
Accepted Manuscript

A parameter for quantitative analysis of plasticity induced crack closure

F.V. Antunes, L. Correia, A.L. Ramalho

PII: S0142-1123(13)00247-8

DOI: http://dx.doi.org/10.1016/j.ijfatigue.2013.08.026

Reference: JIJF 3203

To appear in: International Journal of Fatigue

Received Date: 11 June 2013

Revised Date: 28 August 2013

Accepted Date: 30 August 2013

Please cite this article as: Antunes, F.V., Correia, L., Ramalho, A.L., A parameter for quantitative analysis of

plasticity induced crack closure, International Journal of Fatigue (2013), doi: http://dx.doi.org/10.1016/j.ijfatigue.

2013.08.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ijfatigue.2013.08.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijfatigue.2013.08.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijfatigue.2013.08.026


  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 - 1 - 

A parameter for quantitative analysis of plasticity induced crack closure 

FV Antunes
1,*

, L Correia
2
, AL Ramalho

2
 

1) 
CEMUC, Department of Mechanical Engineering, University of Coimbra 

Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal 

E-mail: fernando.ventura@dem.uc.pt 
2) 

CEMUC, Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco 

 Av. do Empresário, 6000 - 767 Castelo Branco   

E-mail: lcorreia@ipcb.pt; aramalho@ipcb.pt 

 

Abstract 

Numerical models have been successfully developed to predict plasticity induced crack closure (PICC). 

However, despite the large research effort a full understanding of the links between physical 

parameters, residual plastic wake and PICC has not been achieved yet. The plastic extension of material 

behind crack tip, yp, obtained by the integration of vertical plastic deformation perpendicularly to 

crack flank, is proposed here to quantify the residual plastic field. The values of yp and PICC were 

obtained numerically in a M(T) specimen using the finite element method. An excellent correlation was 

found between PICC and yp which indicates that this parameter controls the phenomenon, and can be 

used to quantify the effect of physical parameters. An empirical model was developed to predict PICC 

assuming that the residual plastic field is a set of vertical plastic wedges, that the linear superposition 

principle applies and that the influence of a particular wedge exponentially decreases with distance to 

crack tip. The model was applied successfully to predict PICC for different residual plastic fields which 

provided an additional validation of yp as the parameter controlling PICC.  

Keywords 

Plasticity induced crack closure (PICC); finite element method; plastic wedges; residual plastic field 
 
 

1. Introduction 

In flawed or notched components submitted to cyclic loading crack propagation usually 

occupies a significant part of the fatigue life. The defects may be caused by technological 

processes like welding, casting or machining. Crack closure is an extrinsic phenomenon 

affecting fatigue crack propagation and must be included in fatigue design. Crack closure is the 

contact of the fracture surfaces during a portion of the load cycle, and is usually associated 

with plastic deformation, oxide particles or roughness at the crack flanks 1-3. This contact is 
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expected to affect the local stress and strain fields near the crack tip, and therefore the intrinsic 

micromechanisms responsible for fatigue crack propagation. In fact, current application of 

fracture mechanics concepts to fatigue crack advance characterization are generally based on 

the premise that the compression part of the fatigue cycles does not contribute to fatigue 

damage. Crack closure seems to be able to explain the influence of mean stress in both regimes 

I and II of crack propagation 4,5, the transient crack growth behavior following overloads 6, 

the growth rate of short cracks 7 and the effect of thickness on fatigue crack propagation 

8,9.  The shielding effect produced by crack closure can also explain the increase of crack 

propagation life with increasing stress concentration in circumferentially notched bars fatigued 

under cyclic torsion 10-12. According to Elber’s understanding of crack closure 4,13, as the 

crack propagates due to cyclic loading a residual plastic wake is formed. The plastically 

deformed material acts as a wedge behind the crack tip promoting the contact of fracture 

surfaces during the elastic recovery of the surrounding material. Numerical models have been 

successfully developed to predict plasticity induced crack closure (PICC) and to understand the 

basic mechanisms behind it 14. These studies focused on the optimization of the large 

number of numerical parameters 15-17 and on the influence of physical parameters such as 

crack shape, stress state or variable amplitude loading 18,19 on PICC. However, despite the 

significant research effort, the full understanding of the links between physical parameters, the 

residual strain field and PICC has not been achieved yet.  

