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Abstract 46 

One important complication of diabetes mellitus is the chronic, non-healing diabetic 47 

foot ulcer (DFU). This study aims to develop and use dressings based on chitosan 48 

derivatives for the sustained delivery of the neurotensin (NT), a neuropeptide that act as 49 

an inflammatory modulator in wound healing. Three different derivatives, namely N-50 

carboxymethyl chitosan (CMC), 5-methyl pyrrolidinone chitosan (MPC) and N-51 

succinyl chitosan (SC), are presented as potential biomaterials for wound healing 52 

applications. Our results showed that MPC has the best fluid handling capacities and 53 

delivery profile being also non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and 54 

non-loaded MPC dressings were applied into control/diabetic wounds to evaluate their 55 

in vitro/in vivo performances and the results show that the first induced a faster healing 56 

(50% wound area reduction) in the early phases of wound healing in diabetic mice. NT-57 

loaded MPC foam also reduced inflammatory cytokines expression namely TNF-α 58 

(p<0.001) and decreased the inflammatory infiltrate at day 3. At day 10, MMP-9 is 59 

reduced in diabetic skin (p<0.001) increasing significantly fibroblasts migration and 60 

collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results 61 

suggest that MPC-based dressings may work as an effective support for a NT sustained 62 

release to modulate DFU. 63 

 64 

Keywords: Chitosan derivatives; wound dressings; diabetic foot ulcers; neurotensin; 65 
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Abbreviations: 79 

Collagen type I, alpha 1 (COL1A1) 80 

Collagen type I, alpha 2 (COL1A2) 81 

Collagen type III, alpha 1 (COL3A1) 82 

Diabetic foot ulcer (DFU) 83 

Ditio-bis(nitrobenzoic acid) (DTNB) 84 

Endothelial growth factor (EGF) 85 

Extracellular Matrix (ECM) 86 

 Fetal bovine serum (FBS) 87 

Glutathione (GSH)  88 

Interleukin-1β (IL-1β) 89 

Interleukin-6 (IL-6) 90 

Interleukin-8 (KC) 91 

Metalloproteinase 9 (MMP-9) 92 

N-carboxymethylchitosan (CMC) 93 

Neurotensin (NT) 94 

Nitric oxide (NO) 95 

N-succinyl chitosan (SC) 96 

Phosphate buffer solution (PBS) 97 

Platelet-derived growth factor (PDGF) 98 

Polymorphonuclear leukocytes (PMN) 99 

Scanning electron microscopy (SEM) 100 

Streptozotocin (STZ) 101 

Transforming growth factor β1 (TGF β1) 102 

Transforming growth factor β3 (TGF β3) 103 

Tumor Necrosis Factor -α (TNF-α) 104 

Vascular endothelial growth factor (VEGF) 105 

 106 
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1. Introduction 112 

Diabetes mellitus is one of the most prevalent chronic diseases worldwide. Impaired 113 

wound healing is a complication of diabetes that results in the failure to completely heal 114 

diabetic foot ulcers (DFUs) [1]. Complications of DFUs lead to frequent 115 

hospitalizations and in extreme cases, to amputations that result in elevated hospital 116 

costs and poor quality of life for patients [2]. DFU is a multifactorial complication that 117 

results particularly as a consequence of peripheral neuropathy, impaired vascular 118 

function, impaired angiogenesis and/or chronic inflammation [1, 3]. 119 

Recently, it became evident that peripheral nerves and cutaneous neurobiology 120 

contributes to wound healing [4]. Loss of peripheral sensory and autonomic nerves 121 

reduces the production of neuropeptides that are important for proper wound healing 122 

[3]. Neurotensin (NT) is a bioactive neuropeptide that is widely distributed in the brain 123 

and in several peripheral tissues [5, 6]. NT interacts with leukocytes, mast cells, 124 

dendritic cells and macrophages leading to cytokine release and chemotaxis that can 125 

modulate the immune response. In addition, NT affects microvascular tone, vessel 126 

permeability, vasodilation/vasoconstriction and new vessel formation which helps to 127 

improve angiogenesis during wound healing processes [3, 7, 8].  128 

Some studies demonstrated that topical application of neuropeptides, such as substance 129 

P and neuropeptide Y can improve wound healing in diabetes [9, 10]. However, the 130 

major problem of topical administration of peptides is their short half-life and loss of 131 

bioactivity in the peptidase-rich wound environment [11]. An alternative strategy to 132 

overcome this problem is the use of biocompatible wound dressings for the sustained 133 

delivery of neuropeptides. These dressings should however also replicate skin 134 

characteristics in order to promote the proliferation and migration of fibroblasts and 135 

keratinocytes, as well as to enhance collagen synthesis, leading to proper healing with 136 

low scar formation [12, 13].  137 

Wound dressings based on natural polymers have been extensively applied to simulate 138 

extracellular matrix (ECM) regeneration after injury [12, 13]. One of the most used 139 

natural-based polymer for wound healing applications is chitosan [12], which is a linear 140 

copolymer of D-glucosamine and N-acetyl-D-glucosamine [14]. Since it is derived from 141 

chitin, a polymer found in fungal cell walls and crustacean exoskeletons, it is a 142 

relatively inexpensive and abundant material [15]. In addition, it has proven to be 143 

biodegradable, biocompatible, non-antigenic, non-toxic, bioadhesive, anti-microbial, 144 
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bioactive and to have haemostatic capacity [15-17]. Furthermore, chitosan promotes 145 

tissue granulation and accelerates wound healing through the recruitment of 146 

inflammatory cells such as polymorphonuclear leukocytes (PMN) and macrophages to 147 

the wound site [18]. 148 

To increase its poor solubility in water, chitosan functional groups can be chemically 149 

modified to originate water soluble chitosan derivatives such as N-carboxymethyl 150 

chitosan (CMC), 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan (SC) 151 

[19-21]. These chitosan derivatives are functional biomaterials that maintain the 152 

antibacterial and non-cytotoxic properties of parent chitosan. In addition, they stimulate 153 

extracellular lysozyme activity of skin fibroblasts [22, 23]. 154 

The aim of this study was to develop and apply wound dressings, prepared from the 155 

chitosan derivatives referred above (CMC, MPC, SC), for a prolonged and efficient NT 156 

delivery into diabetic and non-diabetic wounds, and also confer wound protection and 157 

comfort. The progression of skin wound healing in diabetic and non-diabetic mice was 158 

also evaluated by the analysis of the inflammatory and angiogenic effects of NT when 159 

applied in skin wounds alone or loaded into MPC-based dressings. 160 

 161 

2. Materials and methods 162 

2.1 Materials 163 

Chitosan (medium molecular weight, degree of acetylation of 90% confirmed by 1H-164 

