemke-Howson algorithm. 

3.2. Let y  be a pure strategy best response of player 1 to 2σ , and let w  be 
a pure strategy best response of player 2 to 1σ . 

3.3. If ( ) ( )1 1 2 1 2, ,π σ σ π σ= y  and ( ) ( )2 1 2 2 1, ,=π σ σ π σ w  then ( )1 2,σ σ  is a Nash 
equilibrium for the simultaneous decision location game. Stop. 

4. (Add to the restricted sets the best responses leading to larger payoffs; 
iterate) 
4.1. If ( ) ( )1 2 1 1 2, ,π σ π σ σ>y  then { }1 1← ∪S S y . 
4.2. If ( ) ( )2 1 2 1 2, ,>π σ π σ σw  then { }2 2← ∪S S w . 
4.3. Go to step 3. 

 
In the definition of the algorithm, we have chosen to start with a feasible 

action for player 1. We might have otherwise started with a feasible action 

for player 2. If the game has multiple equilibria, the specific equilibrium 

that is found by the algorithm will usually depend on the action used to 

start it. As shown by Godinho & Dias (2010), starting with a action in 

which a given player opens no services will tend to lead the algorithm to 

reach an equilibrium that slightly benefits the other player. In order to 

avoid such bias, in the computational experiments we will always apply the 

algorithm twice: one starting with a null action for franchisee 1 (that is, the 

action in which franchisee 1 opens no service) and the other starting with a 

null action for franchisee 2. 

4.2 Computing the best responses 

In order to be able to use the algorithm, we must have a way to compute the 

best response of a player to the other one's strategy. This can be done by 

solving a linear mixed integer programming problem.  

We start by considering player 1 best response to a mixed strategy of player 

2. Let q be the number of actions that have a strictly positive probability of 

being played, according to player 2 mixed strategy, and denote such actions 



  

by , 1,...,t q=tw . Each action tw  is a binary vector with 1n  elements 

1, 1,..., ; 1,...,itw i n t q= = . Let the mixed strategy be represented by 

( )2 21 22 2, ,..., ,qσ σ σ σ=  2 0, 1,...,t t qσ > = , where 2tσ  is the probability of player 2 

playing action tw . 

We introduce the following additional parameter: 

{ }
11,...,

1

min , 1,..., ; 1,...,
it

jt iji n
w

e c j m t q
=

=

= = = , is the minimum distance between a site chosen 

by player 2 and customer j, when player 2 plays action tw . 

Let us now consider the decision variables { } 1 20,1 , 1,...,iy i n n∈ = + , as defined 

before, and the following assignment variables: 

1 2

1, if customer  is assigned to service  of player 1
   when player 2 plays action ,  1,..., ; 1,..., ; 1,...,

0,  otherwise
ijt

j i
x i n n j m t q

⎧
⎪= ∀ = + = =⎨
⎪⎩

tw  

 

The best response of player 1 to the mixed strategy 

( )2 21 22 2 2, , ..., , 0, 1,...,q t t qσ σ σ σ σ= > = , of player 2 is the action ( )1 21 ,..., += n ny yy  that is 

an optimal solution of the following linear programming problem: 

 
1 2

2
1 1 1

  
n nq m

t ij ijt
t j i

Max d xσ
+

= = =
∑ ∑ ∑  (10) 

Subject to: 

 
1

1 1
1

n

i i
i

f y O
=

≤∑  (6) 

 1 1 21, 1,...,iy i n n n= = + +  (2) 

 1 2, 1,..., ; 1,..., ; 1,...,ijt ix y j m i n n t q≤ = = + =  (11) 

 1 2

1
0, 1,..., ; 1,...,

ij jt

n n

ijt
i

c e

x j m t q
+

=
>

= = =∑  (12) 

 { } 1 20,1 , 1,...,iy i n n∈ = +  (13) 

 { } 1 20,1 , 1,..., ; 1,..., ; 1,...,ijtx j m i n n t q∈ = = + =  (14) 

 



  

The objective function is similar to (8), but considers the probabilities 

associated with the actions that have a strictly positive probability of being 

played by player 2. Restrictions (11) guarantee that demand assignments 

can only be made to opened services. Restrictions (12), along with (10), 

guarantee that assignments will only be made to the closest opened facility. 