PICC is intimately linked to the crack tip plastic deformation. The forward plastic zone is 

constituted by the material near the crack tip undergoing plastic deformation during loading, 

while the reversed plastic zone is formed by the material undergoing compressive yielding 

during unloading. The increase of monotonic plastic deformation increases the PICC level, and 

the increase of reversed plastic deformation has the opposite effect. The monotonic plastic 

deformation increases with maximum load and crack length (i.e., with Kmax), while the 
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reversed deformation depends on K and material behavior. In materials with significant 

Bauschinger effect, important deformation occurs during unloading, reducing closure level and 

compressive residual stresses. Accordingly, the use of pure kinematic hardening models was 

found to produce the largest reversed plastic zones, while the pure isotropic models were found 

to produce the smallest zones 20. The strain ratcheting phenomenon also determines the 

residual plastic field 20, 21. 

The effect of physical parameters on residual plastic field has been studied using 

different approaches. The analysis of stress-strain curves at specific Gauss points (GP) has 

been widely used 22-24, since it provides interesting information concerning plastic 

deformation generation. As the crack tip approaches the Gauss point, plastic deformation 

increases progressively. A peak of deformation exists when the GP is at the closest position 

ahead of crack tip and the phenomenon stops when the crack tip moves ahead of the GP. 

However, these curves only permit a qualitative analysis of the effect of parameters. Therefore, 

alternative approaches were considered in literature to quantify residual plastic field, like the 

analysis of crack profile 24. The difference of opening between the stationary and the fatigue 

cracks reflects the amount of residual plastic deformation left by the cyclic loading 25-27.  

Singh et al. 28 used it to study the effect of repeated overloads, and Roychowdhury et al. 29 

studied the effect of T-stress. Vor et al. 30 considered 22 and CTOD, the strain range at 

the crack tip (2 is the loading direction) and the crack tip opening displacement range, 

respectively. Zhao et al. 24 and Roychowdhury et al. 27 studied the plastic strains (px, py, 

pz) along the crack path, while Matos et al. 31 analyzed the contact stresses. A parameter is 

however missing, which is representative of all residual plastic field and can be used to 

establish quantitative links between physical parameters, residual deformation and PICC level. 

A parameter is therefore proposed here, which is the plastic extension of material behind 

crack tip, yp, obtained by the integration of vertical plastic deformation perpendicularly to 
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crack flank. This parameter is expected to control the PICC level because of the evident 

physical sense. The values of yp and PICC are obtained numerically using the finite element 

method. An empirical model is developed in order to validate the concept proposed, assuming 

that the residual plastic field is a set of vertical plastic wedges, that the linear superposition 

principle applies and that the influence of a particular wedge decreases exponentially with 

distance to crack tip. 

2. Numerical model 

Figure 1 illustrates the geometry of the Middle-cracked Tension (M(T)) specimen studied 

here, which is in agreement with ASTM E647 standard. An initial crack length a0=5 mm was 

modelled, therefore a0/W=0.083, being W the specimen’s width. Due to the symmetry of the 

sample in terms of geometry, material properties and loading, only 1/8 of the M(T) specimen 

was simulated by using appropriate boundary conditions. The thickness considered in the 

numerical model was t/2=0.1 mm which corresponds to a specimen thickness of 0.2 mm. The 

opposite crack surface was simulated by assuming frictionless contact conditions over a rigid 

symmetry plane placed behind the growing crack front. As illustrated in figure 2, different 

loading conditions were considered in the investigation, namely, constant amplitude loading 

(Fig. 2a), single overloads (Fig. 2b), and loading blocks (Fig. 2c). A load cycle applied at the 

beginning of crack propagation and followed by relatively low amplitude levels was also 

considered (Fig. 2d). The loads considered in the constant amplitude tests are presented in 

Table 1. The overload ratio was defined as: 

 
minmax

minol

FF

FF
OLR




  (1) 

where Fmin, Fmax and Fol, are the minimum, maximum and overload forces, respectively. The 

material parameters used in the numerical simulations corresponded to the 6016-T4 aluminium 

alloy (92 HV0.5). Since the PICC phenomenon is a consequence of crack tip plastic 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 - 5 - 

deformation, the plastic behaviour must be carefully modelled. In the present work, an 

anisotropic yield criterion 32 was considered, which is expressed by the quadratic function: 

