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 Abstract 

Dynamic Principal Components Analysis (DPCA) is an extension of Principal 

Components Analysis (PCA), developed in order to add the ability to capture the 

autocorrelative behaviour of processes, to the existent and well known PCA capability 

for modelling cross-correlation between variables. The simultaneous modelling of the 

dependencies along the “variable” and “time” modes, allows for a more compact and 

rigorous description of the normal behaviour of processes, laying the ground for the 

development of, for instance, improved Statistical Process Monitoring (SPM) 

methodologies, able to robustly detect finer deviations from normal operation 

conditions. A key point in the application of DPCA is the definition of its structure, 

namely the selection of the number of time-shifted replicates for each variable to 

include, and the number of components to retain in the final model. In order to address 

the first of these two fundamental design aspects of DPCA, and arguably the most 

complex one, we propose two new lag selection methods.The first method estimates a 

single lag structure for all variables, whereas the second one refines this procedure, 

providing the specific number of lags to be used for each individual variable. The 

application of these two proposed methodologies to several case studies led to a more 

rigorous estimation of the number of lags really involved in the dynamical mechanisms 

of the processes under analysis. This feature can be explored for implementing 

improved system identification, process monitoring and process control tasks that rely 

upon a DPCA modelling framework. 

 

Keywords: Lag selection; Dynamic principal component analysis (DPCA); Multivariate 

statistical process control (MSPC); System Identification. 
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1 Introduction Equation Chapter (Next) Section 1 

Statistical Process Monitoring (SPM) methodologies have been routinely applied in 

many different industrial contexts, from laboratories to discrete manufacturing 

industries and chemical processing industries. With the increasing availability of data 

through faster and more informative sensors and measurement systems, the dynamical 

or autocorrelated nature of systems becomes an aspect that must be incorporated into 

SPM methodologies. The usual i.i.d. assumption for the definition of the Normal 

Operation Conditions (NOC) region is no longer valid under these circumstances, and 

several alternative methodologies were proposed to the classic univariate [1-3], 

multivariate [4-6] and mega-variate [7-10] approaches. These can be organized into 

three distinct classes of methods: i) methods based on correcting/adjusting control limits 

for the existent SPM methods, using knowledge of the specific dynamical model 

underlying data generation [11]; ii) methods based on time series modelling followed by 

the monitoring of one-step-ahead prediction residuals [12, 13]; iii) methods based on 

time-domain variable transformations, that diagonalize, in an approximate way, the 

autocorrelation matrix of process data [14, 15]. 

The first class of approaches (i), is restricted to very particular situations (univariate 

processes with rather simple dynamical structures), for which correction formulas were 

derived and made available. As to the time-series based approach (ii), an usually 

criticism concerns the difficulty of defining proper time-series model structures (the 

specification problem), which requires a significant amount of expertise. Perhaps even 

more important than this, the fact that estimating classic multivariate time-series models 

(e.g., VARMA, VARIMA) for small-medium sized systems (> 10 variables) is a 

complex or maybe unfeasible task, limits their use in practice. Finally, the third class of 

approaches (iii) does provide effective solutions to the autocorrelation problem, but its 

implementation requires a high load of computational programming. The current lack of 

software packages through which such methods can be conveniently made available, 

has been hindering their diffusion into practical applications.  
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However, an alternative approach has quickly gained popularity, given its conceptual 

simplicity and relationship with a well-known and accepted technique: SPM using 

dynamic principal components analysis (DPCA) [16]. DPCA is a methodology 

proposed by Ku et al. in 1995, which essentially attempts to model the autocorrelation 

structure present in data, through a “time lag shift” method. This method consists in 

including time lagged replicates of the variables under analysis, in order to capture 

simultaneously the static relationships and the dynamical structure, through the 

application of standard PCA. DPCA has been applied in different application scenarios, 

that include not only multivariate process control and fault identification [16-19] but 

also maintenance activities planning [20] and sensitivity analysis [21]. On a different 

context, DPCA was also applied in economical forecasts after the initial work of 

Brillinger [22, 23]; other related applications include the construction and analysis of 

economic indicators [24] and volatility modeling [25]. 

A key point in the implementation of the DPCA method is the selection of the number 

of lags to be used, i.e. the number of shifted versions for each variable to include in the 

DPCA model. This problem is similar to selecting the lag structure in time-series 

models (ARMA, ARIMA, ARMAX, etc.) [26, 27]. The solution proposed by Ku et al. 