This formulation does not explicitly consider the case in which multiple 

services are located at the same distance from a customer. In that case, we 

can consider dividing the customer demand equally by all services located 

at the same distance (similarly to what is described in Godinho and Dias, 

2010). 

 

We now turn to player 2 best response to a mixed strategy of player 1. Ler r 

be the number of actions that have a strictly positive probability of being 

played in the mixed strategy of player 1, and denote such actions by 

, 1,...,t r=ty . The mixed strategy is represented by ( )1 11 12 1, ,..., ,rσ σ σ σ=  

1 0, 1,...,t t rσ > = , where 1tσ  is the probability of player 1 playing action ty . 

Each action ty  corresponds to a set of values for variables 1 2, 1,...,iy i n n= + . 

In order to formulate the problem, we reverse the roles of the players in the 

definition of jte : jte  is now the minimum distance between a site chosen by 

player 1 and customer j, when player 1 plays action ty . 

The assignment variables are now: 

1

1, if customer  is assigned to service  of player 2
   when player 1 plays action ,  1,..., ; 1,..., ; 1,...,

0,  otherwise
ijt

j i
u i n j m t q

⎧
⎪= ∀ = = =⎨
⎪⎩

ty

 
The best response of player 2 to the mixed strategy 

( )1 11 12 1 1, ,..., , 0, 1,...,r t t rσ σ σ σ σ= > = , of player 1 is the action ( )11 ,..., nw w=w  that 

constitutes an optimal solution to a linear programming problem similar to 

the one already defined regarding player 1. In this problem ijtu  takes the role 



  

of ijtx , and restrictions (2) are not included in the formulation. Demand is 

only assigned to opened services, so (11) is replaced by: 

( ) 11 , 1,..., ; 1,..., ; 1,...,ijt it iu y w j m i n t r≤ − = = =   (15) 

 

Demand assignments can only be made when player 1 does not bid for a 

site closer to the customer being considered. This means that (12) is 

replaced by: 
1

1
0, 1,..., ; 1,...,

ij jt

n

ijt
i

c e

u j m t r
=
>

= = =∑        (16) 

 

Since investor 2 knows that she has to open all services that she bids for 

and are not chosen by investor 1, she will never select a strategy in which 

there is a strictly positive probability of not being able to open all the 

services that are allocated to her. This fact allows us to avoid using the 

variable v  defined in Section 2, and instead stating that player 2 strategy 

will meet her budget for every action of player 1 that has a strictly positive 

probability in 1σ . The budget constraint that replaces (6) only considers 

services that player 2 is able to open: 

( )
1

2 2
1

1 , 1,...,
n

i it i
i

f y w O t r
=

− ≤ =∑       (17) 

5 Design of the experiments 

In order to find answers to the questions presented in the end of Section 2, 

we designed several experiments, which were then performed resorting to a 

computational implementation of the algorithm.  

In order to assess the benefits and losses derived from the existence of 

preferential rights and from the possibility of franchisee 2 being able to bid 

for more sites than the ones she can afford, we considered three different 

cases: 



  

─ Case (i): at most one service is opened at each site, franchisee 1 has 

preferential rights and franchisee 2 can bid for more sites than the ones 

she can afford (the problem tackled in this paper); 

─ Case (ii): franchisee 1 does not have preferential rights and it is possible 

that both franchisees open a service at the same site (Godinho & Dias, 

2010); 

─ Case (iii): franchisee 1 has preferential rights and franchisee 2 cannot bid 

for more sites than she can afford (Godinho & Dias, 2012). 

In order to assess how the results change with some particular parameters 

of the problem, we defined 13 experiment sets. Each set is composed by 50 

randomly generated instances of the problem, with the same input 

parameters. In all the scenarios that we present, we considered that 20% of 

sales value is paid by both franchisees to the franchiser ( 0.2α = ) and there 

are no pre-existing services opened by franchisee 1 (meaning n1=0).  

Specifically, we considered the following scenarios: 

─  Scenario 1 (base case) was used as a reference, the parameters of the 

remaining scenarios being defined as changes over the parameters of this 

base case. We defined a network with 100 nodes (that is, 100 possible 

locations for the customers), with both franchisees being able to open 

services at 48 of these locations. The budget for each franchisee was set 

to 1000, and the average cost of opening a service was set to 350. 