NMR), glyoxylic acid monohydrate (98%), sodium hydroxide, sodium borohydride 165 

(99.5%), levulinic acid (98%), succinic anhydride (97%), reduced GSH, DTNB, dialysis 166 

membranes (Spectra/Por (6)) with a MWCO of 8000 Da and methanol p.a., were 167 

obtained from Sigma-Aldrich (USA). Acetic acid was obtained from Panreac (Spain), 168 

and ethanol was purchased from Riedel-de-Haen (Germany). Ketamine (Clorketam 169 

1000) was obtained from Vétoquinol (Portugal) and xylazine (Rompun) from Bayer 170 

HealthCare (Germany). NT was purchased from Bachem (Switzerland). The antibodies 171 

against TNF-α and MMP-9 were purchased from Cell Signaling Technology (USA) and 172 

the antibodies against VEGF and actin were purchased from the Millipore Corporation 173 

(USA). 174 

 175 

 176 

 177 
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2.2 Synthesis of chitosan derivatives CMC, MPC, SC 178 

Chitosan (2 g) reacted with glyoxylic acid (1,16 g), levulinic acid (5ml) or succinic 179 

anhydride (3 g) to synthesize CMC, MPC and SC respectively [24, 25], following by 180 

precipitation with ethanol and dialysis to remove unreacted reagents. Foams of CMC, 181 

MPC and SC were prepared by freeze-drying adding 1.5 ml of each solution in 12 multi 182 

well plates. The average thickness of the obtained materials was 250±15 µm. All 183 

samples were stored at −20 ºC, away from light and humidity before usage. The degree 184 

of substitution of each of the derivatives was calculated by 1H-NMR using a Bruker 185 

Avance III 400 MHz spectrometer, with a 5-mm TIX triple resonance detection probe 186 

using D2O acidified with acetic acid (10 µl of acetic acid in 600 µl of D2O).  187 

 188 

2.3 Scanning electron microscopy (SEM) 189 

SEM micrographs were obtained at 5 kV (Jeol, model JSM-5310, Japan). Samples were 190 

coated with gold (approximately 300 Å) in an argon atmosphere. 191 

 192 

2.4 Water vapor and water sorption capacities 193 

Samples of CMC, MPC and SC, with 22 mm of diameter, were dried at 37 ºC for 72 h 194 

until constant weight was achieved. Both water vapor and water sorption capacities 195 

were measured gravimetrically. In the first case, dried foams were exposed to a 95% 196 

relative humidity atmosphere, in a desiccator containing a saturated solution of 197 

potassium sulfate at 32 ºC accordingly to Dias et al, 2013 [26]. In the second case, 198 

samples were immersed into phosphate buffer (pH 7) at 37 ºC and weighted after 199 

removing the surface phosphate buffer using filter paper.   200 

Samples were weighted at fixed time intervals until they reach equilibrium. The water 201 

vapor and water sorption capacities were calculated as the ratio between sample weight 202 

at time t and sample initial dry weight. All the samples were measured in duplicate.  203 

 204 

2.5 In vitro release kinetics 205 

Kinetic release profiles of GSH were performed spectrophotometically (Jasco, model 206 

630, Japan) at 412nm. Known amounts of a GSH solution (5 mM) were loaded into 207 

previously weighted samples of each polymer. The GSH solution has been previously 208 

placed in an ultrasonic bath to avoid oxidation. After drying, samples were immersed in 209 

phosphate buffer at pH 6, 7 or 8 at 32 ºC, under orbital stirring (100 rpm) during 8 h. 210 
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The quantification of released GSH was based on the Ellman's Test. This test is based 211 

on the addition of 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), a yellow water-soluble 212 

compound, that reacts with free sulfhydryl groups in peptide solution. At pre-213 

determined time periods, an aliquot (100 µl) of the released solution was removed and 214 

analyzed with a mixture of 1800 µL of phosphate buffer and 100 µl of DNTB stock 215 

solution (20 mM). Fresh 100 µL of phosphate buffer was added each time point to the 216 

medium. Each sample was analyzed in duplicate.  217 

 218 

2.6 Cell culture 219 

Mouse leukaemic monocyte macrophages (Raw 264.7) and human keratinocyte 220 

(HaCaT) cells were cultured in DMEM medium, pH 7.4, supplemented with 10 % heat 221 

inactivated fetal bovine serum (FBS), 3.02 g/l sodium bicarbonate, 30 mM glucose, 100 222 

U/ml penicillin, 100 µg/ml streptomycin, at 37 ºC in a humidified incubator containing 223 

5% CO2. Sub-culturing was performed according to ATCC recommendations. Raw 224 

264.7 and HaCaT cell lines were purchased by ATCC (number TIB-71) and CLS 225 

(number 300493), respectively. 226 

 227 

2.7 MTT assay 228 

Raw 264.7 (8×104 cells/well) and HaCaT (4×104 cells/well) cells were plated 229 

individually in 12-well plates with 430 µL of DMEM, above the previously sterilized 230 

biomaterials (UV light for at least 30 minutes).  After 24 and 48 h of incubation, 43 µl 231 

of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution 232 

(5mg/ml) was added to each well. The plates were further incubated at 37 ºC for 1 h, in 233 

a humidified incubator containing 5% CO2. After this period, 300 µl of acidic 234 

isopropanol (0.04 N HCl in isopropanol) was added. Quantification was performed 235 

using an ELISA automatic microplate reader (SLT, Austria) at 570 nm, with a reference 236 

wavelength of 620 nm. Each sample was analyzed in duplicate. 237 

 238 

2.8 NO production – Griess Method 239 

Raw 264.7 (8×104 cells/well) cells were plated in 12-well plates with 430µL of DMEM, 240 

above the previously sterilized biomaterials (UV light for at least 30 minutes). After 24 241 

and 48 h after incubation, 170 µl of medium supernatant was mixed with an equal 242 

volume of Griess reagent (1% sulfanilamide, 0.1% N-1-naphthelenediamine 243 



  

8 

 

dihydrochloride in 2.5% phosphoric acid). After 30 minutes of incubation in the dark, 244 

the absorbance was measured at 550 nm in a microplate reader (SLT, Austria). Nitrite 245 

concentration was calculated from a previously obtained nitrite standard curve. 246 

 247 

2.9 In vivo wound closure 248 

We used male C57BL/6 mice (Charles River Corporation Inc, Barcelona, Spain) 249 

weighing 25-30 g. The animals were maintained at normal room temperature (22-24 °C) 250 

on a 12 h light/dark cycle, with free access to commercial pellet diet and water. After 251 

the wound procedure, the animals were kept in individual cages. All experiments were 252 

conducted according to the National and European Communities Council directives on 253 

animal care. 254 

Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 150 255 

mg/kg) in citrate buffer pH 4.5. Four days after diabetes induction, blood glucose levels 256 

were checked by Accu-Chek Aviva glucometer (Roche Diagnostics GmbH, Germany). 257 

The animals with blood glucose levels higher than 300 mg/dl were considered diabetic. 258 

Mice were anesthetized by intraperitoneal injection of xylazine (13 mg/kg) and 259 

ketamine (66.7 mg/kg). The dorsal hair of control and diabetic mice was shaved and 260 

two 6 mm diameter full-thickness wounds of were created with a biopsy punch.  261 

