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Abstract

This article proposes a framework to detect and segment changes in robotics datasets, using 3D robotic mapping as a case study.
The problem is very relevant in several application domains, not necessarily related with mobile robotics, including security,
health, industry and military applications. The aim is to identify significant changes by comparing current data with previous data
provided by sensors. This feature is extremely challenging because large amounts of noisy data must be processed in a feasible
way. The proposed framework deals with novelty detection and segmentation in robotic maps using clusters provided by Gaussian
Mixture Models (GMMs). GMMs provides a feature space that enables data compression and effective processing. Two alternative
criteria to detect changes in the GMM space are compared: a greedy technique based on the Earth Mover’s Distance (EMD); and
a structural matching algorithm that fulfills both absolute (global matching) and relative constraints (structural matching). The
proposed framework is evaluated with real robotic datasets and compared with other methods known from literature. With this
purpose, 3D mapping experiments are carried out with both simulated data and real data from a mobile robot equipped with a 3D

range sensor.
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1. Introduction

The problem of detecting novelties comprises the compari-
son of current data with a priori data or expected behavior. This
could be related with a training dataset to learn the normality
or some information about the previous state of the data. Us-
ing this information, we intend to determine whether something
changes, given that the data portion related to novelty is initially
unknown. The expressions novelty detection and change de-
tection are used interchangeably throughout the text to denote
the identification of differences between pairs of datasets (e.g.
robotic map of the same section of an environment at two dif-
ferent instant times). Segmentation of these novelties implies
to determine which data is related to them. These problems are
important in a large variety of areas, as shown in the work of
Markou and Singh (2003) and, more recently and extensively,
in the work of Chandola et al. (2009), where anomaly detec-
tion is focused. In that work, they made a distinction between
anomalies and novelty detection, wherein the latter is related
to a novel pattern, being typically incorporated into the model
after being detected.

In robotic applications, it can be useful to take into account
novelties in the scene (dynamic mapping), in order to accom-
plish other tasks relying on that knowledge about the environ-
ment. This is the topic of increasing interest in the robotic
community and which is presented as a particular case study
in this article. In robotic surveillance and security systems, for
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instance, changes in the environment affecting the robot’s path
can configure risky situations, which require the activation of
some kind of alarms with which either the robot or a human
operator should be aware of. In a similar way, robots exploring
dangerous environments (e.g. abandoned mines, maintenance
of nuclear reactors or oil pipes), should solve and warn about
dangerous situations when a significant change is detected with
respect to the known map. In this kind of applications, the
robotic platform may be also equipped with a robotic arm and
an artificial hand, in order to manipulate and grasp objects as-
sociated to changes in the environment. In all these situations,
when the robot revisits some section of the environment, it is
worth comparing current perceptual data with previously ac-
quired one, in order to detect novelties in the scene (Drews Jr
et al., 2010).

The problem addressed in this article is novelty detection and
segmentation. It involves processing large datasets which is
quite challenging and requires the development of specific tech-
niques, aiming at achieving two interrelated goals (see Fig. 1):
firstly, detecting whether there is some significant change; sec-
ondly, if some significant change exists, segmenting the data
associated with it. In order to improve the accuracy and en-
sure the feasibility of the change detection process, sensor data
must be transformed into a more compact form before com-
paring with previously acquired data. In this case, the chosen
representation heavily determines the performance of the whole
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Figure 1: The system is aimed at detecting significant changes (novelties) and
segmenting the data (set of points) related with novelties.The use of a high-level
representation makes it easier to detect changes, represented in the flowcharts
parallelograms.

This article proposes a framework to robustly detect and seg-
ment changes in the particular case of 3D robotic maps. Ini-
tially, the data to be compared is simplified and compressed
without loosing essential information, by using a clustering
method based on Gaussian Mixture Models (GMMs). Next,
segmentation is accomplished by two alternative methods: a
greedy algorithm (Drews Jr et al., 2010), which uses a met-
ric based on Earth Mover’s Distance (EMD); and a structural
matching algorithm (Nufiez et al., 2010). These two approaches
are compared in order to detect changes and obtain a segmented
point cloud representing those changes.

The main contribution of this article is the development of
a practical method comprising techniques to detect and seg-
ment changes in large datasets. The method is validated with
real data in the context of 3D robotic maps. Related to previ-
ous papers of the authors on novelty detection, a more detailed
study and thorough experimental evaluation of our method is
achieved in this article. The algorithm is evaluated through dif-
ferent experiments (e.g. different robot’s point of views, differ-
ent sizes of changes, efc.) and it is compared with other change
detection algorithms. Besides, this work extends our previous
contributions, pointing out new statistical results. A compara-
tive study is made between a state-of-art method and the pro-
posed method using real large datasets, which shows the advan-
tages of the proposed method. Moreover, the use of GMMs as
descriptive features of data allows describing and compressing
datasets in an concise way. Furthermore, the use of geometri-

cal features (surface variation) in 3D robotic maps is aimed at
achieving even better data compression.

The techniques presented in this article open new opportu-
nities to develop automatic processes for surveillance of infras-
tructures, by proposing a new and robust approach for searching
and detecting changes within large amounts of data.

1.1. Related work

Extracting features from data is a challenging step. It in-
volves removing irrelevant or redundant data in order to achieve
some goal (e.g. detecting a novelty) with information compres-
sion (Yu and Liu, 2004). In spatial data, as in 3D robotic
maps, the use of planar structures (Stamos et al., 2008; Mufti
etal., 2012) and K-means clustering (Loménie, 2004) have been
proposed. This problem can also be addressed by following
different approaches, such as Principal Component Analysis
(PCA) (Jolliffe, 2002) and Independent Component Analysis
(ICA) (Comon, 1994), which enable a good dimensional re-
duction. Gaussian Mixture Models (GMMs) also exhibit inter-
esting properties, namely good compression and description of
data, as it was demonstrated in Nufiez et al. (2009) and Drews Jr
et al. (2010). GMMs are largely used in several applications,
such as recognition, especially in audio (Reynolds and Rose,
1995), clustering (Fraley and Raftery, 1998) and classifiers for
pedestrian recognition (Premebida et al., 2009). Due to their
potential, GMMs were extensively used to detect novelties, but
usually as classifiers (Tarassenko et al., 1995). See (Markou
and Singh, 2003) for a thorough review of previous work on
novelty detection using GMMs.

