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Calibration of mirror position and extrinsic parameters
in axial non-central catadioptric systems

Luis Perdigotoa,b,∗, Helder Araujoa

aInstitute for Systems and Robotics, Dept. of Electrical and Computer Engineering,
University of Coimbra, 3030 Coimbra, Portugal

bESTG, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal

Abstract

We propose a novel calibration method for catadioptric systems made up of

an axial symmetrical mirror and a pinhole camera with its optical center located

at the mirror axis. The calibration estimates the relative camera/mirror position

and the extrinsic rotation and translation w.r.t. the world frame. The proce-

dure requires a single image of a (possibly planar) calibration object. We show

how most of the calibration parameters can be estimated using linear methods

(Direct-Linear-Transformation algorithm) and cross-ratio. Two remaining para-

meters are obtained by using non-linear optimization. We present experimental

results on simulated and real images.

Keywords: Non-central catadioptric vision systems, Calibration

1. Introduction1

Catadioptric vision systems use a combination of cameras and mirrors to ac-2

quire images. They can provide some advantages over more traditional camera3

systems, namely in terms of increased field-of-view (usually through reflection off4

curved mirrors) and/or single image multi-view geometry (with the use of multi-5

ple mirrors). Several configurations have been proposed and studied, alongside6

with tailor-made or more generic calibration methods.7
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1.1. Previous work on catadioptric calibration8

Central catadioptric systems [1] allow for a single-viewpoint projection model,9

by the use of particular mirror shapes restrictively aligned with an orthographic10

or perspective camera. Calibration methods for these systems include using the11

image of lines in the scene [2, 3, 4], self-calibration using tracked point on sev-12

eral images [5, 6] or using a calibration pattern [3, 7, 8, 9]. A recent review and13

comparison of calibration techniques focusing on central systems can be found14

in [10].15

Some calibration methods propose a general, un-parameterized, camera [11,16

12, 13]. These can model central and non-central catadioptric systems, as well17

as more unconventional camera designs. The intrinsic calibration of the camera18

consists on associating a 3D direction with each pixel in image.19

Most non-central catadioptric systems are modeled as a perspective camera20

and an axial symmetric mirror of conical section (sphere, paraboloid, ellipsoid21

and hyperboloid). The geometry of image formation is dependent on the in-22

trinsic parameters of the camera, on the particular shape and relative position23

of the mirror. Some calibration methods assume an independent calibration24

of the perspective camera [14, 15, 16], which can be robustly achieved using25

well-established techniques for conventional cameras. Many consider the mirror26

shape to be accurately known from the manufacturing process [17, 18, 19, 20].27

The mirror pose w.r.t. the camera is often estimated by identifying the mirror28

boundaries in the image (usually a conic) [17, 14, 21, 6, 20].29

Self-calibration approaches use point correspondences on several (at least30

two) images [22, 17, 23]. Caglioti et al. [24] used the reflected image of lines31

on axial-symmetric mirrors as the calibration object. Sagawa et al. [25] applied32

projected parallel light to estimate mirror location. Grossberg and Nayar [26]33

and Tardif and Sturm [27] used a computer screen and a projector to generate34

coded structured-light calibration patterns and achieve a dense mapping of the35

image pixels. Morel and Fofi [28] used polarized light.36

A comprehensive survey of camera models used in panoramic image acqui-37
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sition devices, as well as calibration approaches, is presented in [29].38

1.2. Proposed method39

Our paper presents a novel calibration method for axial catadioptric systems.40

By “axial catadioptric” [21] we mean a vision system made up of a pinhole41

camera and a mirror, such that42

• The mirror is rotationally symmetric around an axis;43

• The camera’s optical center is placed on the mirror’s axis.44

There are no additional constraints on the relative position of the camera and45

mirror. The camera’s principal axis is not necessarily aligned with the axis of46

the mirror.47

The constraint of placing the projective camera’s optical center on the mir-48

ror axis is acceptable for most systems. When using spherical mirrors, this49

constraint becomes irrelevant, as a symmetry axis passing through the camera50

always exists. We note that, although we focus on non-central systems, this51

model also includes central cameras. Our calibration technique can be easily52

applied to dioptric systems of similar characteristics, like fisheye lenses.53

Our method is capable of calibrating54

• The mirror position w.r.t. the pinhole camera;55

• The extrinsic parameters of the camera, i.e., pose w.r.t. world coordinates.56

It uses a single image of a known point pattern, i.e., a calibration object. This57

calibration object can be planar, although, as we will show, additional processing58

is required in that case.59

The method is divided in 3 steps, executed in sequence. The first step esti-60

mates the intersection point between the mirror axis and the image plane, which61

we will call the vertex point. In systems where the camera is aligned with the62

mirror, this point coincides with the image center. The calibration is achieved63

by using the cross-ratio as an invariant in our axial-symmetric projection model.64
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This property was first noted by Wu and Hu in [30]. Although their paper was65

focused on central systems, the underlying principle is the same. We provide,66

however, proof of its applicability to our model, geometrical insight about the67

procedure (the solution is derived from the intersection of conical loci in the68

image) and additional techniques to deal we noise.69

The second step estimates the extrinsic rotation and translation of the cam-70

era coordinate frame w.r.t. the world reference frame. The rotation matrix71

is completely determined while the translation vector is estimated up to one72

unknown component (the Z-component).73

The method relies on establishing a linear projection from 3D world points74

to a 1D image feature, which is possible given the axial catadioptric geometry.75

A similar 3D-1D linear mapping was used by Thirthala and Pollefeys [31] in a76

self-calibration framework. Although it does not rely on knowledge of the scene77

structure, their method requires at least 15 point correspondences in 4 views78

(for non-central cameras).79

We show how the Direct-Linear-Transformation (DLT) algorithm [32] can80

be used to recover the extrinsic parameters from a set of world-to-image point81

correspondences. No knowledge of the mirror shape (besides the axial symme-82

try) is needed at this stage. We assume, however, that the pinhole camera is83

internally calibrated (a common assumption, e.g. [33, 14, 18, 34]).84

The third and final step estimates the remaining calibration parameters:85

the distance from camera to mirror along the symmetry axis and the undeter-86

mined component of the extrinsic translation. It takes into account the com-87

plete (non-linear) projection geometry of the system and depends on the mirror88

shape, which is assumed to be known a priori. The procedure relies on non-89

linear optimization methods (e.g. Levenberg-Marquardt algorithm). Non-linear90

optimization and bundle-adjustment are recurring techniques in these types of91

systems (e.g. [23, 22, 17, 21]), but we perform the optimization in a single pa-92

rameter and show that a precise initial estimate is not required for convergence.93
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1.3. Notation94