C57BL/6 mice were randomly divided into six groups of treatment for control (non-262 

diabetic) and diabetic mice – three groups for day 3 (d3) (I, II, III) and three similar 263 

groups for day 10 (d10) (IV, V, VI): groups I and IV were treated with MPC dressings 264 

alone (6-12 animals), groups II and V with topical application of 50 µg/ml NT (7 265 

animals) and groups III and VI with 50 µg/ml NT-loaded MPC dressings (7-9 animals).  266 

For each animal one of the wounds worked as control (PBS application only) and the 267 

other received treatment. The dried MPC foams were applied over the wounds and 268 

wetted with 5 µl of PBS or NT solution (50 µg/ml) to originate hydrogels with improved 269 

adherence and mucoadhesive capacities. By visual inspection it was possible to observe 270 

that the dressings persist into the wound approximately until day 6-7. The progress of 271 

wound healing was evaluated periodically by acetate tracing till day 10. Topical 272 

application of PBS or NT (alone or loaded into the prepared MPC dressing) was 273 

performed daily. At day 3 or day 10, C57BL/6 mice were sacrificed and around 2 mm 274 

of tissue and skin surrounding the wound were harvested. These time points were 275 
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chosen to evaluate the inflammatory (day 3) and the proliferating/remodeling (d10) 276 

phases of wound healing. 277 

 278 

2.10 Real time RT-PCR  279 

Total RNA was isolated from skin with the RNeasy Mini Kit according to the 280 

manufacturer’s instructions (Qiagen, USA). First strand cDNA was synthesized using 281 

High Capacity cDNA Reverse Transcription. Then, real-time RT-PCR was performed 282 

in a BioRad MyCycler iQ5. Primer sequences are given upon request. Gene expression 283 

changes were analyzed using iQ5Optical system software v2. The results were 284 

normalized using a housekeeping gene, TATA box binding protein (TBP), which was 285 

previously validated in our lab. Quantitative RT-PCR results were analyzed through 286 

delta CT calculations. 287 

 288 

2.11 Western Blotting 289 

Skin tissue lysate was homogenized in RIPA buffer (50mM Tris HCl pH8, 150 mM 290 

NaCl, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS, 2 mM EDTA, proteases 291 

inhibitor cocktail, phosphatase inhibitor cocktail and 1 mM DTT). Protein concentration 292 

was determined using the BSA method and the skin lysates were denatured at 95 ºC, for 293 

5 min, in sample buffer. 40 µg of total protein were resolved on 12% SDS-PAGE and 294 

transferred to PVDF membranes. The membranes were blocked with 5% fat-free dry 295 

milk in Tris-buffered saline containing 0.1% (v/v) Tween 20 (TBS-T), for 1 h, at room 296 

temperature. After blocking, membranes were incubated with the primary antibodies 297 

against the TNF-α (1:500), VEGF (1:1000), MMP-9 (1:500), overnight at 4 ºC. After 298 

incubation, membranes were washed and incubated for 1 h at room temperature, with 299 

anti-rabbit antibody (1:5000), or anti-mouse antibody (1:5000). The membranes were 300 

exposed to the ECF reagent followed by scanning on the VersaDoc (Bio-Rad 301 

Laboratories, Portugal). For normalization, the membranes were re-probed with an anti-302 

actin antibody (1:10000). The generated signals were analyzed using the Image-Quant 303 

TL software. 304 

 305 

2.12 Hydroxyproline content  306 

This analysis was performed using a Hydroxyproline Assay Kit (Sigma Aldrich, USA). 307 

Briefly, 10 mg of skin tissue were homogenized in 100 µl of water and hydrolyzed with 308 
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HCl 12 M at 120 ºC for 3 h. 25  µl of the supernatant were transferred to 96- well plate 309 

and evaporated in the incubator at 60 ºC till total dryness. After, 100 µL of the 310 

Chloramine T/Oxidation Buffer and 100 µL of the Diluted DMAB Reagent were added 311 

to each sample and incubated for 90 minutes at 60 ºC. Quantification was performed 312 

using an ELISA automatic microplate reader (SLT, Austria) at 560 nm.  313 

 314 

2.13 Histopathological analysis 315 

For histological preparation, the skin was fixed in 10% neutral buffered formalin and 316 

then embedded in paraffin.  Skin tissues were sectioned in 3 µm thickness slices for 317 

histopathological examination by hematoxylin/eosin (H&E) and for collagen formation 318 

by Masson’s Trichrome staining, using standard procedures. The stained sections were 319 

observed with a microscope Nikon H600L with Digital Camera DXM 1200F (Nikon, 320 

Germany). Analysis of stained skin sections was performed by an experienced 321 

pathologist.  322 

 323 

2.14 Statistical analysis 324 

Results are expressed as mean ± SEM (Structural Equation Modeling). Statistical 325 

analysis was performed using one-way ANOVA followed by Tukey’s multiple 326 

comparison tests or through the unpaired or paired t test by GraphPad Prism (GraphPad 327 

Software, Inc., San Diego, CA, USA) and p values lower than 0.05 were considered 328 

statistically significant. 329 

 330 

3. Results  331 

3.1 Degree of substitution and morphology of CMC, MPC and SC  332 

The degree of substitution (amount of native chitosan amino groups substituted) of each 333 

chitosan derivative was confirmed by 1H-NMR and it was equal to 25.5%, 24% and 334 

28.5% for CMC, MPC and SC, respectively (Figure S1 supplementary data). The 335 

schematic representation of each derivative is shown in Figure 1A. 336 

The different morphologies obtained for each of the prepared chitosan derivative foams 337 

are shown in Figure 1B. CMC presents a honeycomb-like porous structure, with larger 338 

pores than MPC and SC, which presented an interlaced fiber-like pattern. The fiber-like 339 

structure of SC seems to be thinner than the one observed for MPC.  340 

 341 
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3.2 Water vapor and water swelling properties 342 

Figure 2A shows the water vapor sorption behavior of CMC, MPC and SC foams in 343 

controlled humidity (95%) and temperature conditions (32 ºC). Data show that the 344 

hydrophilicity of the materials changes in the sequence SC > MPC > CMC. All the 345 

samples achieved equilibrium after approximately 8 hours and at this point, SC 346 

adsorbed 35% of its weight in water vapor while MPC and CMC adsorbed 24% and 347 

14%, respectively.  348 

In terms of water swelling capacity, Figure 2B shows that SC presents the fastest 349 

swelling rate, reaching its maximum (2438%) after 5 h and it starts to dissolve after this 350 

period. On the other hand, CMC presented the lowest swelling capacity (163%) while 351 

MPC has an intermediate water swelling profile. Both MPC and SC foams reach water 352 

swelling equilibrium after approximately 6 h and both maintain their structure 353 

(macroscopically, at naked eye) until day 15, at the tested experimental conditions.  354 

