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Abstract 

 

Current multivariate control charts for monitoring large scale industrial processes are 

typically based on latent variable models, such as principal component analysis (PCA) 

or its dynamic counterpart when variables present auto-correlation (DPCA). In fact, it is 

usually considered that, under such conditions, DPCA is capable to effectively deal with 

both the cross- and auto-correlated nature of data. However, it can easily be verified that 

the resulting monitoring statistics (T
2 

and Q, also referred by SPE) still present 

significant auto-correlation. To handle this issue, a set of multivariate statistics based on 

DPCA and on the generation of decorrelated residuals were developed, that present low 

auto-correlation levels, and therefore are better positioned to implement SPC in a more 

consistent and stable way (DPCA-DR). The monitoring performance of these statistics 

was compared with that from other alternative methodologies for the well-known 

Tennessee Eastman process benchmark. From this study, we conclude that the proposed 

statistics had the highest detection rates on 19 out of the 21 faults, and are statistically 

superior to their PCA and DPCA counterparts. DPCA-DR statistics also presented 

lower auto-correlation, which simplifies their implementation and improves their 

reliability. 

 

Keywords: Multivariate statistical process control; Principal component analysis; 

Dynamic Principal component analysis; Missing data imputation; Tennessee Eastman 

benchmark process. 
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1 Introduction 

 

Current chemical process industries strive to improve the operation standards of their 

processes and quality levels of their products, with the central goal of reducing the 

variability of the main quality features around their target value [1]. Statistical Process 

Control (SPC) provides a toolbox for conducting such activities, where control charts 

have a particularly important role (so much so, that quite often the two designations, 

SPC and control charts, are used interchangeably). The goal of control charts is to 

provide a simple and objective way to monitor the process variability over time, in order 

to verify, at each instant, whether it remains “normal”, i.e., in a state of statistical 

control, or whether a special cause of variation has occurred, driving it to an out of 

statistical control state [1, 2]. The state of statistical control is essentially characterized 

by process variables remaining close to their desired or average levels, affected only by 

common causes of variation, i.e., variation sources affecting the process all time and 

that are essentially unavoidable within the process normal operation conditions [1]. 

In these context, several SPC charts were developed for univariate processes, such as 

the classical Shewhart’s control charts [1], CUSUM [3] and EWMA [4], and then, for 

multivariate (Hotelling’s T
2
 control chart [5], MCUSUM [6], MEWMA [7]) and 

megavariate (PCA-SPC, [8-10]) systems, as data and computational power becomes 

increasingly available. The PCA-SPC control chart, is based on a latent variables model 

(Principal Component Analysis, PCA), whose ability to deal with a large number of 

highly correlated variables is well known. It uses two complementary monitoring 

statistics, one of them for monitoring the variability within the PCA subspace (the 

Hotelling’s T
2
 applied to the first p latent variables, p being the process pseudo-rank) 

while the other follows the variability around such subspace, being a function of the 

projection residuals, usually referred as Q  or square predicted error, SPE. 

However, as for all the previous methodologies, PCA-SPC tacitly assumes that the 

underlying data generation process is i.i.d., meaning in particular that the process mean 

vector is constant over time, therefore excluding any auto-correlated or non-stationary 

behaviour. This is currently a serious limitation, which strongly hinders the practical 

application of approaches based upon the i.i.d. assumption, due to the mass, energy and 
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momentum inertial effects presented in most industrial systems, coupled with the high 

sampling rates that are currently easily achieved with modern process instrumentation 

and acquisition systems. To address this issue, Ku et al. [11] proposed an SPC 

procedure that extends PCA-SPC, based on a dynamical version of principal component 

analysis, called dynamic principal component analysis (DPCA). DPCA includes time-

shifted versions of the original variables, in order to accommodate and tacitly model the 

dynamic behaviour of variables within the same PCA model. Unfortunately, one can 

easily verify that this method still leads to auto-correlated statistics, meaning that the 

fundamental problem raised by data autocorrelation still remains to be properly 

addressed. 

