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ABSTRACT  

Nanoparticle filling is a feasible way to increase the mechanical properties of polymer 

matrices. Abundant research work has been published in the last number of years 

concerning the enhancement of the mechanical properties of nanoparticle filled 

polymers, but only a reduced number of studies have been done focusing on the fatigue 

behaviour. This work analyses the influence of nanoclay reinforcement and water 

presence on the fatigue behaviour of epoxy matrices. The nanoparticles were dispersed 

into the epoxy resin using a direct mixing method. The dispersion and exfoliation of 

nanoparticles was characterised by X-ray Diffraction (XRD) and transmission electron 

microscopy (TEM). Fatigue strength decreased with the nanoclay incorporation into the 

matrix. Fatigue life of nanoclay filled composites was significantly reduced by the notch 

effect and by the immersion in water. 
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1. Introduction  

Nanoparticle-reinforced polymer composites have been widely investigated, 

indicating significant improvements in mechanical, thermal and physical properties in 

comparison with the neat resin. The beneficial effect obtained by using nanoclay 

reinforcement has been observed, even for low nanoclay content, e.g. [1-3]. 

Montmorillonite (MMT) clay is the most widely used material for preparing polymer 

nanocomposites due to of its high aspect ratio and economic advantages [4]. B. Wang et 

al. [5] observed that the incorporation of nanoclay particles into epoxy resin improved 

the Young’s modulus, but the tensile strength decreased slightly with the increase of the 

clay content. L. Wang et al. [6] also obtained a linear increase of the Young´s modulus 

with the nanoclay percentage. However, the tensile strength only increased up to 2 wt% 

nanoclay content and dropped with increasing nanoparticle percentage. These results 

were explained by the density heterogeneity due to the presence of air bubbles trapped 

during the sample preparation which may increase with the clay content. 

The dispersion degree of nanoclays into the polymer nanocomposites aims to 

enhance the mechanical properties, however it is well recognized the technical 

difficulties and the cost involved for achieving full exfoliation. Woong et al [7] 

performed a systematic study to determine the influence of clay dispersion on the 

mechanical properties, obtaining a negative effect of certain degree of intercalation or 

nanoaggregation in the polymer nanocomposites on the mechanical properties, 

including the fracture toughness. Moreover, not only the amount of clay but also the 

type of epoxy resin and the technique used to prepare the samples play key roles on the 

mechanical properties of the obtained  nanocomposites. 
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The permeability can decrease substantially by using nanoclay filling into 

polymer matrices, which can be an advantage of polymer-clay nanocomposites. 

However, in the case of epoxy matrices, results do not always show clear advantages. L. 

Wang et al. [8] analysed the water absorption of neat epoxy and of nanocomposites with 

2.5 wt% nanoclays, obtaining a 0.65% higher saturating point in the nanocomposites in 

comparison to the neat epoxy. The difference between the results obtained in other 

researches [9,10] is justified by the clay surface silane treatment, which is less 

hydrophobic than the alkyl-ammonium salts usually used. 

Despite the numerous researches about the mechanical behaviour of 

nanoreinforced composites, a relatively scarce number of studies on the fatigue 

behaviour can be found in the literature. Bellemare et al [11] studied the mechanical 

behaviour of polyamide-6 reinforced with nanoclays. An increase in fatigue life was 

observed as result of the increased intrinsic resistance to the initiation of cracks in the 

nanocomposite material. This behaviour was favoured by the effect of increasing the 

elasticity modulus caused by the particles, which lead to the consequent reduction in the 

deformation amplitude of the macromolecules during cyclic loading. The nanoparticles 

increase the stiffness of the material, but simultaneously can act as critical points for 

fatigue crack initiation.  