 355 

3.3 In vitro release kinetics  356 

Glutathione (GSH) was used as a model peptide test molecule for in vitro release 357 

kinetics studies. The release of GSH from CMC, MPC and SC foams was followed for a 358 

period of 8 h at 3 different pHs (6, 7 and 8) which is the pH range that can be observed 359 

during the wound healing process. The release profiles measured for each chitosan 360 

derivative at pH 7 are presented in Figure 3. Data measured at pHs 6 and 8 are presented 361 

as supplementary data (Figure S2) due to the similarities observed among the different 362 

pHs studied in this work. The release profiles show that equilibrium is attained between 363 

5 and 8 h for all the samples and that the amount of GSH released from SC is 364 

significantly higher than for CMC and MPC (~9 and 4 times higher, respectively). 365 

When comparing the amount of GSH released after 8 h with the total GSH loaded 366 

amount, the results show that ~50% was released from CMC and MPC while almost 367 

100% was released from SC. Obtained results also show that the amount of GSH 368 

released from the chitosan derivatives is not significantly affected in the pH range 369 

studied and considering the experimental error, being average equal to (32.33±0.72), 370 

(67.65±6.77) and (287.18±14.92) GSH released (%)/mpolymer (g) for CMC, MPC and 371 

SC, respectively.  372 

 373 

3.4 In vitro biocompatibility of CMC and MPC 374 
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There was no significant difference in the viability of the Raw and HaCaT cells exposed 375 

to CMC and MPC foams during 24, 48 and 72 h, when compared to control, as shown 376 

in Figure 4 (A and B, respectively). NO is produced by macrophages in response to an 377 

inflammatory stimuli. The production of nitrites, final stable breakdown product of NO, 378 

measured after exposure of the cells to the chitosan derivatives (Figure 4C) was also not 379 

significantly affected, however, a slight increase in the nitrites produced after 72 h was 380 

observed, which may be due to the stress to which cells are subjected after this exposure 381 

period. 382 

 383 

3.5 Wound healing experiments – in vivo 384 

Figure 5 shows the effect of the different topical treatments studied in this work: NT 385 

alone, MPC foam alone and NT-loaded MPC foam both in control (A) and diabetic (B) 386 

mice. PBS was applied as control. All treatments were shown to reduce significantly the 387 

wound area, as compared to PBS treated wounds, in both control and diabetic mice. In 388 

Figure 5 A, NT alone reduced significantly the wound size at day 3 post wounding, by 389 

22% (p<0.05), compared to the PBS treated wounds, in control mice. In diabetic mice, 390 

the wound size of the NT treated wounds is also significantly reduced at day 3, and at 391 

day 5 by 29% (p<0.01) and 34% (p<0.01), respectively. A different healing profile is 392 

observed for the non-loaded and NT-loaded MPC treated wounds either in control and 393 

diabetic mice. A significant decrease in the wound area is evident at day 1 post 394 

wounding in non-loaded MPC by 48% (p<0.001) and in NT-loaded MPC, by 43% 395 

(p<0.001), when compared with PBS-treated wounds (Figure 5A). In diabetic animals, 396 

the profile of wound closure was similar, however the NT-loaded MPC treatment was 397 

significantly more effective than MPC alone, with a wound reduction of 50% (p<0.001) 398 

instead of 35% (p<0.001) of closure for the non-loaded dressing (Figure 5B). 399 

 400 

3.6 Cytokine, MMP-9, collagen types and growth factors expression at the wound 401 

site 402 

In order to address the pattern of cytokine gene expression in untreated or treated 403 

wounds at 0, 3 and 10 days post-wounding, the gene expression for inflammatory 404 

cytokines (TNF-α, IL-6, KC, IL-1β) and several types of collagen genes (COL1A1, 405 

COL1A2, COL3A1) were measured and the results are presented in Figure 6 A-N. 406 

Other important factors such as MMP-9, growth factors (EGF, VEGF, PDGF), TGFβ1, 407 
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TGFβ3 were also evaluated and its expressions are presented in Figure S3 408 

Supplementary data.  409 

In unwounded skin (day 0, baseline), all the measured inflammatory cytokines were 410 

significantly increased in the skin of diabetic animals compared with the healthy 411 

controls (Figure 6 A-G). On the other hand, all types of collagens analyzed are 412 

significantly reduced (p<0.001) (Figure 6 I-N, respectively).  413 

We observed a significant increase, at day 3 post-wounding, in the inflammatory 414 

stimulus, as one might expect, when compared to day 0 in controls. However, the same 415 

effect is not observed in diabetic mice. 416 

Furthermore, at day 3, in control mice, the MPC treatment alone reduced significantly 417 

the expression of TNF-α (p<0.05), IL-6 (p<0.05) and IL-1β (p<0.05) while the NT 418 

alone decreased the expression of TNF-α (p<0.05) and IL-1β (p<0.05) (Figure 6 A, C 419 

and G, respectively).  In addition, the NT-loaded MPC treatment reduced the TNF-α 420 

expression (p<0.05), however the IL-6 and KC expression significantly increased in the 421 

controls (p<0.05). In diabetic mice, the TNF-α expression was significantly higher for 422 

all treatments (p<0.05) but the IL-1β expression is reduced upon the NT-loaded MPC 423 

treatment (p<0.05) compared with PBS alone.  424 

Moreover, at day 3, NT alone reduced the EGF expression in diabetic mice (p<0.05) 425 

and increased the VEGF expression (p<0.05) in the control (Figure S3 C and E). In 426 

addition, while NT and NT-loaded MPC foam significantly induced TGFβ3 expression 427 

(p<0.001), in controls, no differences where observed in diabetic skin (Figure S3 K). 428 

Collagen genes were more expressed in control skin and NT treatment significantly 429 

increased COL1A1, COL1A2 and COL3A1 expression in diabetic skin (Figure 6 I, K 430 

and M, respectively). 431 

At day 10, the expression of all the inflammatory cytokines was diminished to baseline 432 

levels in the controls, with the exception of TNF-α that increase (p<0.05) with NT and 433 

the NT-loaded MPC application, compared to PBS treated wounds. In diabetic mice, all 434 

the treatments reduced the expression of TNF-α, IL-6 and KC (p<0.05 in all cases) 435 

(Figure 6 B, D and F, respectively). The non-loaded and the NT-loaded MPC treatments 436 

caused a decrease in the MMP-9 expression in both control and diabetic mice (p<0.05) 437 

(Figure S3 B). In addition, the NT-loaded MPC treatment reduced EGF in diabetic 438 

mouse skin (p<0.05) (Figure S3 D).  439 
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NT and NT-loaded MPC foam significantly induced TGFβ1 and TGFβ3 expression 440 

(p<0.001) in controls at day 10 but no differences where observed in diabetic skin. In 441 

diabetic skin, only NT treatment reduced significantly TGFβ3 (p<0.05) (Figure S3 J, L). 442 

In addition, NT and NT-loaded MPC foam highly stimulated an increase in COL1A1 443 

and COL1A2 (p<0.001) in control mice while in diabetic mice only NT-loaded MPC 444 

significantly induced expression of all collagen genes (Figure 6 J, L,N). 445 

 446 

3.7 Protein expression in the wound site 447 

To evaluate protein expression levels at the wound site, Western Blot analysis of skin 448 

tissue was performed (Figure 7). At day 0, only MMP-9 is significantly increased 449 