In order to handle this issue, Rato and Reis [9] recently studied several combinations of 

approaches to deal with data correlation and autocorrelation, including DPCA, PLS, 

Time Series modelling and decorrelated residuals based on missing data imputation 

techniques, in a total of 22 monitoring statistics, most of them being new. From this 

screening study, a combination of DPCA and decorrelated residuals based on missing 

data imputation (DPCA-DR) stand out by their potential for dealing with data cross- and 

auto-correlation, and the lower levels of auto-correlation in the monitoring statistics, 

implying that the dynamical behavior is being properly described and incorporated in 

the methods’ model structure. Furthermore, for the systems studied, these methods have 

also shown better monitoring performances when compared to their current 

counterparts. After such screening and characterization work, and given the good 

performances achieved as well as the stable monitoring behaviour of the DPCA-DR 

statistics, it is now both important and opportune to test in a large-scale benchmark data 

set, in order to consolidate the preliminary results obtained in an independently 

generated data set. The case study selected is the Tennessee Eastman process [12]. This 

case study is a widely adopted and cited benchmark in Multivariate Statistical Process 

Control and Fault Detection and Diagnosis, and therefore is especially suitable to test 

the proposed approach and to make our results comparable with those obtained from 

other methodologies proposed.  

The rest of this article is organized as follows. In the next section, we describe the 

current multivariate statistics and latent variable models used in this study (PCA, and 

DPCA) as well as our proposed method (DPCA-DR). Next, we present and discuss the 

results obtained from their application to the Tennessee Eastman benchmark process, 
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after properly defining the criteria that provide the basis for comparison. Finally, we 

summarize the contributions presented in this paper and present the main conclusions. 

 

2 MethodsEquation Chapter (Next) Section 1 

 

In this section, we briefly revise the main control chart procedures used currently for 

performing SPC on multivariate and megavariate processes. These methods will be used 

as reference against which our methodology based on DPCA-DR will be compared. We 

also present the new statistics based on this procedure. 

 

2.1 Multivariate statistical process control 

 

The natural extension of the univariate Shewhart control chart for monitoring 

multivariate process is the Hotelling’s 2T  chart [12]. This chart assumes the process to 

be i.i.d., following a multivariate normal distribution, and the monitoring statistic, for 

single observations samples is just the Mahalanobis distance between each multivariate 

observation and the overall reference mean. Assuming the mean and covariance matrix 

to be known, the monitoring statistic has the form [12-14]: 

    
T2 1

0
  x μ Σ x μ  (1) 

where 1mx  is a measurement vector, 1mμ  is the population mean vector and m mΣ  is  

the population covariance matrix. Under multivariate normal conditions, this statistic 

follows a central 
2 distribution with m degrees of freedom. Therefore, a multivariate 

2

0  control chart can be constructed by plotting 2

0  versus time with an upper control 

limit (UCL) given by 
2

,n  where   is an appropriate level of significance (e.g. 

0.01  ) [2, 12]. 

When the in-control mean vector μ  and the covariance matrix Σ  are unknown, they 

can be estimated from a sample of n past multivariate observations, using the usual 

well-known unbiased estimators of these population parameters, namely the sample 

mean and the sample covariance matrix [2]: 
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In this case, when new multivariate observations are obtained, the Hotelling’s 2T  

statistic is given by [2, 12, 14], 

    
T2 1T   x x S x x  (4) 

whose control chart has now the following upper control limit (UCL) [2, 14-16]: 

 
  

, ,2

1 1
m n m

m n n
UCL F

n nm
 

 



 (5) 

where, 
, ,m n mF 

 is the upper   percentile of the F  distribution with m and n – m 

degrees of freedom. This chart is just a representative (perhaps the simplest and most 

well-known) of the charts that can be applied to multivariate systems of limited size 

(order of a dozen or less) and without strong problems of collinearity, otherwise the 

inversion of the covariance matrix would be highly unstable or even impossible in case 

of full redundancy or rank deficiency. For large scale systems, the control charts 

presented in the next section offer a more stable and effective solution. 

