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Abstract

We propose a thermodynamic version of the Axelrod model of social influ-
ence. In one-dimensional (1D) lattices, the thermodynamic model becomes a
coupled Potts model with a bonding interaction that increases with the site
matching traits. We analytically calculate thermodynamic and critical prop-
erties for a 1D system and show that an order-disorder phase transition only
occurs at T = 0 independent of the number of cultural traits q and features F .
The 1D thermodynamic Axelrod model belongs to the same universality class
of the Ising and Potts models, notwithstanding the increase of the internal
dimension of the local degree of freedom and the state-dependent bonding
interaction. We suggest a unifying proposal to compare exponents across
different discrete 1D models. The comparison with our Hamiltonian descrip-
tion reveals that in the thermodynamic limit the original out-of-equilibrium
1D Axelrod model with noise behaves like an ordinary thermodynamic 1D
interacting particle system.

1. Introduction

The Axelrod model [1] was proposed originally to study dissemination of
cultures among interacting individuals or agents. Although the model is too
simple to simulate social dynamics, the mechanisms used in the model have
been recognized by social scientists as a global self-reinforcing social dynamic
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[2]. It is a fact that the more culturally similar the people, the greater
the chance of interaction between them, and that interaction increases their
similarity [3]. These are the premises of the model.

More explicitly, the Axelrod model considers that an agent located at the
ith site of a lattice is defined by a set of F cultural features (e.g., religion,
sports, politics, etc.) represented by a vector σi = (σi1, σi2, ..., σiF ). Each
feature σik can take integer values in the interval [1, q], where q defines the
cultural traits allowed per feature and measures the cultural variability in the
system. There are qF possible cultural states. The model’s dynamics is as
follows: (1) Choose randomly two nearest neighbor agents i and j, then (2)
calculate the number of shared features between the agents ℓij =

∑F
k δσik ,σjk

.
If 0 < ℓij < F , then (3) pick up randomly a feature k such that σik 6= σjk

and with probability ℓij/F set σik = σjk. These time steps are iterated and
the dynamics stops when a frozen state is reached; i.e., either ℓij = 0 or
ℓij = F, ∀i, j. A cluster is a set of connected agents with the same state.
Monocultural or ordered phases are composed of a cluster of the size of the
system where ℓij = F, ∀i, j. Multicultural or disordered phases consist of two
or more clusters.

One of the main features of this model is a change of behavior at a
value qc from a monocultural state, where all agents share the same cultural
features, to a multicultural state, where individuals mostly have their own
features [4]. This change can be characterized by an order parameter φ that
is usually defined as the average size of the largest cultural cluster Cmax

normalized by the total number of agents N in the system; φ = Cmax/N . In
the monocultural (ordered) state φ → 1 and in the multicultural (disordered)
state φ → 0.

The insertion of additional ingredients in the model, like an external
field or mass media, yields interesting nontrivial consequences in the system
[5, 6, 7]. The main limitation of the model seems to be that the system
always converges to absorbent states, a situation that clearly does not occur
in society. Some variants of the model relax this tendency by introducing
noise into the system [8, 9, 10]. If the noise rate is small, the system reaches
only monocultural states. However, if the noise rate is above a size-dependent
critical value, a polarized state is sustained [8, 9, 10]. Klemm et al. [8,
9] associated the monocultural (multicultural) states with stable (unstable)
equilibria.

Until now, in the sociophysics field the global dynamics of social sys-
tems have been usually studied by postulating a series of rules that at the
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end lead to out-of-equilibrium behaviors, such as absorbent states. This ap-
proach often uses statistical mechanics concepts -temperature, critical phase
transition, applied magnetic field, among others- without formal definitions.
Langevin-type approaches have been proposed to study the collective phe-
nomena of the social systems in terms of their microscopic constituents and
their interactions [11]. Little attention has been paid to this approach in
which the system can be modeled in a Hamiltonian formulation, whereupon
equilibrium and nonequilibrium behaviors can be explored [12, 13]. Such a
Hamiltonian description also allows for the understanding of the meaning of
social variables in the context of statistical mechanics.