     
2 22 2 2 2

2 2 2 1yy zz zz xx xx yy yz zx xyF G H L M N                           (2) 

where xx , yy , zz , xy , xz  and yz  are the components of the effective stress tensor defined 

in the orthotropic frame and F, G, H, L, M and N are coefficients that characterize the 

anisotropy of the material. In order to characterize the hardening behavior of the aluminium 

alloy, three types of mechanical tests were performed: uniaxial tensile tests and monotonic and 

Bauschinger shear tests. From the experimental data and curve fitting results 33, for different 

constitutive models, it was determined that the mechanical behavior of this alloy is accurately 

modelled using a Voce type equation: 

 )1(
0

p
vn

sat
eRYY


 , (3) 

to describe the isotropic component of hardening, combined with the saturation law: 

 
  p

satx
X

X
XCX 



 











 ,  (4) 

to describe the kinematic component of hardening. In these equations Y is the equivalent flow 

stress, p  is the equivalent plastic strain, Y0 is the initial yield stress, Rsat is the saturation 

stress, n, Cx and Xsat are material constants, σ  is the deviatoric stress tensor, X is the back 

stress tensor, p  the equivalent plastic strain rate and   the equivalent stress. The material 

constants used in the numerical simulations were: Y0=124 MPa, Rsat=291 MPa, n= 9.5, Cx= 

146.5 and Xsat = 34.90 MPa, F=0.5998; G=0.5862; H=0.4138; L=1.2654; M=1.2654;  

N=1.2654. 

Figure 3 presents the finite element mesh used in the investigation, which was refined at 

the crack front, to enable the numerical simulation of the severe plastic deformation gradients, 

and enlarged at remote positions, to reduce the numerical effort. It is a 3D model with only one 
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layer of finite elements in the thickness direction. Notice that the software, which is highly 

competent in plastic deformation modelling, is limited to 3D models. The sizes considered for 

the square elements placed around the crack front were L1=8 m (mesh M8), L1=16 m (mesh 

M16) or L1=32 m (mesh M32), and the total number of linear isoparametric elements and 

nodes were (6169, 12632), (2587, 5382) and (1275, 2712), respectively. The coordinate system 

considered to define the numerical model is indicated in figure 3. 

Crack propagation was simulated by successive debonding of nodes at minimum load. 

Each crack increment (ai) corresponded to one finite element and two load cycles were 

applied between crack increments. In each cycle, the crack propagated uniformly over the 

thickness by releasing both crack front nodes. Crack extensions of 0.96 mm were simulated, 

which correspond to 60 crack propagations for mesh M16. The opening load, Fop, was 

determined by evaluating the contact status of the first node behind current crack tip with the 

symmetry plane. Considering the discrete character of the finite element simulations, the exact 

opening load was obtained from the linear extrapolation of the loads corresponding to the two 

increments following opening. The PICC level was measured at the free surface of the 

specimen, therefore corresponds to a plane stress state. 

The numerical simulations were performed with a three-dimensional elastic-plastic finite 

element program (DD3IMP) that follows a fully implicit time integration scheme 34, 35. The 

mechanical model and the numerical methods used in the finite element code, specially 

developed for the numerical simulation of metal forming processes, takes into account the large 

elastic-plastic strains and rotations occurring during large deformation processes. To avoid the 

locking effect, a selective reduced integration scheme was used 36, 37. The optimum values 

for the numerical parameters of the DD3IMP implicit algorithm had been already established 

in previous works, concerning the numerical simulation of sheet metal forming processes 38 

and PICC 39. 
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3. Numerical results 

3.1. Generation of the residual plastic wake 

Figure 4a presents the stress-strain curve yy-yy registered at a Gauss point (GP) during 

crack propagation. The stresses were normalized by the yield stress of the aluminium alloy 

(124.2 MPa). Figure 4b shows the Gauss point and the successive positions of crack tip. At the 

beginning of crack propagation, the Gauss point is 28.3 finite elements ahead of crack tip, 

which corresponds to 451 m since the local mesh is composed of square elements with 1616 

m
2
. Although this initial distance, the GP suffers some plastic deformation, which indicates 

that it is within the first forward plastic zone. A compressive stress state is observed at 

minimum load but no reversed plasticity occurs. As the crack propagates the distance of the GP 

relatively to the crack tip reduces, and the stress level increases producing more plastic 

deformation. The compressive stress at minimum load also increases and starts producing 

reversed plastic deformation. The distance between the beginning of reversed plasticity and the 