(p<0.001) in diabetic mice when compared to controls. At day 3, NT treatment induced 450 

a reduction of MMP-9 protein levels in control mice. Moreover, in diabetic wounds, 451 

MPC treatment increased TNF-α level. In contrast, NT and NT-loaded MPC foam 452 

significantly reduced MMP-9 (p<0.05) and TNF-α (p<0.001) protein levels, 453 

respectively.  454 

At day 10, MPC, NT or NT-loaded MPC treatments significantly reduced MMP-9 455 

protein expression comparing with PBS treatment, either in control or diabetic skin. In 456 

addition, TNF-α protein expression was not detected in all treatments at day 10, by 457 

Western Blot.   458 

 459 

3.8 Hydroxyproline content in the wound site 460 

To evaluate collagen deposition in mouse skin, hydroxyproline levels were measured in 461 

unwounded and wounded (treated and non-treated) skin (Figure 8). In unwounded skin, 462 

hydroxyproline levels were significantly decreased (p<0.01) in diabetic mice comparing 463 

with control skin. At day 3 post-wounding, NT significantly increased (p<0.05) 464 

hydroxyproline content in diabetic skin, while at day 10, this effect was observed with 465 

NT-loaded MPC in control and diabetic skin (p<0.05, p<0.01), respectively. 466 

 467 

3.9 Histopathological analysis of the wound 468 

For the histopathological analysis of control and diabetic skin tissue we used the H&E 469 

and Masson´s Trichrome staining (Figures 9A and B, respectively). In unwounded skin 470 

the increase in the epidermis skin thickness was evident in diabetic mice when 471 

compared with control. At day 3 post wounding, all the treatments stimulated an 472 



  

15 

 

increase in the epidermis thickness which was more significant for the non-loaded and 473 

NT-loaded MPC treatments in diabetic skin (Table 1).  At day 10, the epidermis 474 

thickness profile was similar with a stronger effect in diabetic skin (Figure 9A – 3), 475 

(Table 2). A specific re-epithelialization profile was observed: in control mice, re-476 

epithelialization occurred from bottom to top with basal cells in the epidermis covering 477 

the scar. In diabetic mice, the re-epithelialization occurred over the granulation 478 

inflammatory tissue while this was suffering repair, without correlation with the applied 479 

treatments, in both groups (Table 2 and 3).   480 

At day 3, neither MPC, NT alone or NT-loaded MPC treatments affected the number of 481 

polymorphonuclear leukocytes (PMN) and lymphocytes in control skin, however in 482 

diabetic skin, these inflammatory cells were less recruited to the wound site compared 483 

with the PBS treatment. In addition, there is higher production of fibrin in diabetic skin 484 

while no plasma cells were observed in either control or diabetic skin (Table 3). At day 485 

10, there was no significant recruitment of PMN and lymphocytes observed in control 486 

skin, while in diabetic wounds treated with either MPC, NT alone or NT-loaded MPC, 487 

PMN cells, lymphocytes and plasma cells were present in higher numbers when 488 

compared with PBS treatment. It is important to note that inflammatory cells persisted 489 

at day 10 especially in the diabetic wounded skin. No fibrin was observed either in 490 

control or diabetic skin (Table 4). Fibroblasts, which are important for tissue repair, 491 

were increased in diabetic when compared to control wounded skin, at day 3. Moreover, 492 

collagen matrix production appeared to be more evident in diabetic skin, particularly 493 

after the NT or the NT-loaded MPC foam treatment. However, the scar was more 494 

pronounced in these treatments (Table 3). Furthermore, at day 10, NT-loaded MPC 495 

foam induced the migration of fibroblasts and the production of the collagen matrix. 496 

However, the scar obtained after this treatment was more pronounced (Table 4). A 497 

summary of cytokine expression and corresponding cell type production, in wounded 498 

control and diabetic skin, at either day 3 or 10 post-wounding, is represented on table 5.  499 

 500 

4. Discussion 501 

One of the main objectives of this work was to evaluate the capacity of chitosan-based 502 

wound dressings to work as biocompatible and biodegradable supports for the sustained 503 

delivery of neurotensin (NT), a neuropeptide that has shown to improve wound healing 504 

[27, 28].  505 
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Three different water soluble chitosan derivatives (CMC, MPC and SC) were 506 

synthesized and tested for their water swelling capacities and peptide release profiles in 507 

order to infer which of the derivatives would present the best performance (controlled 508 

swelling and NT delivery over time) in vivo. At this stage, GSH was used as a model 509 

peptide. Although GSH presents lower molecular weight than NT, it has similar 510 

functional groups that will permit the simulation of the physical and chemical 511 

interactions that may be established between the molecule and the material used as the 512 

dressing.  513 

The obtained results showed that the SC foam has the highest water vapor and water 514 

swelling capacity probably due to the high number of thin fibers that constitute its 515 

matrix, increasing the contact area between the material and the water molecules. The 516 

higher affinity of SC for water (higher hydrophilicity) justifies its faster dissolution in 517 

PBS. These results are also in agreement with the 1H-NMR data that showed a higher 518 

degree of substitution for SC. This was expected since chitosan substitutions performed 519 

in this work aimed to improve the solubility of chitosan in aqueous media. According to 520 

the water swelling results, MPC presented an intermediate swelling profile, despite the 521 

apparent larger porosity of the CMC derivative observed by SEM analysis.  522 

Medicated wound dressings have been largely used to deliver healing enhancers and 523 

therapeutic substances, such as growth factors or stem cells to stimulate wound healing 524 

[29, 30]. Their use allows the protection of the wound against external aggression and 525 

avoids the rapid biodegradation of the bioactive healing enhancers that may occur in the 526 

enzyme rich wound environment. In this work, the capacity of each dressing to sustain 527 

the release of a peptide at different pH conditions was addressed. The measured release 528 

kinetics performed was not significantly affected within the pH ranges studied and SC is 529 

the material that presented the faster release of GSH, followed by MPC and CMC. The 530 

release profiles are in accordance with the water swelling profiles observed for the 531 

different chitosan derivatives, indicating that the GSH release is mainly controlled by 532 

the water swelling capacity of the material and therefore GSH is released mainly 533 

through a diffusion mechanism. The higher swelling capacity of SC leads to a higher 534 

amount of water inside the polymer structure, better dissolving GSH, enhancing its 535 

release into the surrounding medium. According to these results (water swelling and 536 

GSH release data), and considering that sustained profiles were envisaged for in vivo 537 

applications, the use of SC based material was discarded at this stage.  538 
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The biocompatibility of CMC and MPC foams was tested in vitro, in Raw 264.7 and 539 

HaCaT cell lines and the results showed that both materials were non-toxic against these 540 

cell lines, up to 48 h. For the 72 h test period, a slight decrease (not statistically 541 

significant) in the viability of the cells was observed probably due to foam dissolution 542 

or cell stress in the media conditions. Similar results were observed in L929 cells 543 