Different computational methods can be used to compare
GMMs and to determine whether a change has occurred. Met-
rics to compute distance between GMMs, as KL-Divergence
(Goldberger et al., 2003) and Euclidean Distance (Helén and
Virtanen, 2007), are largely used in audio recognition and im-
age matching. Tomasi et al. (1998) presented the Earth Mover’s
Distance (EMD) as a metric for comparing two different dis-
tributions; it is computationally efficient as an instance of the
transportation problem. A large number of metrics are com-
pared in the context of image retrieval in the work by Rubner
et al. (2000). These metrics need to be associated to a method,
such as the greedy algorithm used in the work of Drews Jr et al.
(2010). The use of structural matching as an data association
method can also be applied in this context, by using the max-
imum clique in a correspondence graph (Barrow and Burstall,
1976), as presented in the work of Nufiez et al. (2010).

The behavior of an autonomous mobile robot working in dy-
namic environments has been extensively studied for the last
decade. The common strategy has been to remove dynamic ob-
jects in order to improve the navigation and localization tasks
(Thrun et al., 2001). However, these changes in the robot’s sur-
rounding may be actually relevant depending on the applica-
tions. In this sense, Andreasson et al. (2007) presented a system
for autonomous change detection with a security patrol robot
using 3D laser range data and images from a color camera.

Novelty detection in the context of surveillance robots was
also addressed in the work of Marsland et al. (2002), where




they use Grow When Required (GWR) nets together with ha-
bituation. They applied their method to sonar data. This work
was extended by Vieira Neto and Nehmzow (2008) using visual
colored data, where visual attention is applied through salience
maps. Moreover, the use of incremental PCA is compared in
this context providing similar results.

More recently, the work of Sofman et al. (2010, 2011) uses
novelty detection to identify new classes in data. Features are
selected using the Multiple Discriminant Analysis (MDA) ap-
proach and applied in NORMA algorithm with few adaptations.
It was validated in an AGV acquiring features from LADARs
and Cameras. Although this method is efficient, it requires ex-
tensive training data.

Novelty detection based on GMMs and EMD was addressed
in Nufez et al. (2009), and later in Drews Jr et al. (2010). In
a first stage, a GMM was computed to cluster the cloud of 3D
points. Next, EMD was used to quantify changes in the data. A
new greedy algorithm was proposed to segment changes. De-
spite the quality of the attained results, the computation times
were still too large to make viable their practical use with large
datasets. Moreover, the method is sensitive to the maximum
number of Gaussians in the GMM. Bearing on the same es-
sential ideas, this article extends previous work of the authors
(Ndfiez et al., 2009; Drews Jr et al., 2010) with the aim of re-
lieving the required computation burden and parameters specifi-
cation. Furthermore, a more thorough experimental evaluation
with real and large datasets is presented.

1.2. Organization of the article

The article is organized as follows. Section 2 presents in
detail a solution based on Gaussian Mixture Models for the
novelty detection and segmentation problem. Section 3 de-
scribes experiments to evaluate the proposed framework with
large datasets acquired with real sensors. Finally, in Sec. 4, the
main conclusions and future work are drawn.

2. Novelty detection and segmentation

This section describes the proposed method for detecting and
segmenting changes in the environment. The crux of the nov-
elty detection problem is to identify any previously unknown
feature (Vieira Neto and Nehmzow, 2007). One of the main en-
visioned applications for our method is advanced perception for
autonomous mobile robots equipped with 3D laser range find-
ers, or an equivalent 3D range sensor providing dense 3D data
of its working environment (e.g. depth camera). Fig. 2 illus-
trates a typical situation where an autonomous robot moves in
its working environment. As shown in the figure, the environ-
ment may present sudden changes — in the example, a change
occurred in the hallway. The robot must find and segment this
novelty in order to cope with the environment’s dynamics and
it also needs to correctly update its model of the environment.

The several stages of the novelty detection and segmentation
process that is proposed in this article were outlined in Fig 1.
First, information from the environment is acquired by a 3D
sensor (different laser scanners have been used in this paper).
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Figure 2: The aim of the proposed novelty detection method is to find and
segment changes in the mobile robot’s workspace (e.g. the appearance of a
person in (b)).

This data is pre-processed in the next stage, by two consecu-
tive methods with the aim of reducing the number of points in
the 3D map: i) a simplification algorithm and ii) a sparse out-
liers and ground plane removal methods. The simplification
method uses surface information and generates a multi-scale
point cloud (Pauly et al., 2002). As most of the data contained
in both datasets being compared are usually related with static
structures, the sparse outliers and ground plane removal meth-
ods remove data which, although not being related to novelties,
significantly increase the computation burden. Once the pre-
processing stage is completed, the dataset is converted from the
Euclidean space to the mathematical space of Gaussian Mix-
tures, i.e. features based on Gaussian Mixture Models (GMMs)
are extracted from the simplified data. The use of these features
allows the process to describe the environment information in
a more convenient way, and easily detect and segment novel-
ties. This GMM-based approach was seminally proposed by
the authors in Nifiez et al. (2009). Finally, novelties are com-
puted and segmented in this mathematical space of GMMs, and
two different algorithms will be described in Section 2.4. One
algorithm is based on Earth Mover’s Distance (EMD), as was
described in Nufiez et al. (2009) and Drews Jr et al. (2010); and
second one is a structural matching algorithm based on graph
theory recently proposed in Nufiez et al. (2010). The latter one
takes into account not only absolute constraints (similarity be-
tween Gaussians) but also relative constraints as regards local
structural information. The following subsections describe in
detail each one of these stages.

2.1. 3D laser data acquisition

Independently of the 3D laser sensor, range data provided
by these sensors are typically represented in the form {P; =
(%, ¥, 2Dm=1.Nx}» Where (x,y, z); are the cartesian coordinates of
the /-th range reading and Nk is the total number of range read-
ings in each 3D scan. The higher the laser scanner resolution,




the larger is N, i.e. the cloud of points comprises a larger num-
ber of 3D points. Therefore, if the aim is to compare clouds of
3D points, first they have to be simplified and compressed with-
out loosing essential information. Comparing directly these
clouds of points is not feasible for typical values of Ng.