 

2.2 Megavariate statistical process control 

 

When the number of measured variables (m) becomes large (order of several dozens or 

higher), alternative approaches must be used, mostly due to the problems raised by the 

inversion of the covariance matrix in the Mahalanobis distance computation. A common 

solution for dealing whit this issue consists of using a latent variable modelling 

framework, developed for these types of processes, whose parameters can be estimated 

with simple and stable methods. Examples of such models are principal component 

analysis (PCA) [12] and partial least squares (PLS) [16], the former for problems 

involving a single block of variables and the latter for those where two blocks of 

variables need to be explicitly and simultaneously handled. 
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Regarding the analysis of problems with a single block of variables (the situation 

covered in this article), the use of PCA allows a reduction of the dimensionality of the 

space under monitoring, but that still preserves the essential features of the original data 

variability. This is achieved by transforming the original variables into a new set of 

uncorrelated variables, called the principal components (PCs). The first principal 

component (PC) of x  is defined as the linear combination T

1 1t p x  with maximum 

variance subject to 1 2
1p . The second PC, is the linear combination defined by 

T

2 2t  p x  with maximum variance subject to 2 2
1p , and to the condition that it must 

be uncorrelated with (orthogonal to) the first PC ( 1t ). Additional PCs are similarly 

defined, decomposing the entire observation matrix, n mX , as [12, 14]: 

 T X TP E  (6) 

where, 
n pT  is the matrix of scores, 

m pP  is the loading matrix, and n mE  is the residual 

matrix that contains the accumulated contribution of the last principal components, with 

small (or residual) contributions for explaining the variability exhibited by the X matrix. 

After applying the PCA decomposition to a reference data set, a Hotelling’s 2T  statistic 

for future observations can be obtained from the first p PCs by, 

 
2

2 T 1 T

1

p

i
PCA p

i i

t
T







  x PΛ P x  (7) 

Where 
pΛ  is a diagonal matrix with the first p  eigenvalues in the main diagonal and ti 

is the new score for the i
th

 PC. 

The upper control limit (UCL) of 2

PCAT  statistic is given by [11, 17]: 

 
  

, ,2

1 1
p n p

p n n
UCL F

n np
 

 



 (8) 

where 
, ,p n pF 

 is the upper   percentile of the F  distribution with p and n – p degrees 

of freedom. Since 2

PCAT  only monitors the variability within the PCA subspace, spanned 

by the first p PCs, it must be complemented by a residual or lack of fit statistic, that 

accounts for the variation not captured by the PCA model, and monitored by 2

PCAT . This 
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is achieved by computing the squared prediction error (SPE) of the residuals of a new 

observation ( 1me ), also known as the Q statistic, which is defined as [11] 

      
TT T Tˆ ˆQ      e e x x x x x I PP x   (9) 

where x̂  is the projection of a given observation onto the PCA subspace. This statistic 

is usually quite useful as it is sensitive to special events that cause the data to move 

away from the PCA subspace where normal operation data is mostly concentrated. The 

UCL for this statistic is given by [9],  

 
 

01
2

2 0 2 0 0

1 2

1 1

2 1
1

h

c h h h
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 (10) 

where 

 
1

, 1, 2,3
n

i

i j

j p

i 
 

   (11) 

 1 3
0 2

2

2
1

3
h

 


   (12) 

and p is the number of retained principal components; c  is the standard normal 

variable corresponding to the upper 1   percentile. 

 

2.3 Megavariate statistical process control of dynamic processes 

 

Ku et al. [11] showed that a linear time series relationship can be described by a 

conventional PCA model, through an implicit multivariate autoregressive model (VAR; 

processes containing moving average terms can also be approximated by finite VAR 

models). This is achieved by the additional inclusion of time-shifted versions of the 

original variables, as follows: 

 
T

( ) T T T

1

l

i i i i l 
   x x x x  (13) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

9 

Where i represents an arbitrary sampling instant, l is the number of lags (or time-shifts) 

to be considered and ( )l

ix  is the resulting augmented vector of variables for the instant i. 

The augmented matrix is obtained by the straightforward superposition of these lines of 

augmented observations, ( )l

ix . Then, PCA is applied over such augmented matrix, 

providing a description of not only the (static) cross-correlations among variables but 

their auto-correlations and lagged cross-correlations, due to the additional incorporation 

of time-shifted variables. Furthermore, by properly choosing the number of lags to 

include, l , both the static and dynamic relations should appear in the noise subspace 

composed corresponding to the PCs with small variance [11]. 

 

2.4 Megavariate statistical process control of dynamic processes: the 

DPCA-DR approach 

 

The introduction of time-shifted variables on DPCA has the purpose of describing the 

autocorrelation and lagged cross-correlations present in data, besides the cross-

correlation features. However, looking to the behaviour of the resulting DPCA T
2
 and Q 

statistics, one can verify that they, in fact, still present autocorrelation, and the 

underlying problem of removing it from the monitoring statistics, so that they can be 

handled with simple charts based on the i.i.d. assumption, was not properly solved yet. 