Some background concepts regarding cross-ratio and vector representation of95

conic curves are briefly reviewed in Appendix A. The notation used throughout96

the paper is now introduced.97

Vectors are denoted by bold symbols. Homogeneous coordinates of points98

in P
3 are represented in upper-case bold symbols (e.g. X), points in P

2 are in99

lower-case (e.g. x) and points in P
1 are represent in lower-case with an overbar100

(e.g. x̄). A tilded symbol denotes an inhomogeneous vector (e.g. X̃).101

Matrices are represented by symbols in sans serif font (e.g. R). The super-102

script “ri” denotes the i-th row of a matrix, as in Rr1 .103

Equality of matrices or vectors up to a scalar factor is written as “∼”.104

1.4. Paper structure105

The following sections are organized as follows. Section 2 discusses the106

system geometry assumed by our method and deduces the linear projection107

equation that can be established from 3D world points to 1D image features.108

Section 3 describes the estimation of the vertex point (the intersection point109

between the image plane and the the mirror axis), which is the first calibra-110

tion parameter to be obtained. Section 4 shows how to estimate the extrinsic111

parameters, up to one unknown translation component, using a linear method112

based on the DLT algorithm. The estimation of the two remaining parameters,113

the distance between camera and mirror and the unknown translation compo-114

nent, is addressed in section 5. Experimental results are presented in section 6.115

Finally, section 7 presents the conclusions.116

2. System geometry117

We will now discuss the axial catadioptric geometry, and show how a linear118

projection equation can be established.119
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(a) (b)

Figure 1: The axial catadioptric geometry. Fig.(a): The pencil of projection planes has the

mirror axis as the common intersection line. C is the camera’s optical center. X is a world

point. S is the reflection point on the surface of the mirror. Fig.(b): The pencil of projection

planes is imaged as a pencil of lines, with o, the image of the mirror axis, as the common

point. For a given world point Xi, there is a line in the image passing through its reflected

image si, its direct image xi, and the image of the axis o. Note that the direct image of a

point, xi, may not be available in practice. As shown for point x3, if the world point is behind

the camera (i.e., negative coordinate on the camera’s principal axis), its direct and reflected

images have opposite directions w.r.t. the central point o.

2.1. The pencil of projection planes and its image120

Consider Fig. 1(a). Let C be the camera’s optical center and X a point in121

the world. An incident ray from X intersects the mirror’s surface at point S122

and is reflected to the camera, forming the reflected image of the world point,123

denoted by s.124

From the laws of reflection, we know that the incident ray, the reflected ray125

and the surface’s normal at point S must belong to the same plane. Also in126

this plane is the direct projection ray, i.e., the projective line, from X to C,127

that forms the real (not reflected) image of X, denoted by x. We refer to this128

plane as a projection plane, in the sense that it contains the direct and reflected129

projection rays of a given point in space.130

As a consequence of the previous assumptions made on system geometry,131

every projection plane is part of a pencil of planes, with the mirror axis as the132
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common intersection line. Furthermore, this pencil of planes is projected in the133

image plane as a pencil of lines, where the common point, o, is the image of134

the axis (see Fig. 1(b)). For every world point X, there is a line in the image135

passing through its reflected image s, its direct image x, and the image of the136

axis o (the vertex point).137

Changes in camera orientation (i.e., rotation around the optical center) in-138

duce homographic transformations in the image (c.f. [32]) and, of course, do139

not affect the collinearity between s, x and o. Thus, the pencil of projection140

planes are always imaged as a pencil of lines, as long as the center of the camera141

is placed on the mirror axis. In the particular configuration where the camera’s142

principal axis is coincident with the mirror axis (which is of great practical in-143

terest, e.g., in central catadioptric systems), point o becomes the principal point144

of the image.145

It should be noted that the direct image of a point, x, is in most practical146

situations not visible in the image, because it is out of the field-of-view or behind147

the camera. This fact does not change, obviously, the validity of the discussion.148

In the algorithms we present in this paper, the position of x is always assumed149

to be unknown.150

2.2. Parameterizing the line pencil151

Now, let x ∼
[
x y 1

]T

and s ∼
[
sx sy 1

]T

be the direct and reflected152

image of X, respectively, and o ∼
[
ox oy 1

]T

be the vertex of pencil. Each153

line on the pencil can be specified by a single parameter, that we will define to154

be the line slope. Thus, the line containing point x and passing through the155

vertex o, is specified by the slope x−ox

y−oy
.156

We define the 1D homogenous vector

x̄ ∼
⎡
⎣x − ox

y − oy

⎤
⎦ ∼

⎡
⎣x−ox

y−oy

1

⎤
⎦ .

as the reduced coordinates of point x. Vector x̄ uniquely specifies the line in the157

pencil that x belongs to. Note that, because x̄ is an homogenous vector, infinite158

slopes can be handled seamlessly.159
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Since s and x belong to the same line of the pencil, we have

x̄ ∼ s̄ ∼
⎡
⎣sx − ox

sy − oy

⎤
⎦ . (1)

2.3. Linear mapping between X and s̄160

The direct image of world point X is given by the projection equation

x ∼ K
[
R T

]
X ,

where K is the intrinsic parameter matrix, and R and T are the extrinsic rotation161

and translation relating the world reference frame with the camera frame.162

Using equation 1 we can rewrite the projection equation as

s̄ ∼
⎡
⎣1 0 −ox

0 1 −oy

⎤
⎦K

[
R T

]
︸ ︷︷ ︸

∼P

X . (2)

The 2 × 4 matrix P establishes a linear mapping between points in the world163

reference frame and a 1D image parameter computed from the image position164

of the reflected points.165

Given enough known correspondences between X and s, matrix P can be166

obtained up to scale, from equation 2, by using the DLT algorithm (Direct167

Linear Transform) [32]. We note that in the case that all world points X lie168

in a single plane, the size of the recovered matrix P is reduced to 2 × 3. This169

particular case will be addressed in Section 4.4.170

3. Finding the vertex point171

In this section we show how the cross-ratio can be used as an invariant under172

the axial catadioptric geometry to obtain the image of the mirror axis, the vertex173

point o. By determining its location, the axis direction w.r.t. the camera frame174

is immediately defined (assuming an internally calibrated camera).175
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(a) (b)

Figure 2: The cross-ratio as an invariant under the axial catadioptric geometry. Fig.(a): A,

B, C and D are four collinear 3D points. a, b, c and d are their images after reflection from

the mirror. xa, xb, xc and xd are their direct images, i.e., the direct projection in image.

Fig.(b): The cross-ratio relation between image points. Point o is the image of the mirror

axis.