GP defines the size of reversed plastic zone, which is about 616 m=96 m for the situation 

presented. In fact, the analysis of stress-strain curve is probably the best way to quantify this 

size. But the maximum plastic deformation happens when the GP is immediately ahead of 

crack tip, i.e., when the crack tip is at position 29 in figure 4b. The two load cycles applied 

between crack propagation are now clearly visible. The stress level reaches about 3 times 

material’s yield stress, as a consequence of isotropic hardening. When the crack moves ahead 

of the GP (crack tip at position 30 in figure 4b), the stress level applied to the GP becomes 

relatively low and the plastic deformation ceases. The plastic deformation is now a residual 

deformation. The magnitude of residual plastic deformation in figure 4a is lower than 2%, 

therefore is relatively low. The finite element mesh, the maximum and minimum loads, the 

hardening properties, the stress state, etc, influence the stress-strain curve and therefore the 

residual plastic deformation. The mesh refinement, for example, approaches the Gauss point to 
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the crack face, therefore increases the stress and strain levels. The effect of different physical 

and numerical parameters on stress-strain curves has been widely studied on literature, as 

already mentioned 21-24. 

Gauss points at greater distances from crack flank have a similar behaviour to that 

reported in figure 4, but lower stress and strain levels. Figure 5 plots the distribution of vertical 

strain, yy, along a vertical line starting at the crack flank (y direction in figure 3), for different 

constant amplitude loading tests (Kmax=4.6, 6.4 and 9.1 MPa.m
1/2

) and two finite element 

meshes (M8 and M32). The strain values were measured at minimum load, being mainly 

composed of residual plastic deformation. However, the elements closer to the crack flank have 

compressive elastic deformation which explains the strain reduction observed for y<0.05 mm. 

The deformation level is more relevant near the symmetry plane decreasing substantially with y 

distance. The increase of the load level significantly increases the strain level, while the mesh 

refinement affects the plastic strain near the crack flank but has a limited influence far from 

this. 

A new set of finite element models was developed to quantify the contributions of 

different finite element layers parallel to crack flank to PICC. In these models the yield stress 

of horizontal layers of finite elements, parallel to the crack flank, was increased to 350 MPa, 

layer by layer, from the crack flank up to the 10
th

 layer. Figure 6a shows the PICC level versus 

the number of horizontal hard layers, for two constant amplitude loading tests (Kmax=4.6 

MPa.m
1/2, Kmin=0; and Kmax=6.4 MPa.m

1/2, Kmin=0). Figure 6b shows the relative influence, in 

percentage, of each horizontal deformed layer on the global value of PICC. The first layer has 

always the most significant influence on PICC. The importance of horizontal layers decreases 

steadily with distance to crack flank which is according the results of figure 5. The increase of 

maximum load decreases the influence of the first layer on PICC (from 44 to 23.5%) and 

increases the importance of the most remote regions in the vertical direction (from 56 to 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 - 9 - 

76.5%). Careful is required to ensure that the plastic deformation wedge is included in the most 

refined region of the finite element mesh defined around the crack propagation region (see 

figure 3). 

3.2. Magnitude of residual plastic wedge, yp 

The influence of physical and numerical parameters on residual plastic field has been 

widely studied, as already mentioned. However, the link between residual field and PICC is 

missing, mainly due to the lack of a single parameter able to encompass all plastic strain 

distribution. The parameter proposed here is the integration along y direction of the vertical 

plastic deformation, p,yy: 

  

h

0

yy,pp dy.y  (5) 

yp has a physical meaning, which is the vertical elongation of all plastic wedge. In eq. (5), h 

represents the integration length which must be higher than the height of the plastic field. As 

already discussed, the segments closest to crack flank contribute more significantly to yp. 

Values of yp of 0.0005, 0.0011, 0.0013 and 0.0024 mm, were obtained for (M32, Kmax=4.6 

MPa.m
1/2

), (M32, Kmax=6.4 MPa.m
1/2

), (M8, Kmax=6.4 MPa.m
1/2

) and (M32, Kmax=6.4 

MPa.m
1/2

) curves in figure 5, respectively. These values were unexpectedly small, indicating 

that a small plastic extension is enough to produce PICC. 