Here, we develop a Hamiltonian version of the Axelrod model of social
influence. Our Hamiltonian captures the local interactions of the original
model. With the aim of finding a possible thermodynamic role of the pa-
rameters F , q, and qc, our model, henceforth called thermodynamic Axelrod,
uses the number of shared features ℓij of the Axelrod model to construct a
new Hamiltonian distinguishable from the 1D F -parallel-layer Potts models
in that the interaction strength between agents increases with ℓij. This fea-
ture of the interaction precipitates ordering preempting fluctuations. In the
thermodynamic Axelrod model F is related to the coupling energy of the
system and q has the same meaning as in the Potts model.

Although it is usually argued that the Axelrod model is an out-of-equilibrium
model, this fact, taken as obvious, has never been demonstrated in the lit-
erature. In Sect. II we demonstrate that the standard Axelrod model does
not satisfy the detailed balance condition. In Sect. III we analytically cal-
culate the main thermodynamic functions for our model. For the critical
behavior analysis (Sect. IV-b) we make an unifying proposal to compare ex-
ponents across different 1D discrete models, since current definitions depend
on model details. In Sect. V we state the consequences of our study over
the transitions driven by noise in the original Axelrod model. We discuss
the implications of a thermodynamic society in Sect. VI and in Sect. VII we
present our conclusions.

2. Axelrod model: Out of equilibrium

Before we introduce the thermodynamic version of the Axelrod model,
here we demonstrate that the original version does not satisfy equilibrium
conditions by showing that detailed balance is violated.
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Let a link between two sites i and j be of type n if they share n components
(ℓij = n), Pn be the probability that the system is in a state with links of
type n, and Wnm be the transition probability per unit time from a state
with type-n to one with type-m links. Wnm being time independent. Since
in the dynamics of the Axelrod model a feature k is changed with probability
ℓij/F to make two sites have one more component in common (σik = σjk),
we have

Wnm =

{
n
F

for m = n + 1,
0 otherwise.

(1)

The detailed balance relation implies that [14]

WnmPm = WmnPn ∀ n, m . (2)

In the Axelrod model Eq. (2) cannot be satisfied since one side or the other is
always zero according to Eq. (1). This feature of the model introduces some
very strong constraints into both the evolution and the time-independent
states of interactions that emphasize nonequilibrium; i.e. i) completely dif-
ferent individuals do not interact, ii) individuals conform once they have
modified their cultural profile, and iii) individuals that are alike, that in-
teract, increase their similarity at interaction. These rules yield absorbing
states, the most salient nonequlibrium feature of the Axelrod model.

The thermodynamic model we propose relaxes all of the previous con-
straints, while preserving similarity, increasing interactions, and introducing
fluctuations controlled by a temperature parameter. These conditions permit
arriving at a dynamical equilibrium state in the regular sense of statistical
mechanics. On the other hand, we are interested in evaluating whether be-
haviors reported in nonequilibrium network models survive in a thermody-
namic driven scenario.

3. Thermodynamic Axelrod model

To reproduce the interaction rule of the Axelrod model, in which the
interaction probability is proportional to the number of shared features, the
Hamiltonian is defined as

H = −
F∑

k=1

N∑

ij

(
Jij δ(σik, σjk) +

µH

2
[δ(σik, Hk) + δ(σjk, Hk)]

)
, (3)
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with the interaction factor

Jij =

F∑

n=1

Jδ(σin, σjn) . (4)

The delta function captures the local interactions of the original model, inas-
much as the interaction strength between agents increases with the number
of shared features ℓij. In this way our Hamiltonian system takes into account
both the tendency of individuals to become more similar when they interact,
namely social influence (like the voter model), and the greater tendency to
interact with individuals which are more similar, namely homophyly (spe-
cific of the Axelrod model). Hk works as an applied magnetic field that (a)
can point in one of the Potts-model-like directions k, (b) can take values
1, ..., q, and (c) has an energy weight proportional to the magnitude H . µ
is the magnetic-like moment per agent. σik = 1, . . . , q specifies each of the
F variables (σi1, σi2, . . . , σiF ) of the agent σi at the ith lattice site. N is the
size of the system. The second term in the Hamiltonian is symmetrized for
convenience.