─ Scenarios 2-4 were designed to allow us to analyze the impact of 

simultaneously changing the number of potential sites available for both 

franchisees. The number of potential sites was set to 36, 24 and 12 in 

scenarios 2, 3 and 4, respectively, and the values of the other parameters 

were identical to the ones used in the base case.  

─ Scenarios 5-7 allow us to analyze the consequences of changing the 

potential sites available to just one of the franchisees. We defined that 

franchisee 1 has 48 potential sites, and set the number of potential sites 



  

for franchisee 2 to 48, 36, 24 and 12 in scenarios 1, 5, 6 and 7, 

respectively. This is done by randomly choosing a subset of potential 

sites and considering 2if = +∞ , for all services located at site i in this subset. 

The values of the other parameters were identical to the ones used in the 

base case. 

─ Scenarios 8-10 allow us to analyze the consequences of changing the 

budget of a franchisee, while keeping the budget of the other franchisee 

constant. We defined that franchisee 1 has a budget of 1000, and set the 

budget of franchisee 2 to 1000, 750, 500 and 250 in scenarios 1, 8, 9 and 

10, respectively. The values of the other parameters were identical to the 

ones used in the base case. 

─ Scenarios 11-13 allow us to analyze what happens when the average 

fixed cost of each service changes and the budgets of the franchisees are 

kept constant. We set the average cost of each service to 175, 262.5, 350 

and 525 in scenarios 11, 12, 1 and 13, respectively. The values of the 

other parameters were identical to the ones used in the base case. 

 

The algorithm was implemented in C programming language, using LP 

Solve routines for solving the linear programming problems (source: 

http://lpsolve.sourceforge.net). A random generation procedure was used to 

generate the problem instances, based on a 500x500 grid, random creation 

of arcs between locations, and the use of a shortest path algorithm to define 

the distances. The random generation procedure receives as inputs the 

following data: 

  Total number of nodes of the network; 

  Total number of potential sites where franchisee 1 is able to open 

services; 



  

  Number of potential sites available to franchisee 2 (that can be the 

whole set of potential sites available for franchisee 1 or only a 

subset); 

  Budget for each franchisee; 

  Maximum value for customer demand; 

  Average fixed cost of each service. 

 
The generation procedure for each problem instance runs as follows: 

1. Random generation of (x,y) coordinates in the plane for all nodes of 

the network, according to a discrete uniform distribution and 

considering a 500x500 grid. 

2. Random creation of arcs between each pair of network nodes, with a 

probability of 75%. A distance is associated to each arc that is equal 

to the Euclidean distance between its two nodes. 

3. Creation of arcs (not created in step 2) between nodes such that the 

Euclidean distance between location nodes is less than 50, with 

probability of 80% (reflecting the fact that the existence of direct 

routes is more probable when the locations are closer to each other).  

4. Random choice of the set of n1+n2 potential service locations. 

5. If the number of potential sites available to franchisee 2 is less than 

the total number of sites, then a subset of nodes corresponding to the 

franchisee 2 available sites is randomly generated. 

6. Calculation of the shortest path between each customer and each 

potential site, using the Floyd-Warshall algorithm, and creation of a 

distance matrix. 

7. For each potential site, random generation of a starting fixed cost 

between 57% and 143% of the average cost. For each franchisee, this 

starting fixed cost is disturbed by a uniform randomly generated 

change between -30% and 30%. 



  

8. For each customer j, random generation of the maximum demand, 

which means the demand that would be considered if this customer j 

would be assigned to an open service i such that 0=ijc . For each 

potential site i, ijd  is calculated by randomly generating a demand 

decrease by unit distance. The demand decrease per unit distance is 

calculated as a uniform randomly generated percentage of customer j 

maximum demand (in the experiments, a 0.8% average decrease of 

demand per unit distance was used). The behavior of demand created 

by this method complies with the properties of insensitivity to 

scaling, monotonicity and consistency as defined in Eiselt & Laporte 

(1998). 

 

As mentioned in Subsection 4.1, for each instance that we generated, we 

applied the algorithm twice. The first time we chose a null action for 

franchisee 1 (opening no services) as the starting point; the second time, we 

chose a null action for franchisee 2 as the starting point. As we explained, 

the reason for applying the algorithm twice is that the results may be 

somewhat biased by the choice of the starting point. In fact, Godinho & 

Dias (2010) point out that the algorithm will often find solutions that are 

more favorable to the player whose best response is considered first. 

