Accepted Manuscript

Title: Ammonite-benthic Foraminifera turnovers across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal)

Author: M.H. Henriques M.L. Canales

PII:	S0016-6995(13)00072-7
DOI:	http://dx.doi.org/doi:10.1016/j.geobios.2013.06.002
Reference:	GEOBIO 648
To appear in:	Geobios
Received date:	19-11-2012
Accepted date:	27-6-2013

Please cite this article as: Henriques, M.H., Canales, M.L., Ammonite-benthic Foraminifera turnovers across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal), *Geobios* (2013), http://dx.doi.org/10.1016/j.geobios.2013.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Elsevier Editorial System(tm) for Geobios Manuscript Draft

Manuscript Number: GEOBIO-D-12-00066R2

Title: Ammonite-benthic foraminifera turnovers across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal)

Article Type: Original article / Article original

Keywords: Ammonite-Benthic Foraminifera Biostratigraphy; Lower-Middle Jurassic; Lusitanian Basin; faunal turnovers; "Comptum cooling event".

Corresponding Author: Prof. Maria Helena Paiva Henriques, PhD

Corresponding Author's Institution: University of Coimbra

First Author: Maria Helena Paiva Henriques, PhD

Order of Authors: Maria Helena Paiva Henriques, PhD; Maria Luisa Canales, PhD

Abstract: This paper describes and characterises the co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião outcrop (Central Portugal), a reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The upper Toarcian-lower Aalenian marls and marly-limestones in this section provide a precise and detailed ammonite-based biostratigraphic zonation, with a mixed assemblage of northwest European and Mediterranean faunal elements, associated with benthic foraminifera assemblages with northern hemisphere affinities, both correlatable with the Aalenian GSSP at the Fuentelsaz section (Iberian Cordillera, Spain). A total of 447 well-preserved ammonite specimens and 13.116 foraminifera have been studied and no evidence was detected of any taphonomic processes that could have changed the original assemblages. From a biostratigraphic point of view, the ammonite record has enabled 4 biostratigraphic units to be recognised (the Mactra and Aalensis subzones of the Aalensis Biozone in the upper Toarcian, and Opalinum and Comptum subzones of the Opalinum Biozone in the lower Aalenian). With regard to the benthic foraminifera, the taxa identified have enabled the Astacolus dorbignyi Zone and 11 bioevents to be identified, most of which representing local biostratigraphic proxies. However, the increase in the relative abundance of Lenticulina exgaleata Dieni from the upper part of the Opalinum Subzone to the lower part of the Comptum Subzone indicates regional value. The constant and continuous ammonite record of northwest European taxa, together with typical Mediterranean taxa - namely Grammoceratinae - throughout the section, the high relative abundance of representatives of Miliolina - generally interpreted as foraminifers typical of shallow waters -, and the absence of foraminiferal forms typical of cool waters, do not support the inference of cool seawaters temperatures attributed to the Early Aalenian, or the global character of the "Comptum cooling event", at least with reference to the Lusitanian Basin.

Ammonite-benthic Foraminifera turnovers across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal)^{*}

M.H. Henriques^{a,*}, M.L. Canales^b

^a Department of Earth Sciences and Geosciences Centre, Faculty of Sciences and Technology, University of Coimbra; Largo Marquês de Pombal, 3000-272 Coimbra, Portugal.

^b Department and UEI of Paleontology, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid-CSIC; José Antonio Novais, 2, 28040 Madrid, Spain.

* Corresponding author. E-mail address: <u>hhenriq@dct.uc.pt</u> (M.H. Henriques).

* Corresponding editor: Fabienne Giraud-Guillot.

Abstract

This paper describes and characterises the co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião outcrop (Central Portugal), a reference section for the Lower-Middle Jurassic boundary in the Lusitanian Basin. The upper Toarcian-lower Aalenian marls and marly-limestones in this section provide a precise and detailed ammonitebased biostratigraphic zonation, with a mixed assemblage of northwest European and Mediterranean faunal elements, associated with benthic foraminifera assemblages with northern hemisphere affinities, both correlatable with the Aalenian GSSP at the Fuentelsaz section (Iberian Cordillera, Spain). A total of 447 well-preserved ammonite specimens and 13.116 foraminifera have been studied; no evidence was detected of any taphonomic processes that could have changed the original assemblages. From a biostratigraphic point of view, the ammonite record has enabled 4 biostratigraphic units to be recognised (the Mactra and Aalensis subzones of the Aalensis Biozone in the upper Toarcian, and the Opalinum and Comptum subzones of the Opalinum Biozone in the lower Aalenian). With regard to the benthic foraminifera, the taxa identified have enabled the Astacolus dorbignyi Zone and 11 bioevents to be identified, most of which representing local biostratigraphic proxies. However, the increase in the relative abundance of Lenticulina exgaleata Dieni from the

upper part of the Opalinum Subzone to the lower part of the Comptum Subzone has a regional value. The constant and continuous ammonite record of northwest European taxa, together with typical Mediterranean taxa – namely Grammoceratinae – throughout the section, the high relative abundance of Miliolina representatives – generally interpreted as foraminifers typical of shallow waters –, and the absence of foraminiferal forms typical of cool waters, do not support the inference of cool seawaters temperatures attributed to the Early Aalenian, or the global character of the "Comptum cooling event", at least with reference to the Lusitanian Basin.

Keywords:

Ammonite-benthic Foraminifera biostratigraphy Lower-Middle Jurassic Toarcian Aalenian Lusitanian Basin Faunal turnover "Comptum cooling event"

1. Introduction

Ammonites are the best fossil group for dating Jurassic marine sediments, but when these fossils are poorly preserved, scarce or almost impossible to obtain (e.g., in core samples), alternative biostratigraphic scales based on other fossil groups are needed. In recent decades, there have been some attempts to establish biostratigraphic scales based on benthic foraminifera. The precision and validity of such scales is greater when they can be calibrated with accurate biostratigraphic charts based on ammonites, as done in this work. The stratigraphic range of most of the Jurassic foraminiferal species is relatively wide; therefore, identification of bioevents such as first occurrences (First Appearance Datum, FAD), last occurrences (Last Appearance Datum, LAD) or noticeable changes in assemblage diversity or in the relative abundance of some taxa, can be a useful biostratigraphic tool. Hence, the aim of this work is to describe for the first time the detailed co-occurrence of ammonite and benthic foraminiferal assemblages across the Toarcian-Aalenian boundary at the São Gião section (Lusitanian Basin, Central Portugal), and to recognise the corresponding biostratigraphic

units, thus contributing to a better calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary on the basis of different fossil groups.

The São Gião section is a classical outcrop of the Lower-Middle Jurassic boundary in the Lusitanian Basin, where previous works on ammonites were carried out by Mouterde et al. (1979) and Caloo-Fortier (1985). It is one of the few areas in Europe where this time interval is represented by an expanded section, showing exceptional exposure conditions along highly fossiliferous marly-limestones sediments approximately 45 m-thick, displaying a continuous record of ammonites. Moreover, the relevance of the Grammoceratinae content for palaeobiogeographic reconstructions of the western Tethys (Sandoval et al., 2012a), as well as the significant Pleydellia and Leioceras record, both justified the proposition of the São Gião section as a reference section for the Toarcian-Aalenian boundary in the Lusitanian Basin (Henriques, 1989, 1992, 2000a; Henriques et al., 1996; Goy et al., 2000; Sandoval et al., 2001a; Azerêdo et al., 2003). More recently, other fossil groups in the section have been studied, namely calcareous nannofossils (Henriques and Perilli, 2000), and most particularly benthic foraminifera (Magno et al., 2008; Magno, 2010; Canales et al., 2010). These studies all suggested the importance of analysing the detailed vertical co-occurrence of ammonite and benthic foraminifera assemblages across the Toarcian-Aalenian boundary at the São Gião section, in order to identify major faunal changes both on macrofossil and microfossil assemblages.

The bioevents recognised in the benthic foraminifera record, accurately calibrated here using ammonite-based biostratigraphic units, represent a proxy that can be used to determinate both the age and depositional environment assigned to core samples (Canales et al., 2010). Moreover, they allow the interpretation of previous data on palaeotemperature changes established for neighbouring basins located around the Iberian Plate, e.g., in the southern and northern palaeomargins (O'Dogherty et al., 2006; Sandoval et al., 2008; Gómez et al., 2009), as well as in more distant, boreal regions such as the Hebrides Basin (Price, 2010), where close relationships between major faunal-flora turnovers and isotopic fluctuations in δ^{13} C have been recognised (Aguado et al., 2008; Sandoval et al., 2012b).

2. Geographic and geological settings

The São Gião section is located in the northern sector of the Lusitanian Basin (Central Portugal), at about 5 km to the South-Southwest of Cantanhede village, near Zambujal (coordinates: 40°18'12.63''N, 8°37'17.58''W; altitude: 100 m; Fig. 1). The section is composed of greyish marly limestones, more or less compact, in regular beds with thicknesses

ranging from 0.10 to 0.30 m, alternating with slightly thicker greyish marl beds organised in shallowing-upward units and deposited in an external marine platform environment. The limestone component progressively increases towards the top of this unit, which corresponds to the upper part of the Póvoa da Lomba Formation (upper Toarcian-upper Aalenian).

The Póvoa da Lomba Formation was firstly informally defined by Barbosa et al. (1988, 2008) as a lithostratigraphic unit named the "Calcários Margosos de Póvoa da Lomba" ("Póvoa da Lomba Marly Limestones"), and later formalised as the Póvoa da Lomba Formation by Azerêdo et al. (2003). It corresponds laterally to the lower part of the Cabo Mondego Formation which outcrops at the west of the basin, the upper part of the Prado Formation outcropping eastwards, and the top of the Fórnea Formation / base of the Barranco de Zambujal Formation which outcrops in the southeast of the basin (Azerêdo et al., 2003; Fig. 2).

3. Material and methods

In order to study the ammonite record, 44 successive bed-by-bed samplings were obtained from 36 marly-limestone beds and 8 marly beds. A total of 447 ammonite specimens were collected and identified according to the systematic classification proposed by Henriques (1992).

A total of 24 marly beds were sampled for the study of the benthic foraminiferal assemblages, taking into account the thickness of each ammonite subzone. For each sample, 300 g were processed in the laboratory using a classical methodology involving a mixture of sodium hydroxide, hydrogen peroxide and water for 2-3 days. Following this, the samples were washed over a column of 1.000, 0.500, 0.250, 0.125 and 0.060 mm mesh sieves. The dry residues were weighed and subsequently picked to obtain the foraminifera using a Wild M-8 binocular microscope. The specimens recovered were classified, at suprageneric and generic rank, using the Loeblich and Tappan (1988) systematic; the Ellis and Messina (1940-1990) foraminifera catalogue was consulted for the specific rank classification. Photographs of the figured specimens were taken at the Centro Nacional de Microscopía Electrónica, Universidad Complutense de Madrid (Spain), using a JEOL-JSM 6400 electronic microscope.

The species richness and relative abundances were calculated for both fossil groups. Species richness is understood as the number of species (or other taxonomical category) in a sampling unit, in relation to the total number of identified species (or other taxa). Relative abundances are expressed as percentages, in relation to the total number of specimens obtained in each assemblage. All the ammonite and foraminifera specimens (including the

residues of the samples studied) are stored in the Laboratório de Geologia Sedimentar e Registo Fóssil, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, University of Coimbra (Portugal).

4. Taphonomic considerations

The preservational features of the ammonite assemblages can be characterised according to several taphonomic parameters described for *Tmetoceras* from Iberia (Fernández López et al., 1999a, 1999b) and for other ammonites from the Lower Pliensbachian of Portugal (Fernández López et al., 2000). Marly limestones mainly record resedimented elements, whereas accumulated shells are virtually absent and re-elaborated elements are scarce. Ammonite assemblages are composed of incomplete phragmocones normally filled with sediment and, in general, appear scattered in the sediment, showing no pattern of imbricate or encased grouping. Complete shells are scarce and pyritic internal moulds are only found locally and assigned to marly levels. The degree of ammonite packing – estimated by the difference between the number of specimens and the number of fossiliferous levels divided by the number of fossiliferous levels –, and the ammonite stratigraphical persistence – i.e., the proportion of fossiliferous levels – presents high values (9.15 and 38%, respectively), whereas the degree of taphonomic heritage – i.e., the percentage of reelaborated elements – is very low to nil.

The ratio between the amount of preserved elements and the amount of species is high (26.3), making specific diversity, i.e., the inverse ratio, relatively low (0.04); adult shells are scarce. These taphonomic features, by disproving sorting processes involving mechanical transport, support the demic nature of the fossil assemblages, as pointed out by Fernández López and Meléndez (1995) for the Phylloceratina and by Fernández López et al. (1999b) for the *Tmetoceras* of the Iberian basins during the Middle Jurassic.

Concerning the benthic foraminifera record, most of the 13.116 specimens recovered are very well preserved. From a taphonomic point of view, only breakages, sedimentary infillings of the chambers, dissolution (partial or even total, as is the case for some representatives of the Family Ceratobuliminidae), distortion and recrystallisation (Herrero and Canales, 2002) were observed in some specimens, but no evidence of any alteration of the assemblages can be inferred. The last two studied samples come from harder sediments and, as a consequence, the surface of the specimens appeared to be covered by calcite crusts, thus hindering their taxonomic identification at specific rank.

5. Results

The co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião section provides a precise and detailed ammonite-based biostratigraphic zonation as well as an alternative biostratigraphic scale based on benthic foraminifera. In addition, the identification of bioevents, such as FADs, LADs or noticeable changes in assemblages' species richness or in the relative abundance of some taxa in both fossil groups, may prove to be a useful biostratigraphical proxy. Such bioevents are, so far, considered to be of local application. It is expected that future analyses in the same basin or in other basins will allow for correlations between different sections, based on some of these bioevents. Moreover, the taxonomic composition of the assemblages and the recognised bioevents in the São Gião section provide relevant palaeoecological data for ongoing discussions on the relationships between major faunal turnovers and palaeotemperature changes during the Early-Middle Jurassic transition.

5.1. Ammonite and benthic foraminiferal assemblages

The ammonite record of the São Gião section mainly includes some typical northwest European Grammoceratinae (*Catulloceras, Cotteswoldia, Pleydellia*) in the upper Toarcian, and Leioceratinae (*Leioceras, Cypholioceras*) in the lower Aalenian, together with typical Mediterranean Grammoceratinae (*Vacekia*), Tmetoceratinae (*Tmetoceras*) and rare Hammatoceratidae (*Bredya* and *Czerneyiceras*) (Fig. 3). No typically Tethysian phylloceratids were found among the 20 species identified (some of which are represented in Fig. 4).

The foraminiferal assemblages recorded along the stratigraphic interval are very abundant and display a high species richness (Figs. 5, 6). A total of 71 species (some of which are represented in Figs. 7, 8), corresponding to 26 genera and 5 suborders, have been identified, all typical of the Jurassic platforms in the northern hemisphere.

5.1.1. Upper Toarcian, Aalensis Biozone, Mactra Subzone

Samples SG1-SG8; 3.5 m of 0.70 m-thick greyish marls alternating with 0.15 m-thick lenticular greyish marly limestones with abundant ammonite content.

Index fossil: Pleydellia mactra (Dumortier).

The ammonite assemblage recognised in this subzone, which corresponds to 6 fossiliferous levels, reveals low number of specimens (16) but a relatively high number of species (5 identified species corresponding to 2 genera). Most specimens correspond to the

Cotteswoldia genus, namely *C. limatula* Buckman, *C. egena* Buckman, and *C. costulata* (Zieten) (representing 38% of the identified specimens), and the *Pleydellia* genus, namely *P. fluens* (Buckman) and *P. subcompta* Branco (also representing 38% of the identified specimens) (Table S1, Appendix A). The latter is a significant component of the recorded assemblages, as it represents earlier *Pleydellia*, thus characterising the subzone, whose base is recognised by the FAD of these forms.

The only foraminiferal assemblage studied from the Mactra Subzone corresponds to sample SG8 (Table S2). A total of 469 specimens were obtained, 434 (93%) of which were identified at specific level. Taking into account the number of grams of picked sediment, in this sample the abundance amounts to 60.5 foraminifera per gram of picked sediment. In this assemblage, 4 suborders (Spirillinina, Miliolina, Lagenina and Robertinina) were identified, in which Lagenina was the most abundant (87%). Spirillinina and Miliolina occur in percentages of less than 4% and Robertinina is known from a single specimen. The total absence, in this assemblage, of representatives of the Textulariina Suborder is notable, given that these are present, even if in small numbers, in Lower-Middle Jurassic foraminiferal assemblages of other coeval basins (Canales and Herrero, 1996, 2000; Canales and Ureta, 1997; Canales, 2001; Canales and Henriques, 2007, 2008; Figueiredo, 2009; Canales et al., 2010; Figueiredo et al., 2010; Guterres, 2010; Magno, 2010; Figueiredo and Guterres, 2012). At generic level, a total of 13 genera were identified, in which Lenticulina, with a relative abundance of 77%, clearly predominates. On a specific level, a total of 31 species were identified, of which Lenticulina polygonata (Franke) was the most abundant (19%). There was no evidence of any single species dominating over the others (Table S2).

5.1.2. Upper Toarcian, Aalensis Biozone, Aalensis Subzone

Samples SG9-SG33; 7.5 m of greyish marls with thicknesses varying from 0.15 to1.10 m, alternating with 0.15 m-thick of bioturbated greyish marly limestones, displaying very abundant, sometime pyritised ammonite internal moulds.

Index fossil: Pleydellia aalensis (Zieten).

Other biostratigraphic units have been proposed for the upper part of the Aalensis Biozone. Page (2003) uses *P. fluitans* as index for the Fluitans Subzone. However, *P. fluitans* has a scarce record in the Lusitanian Basin and, as pointed by Elmi et al. (1997: p. 34), "sa position stratigraphique au sein de la zone à Aalensis ne nous paraît pas bien établie, ce qui justifie son abandon en tant qu'indice". Concerning the Lugdunensis Subzone, it has been established due to traditional misinterpretations of *P. aalensis* (Zieten) by some authors.

According to Elmi et al. (1997: p. 34), "L'école française utilisait une sous-zone à Aalensis pour cet intervalle de temps [Sous-zone à Lugdunensis] en faisant référence à l'espèce figurée par Dumortier (1874, pl. L, fig. 1-3) qui est bien différente du type de Zieten [...]. Afin d'éviter de pérenniser les confusions, nous proposons le nouveau nom de *Pleydellia* (*Walkericeras) lugdunensis* [...]" for the French forms of *Walkericeras*, previously interpreted as *P. aalensis sensu* Dumortier *non* Zieten, the original author of the *aalensis* species. But the Aalensis Biozone, based on the occurrence of its index fossil – *P. aalensis* (Zieten), i.e., specimens displaying rounded umbilical wall and variable ribbing during ontogeny, according to the original interpretation by Zieten (1830) –, is perfectly recognizable in several basins around the Iberian Plate, where correlation has been already established (e.g., Goy et al., 2000), including at Fuentelsaz, the Aalenian GSSP.

The ammonite assemblage recognised in the Aalensis Subzone of the Aalensis Biozone, which corresponds to 12 fossiliferous levels, reveals high abundance (140 specimens, 118 of which identified at the species level) and high number of taxa (10 identified species; 4 identified genera) (Table S3). The base of the subzone is defined by the FAD of the index species *P. aalensis* (Zieten, 1830 *non* Dumortier, 1874), which dominates amongst the fauna (39 specimens representing 33% of the identified specimens), in association with *P. folleata* (Buckman). The base of the subzone also records the last occurrence of *P. subcompta* Branco and *P. fluens* (Buckman). *Cotteswoldia costulata* (Zieten) (18% of the identified speciemsn), *C. limatula* Buckman and *C. egena* Buckman, which occur in the previous subzone, still remain here. Last *Catulloceras* occur together with the first *Tmetoceras*; *Vacekia sourensis* (Perrot) and early striate *Vacekia*, like *V. striata* Henriques (Sandoval et al., 2012a), are also relatively abundant (10% of the identified specimens). The marly levels of the thick SG14 bed reveal a great abundance of indeterminate pyritised *Cotteswoldia* and *Pleydellia* nucleus (Table S3).

Four foraminiferal assemblages (samples SG12, SG18, SG24 and SG32) from the Aalensis Subzone were studied (Table S4). A total of 2.006 specimens were recovered, 1.922 of which were identified at the specific level. The average abundance in these assemblages amounts to 94 foraminifera per gram of picked sediment. At suborder level, representatives of Textulariina, Spirillinina, Miliolina, Lagenina and Robertinina were identified, within which Lagenina was the most abundant (82% of the assemblage), followed by Miliolina (15%). This fact is remarkable, since representatives of this suborder, when present in Toarcian-Aalenian foraminiferal assemblages, are usually very rare (Herrero and Canales, 1997; Canales and Herrero, 2000; Canales, 2001; Henriques and Canales, 2007, 2008; Figueiredo, 2009;

Figueiredo et al., 2010; Figueiredo and Guterres, 2012). The remaining suborders show relative abundances of less than 2%. At generic level, 18 genera were identified in these assemblages and, again, the representatives of the genus *Lenticulina*, representing 69% of the assemblage, were dominant. Moreover, the large amount of specimens corresponding to the genus *Vinelloidea* (Miliolina Suborder), whose relative abundance amounts to 15%, is noticeable. A great number of species (45 in total) have been identified in these assemblages. Among them, *Lenticulina toarcense* Payard is the most abundant (18% of the assemblage), but no single species was markedly dominant (Table S4).

