Accepted Manuscript

Calibration of mirror position and extrinsic parameters in axial non-central catadioptric systems

Luis Perdigoto, Helder Araujo

PII:

S1077-3142(13)00063-5
DOI:
http://dx.doi.org/10.1016/j.cviu.2013.04.001
Reference:
YCVIU 1975

To appear in:
Computer Vision and Image Understanding

Please cite this article as: L. Perdigoto, H. Araujo, Calibration of mirror position and extrinsic parameters in axial non-central catadioptric systems, Computer Vision and Image Understanding(2013), doi: http://dx.doi.org/10.1016/ j.cviu.2013.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Calibration of mirror position and extrinsic parameters in axial non-central catadioptric systems

Luis Perdigoto ${ }^{\mathrm{a}, \mathrm{b}, *}$, Helder Araujo ${ }^{\text {a }}$
${ }^{a}$ Institute for Systems and Robotics, Dept. of Electrical and Computer Engineering, University of Coimbra, 3030 Coimbra, Portugal
${ }^{b}$ ESTG, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal

Abstract

We propose a novel calibration method for catadioptric systems made up of an axial symmetrical mirror and a pinhole camera with its optical center located at the mirror axis. The calibration estimates the relative camera/mirror position and the extrinsic rotation and translation w.r.t. the world frame. The procedure requires a single image of a (possibly planar) calibration object. We show how most of the calibration parameters can be estimated using linear methods (Direct-Linear-Transformation algorithm) and cross-ratio. Two remaining parameters are obtained by using non-linear optimization. We present experimental results on simulated and real images.

Keywords: Non-central catadioptric vision systems, Calibration

1. Introduction

Catadioptric vision systems use a combination of cameras and mirrors to acquire images. They can provide some advantages over more traditional camera systems, namely in terms of increased field-of-view (usually through reflection off curved mirrors) and/or single image multi-view geometry (with the use of multiple mirrors). Several configurations have been proposed and studied, alongside with tailor-made or more generic calibration methods.

[^0]and Tardif and Sturm [27] used a computer screen and a projector to generate coded structured-light calibration patterns and achieve a dense mapping of the image pixels. Morel and Fofi [28] used polarized light.

A comprehensive survey of camera models used in panoramic image acqui-

The method is divided in 3 steps, executed in sequence. The first step estimates the intersection point between the mirror axis and the image plane, which we will call the vertex point. In systems where the camera is aligned with the mirror, this point coincides with the image center. The calibration is achieved by using the cross-ratio as an invariant in our axial-symmetric projection model. shape, which is assumed to be known a priori. The procedure relies on nonlinear optimization methods (e.g. Levenberg-Marquardt algorithm). Non-linear optimization and bundle-adjustment are recurring techniques in these types of systems (e.g. [23, 22, 17, 21]), but we perform the optimization in a single parameter and show that a precise initial estimate is not required for convergence.

1.3. Notation

Some background concepts regarding cross-ratio and vector representation of conic curves are briefly reviewed in Appendix A. The notation used throughout the paper is now introduced.

Vectors are denoted by bold symbols. Homogeneous coordinates of points in \mathbb{P}^{3} are represented in upper-case bold symbols (e.g. \mathbf{X}), points in \mathbb{P}^{2} are in lower-case (e.g. \mathbf{x}) and points in \mathbb{P}^{1} are represent in lower-case with an overbar (e.g. $\overline{\mathbf{x}}$). A tilded symbol denotes an inhomogeneous vector (e.g. $\tilde{\mathbf{X}}$).

Matrices are represented by symbols in sans serif font (e.g. R). The superscript " r_{i} " denotes the i-th row of a matrix, as in $\mathrm{R}^{r_{1}}$.

Equality of matrices or vectors up to a scalar factor is written as " \sim ".

1.4. Paper structure

The following sections are organized as follows. Section 2 discusses the system geometry assumed by our method and deduces the linear projection equation that can be established from 3D world points to 1D image features. Section 3 describes the estimation of the vertex point (the intersection point between the image plane and the the mirror axis), which is the first calibration parameter to be obtained. Section 4 shows how to estimate the extrinsic parameters, up to one unknown translation component, using a linear method based on the DLT algorithm. The estimation of the two remaining parameters, the distance between camera and mirror and the unknown translation component, is addressed in section 5. Experimental results are presented in section 6. Finally, section 7 presents the conclusions.

2. System geometry

We will now discuss the axial catadioptric geometry, and show how a linear projection equation can be established.

(a)

(b)

Figure 1: The axial catadioptric geometry. Fig.(a): The pencil of projection planes has the mirror axis as the common intersection line. \mathbf{C} is the camera's optical center. \mathbf{X} is a world point. \mathbf{S} is the reflection point on the surface of the mirror. Fig.(b): The pencil of projection planes is imaged as a pencil of lines, with o, the image of the mirror axis, as the common point. For a given world point \mathbf{X}_{i}, there is a line in the image passing through its reflected image \mathbf{s}_{i}, its direct image \mathbf{x}_{i}, and the image of the axis \mathbf{o}. Note that the direct image of a point, \mathbf{x}_{i}, may not be available in practice. As shown for point \mathbf{x}_{3}, if the world point is behind the camera (i.e., negative coordinate on the camera's principal axis), its direct and reflected images have opposite directions w.r.t. the central point \mathbf{o}.

2.1. The pencil of projection planes and its image

Consider Fig. 1(a). Let \mathbf{C} be the camera's optical center and \mathbf{X} a point in the world. An incident ray from \mathbf{X} intersects the mirror's surface at point \mathbf{S} and is reflected to the camera, forming the reflected image of the world point, denoted by s .

From the laws of reflection, we know that the incident ray, the reflected ray and the surface's normal at point \mathbf{S} must belong to the same plane. Also in this plane is the direct projection ray, i.e., the projective line, from \mathbf{X} to \mathbf{C}, that forms the real (not reflected) image of \mathbf{X}, denoted by \mathbf{x}. We refer to this plane as a projection plane, in the sense that it contains the direct and reflected projection rays of a given point in space.

As a consequence of the previous assumptions made on system geometry, every projection plane is part of a pencil of planes, with the mirror axis as the vertex \mathbf{o}, is specified by the slope $\frac{x-o_{x}}{y-o_{y}}$.

We define the 1D homogenous vector

$$
\overline{\mathbf{x}} \sim\left[\begin{array}{l}
x-o_{x} \\
y-o_{y}
\end{array}\right] \sim\left[\begin{array}{c}
\frac{x-o_{x}}{y-o_{y}} \\
1
\end{array}\right]
$$ image plane as a pencil of lines, where the common point, \mathbf{o}, is the image of the axis (see Fig. 1(b)). For every world point \mathbf{X}, there is a line in the image passing through its reflected image \mathbf{s}, its direct image \mathbf{x}, and the image of the axis o (the vertex point).

Changes in camera orientation (i.e., rotation around the optical center) induce homographic transformations in the image (c.f. [32]) and, of course, do not affect the collinearity between \mathbf{s}, \mathbf{x} and \mathbf{o}. Thus, the pencil of projection planes are always imaged as a pencil of lines, as long as the center of the camera is placed on the mirror axis. In the particular configuration where the camera's principal axis is coincident with the mirror axis (which is of great practical interest, e.g., in central catadioptric systems), point \mathbf{o} becomes the principal point of the image.

It should be noted that the direct image of a point, \mathbf{x}, is in most practical situations not visible in the image, because it is out of the field-of-view or behind the camera. This fact does not change, obviously, the validity of the discussion. In the algorithms we present in this paper, the position of \mathbf{x} is always assumed to be unknown.