2.2. Pre-processing

The most important part of the preprocessing stage is the
simplification algorithm that is used to decrease the density of
points in the point cloud provided by the 3D laser scanner, with-
out compromising its geometric properties. The proposed sim-
plification method is based on the work by Pauly et al. (2002)
in the domain of 3D surface modeling and reconstruction. This
approach has the interesting property of reducing the amount
of data with low computational cost and without compromising
its geometric discriminative power. Results shown in Drews Jr
et al. (2010) shows the importance of this part in the novelty
detection system, because this method reduces significantly the
computational burden without degrading the novelty detection
ability.

The simplification method computes a multi-scale point
cloud using binary space partition in a top down approach. The
use of covariance analysis enables the method to compute the
surface variation, o, based on eigenvalues, A, from each point
cluster and defined by (1). The point cluster P is then split if
the cardinality of P, |P|, is larger than a predefined value and
the surface variation, o, is above a maximum threshold o,,.
In this article, o,y = 0.1 and the range of o is [0, %]; these
parameters were empirically selected for a typical commercial
laser data density.

Ao
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This hierarchical clustering simplification process builds a
binary tree by splitting each region. The split plane is de-
fined by the centroid of P and the eigenvector associated to the
greater eigenvalue (4;). The point cloud is always split along
the direction of greatest variation. The multi-scale representa-
tion is based on the restriction level imposed to the tree. The
tree grows until the cluster is just one point and the scale is then
chosen by setting values for the size of |P| and for o,y. Fig. 3
illustrates this hierarchical clustering algorithm. Fig. 4 shows
an illustrative result of the characteristics of the simplification
method, wherein it reduces the number of points in flatter re-
gions but not in regions with lower curvature ratios.

In a typical point cloud acquired by a laser scanner, the
ground plane is almost always present. The subset of points
representing the ground plane is one of the types of static in-
formation which is not useful for the novelty detection process,
and unnecessarily increases the computational burden. It can be
easily filtered out by using RANSAC to fit a ground plane (Lai
and Fox, 2009). Moreover, sparse outliers in the 3D scan laser
data are removed by using the technique of Rusu et al. (2008).

2.3. Feature extraction based on GMMs
Computing changes in the Euclidean space, i.e. by process-
ing directly clouds of points, presents several pitfalls, including

Cluster
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Figure 3: 2D sketch of the hierarchical clustering algorithm: on the left, split
plane within the set of points (blue), based on covariance ellipsoid and centroid;
on the middle, the result after an iterative step, generating the cluster in level
1; on the right, the last step which generates the lower level clustering, wherein

each cluster represents a single point.
omplete
@ Simplified

02— o

Figure 4: Simulated point cloud with white noise with zero mean, where the
simplification method is applied. It illustrates, in black, the simplified point
cloud and, in yellow, the original point cloud. Flatter regions suffer larger re-
duction in the number of points.

computation cost and scale variance. Therefore, it is required
to represent data in a more convenient mathematical space for
novelty detection and segmentation. The method proposed here
uses the mathematical space of Gaussian Mixtures.

A Gaussian Mixture Model (GMM) is a probability density
function described by a convex linear combination of Gaussian
density functions (McLachlan and Peel, 2000), with the form:

K
[x0)= Y mgtsu.z) (xeRY), )
k=1

where the functions g are Gaussian densities with parameters
. € RM and ¥, the mean matrix and the covariance matrix,
respectively. The coefficients ;. are usually denoted by mixing
probabilities and satisfy the condition:

K
m>0  and an=1. 3)
k=1

The GMM can be seen as a collection of Gaussian features pro-
viding a good model for clusters of points: each cluster corre-
sponds to a Gaussian density whose mean is located about the
centroid of the cluster and whose covariance matrix estimates
the spread of that cluster.

Conversely, given a set of points in RM, one can try to find
the mixture of Gaussian functions ® that best fits those points,




using an approach based in the Expectation Maximization algo-
rithm, as shown in Algorithm 1. Parameter K denotes the num-
ber of Gaussians included in the GMM. It is selected by using
Kinax and the MDL penalty function (Rissanen, 1983). In the
present work, ® denotes the K(1 + N + N 2)-dimensional vector
containing all the parameters of the given Gaussian mixture:

®:((9137T1)’-~-s(0K37TK))3 (4)

where

O = (ks> Zg)- &)

This is a vector containing all the coordinates of the means 1
and all the entries of the covariance matrix X;. The conditions
in (3) ensure that f is indeed a density function.

In Algorithm 1, three steps are crucial to correctly estimate
the Gaussian Mixture Model. Firstly, an initial model is esti-
mated, function Initialize_model. Good results were reported
using random initialization (McLachlan and Peel, 2000). Thus,
in the present approach, the initialization is obtained using ran-
dom generation based on the follow equations:

1
—
Kmax
1Y = pyon=1k= DIV = 1)/ (Kpax — D] + 1,
1 N
0
25() = NZP;;PZ
n=1

Secondly, the Expectation Maximization algorithm is esti-
mated using the standard approach (Figueiredo and Jain, 2002),
but using as penalization criteria the MDL penalty function
(Rissanen, 1983). Equation 6 shows this criteria, assuming that
L= %(M?+3M+2)-1and Y is the point cloud with N points
used to estimate the GMM.

1
MDL(K.0) = ~log p(plK.6) + 5 Llog(N - M).  (6)

The last function considered is the Resize. Its aim is to find
two Gaussians / and m that minimize the MDL criteria. Equa-
tion 7 shows the distance metric to be optimized in order to find
out the best pair of Gaussians to be joined, wherein X, is the
covariance matrix resulting from the union of Gaussians / and
m. Finally, the result obtained from the algorithm is the best
GMM 67, with size K* and having MDL" as penalty criteria.