However we must notice that, in the problem addressed in this paper, the 

equilibrium solution that is found is usually independent of the starting 

point of the algorithm; moreover, when different starting points lead to 

different equilibria, the differences between the franchisees payoffs in the 

two equilibria are small. 

6 Results and analysis 

Tables 1-4 present the average payoffs over the two runs and over the 50 

instances of each scenario and for each case. For the sake of analyzing the 



  

outcomes, we consider the average payoff for each franchisee ( 1π  and 2π ), 

as well as the average payoff for the franchiser ( Fπ ). We will also be 

interested in the relative advantage of franchisee 1 over franchisee 2, which 

we measure as 1 2 .π π This relative advantage is of particular interest in cases 

(i) and (iii), in which franchisee 1 has preferential rights.  

In Table 1 we can see the results obtained with scenarios 1 to 4. As can be 

seen, decreasing the number of potential sites for both players reduces the 

franchiser payoff in all cases considered. In fact, by reducing the number of 

potential sites available to both franchisees, it might be expected that the 

total demand served by both of them will decrease, therefore the franchiser 

payoff will also decrease. When franchisee 1 has preferential rights (cases 

(i) and (iii)), we can conclude that the decrease in the number of potential 

sites increases the relative advantage of this player. In fact, preferential 

rights provide franchisee 1 with some ability to increase her return by 

avoiding having franchisee 2 near the most profitable sites, and such ability 

is more important when the total number of alternatives is smaller.  This 

tendency is not present in case (ii), because in this case there are no 

preferential rights and the potential sites are the same for both players. 

Therefore, there should be no advantage of any one player over the other in 

case (ii) of scenarios 1 to 4, and 1 2π π  was expected to be close to one. 

Table 2 depicts the results obtained with scenarios 5 to 7. In all cases 

considered, decreasing the number of sites available to franchisee 2 

increases the relative advantage of franchisee 1. In these scenarios, we can 

find no clear trend in the change of the franchiser payoff with the number 

of potential sites available to franchisee 2. 

 

Table 1. Summary of the results obtained with scenarios 1-4 

SePotent Case (i) Case (ii) Case (iii) 



  

t ial 
sites 

( )
1

iπ  ( )
2
iπ  ( )i

Fπ  
( )

1

( )
2

i

i

π
π

( )
1

iiπ ( )
2

iiπ ( )ii
Fπ  

( )
1

( )
2

ii

ii

π
π

( )
1

iiiπ ( )
2
iiiπ  ( )iii

Fπ  
( )

1

( )
2

iii

iii

π
π

1 48 1118.
6 

803.4 480.5 1.39 958.
1 

957.
5 

478.9 1.00 1141
.3 

761.
8 

475.8 1.50

2 36 1122.
1 

784.7 476.7 1.43 943.
3

944.
5

472.0 1.00 1134
.1

747.
4 

470.4 1.52

3 24 1042.
2 

684.7 431.7 1.52 867.
4 

848.
6 

429.0 1.02 1048
.6 

650.
7 

424.8 1.61

4 12 866.9 533.3 350.1 1.63 672.
3 

693.
5 

341.4 0.97 871.
9 

506.
5 

344.6 1.72

( )c
pπ : average payoff for franchisee p in case (c); ( )c

Fπ : average payoff for the 
franchiser in case (c).  

 
Table 3 shows the results obtained when the budget of franchisee 2 

decreases (scenarios 8 to 10). Regarding the relative advantage of 

franchisee 1, the behavior is quite similar whenever franchisee 1 has 

preferential rights: this advantage increases with the decrease of the budget 

of franchisee 2. The same happens in case (ii), but the advantage is not as 

great as in cases (i) and (iii). In these scenarios, we also notice that the 

franchiser payoff decreases as the budget of franchisee 2 is reduced. In fact, 

by reducing the budget of a franchisee we are decreasing the total number 

of services that may be opened, therefore reducing the total demand served 

and the franchiser’s share. 