2.2. Parameterizing the line pencil

Now, let $\mathbf{x} \sim\left[\begin{array}{lll}x & y & 1\end{array}\right]^{\top}$ and $\mathbf{s} \sim\left[\begin{array}{lll}s_{x} & s_{y} & 1\end{array}\right]^{\top}$ be the direct and reflected image of \mathbf{X}, respectively, and $\mathbf{o} \sim\left[\begin{array}{lll}o_{x} & o_{y} & 1\end{array}\right]^{\top}$ be the vertex of pencil. Each line on the pencil can be specified by a single parameter, that we will define to be the line slope. Thus, the line containing point \mathbf{x} and passing through the
as the reduced coordinates of point \mathbf{x}. Vector $\overline{\mathbf{x}}$ uniquely specifies the line in the pencil that \mathbf{x} belongs to. Note that, because $\overline{\mathbf{x}}$ is an homogenous vector, infinite slopes can be handled seamlessly.
common intersection line. Furthermore, this pencil of planes is projected in the

Since \mathbf{s} and \mathbf{x} belong to the same line of the pencil, we have

$$
\overline{\mathbf{x}} \sim \overline{\mathbf{s}} \sim\left[\begin{array}{l}
s_{x}-o_{x} \tag{1}\\
s_{y}-o_{y}
\end{array}\right] .
$$

2.3. Linear mapping between \mathbf{X} and $\overline{\mathbf{s}}$

The direct image of world point \mathbf{X} is given by the projection equation

$$
\mathbf{x} \sim \mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right] \mathbf{X}
$$

where K is the intrinsic parameter matrix, and R and \mathbf{T} are the extrinsic rotation and translation relating the world reference frame with the camera frame.

Using equation 1 we can rewrite the projection equation as

$$
\overline{\mathbf{s}} \sim \underbrace{\left[\begin{array}{lll}
1 & 0 & -o_{x} \tag{2}\\
0 & 1 & -o_{y}
\end{array}\right] \mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathbf{T}
\end{array}\right] \mathbf{X} .}_{\sim \mathrm{P}}
$$

The 2×4 matrix P establishes a linear mapping between points in the world reference frame and a 1D image parameter computed from the image position of the reflected points.

Given enough known correspondences between \mathbf{X} and \mathbf{s}, matrix P can be obtained up to scale, from equation 2, by using the DLT algorithm (Direct Linear Transform) [32]. We note that in the case that all world points \mathbf{X} lie in a single plane, the size of the recovered matrix P is reduced to 2×3. This particular case will be addressed in Section 4.4.

3. Finding the vertex point

In this section we show how the cross-ratio can be used as an invariant under the axial catadioptric geometry to obtain the image of the mirror axis, the vertex point \mathbf{o}. By determining its location, the axis direction w.r.t. the camera frame is immediately defined (assuming an internally calibrated camera).

(a)

(b)

Figure 2: The cross-ratio as an invariant under the axial catadioptric geometry. Fig.(a): A, \mathbf{B}, \mathbf{C} and \mathbf{D} are four collinear 3D points. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} are their images after reflection from the mirror. $\mathbf{x}_{a}, \mathbf{x}_{b}, \mathbf{x}_{c}$ and \mathbf{x}_{d} are their direct images, i.e., the direct projection in image. Fig.(b): The cross-ratio relation between image points. Point \mathbf{o} is the image of the mirror axis.

3.1. Cross-ratio as an invariant

Consider Fig. 2(a). Let A, B, C and \mathbf{D} be four collinear 3D points. Consider $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} to be their reflected images and $\mathbf{x}_{a}, \mathbf{x}_{b}, \mathbf{x}_{c}$ and \mathbf{x}_{d} their direct images (i.e., the direct projection in image, not reflected through the mirror).

Fig. 2(b) shows points in the image plane. Being the projection of collinear 3D points, $\mathbf{x}_{a}, \mathbf{x}_{b}, \mathbf{x}_{c}$ and \mathbf{x}_{d} are also collinear. Since the cross-ratio is invariant under a projective transformation,

$$
\left\{\mathbf{x}_{a} \mathbf{x}_{b} \mathbf{x}_{c} \mathbf{x}_{d}\right\}=\{\mathbf{A B C D}\} .
$$

Each pair of reflected and direct images of a point (e.g., a and \mathbf{x}_{a}) is on a line that passes through the image of the mirror axis, \mathbf{o}, so we can write

$$
\begin{equation*}
\{\mathbf{o} ; \mathbf{a b c d}\}=\left\{\mathbf{x}_{a} \mathbf{x}_{b} \mathbf{x}_{c} \mathbf{x}_{d}\right\}=\{\mathbf{A B C D}\} . \tag{3}
\end{equation*}
$$

We see, thus, that the cross-ratio of four collinear space points is the same as the cross-ratio of the lines through their reflected images and the common point \mathbf{o}, which is the image of the mirror axis.

(a)

(b)

Figure 3: The conic locus of possible solutions for point \mathbf{o}. Fig.(a): The conic Ω is completely defined by four image points $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$ and the value of the cross-ratio, k. Chasles' theorem states that $\{\mathbf{o} ; \mathbf{a b c d}\}=\left\{\mathbf{o}^{\prime} ; \mathbf{a b c d}\right\}=k$. Fig.(b): The degenerate conics Ψ_{1} and Ψ_{2} are defined by line-pairs passing through the image points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}. The solid blue lines define Ψ_{1}, while the dashed red lines define Ψ_{2}. The conic locus Ω is a function of Ψ_{1}, Ψ_{2} and k.

3.2. Conic locus for point \mathbf{o}

Assume that the cross-ratio of a 4-tuple of collinear world points is known, $k=\{\mathbf{A B C D}\}$. Given the reflected images of these points, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}, the location of point \mathbf{o} is restricted by (review equation 3):

$$
\begin{equation*}
\{\mathbf{o} ; \mathbf{a b c d}\}=k . \tag{4}
\end{equation*}
$$

We can see that, as a direct application of Chasles' theorem [35], equation 4 defines a conic locus of possible solutions for o (see Fig. 3(a)). It should be noted that the conic is completely defined by the four points, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} (belonging to the conic), and the value of the cross-ratio, k.

We now show how to obtain the expression of the conic. Consider Fig. 3(b). Let Ψ_{1} and Ψ_{2} be degenerate conics, defined by the line pairs $\left(\mathbf{l}_{1}, \mathbf{m}_{1}\right)$ and $\left(\mathbf{l}_{2}, \mathbf{m}_{2}\right)$, respectively, where

$$
\mathbf{l}_{1}=\mathbf{a} \times \mathbf{c}, \quad \mathbf{m}_{1}=\mathbf{d} \times \mathbf{b}, \quad \mathbf{l}_{2}=\mathbf{a} \times \mathbf{b}, \quad \mathbf{m}_{2}=\mathbf{c} \times \mathbf{d}
$$

and with the conics given (in matrix form) by

$$
\Psi_{i}=\mathbf{l}_{i} \mathbf{m}_{i}^{\top}+\mathbf{m}_{i} \mathbf{l}_{i}^{\top}, \quad i=1,2
$$

It can be verified that the conic locus of point o can be obtained from these degenerate conics and the cross-ratio by the expression ${ }^{1}$:

$$
\begin{equation*}
\Omega \sim k \Psi_{1}-\Psi_{2} \tag{5}
\end{equation*}
$$

As an additional insight, the conic Ω in equation 5 can be viewed as a 1 parameter family of conics (passing through 4 fixed points, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}), with that parameter being k, the desired value for the cross-ratio.

3.3. Obtaining a solution

Given enough 4-tuples of points in the scene with known cross-ratio, a unique solution for \mathbf{o} can be found, corresponding to the common intersection point of all the conic loci. The minimum number of sets of points required to obtain a single solution depends on their location and on the number of intersection points between the conics (as two conics can intersect in up to 4 points). Assuming general position, three sets of points will normally be sufficient to produce a single solution.

In the presence of noise, however, a common intersection point for the conics may not exist. We can, thus, obtain an estimate for o using the following procedure: Let $\boldsymbol{\omega}_{i}$ be the vector representation (review equation A.2) of conic Ω_{i}, corresponding to the i-th 4 -tuple of image points with known cross-ratio. Construct a matrix Q by stacking the conics $\boldsymbol{\omega}_{i}$ for all N sets of tuples:

$$
\mathrm{Q}=\left[\begin{array}{c}
\boldsymbol{\omega}_{1}^{\top} \\
\vdots \\
\boldsymbol{\omega}_{N}^{\top}
\end{array}\right]
$$

Without noise, the right null space of \mathbf{Q} is the solution for \mathbf{o}, i.e., $\mathbf{Q} \hat{\mathbf{o}}=0$. The estimate for o can, thus, be obtained by picking the eigenvector corresponding

[^1]

Figure 4: Finding the vertex point o. Fig. (a) and (b) show test images of grid patterns reflected on a spherical mirror. Several 4-tuples of image points and their corresponding conics $\boldsymbol{\omega}$ are marked in the images. The tuples of image points correspond to equally-spaced collinear world points (cross-ratio $=1 / 4$). The intersection point of all conics is the vertex point \mathbf{o}, indicated by with a red arrow. Note that point \mathbf{o} corresponds to the reflection of the camera's optical center because its projection ray coincides with the mirror axis.
to the smallest singular value associated with matrix Q . At least $N=6$ tuples are required for building Q.