The Hamiltonian in Eq. (3) is evidently inspired on the Potts model, with
the significant distinction that the interaction factor Jij always depends on
the global state of the F-vector and not on the state of the particular Potts
variable. This is a somewhat rare type of Hamiltonian interaction, in a sense
similar to a nonlinear sigma model where a vector interaction occurs subject
to normalization of the interacting vectors [15]. Our model on a 1D lattice
is like an F -coupled-layer Potts model. It is then a quasi 1D system, thus
some signatures of the two-dimensional (2D) Potts model are expected as
crossovers.

We consider a 1D chain of N sites occupied by qF -valued agents and use
the transfer matrix method to compute the relevant physical properties. For
periodic boundary conditions σ(N+1)k = σ1k, the partition function corre-
sponding to the above Hamiltonian can be expressed as
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Z =
∑

σ1

∑

σ2

· · ·
∑

σN

N∏

i=1

exp

[
F∑

k=1

(
βJi(i+1)δ(σik, σ(i+1)k)

+
βµH

2

[
δ(σik, Hk) + δ(σ(i+1)k, Hk)

])]

= Tr[W N ] . (5)

Here, β = 1/kBT and we introduced a qF × qF transfer matrix W with
elements

〈σi|W |σi+1〉 = exp

[
F∑

k=1

(
βJi(i+1)δ(σik, σ(i+1)k)

+
βµH

2

[
δ(σik, Hk) + δ(σ(i+1)k, Hk)

])]
. (6)

The eigenvalues λj of the transfer matrix are determined from the solution
of the secular equation Det|W − λE| = 0. Then, the partition function can
be written as

Z = λN
1 + λN

2 + · · ·λN
qF = λN

max

(
1 +

λN
1

λN
max

+ · · ·+
λN

qF

λN
max

)
, (7)

where λmax is the largest eigenvalue. In the thermodynamic limit (N →
∞), Z ∼= λN

max. Then, a standard procedure [16] can be followed to obtain
thermodynamic and critical properties.

4. Case F = 2, q = 2

Here, we present explicitly the simplest nontrivial case F = 2, q = 2, as
an illustration. Analytical calculations were performed for higher values of
F and q but full expressions are too lengthy. The transfer matrix takes the
form

W =




e2βµH+4βJ e
3
2
βµH+βJ e

3
2
βµH+βJ eβµH

e
3
2
βµH+βJ eβµH+4βJ eβµH e

1
2
βµH+βJ

e
3
2
βµH+βJ eβµH eβµH+4βJ e

1
2
βµH+βJ

eβµH e
1
2
βµH+βJ e

1
2
βµH+βJ e4βJ


 . (8)
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The largest eigenvalue for this matrix is

λmax =
1

3

(
e4βJ+βµH + e4βJ+2βµH + e4βJ + eβµH

)
− 21/3a

3
[
b +

√
4a3 + b2

]1/3

+
1

3 21/3

[
b +

√
4a3 + b2

]1/3

, (9)

where

a = −6e2βJ+βµH + e4βJ+βµH + e8βJ+βµH − 2e4βJ+2βµH − 6e2βJ+3βµH

+e4βJ+3βµH + e8βJ+3βµH − e8βJ+4βµH − e8βJ − 4e2βµH

b = 18e6βJ+βµH − 3e8βJ+βµH − 3e12βJ+βµH + 18e2βJ+2βµH + 6e4βJ+2βµH

+18e6βJ+2βµH − 6e8βJ+2βµH − 6e12βJ+2βµH + 108e2βJ+3βµH − 12e4βJ+3βµH

−72e6βJ+3βµH + 18e8βJ+3βµH + 14e12βJ+3βµH + 18e2βJ+4βµH + 6e4βJ+4βµH

+18e6βJ+4βµH − 6e8βJ+4βµH − 6e12βJ+4βµH + 18e6βJ+5βµH − 3e8βJ+5βµH

−3e12βJ+5βµH + 2e12βJ+6βµH + 2e12βJ − 16e3βµH .