(1995) [16], consists in implementing parallel analysis, a technique that combines the 

scree plot obtained from a PCA analysis applied to the collected data, with the scree 

plot resulting from the analysis of a random data set of the same size. The interception 

of these two curves represents the cut-off for the selection of the number of components 

to retain. This is followed by the analysis of the correlations exhibited by the scores, in 

order to determine the number of linear relationships present in data. The underlying 

reasoning is that the scores corresponding to low magnitude eigenvalues correspond to 

the existence of linear relationships (static and/or dynamic), involving the variables 

under analysis, including their time-shifted versions. Such scores should also be 

approximately uncorrelated, as the authors illustrated with resource to several examples. 

Time-shifted variables are added until no additional linear relationships are detected. 

The existence of a new linear relationship is verified through the difference between the 

number of low magnitude eigenvalues (associated with uncorrelated scores) obtained 

with the addition of a new time-shifted variable, and the expected number of such 

coefficients assuming that the previous lag structure was correct. 
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Other approaches to the lag-selection problem were also proposed. Autoregressive (AR) 

models were employed to determine the number of lags to use in DPCA [28]. In this 

reference, the authors suggested the application of an AR model only to the output 

variable, from which a single lag is proposed for all the input variables. This is a very 

simple approach that does not explicitly incorporate the relationships between variables. 

Wachs and Lewin [29] proposed the delay-adjusted PCA, that determines the most 

appropriated time delays, between inputs and outputs variables, by shifting inputs until 

their correlation with the outputs is maximized (maximum of the cross-correlation 

function). This approach assumes a two block variable structure (X and Y), where the 

output variables are correlated among themselves with no delays present, and inputs are 

independent of each other. The authors point out that this may not always be true, 

especially when analyzing closed-loop data. Guerfel et al [30] proposed an approach 

where the number of lags is selected as the minimum number needed for detecting a 

specific fault, therefore requiring a priory knowledge of possible systems faults. Other 

proposed methods result from identification techniques based on Akaike information 

criterion, such as those employed by Li and Qin [18] and by Russel et al. [19]. 

However, the first approach assumes a two block variable structure (X and Y) and both 

methodologies propose a unique delay structure for all variables, which may not be true 

in general.  

In this article, we propose a new method to determine, in a more rigorous way, not only 

the maximum number of shifts to adopt in DPCA models, but also the specific lag 

structure for all variables. Therefore, contrary to the works published so far, the number 

of time-shifts used for describing the dynamic behavior of each variable can be 

different. Furthermore, no explicit segmentation as input/output variables is strictly 

required. The proposed approach thus addresses a current major weakness of the DPCA 

methodology, which constitutes a central problem in the implementation of the method 

in real world application scenarios. We illustrate the advantages of adopting the 

proposed method in different process system activities, such as process monitoring and 

system identification. 

The rest of the article is organized as follows. In the next section, we present the 

methods used in this study, in order to set the necessary background knowledge and 
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clarify nomenclature. Next, we briefly review the approach of Ku et al. for lag selection 

in DPCA [16], and introduce our proposed method. Then, the results regarding the 

comparison of the two approaches for estimating the lag structure (the method of Ku et 

al., and our method), are presented. The advantages of the proposed methodology are 

illustrated through several case studies regarding process monitoring and system 

identification applications. Finally, we summarize the contributions presented in this 

paper and conclude with some remarks regarding future work. 

2 Methods 

In this section we briefly review the methods involved in the work presented in this 

article. As most of them are well known and extensively referred in the literature, such 

as PCA [31-33] and DPCA [16], we provide just a short overview, mostly for the 

purpose of setting the nomenclature to be followed in the next sections. 

2.1 Principal components analysis (PCA) 

PCA is essentially a data reduction technique that compresses the original m-

dimensional space of original variables into a lower dimensional subspace of latent 

variables, say with p dimensions, by retaining its dominant variability features while 

discarding the random, non-structured variation. The latent variables are usually called 

the Principal Components (PCs), which are linear combinations of the original ones. 

The PCs are organized in a sequence with decreasing explanation power of the whole 

original variability. With this ordering, the first few components are usually able to 

retain most of the variability present in all the original variables. The PCs are also 

uncorrelated quantities. The basic equation connecting the (n×m) matrix of original 

variables, X, (variables are always disposed column-wise in this article) and the (n×p) 

matrix with the new transformed variables, T, called the scores matrix (each columns 

contain the scores for a given PC), is the following one:  

 T X TP E  (1) 
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where P is the (m×p) matrix containing the coefficients of the linear combinations, also 

called loadings (loading matrix)and E is the (n×m) residual matrix. In this 

representation n is the number of observations, m the number of variables. The number 

of retained PC’s (p, also called the pseudo-rank of X) is defined using one of the 

methodologies available, such as the Kaiser method, Scree test, parallel analysis, 

information theory (Akaike information criterion, minimum description length), cross-

validation and cross-validation ratio, variance of the reconstruction error, F-test, among 

others [31, 34-36]. 