Fig. 4 shows examples, using real images, of conics generated from 4-tuples of image points and how the common intersection point is the vertex point \mathbf{o}.

3.4. Refining the estimate

If an intersection point does not exist due to noise, the estimate for vector $\hat{\mathbf{o}}$ will not belong to the subspace of lifted coordinates (equation A.3) and the extracted vertex o will be only an approximation. Furthermore, we have found that the cross-ratio conics $\boldsymbol{\omega}$ show a relatively high sensitivity to noise, which degrades the accuracy of the estimate of the vertex point. Fig. 5 quantifies this sensitivity. It plots the distance between the cross-ratio conic $\boldsymbol{\omega}$, obtained from image points corrupted with noise, and the ground truth point o. Since point o should belong to the conic, the distance provides an error measurement.

To improve the accuracy of the estimation of the vertex point, we propose an additional refinement procedure using a non-linear optimization method. The computation of the reduced coordinates $\overline{\mathbf{s}}$ of a given image point is a function of

Figure 5: Sensitivity to noise of the cross-ratio conics $\boldsymbol{\omega}$. Plot of the distance between the conic curve $\boldsymbol{\omega}$ and the ground truth point \mathbf{o}, as a function of noise level σ (σ is the standard deviation of the gaussian noise added to the position of image points). Point o should belong to the conic, so the distance to the conic curve provides an error measurement. The figure was obtained by simulation (we used the same simulation setups that are described in detail in subsection 6.1). The results were obtained by averaging repeated simulations, using sets of points in different positions. In total, the result for each noise level was obtained from 2000 simulations.
point \mathbf{o}, i.e., $\overline{\mathbf{s}}(\mathbf{o})$. Let $\left\{\overline{\mathbf{s}}_{i}(\mathbf{o}) ; \mathbf{X}_{i}\right\}, i=1, \ldots, N$, denote the set of N world-toimage point correspondences. As stated in the previous section (review equation 2), a linear mapping can be estimated from the set of correspondences using the DLT algorithm.

Consider a function $\operatorname{SSV}_{D L T}\left(\left\{\overline{\mathbf{s}}_{i}(\mathbf{o}) ; \mathbf{X}_{i}\right\}\right)$ that returns the smallest singular value obtained during the Singular-Value-Decomposition factorization of the DLT procedure. The closer to zero the value is, the better the linear mapping fits the set of points. Thus, function $\mathrm{SSV}_{D L T}$ can be used to evaluate a candidate point \mathbf{o}, quantifying how the estimates for the coordinates of that point fit into the linear projection model.

Starting at the initial solution obtain in the previous subsection, we can refine the estimate for point \mathbf{o} by apply non-linear optimization to

$$
\begin{equation*}
\min _{\mathbf{o}} \operatorname{SSV}_{D L T}\left(\left\{\overline{\mathbf{s}}_{i}(\mathbf{o}) ; \mathbf{X}_{i}\right\}\right) \tag{6}
\end{equation*}
$$

In our implementation we used the Levenberg-Marquardt method. Additionally, we used the RANSAC algorithm [32] to handle outliers on the set of point correspondences $\left\{\overline{\mathbf{s}}_{i}(\mathbf{o}) ; \mathbf{X}_{i}\right\}$.

Fig. 6 shows an example, with a real image, of the output of function

Figure 6: The function $\operatorname{SSV}_{D L T}$. Fig. (a) shows the output of function $\mathrm{SSV}_{D L T}$ evaluated at every pixel of the test image shown in Fig. 4(a). Fig. (b) shows the same surface but in a 3D perspective. A blue hue represents lower values on the surface, while a red hue represents higher values. Point \mathbf{o} is located at the global minimum of the surface, indicated by the red arrow.
$\mathrm{SSV}_{D L T}$.

4. Estimating the extrinsic parameters using linear methods

In this section we show how the extrinsic parameters can be obtained, up to one undetermined component of the translation vector, from a linear method and using a single image of a calibration object. We first consider a generic 3D calibration object, but then adapt the algorithm to handle the case, of practical interest, when all the calibration points belong to a single plane.

We assume that the position of the vertex point o (discussed in the last section) has already been determined, and that the pinhole camera is internally calibrated. In most cases, the camera can be previously calibrated (internally), without the mirror, using standard methods [36, 37].

4.1. Pre-alignment of the camera frame

To derive the method to estimate the extrinsic parameters we assume that the camera is aligned with the mirror, i.e., the camera's principal axis coincides with the symmetry axis of the mirror, with the camera pointing towards the mirror. This assumption does not imply a loss of generality since a pre-rotation can always be performed to align the camera axis.

Given an internally calibrated camera, the knowledge of point o provides, implicitly, the direction of the mirror axis in the camera reference frame. A rotation can then be calculated that would align the principal axis with that direction.

The alignment rotation is implemented by an homographic transformation in the image. This homography is called a conjugate rotation (c.f. [32], section 8 and appendix A7) and is given by

$$
\mathrm{H}=\mathrm{KRK}^{-1},
$$

where K is the intrinsic parameters matrix and R is the rotation matrix. All image points are transformed from their original positions into the aligned camera frame using the homography H . It should be noted that after the alignment the vertex point \mathbf{o} is moved to the image center, i.e., $\mathbf{o} \sim\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$. In subsequent sections, any reference to an image point (s) assumes an aligned camera.

In many applications (e.g., central systems) the camera is in fact aligned with the mirror, and this initial step is unnecessary.

4.2. The projection matrix \mathbf{P}

Please recall that a point in the world reference frame is denoted by \mathbf{X}. Point \mathbf{X} has known position (belongs to the calibration object). Its projection in the image after reflection from the mirror is denoted by point \mathbf{s}. Consider $\mathbf{T}=\left[\begin{array}{lll}t_{x} & t_{y} & t_{z}\end{array}\right]^{\top}$ to be the extrinsic translation vector and let $\mathrm{R}^{r_{i}}$ denote the i-th row of the extrinsic rotation matrix R .

Assuming that the camera is internally calibrated $(\mathrm{K}=\mathrm{I})$ and that the camera frame is aligned with the mirror axis $\left(\mathbf{o} \sim\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}\right)$, the 2×4 projection matrix of equation 2 is simplified to

$$
\overline{\mathbf{s}} \sim \underbrace{\left[\begin{array}{ll}
\mathrm{R}^{r_{1}} & t_{x} \tag{7}\\
\mathrm{R}^{r_{2}} & t_{y}
\end{array}\right]}_{\sim \mathrm{P}} \mathbf{X} .
$$

4.3. Retrieving R, t_{x} and t_{y}

As previously discussed, given enough known correspondences between \mathbf{X} and \mathbf{s}, matrix P can be obtain up to scale, from equation 7 , by using the DLT algorithm. It should be noted that, for the moment, we are considering a general non-planar calibration object. The case of a planar calibration pattern is analyzed in the next subsection.