Figure 7 shows the relationship between plastic wedge magnitude, yp, and the crack 

opening level quantified by the effective ratio,open/max. The results were obtained for a wide 

range of constant amplitude loading conditions. Sets with constant values of Kmax, Kmin, K 

and R were considered. Results for a High Strength Steel (DP600) are also presented. A strong 

link is evident between PICC level and yp which indicates that this parameter effectively 

characterizes the residual plastic field. According to the figure, the PICC level increases 
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significantly for relatively low yp values, and more moderately for relatively large values of 

yp. It is interesting to notice that a similar behaviour was found for roughness induced crack 

closure 40,41. 

3.3. Empirical model 

An empirical model was developed considering that yp is the parameter controlling the 

effect of residual plastic field on PICC and that: 

- the linear superposition principle applies to the effect of individual plastic wedges behind 

crack tip. The residual plastic field is seen as a set of vertical plastic wedges; 

- the influence of yp decreases exponentially with distance to crack tip. 

These assumptions are detailed studied next. 

3.3.1. Linear superposition principle 

In order to analyze the influence of vertical residual wedges on PICC, a parametric 

analysis was performed by manipulating the material properties of finite element model in 

order to create plastic wedges at specific locations along crack flank. More precisely, finite 

element models were generated in which soft material strips, having the material properties of 

the 6016-T4 aluminum alloy, were embedded in a surrounding hard material matrix simulated 

by increasing artificially the yield stress of the alloy (Y0 = 9524 MPa in Eq. (3)). The yield 

stress of the hard matrix was defined in order to insure that plastic deformation during cyclic 

loading was restricted to the soft material columns distributed along the crack flank. Figure 8 

illustrates the finite element model with the vertical plastic wedges embedded in the hard 

matrix. Each plastic wedge is constituted by only one column of finite elements. The different 

soft plastic wedges were identified according to their location relatively to the initial crack tip 

position (20
th

, 30
th

 and 40
th

 finite element columns, as indicated in figure 8). The crack was 

propagated and the PICC level was measured when the crack tip was at the 40
th

 position. It was 
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found that the plastic deformation of the 20
th

 column (figure 8a) affects the PICC measured at 

the 40
th

 column; and that the effect of the plastic deformation of the 30
th

 column (figure 9b) on 

the PICC level measured at the 40
th

 column is higher than for the 20
th

 column. Moreover, the 

PICC level from the 20
th

 column (figure 8a) plus the PICC level from the 30
th

 column (figure 

8b) is nearly equal to the effect of both columns simultaneously (figure 8c), with a difference 

of only about 0.5%. This study was repeated for different number and locations of the 

individual plastic wedges along the hardened crack flank, always with the same result. 

Therefore, it was concluded that the linear superposition effect applies to the effect of 

individual plastic wedges on PICC level. Notice that behind the current crack tip the residual 

plastic wedges behave elastically, therefore the applicability of the superposition principle is 

not surprising. 

3.3.2. PICC versus distance to crack tip 

The approach illustrated in figure 8 was also used to study the effect of distance to crack tip. 

Different finite element models were defined with only two element columns of soft material 

(as figures 8a and 8b illustrate). One of the columns was fixed at the 40
th

 position relatively to 

the initial crack position. The second element column was placed at different positions 

relatively to the 40
th

 column in each finite element model, with d being the distance between 

both columns. The yield stress of surrounding material was once again greatly increased to 

isolate the two plastic wedges, and the crack was propagated. Figure 9a shows the PICC level 

measured at the 40
th

 element column versus d distance. The PICC level was quantified by the 

ratio between the opening and maximum loads, being the opening defined from the contact 

status of the first node behind crack tip. The column at a distance d was found to influence the 

PICC level measured at the 40
th

 one. The PICC level reduces significantly with distance 

converging to zero for relatively large distances. This means that the influence of individual 

plastic wedges strongly decreases with distance to crack tip. 
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A second example of the vanishing influence of plastic wedges is the evolution of PICC 

after overloads (load case schematized in figure 2b). As shown in the scheme inserted in figure 

9b, d now corresponds to the distance between the overload peak and current crack tip position, 

and PICC corresponds to the difference between the current PICC value and the PICC value 

for the constant amplitude loading. A homogeneous material model, corresponding to the 

behaviour of the 6016-T4 aluminium alloy was considered. The overload produces a PICC 

peak which asymptotically dissipates with crack propagation ahead of the region affected by 

the overload plastic deformation. Once again, there is a relatively fast dissipation of the effect 

with crack propagation ahead of the region affected by the initial plastic deformation. Notice 

that in this case several columns of finite elements are affected by the overload. A similar trend 

was obtained for a single load applied at the beginning of crack propagation (load case of 

figure 2d), which produces a single plastic deformation zone. Afterwards the crack was 

propagated at a relatively low load, and the opening level was measured at different positions. 