3.1. Cross-ratio as an invariant176

Consider Fig. 2(a). Let A, B, C and D be four collinear 3D points. Consider177

a, b, c and d to be their reflected images and xa, xb, xc and xd their direct178

images (i.e., the direct projection in image, not reflected through the mirror).179

Fig. 2(b) shows points in the image plane. Being the projection of collinear

3D points, xa, xb, xc and xd are also collinear. Since the cross-ratio is invariant

under a projective transformation,

{xaxbxcxd} = {ABCD} .

Each pair of reflected and direct images of a point (e.g., a and xa) is on a line

that passes through the image of the mirror axis, o, so we can write

{o;abcd} = {xaxbxcxd} = {ABCD} . (3)

We see, thus, that the cross-ratio of four collinear space points is the same as180

the cross-ratio of the lines through their reflected images and the common point181

o, which is the image of the mirror axis.182
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(a) (b)

Figure 3: The conic locus of possible solutions for point o. Fig.(a): The conic Ω is completely

defined by four image points (a, b, c, d) and the value of the cross-ratio, k. Chasles’ theorem

states that {o;abcd} = {o′;abcd} = k. Fig.(b): The degenerate conics Ψ1 and Ψ2 are

defined by line-pairs passing through the image points a, b, c and d. The solid blue lines

define Ψ1, while the dashed red lines define Ψ2. The conic locus Ω is a function of Ψ1, Ψ2

and k.

3.2. Conic locus for point o183

Assume that the cross-ratio of a 4-tuple of collinear world points is known,

k = {ABCD}. Given the reflected images of these points, a, b, c and d, the

location of point o is restricted by (review equation 3):

{o;abcd} = k . (4)

We can see that, as a direct application of Chasles’ theorem [35], equation 4184

defines a conic locus of possible solutions for o (see Fig. 3(a)). It should be185

noted that the conic is completely defined by the four points, a, b, c and d186

(belonging to the conic), and the value of the cross-ratio, k.187

We now show how to obtain the expression of the conic. Consider Fig. 3(b).

Let Ψ1 and Ψ2 be degenerate conics, defined by the line pairs (l1,m1) and

(l2,m2), respectively, where

l1 = a × c, m1 = d × b, l2 = a × b, m2 = c × d

and with the conics given (in matrix form) by

Ψi = limi
T + miliT, i = 1, 2
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It can be verified that the conic locus of point o can be obtained from these

degenerate conics and the cross-ratio by the expression1:

Ω ∼ k Ψ1 − Ψ2 (5)

As an additional insight, the conic Ω in equation 5 can be viewed as a 1-188

parameter family of conics (passing through 4 fixed points, a, b, c and d), with189

that parameter being k, the desired value for the cross-ratio.190

3.3. Obtaining a solution191

Given enough 4-tuples of points in the scene with known cross-ratio, a unique192

solution for o can be found, corresponding to the common intersection point of193

all the conic loci. The minimum number of sets of points required to obtain194

a single solution depends on their location and on the number of intersection195

points between the conics (as two conics can intersect in up to 4 points). Assum-196

ing general position, three sets of points will normally be sufficient to produce197

a single solution.198

In the presence of noise, however, a common intersection point for the conics

may not exist. We can, thus, obtain an estimate for o using the following

procedure: Let ωi be the vector representation (review equation A.2) of conic

Ωi, corresponding to the i-th 4-tuple of image points with known cross-ratio.

Construct a matrix Q by stacking the conics ωi for all N sets of tuples:

Q =

⎡
⎢⎢⎢⎣

ω1
T

...

ωN
T

⎤
⎥⎥⎥⎦

Without noise, the right null space of Q is the solution for o, i.e., Q ô = 0. The199

estimate for o can, thus, be obtained by picking the eigenvector corresponding200

1This expression is valid for a cross-ratio calculated using the formula in A.1. Alternative

formulas for the cross-ratio produce different combinations of points in the expressions of li

and mi
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  (a) (b)

Figure 4: Finding the vertex point o. Fig. (a) and (b) show test images of grid patterns

reflected on a spherical mirror. Several 4-tuples of image points and their corresponding

conics ω are marked in the images. The tuples of image points correspond to equally-spaced

collinear world points (cross-ratio=1/4). The intersection point of all conics is the vertex

point o, indicated by with a red arrow. Note that point o corresponds to the reflection of the

camera’s optical center because its projection ray coincides with the mirror axis.

to the smallest singular value associated with matrix Q. At least N = 6 tuples201

are required for building Q.202

Fig. 4 shows examples, using real images, of conics generated from 4-tuples203

of image points and how the common intersection point is the vertex point o.204

3.4. Refining the estimate205

If an intersection point does not exist due to noise, the estimate for vector206

ô will not belong to the subspace of lifted coordinates (equation A.3) and the207

extracted vertex o will be only an approximation. Furthermore, we have found208

that the cross-ratio conics ω show a relatively high sensitivity to noise, which209

degrades the accuracy of the estimate of the vertex point. Fig. 5 quantifies this210

sensitivity. It plots the distance between the cross-ratio conic ω, obtained from211

image points corrupted with noise, and the ground truth point o. Since point212

o should belong to the conic, the distance provides an error measurement.213

To improve the accuracy of the estimation of the vertex point, we propose an214

additional refinement procedure using a non-linear optimization method. The215

computation of the reduced coordinates s̄ of a given image point is a function of216
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Figure 5: Sensitivity to noise of the cross-ratio conics ω. Plot of the distance between the

conic curve ω and the ground truth point o, as a function of noise level σ (σ is the standard

deviation of the gaussian noise added to the position of image points). Point o should belong

to the conic, so the distance to the conic curve provides an error measurement. The figure

was obtained by simulation (we used the same simulation setups that are described in detail

in subsection 6.1). The results were obtained by averaging repeated simulations, using sets of

points in different positions. In total, the result for each noise level was obtained from 2000

simulations.

point o, i.e., s̄(o). Let {s̄i(o) ; Xi}, i = 1, .., N , denote the set of N world-to-217

image point correspondences. As stated in the previous section (review equa-218

tion 2), a linear mapping can be estimated from the set of correspondences using219

the DLT algorithm.220

Consider a function SSVDLT

(
{s̄i(o) ; Xi}

)
that returns the smallest singu-221

lar value obtained during the Singular-Value-Decomposition factorization of the222

DLT procedure. The closer to zero the value is, the better the linear mapping223

fits the set of points. Thus, function SSVDLT can be used to evaluate a candi-224

date point o, quantifying how the estimates for the coordinates of that point fit225

into the linear projection model.226

Starting at the initial solution obtain in the previous subsection, we can

refine the estimate for point o by apply non-linear optimization to

min
o

SSVDLT

(
{s̄i(o) ; Xi}

)
. (6)

In our implementation we used the Levenberg-Marquardt method. Addi-227

tionally, we used the RANSAC algorithm [32] to handle outliers on the set of228

point correspondences {s̄i(o) ; Xi}.229

Fig. 6 shows an example, with a real image, of the output of function230
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(a) (b)

Figure 6: The function SSVDLT . Fig. (a) shows the output of function SSVDLT evaluated

at every pixel of the test image shown in Fig. 4(a). Fig. (b) shows the same surface but in a

3D perspective. A blue hue represents lower values on the surface, while a red hue represents

higher values. Point o is located at the global minimum of the surface, indicated by the red

arrow.