In order to mitigate this issue, Rato and Reis [9] have recently proposed a new 

methodology that combines a DPCA model and decorrelated residuals obtained from a 

conditional data imputation technique, in order to obtain better time-decorrelated 

statistics, in a simple way, within the same modelling approach, without the need to 

resource on further time-series modelling in order to compensate for the remaining 

dynamic patterns of the statistics. The underlying reasoning is the following. In DPCA, 

a matrix with current and past measurements is build. At each new incoming 

observation, i, a new observed score and projection can be computed. If one assumes 

that the current multivariate observation vector is missing, the associated values for the 

current scores and projections can still be estimated from past data using a conditional 

missing data imputation technique for PCA (in this case, DPCA). This essentially 

amounts to perform a one-step-ahead prediction of the scores and observations, obtained 

with an implicit latent variable VAR model estimated by DPCA. We have verified that 
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the residuals obtained from the differences between the observed and estimated scores 

and projections are almost serially decorrelated, meaning that such residuals are ready 

to be monitored by simple control charting procedures. The conditional data imputation 

method chosen was the conditional mean replacement [18, 19]. In this method, a 

measurement vector with missing data is rearranged, without loss of generality, as 

follows, 

 
T #T T   x x x  (14) 

where #
x  denotes the missing measurements and 

x  the observed ones. 

Correspondingly, the P  matrix is also partitioned as 
T #T T   P P P . The missing 

measurements ( #
x ) can be estimated by application of the Expectation-Maximization 

(EM) algorithm, where at each iteration, their values are replaced by the expected ones 

from the conditional normal distribution given the known data and the current estimate 

of the mean and covariance matrix (expectation stage), that is [18], 

  # # *ˆ , ,Ex x x x S  (15) 

which will then be used to update the model (maximization stage), and so forth, until a 

convergence criteria regarding the change on the successive solutions, is met. In our 

case, we assume that a PCA model is already available (the DPCA model built from 

reference data), and therefore, only the expectation step of the EM algorithm is required, 

in order to calculate the estimates for the missing measurements. Substituting P  into the 

expression for S  results in [18], 

 
# #T # T

11 12

#T T
21 22



  

  
    
   

S S P ΛP P ΛP
S

S S P ΛP P ΛP
 (16) 

Using this expression for S , the conditional expectation of the missing measurements is 

simply given by [18] 

  
1

# 1 # T T

12 22
ˆ


      x S S x P ΛP P ΛP x  (17) 

The estimated measurements can then be used in the score calculations along with the 

observed data, as if no measurements were missing. For PCA this leads to [18] 
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P ΛP P ΛP xx
t P P

x P ΛP P ΛP x

P
P ΛP P ΛP x

P

P PΛP P ΛP x

I 0 ΛP P ΛP x

 (18) 

where 1:pP  is the matrix of the first p eigenvectors, I  is an (p × p) identity matrix and 0  

is an (p × (m – p)) matrix of zeros. 

The same approach can be applied to DPCA for generating decorrelated residuals. In 

this case, we consider that the current variables, T

ix  in Equation (13) are unknown. 

Therefore, the application of this methodology will give us an estimate of the scores that 

best agree with the last l  known measurements. Given such estimated scores, we have 

defined the following Hotelling’s T
2
 statistic: 

    
T

2 1

ˆ
ˆ ˆ

PREVT 
t-t

t - t S t - t  (19) 

where ˆt-t
S  is the sample covariance matrix of the difference between the observed and 

estimated scores, ( ˆt t ), that monitors the DPCA reference subspace. Likewise, a 

monitoring statistic for the residual subspace can be defined as: 

    
T

2 T 1 1ˆ ˆ
REST     r rr S r x Pt S x Pt  (20) 

where 
rS  is the sample covariance matrix of the residuals in the reconstructed data, 

obtained with the estimated scores ( ˆ r x Pt ). These two statistics present low levels 

of autocorrelation and very interesting detection performances, as will be illustrated in 

the following section for the Tennessee Eastman case study. 
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3 A comparison study based on the Tennessee Eastman benchmark 

process 

 