The results, which are presented, also showed a fast decrease of PICC level.  

A fourth approach was considered to study the effect of distance to crack tip, consisting 

of constant amplitude loading tests in homogeneous material. It is well known that for constant 

amplitude load, the PICC level evolves with crack propagation, reaching stabilized values after 

a certain number of crack increments (figure 9c). The difference between the PICC levels 

corresponding to two consecutive crack tip positions, PICC, indicates the influence of each 

crack increment on PICC. Notice that, as is schematically illustrated in figure 9d, crack 

propagation adds plastic wedges at the crack tip. Analyzing the situation from the point of view 

of the crack tip, it seems that for each crack propagation a plastic wedge is added at the most 

remote position along crack flank. In other words, if the co-ordinate system is placed always at 

the crack tip, it appears that a new wedge has appeared at a remote position from crack tip. The 

corresponding variation of the global PICC is the effect of this “new” plastic wedge at a 
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distance d. This approach was found to be the best solution to isolate and quantify the effect of 

individual plastic wedges. Figure 9d shows the PICC versus distance d for a constant 

amplitude load with Kmax=6.5 MPa.m
1/2

, Kmin=0.1 N MPa.m
1/2

 (max/ys=0.38, R=0.02). As can 

be seen, the effect of an individual plastic wedge on PICC strongly decreases with increasing 

distance to the crack tip (d), becoming close to zero when PICC stabilized values are reached. 

A comparative analysis of figures 9, corresponding to quite different physical situations, 

indicates that the influence of a plastic wedge rapidly decreases with distance to crack tip. 

Notice also that the effect of residual plastic wake disappears when the crack tip moves by less 

than one millimetre. In other words, the residual plastic wake affecting the PICC level is 

limited to less than one millimetre. Besides, the plastic layers up to 0.1 mm behind crack tip 

represent more than 50% of PICC level. In fact, a distance of 0.1 mm from crack tip was 

considered by Iyyer et al. 42 to analyse the contact status of crack flanks and therefore to 

define the crack opening level. The fast decrease of closure with distance to crack tip was also 

evident in studies of partial closure 43 and short cracks 44. 

The rapid decrease of the influence of plastic wedges is explained in figure 10. Figure 

10a shows schematically a vertical plastic wedge at a distance d from crack tip, at minimum 

load. The plastic wedge is compressed by the surrounding elastically deformed material. To 

open the crack a remote load is required, able to overcome the compressive residual force at 

the plastic wedge (Figure 10b). A parallel numerical study was developed to quantify the 

relation between the compressive force at the plastic wedge, Fp, the distance to crack tip, d, and 

the stress intensity factor required to open the crack. A punctual force was applied at the crack 

flank at a distance d from crack tip, and the stress intensity factor (K) was calculated from J-

integral in a linear elastic analysis. The influence of punctual forces was found to strongly 

decrease as the distance d increases, approaching zero for large distances. A power type curve 

was fitted by regression to the numerical results: 
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

  (6) 

being t=0.110
-3

m and W=0.03 m the thickness and width of specimen’s physical model, 

respectively. Additionally, the contact forces at minimum load decrease substantially from 

crack tip, as figure 11a shows. Christopher et al. 45 proposed a decay of contact stresses in the 

form of d
-1/2

. These two effects, i.e., the decrease of contact forces and of their influence with 

distance to crack tip, explain the results of figure 9 concerning the variation of PICC. Solancki 

et al. 46 proposed a new approach to quantify the PICC level, based on the contact forces 

(instead of the contact status behind crack tip). Figure 11b shows the opening stress intensity 

factor versus distance to crack tip, obtained from contact forces at minimum load using 

equation 6. A strong decrease with distance to crack tip is evident reinforcing the results of 

figure 9. Also here it was observed that a significant portion of PICC level is related with the 

contact up to a distance of 0.1 mm behind crack tip. Looking once again to figure 10, it is 

evident that the compressive force depends on the plastic deformation level of the plastic 

wedge, i.e., depends on (yo-yi). Notice that yp is the distance (yo-yi), having therefore a 

physical meaning as already stated.  