(fibroblast cell line) by Huang and colleagues [31]. The production of nitrites by 544 

macrophages Raw 264.7 was also quantified since it is known that these cells produce 545 

NO when stimulated by inflammatory stimulus. The results presented show that CMC 546 

and MPC do not increase nitrite levels in vitro suggesting that these compounds do not 547 

induce an inflammatory response which is in accordance with data previously reported 548 

in the literature [32]. The in vitro results indicate that both CMC and MPC could be 549 

used for wound dressing applications. However, in this work, in vivo application and 550 

characterization was performed only for MPC, which was the material that presented an 551 

intermediate GSH release profile compared to either CMC or SC.   552 

Several studies suggested that chitosan and derivatives accelerate wound healing [33, 553 

34]. For instance, MPC freeze-dried foams were shown to jellify in contact with 554 

biological fluids, being progressively absorbed via enzymatic hydrolysis, promoting 555 

regeneration of connective tissues [35]. However, no further studies were found in the 556 

literature reporting the effect of MPC alone or in combination with NT in diabetic 557 

wound healing.  558 

Diabetes mellitus cause important complications, namely at skin level. The healing 559 

process involves several overlapping phases: homeostasis/coagulation, inflammation, 560 

proliferation (granulation tissue formation), re-epithelialization and remodeling [36]. 561 

All these processes require the interaction of skin cells, cytokines and growth factors 562 

released from inflammatory cells, fibroblasts, keratinocytes and epithelial cells [2].  563 

Due to the fact that mouse skin is elastic and has lack of a strong adherence to the 564 

underlying structures, wound contraction is usually more rapid than epithelialization 565 

which causes a decrease in the overall healing time of mice wounds [37]. Wound 566 

closure results show that NT induced a faster closure in diabetic mice, even when 567 

applied directly over the wound and compared with control mice. This was expected 568 

since it has been reported that topical application of neuropeptides, such as Substance P, 569 

stimulate diabetic wound healing [9]. In addition, previous studies in our group 570 

observed that NT modulates inflammatory responses in a skin dendritic cell line [28].  571 
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Treatments with non-loaded and NT-loaded MPC foams induced a significant reduction 572 

of the wound area, especially in the first 3 days post-wounding and in both control and 573 

diabetic mice. Moreover, NT-loaded MPC presented a faster healing profile in diabetic 574 

skin wounds. These results suggest a synergistic behavior between the bioactivity of NT 575 

alone and the intrinsic healing properties of MPC. Moreover and as intended, a 576 

sustained release of NT may also occur which guarantees controlled NT levels during 577 

the healing process. The adhesive properties of chitosan and its derivatives could 578 

explain this enhanced healing profile [38]. In addition, wound contraction is necessary 579 

for the healing process, probably due to the enhanced proliferation of fibroblasts due to 580 

arising contractile myofibroblasts [39]. Wound contraction is a biologically important 581 

process in wound healing, especially in the healing of chronic wounds such as DFU, 582 

although excessive contraction may lead to scar formation [40]. All treatments lead to 583 

healing however, larger scars were developed over diabetic wounds that were treated 584 

with MPC foams, most probably due to the fast initial wound contraction verified in this 585 

case.    586 

In unwounded diabetic skin, an overexpression of inflammatory cytokines, growth 587 

factors and MMP-9 was observed, which is in agreement with the literature [41]. These 588 

results suggest a chronic pro-inflammatory state in diabetic skin that can compromise 589 

the wound healing. On the other hand, the gene expression of the different types of 590 

collagen is down regulated in the diabetic skin suggesting a decreased capacity of the 591 

diabetic skin to produce the appropriate matrix essential for wound healing and skin 592 

repair. As decreased expression of COL1A1, COL1A2 and COL3A1 is verified, less 593 

collagen is deposited as observed by the hydroxyproline assay [42].  594 

In chronic diabetes, the healing process becomes stalled in one or more of the healing 595 

phases originating chronic non-healing wounds. One important phase that can become 596 

stalled in diabetes is the inflammatory phase [1]. TNF-α, IL-6, KC and IL-1β are 597 

inflammatory cytokines involved in the recruitment of cells, such as neutrophils and 598 

macrophages to the wound site, to stimulate the immune response. In the skin, TNF-α 599 

produced by inflammatory cells and fibroblasts stimulates adhesion molecules and 600 

chemokines leading to attachment of inflammatory cells to vessels, rolling, migration, 601 

and eventually chemotaxis into the skin [43]. Moreover, IL-6 and IL-1β, produced by 602 

macrophages, fibroblasts, keratinocytes and epithelial cells are also important players in 603 

the early phase of inflammation and in the wound healing process [44]. In control mice, 604 
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the reduction of TNF-α and IL-1β expression with all treatments, at day 3, suggests a 605 

decrease in the inflammatory condition which facilitates healing. In diabetic mice 606 

treated with MPC, NT or NT-loaded MPC, less infiltrated inflammatory cells was 607 

observed at day 3 comparing with control mice, while TNF-α expression is significantly 608 

higher, especially for the MPC alone. Moreover, IL-6 and KC expression is 609 

significantly reduced. These results may suggest that high expression of TNF-α is 610 

produced not only by inflammatory cells present at the wound site, but also by other 611 

cells present at day 3, which can stimulate contraction of the wound and consequently 612 

have a beneficial effect in the early stages of wound healing. This may further indicate 613 

that in diabetic mice, treated with NT or/and MPC, the granulation tissue fills the 614 

wound bed potentiated by the proliferation of skin fibroblasts, in the early phase of 615 

wound healing.  616 

Similar results were observed when using MPC alone as treatment. However, NT-617 

loaded MPC treatment induced a decrease in the TNF-α protein content suggesting that 618 

the combination of NT with the MPC foam has an effective anti-inflammatory role in 619 

wound healing.  620 

At day 10, the inflammatory status persisted in diabetic mice while in controls it is 621 

resolved, as expected [4]. On the other hand, all treatments lead to a reduction in the 622 

inflammatory cytokines expression supported by the loose conjunctive tissue observed 623 

from the beginning, undergoing different status of collagen deposition in diabetic and 624 

control mice. At this time point, fibroblasts have an important role in collagen synthesis 625 

and scar formation [45, 46]. During the re-epithelialization phase, the initial ECM is 626 

gradually replaced by a collagenous matrix with the formation of new blood vessels 627 

[47]. The expression of angiogenic factors, VEGF and PDGF, did not change with 628 

treatments in diabetic mice possibly showing that these treatments do not stimulate the 629 

production of growth factors to improve wound healing. 630 

Our results show that the production of the collagen matrix was higher for MPC and 631 