5.1.3. Lower Aalenian, Opalinum Biozone, Opalinum Subzone

Samples SG34-SG54; 8 m of alternating greyish marly limestones in 1 m-thick beds, and thin micritic marly limestones in 0.20 m-thick beds, including very abundant, sometime pyritised ammonite internal moulds.

Index fossil: Leioceras opalinum (Reinecke).

The ammonite assemblage recognised in this subzone corresponds to 7 fossiliferous levels, displaying the greatest abundance and species richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; 5 identified genera; Table S5). The base of the subzone is characterised by the FAD for Leioceras opalinum (Reinecke), which appears in association with *Pleydellia* representatives until bed SG35, where the LAD for this taxon is recorded (Fig. 3). P. aalensis (Zieten), P. folleata (Buckman), P. lotharingica (Buckman) and P. fluitans (Dumortier) co-exist at the base with the first Leioceratinae, representing 48% of the total recorded assemblages in this subzone, followed by Vacekia representatives, mainly V. striata Henriques (10%). Cypholioceras lineatum (Buckman), Leioceras opalinum (Reinecke) and indeterminate species of both genera represent only ~11% of the recorded ammonite specimens. Rare Czerneviceras also feature in the ammonite assemblages of this unit, in which the LAD of several taxa have been identified – namely *Pleydellia*, *Cotteswoldia* and *Catulloceras* – together with the FAD of others – *Cypholioceras*, Leioceras and Czernyeiceras -, corresponding to an important ammonite turnover from the typical Late Toarcian taxa to the characteristic early Aalenian taxa. This turnover, which can be accurately assigned to the Opalinum Subzone, is particularly well documented by the SG35 assemblage in the São Gião section (Table S5).

Seven foraminiferal assemblages from the Opalinum Subzone were studied (samples SG34, SG36, SG38, SG44, SG48, SG52 and SG54; Table S6). A total of 3.285 specimens were recovered, 3.012 of which have been identified at the specific level. The average

abundance in these assemblages reaches 74 foraminifera per gram of picked sediment. As in the previous subzone, 5 suborders were identified, namely Textulariina, Spirillinina, Miliolina, Lagenina and Robertinina, and again, Lagenina is the dominant suborder (91%), followed by Miliolina (4%) and Spirillinina (3%). TheTextulariina and Robertinina are very rare (<2%). A total of 19 genera were identified, within which representatives of *Lenticulina* genus still predominate. Within the unit, a total of 53 species were identified, which exceeds the number obtained for the Aalensis Subzone. There is no evidence for the dominance of any single species, although the most abundant is *Lenticulina helios* (Terquem), with a relative abundance of 19% (Table S6).

5.1.4. Lower Aalenian, Opalinum Biozone, Comptum Subzone

Samples SG55-SG119; 28 m-thick of greyish marls of irregular thickness ranging from 0.20 to 2 m, alternating with limestones, which are marly and grey at the base, becoming whiter and more micritic towards the top of the succession.

Index fossil: Cypholioceras comptum (Reinecke).

The ammonite assemblage recognised in this subzone, which corresponds to 20 fossiliferous levels, reveals relatively high number of specimens (138 specimens; 70 identified at the species level) and high number of taxa (8 identified species belonging to 4 different genera and 2 indeterminate species, one of *Bredyia* and another of *Czernyeiceras*) (Table S7). The base of the subzone is defined by the FAD of the fossil index, associated to other species of the genus *Cypholioceras – C. opaliniforme* (Buckman) and *C. lineatum* (Buckman), representing 27% of the identified specimens –, and forms of *Leioceras* ranging from the striated *L. opalinum* (Reinecke) to the costulated *L. costosum* (Quenstedt), which represent 20% of the identified specimens. All Leioceratinae disappear at SG107, where the facies abruptly changes to micritic white limestones. *Vacekia striata* Henriques and *V. sourensis* (Perrot), as well as *Tmetoceras scissum* (Benecke) persist within this subzone, the former being quite significant (26% of the identified specimens) within the unit as a whole, and particularly when Leioceratinae are less abundant or absent (Table S7).

Taking the significant development of the Comptum Subzone in the São Gião section into account, 12 foraminiferal assemblages were studied (samples SG56, SG62, SG64, SG68, SG74, SG78, SG86, SG90, SG92, SG96, SG108 and SG112; Table S8). A total of 7.363 specimens were recovered, 7.071of which were identified at specific level. Again, specimens corresponding to the Textulariina, Spirillinina, Miliolina, Lagenina and Robertinina suborders were obtained, with the Lagenina Suborder dominating (76%). Representatives of the

Miliolina Suborder show a relative abundance of 19%. Again, the representatives of this suborder are more frequent than in coeval Upper Toarcian-Lower Aalenian Iberian sections (Herrero and Canales, 1997; Canales and Herrero, 2000; Canales, 2001; Henriques and Canales, 2007, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Figueiredo and Guterres, 2012). In these assemblages, the representatives of the remaining suborders are rare and all display relative abundances <3%, or even <1% in the case of Robertinina. A total of 24 genera were identified, with the representatives of the genus *Lenticulina* again presenting the highest relative abundance (56%) and dominating over the remaining genera. The relative abundance of other genera such as *Vinelloidea* (9%), *Ophthalmidium* (9%), *Nodosaria* (6%), *Astacolus* (6%), *Prodentalina* (4%) and *Ammobaculites* (2%) is also notable, since they were much rarer in previously studied assemblages. Finally, a total of 63 species were identified, of which *Lenticulina helios* (Terquem) is the most abundant (13%) (Table S8).

5.2. Biostratigraphic significance of the recorded assemblages

The ammonite record (447 specimens, 20 species, 9 genera) for the São Gião section has enabled 4 biostratigraphic units to be recognised: the Mactra and Aalensis subzones of the Aalensis Biozone in the Upper Toarcian, and the Opalinum and Comptum subzones of the Opalinum Biozone in the Lower Aalenian (Fig. 3). This biostratigrahic zonal scheme has been already recognised in the Lusitanian Basin, as well as in other coeval basins of the Iberian Peninsula (Henriques, 1995; Henriques et al., 1996; Sandoval et al., 2001a), namely at the Fuentelsaz section (Iberian Cordillera), where the Aalenian GSSP has been established (Cresta et al., 2001).

From a biostratigraphic point of view, the benthic foraminifera identified in São Gião (13.116 specimens, 71 species, 26 genera, 5 suborders) allow for the recognition of the *Astacolus dorbignyi* Zone – in the sense of the Dorbignyi Zone proposed by Canales (2001) in the Basque-Cantabrian Basin (Northern Spain) for the Lower-Middle Jurassic transition –, with *Astacolus dorbignyi* (Roemer) serving as the index fossil (Fig. 6). This zone has also been recognised in other sections of the Lusitanian Basin (Figueiredo, 2009; Guterres, 2010; Magno, 2010; Canales et al., 2010; Figueiredo et al., 2010; Figueiredo and Guterres, 2012). Its lower boundary is marked by the first record of the index species, previously unrecognised in the Lusitanian Basin, whose upper boundary coincides with the first record of *Lenticulina quenstedti* (Gümbel), the index species for the *Lenticulina quenstedti* Zone, which has been characterised as belonging to the upper part of the Gigantea Subzone (Bradfordensis Biozone,

Middle Aalenian) at the Bajocian GSSP in the Murtinheira section (Portugal) (Canales and Henriques, 2013).

6. Discussion

The composition of the ammonite assemblages in the São Gião section is cosmopolitan in nature, with a constant and continuous record of both northwest European taxa – thus allowing the recognition of the standard biozonation established for the Lower-Middle Jurassic transition –, together with typical Mediterranean taxa – thus increasing its correlation potential with sections located in both provinces. Both reproduce the general trends already recognised in other coeval sections of the Lusitanian Basin and of the Iberian Plate (Henriques, 1989, 1992, 1995, 2000a, 2000b; Henriques et al., 1996; Goy et al., 2000; Sandoval et al., 2001a; Azerêdo et al., 2003), although the ammonite content displays some peculiarities of stratigraphic and palaeoecological relevance, as discussed below (Sections 6.1. and 6.3.).

The general composition of the foraminiferal assemblages recorded in São Gião is also comparable with other coeval sections, not only in the Lusitanian Basin (Canales and Henriques, 2007, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Guterres, 2010; Magno, 2010; Figueiredo and Guterres, 2012), but also in other Iberian sections (Canales and Herrero, 1996, 2000; Canales and Ureta, 1997; Herrero and Canales, 1997; Canales et al., 2000; Canales, 2001). However, like the ammonite fauna, the foraminiferal assemblages display some peculiarities in terms of their species richness and the main components of the assemblages, which are also of stratigraphic and palaeoecological relevance, as discussed below (Sections 6.2. and 6.3.).

6.1. Ammonite record and stratigraphic implications

With regard to the stratigraphic range of the index species *Pleydellia aalensis* (Zieten) and *Leioceras opalinum* (Reinecke), their co-existence at the base of the Opalinum Subzone has been clearly confirmed, corresponding to a bioevent recognisable at basinal scale (Fig. 4(C)). The base of the Opalinum Subzone therefore has to be established by the FAD of the latter, and not by its FAD concomitant with the LAD of *Pleydellia aalensis* (Zieten) (Fig. 6). Similarly, the co-occurrence of *Leioceras opalinum* (Reinecke) and the FAD of *Cypholioceras comptum* (Reincke) at the base of the Comptum Subzone ignores the extinction of the former as a criterion for recognising the Opalinum-Comptum subzone boundary (Fig. 4(J)).

The increase in the relative abundance of *Vacekia* representatives in the upper part of the Comptum Subzone is a relevant bioevent, at least with regional value, allowing the subzone to be recognised in sections of the Lusitanian Basin where the last Leioceratinae representatives are generally rare or absent (Fig. 3).

6.2. Foraminiferal record and stratigraphic implications

With regard to benthic foraminifera species richness, a total of 57 species where identified in the stratigraphic interval studied in the Zambujal de Alcaria section (Figueiredo, 2009; Figueiredo et al., 2010), 45 in the Maria Pares section (Guterres, 2010; Figueiredo and Guterres, 2012), and 35 in the Murtinheira section (Canales and Henriques, 2008), all of which lie in the Lusitanian Basin. In addition, a total of 50 species where obtained from different sections of the Basque-Cantabrian Basin in Northern Spain (Canales, 2001). In the Moyuela section, located in the Iberian Range (Spain), 47 species were identified along the Upper Toarcian and Lower Aalenian transition (Canales and Herrero, 2000), whilst in the Fuentelsaz section (Aalenian GSSP), also located in the Iberian Range, a total of 62 species were obtained (Herrero and Canales, 1997). As a consequence, and taking into account the fact that a total of 71 species have been identified in São Gião, this section is the most diverse of the Iberian basins in terms of this stratigraphic interval.

Regarding the taxonomical composition of the assemblages, as commonly occurs in Jurassic foraminiferal assemblages from the Boreal Realm, *Lenticulina* (Lagenina Suborder) is the most abundant genus. In the São Gião section, the most abundant species of this genus in almost all of the assemblages is *L. helios* (Terquem). Canales et al. (2010) have pointed out that the different species of *Lenticulina* recorded in the Lower-Middle Jurassic transition in several sections of the Lusitanian Basin show variations in their relative abundances which can be related to the facies where they developed. Thus, *L. muensteri* (Roemer) is relatively more abundant in facies corresponding to the deeper part of the platform, whilst *L. helios* (Terquem) reaches maximum relative abundance in the middle platform, and *L. toarcense* Payard is most abundant in facies corresponding to the shallower part (the inner platform).

Other Lagenina genera with unusually high relative abundance, such as *Prodentalina*, *Nodosaria* and other elongated forms, corresponding to shallow infaunal morpho-groups and indicating good levels of nutrients and oxygenation in the infaunal microhabitats (Reolid et al., 2012), have been recorded in the Comptum Subzone. The abundant record of representatives of the Miliolina Suborder, which are present in almost all the studied

assemblages, and are unusually frequent in the Aalensis and in the upper part of the Comptum subzones, is also notable.

The foraminiferal assemblages recorded are abundant and very diverse. Within the studied time span, there are no significant arrivals or disappearances of taxa – the whole stratigraphic interval corresponds to a single foraminiferal zone: the Astacolus dorbignyi Zone. For this reason, a total of 11 bioevents, based on FAD, LAD or change in the observed abundance of some taxon or in assemblage diversity have been established, representing biostratigraphical proxies generally of local application (Fig. 6). Nevertheless, some of them, e.g., the increase in the relative abundance of Lenticulina exgaleata Dieni from the upper part of the Opalinum Subzone to the lower part of the Comptum Subzone, have also been recognised in other coeval sections in the Lusitanian Basin (Canales and Henriques, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Guterres, 2010), thus demonstrating regional value. The FAD of Nodosaria hortensis Terquem in the Aalensis Subzone and the marked increase in the relative abundance of *Ophthalmidium* representatives in the lower part of the Comptum Subzone have been also recognised in the Zambujal de Alcaria Section (Figueiredo, 2009; Figueiredo et al., 2010). The increase observed in the relative abundance of the representatives of the Textulariina Suborder, as well as in *Eoguttulina liassica* (Strickland) in the upper part of the Comptum Subzone, have also been recognised in the Murtinheira section (Canales and Henriques, 2008).

6.3. Faunal turnovers and seawater palaeotemperatures

A previous study on morphological changes observed in ammonites at the Lias-Dogger boundary, questioned the existence of a faunal crisis during the Late Toarcian-Early Aalenian times (Neige et al., 2001). The ammonite composition of the assemblages throughout the Upper Toarcian-Lower Aalenian record for the São Gião section also shows a virtually constant rate of faunal turnover, i.e., no drastic changes in the number of originations and extinctions between ammonite biozones, unlike the coeval record described for the Betic Cordillera. The Toarcian-Aalenian ammonite record is represented in this case by a major faunal turnover which has been correlated with a sea-level regressive phase (Sandoval et al., 2001b) and relatively low δ^{13} C values for bulk carbonates in the Upper Toarcian, followed by a moderate positive excursion of the $\delta^{13}C_{carb}$ in the Comptum Subzone (Sandoval et al., 2008). This "Comptum cooling event" was also noted by Gómez et al. (2009) for the Basque-Cantabrian Basin (Northern Spain), in relation to a major faunal turnover in the ammonite and foraminiferal records; a seawater temperature of 15.7°C based on $\delta^{18}O_{bel}$ has been proposed

for this time interval. Price (2010) proposes a seawater temperature of 15-22°C for the Early Aalenian with rapid cooling to a minimum of 7°C for the Comptum Subzone based on the positive isotopic excursion recognised in the $\delta^{18}O_{bel}$ curves for the Aalenian and Bajocian of Scotland; he therefore supports the global range of the "Comptum cooling event". However, the Comptum Subzone of the São Gião section is characterised by the co-occurrence of northwest European Leioceratinae taxa and Mediterranean Grammoceratinae, namely the dominant *Vacekia striata* Henriques, which may amount to 30% of the total identified specimens within the whole unit, a feature also recognised at basinal scale (Sandoval et al., 2012a).

Among the foraminifers, miliolids, generally interpreted as typical of shallow waters (Copestake and Johnson, 1981; Haynes, 1981; Stam, 1985; Murray, 1989), have a continuous and relatively abundant record in this section. This group amounts to 19% of the total assemblage from the Comptum Subzone in São Gião, but is rare in the Aalenian GSSP (Herrero and Canales, 1997), and absent in all coeval sections of the Basque-Cantabrian Basin (Canales, 2001) and the Northern Iberian Range (Canales and Herrero, 2000). In the Lusitanian Basin, Miliolina are rare in distal and proximal facies (Canales and Henriques, 2008; Figueiredo, 2009; Figueiredo et al., 2010), but represent 7% of the relative abundance in intermediate facies (Guterres, 2010; Figueiredo and Guterres, 2012), such as those of the São Gião section. Regarding the taxonomical composition of the foraminiferal assemblages described in the Basque-Cantabrian Basin (Northern Spain), and in relation to the "Comptum cooling event", 14 species present their FAD within this time interval (Gómez et al., 2009). Most of them, apparently typical of cool waters, are absent in São Gião and, whenever present, record is scarce, both in terms of stratigraphic distribution and relative abundance.

As a consequence, the results obtained from the compositional analysis of the ammonite and foraminiferal assemblages recorded in the São Gião section do not support the inferred cooling trend to minimum seawater temperatures, or the global character of the "Comptum cooling event". Local reasons must be cited in order to justify the warmer seawater temperature trend in the Lusitanian Basin as inferred here from the ammonite and foraminiferal records, specifically in relation to the palaeogeographic location of the basin within the context of the opening of the North Atlantic Ocean (García-Frank et al., 2008) and/or the hypothetical connection between Western Tethys and the Eastern Pacific through the Hispanic Corridor (Arias, 2006, 2007; Sandoval et al., 2012a). Hydrothermal activity and/or changes in oceanic circulation patterns are plausible explanations for the occurrence of

warmer seawater temperatures in this sector of the Lusitanian Basin, as opposed to the inferred cool seawater accepted for neighbouring basins.

7. Conclusion

The first study of the co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião section (Central Portugal) represents a contribution to knowledge of this reference section for the Lower-Middle Jurassic boundary in the Lusitanian Basin. The analysis of the macro- and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at the Fuentelsaz section (Iberian Cordillera, Spain; Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic transition based on these fossil groups, making benthic foraminifera a particularly useful biostratigraphical proxy when ammonites are poorly preserved, scarce or almost impossible to obtain (e.g., in core samples).

A total of 447 well-preserved ammonite specimens and 13.116 foraminifers have been studied and no evidences of taphonomic processes that could change the original assemblages were detected. From a taxonomic point of view, the ammonite record of the São Gião section mainly includes some typical northwest European Grammoceratinae (Catulloceras, Cotteswoldia, Pleydellia) in the Upper Toarcian, and Leioceratinae (Leioceras, *Cypholioceras*) in the Lower Aalenian, together with typical Mediterranean Grammoceratinae (Vacekia), Tmetoceratinae (Tmetoceras) and rare Hammatoceratidae (Bredya and Czerneviceras). No typically Tethysian phylloceratids were found among the 20 identified species (corresponding to 9 genera), but the relative abundance of Grammoceratinae throughout the studied time interval is noticeable, namely Vacekia striata Henriques, which accounts for 26% of the total identified specimens in the Comptum Subzone. Regarding foraminifera, the recorded assemblages are very abundant, being the most diverse in the Iberian Peninsula for this time interval. A total of 71 species, corresponding to 26 genera and 5 suborders have been identified, all typical of the Jurassic platforms of the northern hemisphere. Among the recognised suborders, Lagenina are dominant, Lenticulina being the best represented genus and Lenticulina helios (Terquem) the most abundant species. In addition, representatives of the Miliolina Suborder are also unusually frequent.

The ammonite record of the São Gião section has enabled 4 ammonite-based biostratigraphic units to be recognised (Mactra and Aalensis subzones of the Aalensis Biozone in the Upper Toarcian, and Opalinum and Comptum subzones of the Opalinum Biozone in the Lower Aalenian). With regard to benthic foraminifera, the taxa identified have

enabled the *Astacolus dorbignyi* Zone to be identified, as well as 11 bioevents based on FAD, LAD, and changes in the relative abundance of certain taxa or changes in species richness in the recorded assemblages. The constant and continuous ammonite record of northwest European taxa, together with the typical Mediterranean taxa throughout the section, the relatively high abundance of Miliolina representatives, which are usually interpreted as typical of shallow waters, and the absence of typical cool water forms, do not concur with the inferred cooling of seawater temperatures assigned to the Early Aalenian, or the global nature of the "Comptum cooling event".

Acknowledgments

This study has been supported by Projects CGL2011-23947 and CGL2011-25894 (Ministerio de Educación y Ciencia, Spain) and for the Grupo de Investigación UCM 910431 (Complutense University, Madrid, Spain). The laboratory work was supported by the Consortium Petrobras-Galp-Partex of Portugal. The authors are grateful to the Centro Nacional de Microscopía Electrónica (Complutense University of Madrid, Spain) for the SEM photographs; to Claudia Magno for the preliminary work of a part of the studied material; to Dr. Mena Schemm-Gregory for her help with the ammonite photography; to Inês Pena dos Reis for the English revision of the text; and to Dr. Gilles Escarguel, Dr. Fabienne Giraud, Dr. Pascal Neige and an anonymous reviewer for the scientific revision of the manuscript.

Appendix A. Supplementary information

Supplementary information (Tables S1-S8) associated with this article can be found, in the online version, at:

References

- Aguado, R., O'Dogherty, L., Sandoval, J., 2008. Fertility changes in surface waters during the Aalenian (mid-Jurassic) of the Western Tethys as revealed by calcareous nannofossils and carbon-cycle perturbations. Marine Micropaleontology 68, 268–285.
- Arias, C., 2006. Northern and Southern Hemispheres ostracod palaeobiogeography during the Early Jurassic: Possible migration routes. Palaeogeography, Palaeoclimatology, Palaeoecology 233, 63–95.
- Arias, C., 2007. Pliensbachian-Toarcian ostracod biogeography in NW Europe: Evidence for water mass structure evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 398–421.