Recently Koratkar and Srivastava [12], Manjunatha et al [13] and Wang et al [14] 

also studied the influence of the nanoparticle content in the fatigue strength. Manjunatha 

et al [13] analysed the influence of the addition of rubber and silica nanoparticles. The 

addition of 10% of silica nanoparticles improved 3 to 4 times the fatigue life in 

comparison with the neat resin. Wang et al [14] also achieved significant improvement 

concerning the resistance to the initiation of fatigue cracks. The incorporation of 2 and 6 

wt% silica nanoparticles improved fatigue life in the order of 145% and 56%, 
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respectively. Improvements in tension–tension fatigue lives were also obtained by Zhou 

et al [15] using carbon nanofibers as reinforcement of epoxy/carbon composites. 

The main objective of this work was to study the influence of the nanoclay 

content on the fatigue strength of epoxy resin composites. Also, the effects of notch 

hole and water uptake on the fatigue life are analysed for the nanocomposites with 3 

wt% of nanoclay content. 

 

2. Materials and procedure 

Three materials were studied, namely, control epoxy matrix resin and composites 

with 1% and 3% wt of nanoparticle content. The nanoclay used in the present work was 

the commercially available organo-montmorillonite, Nanomer I30 E, with the surface 

modified with an octadeyl amine modified, provided by Nanocor Inc. and produced to 

be easily dispersed into epoxy resins. The epoxy resin was the SR 1500, formulated by 

bisphenol A and F, and it was combined with the hardener SD 2503, both supplied by 

Sicomin. This epoxy system presents good waterproof and adhesion properties and it is 

commonly used in shipbuilding and in the aerospace industry. 

The desired amount of clays was dispersed into the epoxy resin using a high 

rotation technique (8000 rpm) during 2 hours. Then, the mixture was degassed under 

vacuum for 30 minutes, followed by the addition of the hardener agent. Finally, the 

mixture was stirred under vacuum for 10 minutes and put into the mould. The cure was 

vacuum moulded at room temperature during 6 hours and the post-cure was performed 

in an oven at 60ºC during 16 hours. Plates with a dimension of 100x100x4 mm were 

moulded, from which the specimens were machined with the desired dimensions. 
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The nanocomposite plates were monitored in terms of dispersion and exfoliation 

using X-ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM).  

X-ray Diffraction analysis was performed using a Seifert 3000 XPS generator 

with Cr radiation operated at 40 kV and 30 mA.  The diffraction patterns (Bragg angle 

2θ) were collected between 1.5º and 15º, at a scan rate of 2.5 º/min and with a step size 

of 0.02º. Fig. 1 shows the scattering patterns of nanoclays, neat epoxy and 

nanocomposites. It is possible to identify the peak that corresponds to the basal spacing 

of nanoclays, which is located near 4.5°. Analysing the spectra of nanocomposites and 

performing a comparison with the spectrum of pure resin, an increase in basal spacing is 

clearly visible, but without the presence of peaks, indicating that the particles are 

intercalated into the resin. There is a slight intensity shoulder at about 6º, more 

pronounced in 3 wt%, which may suggest the presence of some aggregates of nanoclays 

within the matrix, as will be seen later on after presenting the SEM fatigue fracture 

surface analysis. 

Samples were prepared in an ultramicrotome for ultrathin sectioning EM FCS, 

Leica Company. Morphological analyses were realized in an Ultra-high resolution Field 

Emission Gun Scanning Electron Microscopy (FEG-SEM), NOVA 200 Nano SEM, FEI 

Company, using a Scanning Transmission Electron Microscopy (STEM) detector and 

an acceleration voltage between 15 and 18.4 kV to obtain the micrographs. Fig. 2a and 

Fig. 2b show two of these observations for 1% and 3% nanoclay composites, 

respectively. Good dispersion, intercalation and clay exfoliation was observed in Fig. 2a 

for 1% nanoclay, while in Fig. 2b exfoliation is not evident and only clay intercalation 

was clearly observed. Furthermore, clay dispersion was not well achieved.  
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Tensile static and fatigue tests were performed using specimens machined with a 

dog bone shape with the dimensions indicated in Fig. 3. Fatigue tests to study the notch 

sensitivity effect were performed using parallelepiped specimens with 15 mm width and 

4 mm thickness containing a transverse central hole with 3 mm diameter. 