N M
dl,m) = % log(%) N

Ny, ‘Z(Lm) ‘
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Fig. 5-a illustrates clouds of 3-D points describing a syn-
thetically generated ideal corridor, where one object has been
inserted. The GMM that is obtained from this cloud of points
is depicted in Figs. Sb-c. It is described as a mixture of few 3D
Gaussians (for 3D data, M = 3), being each one associated to
the clusters of points identified in the scene: walls, ceiling and
the novelty.
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Algorithm 1 Gaussian Mixture Models estimation algorithm -
Input: Point cloud Y and integer K,

: 00 Initialize_model(K )

k= Kmax

. [IMDLD, 6] «— EM _algorithm(k, Y, 8?)
MDL* «— MDL"

0" «— 9(1)

K" —k

i=1

: while (k > 0) do

0, « Resize(®")

— k-1 .
[MDL@Y_ 9i+D] — EM _algorithm(k, Y, eg;fm))
i—i+1
13:  if (MDL* > MDL?) then
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14: MDL* «— MDL®
15: 6 — 6D

16: K"k

17:  end if

18: end while

2.4. Computing changes

Once both datasets being compared are modeled in the
GMMs mathematical space, they have to be processed with the
aim of estimating changes, i.e. detecting and segmenting nov-
elties. This section presents two alternative approaches that can
be used to accomplish this goal. The first one, which was pro-
posed in Nufiez et al. (2009) and Drews Jr et al. (2010), follows
a greedy algorithm based on Earth-Mover’s Distance (EMD),
which measures the distance between two distributions. Being
simple, this approach only takes into account the similarity be-
tween two GMMs (absolute constraints). A second approach
was recently proposed by the authors in Nufiez et al. (2010),
which overcomes this limitation by also considering relative
contraints. In this later approach, the problem is formulated
as a maximum clique problem in an undirected graph. In the
GMM mathematical space, the novelties detection algorithms
presented in this paper allows simultaneously to detect new ob-
jects in the scene or something that has been removed from it.

2.4.1. EMD-based algorithm

The Earth Mover’s Distance (EMD) was proposed by
Tomasi et al. (1998) as a metric for measuring distance between
two distributions of points in space for which a distance be-
tween points is given.

Let GMM ® = ((6y,7m1),...,(04, 1)) and GMM T’ =
((y1>m1), - - s (¥m» ) be associated with two 3D point clouds
at different instant times. Let 6; and y; be Gaussian functions
and m; and n; their associated weights, respectively. In order
to identify the novelties in the environment, the two GMMs are
modeled as weighted points (6;,7;)e and (y;, 7;)r. Thus, the
distance between the two GMMs is computed as

doum (©,1) = EMD (01 11} A1 1)} - (8)

Equation (8) can be used as a quantitative metric for detect-
ing changes in the environment. In the most obvious way, the
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Figure 5: GMM computation for a synthetically generated corridor: (a) cloud of points representing an ideal 3D corridor where a new object was placed inside;
(b) GMM representing the corridor map without the object placed inside; (c) GMM associated to the cloud of points (a). The Gaussian function representing the

novelty is labeled by "1”.

problem of change detection could be tackled with EMD by
defining a threshold Uy, which represents the maximum value
beyond which it is assumed that a novelty exists, i.e. a signifi-
cant distance between the two GMMs exists. However, using a
fixed threshold constitutes a naive approach, as it would be very
difficult to tune Uy,. Therefore, we propose a greedy algorithm
that overcomes this limitation. An example of the application
of this technique can be seen in Fig. 5, where GMMs associ-
ated with clusters of 3D points are shown. After applying the
EMD-based novelty detection algorithm to these two Gaussian
Mixtures, a novelty is detected in the maps (marked as 1’ in
Fig. 5-¢).

The overall structure of the EMD-based algorithm is outlined
in Algorithm 2. The method achieves more than just detecting
changes, since the novelty is segmented and the set of points as-
sociated to it is retrieved using the posterior probability. In each
iteration, the algorithm selects a Gaussian x(u, ) from ® with
the greatest quantified change dguu, computed by the function
GreedySelectGMM. Furthermore, this function returns both the
deumum and the new set I1. It works by computing EMD between
I' and the new sets. These new sets are generated by removing
one Gaussian at a time from ®. The best Gaussian is removed
from the initial mixture ® and is also included in the new Gaus-
sian mixture model I1. The distance dgp is compared itera-
tively with the previous EMD distance. The algorithm returns
a list of sets of points S. Each set represents the segmented
region by one Gaussian, using the posterior probabilities com-
puted by the function ChoosePtsfromGaussian that has as argu-
ments a point cloud P used for generating the novelty GMM and
a Gaussian x. If S = {0}, the algorithm assumes that there are no
novelties, implying that the two GMMs are similar. Moreover,
the posterior probability allows the system to identify the topo-
logical relation between the segmented regions. This kind of
information could be useful both for recognition and for identi-
fication, providing the means to build a semantic representation
of the environment.

2.4.2. Structural matching algorithm

The EMD-based algorithm described in Sec. 2.4.1 is strongly
dependent on the number of Gaussians. Furthermore, that
algorithm only deals with absolute constraints, i.e. the Eu-
clidean distance between the mean vectors of Gaussian func-
tions. However, valid pairwise associations between Gaussian

Algorithm 2 Novelty Detection algorithm - Input: GMMs ©
and I
1: dgym < EMDdistance(®,T)
JIR ]
: repeat
dGMM,,/(, — demm
[x(w, 2), T, dgpm] < GreedyS electGMM(O,T)
. until (dGMMI,,,, < dGMM)
I IT = x(u, 2)
S « {0}
: for all x(u,XZ) € [T do
S « S U ChoosePtsfromGaussian(P, x(u, X))
. end for
: return S
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functions of two GMMs, i.e. relative constraints, are also worth
to be considered in order to attain a more robust novelty de-
tection. With this purpose, Nufiez et al. (2010) have recently
proposed an alternative novelty detection and segmentation al-
gorithm which takes into consideration both absolute and rela-
tive constraints.

In this alternative approach, the matching problem is for-
mulated as a graph-theoretic data association problem. Thus,
the fundamental data structure of this step is a correspondence
graph (Barrow and Burstall, 1976) representing valid pairwise
associations between Gaussian mixtures, as it is depicted in
Fig.6. Cliques in this graph indicate mutual associations com-
patibility and, by performing a maximum clique search, the
joint compatible association set is emanated from the best
matchings of Gaussian mixtures that can be found. In the pro-
posed approach, the correspondence graph is built through the
application of both absolute and relative constraints. The nodes
of the graph indicate individual association compatibility and
are determined by absolute constraints. Conversely, edges of
the correspondence graph indicate joint compatibility of the
connected nodes and are determined by relative constraints.