3.3.3. PICC versus individual plastic wedges  

The empirical model was developed based on the PICC numerical results. The basic idea 

was to establish a relationship between an individual plastic wedge, characterized by its 

position (d) and magnitude (yp), and the PICC level. A major difficulty was the isolation of 

the effect of the individual plastic wedge, and different solutions were tried as illustrated in 

figure 9. The best solution found was that illustrated in figure 9d. In a constant amplitude crack 

growth test, the crack grows, i.e., the crack tip moves ahead. Adopting the crack tip as 

reference, it seems that an extra edge is added at the most remote position of residual plastic 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 - 15 - 

wake, which increases PICC level by PICC. This PICC value is therefore the influence of a 

plastic wedge of magnitude yp at a distance d (i.e., PICCi=PICC). A link may be established 

between the position of this plastic wedge, its magnitude and the PICC variation. Figure 12a 

shows the PICC increase versus distance to crack tip, for different values of remote loading. 

The increase of d strongly decreases PICC, as already discussed, while the increase of load 

level increases PICC. An excellent fitting was found with an exponential model: 

 b

pi da)y,d(f
~

PICC   (7) 

being d the distance to crack tip, and a,b fitting constants dependent on yp. Figures 12b and 

12c show the evolution of a and b constants with yp, respectively. A good fitting was found 

with polynomial models, as can be seen. It is important to notice that there is a huge sensitivity 

of PICC relatively to small errors of a and b constants, therefore these must be modelled quite 

accurately. 

3.3.4. Application of the model 

A finite element analysis is required to obtain yp along crack flank. Fixing the position 

of crack tip, the distance of individual plastic wedges to crack tip can be calculated and used in 

equation 7 along with yp to obtain the contribution of individual plastic wedges to PICC level. 

The global value of PICC produced by the residual plastic field is obtained summing the 

contributions of all individual plastic wedges behind crack tip, considering the linear 

superposition principle. 

This model was applied to different situations, in order to test its accuracy and the 

validity of the premises behind it. Figure 13 shows the results obtained with the application of 

an overload with KOL=7.3 MPa.m
1/2

 after a crack extension of 0.369 mm (baseline loading: 

Kmin=0, Kmax=6.4 MPa.m
1/2

). The results of yp presented in figure 13a show a peak of plastic 

deformation corresponding to the application of the overload. The peak extends over a region, 
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because the plastic deformation associated with the overload extends ahead of the crack tip. 

Figure 13b compares the PICC values obtained from the finite element method with those 

calculated using the empirical model based on equation 7. The excellent agreement between 

the curves validates the analytical model and the methodology followed to deduce it, namely 

the linear superposition principle, and the use of vertical plastic elongation to quantify the 

effect of residual plastic wake. 

4. Discussion 

The main objective of the present paper is to propose a parameter for the establishment of 

quantitative links between physical parameters, residual plastic field behind crack tip and PICC 

level. The vertical elongation of plastic wedges, yp, obtained numerically from the integration 

of vertical plastic deformation perpendicularly to crack flank, was selected since it has an 

obvious physical meaning. This concept is similar to the difference in opening displacements 

between the stationary and the fatigue cracks, proposed by other authors 25-27, 29. In fact, 

the analysis of crack profiles is an alternative to equation 5 that can be exploited. 

The good correlation of this parameter with PICC level is a strong indication of its 

adequacy for PICC analysis. A second validation was searched using the empirical model 

proposed in previous section. The good agreement between numerical predictions and the 

empirical model validated the premises behind it, namely that the vertical plastic elongation is 

a key parameter for PICC analysis. The values observed for yp were relatively small within 

micron range, indicating that a small plastic elongation is enough to produce PICC. Camas 47 

found differences of about 5 m between crack profiles obtained with and without crack 

propagation at the surface of CT specimens, therefore within the ranges obtained here. Singh et 

al. 28 obtained values of about 3 m. Anyway, the increase of plastic deformation level, by 

mesh refinement or by the increase of the number of load cycles, is expected to increase the 
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magnitude of yp. The variation of PICC level with yp, presented in figure 8, indicates a 

saturation of PICC for relatively high values of yp, which is not completely understood. 