- Azerêdo, A.C., Duarte, L.V., Henriques, M.H., Manuppella, G., 2003. Da dinâmica continental no Triásico aos mares no Jurássico Inferior e Médio. Cadernos de Geologia de Portugal, Instituto Geológico e Mineiro, Lisboa.
- Barbosa, B.P., Soares, A.F., Rocha, R.B., Manupella, G., Henriques, M.H.P., 1988. Carta
 Geológica de Portugal na escala de 1:50 000. Notícia explicativa da folha 19A –
 Cantanhede. Serv. Geol. Portugal, Lisboa.
- Barbosa, B.P., Soares, A.F., Rocha, R.B., Manupella, G., Henriques, M.H.P., 2008. Carta
 Geológica de Portugal na escala de 1:50 000. Notícia explicativa da folha 19A –
 Cantanhede. Dep. Geologia, Inst. Nac. Engenharia, Tecnologia e Inovação, Lisboa.
- Caloo-Fortier, B., 1985. La ligne de suture élément de comparaison des genres *Pleydellia*,
 Vacekia, *Leioceras* (Hildocerataceae), Toarcien-Aalénien, S. Gião, Portugal. Colloque
 C.I.E.L., Cahiers de l'Institut Catholique de Lyon 14, 231–253.
- Canales, M.L., 2001. Los foraminíferos del Aaleniense (Jurásico Medio) en la Cuenca Vasco-Cantábrica (N de España). Revista Española de Micropaleontología 33, 253–438.
- Canales, M.L., Henriques, M.H, 2007. Análisis cuantitativo de los foraminíferos del Aaleniense (Jurásico Medio) de la sección de Murtinheira (Cabo Mondego, W de Portugal). Consideraciones paleoecológicas, in: Carvalho, I.S., Cassab, R.C.T., Schwanke, C., Carvalho, M.A., Fernandes, A.C.S., Rodrigues, M.A.C., Carvalho, M.S.S., Arai, M., Oliveira M.E.Q. (Eds.), Paleontologia: Cenários de Vida: Editora Interciência, Brasil, v. 2, pp. 383–393.
- Canales, M.L., Henriques, M.H., 2008. Foraminifera from the Aalenian and the Bajocian GSSP (Middle Jurassic) of Murtinheira section (Cabo Mondego, West Portugal):
 Biostratigraphy and paleoenvironmental implications. Marine Micropaleontology 67, 155–179.
- Canales, M.L., Henriques, M.H., 2013. Foraminiferal assemblages from the Bajocian Global Stratotype Section and Point (GSSP) at the Cape Mondego (Portugal). Journal of Foraminiferal Research 43, 182-206.
- Canales, M.L., Henriques, M.H., Ureta, M.S., 2000. Análisis de las asociaciones de foraminíferos del Aaleniense en los márgenes oriental y noroccidental de la Placa Ibérica: implicaciones biogeográficas y bioestratigráficas. Actas do I Congresso Ibérico de Paleontología/XVI Jornadas de la Socociedad Española de Paleontología, 8–9.
- Canales, M.L., Henriques, M.H., Figueiredo, V.L., Guterres, H., 2010. Foraminifera from the Lower-Middle Jurassic of the Lusitanian Basin (Portugal) – biostratigraphic and palaeoecological significance, in: Pena dos Reis, R., Pimentel, N. (Eds.), Rediscovering

the Atlantic: new ideas for an old sea..., II Central & North Atlantic Conjugate Margins Conference Lisbon 2010, 42–46.

- Canales, M.L., Herrero, C., 1996. Análisis de la diversidad en las asociaciones de foraminíferos del Aaleniense (Jurásico) en Cillamayor y San andrés (Cuenca Vasco-Cantábrica) Tomo Extraordinario. 125 Aniversario de la Real Sociedad Española de Historia Natural, 291–294.
- Canales, M.L., Herrero, C., 2000. Asociaciones de foraminíferos del Toarciense superior y Aaleniense en la sección de Moyuela (Zaragoza, España). Revista Española de Micropaleontología 32, 301–317.
- Canales, M.L., Ureta, S., 1997. Asociaciones de ammonoideos y foraminíferos del Aaleniense en la sección de Castillo Pedroso (Cuenca Vasco-Cantábrica, España). Les Cahiers de l'Université Catholique de Lyon 10, 19–33.
- Copestake, P. and Johnson, B. 1981. The Hettangian to Toarcian (Lower Jurassic), in: Jenkins, D.G., Murray, J.W. (Eds.). Stratigraphic Atlas of Fossil Foraminifera, Ellis Horwood Limited, pp. 129–188.
- Cresta, S., Goy, A., Ureta, S., Arias, C., Barron, E., Bernad, J., Canales, M.L., Garcia-Joral, F., Garcia-Romer, E., Gialanella, P.R., Gomez, J.J., Gonzalez, J.A., Herrero, C., Martinez, G., Osete, M.L., Perilli, N. and Villalain, J.J., 2001. The Global Boundary Stratotype Section and Point (GSSP) of the Toarcian- Aalenian boundary (Lower- AaleniAalenian boundary (Lower-Middle Jurassic). Episodes 24, 166-175.
- Dumortier, E. 1874. Études paléontologiques sur les dépôts jurassiques du Bassin du Rhône, Savy, F. (Ed.).
- Elmi, S., Rulleau, L., Gabilly, J. & Mouterde, R. 1997: Toarcien, in: Cariou, E. & Hantzpergue, P. (eds.), Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations parallèles et distribution des invertébres et microfossiles. Bulletin du Centre de Recherches Elf Exploration Production 17, 25–36.
- Fernández López, S., Henriques, M.H., Linares, A., Sandoval, J., Ureta, M.S. 1999a. Aalenian *Tmetoceras* (Ammonoidea) from Iberia. Taxonomy, Habitats, and Evolution, in: Olóriz, F., Rodríguez-Tovar, F.J. (Eds.), Advancing Research on Living and Fossil Cephalopods. Kluwer Academic/Plenum Publishers, pp. 91–108.
- Fernández López, S., Henriques, M.H., Linares, A., Sandoval, J., Ureta, M.S. 1999b. Aalenian *Tmetoceras* (Ammonoidea) from Iberia. Taphonomy and Palaeobiogeography, in:
 Olóriz, F., Rodríguez-Tovar, F.J. (Eds.), Advancing Research on Living and Fossil Cephalopods. Kluwer Academic/Plenum Publishers, pp. 395–417.

- Fernández López, S., Meléndez, G., 1995. Phylloceratina ammonoids in the Iberian Basin during the Middle Jurassic: a model of biogeographical and taphonomical dispersal related to relative sea-level changes. Paleogeography, Palaeoclimatology, Palaeoecology 120, 291–302.
- Fernández López, S., Duarte, L. V., Henriques, M. H., 2000. Ammonites from lumpy limestones in the Lower Pliensbachian of Portugal: taphonomic analysis and palaeoenvironmental implications. Revista de la Sociedad Geológica de España 13, 3– 15.
- Figueiredo, V.L., 2009. Foraminíferos da passagem Jurássico Inferior–Médio do Sector Central da Bacia Lusitânica: o perfil de Zambujal de Alcaria, Ms.C. thesis, Universidade de Coimbra, Portugal (unpublished).
- Figueiredo, V.L.E., Henriques, M.H.P, Canales, M.L.F., 2010. Foraminíferos bentonicos da passagem Jurássico Inferior-Médio do sector central da Bacia Lusitânica: o perfil de Zambujal de Alcaria, B. Geoci. Petrobras 19, 207-231.
- Figueiredo, V.L. and Guterres, H.C., 2012. Análise quantitativa das associações de foraminiferos da passagem Jurássico Inferior-Médio do perfil de Maria Pares (Setor Norte da Bacia Lusitânica, Portugal - implicações paleoecológicas, in: Lopes, F. C., Andrade, A. I., Henriques, M. H., Quinta-Ferreira, M., Barata, M. T. & Pena dos Reis, R. (Coords.), Para Conhecer a Terra: Memórias e Notícias de Geociências no Espaço Lusófono, Imprensa da Universidade de Coimbra, pp. 151-159.
- García-Frank, A., Ureta, S., Mas, R., 2008. Aalenian pulses of tectonic activity in the Iberian Basin, Spain. Sedimentary Geology 209, 15–35.
- Gómez, J.J., Canales, M.L., Ureta, S., Goy, A., 2009. Palaeoclimatic and biotic changes during the Aalenian (Middle Jurassic) at the southern Laurasian Seaway (basque-Cantabrian Basin, northern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 275, 14–27.
- Goy, A., Henriques, M.H., Sandoval, J., Ureta, S., 2000. Stratigraphic events at the Lias-Dogger boundary in Iberia: Betic and Iberian Cordilleras and Lusitanian Basin. "Les événements du passage Lias-Dogger", Séance spécialisée de la Societé Géologique de France, du Comité Français de Stratigraphie e da Association des Géologues du Sud-Ouest, Toulouse (França). Strata série 1 10, 133–136.
- Guterres, H.C., 2010. Foraminíferos do limite Jurássico Inferior–Médio do Sector Norte da Bacia Lusitânica: o perfil de Maria Pares (Rabaçal). Ms.C. thesis, Universidade de Coimbra, Portugal (unpublished).

Haynes, J. R., 1981. Foraminifera. Macmillan Publishers Ltd.

- Henriques, M.H., 1989. O limite Lias-Dogger no Baixo Mondego (Portugal) Ensaio de caracterização biostratigráfica. Memórias e Notícias, Publicação do Museu e Laboratório Mineralógico e Geológico da Universidade de Coimbra 107, 37–42.
- Henriques, M.H., 1992. Biostratigrafia e Paleontologia (*Ammonoidea*) do Aaleniano em Portugal (Sector Setentrional da Bacia Lusitaniana). Ph.D. thesis, Universidade de Coimbra, Portugal (unpublished).
- Henriques, M.H., 1995. Les faunes d'ammonites de l'Aalénien Portugais: composition et implications paléobiogéographiques, in: Gayet, M., Courtinat, B. (Eds.), First European Paleontological Congress, Lyon 1993, Geobios M.S. 18, 229-235.
- Henriques, M.H., 2000a. Biostratigraphie (*Ammonoidea*) du passage Lias-Dogger dans le Bassin Lusitanien: la coupe de S. Gião (Portugal). "Les événements du passage Lias-Dogger", Séance spécialisée de la Societé Géologique de France, du Comité Français de Stratigraphie et de l'Association des Géologues du Sud-Ouest, Toulouse (França), Strata série 1 10, 31–35.
- Henriques, M.H.P., 2000b. Aalenian of the Zambujal de Alcaria section (Central Lusitanian Basin; Portugal), in: Hall, R.L., Smith, P.L. (Eds.), Advances in Jurassic Research 2000, GeoResearch Forum, Transtec Publications 6, 85–94.
- Henriques, M.H., Linares, A., Sandoval, J., Ureta, M.S, 1996. The Aalenian in the Iberia (Betic, Lusitanian and Iberian Basins), in: Riccardi, A.C. (Ed.), Advances in Jurassic Research, GeoResearch Forum, Transtec Publications 1–2, 139–150.
- Henriques, M.H., Perilli, N., 2000. Aalenian nannofossils of São Gião and Serra da Boa-Viagem sections (Lusitanian Basin, Portugal): preliminary results. Actas do I Congresso Ibérico de Paleontología/XVI Jornadas de la Socociedad Española de Paleontología, 93–94.
- Herrero, C., Canales, M.L., 1997. Diversidad en los foraminíferos del tránsito Toarciense/Aaleniense en la sección de Fuentelsaz (Cordillera Ibérica): Revista Española de Paleontología 12, 233–242.
- Herrero, C., Canales, M.L., 2002. Taphonomic processes in selected Lower and Middle Jurassic foraminifera from the Iberian Range and Basque-Cantabrian Basin (Spain). Journal of Foraminiferal Research 32, 22–42.
- Magno, C., 2010. Foraminíferos do limite Jurássico inferior-médio do sector Norte da Bacia Lusitânica: o perfil de S. Gião. Ms.C. thesis, Universidade deCoimbra, Portugal (unpublished).

- Magno, C., Henriques, M.H., Canales, M.L., 2008. Foraminíferos do Aaleniano (Jurássico Médio) da Ibéria: Bacias Lusitânica (Portugal), Basco-Cantábrica (Espanha) e
 Cordilheira Ibérica (Espanha), in: Henriques, M. H., Lopes, F. C., Catarino, L., Duarte, L. V., Rodrigues, N., Andrade, A. I. (Eds.), Conferência Internacional "As Geociências no Desenvolvimento das Comunidades Lusófonas", Universidade de Coimbra, Memórias e Notícias, Coimbra 3 (Nova Série), 115–122.
- Mouterde, R., Rocha, R.B., Ruget, C., Tintant, H., 1979. Faciès, biostratigraphie et paléogéographie du jurassique portugais. Ciências da Terra, Universidade Nova de Lisboa 5, 29–52.
- Murray, J. W., 1989. An outline of faunal changes through the Phanerozoic, in: Jenkins, D.G., Murray, J.W. (Eds.), Stratigraphical Atlas of Fossil Foraminifera, second edition. Ellis Horwood Limited, pp. 570–573.
- Neige, P., Elmi, S., Rulleau, L., 2001. Existe-t-il une crise au passage Lias Dogger chez les ammonites? Approche morphométrique par quantification de la disparité morphologique. Bulletin de la Société géologique de France 172, 125–132.
- O'Dogherty, L., Sandoval, J., Bartolini, A., Bruchez, S., Bill, M., Guex, J., 2006. Carbonisotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 311–333.
- Price, G.D., 2010. Carbon-isotope stratigraphy and temperature change during the Early-Middle Jurassic (Toarcian-Aalenian), Raasey, Scotland, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 255–263.
- Reolid, M., Sebane, A., Rodríguez-Tovar, F.J., Marok, A., 2012. Foraminiferal morphogroups as a tool to approach the Toarcian Anoxic Event in the Western Saharan Atlas (Algeria).
 Palaeogeography, Palaeoclimatology, Palaeoecology 323-325, 87–99.
- Sandoval, J., Henriques, M.H., Ureta, S., Goy, A., Rivas, P., 2001a. The Lias/Dogger boundary in Iberia: Betic and Iberian cordilleras and Lusitanian basin. Bulletin de la Société géologique de France 72, 387–395.
- Sandoval, J., O'Dogherty, L., Guex, J., 2001b. Evolutionary Rates of Jurassic Ammonites in Relation to Sea-level Fluctuations. Palaios 16, 311–335.
- Sandoval, J., O'Dogherty, L., Aguado, R., Bartolini, A., Bruchez, S., Bill, M., 2008. Aalenian carbon-isotope stratigraphy: Calibration with ammonite, radiolarian and nannofossil events in the Western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 267, 115–137.

- Sandoval, J., Henriques, M.H., Chandler, R., Ureta, S., 2012a. Latest Toarcian-earliest
 Bajocian (Jurassic) Grammoceratinae (Hildoceratidae, Ammonitina) of the western
 Tethys: Their palaeobiogeographic and phylogenetic significance. Geobios 45, 109–119.
- Sandoval, J. Bill, M., Aguado, R., O'Dogherty, L., Rivas, P., Morard, A., Guex, J., 2012b. The Toarcian in the Subbetic basin (southern Spain): Bio-events (ammonite and calcareous nannofossils) and carbon-isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology 342-343, 40–63.
- Stam, B., 1985. Quantitative analysis of Middle and Late Jurassic foraminifera from Portugal and its implications for the Grand Banks of Newfoundland. Utrecht Micropaleontological Bulletins 34, 1–168.
- Zieten, C. H., 1830. Die Versteinerungen Württembergs, Exped. Werkes unsere Zeit (Ed.).

Figure captions

Figure 1. Geological map of the Lusitanian Basin (West of the Iberian Peninsula) showing the Jurassic outcrops and location of the São Gião section (modified after Figueiredo, 2009).

Figure 2. Synthetic lithostratigraphic chart for the Upper Triassic and Lower and Middle Jurassic of the Lusitanian Basin, showing the position of the São Gião section (modified after Azerêdo et al., 2003).

Figure 3. Lithological succession in the São Gião section, showing the ammonite-based biostratigraphic units and the occurrence and relative abundance (black dots with different diameter) of the identified ammonite taxa along the section.

Figure 4. Upper Toarcian and Lower Aalenian selected ammonites recorded in the São Gião section. A. Pleydellia subcompta Branco, SG6.1. B. Pleydellia aalensis (Zieten), SG9.1. C. Pleydellia aalensis (Zieten), SG35.1. D. Pleydellia folleata (Buckman), SG11.4. E. Pleydellia fluitans (Dumortier), SG35.50. F. Pleydellia lotharingica (Buckman), SG35.5. G. Pleydellia lotharingica (Buckman), SG35.5. G. Pleydellia lotharingica (Buckman), SG35.5. G. Pleydellia lotharingica (Buckman), SG35.71. H. Pleydellia folleata (Buckman), SG27.17. I. Cotteswoldia egena Buckman, SG22.1. J. Cotteswoldia limatula Buckman, SG22.2. K. Leioceras opalinum (Reinecke), SG55.49. L. Leioceras costosum (Quenstedt), SG39.4.
O. Cypholioceras comptum (Reinecke), SG55.32. P. Vacekia striata Henriques, SG43.4. Q. Vacekia sourensis (Perrot), SG35.1. R. Vacekia striata Henriques, SG102.1. S. Tmetoceras scissum (Benecke), SG33.6. T. Tmetoceras scissum (Benecke), SG66.1. U. Bredyia sp., SG83.1. A: Toarcian, Aalensis Biozone, Mactra Subzone; B, D, H-J: Toarcian, Aalensis Biozone, Mactra Subzone; B, D, H-J: Toarcian, Aalensis Biozone, K-M, O, Q, R, T, U: Aalenian, Opalinum Biozone, Comptum Subzone. Scale bar: 2 cm.

Figure 5. Occurrence and relative abundance of some of the foraminiferal taxa recorded in the studied stratigraphic interval.

Figure 6. Occurrence and relative abundance of some of the foraminiferal taxa recorded in the studied stratigraphic interval (left), and main bioevents based on ammonites and

foraminifers identified along the Lower/Middle Jurassic transition in the São Gião section (right).

Figure 7. Upper Toarcian and Lower Aalenian selected foraminifera (suborders Textulariina, Spirillinina, Miliolina and Lagenina) recorded in the São Gião section. A. Thurammina jurensis (Franke), SG56.51.211. B. Tolypammina flagellum Terquem, SG48.103.263. C. Ammobaculites coprolithiformis (Schwager), SG86.104.264. D. Ammobaculites fontinensis (Terquem), SG74.52.212. E. Ammobaculites vetustus (Terquem and Berthelin), SG86.121.281. F. Trochammina cf. canningensis Tappan, SG64.105.265. G. Spirillina numismalis Terquem and Berthelin, SG54.55.215. H. Spirillina orbicula Terquem and Berthelin, SG48.54.214. I. Vinelloidea tibia (Terquem and Berthelin), SG64.122.282. J. Ophthalmidium northamptonensis Wood and Barnard, SG64.57.217. K. Prodentalina cf. fragilis (Terquem), SG64.124.284. L. Prodentalina cf. guembeli (Schwager), SG64.67.227. M. Prodentalina pseudocommunis (Franke), SG32.65.225. N. Prodentalina subsiliqua (Franke), SG62.66.226. O. Falsopalmula jurensis (Franke), SG86.69.229. P. Falsopalmula obliqua (Terquem), SG54.70.230. Q. Nodosaria fontinensis Terquem, SG74.72.232. R. Nodosaria hortensis Terquem, SG56.73.233. S. Nodosaria liassica Barnard, SG54.4.234. T. Nodosaria pseudoregularis Canales, SG96.125.285. U. Nodosaria pulchra (Franke), SG86.76.236. V. Nodosaria simoniana d'Orbigny, SG90.110.270. W. Nodosaria torulosi Frentzen, SG86.111.271. X. Pseudonodosaria vulgata (Bornemann), SG96.126.286. Y. Lenticulina bochardi (Terquem), SG86.127.287. A, C-G, I-L, N-Y: Aalenian, Opalinum Biozone, Comptum Subzone; B. H: Aalenian, Opalinum Biozone, Opalinum Subzone; M: Toarcian, Aalensis Biozone, Aalensis Subzone. Scale bars: 100 µm.

Figure 8. Upper Toarcian and Lower Aalenian selected foraminifera (suborders Lagenina and Robertinina) recorded in the São Gião section. A. Lenticulina constricta (Kaptarenko-Chernousova) sensu Jendryka-Fuglewicz, SG68.80.241. B. Lenticulina exgaleata Dieni, SG54.81.241. C. Lenticulina helios (Terquem), SG32.82.242. D. Lenticulina muensteri (Roemer), SG8.83.243. E. Lenticulina polygonata (Franke), SG48.84.244. F. Lenticulina toarcense Payard, SG62.129.289. G. Astacolus dorbignyi (Roemer), SG56.130.290. H. Astacolus scalptus (Franke), SG64.88.248. I. Astacolus vetustus (d'Orbigny), SG34.113.273. J. Marginulina aff. ambigua (Schwager), SG62.90.250. K. Marginulina scapha (Lalicker), SG52.91.251. L. Citharina clathrata (Terquem), SG38.92.252. M. Citharina colliezi (Terquem), SG78.93.253. N. Citharina cf. ornithocephala (Wiśniowski), SG64.95.255. O.

Planularia beierana (Gümbel), SG32.115.275. **P.** *Planularia protracta* (Bornemann), SG48.98.258. **Q.** *Eoguttulina liassica* (Strickland), SG64.99.259. **R.** *Ramulina* cf. *spandeli* Paalzow, SG64.100.260. **S.** *Bullopora rostrata* Quenstedt, SG32.102.262. **T.** Internal mould of a specimen belonging to the Family Ceratobuliminidae, SG56.116.276. A, F-H, J, K, M, N, Q, R: Aalenian, Opalinum Biozone, Comptum Subzone; B, E, I, L, P, T: Aalenian, Opalinum Biozone, Opalinum Subzone; C, O, S: Toarcian, Aalensis Biozone, Aalensis Subzone; D: Toarcian, Aalensis Biozone, Mactra Subzone. Scale bars: 100 μm.