The free energy, magnetization, magnetic susceptibility per particle, and
specific heat are given in terms of λmax:

F = −kBT ln λmax , (10)

M = −∂F
∂H

=
kBT

λmax

∂λmax

∂H
, (11)

χ =
∂M

∂H
=

∂

∂H

(
kBT

λmax

∂λmax

∂H

)
, (12)

C = −T
∂2F
∂T 2

= 2
kBT

λmax

∂λmax

∂T
+ kBT 2 ∂

T

(
1

λmax

∂λmax

∂T

)
. (13)

Figures 1-4 show plots of the magnetization, magnetic susceptibility, and
specific heat in terms of kBT/J and µH/kBT . The magnetization (Fig. 1)
goes to 0 as H → 0 at any finite T . At T = 0, the magnetization saturates
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Figure 1: Magnetization of the 1D thermodynamic
Axelrod model for the case F = 2 and q = 2.

Figure 2: Susceptibility of the 1D thermodynamic
Axelrod model for the case F = 2 with q = 2, 3
and 4. In the inset we show the case F = 3 with
q = 2 and 3.

Figure 3: Specific heat of the 1D thermodynamic
Axelrod model for the case F = 2 and q = 2, 3
and 4.

Figure 4: Specific heat of the 1D thermodynamic
Axelrod model for the case F = 3 and q = 2 and
q = 3.
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to its maximum value for any H . This implies a spontaneous transition
to an ordered state only at T = 0. When T is finite, the magnetization
saturates to its maximum only at large H . Thus, the changes in the internal
space dimensions of the model do not affect the scenario expected for one
dimension. The increased fluctuations derived from the greater dimensions
of the internal vector space destroy order except at T = 0, as would be
expected.

The susceptibility diverges as T → 0 and H → 0. As we will derive
analytically in the following section, the divergence is independent of the
values F and q and corresponds to the Potts class. On the other hand, the
nonuniversal prefactors become larger as the value of q increases, as can be
seen in Fig.2. The farther from the singularity in the T direction, the faster
high-q susceptibilities die out. The opposite is true in the H direction. This
is the scenario in both F = 2 and F = 3.

As expected, the temperature of the maximum value of the specific heat
C (Schottky anomaly) increases for larger F values (Fig. 3 and Fig. 4). As
a result of the coupling, the ordered system is more robust and requires
more energy to be destroyed. For a fixed F value, C depends only on the
external field at different values of q. Since the specific heat is proportional
to the amount of energy per agent the system can absorb, as q increases the
number of accessible states is greater and, therefore, a higher external field
is required to orient the agents in the same direction. The dependence of C
with temperature is through the the gap of the system (difference between
the ground state and the first excited state), which does not vary with q (see
Eq. (23) below). All these properties behave qualitatively as they do in the
Ising and Potts models on 1D lattices.

The specific heat can be regarded as the resistance of the society to in-
crease the fluctuation average in posture. For lower values of q it is easier
to change the average size of fluctuations, because there are less options for
disagreement in the system. The gap, which increases with F , is the energy
necessary for the system to break similarity bonds between individuals in the
ground state.

The susceptibility is the magnetic response of the system to external
field. In the thermodynamic society, it represents the relative ease of social
alignment to the mass media. As thermal fluctuations decrease, a weaker
mass media makes for a larger effect. This can be seen from the fact that as
q increases the system magnetizes more easily at smaller fields.

In terms of the thermal society of agents, the above results imply that, as
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a consequence of the periodic boundary conditions, the fluctuating postures
will always outweigh the benefits of agreement so that spontaneous cultural
uniformity does not occur. Uniformity can occur, however, for any finite
mass media.

4.1. Spatial correlations

We now calculate the two-point correlation function

G(i, i + j) = 〈σiσi+j〉 − 〈σi〉〈σj〉 (14)

using the transfer matrix method [17]. The first term is given by

〈σiσi+j〉 =
1

Z
tr[AW jAW N−j ] , (15)

where A =
∑

σi
|σi〉σi〈σi|. In the original space for F = 2 and q = 2, the

state matrix

A =




1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4


 . (16)

Following a standard procedure, we evaluate Eq. (15) in a basis where W is
diagonal. For H = 0, the unitary matrix that diagonalizes W is

P =




−1 0 1 1
0 −1 −1 1
0 1 −1 1
1 0 1 1


 . (17)