Let $p_{i j}$ denote the element of \mathbf{P} at row i and column j. Noting that \mathbf{P} is determined only up to a scale factor λ, the extrinsic parameters, with the exception of t_{z}, can be recovered from

$$
\begin{gather*}
\mathrm{R}^{r_{1}}=\lambda\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13}
\end{array}\right] \tag{8}\\
\mathrm{R}^{r_{2}}=\lambda\left[\begin{array}{lll}
p_{21} & p_{22} & p_{23}
\end{array}\right] \\
\mathrm{R}^{r_{3}}=\mathrm{R}^{r_{1}} \times \mathrm{R}^{r_{2}} \\
t_{x}=\lambda p_{14} \\
t_{y}=\lambda p_{24}
\end{gather*}
$$

As $R^{r_{1}}$ and $\mathrm{R}^{r_{2}}$ are normal vectors, the value of λ is subjected to the constraint

$$
\left\|\lambda\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13}
\end{array}\right]\right\|=\left\|\lambda\left[\begin{array}{lll}
p_{21} & p_{22} & p_{23}
\end{array}\right]\right\|=1
$$

which yields

$$
\lambda= \pm \frac{1}{\left\|\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13}
\end{array}\right]\right\|}= \pm \frac{1}{\left\|\left[\begin{array}{lll}
p_{21} & p_{22} & p_{23} \tag{9}
\end{array}\right]\right\|}
$$

The signal ambiguity of λ can be solved by means of a simple procedure, taking into consideration the geometric properties of image formation. Consider $\left(X_{c}, Y_{c}, Z_{c}\right)$ as the coordinates of \mathbf{X} in the camera frame. We have that

$$
\left[\begin{array}{c}
X_{c} \tag{10}\\
Y_{c}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{R}^{r_{1}} & t_{x} \\
\mathrm{R}^{r_{2}} & t_{y}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right],
$$

where point $\left(X_{c}, Y_{c}\right)$ can be seen as the orthogonal projection of $\left(X_{c}, Y_{c}, Z_{c}\right)$ in the image plane.

Since we are considering an aligned camera frame, the image plane is perpendicular to the projection planes, and point $\left(X_{c}, Y_{c}\right)$ and the corresponding reflected image point $\left(s_{x}, s_{y}\right)$ are on a line that passes through the image origin (see section 2). More so, in the presence of a convex mirror ${ }^{2},\left(X_{c}, Y_{c}\right)$ and $\left(s_{x}, s_{y}\right)$ have the same direction w.r.t. the image origin. In other words, vectors $\left(X_{c}, Y_{c}\right)$ and $\left(s_{x}, s_{y}\right)$ must have the same orientation and direction.

The correct value for λ can, thus, be obtained using the following procedure:

1. Choose one known pair of correspondences \mathbf{X} and s;
2. For both solutions of equation $9,+\lambda$ and $-\lambda$:

- Compute R, t_{x} and t_{y} using (8);
- Compute (X_{c}, Y_{c}) using (10);

3. From the two opposing vectors resulting from step $2,\left(\pm X_{c}, \pm Y_{c}\right)$, choose the one pointing in the same direction as $\left(s_{x}, s_{y}\right)$ (in the presence of noise, choose the closest direction). The value of λ that corresponds to the correct vector is the solution.

It should be noted that, in the presence of noise, the recovered matrix R may not be a true rotation matrix. Using Singular-Value-Decomposition, $R=U \Sigma V^{\top}$, R can be projected to a matrix R^{\prime} in orthonormal space by substituting all the singular values by 1, i.e., $R^{\prime}=U V^{\top}$. Matrix R^{\prime} is the closest orthonormal matrix to R in the sense that it minimizes the Frobenius norm $\left\|R-R^{\prime}\right\|_{F}$.

4.4. Planar calibration pattern

We now show how the algorithm can be changed in order to allow for a planar calibration object.

[^2]We will assume, without loss of generality, that the calibration points belong to plane $Z=0$ w.r.t. the world frame (in a similar manner as in [36]). Equation 7 becomes

$$
\overline{\mathbf{s}} \sim \underbrace{\left[\begin{array}{lll}
r_{11} & r_{12} & t_{x} \tag{11}\\
r_{21} & r_{22} & t_{y}
\end{array}\right]}_{\sim \mathrm{P}}\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right],
$$

where $r_{i j}$ denotes the element of matrix R at row i and column j. With some abuse of notation, let us redefine P to be the 2×3 matrix mapping the planar world points to the 1D image feature.

Matrix P is, again, obtained up to a scale factor λ using the DLT algorithm. Similarly to equation 8 , we have that

$$
\begin{align*}
& \mathrm{R}^{r_{1}}=\lambda\left[\begin{array}{lll}
p_{11} & p_{12} & a
\end{array}\right] \tag{12}\\
& \mathrm{R}^{r_{2}}=\lambda\left[\begin{array}{lll}
p_{21} & p_{22} & b
\end{array}\right]
\end{align*}
$$

with λ, a and b to be determined.
Since $\mathrm{R}^{r_{1}}$ and $\mathrm{R}^{r_{2}}$ are orthonormal we can write

$$
\begin{aligned}
& {\left[\begin{array}{lll}
p_{11} & p_{12} & a
\end{array}\right]\left[\begin{array}{lll}
p_{11} & p_{12} & a
\end{array}\right]^{\top}=} \\
& \\
& {\left[\begin{array}{lll}
p_{21} & p_{22} & b
\end{array}\right]\left[\begin{array}{lll}
p_{21} & p_{22} & b
\end{array}\right]^{\top}}
\end{aligned}
$$

and

$$
\left[\begin{array}{lll}
p_{11} & p_{12} & a
\end{array}\right]\left[\begin{array}{lll}
p_{21} & p_{22} & b
\end{array}\right]^{\mathrm{T}}=0
$$

It can be shown that these constraints generate 2 real solutions for a and b. The solutions are symmetric and will be denoted as $\left\{a_{+} ; b_{+}\right\}$and $\left\{a_{-} ; b_{-}\right\}$, where

$$
a_{ \pm}= \pm \frac{\left(k_{\alpha}-k_{\gamma}\right)}{2 k_{\beta}} \sqrt{\frac{k_{\alpha}+k_{\gamma}}{2}} ; \quad b_{ \pm}= \pm \sqrt{\frac{k_{\alpha}+k_{\gamma}}{2}}
$$

with

$$
\begin{aligned}
& k_{\alpha}=r_{11}^{2}+r_{12}^{2}-r_{21}^{2}-r_{22}^{2} \\
& k_{\beta}=r_{11} r_{21}+r_{12} r_{22} \\
& k_{\gamma}=\sqrt{k_{\alpha}^{2}+4 k_{\beta}^{2}}
\end{aligned}
$$

The unknown scale factor λ is determined using equation 9 , where variables p_{13} and p_{23} are substituted, respectively, by a_{+}and b_{+}(or by a_{-}and b_{-}, yielding the same result). The signal ambiguity of λ can, again, be solved with the procedure described in the previous subsection. It should be noted that in equation 10 we now have $Z=0$, which causes the equation to be independent of the values of a and b, and so λ is still uniquely determined.

Two solutions are, thus, possible for the extrinsic rotation matrix R, obtained by substituting the values $\left\{\lambda ; a_{+} ; b_{+}\right\}$and $\left\{\lambda ; a_{-} ; b_{-}\right\}$in equation 12 (the procedure to determine the correct solution is discussed in the next subsection). The 3rd row of R is given by $\mathrm{R}^{r_{3}}=\mathrm{R}^{r_{1}} \times \mathrm{R}^{r_{2}}$.

The first two components of the extrinsic translation are determined without ambiguity and can be obtained from

$$
\begin{aligned}
t_{x} & =\lambda p_{13} \\
t_{y} & =\lambda p_{23} .
\end{aligned}
$$

4.5. Discussion and summary

Using a 3D (non-planar) calibration object produces an unique solution for the extrinsic rotation matrix R. Regarding the minimum number of world-toimage point correspondences required to apply the DLT algorithm to equation 7, it can be seen that each $\overline{\mathbf{s}} \leftrightarrow \mathbf{X}$ pair establishes two equations up to scale. Eliminating the unknown scale factor between them results in one constraint on the variables of P for every point correspondence. Since the 2×4 matrix P is recovered only up to scale, 7 independent variables need to be determined, which means that at least 7 world-to-image correspondences are required. The world points can not be located on a single plane (i.e. the calibration object must be non-planar), or else one column of matrix P is left undetermined (equation 11). Furthermore, to determine that column of P , at least two off-plane world points are needed to constrain the two variables in the column.