PCA is a scale-dependent technique, which means that its outcome depends on any 

multiplicative factor affecting the variables. Therefore, in order to balance the specific 

weight of each variable in the analysis, they are usually pre-processed in some 

meaningful way. The most well-known pre-processing procedure consists in scaling all 

variables to zero mean and unit variance, called autoscaling. 

 

2.2 Dynamic principal components analysis (DPCA) 

PCA is a multivariate methodology devoted to the analysis of the correlation structure 

linking the variables mode of the X matrix. When this is the only relevant structure 

present in data, the method can be very useful and efficient in summarising all the 

regularities in the data, either regarding variables (groups of correlated variables) or 

observations (clusters, trends, outliers). Under these conditions, all the important 

features are contained in the scores, loadings and residuals, for which several tools were 

developed to facilitate the subsequent analysis. However, if the X matrix also presents 

correlation along the observations mode, i.e., if variables have autocorrelation, PCA 

does not provide the full picture of the data correlation structure because of its blindness 

regarding such dimension. In other words, PCA tacitly assumes that all variables are 

uncorrelated in time, and is better applied in contexts where such hypothesis is valid, at 

least with good approximation. But this is a feature that is often not met in practice, 

especially in systems with inertia-inducing units or simply as a consequence of the high 

sampling rates that are currently easily achieved by modern instrumentation. 
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In order to address this issue, Ku et al. [16] tried to incorporate the description of 

variables autocorrelation into the standard PCA framework, by introducing time-shifted 

replicates as additional variables in the X matrix. This extended matrix, X , opens the 

possibility to model the relationships between variables (correlation) and between 

observations (auto-correlation and cross-correlation, depending on whether the variables 

involved are the same or not). In fact, it amounts to an implicit linear time series model 

structure that is incorporated into a conventional PCA framework, representing a 

(latent) vector autoregressive (VAR) process. Processes containing moving average 

(MA) terms will be approximated by a finite length VAR model. The inclusion of time-

shifted variables can be represented according to Equation(2), 

    

 

   

 

   

 0 1

1 1 10 0 1 1

m

m m ml l   

x xx

X x x x x x x  (2) 

where xi(j) represents the i
th

 variable (in column format) shifted j times into the past 

(i.e., with j lags),      0i ij k k j x x  (the indices inside square brackets are the 

entry identifiers of the column vectors xi(j) and xi(0), respectively); in equation (2), x(j) 

is the submatrix containing all the original variables shifted j times; and X  is the 

resulting extended matrix (with l lags). Written in this way, the extended matrix has the 

form of a Hankel matrix, which is found frequently in System Identification 

methodologies and procedures [27]. However, defining the fine lag-structure for DPCA 

may involve the use of different lags for the variables, and the final extended matrix 

may no longer retain such a simple shape.  

Therefore, in simple terms, DPCA is essentially the same as the original PCA approach, 

except that the data matrix is now composed of additional time shifted replicates of the 

original variables. The central problem is then, how to define properly and in a 

consistent and rigorous way, the number of lags to adopt, l, in order to capture both the 

static (between variables) and dynamic (across observations) relationships. After the 

construction of the extended matrix of process variables, Ku et al. [16] proposed a 

methodology based on the analysis of the noise subspace, which is composed by the 

PCs with small eigenvalues associated. This methodology is shortly described in the 

next section. 
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2.3 Selecting the lag structure in DPCA 

In this section we briefly review the benchmark method for selecting the number of 

time-shifted replicates to include in the extended matrix, and present the methodologies 

proposed in this work. The benchmark is the method most extensively described in the 

literature dealing directly with the lag structure definition problem [16].  

2.3.1 Defining the lag structure using the method proposed by Ku et al. 

When the last PCs have little variation, the corresponding eigenvector represents an 

exact or near-exact linear relation between the original variables [32]. This 

characteristic was explored by Ku et al. [16], who proposed an algorithm based on the 

identification of the number of linear relationships needed to describe the system, in 

order to determine the number of lags ( l ) to be used in the definition of the extended 

matrix for a DPCA model. The extended matrix has, in this case, the simple form of a 

Hankel matrix. The presence of linear relationships, originated from static or dynamic 

relations, manifests itself through two types of effects: i) small eigenvalues in the 

spectral decomposition of the covariance matrix for X , ii) and by the fact that the 

corresponding scores should be, in these conditions, approximately independent (a 

feature that can be checked through, for instance, auto- and cross-correlation plots). The 

pseudocode for the algorithm proposed by the authors is presented in Table 1 [16]. 
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Table 1. Pseudocode for the lag-selection methodology proposed by Ku et al. [16]. 