The evaluation yields

〈σiσi+j〉 =
1

Z
tr

[



5
2

0 3
2

3
2

0 2 0 0
3
4

0 9
4

1
4

3
4

0 1
4

9
4







λj
1 0 0 0

0 λj
2 0 0

0 0 λj
3 0

0 0 0 λj
4







5
2

0 3
2

3
2

0 2 0 0
3
4

0 9
4

1
4

3
4

0 1
4

9
4




×




λN−j
1 0 0 0

0 λN−j
2 0 0

0 0 λN−j
3 0

0 0 0 λN−j
4




]

=
81

16
+

9

8

(
λ1

λ4

)j

. (18)
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Here, λ4 and λ1 are the largest and the second largest eigenvalues, respec-
tively. The evaluation was performed in the thermodynamic limit.

The average of the agent at site i, 〈σi〉, is evaluated in the same manner:

〈σi〉 =
1

Z
tr[AW N ] =

9

4
. (19)

Then,

G(i, i + j) =
9

8

(
λ1

λ4

)j

≈ e−j ln(λ4/λ1) ≡ e−j/ξ . (20)

The correlation function has the same form as in the Ising and Potts models
[18, 17], with the correlation length

ξ =
1

ln (λ4/λ1)
. (21)

Since λ1 = −1+e4J/kBT and λ4 = 1+2eJ/kBT +e4J/kBT , the correlation length
becomes

ξ =
1

ln [(1 + 2eJ/kBT + e4J/kBT ) / (−1 + e4J/kBT )]
. (22)

As in Ising and Potts models, for H = 0 the two largest eigenvalues become
degenerate at T = 0, which leads to a divergence of the correlation length
and, therefore, to a zero-temperature phase transition.

In social terms, the correlation length measures the distance at which
there are relations between agents beyond their own mean values. This is a
causal or influence relationship in the sense that changing the opinions in one
place generates an influence that causes change up to the correlation length.
This influence operates through local interactions. In terms of social influence
the existence of a correlation length invokes a limit to the propagation of
influence. A return force is a cost for producing fluctuations and this cost
avoids the propagation of fluctuations beyond a certain distance. When no
return force is present (critical point) fluctuations diverge and influence runs
over the whole society at all scales.

4.2. Critical exponents

To get the critical behavior of the thermodynamic properties one needs to
evaluate them near the transition temperature Tc. For 1D models, including
the present one, the transition occurs at Tc = 0 with exponential singular-
ities [16]. In this case, the usual reduced temperature t = (T − Tc)/Tc is
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inappropriate. A different critical point approach parameter t = e−∆/kBT

[16] is required to convert the exponential singularities in T into power-law
singularities in t. The constant ∆ has so far been taken arbitrarily.

Here, we propose that ∆ is given by half the energy difference between
the ground state and the first excited state of the system. In this way, ∆
eliminates from the value of the exponent any nonuniversal features, which
will be present otherwise. This convention correctly unifies, independently
of the interaction strength, the Ising and Potts exponents. For the 1D Ising
model the energy difference between the ground state (say, all spins aligned
up) and the first excited state (one spin aligned opposite to the others) is 4J ;
then, for this case ∆ = 2J . This agrees with the choice p = 2 in t = e−pJ/kBT

[16] to bring together the exponents of the 1D discrete-symmetry models.
For the Potts and thermodynamic Axelrod models, the energy of the

ground state is −JNF 2, whereas the energy of the first excited state is

−J
[
(N − 2)F 2 + 2(F − 1)2

]
.

Then,
∆ = J(2F − 1) . (23)

In the case of the Potts model, F = 1 and ∆ = J . This value of ∆ yields
critical exponents of the Potts model that agree with those of the Ising model
[18]. For the thermodynamic Axelrod model, F = 2 and ∆ = 3J .