SSVDLT .231

4. Estimating the extrinsic parameters using linear methods232

In this section we show how the extrinsic parameters can be obtained, up to233

one undetermined component of the translation vector, from a linear method234

and using a single image of a calibration object. We first consider a generic 3D235

calibration object, but then adapt the algorithm to handle the case, of practical236

interest, when all the calibration points belong to a single plane.237

We assume that the position of the vertex point o (discussed in the last238

section) has already been determined, and that the pinhole camera is internally239

calibrated. In most cases, the camera can be previously calibrated (internally),240

without the mirror, using standard methods [36, 37].241

4.1. Pre-alignment of the camera frame242

To derive the method to estimate the extrinsic parameters we assume that243

the camera is aligned with the mirror, i.e., the camera’s principal axis coincides244

with the symmetry axis of the mirror, with the camera pointing towards the245

mirror. This assumption does not imply a loss of generality since a pre-rotation246

can always be performed to align the camera axis.247
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Given an internally calibrated camera, the knowledge of point o provides,248

implicitly, the direction of the mirror axis in the camera reference frame. A249

rotation can then be calculated that would align the principal axis with that250

direction.251

The alignment rotation is implemented by an homographic transformation

in the image. This homography is called a conjugate rotation (c.f. [32], section

8 and appendix A7) and is given by

H = KRK−1 ,

where K is the intrinsic parameters matrix and R is the rotation matrix. All im-252

age points are transformed from their original positions into the aligned camera253

frame using the homography H. It should be noted that after the alignment the254

vertex point o is moved to the image center, i.e., o ∼
[
0 0 1

]T

. In subsequent255

sections, any reference to an image point (s) assumes an aligned camera.256

In many applications (e.g., central systems) the camera is in fact aligned257

with the mirror, and this initial step is unnecessary.258

4.2. The projection matrix P259

Please recall that a point in the world reference frame is denoted by X.260

Point X has known position (belongs to the calibration object). Its projection261

in the image after reflection from the mirror is denoted by point s. Consider262

T =
[
tx ty tz

]T

to be the extrinsic translation vector and let Rri denote the263

i-th row of the extrinsic rotation matrix R.264

Assuming that the camera is internally calibrated (K = I) and that the

camera frame is aligned with the mirror axis (o ∼
[
0 0 1

]T

), the 2 × 4

projection matrix of equation 2 is simplified to

s̄ ∼
⎡
⎣Rr1 tx

Rr2 ty

⎤
⎦

︸ ︷︷ ︸
∼P

X . (7)
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4.3. Retrieving R, tx and ty265

As previously discussed, given enough known correspondences between X266

and s, matrix P can be obtain up to scale, from equation 7, by using the DLT267

algorithm. It should be noted that, for the moment, we are considering a gen-268

eral non-planar calibration object. The case of a planar calibration pattern is269

analyzed in the next subsection.270

Let pij denote the element of P at row i and column j. Noting that P

is determined only up to a scale factor λ, the extrinsic parameters, with the

exception of tz, can be recovered from

Rr1 = λ
[
p11 p12 p13

]
(8)

Rr2 = λ
[
p21 p22 p23

]
Rr3 = Rr1 × Rr2

tx = λp14

ty = λp24

As Rr1 and Rr2 are normal vectors, the value of λ is subjected to the con-

straint

‖λ
[
p11 p12 p13

]
‖ = ‖λ

[
p21 p22 p23

]
‖ = 1 ,

which yields

λ = ± 1

‖
[
p11 p12 p13

]
‖

= ± 1

‖
[
p21 p22 p23

]
‖

. (9)

The signal ambiguity of λ can be solved by means of a simple procedure,

taking into consideration the geometric properties of image formation. Consider

(Xc, Yc, Zc) as the coordinates of X in the camera frame. We have that

⎡
⎣Xc

Yc

⎤
⎦ =

⎡
⎣Rr1 tx

Rr2 ty

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎥⎥⎥⎦ , (10)
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where point (Xc, Yc) can be seen as the orthogonal projection of (Xc, Yc, Zc) in271

the image plane.272

Since we are considering an aligned camera frame, the image plane is per-273

pendicular to the projection planes, and point (Xc, Yc) and the corresponding274

reflected image point (sx, sy) are on a line that passes through the image ori-275

gin (see section 2). More so, in the presence of a convex mirror2, (Xc, Yc) and276

(sx, sy) have the same direction w.r.t. the image origin. In other words, vectors277

(Xc, Yc) and (sx, sy) must have the same orientation and direction.278

The correct value for λ can, thus, be obtained using the following procedure:279

1. Choose one known pair of correspondences X and s;280

2. For both solutions of equation 9, +λ and −λ:281

• Compute R, tx and ty using (8);282

• Compute (Xc, Yc) using (10);283

3. From the two opposing vectors resulting from step 2, (±Xc,±Yc), choose284

the one pointing in the same direction as (sx, sy) (in the presence of noise,285

choose the closest direction). The value of λ that corresponds to the286

correct vector is the solution.287

It should be noted that, in the presence of noise, the recovered matrix R may288

not be a true rotation matrix. Using Singular-Value-Decomposition, R = UΣVT,289

R can be projected to a matrix R′ in orthonormal space by substituting all the290

singular values by 1, i.e., R′ = UVT. Matrix R′ is the closest orthonormal matrix291

to R in the sense that it minimizes the Frobenius norm ‖R − R′‖F.292

4.4. Planar calibration pattern293

We now show how the algorithm can be changed in order to allow for a294

planar calibration object.295

2In the axial geometry we are considering, when the camera is pointing at a convex mirror,

the reflection is seen on the same direction (or “side”) as the object is in the world. For a

concave mirror, the opposite is true. In this algorithm we assume the convex case because of

its far greater practical interest.
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We will assume, without loss of generality, that the calibration points be-

long to plane Z = 0 w.r.t. the world frame (in a similar manner as in [36]).