MANUSCRIP

Figure 4 ACC Click here to download high resolution image

Figure 5 Click here to download high resolution image

Figure 7 ACC Click here to download high resolution image

Figure 8 ACC Click here to download high resolution image

Henriques & Canales – *Geobios*

Ammonite-benthic foraminifera turnovers across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal)

M.H. Henriques *, M.L. Canales

* Corresponding author; e-mail address: <u>hhenriq@dct.uc.pt</u>

<u>Article published in :</u> *Geobios* (http://www.sciencedirect.com/science/journal/00166995)

Please note: *Geobios* is not responsible for the content, quality or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supplementary materials

Table S1. Number of ammonite specimens (Mactra Subzone levels).

 Table S2. Number of foraminifera specimens (Mactra Subzone levels).

Table S3. Number of ammonite specimens (Aalensis Subzone levels).

 Table S4. Number of foraminifera specimens (Aalensis Subzone levels).

Table S5. Number of ammonite specimens (Opalinum Subzone levels).

Table S6. Number of foraminifera specimens (Opalinum Subzone levels).

Table S7. Number of ammonite specimens (Comptum Subzone levels).

 Table S8. Number of foraminifera specimens (Comptum Subzone levels).

Henriques & Canales – Geobios

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S1. Number of ammonite specimens (Mactra Subzor	ne levels).
---	-------------

			Lev	/el#			
Taxon	SG1	SG2	SG3	SG5	SG6	SG7	
Cotteswoldia sp.	1						
C. costulata		2					
C. egena			2				
C. limatula			2				
Pleydellia sp.	2						
P. subcompta					1		
P. fluens		1	1	1		2	
P. aalensis							
P. fluitans							
P. folleata							
P. lotharingica							
Cypholioceras sp.							
C. opaliniforme							
C. lineatum							
C. comptum							
Leioceras sp.							
L. opalinum					5		
L. costosum							
<i>Vacekia</i> sp.							
V. striata							
V. sourensis							
Catulloceras sp.				1			
Czerneyiceras sp.							
Bredyia sp.							
Tmetoceras scissum							
Total = 16	3	3	5	2	1	2	

 ras scissum

 Total = 16

Henriques & Canales - Geobios

Lusitanian Lower-Middle Jurassic ammonites and forams

 Table S2. Number of foraminifera specimens (Mactra Subzone levels).

	Lovol #
Taxon	SG8
Spirillina numismalis	2
Spirillina orbicula	14
Vinelloidea tibia	12
Onhthalmidium northamptonensis	12
Prodontaling of fragilis	2
Prodentaling propingua	2
Prodentalina propinqua	<u> </u>
Prodentatina pseudocommunis	0
Prodentalina substitiqua	4
Prodentalina torta	2
Prodentalina sp. indet.	7
Falsopalmula jurensis	9
Falsopalmula cf. obliqua	1
Nodosaria liassica	3
Nodosaria pseudoregularis	3
Lenticulina bochardi	49
Lenticulina constricta	5
Lenticulina exgaleata	17
Lenticulina helios	70
Lenticulina muensteri	48
Lenticulina polygonata	83
Lenticulina toarcense	62
Lenticulina sp. indet.	26
Astacolus dorbignvi	4
Astacolus scalptus	16
Astacolus varians	1
Astacolus vetustus	3
Marginulina scapha	1
Citharina colliezi	4
Planularia cordiformis	2
Planularia eugenii	1
Planularia protracta	2
Foguttuling ligssing	2
Logununa nassica	<u> </u>
Eumarckella CI. plana	1

3 Page 38 of 86

Henriques & Canales – *Geobios*

Lusitanian Lower-Middle Jurassic ammonites and forams

						Lev	el #					
	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG
Taxon	9	11	13	14	16	21	22	23	25	27	28	33
Cotteswoldia sp.	1			24					1	8		3
C. costulata		2	1	2	1		15					
C. egena							1					
C. limatula	1		4				1					
Pleydellia sp.									3			2
P. subcompta	1											
P. fluens	2											
P. aalensis	3	4		8	1	3	5	3	2	9	1	
P. fluitans												
P. folleata	1	3								1		1
P. lotharingica												
Cypholioceras sp.												
C. opaliniforme												
C. lineatum												
C. comptum												
Leioceras sp.												
L. opalinum												
L. costosum												
Vacekia sp.								ŀ	1			
V. striata					1		5				2	2
V. sourensis										1		1
Catulloceras sp.										1	1	5
Czerneyiceras sp.												
Bredyia sp.	1											
Tmetoceras scissum												2
Total = 140	9	9	5	34	3	3	27	3	7	20	4	16

Table S3. Number of ammonite specimens (Aalensis Subzone levels).

Res in the second secon

Henriques & Canales – Geobios

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S4. Number of foraminifera specimens (Aalensis Subzone levels).

		Le	vel #	
Taxon	SG12	SG18	SG24	SG32
Thurammina jurensis	1	0	0	5
Ammobaculites fontinensis	0	0	2	3
Ammobaculites vetustus	1	0	0	1
<i>Textulariina</i> sp. indet.	1	0	1	1
Spirillina numismalis	8	1	4	2
Spirillina orbicula	8	2	9	6
Vinelloidea tibia	77	175	27	20
Ophthalmidium northamptonensis	0	1	0	0
Ophthalmidium sp indet	0	1	0	0
Lingulonodosaria dentaliniformis	1	0	0	0
Prodentalina cf fragilis	2	0	1	1
Prodentalina cf. guembeli	0	2	0	0
Prodentalina cf. intorta	0	1	0	0
Prodentalina propingua	1	3	3	2
Prodentaling pseudocommunis	9	2	9	12
Prodentalina subsiliaua	0	2	3	0
Prodentalina torta	0	3	3	2
Prodentalina sp indet	0	4	3	1
Falsopalmula juransis	7		3	3
Falsopalmula obliqua	0		1	0
Falsopalmula of obligua	0	0	0	1
Falsopalmula sp. 1	0	0	1	0
Nodosaria fontinansis	1	0	1	0
Nodosaria hortensis	0	0	1	1
Nodosaria liassiga	0	3	1	1
Nodosaria opalini	0	0	4	1
Nodosaria pseudorogularis	1	1	3	0
Nodosaria pulebra	1	0	4	4
Nodosaria pulcata	0	1	1	0
Freudonodosaria valgaia	0	1	0	0
Frondicularia dollarica	56	21	40	28
Lenticulina bocharal	2	21	40	20
Lenticulina constricta	26	1	1	1
Lenticuling haliag	20	12	25 65	120
Lenticulina nellos	105	12	03	120
Lenticulina muensieri	/3	12	21 64	17
Lenticulina polygonala	90	30	04	92
Lenticuling on indet	22	117	10	10
Lenucuuna sp. maet.	20	10	19	10
Asta colus acabatus	20	1	15	4
Astacolus varians	9 1	4	10	9
Astacolus varians	1	0	0	1
Astacotus vetustus	1	1	1	
Citharing collici	0	1	1	0
Cunarina coulezi	3	2	1	
Planularia peterana	0	0	1	
r tanutaria cordiformis	2	0		
Planularia eugenii	0	0	0	1
Planularia protracta	0	3	0	
Loguttulina liassica	0	3	2	1
Bullopora rostrata	2	0	2	9
Keinholdella dreheri	0	0	1	0
Foraminitera indet.	0	0	1	0

Henriques & Canales - Geobios

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S5	. Number	of ammonite	e specimens	(Opalinum	Subzone	levels).
----------	----------	-------------	-------------	-----------	---------	----------

		Level #											
Taxon	SG34	SG35	SG37	SG39	SG43	SG45	SG52						
Cotteswoldia sp.													
C. costulata													
C. egena													
C. limatula													
Pleydellia sp.	2	50											
P. subcompta													
P. fluens													
P. aalensis	4	2											
P. fluitans		6											
P. folleata													
P. lotharingica		10											
Cypholioceras sp.	1												
C. opaliniforme													
C. lineatum			1	2									
C. comptum													
Leioceras sp.	1	1	3	3									
L. opalinum	1		3	1									
L. costosum													
Vacekia sp.		1	11	19	9								
V. striata	2	1	3	8	1								
V. sourensis													
Catulloceras sp.													
Czerneyiceras sp.				2	1	2	2						
Bredyia sp.													
Tmetoceras scissum													
Total = 153	11	71	21	35	11	2	2						

Henriques & Canales – Geobios

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S6. Number of foraminifera specimens (Opalinum Subzone levels).

	Level #							
Taxon	SG34	SG36	SG38	SG44	SG48	SG52	SG54	
Thurammina jurensis	4	8	3	11	13	2	1	
Tolvpammina flagellum	0	0	0	0	1	0	0	
Ammobaculites fontinensis	0	0	0	0	7	7	2	
Ammobaculites vetustus	0	1	0	0	0	1	0	
Textulariina sp. indet.	0	0	0	0	3	4	0	
Spirillina numismalis	5	4	1	0	7	22	14	
Spirillina orbicula	2	4	1	2	8	10	4	
Vinelloidea tibia	20	2	50	8	3	1	26	
Ophthalmidium northamptonensis	0	0	0	0	0	0	2	
<i>Ophthalmidium</i> sp. indet	0	0	0	0	0	0	3	
Prodentalina filiformis	0	1	0	0	0	0	0	
Prodentalina cf. fragilis	2	0	0	0	2	3	0	
Prodentalina cf. guembeli	4	4	1	3	2	0	1	
Prodentalina cf. intorta	0	0	0	1	0	0	0	
Prodentalina pectinata	1	0	0	0	0	0	0	
Prodentalina propinaua	0	2	0	5	2	0	0	
Prodentalina pseudocommunis	6	5	0	6	6	5	4	
Prodentalina subsiliaua	1	1	0		1	1	1	
Prodentalina torta	0	4	0	6	2	0	1	
Prodentalina cf. varians	0	0	0	0	1	0	0	
Prodentalina sp. indet.	2	3	1	10	2	0	3	
Falsopalmula jurensis	3	4	3	2	4	12	17	
Falsopalmula obliaua	0		0	0	1	0	6	
Falsopalmula cf. obliaua	0	0	0	1	0	0	0	
Nodosaria fontinensis	0	0	0	1	0	0	0	
Nodosaria hortensis	3	0	0	0	3	2	0	
Nodosaria liassica	5	8	2	8	5	4	6	
Nodosaria pseudoregularis	3	21	3	1	0	0	4	
Nodosaria pulchra	0	0	0	0	0	1	0	
Nodosaria torulosi	0	0	0	0	0	1	0	
Pseudonodosaria vulgata	1	1	5	3	1	0	0	
Lenticulina bochardi	25	28	52	44	22	36	33	
Lenticulina constricta	2	2	2	0	4	0	2	
Lenticulina exgaleata	24	24	15	17	20	72	47	
Lenticulina helios	97	91	82	60	112	91	75	
Lenticulina muensteri	40	30	25	32	38	28	22	
Lenticulina polygonata	94	51	68	42	69	60	48	
Lenticulina toarcense	48	56	156	89	52	38	40	
Lenticulina sp. indet.	35	18	47	52	33	25	31	
Marginulinopsis sp. 1	0	0	1	0	0	0	0	
Astacolus dorbignyi	11	9	16	10	5	5	8	
Astacolus scalptus	12	23	26	6	6	35	35	
Astacolus varians	1	2	2	0	0	1	3	
Astacolus vetustus	5	3	1	0	5	4	4	
Marginulina aff. ambigua	0	0	0	0	0	1	0	
Marginulina scapha	0	0	0	0	1	2	1	
Citharina clathrata	0	0	1	0	0	0	0	
Citharina colliezi	2	3	6	1	1	1	4	
Citharina hechti	1	0	0	0	1	0	0	
Planularia beierana	0	0	0	0	0	1	0	
Planularia cordiformis	3	1	2	0	0	4	2	
Planularia protracta	0	1	0	0	4	2	- 1	
Eoguttulina liassica	3	3	0	3	0	0	2	
					-	-		

Henriques & Canales – *Geobios*

-G

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S6 (end).

	Level #											
Taxon	SG34	SG36	SG38	SG44	SG48	SG52	SG54					
Bullopora globulata	0	0	0	1	1	0	0					
Bullopora rostrata	2	0	0	0	0	2	2					
Ceratobuliminidae	0	0	0	0	1	1	0					
Reinholdella dreheri	0	0	0	0	0	3	0					
Foraminifera indet.	0	0	0	0	1	0	0					

	Level #																			
Taxon	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG	SG
	55	57	61	66	67	71	73	74	75	83	87	89	91	93	102	103	107	112	113	119
Cotteswoldia sp.																				
C. costulata																				
C. egena				÷.																
C. limatula																				
Pleydellia sp.																				
P. subcompta																				
P. fluens																				
P. aalensis																				
P. fluitans																				
P. folleata																				
P. lotharingica																				
Cypholioceras sp.	4								1					1		1				
C. opaliniforme	3																			
C. lineatum						1	1					1								
C. comptum	4				1	2	1	1	1				1					1		
Leioceras sp.	2		1	9		1	1	3			1		1	1		1	2			
L. opalinum	3	1	1			2										1				
L. costosum	1					2						2				1				
Vacekia sp.	11			11	1		1		1	1	2	3	5	2		2	2		1	1
V. striata	10											1			1	1	1			3
V. sourensis	1																			
Catulloceras sp.																				
Czerneyiceras sp.																				
<i>Bredyia</i> sp.										2										
Tmetoceras scissum				4													3		4	
Total = 138	40	1	2	24	2	8	4	4	3	3	3	7	7	4	1	7	8	1	5	4

Table S7. Number of ammonite specimens (Comptum Subzone levels).

Henriques & Canales – Geobios

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S8. Number of foraminifera specimens (Comptum Subzone levels).

	Level #											
Taxon	SG56	SG62	SG64	SG68	SG74	SG78	SG86	SG90	SG92	SG96	SG108	SG112
Thurammina jurensis	7	3	3	0	1	0	2	4	1	0	0	13
Ammobaculites coprolithiformis	0	0	0	0	1	0	27	1	3	0	0	0
Ammobaculites fontinensis	3	2	1	1	2	1	11	4	3	2	15	14
Ammobaculites vetustus	2	0	0	0	2	1	26	0	0	0	0	0
Trochammina cf. canningensis	0	0	1	0	0	0	0	0	0	0	1	0
Trochammina sablei	0	0	0	2	0	0	0	0	0	0	0	0
Textulariina sp. indet.	0	0	1	1	0	0	36	0	0	0	2	0
Spirillina numismalis	5	3	6	0	2	3	1	19	3	2	7	9
Spirillina orbicula	7	3	4	2	13	8	7	7	6	5	24	12
Vinelloidea tibia	8	41	510	83	5	34	4	4	1	3	0	0
Ophthalmidium northamptonensis	0	1	581	0	21	57	0	2	6	6	0	1
Ophthalmidium sp. indet.	2	0	3	0	0	0	0	0	0	0	0	0
Prodentalina cf. fragilis	0	2	6	0	0	2	0	0	0	0	0	0
Prodentalina cf. guembeli	0	2	0	13	0	0	3	1	0	0	0	0
Prodentalina cf. intorta	0	0	0	0	0	0	0	0	0	1	5	0
Prodentalina pectinata	0	0	0	0	0	0	0	0	0	0	4	0
Prodentalina cf. pectinata	0	1	0	1	0	0	0	0	0	2	0	0
Prodentalina propinqua	0	1	1	1	1	2	1	0	8	11	10	4
Prodentalina pseudocommunis	7	4	7	19	7	6	13	1	4	9	15	7
Prodentalina subsiliqua	1	2	1	13	1	1	1	1	0	0	0	0
Prodentalina torta	1	0	1	3	1	3	0	0	1	0	0	0
Prodentalina sp. indet.	1	7	10	7	2	3	3	3	0	2	7	1
Falsopalmula jurensis	5	2	13	3	3	0	3	5	7	5	6	2
Falsopalmula obliqua	1	0	0	1	0	0	0	0	0	0	0	0
Falsopalmula cf. obliqua	0	0	0	1	1	1	0	0	0	0	0	0
Nodosaria fontinensis	0	0	0	0	2	3	3	4	2	10	3	2
Nodosaria hortensis	3	0	0	1	2	2	1	2	1	2	0	1
Nodosaria liassica	9	0	3	3	0	2	7	2	7	13	4	1
Nodosaria opalini	0	0	0	0	0	0	0	0	0	0	1	0
Nodosaria cf. opalini	0	0	0	0	0	0	3	0	0	0	0	0
Nodosaria pseudoregularis	30	19	11	6	11	22	42	114	19	37	11	3
Nodosaria pulchra	2	0	2	0	0	2	7	4	2	0	6	0
Nodosaria simoniana	0	0	0	0	0	0	1	5	0	0	0	0
Nodosaria torulosi	0	0	2	0	0	0	2	1	0	1	0	2
Nodosaria sp. indet.	0	0	1	0	1	0	2	0	0	0	2	7
Pseudonodosaria vulgata	2	0	7	2	6	3	4	3	0	16	4	1
Frondicularia oolithica	0	0	2	0	0	0	0	0	0	0	0	0
Lenticulina bochardi	39	46	18	30	38	44	70	54	43	101	21	22
Lenticulina constricta	12	2	4	2	0	0	3	0	5	10	8	2
Lenticulina exgaleata	58	52	46	46	39	18	91	69	22	12	64	26
Lenticulina helios	95	78	34	64	104	64	116	136	72	85	42	35
Lenticulina muensteri	57	17	18	25	38	16	28	32	15	23	16	15
Lenticulina polygonata	65	51	47	55	98	62	86	100	35	77	29	22
Lenticulina toarcense	53	63	21	24	62	80	83	159	71	139	52	10
Lenticulina sp. indet.	35	15	10	14	18	25	30	52	3	3	12	12
Marginulinopsis sp. 1	0	0	0	0	0	0	2	0	0	0	0	0
Saracenaria dubia	0	0	0	0	0	0	0	0	0	0	1	0

Henriques & Canales – *Geobios*

Lusitanian Lower-Middle Jurassic ammonites and forams

Table S8 (end).

						Le	vel#					
Taxon	SG56	SG62	SG64	SG68	SG74	SG78	SG86	SG90	SG92	SG96	SG108	SG112
Saracenaria cf. prolata	0	0	0	0	0	0	0	0	0	0	1	0
Astacolus dorbignyi	17	1	4	6	8	9	7	21	4	10	10	4
Astacolus scalptus	30	20	22	35	15	14	29	31	18	14	45	6
Astacolus varians	0	3	2	1	2	0	5	0	0	5	0	0
Astacolus vetustus	1	0	0	3	1	3	0	2	0	0	1	3
Astacolus sp. indet.	0	0	0	2	0	0	0	0	0	0	0	0
Marginulina aff. ambigua	1	1	0	1	1	1	0	0	1	0	1	0
Marginulina scapha	0	0	1	2	0	0	0	0	1	0	0	0
Citharina charollensis	0	0	0	1	0	0	0	0	1	0	0	0
Citharina clathrata	0	0	1	0	0	0	0	2	1	0	0	0
Citharina colliezi	0	5	7	1	18	6	8	15	2	36	8	0
Citharina hechti	0	0	0	1	0	0	0	0	0	0	0	0
Citharina cf. ornithocephala	0	0	1	0	0	0	0	0	0	0	0	0
Planularia cordiformis	0	0	0	1	3	0	0	0	0	1	3	1
Planularia protracta	1	2	0	2	1	0	1	0	0	0	1	0
Eoguttulina liassica	2	0	5	10	0	0	4	2	2	5	30	0
Ramulina cf. spandeli	0	0	3	0	0	0	0	0	0	0	0	0
Bullopora globulata	0	1	0	0	2	0	0	0	0	0	0	0
Bullopora rostrata	0	0	1	2	2	2	0	0	0	2	1	0
Ceratobuliminidae	1	0	0	0	0	0	0	0	0	1	0	1
Reinholdella dreheri	0	0	1	1	2	0	0	0	0	0	0	0
Garantella cf. rudia	0	0	0	0	0	0	0	0	0	0	0	20
Foraminifera indet.	2	0	2	1	4	0	0	0	0	0	0	1

Ammonite-benthic foraminifera biostratigraphy <u>turnovers</u> across the
Lower-Middle Jurassic transition of São Gião section (in the
Lusitanian Basin , (Portugal)
Henriques, M.H. ^{a,*} , Canales, M. L. ^b
^a Department of Earth Sciences and Geosciences Centre, Faculty of Sciences and
Technology, University of Coimbra; Largo Marquês de Pombal, 3000-272 Coimbra,
PORTUGAL
^b Departamento and UEI of Paleontología, Facultad de Ciencias Geológicas,
Universidad Complutense de Madrid-CSIC; José Antonio Novais, 2, 28040 Madrid,
ESPAÑA <u>SPAIN</u>
* Corresponding autor. E-mail address: <u>hhenriq@dct.uc.pt</u>

18 Abstract

19	This paper describes and characterizes characterises the co-occurrence of ammonite and
20	benthic foraminiferal assemblages across the São Gião outcrop (Central Portugal), a
21	reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The
22	upper Toarcian-lower Aalenian marls and marly-limestones of <u>in</u> this section provide a
23	precise and detailed ammonite-based biostratigraphic zonation, with a mixed
24	assemblage of <u>Nnorthwest European and Mediterranean</u> Boreal and West Tethyan
25	faunal elements, associated to with benthic foraminifera assemblages with northernof
26	North Hemisphere hemisphere affinities, both correlatable with the Aalenian GSSP at
27	the Fuentelsaz section (Iberian Cordillera, Spain). A total of well preserved 463 447
28	well-preserved ammonite specimens and 13,116 foraminifers for aminifera have been
29	studied and no evidence was detected of any taphonomic processes that could could
30	have changed the original assemblages has been detected.
31	From the <u>a</u> biostratigraphic point of view, the ammonite <u>record</u> has allowed <u>enabled</u> the
32	recognition <u>4</u> biostratigraphic units to be recognised (the Mactra and Aalensis
33	Subzones-subzones of the Aalensis Biozone in the upper Toarcian, and Opalinum and
34	Comptum Subzones subzones of the Opalinum Biozone in the lower Aalenian).
35	Concerning With regard to the benthic foraminifera, the taxa identified have enabled
36	allowed the recognition of the Astacolus dorbignyi Zone and, as well as of 11 bioevents
37	to be identified, most of which them representing local biostratigraphic proxies. proxies
38	of local application. However, the increase in the relative abundance of <i>Lenticulina</i>
39	exgaleata Dieni from the upper part of the Opalinum Subzone to the lower part of the
40	Comptum Subzone indicates shows regional value. The constant and continuous
41	ammonite record of <u>Nnorthwest European</u> North Boreal taxa, together aside with typical
42	Mediterranean taxa along the whole section - namely Grammoceratinae throughout

43	the section, the high relative abundance of representatives of the Miliolina
44	representatives generally interpreted as as typical foraminifers typical of shallow
45	waters -, and the absence of typical foraminiferal forms typical of cool waters, do not
46	support the inference of cool seawaters temperatures attributed to the, at least for the
47	Lusitanian Basin, the inferred cool seawater temperatures assigned to the Early
48	Aalenian, oras well as the global character of the "Comptum cooling" event", at least
49	with reference to the Lusitanian Basin.
50	
51	<i>Keywords</i> : Ammonite <u>-s;</u> Benthic Foraminifera; Biostratigraphy; Lower-Middle
52	Jurassic; Lusitanian Basin; Portugalfaunal turnovers-; "Comptum cooling event".
53	

Formatted: English (U.K.)