We now can estimate the critical exponents of our model for the case
F = 2 and q = 2. We define h = µH/kBT and have t = e−3J/kBT . For
H = 0 and t → 0 the singular part of the free energy, Eq. (10), for a zero-
temperature transition [16] becomes

f(t) =
F + 4NJ

NkBT
∼ t . (24)

Since f ∼ t2−α, α = 1. In the same limit, the magnetization, Eq. (11), is

m(t) =
M

Nµ
∼ 1 . (25)

This means from m ∼ tβ that β = 0. Now, for t = 0 and H → 0, the
magnetization becomes

m(h) =
M

Nµ
∼ 1 . (26)
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Since m ∼ h1/δ, the exponent δ →∞. The low-field susceptibility is obtained
from Eq. (12)

χ0(t) =
χkBT

Nµ2
∼ 1

2
t−1 . (27)

The susceptibility should go as t−γ, then γ = 1. The specific heat, Eq. (13),
for H = 0 and t → 0 is

c(t) =
CkBT 2

NJ2
∼ −4

3
t . (28)

Then, from C ∼ tα one gets α = 1. Finally, from Eq. (22) the correlation
lenght

ξ(t) ∼ 1

2
t−1 . (29)

The correlation length goes as t−ν ; then, ν = 1.
In conclusion, the differences in the internal space dimensionality (F = 2)

and interaction strengths of our model do not alter the Ising universality
class. We performed the same calculation for higher values of F and q,
obtaining the same results. All the results presented in this section indicate
that the 1D thermodynamic Axelrod model exhibits a phase transition at
T = 0.

5. Thermodynamic and social Axelrod models: a comparison

We first compare our results with those obtained for the original Axelrod
model without the inclusion of any effect. In this case, a monocultural-
multicultural (order-disorder) transition is observed at a threshold value qc.
Figure 5 depicts the analytical results for the temperature dependence of the
order parameter for F = 2 and q = 2, 3, 4, 5. For comparison, we also show
curves for F = 3 and q = 2, 3. A monotonic and smooth dependence on q is
observed for F = 2, indicating no phase transition at finite temperature. For
both values of F the order parameter behaviors are similar to those expected
in the Potts model [18]. We note that for the analyzed values of F , as q
increases the transition becomes gradually sharper. The data of Fig. 5 were
obtained, just to be able to perform the numerical calculations, at the very
small field of 0.005 kBT/µ.

The Axelrod model has also been studied with the addition of noise (cul-
tural drift) [8, 9, 10]. By analyzing the equilibrium configurations and their
stability, it was found that below a critical value of the noise rate rc (noise
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Figure 5: Order parameter of the thermodynamic Axelrod model for H = 0.005. The
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the 1D case [19].

14



is introduced as a perturbation of a single agent at certain times during the
dynamics) the initially multicultural population converges to a monocultural
one, whereas for r > rc the system moves to a multicultural state [8]. The
threshold value rc depends on the system size and is almost independent of
q. In 1D rc ∼ 1/N2 [8, 10], thus in the limit N → ∞, the value rc → 0,
implying that in this condition there is no phase transition and that for any
finite r the system converges to a multicultural state [8, 10]. This behavior
is analog to the one found in the thermodynamic Axelrod model, in which
for any finite T the system goes to a multicultural state. The polarized state
for any r > 0 is equivalent to the zero-magnetization phase for any finite T
in discrete-symmetry systems such as the present one. The noise variable r
corresponds to temperature T .

The implications of the thermodynamic limit (N →∞) for the noisy Ax-
elrod model are known [8, 9, 10]. Our study, focused on the equilibrium ap-
proach, underlines a possible connection between the thermodynamic model
and the nonequlibrium noisy Axelrod model. Universal behavior is equiv-
alent once one equates noise and thermal fluctuations. It is worthwhile to
study then the present Hamiltonian model in higher dimensions to verify the
latter assertion. It is also interesting to see whether the energy tendency to
increase similarity of agents can change the universality class from that of
Potts.

Regarding the effect of a magnetic field; at T = 0, a 1D thermodynamic
system is always magnetized for any value of the applied field. Even though
a direct comparison is only qualitative, it is worth mentioning that in the
original Axelrod model an external field (mass media) gives rise to related
behavior in a 2D system. By using, as the order parameter, the average
fraction of cultural clusters g = 〈Ng〉/N , where Ng is the number of clusters
formed in the final state, it was suggested that, in 2D, mass media can induce
a multicultural state when its strength is above a certain threshold [5, 6]. This
was also shown with the order parameter φ [7]. Using the order parameter
g, Peres and Fontanari [20] showed that in 2D the effect of mass media on
the Axelrod model always (for any value of H) displays a tendency toward
cultural diversity when N →∞. That is to say, no order-disorder transition
is observed with g in such limit. On the other hand, when the normalized
size of the largest cluster φ is used as the order parameter (the one applied in
our work) in the original Axelrod model, the results indicate that the effect
of mass media, inducing a multicultural phase, persists in the limit N →∞
[21]. Hence, it would be of interest to study the 2D thermodynamic Axelrod
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model with both order parameters φ and g; in particular with g. Of course,
the N → ∞ limit is mostly academic in the social context, since real social
systems are small compared to thermodynamic systems.