Table 2. Summary of the results obtained with scenarios 1 (repeated for 
easier reference) and 5-7 

Se
t 

Potent
ial 

sites 
for 

player 
2 

Case (i) Case (ii) Case (iii) 

( )
1

iπ  ( )
2
iπ  ( )i

Fπ  
( )

1

( )
2

i

i

π
π

( )
1

iiπ ( )
2

iiπ ( )ii
Fπ  

( )
1

( )
2

ii

ii

π
π

( )
1

iiiπ ( )
2
iiiπ  ( )iii

Fπ  
( )

1

( )
2

iii

iii

π
π

1 48 1118.
6 

803.4 480.5 1.39 958.
1 

957.
5 

478.9 1.00 1141
.3 

761.
8 

475.8 1.50

5 36 1125.
0 

763.4 472.1 1.47 995.
0

921.
6

479.1 1.08 1134
.9

734.
7 

467.4 1.54

6 24 1205.
8 

741.1 486.7 1.63 1092
.6 

874.
0 

491.6 1.25 1213
.9 

706.
5 

480.1 1.72



  

7 12 1231.
5 

603.0 458.6 2.04 1137
.4

745.
9

470.8 1.52 1234
.9

593.
8 

457.2 2.08

( )c
pπ : average payoff for franchisee p in case (c); ( )c

Fπ : average payoff for the 
franchiser in case (c).  

Table 3. Summary of the results obtained with scenarios 1 (repeated for 
easier reference) and 8-10 

Se
t 

Budge
t of 

player 
2 

Case (i) Case (ii) Case (iii) 

( )
1

iπ  ( )
2
iπ  ( )i

Fπ  
( )

1

( )
2

i

i

π
π

( )
1

iiπ ( )
2

iiπ ( )ii
Fπ  

( )
1

( )
2

ii

ii

π
π

( )
1

iiiπ ( )
2
iiiπ  ( )iii

Fπ  
( )

1

( )
2

iii

iii

π
π

1 1000 1118.
6 

803.4 480.5 1.39 958.
1

957.
5

478.9 1.00 1141
.3

761.
8 

475.8 1.50

8 750 1238.
0 

644.3 470.6 1.92 1073
.7 

797.
3 

467.8 1.35 1251
.2 

607.
8 

464.7 2.06

9 500 1252.
7 

424.6 419.3 2.95 1140
.2 

540.
3 

420.1 2.11 1261
.3 

404.
5 

416.5 3.12

10 250 1341.
8 

203.5 386.3 6.59 1261
.1 

278.
4 

384.9 4.53 1342
.7 

195.
5 

384.6 6.87

( )c
pπ : average payoff for franchisee p in case (c); ( )c

Fπ : average payoff for the 
franchiser in case (c). 

 
Table 4 shows what happens when the average cost of locating a service 

increases. We can see that when we increase the average fixed service cost 

(meaning that each franchisee is able to open fewer services), the relative 

advantage of having preferential rights decreases. These results do not 

contradict the ones presented in Table 1. In reality, having to choose sites 

from a smaller set of potential sites is a completely different situation from 

having the same larger set, but being able to choose fewer sites. In the 

former case, preferential rights give franchisee 1 the ability to avoid having 

franchisee 2 near the most profitable sites, therefore increasing her own 

payoff. In the latter case franchisee 2 is able to choose a smaller set of sites 

from a larger set of available sites, allowing her to choose a more balanced 

strategy and to increase her own payoff. 



  

Table 4. Summary of the results obtained with scenarios 1 (repeated for 
easier reference) and 11-13 

Se
t 

Avera
ge 

fixed 
servic
e cost 

Case (i) Case (ii) Case (iii) 

( )
1

iπ  ( )
2
iπ  ( )i

Fπ  
( )

1

( )
2

i

i

π
π

( )
1

iiπ ( )
2

iiπ ( )ii
Fπ  

( )
1

( )
2

ii

ii

π
π

( )
1

iiiπ ( )
2
iiiπ  ( )iii

Fπ  
( )

1

( )
2

iii

iii

π
π

11 175 1553.
8 

1034.
5 

647.1 1.50 1281
.8

125
9.3

635.3 1.02 1589
.9

914.
3 

626.1 1.74

12 262.5 1338.
3 

931.1 567.4 1.44 1125
.1 

113
7.9

565.8 0.99 1359
.5 

871.
7 

557.8 1.56

1 350 1118.
6 

803.4 480.5 1.39 958.
1 

957.
5 

478.9 1.00 1141
.3 

761.
8 

475.8 1.50

13 525 882.8 684.2 391.7 1.29 772.
0 

791.
2 

390.8 0.98 887.
6 

665.
9 

388.4 1.33

( )c
pπ : average payoff for franchisee p in case (c); ( )c

Fπ : average payoff for the 
franchiser in case (c).  