54 **1. Introduction**

55	Ammonites are the best fossil group for dating Jurassic marine sediments, but when
56	these fossils are poorly preserved, scarce or almost impossible to obtain (e.g. in core
57	samples), alternative biostratigraphic scales_, based on other fossil groups_, are needed.
58	In <u>recent the last</u> -decades, there have been some attempts for the to establish ment of
59	biostratigraphic scales based on benthic foraminifersa have been carried out. The
60	precision and validity of such scales is higher greater when they can be calibrated with
61	accurate biostratigraphic charts based on ammonites, as presented in this paper <u>research</u> .
62	Stratigraphic The stratigraphic range of most of the Jurassic foraminiferal species is
63	relatively wide and therefore, so the identification of bioevents, such as first occurrences
64	(First Appearance Datum, FAD), last occurrences (Last Appearance Datum, LAD) or
65	noticeable changes in assemblages ² diversity or in the relative abundance of some taxa,
66	can be a useful biostratigraphic tool.
67	The aim of this work is to describe, for the first time, the detailed co-occurrence of
68	ammonite and benthic foraminiferal assemblages across the Toarcian-Aalenian
69	boundary at São Gião section, located in Central Portugal, and to recognize recognise
70	the biostratigraphic units there represented, thus contributing towards for-calibrating the
71	biostratigraphic scale for the Lower-Middle Jurassic boundary based on the bases of
72	different fossil groups.
73	The São Gião section corresponds to a classical outcrop of the Lower-Middle Jurassic
74	boundary of the Lusitanian Basin, where previous works on the ammonite
75	record have beenwas carried out by Mouterde et al. (1979) and Caloo-Fortier (1985). It
76	isbeing one of the few areas in Europe where this time interval is represented by an
77	expanded section, showing exceptional exposure conditions along <u>very fossiliferous</u>
78	marly-limestones sediments about approximately 45 m thick-of very fossiliferous

Formatted: English (U.K.)

79	marly-limestones sediments, and displaying a continuous record of ammonite
80	representatives. Despite Moreover, the relevance of its-the Grammoceratinae content for
81	palaeobiogeographic reconstructions of the western Tethys (Sandoval et al., 2012a), and
82	the significant Pleydellia and Leioceras record has justified the assumption of São Gião
83	section as a reference section for the Toarcian-Aalenian boundary in the Lusitanian
84	Basin (Henriques, 1989, 1992, 2000a; Henriques et al., 1996; Goy et al., 2000;
85	Sandoval et al., 2001a; Azerêdo et al., 2003)., after several previous important works
86	where its biostratigraphic relevance based on the ammonite record have been firstly
87	pointed out (Mouterde et al., 1979; Caloo-Fortier, 1985). More recently, the preliminary
88	study of other fossil groups in the section have has been carried out in the
89	sectionstudied, namely calcareous nannofossils (Henriques and Perilli, 2000), but
90	especiallyand, in particular, the benthic foraminifera (Magno et al., 2008; Magno, 2010;
91	Canales et al., 2010), all suggesting the importance of analysing the detailed vertical co-
92	occurrence of ammonite and benthic foraminifera assemblages across the Toarcian-
93	Aalenian boundary at the São Gião section, in order to identify major faunal changes
94	both on macrofossil and microfossil assemblages.
95	The bioevents recognized recognised in the benthic foraminifera record, here-accurately
96	calibrated here using with biostratigraphic units based on the ammonite record,
97	represent a proxy that can be used to determinate both the age and depositional
98	environment assigned to core samples analysis from the Lower-Middle Jurassic
99	boundary of the Lusitanian Basin (Canales et al., 2010). Moreover, they allow the re-
100	interpretation of previous data regarding on palaeotemperature changes established for
101	neighbouring basins located around the Iberian Plate, for exemple in the such as in its
102	southern and northern palaeomargins (O'Dogherty et al., 2006; Sandoval et al., 2008;
103	Gómez et al., 2009), as well as in more distant regions_; in the Boreal Realm; like

104	such as the Hebrides Basin (Price, 2010), where close relationships between major
105	faunal-flora turnovers and isotopic fluctuations in δ^{13} C values have been recognized
106	recognised (Aguado et al., 2008; Sandoval et al., 2012b).
107	
108	2. Geographic and Geological settings
109	The São Gião section is located in the northern sector of the Lusitanian Basin (Central
110	Portugal), at about 5 km to the South-Southwest of Cantanhede village, near Zambujal
111	(coordinates: 40°18'12.63''N, 8°37'17.58''W, altitude 100_m; Fig. 1). The section is
112	composed of greyish marly limestones, more or less compact, in regular beds with
113	variable-thicknesses ranging (from 0.10 m to 0.30 m _a) alternating with slightly thicker
114	greyish marls beds with slightly higher thickness, and organized organised in
115	shallowing-upward units, deposited in a <u>n external</u> marine external platform
116	environment. The limestone component progressively increases towards the top of this
117	unit, which corresponds to the upper part of the Póvoa da Lomba Formation (upper
118	Toarcian – upper Aalenian).
119	The Póvoa da Lomba Formation was firstly <u>informaly</u> defined by Barbosa et al. (1988,
120	2008) as an informala lithostratigraphic unit named the "Calcários Margosos de Póvoa
121	da Lomba" ("Póvoa da Lomba Marly Limestones"), and later formalized formalised as
122	the Póvoa da Lomba Formation by Azerêdo et al. (2003). It corresponds laterally to the
123	lower part of the Cabo Mondego Formation which outcrops at the west of the basin, to
124	the upper part of the Prado Formation outcropping eastwards, and to the top of the
125	Fórnea Formation - base of the Barranco de Zambujal Formation which outcrops at in
126	the southeast of the basin (Azerêdo et al., 2003; Fig. 2).
127	

128 **3. Material and Methods**

129	For the <u>In order to</u> study of the ammonite record, 44 successive bedbybed samplings
130	were obtained from has been carried out along 36 marly-limestones beds and 8 marly
131	beds. A total amount of 447 ammonite specimens have been were collected and
132	identified according to the systematic classification proposed by Henriques (1992).
133	A total of 24 marly beds were sampled F for the study of the benthic foraminiferal
134	assemblages a total of 24 marly beds were sampled along the studied stratigraphic
135	interval studied, taking the thickness of each ammonite subzone into account-the
136	thickness of each ammonite subzone. 300 g of each sample waswere processed in the
137	laboratory followingusing a classical methodology that consists ininvolving a mixture
138	of sodium hydroxide, hydrogen peroxide and water duringfor 2-3 days. After this
139	timeFollowing this, the samples were washed over a column of mesh sieves of 1 mm,
140	0.500 mm, 0.250 mm, 0.125 mm and 0.060 mm mesh sieves. DThe dry residues were
141	weighed and subsequently picked to obtain the foraminifersa, using a-Wild M-8
142	binocular magnifying glasses. The classification of the specimens recovered were
143	classified-specimens, at suprageneric and generic rank, followedusing the Loeblich and
144	Tappan (1988) systematic; and the Ellis and Messina (1940-1990) foraminifera
145	catalogue was consulted for the specific rank classification. The photographs of the
146	figured specimens were taken at the Centro Nacional de Microscopía Electrónica,
147	located inat the Universidad Complutense de Madrid (Spain) using an JEOL-JSM 6400
148	electronic microscope-model JEOL JSM 6400.
149	In both fossil groups, The species richness and relative abundances have been were
150	calculated for both fossil groups. Species richness is understood as the number of
151	species (or other taxonomical category) in a sampling unit, in respect of relation to the
152	total number of identified species (or other taxa) Relative abundances are second

152		
153	as a percentage, in relation to the total number of specimens obtained in each	
154	assemblage.	
155	All the material — the ammonites and foraminifera specimens (including the residues of	Formatted: English (U.K.)
156	the samples studied-samples) - is stored atin the Laboratório de Geologia Sedimentar e	
157	Registo Fóssil, located inat the Departamento de Ciências da Terra, Faculdade de	
158	Ciências e Tecnologia at the, Universidadety of de Coimbra (Portugal).	
159		
160		
161	4. Taphonomic considerations	
162	The preservational features of Taphonomic analysis of the ammonite assemblages can	
163	be eharacterized characterised according to several taphonomic parameters described	
164	for the Tmetoceras from the Iberia (Fernández López et al., 1999a,b) and for other	
165	ammonites from the Lower Pliensbachian of Portugal (Fernández López et al., 2000).	
166	Marly limestones mainly record mainly resedimented elements, whereas accumulated	
167	shells are virtually absent and re-elaborated elements are scarce. Ammonite	
168	assemblages are composed of incomplete phragmocones normally filled with sediment	
169	and, in general, they generally appear scattered in the sediment, showing no pattern of	
170	imbricate or encased grouping. Complete shells are scarce and pyritic internal moulds	
171	are <u>only</u> found only locally and assigned to marly levels. The degree of ammonite	
172	packing – estimated by the difference between the number of specimens and the number	
173	of fossiliferous levels divided by the number of fossiliferous levels -, and the ammonite	
174	stratigraphical persistence - i.e., the proportion of fossiliferous levels - display-presents	
175	high values (9.15 and 38%, respectivelly), whereas the degree of taphonomic heritage -	
176	i.e., the ratio of re-elaborated elements to the as a whole of recorded elements - is very	
177	low or even 0%.	

178	The ratio between the amount of preserved elements and the amount of species display
179	reveals high values (26.3); specific diversity, i.e., the inverse ratio, is relatively low
180	(0.04), and adult shells are scarce. Such These taphonomic features, by disproving
181	sorting processes of sorting by involving mechanical transport, allow-supporting the
182	demic eharaeter-nature of the fossil assemblages, as pointed out by Fernández López
183	and Meléndez (1995) for the Phylloceratina and by Fernández López et al. (1999b) for
184	the Tmetoceras of the Iberian basins during the Middle Jurassic.
185	Concerning the benthic foraminifera record, most of the 13.7116 specimens recovered
186	show a are very good preservation well preserved. From a taphonomic point of view,
187	only breakages, sedimentary infillings of the chambers, dissolution (partial or even
188	total, as is the case of some representatives of the Family Ceratobuliminidae), distortion
189	and recrystallization-recrystallisation (Herrero and Canales, 2002) have been were
190	observed in some specimens, but no evidence of <u>any</u> alteration of to the studied
191	assemblages can be inferred. The two last latter studied samples come from harder
192	sediments and, as a consequence, the surface of the specimen's surface appeared to be
193	frequently covered by calcite crusts, thus hindering their taxonomic identification at
194	specific rank.
195	
196	
197	
198	4 <u>5</u> . Results
199	The co-occurrence of ammonite and benthic foraminiferal assemblages across the São
200	Gião outcrop provides a precise and detailed ammonite-based biostratigraphic zonation
201	as well as an alternative biostratigraphic scale, based on benthic foraminifera. In
202	addition, the identification of bioevents, such as first occurrences (First Appearance

203	Datum, FAD), last occurrences (Last Appearence Datum, LAD) or noticeable changes
204	in assemblages' diversity species richness or in the relative abundance of some taxa of
205	<u>in</u> both fossil groups, can may prove to be a useful biostratigraphical proxy. , as <u>S</u> such
206	bioevents are, for the moments far, initially considered to be of local application. It is
207	expected that future analyses in the same basin or in other basins, will allow for
208	correlations between different sections, based on some of these bioevents, but future
209	analyses carried out in other areas, inside the same basin or in other basins, will allow
210	the recognition of bioevents of regional usefulness and, consequently, the establishment
211	of correlations between different sections. Moreover, the taxonomic composition of the
212	assemblages and the recognized recognised bioevents at in the São Gião section provide
213	relevant palaeoecological data for ongoing discussions on the relationships between
214	major faunal turnovers and palaeotemperature changes during the Early Jurassic-Middle
215	Jurassic transition.
216	
217	5.4.1. Ammonite and benthic foraminiferal assemblages
218	The ammonite record of São Gião section mainly includes mainly some typical Boreal
219	morthwest European Grammoceratinae (Catulloceras, Cotteswoldia, Pleydellia) in the
220	upper Toarcian, and Leioceratinae (Leioceras, Cypholioceras) in the lower Aalenian,
221	aside together with typical Mediterranean Grammoceratinae (Vacekia), Tmetoceratinae
222	(Tmetoceras) and scarce rare Hammatoceratidae (Bredya and Czerneyiceras) (Fig. 3).
223	No typically Tethysian phylloceratids have beenwere found among the 32-20 species
224	(some of them which are represented in Fig. 4)-corresponding to 20 9 genera which
225	have been identified.
226	Foraminiferal The foraminiferal assemblages recorded along the studied stratigraphic
227	interval studied are very abundant and diverse display a high species richness (Figs 5

228	and 6). Thus, aA total of 71 species (some of them which are represented in Figs. 7 and	
229	8), corresponding to 26 genera and 5 suborders, have been identified, all typical of them	
230	typical of the Jurassic platforms of in the North northern Hemispherehemisphere.	
231		
232	<u>545</u> .1.1. Aalensis Biozone, Mactra Subzone (SG1-SG8; 3.5_m-of greyish marls of 0.70	
233	m thick greyish marls alternatinge with 0.15 m thick lenticular greyish marly limestones	
234	of 0.15_m thick, displaying with abundant ammonite content).	
235	Index fossil: Pleydellia mactra (Dumortier).	
236	The ammonite assemblage recognized recognised in this Subzone subzone, which	
237	corresponds to 6 fossiliferous levels, shows reveals low abundance number of	
238	specimens (16-specimens) but a relatively high number of species and diversity (5	Fo
239	identified species corresponding to; 2 identified genera). Most of them samples	
240	correspond to the genus Cotteswoldia genus, namely to the species, C. limatula	
241	Buckman (2 specimens), C. egena Buckman (2) and C. costulata (Zieten) (2) species	
242	(representing 38% of the identified species), and to the genus Pleydellia genus, namely	
243	to-the species-P. fluens-(5 specimens (Buckman)) and P. subcompta Branco species	
244	(representing 38% of the identified species) (table S1),. The the last one being latter -is a	
245	significant component of the recorded assemblages, as it represents earlier Pleydellia,	
246	thus characterizing characterising the subzone, whose base is recognized recognised by	
247	the FAD of those these forms.	
248	The only foraminiferal assemblage studied from the Mactra Subzone (Aalensis Biozone,	
249	Upper Toarcian) corresponds to sample SG-8. A total of 469 specimens were obtained,	
250	from which 434 (93%) of which were identified at specific level. Having Taking into	
251	account the number of grams of picked sediment, in this sample the abundance attaints	
252	amounts to 60.5 foraminifera per gram of sediment picked. In this assemblage, 4	
	l l l l l l l l l l l l l l l l l l l	

Formatted: Highlight

253	suborders (Spirillinina, Miliolina, Lagenina and Robertinina) were identified, being in
254	which Lagenina was the most abundant (with 404 specimens-representing 87%)-the
255	most abundant. Spirillinina and Miliolina show occur in percentages below of less than
256	4% and Robertinina, with only one(1 specimen), and can be considered a minority. It is
257	remarkable t <u>T</u> he total absence, in this assemblage, of the representatives of the Suborder
258	Textulariina Suborder is notable, which given that these are present, even if in small
259	numbers, in Lower-Middle Jurassic foraminiferal assemblages of other coeval basins
260	(Canales and Herrero, 1996, 2000; Canales and Ureta, 1997; Canales, 2001; Canales
261	and Heriques, 2007, 2008; Figueiredo, 2009; Canales et al., 2010; Figueiredo et al.,
262	2010; Guterres, 2010; Magno, 2010; Figueiredo and Guterres, 2012). At the-generic
263	level, a total of 13 genera were identified, where in which Lenticulina, with 359
264	specimens, that represent a relative abundance of 77%, shows a clearly dominance
265	predominatesover the others. At the On a specific level, a total of 31 species were
266	identified, being of which Lenticulina polygonata (Franke) was the most abundant.
267	with 83 specimens that represent a relative abundance of (19%). No dominance There
268	was no evidence of any single of any species dominating over the others has being
269	detected (Table S2).
270	
271	545.1.2. Aalensis Biozone, Aalensis Subzone (SG9-SG33; 7.5 m of greyish marls of
272	variablewith thicknesses varying, between-from 0.15 and 1.10 m, alternate alternating
273	with 0.15 m thick of bioturbated greyish marly limestones 0.15 m thick, displaying very
274	abundant, sometimes pyritized pyritised, ammonite internal moulds).
275	Other biostratigraphic units have been proposed for the upper part of the Aalensis
276	Biozone. Page (2003) uses P. fluitans as index for the Fluitans Subzone. However, P.
277	fluitans has a scarce record in the Lusitanian Basin and, as pointed by Elmi et al. (1997,

278	p. 34), "sa position stratigraphique au sein de la zone à Aalensis ne nous paraît pas bien
279	établie, ce qui justifie son abandone en tant qu'indice". Concerning the Lugdunensis
280	Subzone, it has been established due to traditional misinterpretations of P. aalensis
281	(ZIETENieten) by some authors. According to Elmi et al. (1997, p. 34), "L'école
282	française utilisait une sous-zone à Aalensis pour cet interval de temps [Sous-zone à
283	Lugdunensis] en faisant référence à l'espèce figurée para DUMORTIER umortier (1874,
284	Pl. L, fig. 1-3) qui est bien différente du type de Zieten () Afin d'éviter de pérenniser
285	les confusions, nous proposons le nouveau nom de Pleydellia (Walkericeras)
286	lugdunensis ()" for the French forms of Walkericeras, previously interpreted as P.
287	aalensis sensu Dumortier non Zieten, the original author of the aalensis species. But the
288	Aalensis Biozone, based on the occurrence of its index fossil - P. aalensis
289	(ZIETENieten), i.e., specimens displaying rounded umbilical wall and variable ribbing
290	during ontogeny, according to the original interpretation by Zieten (1830) - is perfectly
291	recognizable in several basins around the Iberian Plate, where correlation has been
292	already established (see, for instance, Goy et al., 2000), namely at Fuentelsaz (the
293	Aalenian GSSP).
294	
295	Index fossil: Pleydellia aalensis (Zieten).
296	The ammonite assemblage recognized recognised in this subzone, which corresponds to
297	142 fossiliferous levels, shows-reveals high abundance (14037 specimens; 11885 of
298	which were identified at species level) and high number of taxa low high diversity (10
299	identified species; 4 identified genera). The base of the subzone is defined by the FAD
300	of the index species - i.e., P. aalensis (Zieten, 1830 non Dumortier, 1874) -species
301	representatives (32 specimens), which dominate amongst the fauna (39 specimens)
302	representing 338% of the identified species), in association with <i>P. folleata</i> (Buckman).