Equation 7 becomes

s̄ ∼
⎡
⎣r11 r12 tx

r21 r22 ty

⎤
⎦

︸ ︷︷ ︸
∼P

⎡
⎢⎢⎢⎣

X

Y

1

⎤
⎥⎥⎥⎦ , (11)

where rij denotes the element of matrix R at row i and column j. With some296

abuse of notation, let us redefine P to be the 2 × 3 matrix mapping the planar297

world points to the 1D image feature.298

Matrix P is, again, obtained up to a scale factor λ using the DLT algorithm.

Similarly to equation 8, we have that

Rr1 =λ
[
p11 p12 a

]
(12)

Rr2 =λ
[
p21 p22 b

]
with λ, a and b to be determined.299

Since Rr1 and Rr2 are orthonormal we can write[
p11 p12 a

] [
p11 p12 a

]T

=[
p21 p22 b

] [
p21 p22 b

]T

and [
p11 p12 a

] [
p21 p22 b

]T

= 0 .

It can be shown that these constraints generate 2 real solutions for a and b. The

solutions are symmetric and will be denoted as {a+; b+} and {a−; b−}, where

a± = ± (kα − kγ)
2kβ

√
kα + kγ

2
; b± = ±

√
kα + kγ

2

with

kα =r2
11 + r2

12 − r2
21 − r2

22

kβ =r11r21 + r12r22

kγ =
√

k2
α + 4k2

β
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The unknown scale factor λ is determined using equation 9, where variables300

p13 and p23 are substituted, respectively, by a+ and b+ (or by a− and b−,301

yielding the same result). The signal ambiguity of λ can, again, be solved with302

the procedure described in the previous subsection. It should be noted that in303

equation 10 we now have Z = 0, which causes the equation to be independent304

of the values of a and b, and so λ is still uniquely determined.305

Two solutions are, thus, possible for the extrinsic rotation matrix R, obtained306

by substituting the values {λ; a+; b+} and {λ; a−; b−} in equation 12 (the307

procedure to determine the correct solution is discussed in the next subsection).308

The 3rd row of R is given by Rr3 = Rr1 × Rr2 .309

The first two components of the extrinsic translation are determined without

ambiguity and can be obtained from

tx =λp13

ty =λp23 .

4.5. Discussion and summary310

Using a 3D (non-planar) calibration object produces an unique solution for311

the extrinsic rotation matrix R. Regarding the minimum number of world-to-312

image point correspondences required to apply the DLT algorithm to equation 7,313

it can be seen that each s̄ ↔ X pair establishes two equations up to scale.314

Eliminating the unknown scale factor between them results in one constraint on315

the variables of P for every point correspondence. Since the 2 × 4 matrix P is316

recovered only up to scale, 7 independent variables need to be determined, which317

means that at least 7 world-to-image correspondences are required. The world318

points can not be located on a single plane (i.e. the calibration object must be319

non-planar), or else one column of matrix P is left undetermined (equation 11).320

Furthermore, to determine that column of P, at least two off-plane world points321

are needed to constrain the two variables in the column.322

For a simpler experimental setup, the use of a planar calibration pattern323

is possible. A minimum of 5 point correspondences is needed in this case (a324
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similar reasoning as in the previous case, now with a 2 × 3 matrix P). In this325

situation, two possible solutions are obtained for matrix R. This ambiguity can,326

however, be solved by carrying both solutions to the next step in the calibration327

procedure and performing a complete reprojection of the world object into the328

image. The correct solution is the one that produces the image closest to the329

original.330

The tx and ty components of the extrinsic translation are unambiguously331

recovered, regardless of the use of a non-planar or planar calibration object.332

The tz component is undetermined at this stage. The value of the translation333

vector T is, thus, restricted to a line space.334

5. Estimating remaining parameters using non-linear optimization335

methods336

The previous sections described how to obtain most of the parameters related337

to the mirror position and to the extrinsic calibration: Section 3 showed how338

to determine the mirror axis direction w.r.t. the camera while section 4 showed339

how to calculate the complete extrinsic rotation, and the extrinsic translation340

up to one component.341

In this section we estimate the remaining parameters: the distance d between342

camera and mirror along the symmetry axis, and the last component of the343

extrinsic translation, tz.344

Previously, we have taken advantage of the axial geometry of the system and345

avoided the use of the non-linear reflections associated with a (possibly) non-346

central catadioptric system. From now on, we take into consideration mirror347

shape and reflection geometry in order to estimate d and tz, using non-linear348

optimization methods. We show, given the previously calculated parameters,349

that the optimization is performed on a single variable.350

Our method requires the computation of back-projection rays from the cam-351

era and mirror geometry. In Appendix B we briefly outline the procedure for352

a mirror with a conic section. The derivation is based on [21]. We note, how-353
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ever, that any mirror profile is admissible as long as it is known a priori so that354

back-projection rays can be calculated.355

5.1. 3D reconstruction from back-projection and partial extrinsics356

Let X̃c =
[
Xc Yc Zc

]T

be the inhomogeneous coordinates, in the aligned

camera frame, of a known world point X̃ belonging to the calibration object.

Point X̃c is obtained from the extrinsic parameters R and T by⎡
⎢⎢⎢⎣

Xc

Yc

Zc

⎤
⎥⎥⎥⎦ =

[
R T

] ⎡
⎣X̃

1

⎤
⎦ =

⎡
⎢⎢⎢⎣

Rr1X̃ + tx

Rr2X̃ + ty

Rr3X̃ + tz

⎤
⎥⎥⎥⎦ . (13)

Since the parameter tz is not yet determined, the position of point X̃c is357

defined only up to a linear locus in space, which we denote as line Lz. The358

line is orthogonal to the image plane and intersects this plane at coordinates359

(Xc, Yc).360

On the other hand, point X̃c must also belong to the back-projected ray361

obtained from its reflected image s. We denote that back-projected ray, after362

reflection on the mirror surface, as space line LBP.363

Consequently, space point X̃c can be reconstructed by intersecting both 3D364

lines, Lz and LBP. While line Lz is fully defined (it is a function of the already365

estimated R, tx and ty), line LBP depends on the yet undetermined distance366

d (see Appendix B). It should be noted, however, that despite the fact that367

different values of d produce distinct back-projection rays, an intersection point368

between Lz and LBP always exists, as both lines belong to the same projection369

plane (see section 2).370

5.2. Estimating distance to mirror d and the extrinsic translation parameter tz371

Let {X i} and {s i}, with i = 1..N , denote the set of points from the calibra-372

tion object, expressed in the world frame, and their reflected images. Consider,373

also, {Xci} to be the set of points from the calibration object expressed in the374

camera frame coordinates. The problem of determining d can be stated in the375
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following manner: Given a set of correspondences between world points {X i}376

and image points {s i}, and the knowledge of the extrinsic parameters R and T,377

with the exception of tz, find the value of d that reconstructs the set of points378