 

After this general analysis, let us now turn to the research questions. The 

answers are in accordance with our prior expectations, in the cases in which 

we were able to formulate such expectations. 

We start by comparing the three cases from the franchiser’s perspective, in 

order to find out which rules best serve the franchiser. Comparing case (i) 

with case (iii) we can confirm our prior hypothesis that if the franchiser is 

to give one of the franchisees preferential rights, then she better allow the 

other one to overbid. In fact, case (i) always leads to larger payoffs for the 

franchiser. The comparisons of cases (i) and (iii) with case (ii) do not lead 

to such straightforward conclusions. In 12 out of the 13 test sets, case (ii) 

leads to a larger franchiser payoff than case (iii), meaning that it will 

usually be preferable not to give any franchisee preferential rights than 

giving one of them preferential rights and not allowing the other one to 

overbid. Case (i) leads to larger average payoffs for the franchiser than case 

(ii) in test sets 1-4, 8 and 10-13, and to smaller payoffs in the remaining 

scenarios. So, whenever the situation of both franchisees is symmetrical at 



  

the outset, in terms of budget and potential sites (scenarios 1-4 and 11-13), 

it is better for the franchiser to give one of them a slight advantage, by 

defining preferential rights, although somewhat mitigated by allowing the 

other to overbid. When one franchisee already possesses some advantage in 

terms of the sites she may chose, then giving her a further advantage 

becomes detrimental to the franchiser payoff. When one franchisee 

possesses some advantage in terms of her budget, neither case (i) nor (ii) 

seems to be consistently more beneficial for the franchiser than the other. 

Summarizing, from the franchiser perspective, the most advantageous rules 

depend on the particular characteristics of the franchisees. It seems to be 

advantageous to introduce a limited degree of asymmetry between the 

franchisees whenever their situation is otherwise symmetrical at the outset. 

When one of the franchisees already possesses some advantage over the 

other, further asymmetry is often detrimental to the franchiser payoff. 

 

Let us now turn to the franchisees. If we compare the payoffs of case (i) 

with the situation in which neither franchisee has preferential rights (case 

(ii)), there is an average loss for franchisee 2 and an average gain for 

franchisee 1 in all scenarios. This confirms our prior expectation that 

preferential rights benefit franchisee 1 in detriment of the payoff of 

franchisee 2. 

If we compare the payoffs of case (i) with the situation in which franchisee 

1 has preferential rights and franchisee 2 cannot overbid (case (iii)), then 

there is a gain for franchisee 2 and a loss for franchisee 1, in all scenarios. 

This also confirms the prior expectation that the possibility of overbidding 

allows franchisee 2 to partially offset the advantage given to franchisee 1 

by the preferential rights. 

Confirming the prior expectations, we conclude that the advantage 

provided by preferential rights becomes more significant both when the 



  

total number of potential sites decreases and when the number of services 

that each franchisee may open increases (by a reduction in the cost of 

opening a service). At the same time, and in both cases, the benefit of 

overbidding by the franchisee without preferential rights has a diminishing 

impact. 

Finally, we were also able to conclude that reducing the budget of 

franchisee 2, or the number of sites available to this franchisee, will reduce 

her payoff. Reducing her budget also reduces the payoff of the franchiser. 

These results were in accordance with our previous expectations. We were 

also able to conclude that such reductions of the options of franchisee 2 

will benefit franchisee 1, increasing her payoff. 

So, from the franchisees perspective, the impact of the rules depends on the 

particular characteristics of the situation. When the franchisee with 

preferential rights has more significant opportunities to block the other one 

from choosing the most promising sites, either because the number of 

available sites is smaller or because the budget is larger, preferential rights 

provide a more significant advantage, and the possibility of overbidding 

does less to mitigate that advantage. 