Formatted: Portuguese (Portugal)

303	The base of the subzone also records the (6 specimens) and last occurrence of P.
304	subcompta Branco (1 specimen) and P. fluens (Buckman). (2 specimens) on its base.
305	Cotteswoldia costulata (Zieten) (21 specimens and 2518% of the total identified
306	species), C. limatula Buckman (6 specimens) and C. egena Buckman (1 specimen)
307	representatives, which occurred occurring in the later-previous subzone, still remain
308	remain persist here. Last Catulloceras occur together with the first Tmetoceras; Vacekia
309	sourensis (Perrot) (2 specimens; 12% of the identified species) and early striate
310	Vacekia, like V. striata Henriques (Sandoval et al., 2012a)-(10 specimens), are also
311	relatively abundant. (10% of the identified species) Marly The marly levels of the thick
312	SG 14 bed SG 14 display-reveal a greathigh abundance of pyritized indeterminate
313	pyritised nucleus of indeterminate Cotteswoldia (24 specimens) and Pleydellia nucleus
314	(8 specimens) (Table S3).
315	Four foraminiferal assemblages (SG-12, SG-18, SG-24 and SG-32) From from the
316	Aalensis Subzone (Aalensis Biozone, Upper Toarcian) 4 foraminiferal assemblages
317	(SG 12, SG 18, SG 24 and SG 32) have beenwere studied. A total of 2.,006 specimens
318	were recovered, <u>1.922</u> of which 1,922, representing 96%, were classified to on a
319	specific ranklevel. The average abundance in these assemblages attaints amounts to 94
320	foraminifera per gram of picked sediment. At the suborder ranklevel, representatives of
321	Textulariina, Spirillinina, Miliolina, Lagenina and Robertinina were identified, being
322	within which Lagenina was the most abundant (with a relative abundance of 82%, of the
323	assemblage), followed by Miliolina, with a relative abundance of 15%. This fact is
324	remarkable, since as representatives of this suborder, when if present in Toarcian-
325	Aalenian foraminiferal assemblages, are usually very scarce_rare (Herrero and Canales,
326	1997; Canales and Herrero, 2000; Canales, 2001; Henriques and Canales, 2007, 2008;
327	Figueiredo, 2009; Figueiredo et al., 2010; Figueiredo and Guterres, 2012) The

328	remaining suborders can be considered minority in terms of these assemblages, with
329	relative abundances of less than 2%. At the generic level, <u>18 genera were identified</u> in
330	these assemblages 18 genera have being identified and, again, the representatives of the
331	genus Lenticulina, with 1,392 specimens, representing a relative abundance of 69% of
332	the assemblage, are-were dominant-over the others. Moreover, the large amount it is
333	noticeable the high number of representatives corresponding to the genus Vinelloidea
334	(Miliolina Suborder), whose relative abundance attaints amounts to 15%, is noticeable.
335	A high-great number of species (, namely . 45 in total), have been identified in these
336	assemblages. Among them, Lenticulina toarcense Payard is the most abundant, (with a
337	relative abundance of <u>1818% of the assemblage</u>), but no single species was markedly
338	dominant dominance of any species has been noticed (Table S4).
339	
340	<u>545</u> .1.3. Opalinum Biozone, Opalinum Subzone (SG 3 <u>4</u> 3-SG 54; 8 m of alternations
341	alternating of greyish marly limestones in beds of 1 m thick beds, and thin micritic
2.42	
342	marly limestones in <u>0.20 m thick</u> beds of 0.20 m thick, including very abundant,
342 343	marly limestones in <u>0.20 m thick</u> beds of <u>0.20 m thick</u> , including very abundant, sometimes pyritized pyritised, ammonite internal moulds).
342 343 344	marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u> , including very abundant, sometimes pyritized pyritised, ammonite internal moulds). Index fossil : <i>Leioceras opalinum</i> (Reinecke).
 342 343 344 345 	marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u> , including very abundant, sometimes pyritized pyritised, ammonite internal moulds). Index fossil : <i>Leioceras opalinum</i> (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels,
 342 343 344 345 346 	 marly limestones in <u>0.20 m thick</u> beds-of 0.20m thick, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: <i>Leioceras opalinum</i> (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest abundance and diversity species richness
 342 343 344 345 346 347 	 marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u>, including very abundant, sometimes <u>pyritizedpyritised</u>, ammonite internal moulds). Index fossil: <i>Leioceras opalinum</i> (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, <u>displaying the greatest which shows the highest abundance and diversityspecies richness</u> in the whole section (153 specimens; 45 identified at species level; 6 identified species;
 342 343 344 345 346 347 348 	 marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u>, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: <i>Leioceras opalinum</i> (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest-abundance and diversityspecies richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; 5 identified genera) highest abundance (171 specimens; 51 identified at species level)
 342 343 344 345 346 347 348 349 	 marly limestones in <u>0.20 m thick</u> beds-of 0.20m thick, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: Leioceras opalinum (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest-abundance and diversityspecies richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; 5 identified genera)highest abundance (171 specimens; 51 identified at species level) and diversity (9 identified species; 8 identified genera) in the whole section. The base of
 342 343 344 345 346 347 348 349 350 	 marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u>, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: <i>Leioceras opalinum</i> (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, <u>displaying the greatest which shows the highest abundance and diversityspecies richness</u> in the whole section (153 specimens; 45 identified at species level; 6 identified species; <u>5 identified genera</u> highest abundance (171 specimens; 51 identified at species level) and diversity (9 identified species; 8 identified genera) in the whole section. The base of the subzone is eharacterized characterised by the FAD of for Leioceras opalinum
 342 343 344 345 346 347 348 349 350 351 	 marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u>, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: Leioceras opalinum (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest abundance and diversityspecies richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; <u>5 identified genera</u>)highest abundance (171 specimens; 51 identified at species level) and diversity (9 identified species; 8 identified genera) in the whole section. The base of the subzone is characterized-characterised by the FAD of for Leioceras opalinum (Reinecke), which appears in association with Pleydellia representatives until bed SG
342 343 344 345 346 347 348 349 350 351 352	 marly limestones in <u>0.20 m thick</u> beds-of <u>0.20m thick</u>, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: Leioceras opalinum (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest abundance and diversityspecies richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; <u>5 identified genera</u>)highest abundance (171 specimens; 51 identified at species level) and diversity (9 identified species; 8 identified genera) in the whole section. The base of the subzone is characterized characterised by the FAD of for Leioceras opalinum (Reinecke), which appears in association with Pleydellia representatives until bed SG 35, where the LAD of for this taxon is recorded (Fig. 3). P. aalensis (Zieten), P. folleata
342 343 344 345 346 347 348 349 350 351 352 353	 marly limestones in <u>0.20 m thick beds of 0.20m thick</u>, including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: Leioceras opalinum (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest abundance and diversityspecies richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; 5 identified genera)highest abundance (171 specimens; 51 identified at species level) and diversity (9 identified species; 8 identified genera) in the whole section. The base of the subzone is characterized characterised by the FAD of for Leioceras opalinum (Reinecke), which appears in association with Pleydellia representatives until bed SG 35, where the LAD of for this taxon is recorded (Fig. 3). P. aalensis (Zieten), P. folleata (Buckman), P. lotharingica (Buckman) and P. fluitans (Dumortier) co-exist at the base
342 343 344 345 346 347 348 349 350 351 352 353 354	marly limestones in <u>0.20 m thick beds of 0.20m thick</u> , including very abundant, sometimes pyritizedpyritised, ammonite internal moulds). Index fossil: <i>Leioceras opalinum</i> (Reinecke). The assemblage recogniszed in this subzone corresponds to 7 fossiliferous levels, displaying the greatest which shows the highest-abundance and diversityspecies richness in the whole section (153 specimens; 45 identified at species level; 6 identified species; <u>5 identified genera</u>)highest abundance (171 specimens; 51 identified at species level) and diversity (9 identified species; 8 identified genera) in the whole section. The base of the subzone is characterized characterised by the FAD of for <i>Leioceras opalinum</i> (Reinecke), which appears in association with <i>Pleydellia</i> representatives until bed SG 35, where the LAD of for this taxon is recorded (Fig. 3). <i>P. aalensis</i> (Zieten), <i>P. folleata</i> (Buckman), <i>P. lotharingica</i> (Buckman) and <i>P. fluitans</i> (Dumortier) co-exist at the base with the first Leioceratinae, representing 4 <u>8</u> 6% of the total recorded assemblages of

356	which attain-total 1034%. Cypholioceras lineatum (Buckman), Leioceras opalinum
357	(Reinecke) and indeterminate species of both genera represent only about 110% of the
358	total recorded ammonites. ScarceRare
359	Czerneyiceras also feature in characterize the ammonite assemblages of this unit Scarce
360	Tmetoceras scissum (Benecke) and Czerneyiceras also characterize the ammonite
361	assemblages of this unit, where in which the LAD of several taxa have been recognized
362	identified - namely Pleydellia, Cotteswoldia and Catulloceras - aside together with the
363	FAD of others – Cypholioceras, Leioceras and, Czernyeiceras-and Tmetoceras –
364	corresponding to an important ammonite turnover from the typical Late Toarcian taxa
365	towards to the characteristic Early Aalenian taxa. Such This turnover, which can be
366	accurately assigned to Opalinum Subzone, is particularly well documented in bed by the
367	SG 35 <u>assemblage of in</u> the São Gião section (Table S5).
368	Seven foraminiferal assemblages From from the Opalinum Subzone, 7 foraminiferal
369	assemblages,-corresponding to samples SG-34, SG-36, SG-38, SG-44, SG-48, SG-52
370	and SG-54, were have been studied. A total of 3.7285 specimens were recovered, 3.012
371	of which 3,012 representing 92% -have been classified to-within a specific level. The
372	average abundance in these assemblages attaints-totals 74 foraminifera per gram of
373	sediment picked. As in the precedent previous subzone, 5 suborders have been were
374	identified, namely Textulariina, Spirillinina, Miliolina, Lagenina and Robertinina, and,
375	again, Lagenina is the dominant onesuborder, with a relative abundance of 91%,
376	followed by Miliolina , which shows a relative abundance of (4%), and Spirillinina , with
377	a relative abundance of (3%). The Suborders Textulariina and Robertinina suborders are
378	very scarce-rare (<, showing both relative abundances of less than 2%). At a generic
379	level, a total of 19 genera have been were recognized identified, within which. Among
380	them, the dominance of the representatives of the genus Lenticulina genus. (with a
381	relative abundance of 74%), continuescontinued to predominate. Within the whole-unit,
382	a total of 53 species have beenwere identified, a number that overcomes the onewhich
383	exceeds the number obtained for the Aalensis Subzone. No-There is no evidence for the

Formatted: Right: -0.04 cm, Space Before: 1.45 pt, Line spacing: 1.5 lines, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

384	dominance of any single species, although has been detected, but the most abundant of
385	all of them is Lenticulina helios (Terquem), with a relative abundance of 19% (Table
386	<u>S6)</u> .
387	
388	<u>545</u> .1.4. Opalinum Biozone, Comptum Subzone (SG 55-SG 119; 28_m thick of greyish
389	marls of irregular thickness ranging from 0.20 to 2 m, alternations alternating of greyish
390	marls of irregular thickness, ranging from 0.20 to 2m thick, and with limestones, which
391	are marly and grey in colour at the base, but becoming more and more whiter and more
392	micritic towards the top of the succession).
393	Index fossil: Cypholioceras comptum (Reinecke).
394	The assemblage recognized recognised in this subzone, which corresponds to 20
395	fossiliferous levels, shows-reveals relatively high number of specimens (138 specimens;
396	70 identified at species level) and high number of taxa abundance (1389 specimens;
397	7063 identified at species level) and diversity (8 identified species belonging to 4
398	different genera and 2 indeterminate species, one of Bredyia and another of
399	Czernyeiceras). The base of the subzone is defined by the FAD of the fossil index
400	representatives, associated to other species of the genus Cypholioceras - C.
401	opaliniforme (Buckman), C. lineatum (Buckman) representing 27% of the total species
402	identified species, and to-forms of Leioceras (ranging from the striated L. opalinum
403	(Reinecke) to the costulated <i>L. costosum</i> (Quenstedt), which represent 205% of the total
404	material identified material). All Leioceratinae disappear at SG 107, where the facies
405	abruptly change to micritic white limestones. Vacekia striata Henriques and V.
406	sourensis (Perrot), as well as Tmetoceras scissum (Benecke) representatives persist
407	within this subzone, the first ones former being dominant rather importantquite
408	significant (2630% of the identified species) within the unit as a whole unit, and

409	particularly when Leioceratinae reduce their is less abundance abundant or absent and/or
410	lacks-(Table S7).
411	Having into account the high Taking the significant development of the Comptum
412	Subzone in the São Gião section into account, 12 foraminiferal assemblages,
413	corresponding to samples SG-56, SG-62, SG-64, SG-68, SG-74, SG-78, SG-86, SG-90,
414	SG-92, SG-96, SG-108 and SG.112, were studied. A total of 7363 specimens were
415	recovered, <u>7.071</u> of which 7,071, that represent 96% of the total, w we re identified at the
416	specific level. Again, specimens corresponding to the suborders Textulariina,
417	Spirillinina, Miliolina, Lagenina and Robertinina were obtained, with the Lagenina
418	Suborder dominanceting (76%). being the representatives of the Suborder Lagenina,
419	with a relative abundance of <u>(76%)</u> , the most frequent. As in the Aalensis Subzone,
420	€ <u>T</u> he representatives of the MiliolinaSuborder Miliolina show a relative abundance of
421	19%. Again, the representatives of this suborder are more frequent than in coeval Upper
422	Toarcian-Lower Aalenian iberian-Iberian sections (Herrero and Canales, 1997; Canales
423	and Herrero, 2000; Canales, 2001; Henriques and Canales, 2007, 2008; Figueiredo,
424	2009; Figueiredo et al., 2010; Figueiredo and Guterres, 2012). In these assemblages, the
425	representatives of the remaining suborders are searce rare and all of them showdisplay
426	relative abundances of less than 3%, and or even less than 1%, as is in the case of
427	Robertinina. At the-generic level, a total of 24 genera have beenwere identified, also
428	with the representatives of the genus Lenticulina again presenting, with 4,115
429	specimens, showing the higher highest relative abundance (56%), but not a clear
430	dominancebeing dominantand dominating over the remaining genera. IThus, it is
431	remarkable tThe relative abundance of other genera such as attained by other genera as
432	Vinelloidea (9%), Ophthalmidium (9%), Nodosaria (6%), Astacolus (6%), Prodentalina
433	(4%) and Ammobaculites (2%) is also notable, because since they are much more

434	scarcewere much rarer in the precedent previously studied assemblages. Finally, at the	
435	specific level, a total of 63 species have been were recognized identified within the whole	
436	unit, being of which Lenticulina helios (Terquem), with 925 specimens representing a	
437	relative abundance of 13%,) is the most abundant one(13%) (Table S8).	
438		
439	5.2. Biostratigraphic significance of the recorded assemblages	
440	The ammonite record (4 <u>47</u> 63 specimens, <u>2032</u> species, <u>920</u> genera) of for the São Gião	
441	section has allowed enabled 4 biostratigraphic units the to be recognition recognised of	
442	4-biostratigraphic units (Mactra and Aalensis Subzones subzones of the Aalensis	
443	Biozone in the <u>Uupper Toarcian</u> , and Opalinum and Comptum Subzones subzones of	
444	the Opalinum Biozone in the Llower Aalenian; Fig. 3). This biostratigrahic zonal	
445	scheme has been recognized recognised in the Lusitanian Basin, as well as in other	
446	coeval basins of the Iberian Peninsula (Henriques, 1995; Henriques et al., 1996;	
447	Sandoval et al., 2001a) namely at Fuentelsaz section (Iberian Cordillera), where the	
448	Aalenian GSSP has been established (Cresta et al., 2001).	
449	From a biostratigraphic point of view, based on benthic foraminifera, the taxa identified	
450	in São Gião (13., 116 specimens, 71 species, 26 genera, 5 suborders) have allowed for	
451	the recognition of the Astacolus dorbignyi Zone - in the sense of the Dorbignyi Zone	
452	proposed by Canales (2001) in the Basque-Cantabrian Basin (Northern Spain) for the	
453	Lower-Middle Jurassic transition -, being-with Astacolus dorbignyi (Roemer) its-serving	
454	as the index fossil (Fig. 6). This zone has also been recognized recognised in other	
455	sections of the Lusitanian Basin (Figueiredo, 2009; Guterres, 2010; Magno, 2010;	
456	Canales et al., 2010; Figueiredo et al., 2010; Figueiredo and Guterres, 2012). Its lower	Formatted: English (U.K
457	boundary is marked by the first record of the index species, not previously recognized	Formatted: English (U.K
458	unrecognised until now in the Lusitanian Basin, and its whose upper boundary coincides	

459	with the first record of Lenticulina quenstedti (Gümbel), the index species of for the
460	Lenticulina quenstedti Zone, which has been characterized characterised as belonging to
461	from the upper part of the Gigantea Subzone (Bradfordensis Biozone, Middle Aalenian)
462	at the Bajocian GSSP in Murtinheira section (Portugal) (Canales and Henriques,
463	201 <u>3</u> 2).
464	
465	<u>6</u> 5. Discussion
466 467 468 469 470 471 472 473 474	The composition of the ammonite assemblages in the São Gião section displays ais cosmopolitan characterin nature, with a constant and continuous record of both the Northwest_northwest_Boreal-European taxa - thus allowing the recognition of the standard biozonation established for the Lower-Middle Jurassic transition-, aside together with typical Mediterranean taxa - thus increasing its correlation potential with sections located in both domainsprovinces. They Both reproduce the general trends already recognized recognised in other coeval sections of the Lusitanian Basin and of the Iberian Plate (Henriques, 1989, 1992, 1995, 2000a,b; Henriques et al., 1996; Goy et al., 2000; Sandoval et al., 2001a; Azerêdo et al., 2003), but although the ammonite
475	content displays some peculiarities of stratigraphic and palaeoecological relevance, as
476	described in 6.1. and 6.3.
477	The general composition of the foraminiferal assemblages recorded in São Gião is also
478	comparable with other coeval sections, not only in the Lusitanian Basin (Canales and
479	Henriques, 2007, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Guterres, 2010;
480	Magno, 2010; Figueiredo and Guterres, 2012), but also in other Iberian sections
481	(Canales and Herrero, 1996, 2000; Canales and Ureta, 1997; Herrero and Canales, 1997;
482	Canales et al., 2000; Canales, 2001). However, like the ammonite fauna, the
483	foraminiferal assemblages display some peculiarities related toin terms of their
484	diversityspecies richness and to the main components of the assemblages, alsowhich are
485	of stratigraphic and palaeoecological relevance, as described in 6.1. and 6.3.
486	÷

487	
488	6.1. Ammonite record and stratigraphic implications
489	Concerning With regard to the stratigraphic range of the index species Pleydellia
490	aalensis (Zieten) and Leioceras opalinum (Reinecke), their co-existence at the base of
491	the Opalinum Subzone has been clearly confirmed, corresponding to a bioevent
492	recognizable recognisable at basinal scale (Fig. 4.C). So, tThe base of the Opalinum
493	Subzone <u>therefore</u> has to be established by the FAD of the last one latter, and not by its
494	FAD concomitantly with the LAD of Pleydellia aalensis (Zieten) (Fig. 6). Similarly, the
495	co-occurrence of Leioceras opalinum (Reinecke) and the FAD of Cypholioceras
496	comptum (Reincke) at the base of the Comptum Subzone discard ignores the extinction
497	of the first one former as eriteria criterion for to recognize recognising the Opalinum-
498	Comptum <u>subzone</u> boundary (Fig. 4.J).
499	The increase in the relative abundance of Vacekia representatives at in the upper part of
500	the Comptum Subzone is a relevant bioevent, at least with regional value, allowing the
501	subzone to be recognition recognised of that subzone in sections of the Lusitanian Basin
502	where the last Leioceratinae representatives are generally <u>rare scarce</u> or absent (Fig. 3).
503	
504	6.2. Foraminiferal record and stratigraphic implications
505	Regarding ConcerningWith regard to benthic foraminifera diversityspecies richness, a
506	total of 57 species where identified for this in the stratigraphic interval studied a total of
507	57 species where identified in the Zambujal de Alcaria section (Figueiredo, 2009;
508	Figueiredo et al., 2010), 45 in the Maria Pares section (Guterres, 2010; Figueiredo and
509	Guterres, 2012) and 35 in the Murtinheira section (Canales and Henriques, 2008), all of
510	them-which lie in the Lusitanian Basin. In addition,, and a total of 50 species where
511	obtained in-from different sections of the Basque-Cantabrian Basin in-

512	(Canales, 2001). In the Moyuela section, located in the Iberian Range (Spain), 47
513	species were identified along the Upper Toarcian and Lower Aalenian transition
514	(Canales and Herrero, 2000), and whilst in the Fuentelsaz section (Aalenian GSSP), also
515	located in the Iberian Range, a total of 62 species were obtained (Herrero and Canales,
516	1997). As a consequence, and having taking into account the fact that a total of 71
517	species have been identified in São Gião a total of 71 species have been identified, this
518	section is the most diverse among of the Iberian basins for in terms of this stratigraphic
519	interval.
520	Regarding the taxonomical composition of the assemblages, as commonly occurs in the
521	Jurassic foraminiferal assemblages from the Boreal Realm, Lenticulina (Lagenina
522	Suborder) is the most abundant genus. In the São Gião section, the most abundant
523	species belonging toof this genus, in almost all of the assemblages, is Lenticulina helios
524	(Terquem). Canales et al. (2010) have pointed out that the different species of
525	Lenticulina recorded in the Lower-Middle Jurassic transition in several sections of the
526	Lusitanian Basin show variations in their relative abundances which can be related to
527	the facies where they were developed. Thus, Lenticulina muensteri (Roemer) is
528	relatively more abundant shows its higher relative abundances in facies corresponding
529	to the deeper part of the platform, whilst Lenticulina helios (Terquem) attaints its
530	maximum relative abundance in the intermediate zone of the middle platform and
531	Lenticulina toarcense Payard is the-most abundant in facies corresponding to the
532	shallower part (the innerof the platform). Other genera of this suborderLagenina genera
533	with unusually high relative abundances, such as Prodentalina, Nodosaria and other
534	elongated forms, corresponding to shallow infaunal morphfogroups and indicating good
535	levels of nutrients and oxygenation in the infaunal microhabitats (Reolid et al., 2012)
536	have been recorded in the Comptum Subzone., like Prodentalina, Nodosaria and other

537	elongated forms, corresponding to shallow infaunal morfogroups and indicating good		
538	levels of nutrients and oxygenation in the infaunal microhabitats (Reolid et al., 2012). It		
539	is also remarkable t <u>T</u> he abundant record of representatives of the Suborder Miliolina		
540	Suborder, which are present in almost all the studied assemblages studied and unusually		
541	frequent in the Aalensis and in the upper part of the Comptum subzones, is also notable.		
542	Foraminiferal-The foraminiferal assemblages recorded are abundant and very diverse.		Formatted: English (U.S.)
543	Along Within the studied time span studied, there are no significant dissapearances or		Formatted: English (U.S.)
		$\overline{\ }$	Formatted: English (U.S.)
544	appearances occurrences of taxa-occur. The whole studied stratigraphic interval	_ `	Formatted: English (U.S.)
545	corresponds to a single foraminiferal zone (the Astacolus dorbignyi Zone). For this		Formatted: English (U.S.)
546	reason, a total of 11 bioevents, based on FAD, LAD or changes in the observed		
547	abundance of some taxon or in the assemblages' diversity have been established,		
548	representing biostratigraphical proxies generally of local application (Fig. 6).		
549	Nevertheless, some of them, e.g. the increase in the relative abundance of <i>Lenticulina</i>		Formatted: English (U.S.)
550	exgaleata Dieni from the upper part of the Opalinum Subzone to the lower part of the		
551	Comptum Subzone, have <u>also</u> been recognized recognised in other coeval sections in	<	Formatted: English (U.S.)
552	the Lusitanian Basin (Canales and Henriques, 2008; Figueiredo, 2009; Figueiredo et al.,		Formatted: English (U.S.)
553	2010; Guterres, 2010), showing thus demonstrating as a consequence regional value.		Formatted: English (U.S.)
			Formatted: English (U.S.)
554	The FAD of <i>Nodosaria hortensis</i> Terquem in the Aalensis Subzone and the high		
555	marked increase in the relative abundance of <i>Ophthalmidium</i> representatives in the	_	Formatted: English (U.S.)
556	lower part of the Comptum Subzone have been also recognized recognised in the	_	Formatted: English (U.S.)
557	Zambujal de Alcaria Section (Figueiredo, 2009; Figueiredo et al., 2010;). The increase	_	Formatted: English (U.S.)
558	observed increase in the relative abundance of the representatives of the Textulariina		
559	Suborder <u>Textulariina</u> , as well as ofin <i>Eoguttulina liassica</i> (Strickland) in the upper part		Formatted: English (U.S.)
			Formatted: English (U.S.)
560	of the Comptum Subzone have <u>also been also recognized recognised</u> in the Murtinheira		Formatted: English (U.S.)
561	section (Canales and Henriques, 2008).		Formatted: English (U.S.)