For a simpler experimental setup, the use of a planar calibration pattern is possible. A minimum of 5 point correspondences is needed in this case (a
similar reasoning as in the previous case, now with a 2×3 matrix P). In this situation, two possible solutions are obtained for matrix R . This ambiguity can, however, be solved by carrying both solutions to the next step in the calibration procedure and performing a complete reprojection of the world object into the image. The correct solution is the one that produces the image closest to the original.

The t_{x} and t_{y} components of the extrinsic translation are unambiguously recovered, regardless of the use of a non-planar or planar calibration object. The t_{z} component is undetermined at this stage. The value of the translation vector \mathbf{T} is, thus, restricted to a line space.

5. Estimating remaining parameters using non-linear optimization methods

The previous sections described how to obtain most of the parameters related to the mirror position and to the extrinsic calibration: Section 3 showed how to determine the mirror axis direction w.r.t. the camera while section 4 showed how to calculate the complete extrinsic rotation, and the extrinsic translation up to one component.

In this section we estimate the remaining parameters: the distance d between camera and mirror along the symmetry axis, and the last component of the extrinsic translation, t_{z}.

Previously, we have taken advantage of the axial geometry of the system and avoided the use of the non-linear reflections associated with a (possibly) noncentral catadioptric system. From now on, we take into consideration mirror shape and reflection geometry in order to estimate d and t_{z}, using non-linear optimization methods. We show, given the previously calculated parameters, that the optimization is performed on a single variable.

Our method requires the computation of back-projection rays from the camera and mirror geometry. In Appendix B we briefly outline the procedure for a mirror with a conic section. The derivation is based on [21]. We note, how-
ever, that any mirror profile is admissible as long as it is known a priori so that back-projection rays can be calculated.

5.1. $3 D$ reconstruction from back-projection and partial extrinsics

Let $\tilde{\mathbf{X}}_{\mathbf{c}}=\left[\begin{array}{lll}X_{c} & Y_{c} & Z_{c}\end{array}\right]^{\top}$ be the inhomogeneous coordinates, in the aligned camera frame, of a known world point $\tilde{\mathbf{X}}$ belonging to the calibration object. Point $\tilde{\mathbf{X}}_{\mathbf{c}}$ is obtained from the extrinsic parameters R and \mathbf{T} by

$$
\left[\begin{array}{c}
X_{c} \tag{13}\\
Y_{c} \\
Z_{c}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{R} & \mathbf{T}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{X}} \\
1
\end{array}\right]=\left[\begin{array}{l}
\mathrm{R}^{r_{1}} \tilde{\mathbf{X}}+t_{x} \\
\mathrm{R}^{r_{2}} \tilde{\mathbf{X}}+t_{y} \\
\mathrm{R}^{r_{3}} \tilde{\mathbf{X}}+t_{z}
\end{array}\right]
$$

Since the parameter t_{z} is not yet determined, the position of point $\tilde{\mathbf{X}}_{\mathbf{c}}$ is defined only up to a linear locus in space, which we denote as line \mathbf{L}_{z}. The line is orthogonal to the image plane and intersects this plane at coordinates $\left(X_{c}, Y_{c}\right)$.

On the other hand, point $\tilde{\mathbf{X}}_{\mathbf{c}}$ must also belong to the back-projected ray obtained from its reflected image s. We denote that back-projected ray, after reflection on the mirror surface, as space line \mathbf{L}_{BP}.

Consequently, space point $\tilde{\mathbf{X}}_{\mathbf{c}}$ can be reconstructed by intersecting both 3D lines, \mathbf{L}_{z} and \mathbf{L}_{BP}. While line \mathbf{L}_{z} is fully defined (it is a function of the already estimated R, t_{x} and t_{y}), line \mathbf{L}_{BP} depends on the yet undetermined distance d (see Appendix B). It should be noted, however, that despite the fact that different values of d produce distinct back-projection rays, an intersection point between \mathbf{L}_{z} and \mathbf{L}_{BP} always exists, as both lines belong to the same projection plane (see section 2).
5.2. Estimating distance to mirror d and the extrinsic translation parameter t_{z}

Let $\left\{\mathbf{X}_{i}\right\}$ and $\left\{\mathbf{s}_{i}\right\}$, with $i=1 . . N$, denote the set of points from the calibration object, expressed in the world frame, and their reflected images. Consider, also, $\left\{\mathbf{X}_{\mathbf{c} i}\right\}$ to be the set of points from the calibration object expressed in the camera frame coordinates. The problem of determining d can be stated in the
following manner: Given a set of correspondences between world points $\left\{\mathbf{X}_{i}\right\}$ and image points $\left\{\mathbf{s}_{i}\right\}$, and the knowledge of the extrinsic parameters R and \mathbf{T}, with the exception of t_{z}, find the value of d that reconstructs the set of points $\left\{\mathbf{X}_{\mathbf{c}_{i}}\right\}$ in such a way that they "fit" the original pattern $\left\{\mathbf{X}_{i}\right\}$ from the calibration object. The evaluation function is, in general, a measure of how "well" $\left\{\mathbf{X}_{i}\right\}$ and $\left\{\mathbf{X}_{\mathbf{c} i}\right\}$ can be related by a rigid transformation, as both sets should represent the same object. Alternatively, other metric characteristics regarding shape, distances, angles, etc., can be used, depending on the specific geometric properties of the calibration object.

The well known Iterative Closest Point (ICP) [38] algorithm can be used to obtain the rotation and translation that registers the calibration object $\left\{\mathbf{X}_{i}\right\}$ to its reconstruction $\left\{\mathbf{X}_{\mathbf{c} i}\right\}$. The values of this rotation and translation will, of course, dependent on d, and we denote them as R_{d} and \mathbf{T}_{d}, respectively.

The distance d can be obtained by minimizing

$$
\begin{equation*}
\min _{d} \sum_{i}\left\|\tilde{\mathbf{X}}_{\mathbf{c} i}-\left(\mathrm{R}_{d} \tilde{\mathbf{X}}_{i}+\mathbf{T}_{d}\right)\right\|^{2} \tag{14}
\end{equation*}
$$

Once the value of d that achieves the minimization is found, the last unknown parameter t_{z} is obtained from the z-component of \mathbf{T}_{d}.

Since the estimation of R_{d} and \mathbf{T}_{d} relies on the ICP procedure, a closed-form solution for equation 14 can not be easily obtained. However, standard nonlinear optimization methods can be used (e.g. Levenberg-Marquardt algorithm). We have found that, even in the presence of noise, the minimization achieves convergence to the global minimum without an accurate initial estimate of d. In our experiments we considered $d=$ focal length (camera touching the mirror) as the initial estimate.

To provide intuition, Fig. 7 illustrates the idea behind the procedure by showing the effect that errors in d have on the shape of a reconstructed planar calibration pattern.

Figure 7: Estimating of the distance to mirror, d. The goal is to find the value of d that reconstructs the original calibration object that, in this example, consists on a planar grid. The figure, obtained from simulation, exemplifies how a reconstructed object deviates from the original shape as an error ϵ is added to the true value of d.
and $\|\cdot\|$ denotes the L2-norm.

6.1. Simulated data

The simulations were run on three distinct setups. Each setup had different parameters regarding the mirror shape, mirror position, and pose of the calibration object. Table 1 summarizes the values of the parameters in each setup. The image size of the simulated camera was 1500×1500 pixels, with a focal
length of 1200 pixels. The calibration pattern consisted of a planar square grid, with 8×8 points. The distance between adjacent points on the grid was 2 world metric units.

Setup	mirror (A,B,C) [w.m.u]	d [w.m.u]	\mathbf{o} [pixels]	R [Euler angs.]	T [w.m.u]
$\# 1$	spherical $(1,0,4)$	3	$(100,150)$	$\left(40^{\circ}, 100^{\circ}, 45^{\circ}\right)$	$(-4,5,-6)$
$\# 2$	parabolic $(0,1,1)$	4	$(100,150)$	$\left(30^{\circ}, 100^{\circ}, 0^{\circ}\right)$	$(4,-5,-2)$
$\# 3$	hyperbolic $(-1,4,-1)$	5	$(100,150)$	$\left(0^{\circ}, 60^{\circ}, 0^{\circ}\right)$	$(6,-5,2)$

Table 1: Simulation setups. The proposed methods were simulated in different setups, each with distinct mirror shape, mirror position (d and \mathbf{o}), and pose of the calibration object (R and \mathbf{T}). Mirror parameters are defined in equation B. 1 of Appendix B. "w.m.u" stands for "world metric units".