Tensile tests were performed according to the ASTM D638-03 [16] specification 

in order to determine the tensile strength. An extensometer with 25 mm of gauge length 

was attached to the specimen in order to monitor the axial displacement during loading. 

The tested were carried out using a Shimadzu SLBL-5kN testing machine. The axial 

strength was obtained as nominal stress for the maximum axial load. Four tests were 

performed for each material. 

The tensile fatigue tests were carried out at constant amplitude loading using a 

servo hydraulic Instron testing machine using a sinusoidal wave load with a load ratio 

R=0.05 and a frequency of 12 Hz. All tests were carried out at room temperature. The 

temperature rise at the specimen surface was monitored at the middle point of the 

specimens using type K thermocouples. Only a small increase of temperature (less than 

15 ºC) was observed.  

 

3. Results and discussion  

Fig. 4 shows the typical tensile stress versus strain curves obtained for neat resin 

and for filled composites. The analysis of these results shows that the nanoclay filling 

increases the tensile stiffness, but simultaneously the strength (stress at peak load) 

decreases. The presence of nanoparticles also reduces the strain at failure, indicating a 

significant trend to embrittlement of the material. The tensile strength was calculated by 

dividing the peak load by the cross section area. Table 1 summarizes the average and 

standard deviation values of the tensile strength obtained from four tests performed for 
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each material. Taking into account the good dispersion with clay exfoliation achieved at 

least for 1% nanoclay composites (as shown in Fig. 1 and Fig. 2a), an unequivocal 

improvement of tensile strength was to be expected. On the contrary, the static strength 

slightly decreased for both nanoclay filled composites. This behaviour is probably due 

to the presence of nanoclay aggregates as confirmed by SEM observations, which will 

be presented later on. 

The fatigue results were analysed in terms of the stress range of the load cycle 

against the number of cycles to failure. Fig. 5 depicts the reinforcement content effect 

on the fatigue life. This figure clearly shows a tendency to a small decreasing of the 

fatigue strength with nanoclay content, reaching about 6% for the 3% wt nanofilled 

material. As mentioned previously, the presence of agglomerates, inhomogeneities and 

porosity points induce greater sensitivity to the initiation of fatigue cracks due to stress 

concentration in these regions, which may explain the observed opposite behaviour 

relatively to that generally reported in the literature, for example by Bellemare et al 

[12], for some other matrices and nanoparticles. Moreover, the analysis of the results 

indicated in Table 1 shows that the fatigue strength decreasing is related to the reduction 

of the static strength. In fact, the variation of the ratio between the fatigue strength for 

the life of 106 cycles and the static tensile strength is comprised only in the range 0.47-

0.48 for the three materials analysed, suggesting that the fatigue failure mechanisms do 

not change. 

The notch effect on the fatigue life is summarized in Fig. 6, in which the stress 

range is presented against the number of cycles to failure for smooth, as well as for 

central hole notched specimens with 3% wt of nanoclay content. The brittle behaviour 

of this nanocomposite potentiates the effect of the stress concentration caused by the 

presence of the hole notch, which reduces the fatigue strength approximately 40%.  
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The fatigue analysis of notched components is widely performed using the elastic 

factor of stress concentration kt, defined by the following equation: 
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where σmax is the maximum stress around the notch and σnom is the nominal stress on the 

cross section (removing the hole area). The reduction in fatigue strength by the notch 

effect is usually quantified by the dynamic stress concentration factor, kf, defined as the 

ratio between the fatigue strength (in terms of the stress amplitude) of a smooth 

specimen and the fatigue strength of a notched specimen, for a given fatigue life. The 

dynamic stress concentration factor, kf, was calculated using the mean experimental S-N 

fatigue curves depicted in Fig. 6, respectively for smooth specimen and notched 

specimens. The values of the stress concentration elastic factor, kt and the dynamic 

stress concentration factor, kf, against the fatigue life are plotted in Fig. 7. This figure 

shows that, in spite of the brittle behaviour of the 3% nanoclay composites, kf is much 

lower than kt, being practically constant and independent of the fatigue life. 