NT-loaded MPC treated diabetic skin, which is correlated with increased scar 632 

formation. Obara and colleagues [29] also observed that application of a chitosan 633 

hydrogel in diabetic wounds increased scar formation. Moreover, MMP-9 expression in 634 

diabetic skin wound was increased at day 3. Most importantly, at day 10, it is observed 635 

a decrease of MMP-9 in NT-loaded MPC treated diabetic wounds, while no significant 636 

effect is observed in control wounds.  Possibly, MMP-9 may affect ECM proteolytic 637 
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enzymes, allowing the migration of cells into the wound site, which results in the 638 

deposition of new ECM and the development of new tissue. However, it is known that 639 

the increased presence of TNF-α in diabetes could reduce the MMP-9/TIMP-2 balance 640 

production by fibroblasts, contributing to the elevated proteolytic activity impairing 641 

wound healing [48].  642 

As expected, and in agreement with the literature [49], type 1 collagen was the most 643 

expressed form of collagen in the skin, serving as the framework for connective tissues 644 

such as skin, bone and tendons. This result also agrees with the observed increase in the 645 

expression of TGF (Figure S3 supplementary data) which has an important role in the 646 

pathophysiology of tissue repair by the enhancement of type 1 collagen gene expression 647 

[50]. 648 

In addition, at day 3, we observed an increased expression of all types of analyzed 649 

collagen in control compared to diabetic skin at the same time point and the opposite is 650 

verified at day 10 suggesting that diabetes impair collagen gene expression and 651 

deposition in the skin [51]. Moreover, the NT-loaded MPC foam stimulated COL1A1, 652 

COL1A2 and COL3A1 expression at day 10 in diabetic skin, which is also correlated 653 

with higher collagen production observed by the hydroxyproline content and the 654 

Masson´s Trichrome staining. 655 

 656 

5. Conclusions 657 

The results obtained in this work show that, in control animals, both MPC and NT-658 

loaded MPC foams have great impact on the early phases of the healing process 659 

decreasing the inflammatory infiltrate. In diabetic animals, the major healing effects 660 

were observed with either NT alone or NT-loaded MPC foams thus confirming the 661 

potential healing effect of NT in diabetic wound. These treatments reduced the 662 

inflammatory status in the early phase of wound healing and increased migration of 663 

fibroblast and collagen expression and deposition for tissue repair. However, a more 664 

pronounced scar was observed with the application of MPC. Table 5 summarizes 665 

cytokine expression in wounded control and diabetic skin, at day 3 and 10 post-666 

wounding. 667 

These results suggest that in vivo NT combined with the MPC foam application in 668 

diabetic wound dressings can promote an inflammatory response was able to reduce the 669 

inflammatory response, to promote an anti-inflammatory response and to stimulate re-670 
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epithelialization which are important phases of the healing process. Human studies are 671 

needed to further investigate the potential application of NT-loaded MPC wound 672 

dressings as therapy for diabetic foot ulcers. 673 
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 834 

Figures Captions 835 

 836 

Figure 1. A) Chemical synthesis of chitosan derivatives: N-carboxymethyl chitosan 837 

(CMC), 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan (SC). B) SEM 838 

micrographs for non-loaded chitosan derivatives CMC, MPC and SC representing the 839 

different structures obtained by freeze-drying. Inner images represent magnifications.  840 

 841 

Figure 2. Water vapor (A) and water (B) swelling profiles observed for CMC (■), MPC 842 

(▲) and SC (♦) foams. The inserted figure represents a zoom of the water swelling 843 

profiles for the first monitored day. Lines serve only as guides for the eye. Results are 844 

presented as mean ± SEM of two independent experiments.  845 

 846 
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Figure 3. Release kinetic profiles for GSH from CMC (■), MPC (▲) and SC (♦) foams 847 

at pH 7 measured for 8 h at 37 ºC. Lines serve only as guides for the eye. Results are 848 

presented as mean ± SEM of two independent experiments.  849 

 850 

Figure 4. Cell viability of Raw (A) and HaCaT (B) cells in the presence of CMC or 851 

MPC foams, during 24, 48 and 72 h. and NO production in Raw cells (C). Results are 852 

presented as mean ± SEM of three independent experiments.  853 

 854 

Figure 5. Wound size measurements for MPC, NT and NT-loaded MPC foam 855 

treatments in either control (A) or diabetic (B) mice. The wound size was determined at 856 

days 0, 1, 3, 5, 8 and 10 post-wounding. Results are presented as mean ± SEM of seven 857 

to eighteen independent experiments. *p < 0.05 MPC compared to PBS, **p < 0.01 858 

MPC compared to PBS, *** p < 0.001 MPC compared to PBS, # p < 0.05 MPC+NT 859 

compared to PBS, ## p < 0.01 MPC+NT compared to PBS, ### p < 0.001 MPC+NT 860 

compared to PBS, $ p < 0.05 NT compared to PBS, $$ p < 0.01 NT compared to PBS; 861 

§p < 0.05 NT compared to MPC+NT, §§ p < 0.01 NT compared to MPC+NT, && p < 862 

0.01 MPC compared to MPC+NT. 863 

 864 

Figure 6. The gene expression profile for TNF-α, IL-6, KC, IL-1β, COL1A1, COL1A2 865 

and COL3A1  in skin biopsies before and after treatments, at either day 3 (A, C, E, G, I, 866 

K, M)  or 10 (B, D, F, H, J, L, N) post wounding. Results are presented as mean ± SEM 867 

of seven to eighteen independent experiments. & p < 0.05 compared with PBS d3, *p < 868 

0.05 compared with PBS d10, **p < 0.01 compared with PBS d10§ p < 0.05 compared 869 

with diabetic PBS d3, # p < 0.05 compared with diabetic PBS d10, # #p < 0.01 870 

compared with diabetic PBS d10. 871 

 872 

Figure 7. Protein expression of TNF-α and MMP-9 in unwounded skin (day 0) or after 873 

treatments, at either day 3 or 10 post-wounding. Results are presented as mean ± SEM 874 

of three to five independent experiments. & p < 0.05 compared with PBS d3, *p < 0.05 875 

compared with PBS d10, **p < 0.01 compared with PBS d10§ p < 0.05 compared with 876 

diabetic PBS d3, # p < 0.05 compared with diabetic PBS d10, # #p < 0.01 compared 877 

with diabetic PBS d10. 878 

 879 
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Figure 8. Hydroxyproline content levels in unwounded skin (d0) or after treatments, at 880 

either day 3 or 10 post-wounding. Results are presented as mean ± SEM of four to six 881 

independent experiments. *p < 0.05 compared with PBS d10, § p < 0.05 compared with 882 

diabetic PBS d3, # #p < 0.01 compared with diabetic PBS d10. 883 

 884 

Figure 9. Histopathological analysis of Hematoxicilin and Eosin (H&E) (Figure 9A) 885 

and  Masson´s Trichrome (Figure 9B) staining for control and diabetic mouse skin, 886 

untreated or treated with MPC, NT and NT-loaded MPC foams (magnification 100×). 887 

Representative images of three skin stainings analyzed. a) Different repair process: in 888 

diabetic wounds, the granulation tissue is retained in dermis with overgoing fibroblast 889 

proliferation, at day 3 post-wounding (H&E;magnification 200×); b) Infiltrated PMN 890 

and lymphocytes in the granulation tissue in control mice, at day 3 post-wounding 891 