{Xci} in such a way that they “fit” the original pattern {X i} from the cali-379

bration object. The evaluation function is, in general, a measure of how “well”380

{X i} and {Xci} can be related by a rigid transformation, as both sets should381

represent the same object. Alternatively, other metric characteristics regarding382

shape, distances, angles, etc., can be used, depending on the specific geometric383

properties of the calibration object.384

The well known Iterative Closest Point (ICP) [38] algorithm can be used to385

obtain the rotation and translation that registers the calibration object {X i}386

to its reconstruction {Xci}. The values of this rotation and translation will, of387

course, dependent on d, and we denote them as Rd and Td, respectively.388

The distance d can be obtained by minimizing

min
d

∑
i

‖X̃ci − (RdX̃i + Td)‖2 . (14)

Once the value of d that achieves the minimization is found, the last unknown389

parameter tz is obtained from the z-component of Td.390

Since the estimation of Rd and Td relies on the ICP procedure, a closed-form391

solution for equation 14 can not be easily obtained. However, standard non-392

linear optimization methods can be used (e.g. Levenberg-Marquardt algorithm).393

We have found that, even in the presence of noise, the minimization achieves394

convergence to the global minimum without an accurate initial estimate of d. In395

our experiments we considered d = focal length (camera touching the mirror)396

as the initial estimate.397

To provide intuition, Fig. 7 illustrates the idea behind the procedure by398

showing the effect that errors in d have on the shape of a reconstructed planar399

calibration pattern.400
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Figure 7: Estimating of the distance to mirror, d. The goal is to find the value of d that

reconstructs the original calibration object that, in this example, consists on a planar grid.

The figure, obtained from simulation, exemplifies how a reconstructed object deviates from

the original shape as an error ε is added to the true value of d.

6. Experimental Results401

We now present experimental results obtained with the proposed method.402

First we show tests with simulated data and then results from real images. We403

also include a comparison with methods designed for central systems.404

To provide an intuitive representation to the reader, rotation matrices are405

presented as a 3 element vector containing the corresponding Euler angles,406

in degrees. Rotation matrix R = Rz(θz)Ry(θy)Rx(θx) is represented by r =407 (
θx, θy, θz

)
, where Ra(θ) denotes a rotation of angle θ along axis a = x, y, z.408

We refer to the rotation error in the following terms: given a ground truth409

rotation matrix RGT and the corresponding noise affected estimate Rest, the410

rotation error matrix Rerr is defined as: Rest = RerrRGT.411

Translation errors are quantified in two distinct values: an angle error, cor-412

responding to the angle between the estimated and ground truth vectors, and as413

a length percentage error, given by the ratio ‖Test − TGT‖/‖TGT‖, where Test414

and TGT are the estimated and ground truth translation vectors, respectively,415

and ‖ · ‖ denotes the L2-norm.416

6.1. Simulated data417

The simulations were run on three distinct setups. Each setup had different418

parameters regarding the mirror shape, mirror position, and pose of the cali-419

bration object. Table 1 summarizes the values of the parameters in each setup.420

The image size of the simulated camera was 1500 × 1500 pixels, with a focal421
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length of 1200 pixels. The calibration pattern consisted of a planar square grid,422

with 8×8 points. The distance between adjacent points on the grid was 2 world423

metric units.424

mirror (A,B,C) d o R T

Setup [w.m.u] [w.m.u] [pixels] [Euler angs.] [w.m.u]

#1 spherical (1, 0, 4) 3 (100, 150) (40◦, 100◦, 45◦) (−4, 5,−6)

#2 parabolic (0, 1, 1) 4 (100, 150) (30◦, 100◦, 0◦) (4,−5,−2)

#3 hyperbolic (−1, 4,−1) 5 (100, 150) (0◦, 60◦, 0◦) (6,−5, 2)

Table 1: Simulation setups. The proposed methods were simulated in different setups, each

with distinct mirror shape, mirror position (d and o), and pose of the calibration object (R

and T). Mirror parameters are defined in equation B.1 of Appendix B. “w.m.u” stands for

“world metric units”.

Gaussian noise of zero mean and σ standard deviation was added to the425

position of the image points before running the calibration procedure. For a426

given σ value, each of the setups was repeated 100 times and the data compiled427

from the 3 setups, to provide a statistical analysis on the estimation error.428

Fig. 8(a)-(d) shows the root mean square (RMS) error, as a function of the noise429

level σ, in the extrinsic parameters R and T, and in mirror position parameters430

d and o.431

Fig. 8(e) plots the reprojection error as a function of the noise level. Since432

our method does not rely on direct minimization of the reprojection error (like433

bundle adjustment techniques), this error can be considered as a measure of434

the overall quality of the calibration. Also shown in Fig. 8(e) is the result from435

repeating the simulations assuming that point o is known a priori (without436

noise), and estimating only the remaining parameters. This situation is relevant437

in systems where the camera is aligned with the mirror axis, and o corresponds438

to (or approximates) the image center. When using spherical mirrors, the vertex439

point can be estimated from the reflected image of the camera itself (if visible)440

as point o corresponds to the reflection of the optical center.441

In additional simulations we studied the effect of using more than one image442

in the calibration procedure. For each simulation setup, the calibration pattern443
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Figure 8: Simulation results. Fig.(a) to (d) show the root mean square (RMS) error in the

estimation of the calibration parameters, as a function of noise level σ (σ is the standard

deviation of the gaussian noise added to the position of image points). o is the vertex point ; d

is the distance between camera and mirror; R and T are the extrinsic rotation and translation,

respectively. Fig.(e) shows the RMS error in image position obtained from reprojecting the

calibration points using the estimated calibration parameters.
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was rotated around the mirror axis, producing images with different extrinsic444

parameters, but with the camera/mirror relative position kept constant. The445

estimates for the vertex point o and for the mirror distance d were computed by446

the minimization of expression 6 (for o) and 14 (for d) taking into account all447

images simultaneously. Fig. 9 shows the estimation error as a function of the448

number of images used, for a fixed noise level of σ = 4 pixels. It is seen that449

the using multiple images (with different positions of the calibration pattern)450

can help reduce the effect of noise and increase the accuracy in the estimation451

of the mirror relative position.452

2 4 6 8 10
0

1

2

3

4

5
error in d

R
M

S
re

l.
er

ro
r

[%
]

number of images (noise σ=4 pix.)

d

(a)

2 4 6 8 10
0

2

4

6

8

10

12
error in o

R
M

S
re

l.
er

ro
r

[%
]

number of images (noise σ=4 pix.)

ox

oy

(b)

Figure 9: Reduction of the estimation error of the vertex point o and mirror distance d by

using more that one image of the calibration pattern. The extrinsic parameters change from

image to image, but the camera/mirror relative position (o and d) was kept constant. The

results were compiled from repeated simulations with different mirror types, as before. The

image noise standard deviation was fixed at σ = 4 pixels.