Furthermore, only a slight and negligible increasing of kf was observed for short lives. 

However, for longer lives the ratio kf/ kt is practically independent of the life, reaching 

the value of 0.725.  

The dynamic stress factor kf and elastic stress concentration kt are usually related 

by parameter q: 
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The presented results lead to a value of q = 0.54, indicating a relatively low notch 

sensitivity for lives above 105 cycles. 

The morphologies of the fatigue fracture surfaces were analysed using a scanning 

electron microscope (SEM), Siemens XL 30. The samples were cleaned by ultrasound 

and coated with a thin layer of gold. The accelerating voltage used was 5 kV. Fig. 8a 

and Fig. 8b show typical scanning electron microscopy (SEM) observations of the 

fracture surfaces of the specimens reinforced with 3% wt of nanoclays, unnotched and 

hole notched, respectively. In Fig. 8a it can be observed a central region with about 1 

mm diameter, where the fatigue crack was initiated and afterwards propagated until a 

brittle fracture occurs outside that region. This crack initiates emerging from the 

periphery of a nanoparticles agglomeration with approximately 100 micron, due to the 

correspondent stress concentration. Agglomerates of nanoparticles were also found by 

Bellemare et al [11] causing lower fatigue resistance. The presence of clay clusters can 

be responsible, not only by the decreasing of the fatigue strength, but also of the tensile 

and hardness of the nanocomposites. Lam et al [17] observed an increasing of the 

hardness with increasing nanoclay content up to an optimal limit. This behaviour is due 

to the size of the clusters, which increased with nanoclay content, reaching a crucial 

limit and therefore the reinforcing function of the nanoclays decreased. According to 

Srivastava et al [12], the cracks should initiate and propagate along the matrix inner 

intercalated layers. Therefore, the poor exfoliation observed in 3% nanoclay composites 

contributes to a reduction of the fatigue resistance. On the other hand, Wang et al [14] 

concluded that if there is a good dispersion/exfoliation of nanoclays into the matrix 

cracks should start in the side contours of the sample, which are the highest stress 

concentration areas. As expected the analysis of the fracture surfaces of notched 

specimens (Fig. 8b) shows that the fatigue crack was initiated and propagates from the 
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hole, which is the region with the highest stresses in consequence of the stress 

concentration effect. 

Water absorption of epoxy nanocomposites was performed according to ASTM 

D570-98 standard [18]. Two specimens with dimensions of 120×7.5×5 mm of each 

composition were tested. All specimens were initially dried at 50ºC during 24 hours, 

and then were weighted and immersed in distilled water at 20ºC. Periodically, the 

specimens were dried with filter paper, weighed immediately and then immersed again 

in water. The weights were evaluated on a balance with accuracy of 0.01 mg. The 

percentage gain, Mt of water at a given time, t, was calculated using the following 

expression: 
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Where W0 is the weight of dried material and Wt the weight of materials after exposure 

to water absorption at time t. The water diffusivity, D, was calculated by: 
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where M∞ is the mass gain at the equilibrium state and h is the thickness of the sample.  

Fig. 9 shows the long term water absorption test results by plotting the water 

uptake along the immersed time. It must be noted that the absorption obtained in this 

work is lower than the absorption published in other investigations [19], which is 

attributed to the poor absorbent nature of the resin. It can be seen that the increasing of 

clay content also increased the water uptake, which contrast with some published 

works, but agrees with the behaviour observed by Wang et al [8]. One of the reasons for 
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the actual behaviour can be related to the fact that the addition of nanoclays into the 

matrix may induce the diffusion of water due to the formation of defects in the material. 