In order to test and compare the monitoring features and performance of the proposed 

methodology, we have selected an application scenario which has been widely used in 

process monitoring and fault detection studies: the Tennessee Eastman benchmark 

process. This case study not only provides a challenging testing environment for the 

specific comparison study carried out in this work, but also enables and simplifies the 

extension of the comparison scope to other methods tested in the same system, such as 

[11, 20-23]. A model of this process was developed by Downs and Vogel [10], 

consisting of five major transformation units, which are a reactor, a condenser, a 

compressor, a separator, and a stripper, as shown in Figure 1. From this model, 41 

measurements (XMEAS) are generated along with 12 manipulated (XMV) variables. A 

total of 21 different process upsets are simulated for testing the detection ability of the 

monitoring methods, as presented in Table 1 [20, 24]. In the current study we have 

conducted our analysis with the data set used by Russell et al. [25] (available at 

http://web.mit.edu/braatzgroup), where the Tennessee Eastman process is controlled 

with the approach suggested by Lyman and Georgakis [24]. Each data set contains 960 

observations collected at a sample interval of 3 min and the faults were introduced 8 

hours after the simulations start. All the manipulated and measurement variables, except 

the agitation speed of the reactor’s stirrer (which is always constant), were collected, 

giving a total of 52 variables. 
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Figure 1 The Tennessee Eastman process flow sheet. 

 

Table 1 Process faults for the Tennessee Eastman process simulator. 

Variable Description Type 

IDV(1) A/C feed ratio, B composition constant(Stream 4) Step 

IDV(2) B composition, A/C ratio constant (Stream 4) Step 

IDV(3) D feed temperature (Stream 2) Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water inlet temperature Step 

IDV(6) A feed loss (Stream 1) Step 

IDV(7) C header pressure loss - reduced availability (Stream 4) Step 

IDV(8) A, B, C feed composition (Stream 4) Random 

variation 

IDV(9) D feed temperature (Stream 2) Random 

variation 

IDV(10) C feed temperature (Stream 4) Random 

variation 

IDV(11) Reactor cooling water inlet temperature Random 

variation 

IDV(12) Condenser cooling water inlet temperature Random 

variation 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

14 

IDV(16) Unknown  

IDV(17) Unknown  

IDV(18) Unknown  

IDV(19) Unknown  

IDV(20) Unknown  

IDV(21) The valve for Stream 4 was fixed at the steady state position Constant 

position 

 

A data set with no faults, representing normal operation conditions was used to estimate 

the reference PCA, DPCA and DPCA-DR models. The number of principal components 

for PCA and DPCA was determined by parallel analysis and the number of lags was 

selected by the approach proposed by Ku et. al [11]. Using these methods we 

constructed a PCA model with 17 PCs and a DPCA model with 3 lags and 29 PCs. 

These results are in good accordance with those obtained by Russell et al. [20]. For 

selecting the number of lags for the DPCA-DR model we have used the algorithm 

proposed by Rato and Reis [26]. This algorithm is based on a succession of singular 

value decomposition problems, and subsequent analyses of an auxiliary function from 

which the lags for each variable can be set. Table A.1 summarizes the number of lags 

considered for each variable obtained with this methodology, which led to a model with 

69 PCs. 

We would like to point out that the direct use of the theoretical significance levels for 

establishing the statistical control limits for the various methods may lead to widely 

different observed false alarm rates, which distorts any comparison study on the 

methods detection performances. This undesirable effect can be removed by 

manipulating the theoretical significance level of the control limits in such a way that 

the effectively observed performance for all methods under normal operations 

conditions (i.e., their false alarm rate), becomes equal. Only in such condition can all 

the methods be properly compared with future test data. Therefore, the UCL for the 

various methods were set to a false alarm rate of 1% under normal operation conditions, 

by trial and error, on a second data set with no faults. With this preliminary but 

important procedure concluded, the fault detection rates for all the methods regarding 

each fault were finally determined. A summary of the results obtained is presented in 

Table 2. 
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Table 2 Fault detection rates for the various methods under study, regarding each faulty scenario (a 

description of each fault can be found in Table 1). The top scores are signalled in boldface format. 