6.2. Comparison with methods designed for central systems453

As previously stated, although we focus on non-central catadioptric systems,454

our method can be applied to central systems. Using a simulated setup, we455

applied our technique to a central system and compared its performance with456

two widely used methods from Sacaramuzza et al. [8, 39], and Mei and Rives [9],457

both available as OpenSource toolboxes [40, 41]. The two methods use images458

of a planar calibration object.459

We simulated a central system with an hyperbolic mirror (parameters [mm]:460

A = −0.76;B = 0;C = −600) and a pinhole camera (resolution of 1000 × 1000461
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Figure 10: Comparison with methods for central systems. Performance comparison between

our method (full calibration and partial calibration assuming known vertex point o) and the

methods of Sacaramuzza et al., and Mei and Rives, designed for central systems. Fig.(a) and

(b) show the error in the estimation of the extrinsic rotation and translation, respectively.

Note that θx, θy and θz are the euler angles of the rotation error (please review the beginning

of the section for details). Fig.(c) shows the reprojection error. Results obtained from a

simulated setup of a central hypercatadioptric system with 10 calibration images (with added

noise). The error values shown were computed from all the images.

pixels) placed at the focus of the hyperbola. A 9 × 10 point grid was placed462

in 10 positions around the mirror, generating 10 different calibration images.463

Gaussian noise of zero mean and 2 pixels standard deviation was added to464

the image position of each point. The toolboxes were modified to bypass any465

imaging processing and to use the simulated image points instead.466

We applied our method in two distinct conditions. First with a complete467

calibration, and then assuming that the vertex point o was known a priori, and468

only estimating the remaining parameters. In a central system the camera is469

aligned with the mirror and point o corresponds to the image center.470

The results are presented in Fig. 10. Since our methods assumes a calibrated471

pinhole camera, we only compare the estimation of the extrinsic parameters, R472

and T, and the reprojection error. The values presented are the RMS errors473

obtained from the set of the 10 images.474

6.3. Experiments with real images475

We now present results obtained with real images. The experiments were476

setup as follows. The projective camera was previously (internally) calibrated477

using standard methods [37]. Two different mirrors were used, one spherical and478
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  (a) (b)

Figure 11: Test images obtained with a spherical and an hyperbolic mirror, shown in Fig.(a)

and Fig.(b), respectively. Two separate planar calibration grids are seen reflected in each

mirror. The calibration points used in the experiments are highlighted in the images: points

in grid 1 are marked with a red “�”; points in grid 2 are marked with a green “⊕”. In Fig.(a)

(spherical mirror), 8 × 8 points were used in each grid. In Fig.(b) (hyperbolic mirror), 15 × 8

points were used in grid 1 and 9×10 points were used in grid 2. The vertex point o is marked

in each image with a cyan “∗”.

one hyperbolic. An image containing two distinct planar calibration patterns479

was acquired for each mirror. We applied our method to each pattern separately,480

obtaining two independent results for each setup. Fig. 11 shows the test images481

acquired with both mirrors, and the calibration points used in each grid pattern.482

Each image has a resolution of 1600 × 1200 pixels.483

To compare and evaluate the output of our algorithm, reference values for the484

calibration parameters were obtained independently, from direct measurement485

and from image analysis, using Bouguet’s camera calibration toolbox [37]. Each486

mirror was aligned with a third, auxiliary, grid pattern. The relative pose487

between the auxiliary patterns and the mirrors was calculated from the grid488

alignment and by direct measurement. Then, from an external projective image489

(capturing all the grids) the transformations between the mirror frame and the490

calibration grids were extracted using the toolbox.491

In the spherical mirror setup, the camera was placed so that the auxiliary492

mirror grid was directly visible in the test image (alongside the mirror itself),493

and the camera/mirror pose was computed, again using [37]. In the hyperbolic494
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mirror setup, due to the small mirror size and camera alignment, the auxil-495

iary mirror grid was not directly visible in the image. In this case, we relied496

on careful camera placement and measurement to estimate the camera/mirror497

transformation.498

Combining the camera/mirror relative pose with the information from the499

external image, the geometry of the scene was fully reconstructed for each setup,500

and reference values for the extrinsic parameters (R and T) and mirror position501

parameters (d and o) were obtained.502

Table 2 summarizes the reference values and the estimation error (with re-503

spect to the reference values) obtained for each experiment.504

mirror reference values estimation error

(A,B,C) calib. d o R T d o R T reproj.

Setup [mm] grid [mm] [pix] [Euler ang] [mm] [%] [pix] [Euler ang] norm[%]; ang RMS [pix]

#1 sphere: #1 1164

[
571

386

] [
51◦

71◦

109◦

] [
−502

84

936

]
0.8

[
−4.9

3.0

] [
2.3◦

−1.9◦

−0.2◦

]
1.3; 1.9◦ 0.7

#2

[
1

0

3002

]
#2

[
−56◦

5◦

−73◦

] [
−680

−11

871

]
3.0

[
−3.3

1.0

] [
−1.2◦

−3.6◦

0.4◦

]
1.4; 0.5◦ 1.1

#3 hyperb.: #1 45

[
401

296

] [
90◦

0◦

−90◦

] [
620

−398

−24

]
0.8

[
−4.4

−2.7

] [
1.9◦

−3.6◦

−0.5◦

]
0.4; 2.9◦ 0.4

#4

[
−0.76

0

−600

]
#2

[
178◦

−1.4◦

−90◦

] [
438

536

8

]
8.4

[
6.6

7.3

] [
−3.2◦

1.6◦

−3.3◦

]
16.0; 9.6◦ 1.5

Table 2: Experimental results with real images. For each mirror type two independent calibration grids were used. Mirror

parameters are defined in equation B.1 of Appendix B. The reference values for the calibration parameters were obtained

using direct measurement and Bouguet’s camera calibration toolbox (see text for details). o is the vertex point ; d is the

distance between camera and mirror; R and T are the extrinsic rotation and translation, respectively.