562	
563	6.3. Faunal turnovers and seawater palaeotemperatures
564	A previous study on morphological changes observed in ammonites at the Lias-
565	Dogger boundary, have-questionned the existence of a faunal crisis during the Late
566	Toarcian-Early Aalenian times (Neige et al., 2001). The ammonite composition of
567	the assemblages alongthroughout the Upper
568	Taken into account the ammonite composition of the assemblages along the Upper
569	Toarcian-Lower Aalenian record_offor the São Gião section also, the shows a virtually
570	constant rate of faunal turnover is virtually constant, i.e., no drastic changes between the
571	number of originations and the number of extinctions for each ammonite biozone-have
572	been recognized, unlike the coeval record described for the Betic Cordillera, where The
573	Toarcian-Aalenian ammonite record is there represented in this case by a major faunal
574	turnover which has been correlated with a sea-level regressive phase (Sandoval et al.,
575	2001b) and with relatively low δ^{13} C values of for bulk carbonates in the Upper
576	Toarcian, followed by a moderate positive excursion of the $\delta^{13}C_{carb}$ in the Comptum
577	Subzone (Sandoval et al., 2008). This "Comptum cooling" event" was also pointed
578	outnoted by Gómez et al. (2009) for the Basque-Cantabrian Basin (Northern Spain), in
579	relation with-to major faunal turnover on-in the ammonite and foraminiferal record, and
580	a seawater temperature of 15.7°C based on $\delta^{18}O_{bel}$ has been proposed for this time
581	interval. Price (2010) proposes <u>a</u> seawater temperature of 15-22°C for the Early
582	Aalenian with a-rapid cooling to a minimum of 7°C for the Comptum Subzone based on
583	the positive isotopic excursion recognized recognised on in the $\delta^{13}C_{bel}$ and $\delta^{18}O_{bel}$
584	curves for the Aalenian and Bajocian of Scotland, and argues he therefore supports the
585	global range of the "Comptum cooling" event".
586	However, the Comptum Subzone of the São Gião section is eharacterized characterised
587	by the co-occurrence of the Boreal Nnorthwest European Leioceratinae taxa and the

588	western Tethysian Mediterranean Grammoceratinae, namely the dominant Vacekia
589	striata Henriques, which may attain-amount to 30% of the total identified species within
590	the whole unit, a feature recognized recognised at basinal scale (Sandoval et al., 2012a).
591	Among the foraminifers, the Miliolina representatives miliolids, generally interpreted as
592	typical of shallow waters (Copestake and Johnson, 1981; Haynes, 1981; Stam, 1985;
593	Murray, 1989), show have a continuous and relatively abundant record in this section.
594	This group attains amounts to 19% of the total assemblage from the Comptum Subzone
595	in São Gião, but is scarce-rare in the Aalenian GSSP (Herrero and Canales, 1997), and
596	lacks-absent in all the coeval sections of the Basque-Cantabrian Basin (Canales, 2001)
597	and in the Northern Iberian Range (Canales and Herrero, 2000). In the Lusitanian Basin,
598	Miliolina is scarce-rare in distal and proximal facies (Canales and Henriques, 2008;
599	Figueiredo, 2009 <u>; Figueiredo et al., 2010</u>), but attains represents 7% of the relative
600	abundance in intermediate facies (Guterres, 2010; Figueiredo and Guterres, 2012), like
601	such as those of the São Gião section. Regarding the taxonomical composition of the
602	foraminiferal assemblages, described in the Basque-Cantabrian Basin (Northern Spain),
603	and related-in relation to the "Comptum cooling" event", a total of 14 species show
604	present their FAD along within this time interval (Gómez et al., 2009). Most of them,
605	apparently typical of cool waters, are absent in São Gião and, whenever present, they
606	display a scarce record is scarce, both on in terms of stratigraphic distribution and
607	relative abundance.
608	As a consequence, the results obtained from the composition <u>sal</u> analysis of the
609	ammonite and foraminiferal assemblages recorded in the São Gião section do not
610	support the inferred cooling trend to a the minimum of the seawater temperatures, as
611	well asor the global character of the "Comptum cooling" event". Local reasons must be
612	invoked cited in order to justify the warmer seawater temperature trend in the
613	Lusitanian Basin, as inferred by the ammonite and foraminiferal record along the
---	---
614	Lower-Middle Jurassic transition, namely specifically in relation related to the
615	palaeogeographic location of the basin in the framewithin the context of the opening of
616	the North Atlantic Ocean (García-Frank et al., 2008) and/or the hypothetical connection
617	between Western Tethys and the Eastern Pacific through the Hispanic Corridor (Arias,
618	2006, 2007; Sandoval et al., 2012a). Hydrothermal activity and/or changes in the
619	oceanic circulation patterns feature are plausible causes to explain explanations for the
620	occurrence of warmer seawater temperatures in this sector of the Lusitanian Basin, in
621	oppositionas opposed to the inferred cool seawater admitted accepted for the
622	neighboring basins.
623	
624	<u>7</u> 6. Conclusions
625	The first study for the first time of the co-occurrence of ammonite and benthic
626	foraminiferal assemblages across the São Gião outcrop (Central Portugal) represents a
627	
027	contribution to the knowledge on of this reference section for the Lower-Middle
628	contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil
628 629	contribution to the knowledge on <u>of</u> this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at
627 628 629 630	contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the
628 629 630 631	contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary based
628 629 630 631 632	contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary based on these fossil groups, a particularly important biostratigraphical proxy when
628 629 630 631 632 633	contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary based on these fossil groups, a particularly important biostratigraphical proxy when ammonites are poorly preserved, scarce or almost impossible to obtain (i.e. in core
628 628 629 630 631 632 633 634	contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary based on these fossil groups, a particularly important biostratigraphical proxy when ammonites are poorly preserved, scarce or almost impossible to obtain (i.e. in core samples).
628 629 630 631 632 633 634 635	 contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary based on these fossil groups, a particularly important biostratigraphical proxy when ammonites are poorly preserved, scarce or almost impossible to obtain (i.e. in core samples). A total of well-preserved 44763 ammonite specimens and 132116 foraminifers have
628 628 629 630 631 632 633 634 635 636	 contribution to the knowledge on of this reference section for the Lower-Middle Jurassic boundary of the Lusitanian Basin. The analysis of the macro and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at Fuentelsaz section (Iberian Cordillera, Spain, Cresta et al., 2001), improves the calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary based on these fossil groups, a particularly important biostratigraphical proxy when ammonites are poorly preserved, scarce or almost impossible to obtain (i.e. in core samples). A total of well-preserved 44763 ammonite specimens and 13₂7116 foraminifers have been studied and no evidence of taphonomic processes that could change the original

638	From a taxonomic point of view, the ammonite record of São Gião section mainly
639	includes mainly some typical Boreal Nnorthwest European Grammoceratinae
640	(Catulloceras, Cotteswoldia, Pleydellia) in the Uupper Toarcian, and Leioceratinae
641	(Leioceras, Cypholioceras) in the Llower Aalenian, aside-together with typical
642	Mediterranean Grammoceratinae (Vacekia), Tmetoceratinae (Tmetoceras) and searce
643	rare Hammatoceratidae (Bredya and Czerneyiceras). No typically Tethysian
644	phylloceratids have been were found among the 2032 species corresponding to $9-20$
645	genera-which have been identified, but it is remarkable the relative abundance of
646	Grammoceratinae along throughout the studied time interval studied is noticeable,
647	namely Vacekia striata Henriques, which may attain account for 2630% of the total
648	identified species at in the Comptum Subzone. Regarding the foraminiferas, the
649	recorded assemblages are very abundant and are also the most diverse in the Iberian
650	Peninsula for this time interval. A total of 71 species, corresponding to 26 genera and 5
651	suborders have been identified, all of them typical from of the Jurassic platforms of the
652	North-northern Hemispherehemisphere. Among the recognized recognised suborders,
653	Lagenina can be considered as-dominant, Lenticulina is the best represented genus, and
654	Lenticulina helios (Terquem) is the most abundant species. NeverthelessIn addition,
655	representatives of the Suborder-Miliolina Suborder are also unusually frequent.
656	The ammonite record of the São Gião section has allowed enabled 4 biostratigraphic
657	units to be recognised the recognition of 4 biostratigraphic units (Mactra and Aalensis
658	Subzones subzones of the Aalensis Biozone in the Uupper Toarcian, and Opalinum and
659	Comptum Subzones-subzones of the Opalinum Biozone in the Llower Aalenian).
660	Concerning With regard to benthic foraminifera, the taxa identified have allowed
661	enabled the Astacolus dorbignyi Zone to be identified the recognition of the Astacolus
662	dorbignyi Zone, as well as 11 bioevents based on FAD, LAD, and changes in the

665	The constant and continuous ammonite record of Northwest-northwest European-Boreal
666	taxa, aside together with the typical Mediterranean taxa along throughout the whole
667	section, the <u>relatively</u> high relative abundance of the Miliolina representatives, <u>which</u>
668	are usually interpreted generally interpreted as typical of shallow waters, and the absence
669	of typical forms of cool waters forms, do not match concur with the inferred cooling of
670	the seawater temperatures assigned to the Early Aalenian, as well as withor the global
671	character nature of the "Comptum cooling" event".
672	
673	Acknowledgments
674	This study has been supported by the Projects CGL2011-23947 and CGL2011-25894
675	(Ministerio de Educación y Ciencia, Spain) and for the Grupo de Investigación UCM
676	910431 (Complutense University, Madrid, Spain). The laboratory work was supported
677	by the Consortium Petrobras-Galp-Partex of Portugal. The authors are grateful to the
678	Centro Nacional de Microscopía Electrónica (Complutense University of Madrid,
679	Spain) for the SEM photographs, to Claudia Magno for the preliminary work of a part
680	of the studied material, to Dr. Mena Schemm-Gregory for her help with the ammonite
681	photography, and to Inês Pena dos Reis for the English revision of the text, and to Dr.
682	Gilles Escarguel, Dr. Fabienne Giraud, Dr. Pascal Neige and an anonymous reviewer
683	for the scientific revision of the manuscript
684	
685	References

relative abundance of some certain taxa or changes in the diversity species richness in

663

664

the recorded assemblages.

- 686 Aguado, R., O'Dogherty, L., Sandoval, J., 2008. Fertility changes in surface waters
- 687 during the Aalenian (mid-Jurassic) of the Western Thetys as revealed by

688	calcareous nannofossils and carbon-cycle perturbations. Marine
689	Micropaleontology 68, 268–285.
690	Arias, C., 2006. Northern and Southern Hemispheres ostracod palaeobiogeography
691	during the Early Jurassic: Possible migration routes. Palaeogeography,
692	Palaeoclimatology, Palaeoecology 233, 63-95.
693	Arias, C., 2007. Pliensbachian-Toarcian ostracod biogeography in NW Europe:
694	Evidence for water mass structure evolution. Palaeogeography,
695	Palaeoclimatology, Palaeoecology 251, 398-421.
696	Azerêdo, A.C., Duarte, L.V., Henriques, M.H., Manuppella, G., 2003. Da dinâmica
697	continental no Triásico aos mares no Jurássico Inferior e Médio. Cadernos de
698	Geologia de Portugal, Instituto Geológico e Mineiro, Lisboa.
699	Barbosa, B.P., Soares, A.F., Rocha, R.B., Manupella, G., Henriques, M.H.P., 1988.
700	Carta Geológica de Portugal na escala de 1:50 000. Notícia explicativa da folha
701	19A – Cantanhede. Serv. Geol. Portugal, Lisboa.
702	Barbosa, B.P., Soares, A.F., Rocha, R.B., Manupella, G., Henriques, M.H.P., 2008.
703	Carta Geológica de Portugal na escala de 1:50 000. Notícia explicativa da folha
704	19A – Cantanhede. Dep. Geologia, Inst. Nac. Engenharia, Tecnologia e Inovação,
705	Lisboa.
706	Caloo-Fortier, B., 1985. La ligne de suture élément de comparaison des genres
707	Pleydellia, Vacekia, Leioceras (Hildocerataceae), Toarcien-Aalénien, S. Gião,
708	Portugal. Colloque C.I.E.L., Cahiers de l'Institut Catholique de Lyon 14, 231-
709	253.
710	Canales, M.L., 2001. Los foraminíferos del Aaleniense (Jurásico Medio) en la Cuenca
711	Vasco-Cantábrica (N de España). Revista Española de Micropaleontología 33,
712	253–438.
713	Canales; M.L., Henriques, M.H, 2007. Análisis cuantitativo de los foraminíferos del
714	Aaleniense (Jurásico Medio) de la sección de Murtinheira (Cabo Mondego, W de
715	Portugal). Consideraciones paleoecológicas, in: Carvalho, I.S., Cassab, R.C.T.,
716	Schwanke, C., Carvalho, M.A., Fernandes, A.C.S., Rodrigues, M.A.C., Carvalho,
717	M.S.S., Arai, M., Oliveira M.E.Q. (Eds.), Paleontologia: Cenários de Vida:
718	Editora Interciência, Brasil, v. 2, pp. 383–393.
719	Canales, M.L., Henriques, M.H., 2008. Foraminifera from the Aalenian and the
720	Bajocian GSSP (Middle Jurassic) of Murtinheira section (Cabo Mondego, West

721	Portugal): Biostratigraphy and paleoenvironmental implications. Marine	
722	Micropaleontology 67, 155–179.	
723	Canales, M.L., Henriques, M.H., 2013. Foraminiferal assemblages from the Bajocian	F
724	Global Stratotype Section and Point (GSSP) at the Cape Mondego (Portugal).	Ľ
725	Journal of Foraminiferal Research 43(2), 182-206.	
726	Canales, M.L., Henriques, M.H., Ureta, M.S., 2000. Análisis de las asociaciones de	
727	foraminíferos del Aaleniense en los márgenes oriental y noroccidental de la Placa	
728	Ibérica: implicaciones biogeográficas y bioestratigráficas. Actas do I Congresso	
729	Ibérico de Paleontología/XVI Jornadas de la Socociedad Española de	
730	Paleontología, 8–9.	
731	Canales, M.L., Henriques, M.H., Figueiredo, V.L., Guterres, H., 2010. Foraminifera	
732	from the Lower-Middle Jurassic of the Lusitanian Basin (Portugal) –	
733	biostratigraphic and palaeoecological significance, in: Pena dos Reis, R.,	
734	Pimentel, N. (Eds.), Rediscovering the Atlantic: new ideas for an old sea, II	
735	Central & North Atlantic Conjugate Margins Conference Lisbon 2010, 42-46.	
736	Canales, M.L., Herrero, C., 1996. Análisis de la diversidad en las asociaciones de	
737	foraminíferos del Aaleniense (Jurásico) en Cillamayor y San andrés (Cuenca	
738	Vasco-Cantábrica) Tomo Extraordinario. 125 Aniversario de la Real Sociedad	
739	Española de Historia Natural, 291–294.	
740	Canales, M.L., Herrero, C., 2000. Asociaciones de foraminíferos del Toarciense	
741	superior y Aaleniense en la sección de Moyuela (Zaragoza, España). Revista	
742	Española de Micropaleontología 32, 301–317.	
743	Canales, M.L., Ureta, S., 1997. Asociaciones de ammonoideos y foraminíferos del	
744	Aaleniense en la sección de Castillo Pedroso (Cuenca Vasco-Cantábrica, España).	
745	Les Cahiers de l'Université Catholique de Lyon 10, 19–33.	
746	Copestake, P. and Johnson, B. 1981. The Hettangian to Toarcian (Lower Jurassic), in:	
747	Jenkins, D.G., Murray, J.W. (Eds.). Stratigraphic Atlas of Fossil Foraminifera,	
748	Ellis Horwood Limited, pp. 129–188.	
749	Cresta, S., Goy, A., Ureta, S., Arias, C., Barron, E., Bernad, J., Canales, M.L.,	
750	Garcia-Joral, F., Garcia-Romer, E., Gialanella, P.R., Gomez, J.J., Gonzalez,	
751	J.A., Herrero, C., Martinez, G., Osete, M.L., Perilli, N. and Villalain, J.J., 2001.	
752	The Global Boundary Stratotype Section and Point (GSSP) of the Toarcian-	
753	Aalenian boundary (Lower- AaleniAalenian boundary (Lower-Middle	
754	Jurassic). Episodes 24 (3), pp. 166-175.	