As before, let @ and I' be two GMMs associated with two 3D
point clouds of the same section of an environment, acquired at
different times. Moreover, let 6;(u;,%;) € ® and y;(u;,X;) € T
be Gaussian functions, where (i, Z;) is a vector containing all
the coordinates of the means y; and all the entries of the covari-
ance matrix ;. The method to compute the correspondence
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Figure 6: In the proposed approach, nodes represent tentative matchings when
considered individually. Edges indicate compatible pairwise associations be-
tween Gaussians. A clique is a set of mutually consistent associations, e.g. the
clique marked in red implies that the matching may coexist.

graph comprises of two major steps (Nufiez et al., 2010): the
definition of the nodes of the correspondence graph and the def-
inition of the edges of the correspondence graph. These steps
are detailed below. Afterwards, it is also described how the cor-
respondence graph can be used to reliably detect novelties.

o Definition of the nodes of the correspondence graph. The
nodes of the graph represent tentative matchings of Gaus-
sian distributions from two GMMs, ® and T', after apply-
ing an absolute constraint. Let |®] = n and [I'] = m be
the number of Gaussian functions belonging to the two
GMMs, respectively. Firstly, the algorithm generates the
n x m matrix T, for all pairwise combinations, by calculat-
ing the distance between the two Gaussian functions:

dy,y, = max(d,,,ds,), ©

where d,,,; is the Euclidean distance between the two Gaus-
sian functions using the cartesian coordinates of the mean
vector, and dy,; is the distance between the covariance ma-
trices associated with the Gaussian functions. According
to Forstner and Moonen (1999), this distance can be de-
fined as:

N
DA, T)), (10)
k=1

where A represents the generalized eigenvalues of X; and
%;, and N is the matrices’ dimensionality.

The matrix entry associated to the matching of two sim-
ilar Gaussian functions presents a small value. On the

other hand, large values of T, correspond to dissimilar fea-
tures. Pairwise matched features, whose matrix values are
smaller than a fixed threshold U7, constitute the set of ten-
tative matches. Thus, graph nodes are defined as the set
of all possible combinations of these pairwise descriptors.
Fig. 7 shows the process achieved in order to obtain the
nodes of the graph for a simple real example. Fig. 7-a
illustrates two sets of Gaussians associated to two differ-
ent instant of time (® and I'). This kind of representation
for the Mixture of Gaussians is common along this paper.
The ellipsoids are associated to each Gaussian (mean and
covariance matrix) and they are drawn using different col-
ors and with 1.5 standard deviation as diameter. The use
of different colors is only for improving the visualization
of the mixture. In the figure, firstly, the algorithm cal-
culates the distance between the pair of Gaussian 6;, and
v1,. If this distance is lower than the threshold, the algo-
rithm generates the node (1,, 1) (Fig. 7-b). The algorithm
calculates the distances between the pair of Gaussian in a
similar way (Figs. 7c-e).
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Figure 7: Nodes represent tentative matchings when considered individually:
(a) two set of Gaussians associated with two different instant times (® and I');
(b)-(e) the algorithm calculates the distance between the pair of Gaussian and
generate the nodes if the distance is lower than the threshold.

e Definition of the arcs of the correspondence graph. For
all pairwise combinations of matchings in 7}, the relative
constraint matrix R, is computed through the use of rela-
tive constraints on the mathematical space of GMMs. A




pair of matched Gaussian functions (¢, y') and (¢/, /) is
consistent iff they satisfy the relative constraint:

max(wgq,, wa;) < U, (11)

wy, = )" = 5, Y and
© |2 ,r 2 (12)
wi = (42 )" = (@ ),

where U;e is a threshold defined by the user. Thus, the cor-
responding entry in the relative constraint matrix R, con-
tains a ’1’ if the constraint is satisfied (an edge is added to
the graph), and ’0’ otherwise. Fig. 8 shows an example
of the arc definition algorithm for the examples described
in Fig. 7. For instance, in Fig. 8-a, the relative constraint
between (la, 1b) and (2a, 2b) matches, and then node (1a,
1b) is connected to node (2a, 2b) through an edge Fig. 8-
b. The process is repeated for all the pairwise of Gaussian
(Figs. 8c-d). The relative constraint between (2a, 5b) only
matches with (2a, 2b).
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Figure 8: Nodes represent tentative matchings when considered individually.
Edges indicate compatible pairwise associations between Gaussians. A clique
is a set of mutually consistent associations, e.g. the clique marked in red implies
that the matching may coexist.

e Maximum clique detection and novelty identification. The
set of mutually consistent matches which provides the

largest clique is calculated. This is equivalent to finding
the maximum clique on a graph with adjacency matrix
R, (see Nufiez et al. (2010)). After the computation of
the maximum clique of the correspondence graph, a set
of mutually compatible associations is obtained, i.e. a set
of matched Gaussian functions (see red lines in Fig. 9).
In this way, the algorithm takes into account structural
relationships to detect correct associations, which result
in 3D points in the environment that are not associated
with changes in the robot’s surroundings. Thus, the set of
Gaussian functions in @ that are not included in the clique
represents detected novelties. In Fig. 9, the only node
which is not included in the clique, (2a, 5b), represents the
novelty that is detected in this example within the robot’s
workspace.

Figure 9: A clique is a set of mutually consistent associations, e.g. the clique
marked in red implies that the matching may coexist.

3. Experiments

The proposed methods have been evaluated using real data.
The algorithms were developed in C++ and the benchmark tests
were performed on a notebook with a 2.0GHz AMD Turion X2
Ultra CPU and 3Gb RAM running using GNU/Linux Ubuntu
10.0. Real data has been acquired using three different plat-
forms.

The first experimental platform was static comprised of a
Hokuyo URG-04LX laser range finder mounted on a Directed
Perception PTU-D46 pan-tilt. A set of experiments was carried
out with this platform in three different environments. For any
of these environments, the experiment comprised three steps.
Firstly, a 3D map was acquired to obtain a representation of the
environment. Afterwards, a novelty was introduced. Finally, in
order to obtain statistically significant results, the experiments
were repeated ten times for each test area. The same proce-
dure was used in two different mobile robotic platforms. First,
a Pioneer P3-AT with two SICK LMS-200 mounted orthogo-
nally was used in the experiments. The robot is located using a




SLAM algorithm (DP-SLAM) (Eliazar and Parr, 2003) with the
information acquired from the frontal laser and wheels odom-
etry. The localization information from SLAM together with
the second laser allows the robot to generate 3D maps. In the
other mobile robotic platform, a 3D capture system mounted
on a Robex robot was used (Gutiérrez et al., 2011). This sensor
consists of a Hokuyo URG-30LX laser rotated by a step mo-
tor, where its resolution is configurable by the active perception
system that the robot is equipped with. Fig. 10 illustrates the
three platforms used in our experiments. Fig. 10-a shows the
static sensor platform and Fig. 10-b shows the mobile plat-
form equipped with two orthogonal laser range finders. Finally,
Fig. 10-c illustrates the robot Robex and its low-cost 3D sensor
based on a 2D Hokuyo laser range finders .