The diffusion coefficients of different materials were calculated using Equation (4), and 

are indicated in Table 1. Each value presented is the average obtained from two 

specimens. The standard deviation of each value was very small. It can be concluded 

that the diffusivity slightly increases with the addition of nanoclays to the matrix, as 

expected after the results obtained for the weight gain. 

Fig. 10a and Fig. 10b show the effect of the immersion in a tank with distilled 

water at 20 °C during 60 days on the S-N curves, for epoxy resin and 3% wt nanofilled 

composites, respectively. A similar influence of the long term immersion in water was 

observed on both material compositions, corresponding to a fatigue strength reduction 

of approximately 15%.  

Moisture absorption in epoxy materials can lead to significant swelling of the 

polymer material, which can induce residual tensile stresses [20]. This stresses, as well 

as a significant degradation in the clay/resin interfaces adhesion, are the probable causes 

of the fatigue strength reduction. 

 

4. Conclusions 

This paper analyses the influences of the nanoclay content, notch effect and water 

uptake on the fatigue life of an epoxy matrix filled up to 3 wt% of nanoclay content. 

The main conclusions are: 

- A small tendency to the decrease of fatigue strength with nanoclay content was 

observed, reaching about 6% for 3% wt of nanofiller, as consequence of some particle 

agglomerates, which promote easier fatigue crack initiation. 
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- Notch effect caused by central hole reduces the fatigue strength in order of 40%, 

which corresponds to a notch sensitivity factor, q = 0.54.  

- For the 3% nanofilled material the immersion in water during 60 days caused a 

significant reduction in order of 15% of the fatigue strength.  
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Table 1. Summary of the obtained properties. 

Material Epoxy matrix 1% Nanofilled 
composite 

3% Nanofilled 
composite 

Tensile strength [MPa] 68.3±1.7 65.1±0.6 64.8±0.5 

Fatigue strength at 106 cycles [MPa] 32.7 31.2 30.5 

Diffusivity (×107) [mm2/s] 7.057 7.138 7.204 
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Fig. 1. XRD patterns. 
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Fig. 2. TEM observations: a) 1% nanoclay; b) 3% nanoclay. 
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Fig. 3. Specimen geometry (dimensions in mm). 
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Fig. 4. Typical stress-strain curves. 
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Fig. 5. Effect of filler content on S-N fatigue curves. 
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Fig. 6. Notch effect on S-N fatigue curves. 

1

1.5

2

2.5

3

St
re

ss
 c

on
ce

nt
ra

ti
on

 f
ac

to
r,

 k

Number of cycles to failure, Nf

Kf
Kt

0 2×105 6×1054×105 1068×105

 

Fig. 7. Variation of stress concentration factors with fatigue life. 
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Fig. 8. SEM observations of fatigue fracture surface for 3 wt%: a) Smooth specimen;  

b) Notched specimen. 
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Fig. 9. Water uptake against the immersed time. 
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Fig. 10. Effect of water immersion on S-N fatigue curves. a) Epoxy matrix;                   
b) 3% reinforced composites. 
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Table Captions 

Table 1. Summary of the obtained properties. 

 

Figure Captions 

Fig. 1. XRD patterns. 

Fig. 2. TEM observations: a) 1% nanoclay; b) 3% nanoclay. 

Fig. 3. Specimen geometry (dimensions in mm). 

Fig. 4. Typical stress-strain curves. 

Fig. 5. Effect of filler content on S-N fatigue curves. 

Fig. 6. Notch effect on S-N fatigue curves. 

Fig. 7. Variation of stress concentration factors with fatigue life. 

Fig. 8. SEM observations of fatigue fracture surface for 3 wt%: a) Smooth specimen;  
b) Notched specimen. 

Fig. 9. Water uptake against the immersed time. 

Fig. 10. Effect of water immersion on S-N fatigue curves. a) Epoxy matrix; b) 3% 
reinforced composites. 

 

 

 

 