Formatted: Font: (Default) Times New Roman, Not Bold

755	Dumortier, E. 1874. Études paléontologiques sur les dépôs jurassiques du Bassin du	
756	Rhône, Savy, F. (Ed.).	
757	Elmi, S., Rulleau, L., Gabilly, J. & Mouterde, R. 1997: Toarcien, in: Cariou, E. &	Formatted: French (France)
758	HHantzpergue, P. (eds), Biostratigraphie du Jurassique ouest-europeen et	Formatted: Indent: Left: 0 cm, Hanging: 1 cm, Right: 0 cm, Space
759	mediterraneen: zonations paralleles et distribution des invertebres et	Before: 0 pt, Widow/Orphan control
760	microfossiles, Bulletin du Centre Recherches Elf Exploration Production	
761	<u>Memoire 17, 25–36.</u>	Formatted: Font color: Auto, French
762	Fernández López, S., Henriques, M.H., Linares, A., Sandoval, J., Ureta, M.S. 1999a.	(rrance)
763	Aalenian Tmetoceras (Ammonoidea) from Iberia. Taxonomy, Habitats, and	
764	Evolution, in: Olóriz, F., Rodríguez-Tovar, F.J. (Eds.), Advancing Research on	
765	Living and Fossil Cephalopods. Kluwer Academic/Plenum Publishers, pp. 91–	
766	108.	
767	Fernández López, S., Henriques, M.H., Linares, A., Sandoval, J., Ureta, M.S. 1999b.	
768	Aalenian Tmetoceras (Ammonoidea) from Iberia. Taphonomy and	
769	Palaeobiogeography, in: Olóriz, F., Rodríguez-Tovar, F.J. (Eds.), Advancing	
770	Research on Living and Fossil Cephalopods. Kluwer Academic/Plenum	
771	Publishers, pp. 395–417.	
772	Fernández López, S., Meléndez, G., 1995. Phylloceratina ammonoids in the Iberian	
773	Basin during the Middle Jurassic: a model of biogeographical and taphonomical	
774	dispersal related to relative sea-level changes. Paleogeography,	
775	Palaeoclimatology, Palaeoecology 120, 291-302.	
776	Fernández López, S., Duarte, L. V., Henriques, M. H., 2000. Ammonites from lumpy	
777	limestones in the Lower Pliensbachian of Portugal: taphonomic analysis and	
778	palaeoenvironmental implications. Revista de la Sociedad Geológica de España	
779	13, 3–15.	
780	Figueiredo, V.L., 2009. Foraminíferos da passagem Jurássico Inferior-Médio do Sector	
781	Central da Bacia Lusitânica: o perfil de Zambujal de Alcaria, Ms.C. thesis,	
782	Universidade de Coimbra, Portugal (unpublished).	
783	Figueiredo, V.L.E., Henriques, M.H.P, Canales, M.L.F., 2010. Foraminíferos	Formatted: Portuguese (Portugal)
784	bentonicos da passagem Jurássico Inferior-Médio do sector central da Bacia	Formatted: Portuguese (Portugal)
785	Lusitânica: o perfil de Zambujal de Alcaria, B. Geoci. Petrobras 19(1/2), 207-	
786	<u>231.</u>	
787	Figueiredo, V.L. and Guterres, H.C., 2012. Análise quantitativa das associações de	
788	foraminiferos da passagem Jurássico Inferior-Médio do perfil de Maria Pares	

789	(Setor Norte da Bacia Lusitânica, Portugal - implicações paleoecológicas, in:
790	Lopes, F. C., Andrade, A. I., Henriques, M. H., Quinta-Ferreira, M., Barata, M. T.
791	& Pena dos Reis, R. (Coords.), Para Conhecer a Terra: Memórias e Notícias de
792	Geociências no Espaço Lusófono, Imprensa da Universidade de Coimbra, pp.
793	<u>151-159.</u>
794	García-Frank, A., Ureta, S., Mas, R., 2008. Aalenian pulses of tectonic activity in the
795	Iberian Basin, Spain. Sedimentary Geology 209, 15-35.
796	Gómez, J.J., Canales, M.L., Ureta, S., Goy, A., 2009. Palaeoclimatic and biotic changes
797	during the Aalenian (Middle Jurassic) at the southern Laurasian Seaway (basque-
798	Cantabrian Basin, northern Spain). Palaeogeography, Palaeoclimatology,
799	Palaeoecology 275, 14–27.
800	Goy, A., Henriques, M.H., Sandoval, J., Ureta, S., 2000. Stratigraphic events at the
801	Lias-Dogger boundary in Iberia: Betic and Iberian Cordilleras and Lusitanian
802	Basin. "Les événements du passage Lias-Dogger", Séance spécialisée de la
803	Societé Géologique de France, du Comité Français de Stratigraphie e da
804	Association des Géologues du Sud-Ouest, Toulouse (França). Strata série 1, 10,
805	133–136.
806	Guterres, H.C., 2010. Foraminíferos do limite Jurássico Inferior-Médio do Sector Norte
807	da Bacia Lusitânica: o perfil de Maria Pares (Rabaçal). Ms.C. thesis, Universidade
808	de Coimbra, Portugal (unpublished).
809	Haynes, J. R., 1981. Foraminifera. Macmillan Publishers Ltd.
810	Henriques, M.H., 1989. O limite Lias-Dogger no Baixo Mondego (Portugal) – Ensaio
811	de caracterização biostratigráfica. Memórias e Notícias, Publicação do Museu e
812	Laboratório Mineralógico e Geológico da Universidade de Coimbra 107, 37-42.
813	Henriques, M.H., 1992. Biostratigrafia e Paleontologia (Ammonoidea) do Aaleniano em
814	Portugal (Sector Setentrional da Bacia Lusitaniana). Ph.D. thesis, Universidade de
815	Coimbra, Portugal (unpublished).
816	Henriques, M.H., 1995. Les faunes d'ammonites de l'Aalénien Portugais: composition
817	et implications paléobiogéographiques, in: Gayet, M., Courtinat, B. (Eds.), First
818	European Paleontological Congress, Lyon 1993, Geobios M.S. 18, 229-235.
819	Henriques, M.H., 2000a. Biostratigraphie (Ammonoidea) du passage Lias-Dogger dans
820	le Bassin Lusitanien: la coupe de S. Gião (Portugal). "Les événements du passage
821	Lias-Dogger", Séance spécialisée de la Societé Géologique de France, du Comité

822	Français de Stratigraphie et de l'Association des Géologues du Sud-Ouest,
823	Toulouse (França), Strata série 1, 10, 31–35.
824	Henriques, M.H.P., 2000b. Aalenian of the Zambujal de Alcaria section (Central
825	Lusitanian Basin; Portugal), in: Hall, R.L., Smith, P.L. (Eds.), Advances in
826	Jurassic Research 2000, GeoResearch Forum, Transtec Pubications 6, 85–94.
827	Henriques, M.H., Linares, A., Sandoval, J., Ureta, M.S, 1996. The Aalenian in the
828	Iberia (Betic, Lusitanian and Iberian Basins), in: Riccardi, A.C. (Ed.), Advances
829	in Jurassic Research, GeoResearch Forum, Transtec Publications 1–2, 139–150.
830	Henriques, M.H., Perilli, N., 2000. Aalenian nannofossils of São Gião and Serra da
831	Boa-Viagem sections (Lusitanian Basin, Portugal): preliminary results. Actas do I
832	Congresso Ibérico de Paleontología/XVI Jornadas de la Socociedad Española de
833	Paleontología, 93–94.
834	Herrero, C., Canales, M.L., 1997. Diversidad en los foraminíferos del tránsito
835	Toarciense/Aaleniense en la sección de Fuentelsaz (Cordillera Ibérica): Revista
836	Española de Paleontología 12, 233–242.
837	Herrero, C., Canales, M.L., 2002. Taphonomic processes in selected Lower and Middle
838	Jurassic foraminifera from the Iberian Range and Basque-Cantabrian Basin
839	(Spain). Journal of Foraminiferal Research 32, 22–42.
840	Magno, C., 2010. Foraminíferos do limite Jurássico inferior-médio do sector Norte da
841	Bacia Lusitânica: o perfil de S. Gião. Ms.C. thesis, Universidade deCoimbra,
842	Portugal (unpublished).
843	Magno, C., Henriques, M.H., Canales, M.L., 2008. Foraminíferos do Aaleniano
844	(Jurássico Médio) da Ibéria: Bacias Lusitânica (Portugal), Basco-Cantábrica
845	(Espanha) e Cordilheira Ibérica (Espanha), in: Henriques, M. H., Lopes, F. C.,
846	Catarino, L., Duarte, L. V., Rodrigues, N., Andrade, A. I. (Eds.), Conferência
847	Internacional "As Geociências no Desenvolvimento das Comunidades
848	Lusófonas", Universidade de Coimbra, Memórias e Notícias, Coimbra 3 (Nova
849	Série), 115–122.
850	Mouterde, R., Rocha, R.B., Ruget, C., Tintant, H., 1979. Faciès, biostratigraphie et
851	paléogéographie du jurassique portugais. Ciências da Terra, Universidade Nova
852	de Lisboa 5, 29–52.
853	Murray, J. W., 1989. An outline of faunal changes through the Phanerozoic, in: Jenkins,
854	D.G., Murray, J.W. (Eds.), Stratigraphical Atlas of Fossil Foraminifera, second
855	edition. Ellis Horwood Limited, pp. 570–573.

856	Neige, P., Elmi, S., Rulleau, L., 2001. Existe-t-il une crise au passage Lias – Dogger	
857	chez les ammonites? Approche morphometrique par quantification de la disparité	
858	morphologique. Bull. Soc. géol. France 172(2), 125–132.	
859		
860	O'Dogherty, L., Sandoval, J., Bartolini, A., Bruchez, S., Bill, M., Guex, J., 2006.	
861	Carbon-isotope stratigraphy and ammonite faunal turnover for the Middle	
862	Jurassic in the Southern Iberian palaeomargin. Palaeogeography,	
863	Palaeoclimatology, Palaeoecology 239, 311–333.	
864	Page, K., 2003. The Lower Jurassic of Europe: its subdivision and correlation.	Formatted: Don't adjust space
865	Geological Survey of Denmark and Greenland Bulletin 1, 23–59,	adjust space between Asian text, Don't
866	Price, G.D., 2010. Carbon-isotope stratigraphy and temperature change during the	Formatted: Font color: Green
867	Early-Middle Jurassic (Toarcian-Aalenian), Raasey, Scotland, UK.	
868	Palaeogeography, Palaeoclimatology, Palaeoecology 285, 255–263.	
869	Reolid, M., Sebane, A., Rodríguez-Tovar, F.J., Marok, A., 2012. Foraminiferal	
870	morphogroups as a tool to approach the Toarcian Anoxic Event in the Western	
871	Saharan Atlas (Algeria). Palaeogeography, Palaeoclimatology, Palaeoecology	
872	323-325, 87–99.	
873	Sandoval, J., Henriques, M.H., Ureta, S., Goy, A., Rivas, P., 2001a. The Lias/Dogger	
874	boundary in Iberia: Betic and Iberian cordilleras and Lusitanian basin. Bulletin de	
875	la Socioété géologique de France 72, 387–395.	
876	Sandoval, J., O'Dogherty, L., Guex, J., 2001b. Evolutionary Rates of Jurassic	
877	Ammonites in Relation to Sea-level Fluctuations. Palaios 16, 311-335.	
878	Sandoval, J., O'Dogherty, L., Aguado, R., Bartolini, A., Bruchez, S., Bill, M., 2008.	
879	Aalenian carbon-isotope stratigraphy: Calibration with ammonite, radiolarian and	
880	nannofossil events in the Western Tethys. Palaeogeography, Palaeoclimatology,	
881	Palaeoecology 267, 115–137.	
882	Sandoval, J., Henriques, M.H., Chandler, R., Ureta, S., 2012a. Latest Toarcian-Earliest	
883	Bajocian (Jurassic) Grammoceratinae (Hildoceratidae, Ammonitina) of the	
884	western Tethys: palaeobiogeographic significance. Geobios 45, 109-119.	
885	Sandoval, J. Bill, M., Aguado, R., O'Dogherty, L., Rivas, P., Morard, A., Guex, J.,	
886	2012b. The Toarcian in the Subbetic basin (southern Spain): Bio-events	
887	(ammonite and calcareous nannofossils) and carbon-isotope stratigraphy.	
888	Palaeogeography, Palaeoclimatology, Palaeoecology 342-343, 40-63.	

889	Stam, B., 1985. Quantitative analysis of Middle and Late Jurassic foraminifera from
890	Portugal and its implications for the Grand Banks of Newfoundland. Utrecht
891	Micropaleontological Bullentins 34, 1–168.
892	Zieten, C. H., 1830. Die Versteinerungen Württembergs, Exped. Werkes unsere Zeit
893	<u>(Ed.).</u>
894	
895	

896 FIGURE CAPTIONS

898	Fig. 1. Location of the Lusitanian Basin (West of the Iberian Peninsula), geological map
899	of the Lusitanian Basin showing the Jurassic outcrops and location of the São Gião
900	section (modified after Figueiredo, 2009).
901	
902	Fig. 2. Synthetic lithostratigraphic chart for the Triassic, Lower and Middle Jurassic of
903	the Lusitanian Basin, showing the position of the São Gião section (modified after
904	Azerêdo et al., 2003).
905	
906	Fig. 3. Lithological succession in São Gião section, biostratigraphic units based on
907	ammonites and, in black dots with different diameter, occurrence and relative
908	abundance of the identified ammonite taxa along the section.
909	
910	Fig. 4. (All specimens in natural size) Upper Toarcian and Lower Aalenian selected
911	ammonites recorded in São Gião section. A. Pleydellia subcompta Branco. SG-6.1.
912	Toarcian, Aalensis Biozone, Mactra Subzone. B. Pleydellia aalensis (Zieten). SG-9.1.
913	Toarcian, Aalensis Biozone, Aalensis Subzone. C. Pleydellia aalensis (Zieten). SG-
914	35.1. Aalenian, Opalinum Biozone, Opalinum Subzone. D. Pleydellia folleata
915	(Buckman). SG-11.4. Toarcian, Aalensis Biozone, Aalensis Subzone. E. Pleydellia
916	fluitans (Dumortier). SG-35.50. Aalenian, Opalinum Biozone, Opalinum Subzone.
917	F. <i>Pleydellia lotharingica</i> (Buckman). SG-35.5. Aalenian, Opalinum Biozone,
918	Opalinum Subzone. G. Pleydellia lotharingica (Buckman). SG-35.71. Aalenian,
919	Opalinum Biozone, Opalinum Subzone. H. Pleydellia folleata (Buckman). SG-27.17.
920	Toarcian, Aalensis Biozone, Aalensis Subzone. I. Cotteswoldia egena Buckman. SG-

923	opalinum (Reinecke). SG-55.49. Aalenian, Opalinum Biozone, Comptum Subzone. L.
924	Leioceras costosum (Quenstedt). SG-55.31. Aalenian, Opalinum Biozone, Comptum
925	Subzone. M. Leioceras costosum (Quenstedt). SG-103.1. Aalenian, Opalinum Biozone,
926	Comptum Subzone. N. Cypholioceras lineatum (Buckman). SG-39.4. Aalenian,
927	Opalinum Biozone, Opalinum Subzone. O. Cypholioceras comptum (Reinecke). SG-
928	55.32. Aalenian, Opalinum Biozone, Comptum Subzone. P. Vacekia striata Henriques.
929	SG-43.4. Aalenian, Opalinum Biozone, Opalinum Subzone. Q. Vacekia sourensis
930	(Perrot). SG-55.1. Aalenian, Opalinum Biozone, Comptum Subzone. R. Vacekia striata
931	Henriques. SG-102.1. Aalenian, Opalinum Biozone, Comptum Subzone. S. Tmetoceras
932	scissum (Benecke). SG-33.6. Aalenian, Opalinum Biozone, Opalinum Subzone. T.
933	Tmetoceras scissum (Benecke). SG-66.1. Aalenian, Opalinum Biozone, Comptum
934	Subzone. U. Bredyia sp. SG-83.1. Aalenian, Opalinum Biozone, Comptum Subzone.
935	(All specimens in natural size).
936	
937	Fig. 5. Occurrence and relative abundance of some of the foraminiferal taxa recorded in
938	the studied stratigraphic interval studied.
939	
940	Fig. 6. Occurrence and relative abundance of some of the foraminiferal taxa recorded in
941	the studied stratigraphic interval (see legend of Fig. 4) and zonal scale based on
942	foraminifers. Main bioevents based on ammonites and on foraminifers identified along
943	the Lower/Middle Jurassic transition in São Gião section.
944	

22.1. Toarcian, Aalensis Biozone, Aalensis Subzone. J. Cotteswoldia limatula

Buckman. SG-22.2. Toarcian, Aalensis Biozone, Aalensis Subzone. K. Leioceras

921

945	Fig. 7-(Scale bar 100 μ). Upper Toarcian and Lower Aalenian selected foraminifera
946	corresponding to the suborders Textulariina, Spirillinina, Miliolina and Lagenina. A.
947	Thurammina jurensis (Franke). SG-56.51.211. Aalenian, Opalinum Biozone, Comptum
948	Subzone. B. Tolypammina flagellum Terquem. SG-48.103.263. Aalenian, Opalinum
949	Biozone, Opalinum Subzone. C. Ammobaculites coprolithiformis (Schwager). SG-
950	86.104.264. Aalenian, Opalinum Biozone, Comptum Subzone. D. Ammobaculites
951	fontinensis (Terquem). SG-74.52.212. Aalenian, Opalinum Biozone, Comptum
952	Subzone. E. Ammobaculites vetustus (Terquem and Berthelin). SG-86.121.281.
953	Aalenian, Opalinum Biozone, Comptum Subzone. F. Trochammina cf. canningensis
954	Tappan. SG-64.105.265. Aalenian, Opalinum Biozone, Comptum Subzone. G.
955	Spirillina numismalis Terquem and Berthelin. SG-54.55.215. Aalenian, Opalinum
956	Biozone, Comptum Subzone. H. Spirillina orbicula Terquem and Berthelin. SG-
957	48.54.214. Aalenian, Opalinum Biozone, Opalinum Subzone. I. Vinelloidea tibia
958	(Terquem and Berthelin). SG-64.122.282. Aalenian, Opalinum Biozone, Comptum
959	Subzone. J. Ophthalmidium northamptonensis Wood and Barnard. SG-64.57.217.
960	Aalenian, Opalinum Biozone, Comptum Subzone. K. Prodentalina cf. fragilis
961	(Terquem). SG-64.124.284. Aalenian, Opalinum Biozone, Comptum Subzone. L.
962	Prodentalina cf. guembeli (Schwager). SG-64.67.227. Aalenian, Opalinum Biozone,
963	Comptum Subzone. M. Prodentalina pseudocommunis (Franke). SG-32.65.225.
964	Toarcian, Aalensis Biozone, Aalensis Subzone. N. Prodentalina subsiliqua (Franke).
965	SG-62.66.226. Aalenian, Opalinum Biozone, Comptum Subzone. O. Falsopalmula
966	jurensis (Franke). SG-86.69.229. Aalenian, Opalinum Biozone, Comptum Subzone. P.
967	Falsopalmula obliqua (Terquem). SG-54.70.230. Aalenian, Opalinum Biozone,
968	Comptum Subzone. Q. Nodosaria fontinensis Terquem. SG-74.72.232. Aalenian,
969	Opalinum Biozone, Comptum Subzone. R. Nodosaria hortensis Terquem. SG-

970	56.73.233. Aalenian, Opalinum Biozone, Comptum Subzone. S. <i>Nodosaria liassica</i>
971	Barnard. SG-54.4.234. Aalenian, Opalinum Biozone, Comptum Subzone. T. Nodosaria
972	pseudoregularis Canales. SG-96.125.285. Aalenian, Opalinum Biozone, Comptum
973	Subzone. U. Nodosaria pulchra (Franke). SG-86.76.236. Aalenian, Opalinum Biozone,
974	Comptum Subzone. V. Nodosaria simoniana d'Orbigny. SG-90.110.270. Aalenian,
975	Opalinum Biozone, Comptum Subzone. W. Nodosaria torulosi Frentzen. SG-
976	86.111.271. Aalenian, Opalinum Biozone, Comptum Subzone. X. Pseudonodosaria
977	vulgata (Bornemann). SG-96.126.286. Aalenian, Opalinum Biozone, Comptum
978	Subzone. Y. Lenticulina bochardi (Terquem). SG-86.127.287. Aalenian, Opalinum
979	Biozone, Comptum Subzone. <u>(Scale bar 100 μ).</u>
980	
981	Fig. 8 (Scale bar 100 μ). Upper Toarcian and Lower Aalenian selected foraminifera
982	corresponding to the suborders Lagenina and Robertinina. A. Lenticulina constricta
983	(Kaptarenko-Chernousova) sensu Jendryka-Fuglewicz. SG-68.80.241. Aalenian,
984	Opalinum Biozone, Comptum Subzone. B. Lenticulina exgaleata Dieni. SG-54.81.241.
985	Aalenian, Opalinum Biozone, Opalinum Subzone. C. Lenticulina helios (Terquem).
986	SG-32.82.242. Toarcian, Aalensis Biozone, Aalensis Subzone. D. Lenticulina muensteri
987	(Roemer). SG-8.83.243. Toarcian, Aalensis Biozone, Mactra Subzone. E. Lenticulina
988	polygonata (Franke). SG-48.84.244. Aalenian, Opalinum Biozone, Opalinum Subzone.
989	F. Lenticulina toarcense Payard. SG-62.129.289. Aalenian, Opalinum Biozone,
990	Comptum Subzone. G. Astacolus dorbignyi (Roemer). SG-56.130.290. Aalenian,
991	Opalinum Biozone, Comptum Subzone. H. Astacolus scalptus (Franke). SG-64.88.248.
992	Aalenian, Opalinum Biozone, Comptum Subzone. I. Astacolus vetustus (d'Orbigny).
993	SG-34.113.273. Aalenian, Opalinum Biozone, Opalinum Subzone. J. Marginulina aff.
994	ambigua (Schwager), SG-62.90.250, Aalenian, Opalinum Biozone, Comptum Subzone

- 995 K. Marginulina scapha (Lalicker). SG-52.91.251. Aalenian, Opalinum Biozone,
- 996 Comptum Subzone. L. Citharina clathrata (Terquem). SG-38.92.252. Aalenian,
- 997 Opalinum Biozone, Opalinum Subzone. M. Citharina colliezi (Terquem). SG-
- 998 78.93.253. Aalenian, Opalinum Biozone, Comptum Subzone. N. Citharina cf.
- 999 ornithocephala (Wiśniowski). SG-64.95.255. Aalenian, Opalinum Biozone, Comptum
- 1000 Subzone. O. Planularia beierana (Gümbel). SG-32.115.275. Toarcian, Aalensis
- 1001 Biozone, Aalensis Subzone. P. Planularia protracta (Bornemann). SG-48.98.258.
- 1002 Aalenian, Opalinum Biozone, Opalinum Subzone. **Q.** *Eoguttulina liassica* (Strickland).
- 1003 SG-64.99.259. Aalenian, Opalinum Biozone, Comptum Subzone. R. Ramulina cf.
- 1004 spandeli Paalzow. SG-64.100.260. Aalenian, Opalinum Biozone, Comptum Subzone. S.
- 1005 Bullopora rostrata Quenstedt. SG-32.102.262. Toarcian, Aalensis Biozone, Aalensis
- 1006 Subzone. **T.** Internal mould of a specimen belonging to the Family Ceratobuliminidae.
- 1007 SG-56.116.276. Aalenian, Opalinum Biozone, Opalinum Subzone. (Scale bar 100 μ)

Received and the second second