Gaussian noise of zero mean and σ standard deviation was added to the position of the image points before running the calibration procedure. For a given σ value, each of the setups was repeated 100 times and the data compiled from the 3 setups, to provide a statistical analysis on the estimation error. Fig. 8(a)-(d) shows the root mean square (RMS) error, as a function of the noise level σ, in the extrinsic parameters R and \mathbf{T}, and in mirror position parameters d and \mathbf{o}.

Fig. 8(e) plots the reprojection error as a function of the noise level. Since our method does not rely on direct minimization of the reprojection error (like bundle adjustment techniques), this error can be considered as a measure of the overall quality of the calibration. Also shown in Fig. 8(e) is the result from repeating the simulations assuming that point \mathbf{o} is known a priori (without noise), and estimating only the remaining parameters. This situation is relevant in systems where the camera is aligned with the mirror axis, and o corresponds to (or approximates) the image center. When using spherical mirrors, the vertex point can be estimated from the reflected image of the camera itself (if visible) as point \mathbf{o} corresponds to the reflection of the optical center.

In additional simulations we studied the effect of using more than one image in the calibration procedure. For each simulation setup, the calibration pattern

Figure 8: Simulation results. Fig.(a) to (d) show the root mean square (RMS) error in the estimation of the calibration parameters, as a function of noise level σ (σ is the standard deviation of the gaussian noise added to the position of image points). \mathbf{o} is the vertex point; d is the distance between camera and mirror; R and \mathbf{T} are the extrinsic rotation and translation, respectively. Fig.(e) shows the RMS error in image position obtained from reprojecting the calibration points using the estimated calibration parameters.
was rotated around the mirror axis, producing images with different extrinsic parameters, but with the camera/mirror relative position kept constant. The estimates for the vertex point \mathbf{o} and for the mirror distance d were computed by the minimization of expression 6 (for \mathbf{o}) and 14 (for d) taking into account all images simultaneously. Fig. 9 shows the estimation error as a function of the number of images used, for a fixed noise level of $\sigma=4$ pixels. It is seen that the using multiple images (with different positions of the calibration pattern) can help reduce the effect of noise and increase the accuracy in the estimation of the mirror relative position.

(a)

(b)

Figure 9: Reduction of the estimation error of the vertex point o and mirror distance d by using more that one image of the calibration pattern. The extrinsic parameters change from image to image, but the camera/mirror relative position (o and d) was kept constant. The results were compiled from repeated simulations with different mirror types, as before. The image noise standard deviation was fixed at $\sigma=4$ pixels.

6.2. Comparison with methods designed for central systems

As previously stated, although we focus on non-central catadioptric systems, our method can be applied to central systems. Using a simulated setup, we applied our technique to a central system and compared its performance with two widely used methods from Sacaramuzza et al. [8, 39], and Mei and Rives [9], both available as OpenSource toolboxes [40, 41]. The two methods use images of a planar calibration object.

We simulated a central system with an hyperbolic mirror (parameters [mm]: $A=-0.76 ; B=0 ; C=-600$) and a pinhole camera (resolution of 1000×1000

Figure 10: Comparison with methods for central systems. Performance comparison between our method (full calibration and partial calibration assuming known vertex point \mathbf{o}) and the methods of Sacaramuzza et al., and Mei and Rives, designed for central systems. Fig. (a) and (b) show the error in the estimation of the extrinsic rotation and translation, respectively. Note that θ_{x}, θ_{y} and θ_{z} are the euler angles of the rotation error (please review the beginning of the section for details). Fig.(c) shows the reprojection error. Results obtained from a simulated setup of a central hypercatadioptric system with 10 calibration images (with added noise). The error values shown were computed from all the images,
pixels) placed at the focus of the hyperbola. A 9×10 point grid was placed in 10 positions around the mirror, generating 10 different calibration images. Gaussian noise of zero mean and 2 pixels standard deviation was added to the image position of each point. The toolboxes were modified to bypass any imaging processing and to use the simulated image points instead.

We applied our method in two distinct conditions. First with a complete calibration, and then assuming that the vertex point \mathbf{o} was known a priori, and only estimating the remaining parameters. In a central system the camera is aligned with the mirror and point \mathbf{o} corresponds to the image center.

The results are presented in Fig. 10. Since our methods assumes a calibrated pinhole camera, we only compare the estimation of the extrinsic parameters, R and \mathbf{T}, and the reprojection error. The values presented are the RMS errors obtained from the set of the 10 images.

6.3. Experiments with real images

We now present results obtained with real images. The experiments were setup as follows. The projective camera was previously (internally) calibrated using standard methods [37]. Two different mirrors were used, one spherical and

Figure 11: Test images obtained with a spherical and an hyperbolic mirror, shown in Fig.(a) and Fig.(b), respectively. Two separate planar calibration grids are seen reflected in each mirror. The calibration points used in the experiments are highlighted in the images: points in grid 1 are marked with a red " \odot "; points in grid 2 are marked with a green " \oplus ". In Fig.(a) (spherical mirror), 8×8 points were used in each grid. In Fig.(b) (hyperbolic mirror), 15×8 points were used in grid 1 and 9×10 points were used in grid 2 . The vertex point \mathbf{o} is marked in each image with a cyan "*".
one hyperbolic. An image containing two distinct planar calibration patterns was acquired for each mirror. We applied our method to each pattern separately, obtaining two independent results for each setup. Fig. 11 shows the test images acquired with both mirrors, and the calibration points used in each grid pattern. Each image has a resolution of 1600×1200 pixels.

To compare and evaluate the output of our algorithm, reference values for the calibration parameters were obtained independently, from direct measurement and from image analysis, using Bouguet's camera calibration toolbox [37]. Each mirror was aligned with a third, auxiliary, grid pattern. The relative pose between the auxiliary patterns and the mirrors was calculated from the grid alignment and by direct measurement. Then, from an external projective image (capturing all the grids) the transformations between the mirror frame and the calibration grids were extracted using the toolbox.

In the spherical mirror setup, the camera was placed so that the auxiliary mirror grid was directly visible in the test image (alongside the mirror itself), and the camera/mirror pose was computed, again using [37]. In the hyperbolic
mirror setup, due to the small mirror size and camera alignment, the auxiliary mirror grid was not directly visible in the image. In this case, we relied on careful camera placement and measurement to estimate the camera/mirror transformation.

Combining the camera/mirror relative pose with the information from the external image, the geometry of the scene was fully reconstructed for each setup, and reference values for the extrinsic parameters (R and \mathbf{T}) and mirror position parameters (d and \mathbf{o}) were obtained.

Table 2 summarizes the reference values and the estimation error (with respect to the reference values) obtained for each experiment.

Table 2: Experimental results with real images. For each mirror type two independent calibration grids were used. Mirror parameters are defined in equation B. 1 of Appendix B. The reference values for the calibration parameters were obtained using direct measurement and Bouguet's camera calibration toolbox (see text for details). o is the vertex point; d is the distance between camera and mirror; R and \mathbf{T} are the extrinsic rotation and translation, respectively.

6.4. Discussion

The simulation results show that the method described in this paper allows the estimation of the calibration parameters with good accuracy. The values of the estimated parameters remain stable even in the presence of considerable noise (i.e., when $\sigma=5$ pixels). At first sight, the value of the coordinates of image point o appears to be the most affected parameter, but the error loses
relevance when compared to the full image resolution (for $\sigma=5$, the position error in \mathbf{o} is less than 2% of the image dimension).

Regarding the comparison with methods designed for central systems, we focused the analysis on the estimation of the extrinsic parameters as the remaining parameters differ from our model. Besides the extrinsic parameters, we aim at the reconstruction of the mirror/camera position while the method of Mei and Rives uses the spherical camera model [42, 43] and the method of Scaramuzza et. al uses a distortion model for the image. Our method had a performance similar to the other techniques, especially when assuming that the vertex point was given a priori. The reprojection error was also presented to provide an overall evaluation, and all methods provided very similar results.