(H&E; magnification: 200×); c) Persistent inflammatory cells (neutrophils and lympho-892 

plasmocitic cells) in PBS-treated diabetic mice, at day 10 post-wounding (H&E; 893 

magnification: 200×); d) Less inflammatory cells in granulation tissue when compared 894 

with c) in MPC-treated wounds, at day 10 post-wounding (H&E; magnification:200×); 895 

e) Less deposition of collagen in PBS-treated diabetic mice, at day 10 post-wounding 896 

(Masson´s Trichrome; magnification:200×); f) The granulation tissue is formed mainly 897 

by thin collagen fibers parallel to the epidermis (Masson´s Trichrome). 898 

 899 

Supplementary data S1: 1H-RMN spectra of chitosan, CMC, MPC and SC foams. 900 

 901 

Supplementary data S2: Release kinetic profiles for GSH from CMC (■), MPC (▲) and 902 

SC (♦) foams at pH 6 (A) and 8 (B) measured for 8 h at 37 ºC. Lines serve only as 903 

guides for the eye. Results are presented as mean ± SEM of two independent 904 

experiments.  905 

 906 

Supplementary data S3: The gene expression profile for MMP-9, EGF, VEGF ,PDGF, 907 

TGFβ1 and TGFβ3, in skin biopsies before and after treatments, at either day 3 (A, C, 908 

E, G, I, K)  or 10 (B, D, F, H, J, L) post wounding. Results are presented as mean ± 909 

SEM of seven to eighteen independent experiments. & p < 0.05 compared with PBS d3, 910 

*p < 0.05 compared with PBS d10, **p < 0.01 compared with PBS d10§ p < 0.05 911 
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compared with diabetic PBS d3, # p < 0.05 compared with diabetic PBS d10, # #p < 912 

0.01 compared with diabetic PBS d10. 913 

 914 
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Table 1: Histological analysis of unwounded skin and NT, MPC and NT loaded MPC foams treated wounds at day 3, by H&E staining. - absence or no alterations, + 

presence <10%, ++ presence 10%,-50%, n.a, not applicable 

 

 

 

 

 

 

 

Table 2: Histological analysis of NT, MPC and NT loaded MPC foams treated wounds at day 10, by H&E staining. - absence or no alterations, + presence <10%, ++ presence 
10%,-50%, +++ presence >50% 

 Day 10 

 PBS MPC NT MPC+NT 

 Control Diabetic Control Diabetic Control Diabetic Control Diabetic 
New epidermis thickness 

- Stratus lucidum ++ +++ + ++ ++ +++ + ++ 

- Epithelial layers ++ +++ + ++ ++ +++ + ++ 

- Basal layer ++ +++ + ++ ++ +++ + ++ 

Wound area (mm2) 9.02±0.15 13.39±0.31 4.22±0.09 12.11±0.20 7.05±0.30 9.12±0.30 5.88±0.12 9.77±0.29 

Re-epithelization 
- From bottom + - + - + - + - 

- Top cover - + - + - + - + 

 

 Day 3 

 
Skin control (d0) 

PBS MPC NT MPC+NT 

 Control Diabetic Control Diabetic Control Diabetic Control Diabetic Control Diabetic 
New epidermis thickness 

- Stratus lucidum - + - + + ++ - + + ++ 

- Epithelial layers - + - + + ++ - + + ++ 

- Basal layer - + - + + ++ - + + ++ 

Wound area (mm2) 26.48 ±4.22 27.71±5.41 30.30±0.17 29.02±0.32 18.68±0.12 22.64±0.22 24.53±0.31 20.95±0.34 17.80±0.18 16.68±0.17 

Re-epithelization 
- From bottom na na + - + - + - + - 

- Top cover na na - + - + - + - + 



  

Table 3: Inflammatory and  granulation tissue histological analysis of NT, MPC and NT loaded MPC foams treated wounds at day 3, by H&E and Masson´s Trichrome 
staining. - absence or no alterations, + presence <10%, ++ presence 10%,-50%, +++ presence >50%; < not relevant, > predominant 

 

 

 

 

 

 

 

 

Table 4: Inflammatory and  granulation tissue histological analysis of NT, MPC and NT loaded MPC foams treated wounds at day 10, by H&E and Masson´s Trichrome 
staining. - absence or no alterations, + presence <10%, ++ presence 10%,-50%, +++ presence >50%; 

 Day 10 

 PBS MPC NT MPC+NT 

 Control Diabetic Control Diabetic Control Diabetic Control Diabetic 
Inflammation Status 

- PMN - ++ - + - + - + 
- Lymphocytes + +++ + ++ + ++ + ++ 
- Plasma cells + +++ + ++ + ++ + ++ 
- Fibrin - - - - - - - - 

Repair 
- Fibroblasts ++ + + ++ + + + +++ 

Collagen matrix 
- Loose - - - - - - - - 
 -      Scar ++ + + ++ + + + +++ 

 Day 3 

 PBS MPC NT MPC+NT 

 Control Diabetic Control Diabetic Control Diabetic Control Diabetic 
Inflammation Status 

- PMN ++ +++ ++ + ++ + ++ + 
- Lymphocytes + ++ + - + - + - 
- Plasma cells - - - - - - - - 
- Fibrin < > > < > < > < 

Repair 
- Fibroblasts < > < > < > < > 

Collagen matrix 
- Loose - - - + + + + - 

       -      Scar - - - + - + + ++ 



  

Table 5:  Summary of cytokine and protein expression in wounded control and diabetic skin, at day 3 and 10 post-wounding.  

Day 
Cytokine/Growth 

factor 
Control mice Diabetic mice Cell type that produce this protein 

TNF-α ↓ MPC, NT, MPC+NT ↑ NT, MPC+NT Macrophages, fibroblasts 
IL-6 ↓ MPC; ↑ MPC+NT ↓ MPC, NT, MPC+NT Macrophages, fibroblasts, Keratinocytes, endothelial cells 
KC ↑ MPC+NT ↓ MPC, NT, MPC+NT Macrophages, fibroblasts 

IL-1β ↓ MPC, NT, MPC+NT = MPC, NT, MPC+NT Macrophages, epithelial cells 
COL1A1 = ↑ NT Fibroblasts 
COL1A2 = ↑ NT Fibroblasts 

3 

COL3A1 ↑ MPC+NT ↑ NT Fibroblasts 
TNF-α ↑ NT, MPC+NT ↓  NT, MPC+NT Macrophages, fibroblasts 
IL-6 = ↓ MPC, NT, MPC+NT Macrophages, fibroblasts, keratinocytes, endothelial cells 
KC = ↓ MPC, NT, MPC+NT Macrophages, fibroblasts 

IL-1β   Macrophages, epithelial cells 
COL1A1 ↑NT,MPC+NT ↑MPC+NT Fibroblasts 
COL1A2 ↑NT,MPC+NT ↑MPC+NT Fibroblasts 

10 

COL3A1 ↑NT ↑MPC+NT Fibroblasts 
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