Figure 10: Experimental platforms: (a) platform using Hokuyo URG-04LX
laser range finder and a pan-tilt unit; (b) mobile platform using Pioneer robot
and two SICK laser orthogonally mounted; and (c) robot Robex and its 3D
perception system based on a Hokuyo URG-30LX laser finder.

3.1. Quantitative Assessment

In order to validate the proposed method, contingency tables
were built relating the system response to ground truth infor-
mation. The ground truth data was manually segmented using a
dataset edition tool developed by the authors, where the points
that represent the changes are selected. Statistical significance
of the association between the ground truth (points related to
the novelty) and the novelty detection algorithm response was
established as in Vieira Neto and Nehmzow (2008). They use
three different statistical indicators based on x? analysis of the
contingency table. These metrics are used as a reference to eval-
uate the GMM-based method proposed herein.

A simple USB camera is used for acquiring RGB information of each 3D
point, but it is was not used in the experiments described here.

The Cramer’s V (0 < V < 1) and the uncertainty coefficient
U (0 < U < 1) are used to quantify the strength of the asso-
ciation, and they are computed as proposed in Vieira Neto and
Nehmzow (2008). Smaller values for these statistics indicate
weaker associations, and values closer to one represent stronger
association.

Another metric that is used is the index of agreement k, which
is used to assess the agreement between actual novelty status
and the algorithm response, in way similar to V and U. How-
ever, the « statistic may yield negative values. The valid range
for x is k € [-1, 1], where negative values represent the level
of disagreement between the system response and the ground
truth. Table 1 explains the relation between the « intervals and
the corresponding level of agreement.

Table 1: « intervals and corresponding levels of agreement between ground
truth and novelty filter response (Vieira Neto and Nehmzow, 2008).

Interval Level of Agreement
k<0.1 No
0.1<k<04 Weak
04<xk<0.6 Clear
06<xk<0.38 Strong
0.8 <k<1.0 | AlmostComplete

3.2. Estimation of parameters

The proposed method requires choosing values for a set of
parameters. These parameters are:

1. The threshold value o, Which determines the maximum
surface variation for splitting a cluster of points in the pre-
processing stage. In the experiments conducted here this
value was set to 0.1. It is empirically selected for a typical
commercial laser data density. However this is not a crit-
ical parameter, since its value implies only the number of
points used in the next stages.

2. The maximum number of Gaussian functions in the Gaus-
sian Mixture Model, K,,,,. This parameter depends on the
environment and the size of the map. In this article, this
parameter is changed from 10 to 30 in order to validate its
effect on the change detection algorithms results.

3. There are two thresholds used in the generation of the cor-
respondence graph. First, the minimum distance between
two Gaussian functions for being considered a tentative
match, U’T (absolute constraint). Second, the threshold
value U} which is used in the definition of the arcs of
the graph. It represents the minimum value in the rela-
tion between two pairs of tentative matches for a match
to be considered as coherent. The benchmark used to set
them correctly was similar for the two stages. This step is
based on the work of Blanco et al. (2010). Optimal thresh-
olds are calculated by minimizing the probability P, of
misclassifying a association as a valid (v) or an invalid (w)




candidate. It is described as:

P (Ur, Up) =

P(w)P . (Uz, Ug | W) + PW)Per(Ug, Ug | v)
= P(w)P(d;j < Uz, 6;; < Uy | w)

+P) [1 = Pdij < Uy, 65 < Uy 1],

where a misclassification will occur if: (i) a distance d;; is
less than both thresholds U’ and U}, and it was a wrong
correspondence; or (ii) a valid pairing does not generate
values that are larger than the thresholds U} and Uy,
Considering no a priori information about the probabil-
ity of being in a valid or invalid association, that is P(v)
= P(w) = 1/2, the method evaluates the joint conditional
densities P(d;;, 6;jl|v) and P(d;j, ;jllw) from histograms ac-
cording to a set of 3D maps where the ground truth is
known (N = 40).

Finally, the values U}, = 3.5 and U} = 1.0 were selected.
These two values allow the algorithm to reduce the number
of false positives and to improve the precision at the end
of the change detection process.

3.3. Experimental setup with 3D mapping

Fig. 3.3 depicts three experiments in an indoor environment
located at Institute of Systems and Robotics — Coimbra, where
the platform depicted in Fig. 10-a was used. In each one of
these experiments, there were two acquisitions: in the first one,
an initial 3D map of the test site was processed. In the sec-
ond one, a new 3D map of the same test site was processed
after introducing a novelty. These new maps are shown in Fig.
3.3-b. They are an opened door, a person in the corridor and
a closed door inside the room, respectively. This is illustrated
by a picture from the test site in Fig. 3.3-a. Fig. 3.3-c depicts
GMM representations from the new 3D map, where the point
clouds are shown in blue dots. The Gaussians that represent
the segmented novelties in the GMMs space is shown in Fig.
3.3-d. These results demonstrate the ability of GMMs to model
the environment with different complexities and the proposed
algorithm for detecting changes in them. For all of these exper-
iments, parameter K,,,, was set to 20.