Fault 
 PCA  DPCA  DPCA-DR 

 T
2
 Q  T

2
 Q  2

PREVT  2

REST  

1  0.991 0.995  0.990 0.994  0.996 0.998 

2  0.985 0.984  0.984 0.981  0.985 0.983 

3  0.036 0.006  0.035 0.010  0.021 0.016 

4  0.218 0.980  0.165 0.999  0.998 0.999 

5  0.257 0.217  0.293 0.228  0.999 0.999 

6  0.989 0.999  0.989 0.999  0.999 0.999 

7  0.999 0.999  0.986 0.999  0.999 0.999 

8  0.974 0.968  0.973 0.974  0.985 0.981 

9  0.034 0.010  0.030 0.002  0.020 0.010 

10  0.367 0.154  0.439 0.172  0.956 0.933 

11  0.414 0.638  0.340 0.829  0.965 0.865 

12  0.985 0.925  0.990 0.964  0.998 0.998 

13  0.943 0.950  0.943 0.950  0.958 0.956 

14  0.988 0.999  0.990 0.999  0.998 0.999 

15  0.035 0.007  0.059 0.009  0.385 0.047 

16  0.174 0.137  0.217 0.145  0.976 0.945 

17  0.787 0.905  0.790 0.953  0.976 0.975 

18  0.893 0.901  0.890 0.898  0.905 0.900 

19  0.115 0.059  0.046 0.298  0.971 0.843 

20  0.340 0.423  0.408 0.493  0.908 0.916 

21  0.362 0.414  0.429 0.409  0.539 0.577 

 

From the analysis of Table 2, it is possible to verify that the DPCA-DR monitoring 

statistics tend to present highest fault detection rates. In fact, 2

PREVT  was the best statistic 

in 14 out of 21 faults, and 2

REST  in 9 of them. Globally, they were capable to detect 19 of 

21 faults, failing only in the detection of faults number 3 and 9, where all methods also 

present problems. Fault number 15 is another example of a fault difficult to detect, but 

where the statistic 2

PREVT  achieved the best score. The lower capability for detecting 

these three specific faults was expected, as other methods reported in the literature (e.g. 

PCA, DPCA and CVA) also fail to detect them [20]. 

In order to better illustrate the monitoring behaviour of the methods under analysis, we 

present in Figures 2 and 3 the control charts for some of the process faults. From these 

representations it is possible to clearly observe that only the DPCA-DR statistics present 

a consistent out of control state in both statistics, simultaneously ( 2

PREVT  and 2

REST , see 
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Figure 2). This is a relevant issue, since the PCA and DPCA statistics may lead to the 

erroneous conclusion that the process has returned to their normal operation conditions 

and it is no longer under the effect of a fault. In the case of Fault 10 (Figure 3) only the 

DPCA-DR statistics signals an out of control state during the total duration of the fault, 

while the PCA and DPCA statistics only became out of control when the data exceeds 

their normal values. 

 

Figure 2 The multivariate statistics under test for Fault 5: PCA statistics (first or top row), DPCA 

statistics (second or middle row) and DPCA-DR statistics (third or bottom row). 
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Figure 3 The multivariate statistics under test for Fault 10: PCA statistics (first or top row), DPCA 

statistics (second or middle row) and DPCA-DR statistics (third or bottom row). 

 

In order to confirm the overall superiority of the DPCA-DR statistics in this case study, 

we have conducted paired t-tests between all the statistics presented in Table 3 (as they 

were implemented over the same data sets, they are paired by design in the comparison 

study). The test statistic is given by  0 Dt D s n , where D  is the sample average of 

the differences between two methods under analysis in the n different testing conditions, 

D1, D2, … , Dn, and Ds  is the sample standard deviation of these differences [27]. From 

this analysis it can be concluded that, with a 5% significance level, the DPCA-DR 

statistics are indeed significantly better than all the PCA and DPCA statistics. 
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Table 3 p-values for the paired t-test involving the detection rates obtained with method A (see first 

column) and method B (see first line), on all simulated faults, along with the signal of the test statistic, i.e. 

sign(t0). For instance, a plus (+) signal, indicates that method A leads to higher detections rates, on 

average, when compared to method B. Values in bold indicate p-values lower than 0.05 (i.e., statistically 

significant differences at this level). 