7 Conclusions and future research 

In this paper we set out to analyse the impact of preferential rights and the 

possibility of overbidding in a franchising environment. We presented a 

model in which two franchisees have to simultaneously choose the sites 

where to open services, and we defined computational experiments and 

analysed the results. From the results shown here and in Godinho & Dias 

(2010) and Godinho & Dias (2012), we can see that the rules of the game 

have a significant impact on the results obtained. Considering that the 

franchiser has the ability to choose freely between the three sets of rules 

that we analysed, we can conclude that the inclusion of some level of 



  

asymmetry between franchisees can be beneficial to the franchiser. 

Nevertheless, the franchiser should take into consideration the already 

existing asymmetries between investors. If the option chosen increases this 

asymmetry too much, the results can be disadvantageous to the franchiser. 

From the perspective of the franchisees, the existence of preferential rights 

has an increased impact when the franchisee with those rights has more 

significant opportunities to block the other one by choosing the most 

promising sites, and in such cases the possibility of overbidding does less 

to mitigate that impact. 

Conceptually, this game could be generalized considering more than two 

players. In this case, we could consider the situation of having only one 

player with preferential rights, or an ordered set of players that would be 

considered when deciding the assignment of sites whenever more than one 

player was interested in the same site. In terms of the general setting, this 

generalization is conceptually simple, but its mathematical formulation 

would become somewhat cumbersome. In terms of the algorithm, the 

generalization to more players is possible if we include other players in the 

algorithm loop, and replace the Lemke-Howson method by another method 

that allows the calculation of Nash equilibria for games with more than 2 

players (see, e.g., Porter et al. 2008). This will be the subject of future 

research.  

Another further development is the increase in the flexibility of the model 

when the problem is considered from the point of view of the franchiser: 

what are the best rules of this game that the franchiser can define so that 

her payoff is maximized, when she may change other parameters of the 

game. We are also interested in considering what happens if the services to 

be located are essential services, meaning that demand will not decrease 

with distance, but it will stay constant. 



  

The conclusions that were drawn from the computational experiments 

made consider some very strong assumptions, namely that the decision-

makers are fully rational, they are capable of applying reasonably complex 

reasoning and they base their decisions regarding only the maximization of 

their objective function. In reality, the decision-maker behavior can be 

influenced by emotions, she has bounded reasoning and she can take into 

account other types of concerns like fairness (Kohli et al., 2012). In order 

to test the conclusions reached, we could think of designing a set of 

experimental tests with real decision-makers. There are several examples in 

the literature that describe empirical studies, some of them reaching results 

that support the theoretical findings, others challenging them (Arad & 

Rubinstein, 2010; Chowdhury et al., 2013; Irfanoglu et al., 2010; Deck & 

Sheremeta, 2012). The classic experimental setup considers a set of 

experiments that are done in a laboratory, with or without the use of 

computers. The use of computers and dedicated software allows a much 

faster and reliable implementation of the experiments (Fischbacher, 1999).  

Considering the game described in this paper, our experiments could be 

based on a web platform where participants could register. Pairs of 

participants would be randomly selected, and the participants in each pair 

would play against each other. One of the three possible cases considered 

would be randomly chosen. Considering cases (i) and (iii), one of the 

participants would be randomly chosen as being the player with 

preferential rights. The problem data would be randomly generated as 

described in Section 5. The web platform would support the decision 

making process of each participant by allowing the visualization of the 

potential locations and the customers, and showing the demand patterns 

versus distance. We would be interested in calculating the average payoff 

for each franchisee, as well as for the franchiser, and compare the results 

with the conclusions reached by our computational experiments. We could 



  

also see what the most prevailing strategies are. Regarding case (i), it 

would be interesting to see how the players without preferential rights 

would take advantage of being able to relax the budget restriction during 

the bidding phase. If they do bid for more locations than they can afford, 

how often will they be able to keep their side of the agreement? 

Considering that each participant could play more than once, other 

conclusions could be drawn, namely regarding the effect that repeated 

playing can have on the players choices. Information on whether the 

players have any experience in game theory could be interesting to gather 

(Arad & Rubinstein, 2010), to see if it can be correlated with success in the 

game. Moreover, we could think of giving the players the possibility of 

calculating the opponent best response to the player’s strategy and see how 

this information would change the players’ behavior. 
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  We develop a model where two players simultaneously choose their 
facilities’ sites. 

  One of the players has preferential rights over the other. 
  Nash equilibria are calculated by an algorithmic approach using 

linear programming. 
  Including some level of asymmetry between players can benefit the 

franchiser. 

  

  

 

 