In a second experiment, the robotic platform depicted in Fig.
10-b was used to test the proposed novelty detection and seg-
mentation method in an office building located in the Computer
Science Department of the Federal University of Minas Gerais,
Brazil, as it is shown in Fig. 11. For the experiments depicted
in Fig. 11, three different novelties were included in order to
evaluate the results of the algorithm: a cylinder, a person and a
box (see Fig. 11-a). Fig. 11-b illustrates the 3D laser data ac-
quired with the novelties by the robot, after the pre-processing
stage. The GMMs associated to these 3D maps is shown in Fig.
11-c, and the actual novelty is marked in the figure. Results of
the proposed method are drawn in Fig. 11-d. As it is shown
in the figure, the Gaussian functions associated to the novelties
introduced in the environment were successfully extracted with
the proposed method.
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3.4. Comparison with Loménie’s method - Gaussian Mixture
Models vs. K-Means Clustering

In this section, the use of Gaussian Mixture Models (GMMs)
as a representation model of 3D maps is validated. Moreover, it
is compared with the technique for partitioning 3D maps de-
scribed in Loménie (2004), which mainly consists of a spe-
cific K-means algorithm denoted as UFP-ONC (Gath and Geva,
1989). Results obtained with the two methods (GMMs and
UFP-ONC) are compared in order to deal with the change de-
tection problem. Thus, in order to detect these changes, one
important feature is the capability to previously segment the
environment in different parts associated to changes or non-
changes. Furthermore, another important aspect is related with
the computation cost of these. Thus, three results are calculated
for each dataset. First, the results from Loménie’s method us-
ing the automatic choose of the best representation, considering
the maximum number of partition as 9. Second, due to the poor
quality of these results, the 3D map partition is enforced to be
divided into 9 clusters. Finally, the same results were obtained
using our approach for clustering using GMMs, with K, = 9.
Loménie’s method uses fuzzy inference in order to select the
points related to each cluster. For our experiments, S = 0.2 is
used to associate all points to the cluster. For larger values, the
method does not make association between points and a cluster.

The datasets used in this comparison are three indoor exper-
iments. They have approximately 30, 000 points and are illus-
trated by Fig. 3.3-a. Results are shown in Fig. 12, wherein
the segments are drawn in different colors. Fig. 12a-c illus-
trates Loménie’s results considering the automatic best solu-
tion between 1 and 9 clusters. The method is fast, but it did not
generate good segmentation. As it is shown in Fig. 12a-c, it
selected three clusters in the first case and two in second and
third experiments. The time spent is about 2 minutes for a Java
implementation for all of them. In Fig. 12d-f the number of
clusters was forced to be equal to 9. It generates similar results
to the GMMs, but the time consumption is much greater. Re-
sults after using GMM segmentation are shown in Fig. 12g-i.
The computation time of Loménie’s method is about one hour.
Conversely, the GMM-based method spent 1 minute, there-
fore it was faster than the first approach applied to Loménie’s
method but presenting similar results to the second one.

The results shown in Fig. 12-f and in Fig. 12-i do not al-
low detecting the change in the scene (i.e. the door), because it
clusters the door and the wall in the same segment. Due to the
large computational time of Loménie’s method, it is unfeasible
to increase the number of clusters in order to evaluate it. Our
methodology computes GMMs with K,,,x = 20 and obtains a
good representation in 60 seconds, as depicted in Fig. 13. This
elapsed time is approximately the same time spent to acquire
the maps by the robot using the described acquisition system.
Similar to Fig. 12, it shows the representation based on mixture
of Gaussians from the dataset by color division. One interest-
ing issue is related to the possibility of detecting the door in the
dataset with a good precision (marked in the figure as a white
box), due to the good approximation by a Gaussian.
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Figure 11: Experiments in indoor environments: (a) test sites — a door in the corridor has been opened (top), a person appears in the corridor (middle) and the room’s
door has been closed (bottom); (b) real observations from Hokuyo laser range sensor (novelties manually segmented in blue);(c) the GMM representations of the
maps containing the novelties (black box); (d) Gaussian functions and sets of points representing the segmented novelties.

Figure 14: Results of the environment segmentation based on Gaussian Mixture
Models using the described approach with K, = 20, considering the maps
illustrated in Fig.3.3-a (bottom). It allows detecting changes in the environment
after applying the algorithm proposed in this article (box delimits the position
of the door).

3.5. Evaluation of the robustness

In this section, both methods for detecting changes in the en-
vironment using the mathematical space of Gaussian functions
described in this article have been compared and their results
analyzed in terms of robustness and computational cost.

With this aim, sets of 3D laser range data collected by Pi-
oneer robot (see Fig. 10-b) have been used. These datasets
are shown in Fig. 11. For each 3D point, the GMM was cal-
culated. Afterwards, each change detection algorithm was ex-
ecuted and the contingency tables (Table 1) were built. The
results are shown in Table 2. In this table, “cylinder”, “person”
and “box” correspond to the first, second and third row in Fig.
11, respectively.
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Table 2 shows the results obtained with the maps shown in
Fig. 11, where the number of Gaussians selected by the meth-
ods is equal to 16. Both change detection algorithms have a low
level of association strength (Cramer’s V and uncertainty coef-
ficient U less than 0.6) in both cases, the cylinder and the box,
respectively. Moreover, EMD-based algorithm shown slightly
better results than Structural matching one. This weakness of
associations is due to the 3D map acquisition process: the ceil-
ing suffers with parallax problem depending on the robot’s path
during the data acquisition stage. This produces a poor seg-
mentation result using GMMs. Fig. 14 illustrates the GMM
obtained using K, = 16 for one of the experiments.

As it is shown in the first two columns in Table 2, EMD-
based method has advantages over the structural matching al-
gorithm. It is interesting to point out that changes in the robot
scene are detected even in difficult conditions of the selected
dataset. As it is shown in Fig. 14, the ceiling is segmented us-
ing the most of the Gaussians. However, the proposed method
allows the detection of changes in a discriminative way, i.e. the
changes are represented by different Gaussians. It is possible to
see that both methods were able to detect changes with a few
outliers in two cases (cylinder and box).

In order to improve the results, 3D points with Z coordinate
larger than 1.5 meters were removed from the dataset, i.e. a dis-
tance constraint was used for removing points associated to the
ceiling. In this way, the results are expressive and identical due
to the segmentation obtained by GMMs, allowing both meth-
ods detecting correctly changes. The last two columns in Table
2 show the results obtained in this case, where the algorithm es-
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Figure 12: Experiments using robotic 3D maps. Induced novelties were a cylinder (a-top), a person (a-middle), and a box (a-bottom). In (b), the acquired 3D maps
are shown. The GMM representations of the maps containing the novelties are depicted in (c). The segmented novelties are depiced in (d).

timates GMMs using K,,,» = 20 and the number of Gaussians
selected by the proposed algorithm is 12. The change detection
is not ideal (x = 1) because Gaussians that represent the changes
do not segment all points in the ground truth.

Table 2: Performance comparison for the experiments with different novelty
detection algorithms, considering full area and area of interest in the dataset.
All results correspond to statistically significant correlation between the system
response and the actual novelty status (y? analysis, p < 0.01).