              B 

    A 

 PCA  DPCA  DPCA-DR 

  T
2
 Q  T

2
 Q  2

PREVT  2

REST  

PCA         

T
2
 

  0.388  0.414 0.152  0.002 0.003 

  (-)  (-) (-)  (-) (-) 

Q 
 0.388   0.540 0.046  0.004 0.008 

 (+)   (+) (-)  (-) (-) 

DPCA         

T
2
 

 0.414 0.540   0.257  0.002 0.004 

 (+) (-)   (-)  (-) (-) 

Q 
 0.152 0.046  0.257   0.007 0.013 

 (+) (+)  (+)   (-) (-) 

DPCA-DR         

2

PREVT  
 0.002 0.004  0.002 0.007   0.115 

 (+) (+)  (+) (+)   (+) 

2

REST  
 0.003 0.008  0.004 0.013  0.115  

 (+) (+)  (+) (+)  (-)  

 

Another advantage of the DPCA-DR method is the lower autocorrelation levels of its 

statistics, where much of its success may lie, as this characteristic makes the DPCA-DR 

statistics more reliable and consistent with the type of control charts used to monitor 

them (Figure 4). 
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Figure 4 Auto-correlation plots for the monitoring statistics when the process is under normal operation 

conditions (data set with no faults). The proposed DPCA-DR statistics present the lowest levels of 

correlation among all the studied ones. PCA statistics - first or top row -, DPCA statistics - second or 

middle row -, DPCA-DR statistics - third or bottom row -. 

 

4 Conclusions 

In this paper we have presented a methodology for conducting large-scale process 

monitoring of dynamical systems, called DPCA-DR, and compared its performance 

against other well-known methodologies used in the same application context, namely 

PCA and DPCA. The comparison study was conducted using the Tennessee Eastman 

benchmark process and all faults considered in its design. From the analysis of the 

results obtained, we can conclude that the DPCA-DR statistics were superior, in a 

statistically significant sense, to the other ones, achieving the highest detection scores in 

19 out of the 21 faults. 
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On the other hand, the DPCA-DR statistics also presented the lowest auto-correlation 

levels and were able to sustain the out-of-control signals during the whole faults 

duration, while PCA and DPCA statistics often return to their in-control regions leading 

to a false sense of normality. Consequently, the DPCA-DR statistics seems to be more 

effective, reliable and consistent regarding their counterparts tested in this study, 

features that make them a viable alternative to current monitoring statistics. 
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Appendix A 

 

Table A.1 Number of lags for each variable obtained with Rato and Reis [26] lag selection method. 

XMEAS(1) 17  XMEAS(14) 4  XMEAS(27) 17  XMEAS(40) 12 

XMEAS(2) 17  XMEAS(15) 17  XMEAS(28) 13  XMEAS(41) 17 

XMEAS(3) 8  XMEAS(16) 12  XMEAS(29) 3  XMV(1) 17 

XMEAS(4) 17  XMEAS(17) 17  XMEAS(30) 17  XMV(2) 17 

XMEAS(5) 17  XMEAS(18) 17  XMEAS(31) 17  XMV(3) 17 

XMEAS(6) 16  XMEAS(19) 17  XMEAS(32) 8  XMV(4) 17 

XMEAS(7) 17  XMEAS(20) 17  XMEAS(33) 8  XMV(5) 15 

XMEAS(8) 15  XMEAS(21) 17  XMEAS(34) 17  XMV(6) 16 

XMEAS(9) 17  XMEAS(22) 17  XMEAS(35) 17  XMV(7) 17 

XMEAS(10) 17  XMEAS(23) 17  XMEAS(36) 17  XMV(8) 17 

XMEAS(11) 16  XMEAS(24) 17  XMEAS(37) 17  XMV(9) 16 

XMEAS(12) 17  XMEAS(25) 17  XMEAS(38) 17  XMV(10) 17 

XMEAS(13) 17  XMEAS(26) 17  XMEAS(39) 4  XMV(11) 17 
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Research Highlights 

 The recently proposed monitoring statistics based on Dynamic Principal 

Component Analysis and Missing Data imputation methods (DPCA-MD) are 

introduced and described. 

 The monitoring performance of these statistics was compared with those from 

other alternative methodologies, namely PCA and DPCA. 

 The system used in the comparison study is the well-known Tennessee Eastman 

process benchmark. 

 The results obtained demonstrate the potential of the proposed monitoring 

statistics as valid alternatives to the current ones, has they are quite simple to 

implement computationally and lead to significantly better results. 