The empirical model proposed in previous section does not include the effects of other 

phenomena, like crack tip blunting. This apparent disadvantage is effectively interesting since 

it permits the isolation of the effect of residual plastic wedges, from other phenomena. Figure 

14 shows the results obtained with the application of load blocks, as illustrated. Three load 

blocks were considered, all with Kmin=0 while Kmax=4.6, 2.7 and 6.4 MPa.m
1/2

. The decrease of 

Kmax from 4.6 to 2.7 MPa.m
1/2 

decreased the plastic deformation level, as is evident in figure 

14a, but the decrease is not drastic which may be explained by the plastic deformation ahead of 

crack tip at the end of the first block. On the other hand, the subsequent load increase to 6.4 

MPa.m
1/2

 is immediately observed in yp. The analytical model of PICC predicts variations 

respecting the changes of yp. However, there is a significant difference between the FEM 

predictions and the empirical model in the intermediate region. Apparently, what is happening 

at the current crack tip has a significant influence on PICC level, not included in the present 

model. Sehitoglu et al. 48 observed that a crack blunting mechanism in plane strain competes 

with the closure mechanism. The phenomenon of partial closure 49 can also be used to 

explain the differences observed. The CJP model 45,50,51 also studies the shielding effect of 

the plastic enclave surrounding the crack. It considers the retarding effect of plastic strain at 

crack flanks and crack tip, and the compatibility-induced shear stress at the elastic-plastic 

interface. Two new stress intensity factors are defined, an interfacial shear stress intensity 

factor, KS, and a retarding stress intensity factor, KR. Also the crack tip stress field 

characterised by the stress intensity factor KI and the T-stress are included, so the model has 4 

parameters. The CJP model produces results that reflect blunting effects. 
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Finally, most of the plastic deformation takes place close to the crack flank, therefore 

focus must be placed there. The size and orientation of crack tip plastic zone, which has been 

widely studied in literature, seems to have a limited effect on yp and PICC level. 

4. Conclusions 

A single parameter was proposed here to quantify the magnitude of residual plastic 

deformation behind crack tip. The yp parameter is the elongation of residual plastic wedges 

perpendicularly to crack flank and is obtained by the integration of vertical plastic deformation 

perpendicularly to crack flank. A well defined link was found between PICC level and yp, 

indicating that this can be used to understand and quantify the effects of physical parameters on 

plasticity induced crack closure. Other main conclusions are: 

- the plastic deformation at each Gauss Point (GP) accumulates progressively as the crack tip 

approaches it. It is a complex process involving monotonic and reversed plastic deformations, 

material hardening and strain ratcheting. When the crack tip moves ahead the GP plastic 

deformation ceases, and the existing deformation is part of the residual plastic field. The 

residual plastic deformation depends on the physical and numerical parameters, namely the 

position of the GP relatively to crack flank, the mesh refinement, the number of load cycles, 

the hardening material properties and the load parameters; 

- crack closure happens mainly in a small region behind crack tip.  More than 50 % of crack 

closure occurs within a distance of 0.1 mm behind crack tip. Therefore, experimental 

techniques used for direct observations of crack faces contact must look to the region 

immediately behind crack tip. Additionally, the first horizontal layer of elements, close to crack 

flank, has a significant influence on the global value of PICC (up to 50%), which increases 

with maximum load. The size of forward plastic zone apparently plays a minor role on PICC 

phenomenon; 
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- the residual plastic wake may be seen as a set of vertical plastic wedges. The linear 

superposition principle applies to the effect of these individual plastic wedges on PICC level, 

which could be expected considering that the material behaves elastically behind crack tip; 

- the influence of individual plastic wedges on PICC exponentially decreases with the distance 

to the crack tip, d. This conclusion was consistently observed using different approaches, 

namely with isolated plastic wedges, constant amplitude tests and overload situations. The 

effect an individual plastic wedge was found to disappear for distances to crack tip greater than 

one millimetre; 

- an empirical model was developed assuming that yp is the parameter controlling PICC, that 

the linear superposition principle is valid and that the influence of yp decreases exponentially 

with distance to crack tip, d. The model relates PICC level of individual plastic wedges with 

distance to crack tip, d, and plastic deformation level, yp. The global PICC is obtained 

summing the contributions of individual plastic wedges behind crack tip. A good agreement 

was found between the empirical model and FEM results, which was an additional validation 

of yp concept. 
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Table 1. Load level in constant amplitude tests. 

Loadcase Fmin [N] Fmax [N] max [MPa] max/ys 

1 0 60 20 0.16 

2 0 80 26.7 0.22 

3 0 100 33.3 0.27 

4 0 140 46.7 0.38 

5 0 180 60 0.48 

6 0 200 66.7 0.54 

7 0 220 73.3 0.59 

 

 

 

 

 

 

 