The experiments with real images demonstrate how a good estimation of the calibration parameters can be achieved from a very simple and practical setup, even with the highly non-linear image formation geometry of non-central catadioptric systems. We note, however, that in setup \#4 (hyperbolic mirror, grid pattern 2) the estimation of d and \mathbf{T} presented larger errors, which can be explained by the fact that the reflection of the grid pattern occupied a relatively small area of the mirror surface (see topmost pattern in Fig. 11(b)), making the calibration points more sensitive to noise.

7. Conclusions

We presented a method for the estimation of the mirror position and extrinsic parameters in axial non-central catadioptric systems, i.e., systems made up of an axial symmetric mirror and a projective camera with its optical center located along the symmetry axis (but not necessarily orientated with the axis). We assume an internally calibrated pinhole camera and require the use of a calibration object, that can be planar. A single image is sufficient to perform the calibration procedure.

The camera/mirror relative position is determined with two parameters: the image position of the intersection of the symmetry axis with the image plane
and the distance from the camera center to the mirror. The extrinsic parameters are fully determined through a rotation matrix and a translation vector.

A linear projection equation is established between 3D points and 1D image features, which enables the use of the DLT algorithm in the estimation of the extrinsic rotation and translation, the latter up to one undetermined component. The cross-ratio is used as an invariant under the axial-symmetric geometry to determine the image of the axis. Non-linear optimization methods are applied in the estimation of the remaining parameters.

Regarding the estimation of mirror/camera relative position, our approach provides a significant alternative to methods that require the identification of the mirror boundary in the image (e.g. $[17,14,21,6,34]$). The calibration procedure is accurate and much easier to automate. Since the calibration object can be planar, the setup is easy to implement.

The estimation of the extrinsic parameters, up to one translation parameter, is achieved with a simple and linear procedure, even in the presence of a highly non-linear image formation geometry. In applications that do not require the z-component of the extrinsic translation to be determined, the extrinsic parameters are obtained without full knowledge of the vision system characteristics (unknown mirror shape and distance to mirror). As an example of one such application, consider a robot navigating on a plane, equipped with an omnidirectional vision system. If known landmarks (calibration points) are visible in the image, the robot's pose (extrinsic parameters) can be fully retrieved using the method of section 4, as the z-component of the translation is constrained by the plane on which the robot moves.

Appendix A. Notation and Background

This appendix briefly reviews some background concepts used in the paper.

Consider four collinear points $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}. Their cross-ratio $\{\mathbf{A B C D}\}$ is defined as

$$
\begin{equation*}
\{\mathbf{A B C D}\}=\frac{|\mathbf{A B}||\mathbf{C D}|}{|\mathbf{A C}||\mathbf{B D}|}, \tag{A.1}
\end{equation*}
$$

where $|\mathbf{X Y}|$ denotes the (signed) distance between points \mathbf{X} and \mathbf{Y}.
Let \mathbf{O} be the intersection point of four concurrent lines, with each line passing through $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, respectively. The cross-ratio of the four lines is given by

$$
\{\mathbf{O} ; \mathbf{A B C D}\}=\frac{\sin (\mathbf{A O B}) \sin (\mathbf{C O D})}{\sin (\mathbf{A O C}) \sin (\mathbf{B O D})}
$$

and we have that (c.f. [35], chapter 2)

$$
\{\mathbf{A B C D}\}=\{\mathbf{O} ; \mathbf{A B C D}\}
$$

Appendix A.2. Vector representation of conic curves
Consider a 2D point, with homogeneous coordinates

$$
\mathbf{x}=\left[\begin{array}{lll}
x & y & z
\end{array}\right]^{\top},
$$

and a conic curve represented by the symmetric matrix

$$
\Omega \sim\left[\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right] .
$$

Point \mathbf{x} is on the conic curve iff

$$
\mathbf{x}^{\top} \Omega \mathbf{x}=0 .
$$

This second order polynomial can be re-written in the following form

$$
\begin{equation*}
\boldsymbol{\omega}^{\top} \hat{\mathbf{x}}=0 \tag{A.2}
\end{equation*}
$$

with $\hat{\mathbf{x}}$ being the lifted point coordinates of \mathbf{x}

$$
\hat{\mathbf{x}}=\left[\begin{array}{llllll}
x^{2} & x y & y^{2} & x z & y z & z^{2} \tag{A.3}
\end{array}\right]^{\top}
$$

and $\boldsymbol{\omega}$ a vector representation of the conic curve

$$
\boldsymbol{\omega}=\left[\begin{array}{llllll}
a & b & c & d & e & f
\end{array}\right]^{\top} .
$$

Appendix B. Back-projection with conic section mirror

In this appendix we show how to obtain the back-projection ray described in section 5.1. The derivation is based on the work of Agrawal, Taguchi and Ramalingam in [21]. That paper addressed the forward projection equations in axial catadiotric systems with conic section mirrors, but concerning backprojection, only the case with a spherical mirror was explicitly derived. We present the back-projection equations for a generic conic section mirror.

Figure B.12: Back-projection of an image point after reflection on a conic section mirror. See text for details

Consider Fig. B.12. The camera principal axis $\left(z_{c}\right)$ is aligned with the mirror symmetry axis $\left(z_{m}\right)$. The distance between the camera frame origin and the mirror frame origin is given by d. Vector \mathbf{v}_{i} is the incident ray and \mathbf{v}_{r} is the reflected ray. \mathbf{S} is the reflection point on the surface of the mirror. \mathbf{n} is the surface normal vector at point \mathbf{S}.

The mirror is specified by three parameters, A, B and C, that define its conic section in the $x_{m} z_{m}$ plane:

$$
\begin{equation*}
A z_{m}^{2}+x_{m}^{2}+B z_{m}=C \tag{B.1}
\end{equation*}
$$

The incident ray direction for a image point \mathbf{q} (in pixels) is given, in the camera reference frame, by $\mathbf{s}=\mathrm{K}^{-1} \mathbf{q}$, where K is the camera intrinsic calibration matrix. Let $\mathbf{s}=\left[\begin{array}{lll}s_{1} & s_{2} & s_{3}\end{array}\right]^{\top}$. The inhomogeneous coordinates of the reflection point are given, in the camera reference frame, by $\tilde{\mathbf{S}}=\beta \mathbf{s}$, with β
obtained from

$$
\begin{equation*}
\beta=\frac{s_{3}(B+2 A d) \pm \sqrt{4\left(s_{1}^{2}+s_{2}^{2}\right)\left(-B d-A d^{2}+C\right)+s_{3}^{2}\left(B^{2}+4 A C\right)}}{2\left(s_{1}^{2}+s_{2}^{2}+A s_{3}^{2}\right)} \tag{B.2}
\end{equation*}
$$

As can be seen from equation B.2, β has, in general, two solutions, corresponding to two intersection points between the incident ray and the mirror surface. The smallest value of β that verifies $\beta s_{3}>0$ is the one that corresponds to the reflection point closest to, and in front of, the camera.

Finally, using the laws of reflection, the direction of the reflected ray is obtained from

$$
\mathbf{v}_{r}=\mathbf{v}_{i}-\frac{2 \mathbf{n} \mathbf{n}^{\top}}{\mathbf{n}^{\top} \mathbf{n}} \mathbf{v}_{i}
$$

with the incident ray given by $v_{i}=\tilde{\mathbf{S}}$ and the normal vector at point $\tilde{\mathbf{S}}=$ $\left[\begin{array}{lll}S_{x} & S_{y} & S_{z}\end{array}\right]^{\top}$ given by $\mathbf{n}=\left[\begin{array}{lll}S_{x} & S_{y} & A S_{z}-A d-B / 2\end{array}\right]^{\top}$.

Acknowledgement

Helder Araujo would like to thank the support of project FCT/PTDC/EIAEIA/122454/2010, funded by the Portuguese Science Foundation (FCT) by means of national funds (PIDDAC) and co-funded by the European Fund for Regional Development (FEDER) through COMPETE Operational Programme Competitive Factors (POFC). Luis Perdigoto acknowledges the support of the Portuguese Science Foundation through grant SFRH/BD/50281/2009.