Complete Dataset Area of Interest
EMD Str. Matching EMD Str. Matching
V=0.570 V=0.474 V=0.98 V=0.98
Cylinder | U=0.381 U=0.238 U=0.987 U=0.987
«=0.254 «=0.237 «=0.987 x=0.987
V=0.991 V=0.967 V=0.983 V=0.983
Person U=0.996 U=0.883 U=0.992 U=0.992
«=0.996 «=0.848 «=0.992 «=0.992
Vv=0.621 V=0.543 V=0.968 V=0.968
Box U=0.571 U=0.479 U=0.991 U=0.991
«=0.503 «=0.465 «=0.991 «=0.991

3.6. Sensitivity to Different Conditions and Parameters

In this section, the sensitivity of the proposed detection
method to different situations and parameters is evaluated.
Specifically, the approach is evaluated varying the size of the
object that represents the change in the scene. Besides, the
robot’s point of view is modified in the data acquisition stage.
For each situation, the number of Gaussians K was varied be-
tween 8 and 20.
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Figure 15: Frontal view of the Gaussian matematical space obtained from the
complete datasets shown in Fig. 11-b using Kj,,x = 16. The black rectangle is
used to indicate the change.

Firstly, the robotic platform depicted in Fig. 10-c was used to
evaluate the method in an office environment with boxes of dif-
ferent sizes, but in a similar position with respect to the robot.
Twelve maps were acquired with the robot. Fig. 15 shows
the real scene used for two of these experiments (Fig. 15-a)
and the results calculated by the algorithm (15-d). Intermediate
steps (i.e. 3D maps after acquisition stage and GMM represen-
tations) are illustrated in Fig. 15-b and Fig. 15-c. For these
experiments, the number of Gaussian selected by our method is
equal to 8 and 12, respectively. A comparative study using the
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Figure 13: Comparison between K-means-based method and Gaussian Mixture Models in real datasets, in order to evaluate the ability of these methods to detect
changes in 3D maps: (a-c) results using Loménie’s method, considering the best result between 1 and 9 clusters; (d-f) results from Loménie’s method but forcing 9

clusters; (g-i) GMMs results using the approach proposed herein with K4y = 9.

metrics presented in Sec. 3.1 was done. The average values V,
U and « are shown in Fig. 17-a and Fig. 17-b for the greedy
EMD-based and the structural matching methods, respectively.
Both methods were able to detect changes in the scene (see Ta-
ble 1), though the number of outliers is significant. For both
methods, the best change detection is attained using K = 8 and
K = 12 Gaussians. For other values of K, the approach is able
to detect changes but with some outliers. On the other hand,
greedy-EMD algorithm and structural matching has similar av-
erage results for all values of K. Afterwards, in order to evalu-
ate the influence of the robot’s point of view with respect to the
position of the change, a new experiment was carried out. Sim-
ilarly to previous experiments, the map including the novelty
(a human being) was acquired 12 times from different point of
views (robot’s localization is considered to be solved). In Fig.
16-a, the real scene of the environment is illustrated for two
different experiments. Then, 3D maps are shown in Fig. 16-b.
Fig. 16-c illustrates the GMM associated to the map. Finally,
Gaussians and the points that represent the segmented novelties
in the GMMs space are shown in Fig. 15-d. The same metrics
were used to evaluate the performance of the algorithms. Re-
sults are shown in Fig. 17-c and Fig. 17-d for greedy-EMD and
structural matching algorithms, respectively. Both methods are
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able to detect changes for different points of view with similar
average values (i.e. U, V and «x). However, the quality of the
detection is sensitive to the number of Gaussian and the results
are largely dependent on the segmentation algorithm.

4. Conclusion and Future Works

This article described two methods to detect changes in 3D
real environments for robot navigation. Real data acquired by
laser scanners is preprocessed in order to reduce the size of the
point clouds. Gaussian Mixture Models (GMMs) are used to
obtain a new representation of the point clouds. It was validated
and compared with a state-of-art algorithm in order to deal with
real situations, where a good representation of 3D point cloud
(maps) is required. A novel greedy algorithm based on Earth
Mover’s Distance metric and a structural matching algorithm
are employed to quantify the existence of a novelty in the scene.

Results of the proposed algorithm demonstrate the reliabil-
ity of the method in several real scenarios. Furthermore, the
proposed techniques were compared in terms of robustness, ac-
curacy and sensitivity. The methods are evaluated using the
x? analysis, as proposed by (Vieira Neto and Nehmzow, 2008).
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Figure 16: Experiments with two boxes of different sizes: (a) test sites — an office environment with a box (novelty) in two different sizes; (b) real observations
from the Robex platform (novelties are manually segmented in black); (c) the GMM representation of the maps containing the novelties (black box); (d) Gaussian

functions and point set associated to the segmented novelties.

The results of x> analysis shown a small advantage of the EMD-
based algorithm over structural matching algorithm in very dif-
ficult datasets. The proposed method may be easily extended
to detect things removed from the scene, which is achieved by
simply using the current map as the reference input.

The applicability in mobile robots was evaluated showing the
capabilities of the method to be applied in real robots located by
odometry and laser-based SLAM. In the present work, the robot
localization is an important constraint but has smaller impact
in the performance of the method in relation to point-to-point
approaches. The features in the proposed method is based in
GMM, thus two independent information are important: shape
and location. Therefore, it is robust to small localization er-
ror. However, it could be interesting to take into account this
problem when the localization error is significant.

The techniques presented in this article open new opportu-
nities to develop automatic processes for surveillance of infras-
tructures, by proposing a new and robust approach for searching
and detecting changes within large amounts of data.

Future work will be focused on the use of the current nov-
elty detection algorithm in real field robotic applications, like
surveillance or exploration of dangerous environments, where
the presence and modeling of novelties could be important.
Also, an extension of the Gaussian Mixture Models estimation
method will be developed to work iteratively, so that data can
be captured and processed online by the mobile robot. One pos-
sible approach is to use the GMM method with online learning
(Kristan et al., 2008; Declercq and Piater, 2008). Furthermore,
an efficient implementation in GPU of the GMM estimation, the
computational bottleneck of the proposed framework, is being
carried out by the authors. Another important improvement is
to include a registration module in the system. It will allow the
system to deal with over fitting volumes, and to avoid the strict
need for having maps expressed in the same reference coordi-
nates frame.
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