6.4. Discussion505

The simulation results show that the method described in this paper allows506

the estimation of the calibration parameters with good accuracy. The values507

of the estimated parameters remain stable even in the presence of considerable508

noise (i.e., when σ = 5 pixels). At first sight, the value of the coordinates of509

image point o appears to be the most affected parameter, but the error loses510
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relevance when compared to the full image resolution (for σ = 5, the position511

error in o is less than 2% of the image dimension).512

Regarding the comparison with methods designed for central systems, we513

focused the analysis on the estimation of the extrinsic parameters as the re-514

maining parameters differ from our model. Besides the extrinsic parameters,515

we aim at the reconstruction of the mirror/camera position while the method516

of Mei and Rives uses the spherical camera model [42, 43] and the method of517

Scaramuzza et. al uses a distortion model for the image. Our method had a518

performance similar to the other techniques, especially when assuming that the519

vertex point was given a priori. The reprojection error was also presented to520

provide an overall evaluation, and all methods provided very similar results.521

The experiments with real images demonstrate how a good estimation of522

the calibration parameters can be achieved from a very simple and practical523

setup, even with the highly non-linear image formation geometry of non-central524

catadioptric systems. We note, however, that in setup #4 (hyperbolic mirror,525

grid pattern 2) the estimation of d and T presented larger errors, which can be526

explained by the fact that the reflection of the grid pattern occupied a relatively527

small area of the mirror surface (see topmost pattern in Fig. 11(b)), making the528

calibration points more sensitive to noise.529

7. Conclusions530

We presented a method for the estimation of the mirror position and extrinsic531

parameters in axial non-central catadioptric systems, i.e., systems made up532

of an axial symmetric mirror and a projective camera with its optical center533

located along the symmetry axis (but not necessarily orientated with the axis).534

We assume an internally calibrated pinhole camera and require the use of a535

calibration object, that can be planar. A single image is sufficient to perform536

the calibration procedure.537

The camera/mirror relative position is determined with two parameters: the538

image position of the intersection of the symmetry axis with the image plane539
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and the distance from the camera center to the mirror. The extrinsic parameters540

are fully determined through a rotation matrix and a translation vector.541

A linear projection equation is established between 3D points and 1D image542

features, which enables the use of the DLT algorithm in the estimation of the543

extrinsic rotation and translation, the latter up to one undetermined component.544

The cross-ratio is used as an invariant under the axial-symmetric geometry to545

determine the image of the axis. Non-linear optimization methods are applied546

in the estimation of the remaining parameters.547

Regarding the estimation of mirror/camera relative position, our approach548

provides a significant alternative to methods that require the identification of549

the mirror boundary in the image (e.g. [17, 14, 21, 6, 34]). The calibration550

procedure is accurate and much easier to automate. Since the calibration object551

can be planar, the setup is easy to implement.552

The estimation of the extrinsic parameters, up to one translation parameter,553

is achieved with a simple and linear procedure, even in the presence of a highly554

non-linear image formation geometry. In applications that do not require the555

z-component of the extrinsic translation to be determined, the extrinsic para-556

meters are obtained without full knowledge of the vision system characteristics557

(unknown mirror shape and distance to mirror). As an example of one such558

application, consider a robot navigating on a plane, equipped with an omnidi-559

rectional vision system. If known landmarks (calibration points) are visible in560

the image, the robot’s pose (extrinsic parameters) can be fully retrieved using561

the method of section 4, as the z-component of the translation is constrained562

by the plane on which the robot moves.563

Appendix A. Notation and Background564

This appendix briefly reviews some background concepts used in the paper.565
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Appendix A.1. Cross-ratio566

Consider four collinear points A, B, C and D. Their cross-ratio {ABCD}
is defined as

{ABCD} =
|AB| |CD|
|AC| |BD| , (A.1)

where |XY| denotes the (signed) distance between points X and Y.567

Let O be the intersection point of four concurrent lines, with each line passing

through A, B, C and D, respectively. The cross-ratio of the four lines is given

by

{O;ABCD} =
sin(AOB) sin(COD)
sin(AOC) sin(BOD)

,

and we have that (c.f. [35], chapter 2)

{ABCD} = {O;ABCD}

Appendix A.2. Vector representation of conic curves568

Consider a 2D point, with homogeneous coordinates

x =
[
x y z

]T

,

and a conic curve represented by the symmetric matrix

Ω ∼

⎡
⎢⎢⎢⎣

a b/2 d/2

b/2 c e/2

d/2 e/2 f

⎤
⎥⎥⎥⎦ .

Point x is on the conic curve iff

xT Ωx = 0 .

This second order polynomial can be re-written in the following form

ωT x̂ = 0, (A.2)

with x̂ being the lifted point coordinates of x

x̂ =
[
x2 xy y2 xz yz z2

]T

, (A.3)

and ω a vector representation of the conic curve

ω =
[
a b c d e f

]T

.
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Appendix B. Back-projection with conic section mirror569

In this appendix we show how to obtain the back-projection ray described570

in section 5.1. The derivation is based on the work of Agrawal, Taguchi and571

Ramalingam in [21]. That paper addressed the forward projection equations572

in axial catadiotric systems with conic section mirrors, but concerning back-573

projection, only the case with a spherical mirror was explicitly derived. We574

present the back-projection equations for a generic conic section mirror.575

Figure B.12: Back-projection of an image point after reflection on a conic section mirror. See

text for details.

Consider Fig. B.12. The camera principal axis (zc) is aligned with the mirror576

symmetry axis (zm). The distance between the camera frame origin and the577

mirror frame origin is given by d. Vector vi is the incident ray and vr is the578

reflected ray. S is the reflection point on the surface of the mirror. n is the579

surface normal vector at point S.580

The mirror is specified by three parameters, A, B and C, that define its

conic section in the xmzm plane:

Az2
m + x2

m + Bzm = C . (B.1)

The incident ray direction for a image point q (in pixels) is given, in the

camera reference frame, by s = K−1q, where K is the camera intrinsic calibra-

tion matrix. Let s =
[
s1 s2 s3

]T

. The inhomogeneous coordinates of the

reflection point are given, in the camera reference frame, by S̃ = βs, with β
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obtained from

β = s3(B+2Ad)±
√

4(s2
1+s2

2)(−Bd−Ad2+C)+s2
3(B

2+4AC)

2(s2
1+s2

2+As2
3)

(B.2)

As can be seen from equation B.2, β has, in general, two solutions, cor-581

responding to two intersection points between the incident ray and the mirror582

surface. The smallest value of β that verifies βs3 > 0 is the one that corresponds583

to the reflection point closest to, and in front of, the camera.584

Finally, using the laws of reflection, the direction of the reflected ray is

obtained from

vr = vi − 2nnT

nTn
vi ,

with the incident ray given by vi = S̃ and the normal vector at point S̃ =585 [
Sx Sy Sz

]T

given by n =
[
Sx Sy ASz − Ad − B/2

]T

.586
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We propose a novel calibration method for non-central catadioptric systems. 

 

We assume an axial symmetrical mirror and a pinhole camera placed on the mirror axis. 

 

The calibration estimates the camera/mirror position and the extrinsic parameters. 

 

The procedure requires a single image of a (possibly planar) calibration object. 

 

The Direct-Linear-Transformation algorithm and cross-ratio are used. 