References

[1] S. Baker, S. K. Nayar, A theory of single-viewpoint catadioptric image formation, International Journal of Computer Vision 35 (1999) 175-196.
[2] J. P. Barreto, H. Araujo, Paracatadioptric camera calibration using lines, in: International Conference on Computer Vision, pp. 1359-1365.
[3] C. Geyer, K. Daniilidis, Paracatadioptric camera calibration, Pattern Analysis and Machine Intelligence, IEEE Transactions on 24 (2002) 687 -695.
M. D. Grossberg, S. K. Nayar, A general imaging model and a method for finding its parameters, in: In Proc. ICCV, pp. 108-115.
[12] M. Grossberg, S. Nayar, The Raxel Imaging Model and Ray-Based Calibration, International Journal on Computer Vision 61 (2005) 119-137.
[13] P. Sturm, S. Ramalingam, A generic concept for camera calibration, in: Proceedings of the European Conference on Computer Vision, Prague, Czech Republic, volume 2, Springer, 2004, pp. 1-13.
[14] Y. Taguchi, A. Agrawal, A. Veeraraghavan, S. Ramalingam, R. Raskar, Axial-cones: Modeling spherical catadioptric cameras for wide-angle light field rendering, ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29 (2010) 172:1-172:8.
[15] D. Lanman, D. Crispell, M. Wachs, G. Taubin, Spherical catadioptric arrays: Construction, multi-view geometry, and calibration, in: 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pp. 81-88.
[16] C.-S. Chen, W.-Y. Chang, On pose recovery for generalized visual sensors, Pattern Analysis and Machine Intelligence, IEEE Transactions on 26 (2004) 848-861.
[17] B. Micusik, T. Pajdla, Autocalibration and 3d reconstruction with noncentral catadioptric cameras, in: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 1, pp. I-58-I-65 Vol.1.
[18] N. Goncalves, H. Araujo, Linear solution for the pose estimation of noncentral catadioptric systems, in: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp. $1-7$.
[19] R. Swaminathan, M. D. Grossberg, S. K. Nayar, Non-Single Viewpoint Catadioptric Cameras: Geometry and Analysis, Technical Report, International Journal of Computer Vision, 2001.
[20] J. Fabrizio, J.-P. Tarel, R. Benosman, Calibration of panoramic catadioptric sensors made easier, in: Omnidirectional Vision, 2002. Proceedings. Third Workshop on, pp. $45-52$.
[21] A. Agrawal, Y. Taguchi, S. Ramalingam, Analytical forward projection for axial non-central dioptric and catadioptric cameras, in: Proceedings of the 11th European conference on computer vision conference on Computer vision: Part III, ECCV'10, pp. 129-143.
[22] S. Ramalingam, P. Sturm, E. Boyer, A factorization based self-calibration for radially symmetric cameras, in: 3D Data Processing, Visualization, and Transmission, Third International Symposium on, 2006, pp. $480-487$.
[23] C. Geyer, K. Daniilidis, Structure and motion from uncalibrated catadioptric views, in: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pp. I-279 - I-286 vol.1.
[24] V. Caglioti, P. Taddei, G. Boracchi, S. Gasparini, A. Giusti, Single-image calibration of off-axis catadioptric cameras using lines, in: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp. 1-6.
[25] R. Sagawa, N. Aoki, Y. Mukaigawa, T. Echigo, Y. Yagi, Mirror localization for a catadioptric imaging system by projecting parallel lights, in: Robotics and Automation, 2007 IEEE International Conference on, pp. 3957-3962.
[26] M. D. Grossberg, S. K. Nayar, The raxel imaging model and ray-based calibration, Int. J. Comput. Vision 61 (2005) 119-137.
[27] J.-P. Tardif, P. Sturm, M. Trudeau, S. Roy, Calibration of cameras with radially symmetric distortion, Pattern Analysis and Machine Intelligence, IEEE Transactions on 31 (2009) $1552-1566$.
[28] O. Morel, D. Fofi, Calibration of catadioptric sensors by polarization imaging, in: Robotics and Automation, 2007 IEEE International Conference on, pp. 3939-3944.
[29] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto, Camera models and fundamental concepts used in geometric computer vision, Found. Trends. Comput. Graph. Vis. 6 (2011) 1-183.
[30] Y. Wu, Z. Hu, Geometric invariants and applications under catadioptric camera model, in: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 2, pp. $1547-1554$ Vol. 2.
[31] S. Thirthala, M. Pollefeys, Multi-view geometry of 1d radial cameras and its application to omnidirectional camera calibration, in: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 2, pp. $1539-1546$ Vol. 2.
[32] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision. 2nd edn., Cambridge University Press, 2004.
[33] D. Lanman, D. Crispell, M. Wachs, G. Taubin, Spherical catadioptric arrays: Construction, multi-view geometry, and calibration, in: 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pp. 81-88.
[34] T. Mashita, Y. Iwai, M. Yachida, Calibration method for misaligned catadioptric camera, in: In Proceedings of the 6th Workshop on Omnidirectional Vision (OMNIVIS 2005.
[35] J. Semple, G. Kneebone, Algebraic Projective Geometry, Claredon Press, 1998.
[36] Z. Zhang, A flexible new technique for camera calibration, Pattern Analysis and Machine Intelligence, IEEE Transactions on 22 (2000) 1330 - 1334.
[37] J.-Y. Bouguet, Camera calibration toolbox for matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/index.html, 2012.
[38] P. Besl, H. McKay, A method for registration of 3-d shapes, Pattern Analysis and Machine Intelligence, IEEE Transactions on 14 (1992) 239 -256.
[39] D. Scaramuzza, A. Martinelli, R. Siegwart, A toolbox for easily calibrating omnidirectional cameras, in: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 5695-5701.
[40] D. Scaramuzza, Ocamcalib: Omnidirectional camera calibration toolbox for matlab, https://sites.google.com/site/scarabotix/ocamcalib-toolbox/ocamcalib-toolbox-download-page, 2012.
[41] C. Mei, Omnidirectional calibration toolbox, http://www.robots.ox.ac.uk/ ~cmei/Toolbox.html, 2012.
[42] C. Geyer, K. Daniilidis, A unifying theory for central panoramic systems and practical applications, in: Proceedings of the 6th European Conference on Computer Vision-Part II, ECCV '00, Springer-Verlag, London, UK, UK, 2000, pp. 445-461.
[43] J. Barreto, H. Araujo, Issues on the geometry of central catadioptric image formation, in: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 2, pp. II-422 - II-427 vol.2.

Luis Perdigoto received the M.S. degree in Electrical and Computer Engineering from University of Coimbra (UC), Portugal, in 2007. He is currently a Ph.D. student at the Institute for Systems and Robotics (UC) and an Assistant in the Dept. of Electrical Engineering, ESTG - Polytechnic Institute of Leiria, Portugal.

Helder Araujo is a Professor in the Department of Electrical and Computer Engineering of the University of Coimbra, Portugal. He is also a researcher at the Institute for Systems and Robotics-Coimbra. His research interests include computer and robot vision, robot navigation and localization, and sensor modeling for robot navigation and localization.

We propose a novel calibration method for non-central catadioptric systems.

We assume an axial symmetrical mirror and a pinhole camera placed on the mirror axis.
The calibration estimates the camera/mirror position and the extrinsic parameters.
The procedure requires a single image of a (possibly planar) calibration object.
The Direct-Linear-Transformation algorithm and cross-ratio are used.

[^0]: *Corresponding author. Tel.:+351 244820300; fax: +351 244820310
 Email addresses: luis.perdigoto@ipleiria.pt (Luis Perdigoto), helder@isr.uc.pt (Helder Araujo)

[^1]: ${ }^{1}$ This expression is valid for a cross-ratio calculated using the formula in A.1. Alternative formulas for the cross-ratio produce different combinations of points in the expressions of l_{i} and m_{i}

[^2]: ${ }^{2}$ In the axial geometry we are considering, when the camera is pointing at a convex mirror, the reflection is seen on the same direction (or "side") as the object is in the world. For a concave mirror, the opposite is true. In this algorithm we assume the convex case because of its far greater practical interest.