6. Nature of thermal society of agents

Two basic questions come to mind when proposing a thermodynamic
model for society, namely: what is the meaning of temperature and detailed
balance? In the Axelrod model each agent is described as a vector whose
F components can take q values that reflect the variety of postures an in-
dividual can have on a particular scope of action in society. Temperature
may be thought as related to an energy scale that competes with the regular
interactions between individuals; a high temperature renders their interac-
tions moot, while a low temperature leads to a domination of the individual
interactions and to the system settling into a minimum energy state. In this
sense, in a society at high temperatures individuals would have fluctuating
positions with a small relation to those of their circle of interaction, whereas
at low temperatures individuals would pay much attention to their circle of
interaction and tend to lower posture differences. In terms of a statistical
ensemble approach, a group of individuals of the society would be subjected
to a temperature reservoir that competes with individual interactions.

What sets this temperature scale might be any motive for confusion, for
speculation or for uncertainty that could disrupt bonds between individuals,
the agreement is not conducive to the benefit of the individual. This would
be consistent with regarding temperature as a parameter coupled to entropic
effects. In social terms, as the temperature increases the agents communicate
less effectively, their coupling decreases, they are less convincing, in a sense,
to their neighbors who choose or preserve their own positions without regard
to their peers. This has entropic benefits since there is an increasing amount
of ways people can disagree.

Thermal equilibrium is a situation where some Helmholtz-type free energy
is minimal, and energy fluctuations exist subject to the condition of detailed
balance. From Eq. (2) one can see that detailed balance dictates that an
individual in a highly probable state n should balance with an individual
in a less probable state m. It is reasonable to expect that it is easier for
the individual in state m to adjust itself to the mainstream rather than the
other way around. This can be seen as peer pressure or pressure to conform
to the norm. This is an interesting perspective in the sense that varying
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temperature can yield thresholds for phase changes and set tipping points
for collective behavior. On the other hand, a single temperature may not
be set for different scopes of action, since a religious posture is certainly
less fluctuating than a political posture. In our model this may be taken
into account by weighting the interaction factor, Jij, that depends on the
cultural-featured F vector.

7. Summary

We have presented a thermodynamic counterpart of the Axelrod model
of social influence. The transfer matrix method was used to exactly solve
for the thermodynamic and critical properties of the 1D model. A unifying
proposal was made to compare exponents across different 1D discrete models,
since current definitions depend on model details. We have also interpreted
the implication of thermodynamic cultural dissemination.

The differences in internal symmetry and interaction in the thermody-
namic Axelrod model with respect to the Potts model where not relevant
from the point of view of criticality. An order-disorder phase transition oc-
curs at T = 0 independent of the cultural trait q and feature F variables.
Our model, emulating Axelrod rules, increases the tendency to share cultural
traits as the agents are more similar. This feature precipitates ordering in
the system toward lower energy (T=0) as compared to Ising-like Hamiltoni-
ans. We expected that this feature would bring about absorbing-state type
behavior, but in ring-like topologies fluctuations would be too strong so there
would be only multicultural states for all finite T . Although the new Hamil-
tonian has a state-dependent bonding interaction, the model belongs to the
Ising and Potts universality class.

The comparison with a Hamiltonian system sheds some light on the effects
of two of the main ingredients of the out-of-equilibrium Axelrod model in the
1D case. The presence of mass media carries the system only to nonuniform
regime. On the other hand, the thermodynamic counterpart also revealed
that the original out-of-equilibrium 1-D Axelrod model in the limit N →
∞ remains in a disordered state for any finite noise, as expected for any
1D interacting particle system. It would be interesting to study the model
in higher dimensions, where energy related effects can have an increasingly
stronger role as compared to entropic features.
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