 

1. Set 0l  ; 

2. Form the extended data matrix      0 1 l   X x x x ; 

3. Perform PCA and calculate all the principal scores; 

4. Set  1j m l   and   0r l  ; 

5. Determine if the j
th

 component represents a linear relation. If yes proceed, if no 

go to step 7; 

6. Set –1j j and     1r l r l  , repeat 5; 

7. Calculate the number of new relationships: 

 
1

0

( ) ( ) ( 1) ( )
l

new new

i

r l r l l i r i




     (3) 

8. If   0newr l  , go to step 10, otherwise proceed; 

9. Set 1l l  , go to step 2; 

10. Stop. 

 

The above procedure assumes the implementation of a methodology for selecting the 

number of principal components, for which the authors suggest the use of parallel 

analysis followed by the analysis of cross-correlation plots of the principal component 

scores. The number of linear relationships identified is given by the difference between 

the number of variables considered in the extended matrix and the number of principal 

components retained. 

According to the authors, the number of lags obtained by this procedure is usually 1 or 

2, depending on the order of the dynamic system, and is the same for all variables. 

However, they refer that, in the case of nonlinear systems, l  could be set to higher 

values, in order to get a better linear approximation of the nonlinear relationships [16]. 

This methodology will be adopted in this work as the benchmark method against which 

the proposed approaches will be tested and compared. In this decision, we took into 

account the fact that it is eventually the most well known and widely used approach for 

addressing this problem, which furthermore is theoretical driven and thoroughly tested. 

Other less tested methods available in the literature either present similar limitations or 

require the consideration of two blocks of variables (please refer to the review presented 

in the Introduction section). However, to the best of our knowledge, no method is 
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available yet, that is able to estimate the complete lag structure, as Method II described 

bellow.  

 

2.3.2 Defining the coarse lag structure: Method I – Selection of the maximum number of 

lags 

In this section, we propose an alternative way to select a single number of time-shifts 

for all variables, regarding that proposed by the benchmark method. In this case, the 

extended matrix to be used in DPCA has the form of a Hankel matrix. This method can 

be used separately, or in a first stage preceding the implementation of Method II, to be 

described in the next section, which will refine the number of shifts to consider for each 

individual variable.  

The proposed method has roots in the work of Ku et al. [16], and is focused on 

following the singular values obtained in each stage, where the extended matrix is 

augmented with the replicates for an additional time-shift. By analysing the sequence of 

the singular values, one can estimate the point (i.e., the number of lags), after which the 

introduction of additional time-shifted variables become redundant, i.e., are no longer 

necessary for explaining the existent stationary and dynamic relationships. 

The proposed method assumes the existence of a total of m linear dynamical 

relationships to be identified (as many as the variables involved), whose order is not 

known a priori, but is at least 1 (the simplest dynamical model). This simple hypothesis 

allows for the derivation of an algorithm that consistently leads to better estimates of the 

dynamical lag-structure involved, as illustrated in the results section. The algorithm 

consists in sequentially introducing an additional set of time-shift replicates for all 

original variables (which corresponds to the consideration of one more lag in the 

extended matrix), after which the singular values are computed for the corresponding 

covariance matrix. This procedure is repeated until a pre-defined upper limit on the 

number lags to use is achieved,
maxl , where it stops (this limit is usually a number high 

enough for allowing the description of all the dynamical features present in the data, but 

it can be adjusted if, during the analysis, it is concluded that it was underestimated 
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initially). In each stage, l (which also coincides with the number of lags introduced in 

the extended matrix), the following quantities are computed from the singular values: 

 Key Singular Value. The key singular value in the l
th 

stage (l≥1), KSV(l), is 

defined as the  1m l 
th

 singular value, after sorting the set of singular values 

according to the decreasing order of their magnitude. As there are m linear 

dynamical relationships to be identified, by hypothesis, only after introducing 

the number of lags necessary to model the linear dependency with the highest 

delay (i.e., that goes further into the past, or having the maximum number of 

lags in the DPCA model), one is expected to get a small magnitude for the 

singular value in such a position. Therefore, the key singular value should signal 

the point where the linear relationship requiring (more lags to be properly 

described) was finally achieved. The other relationships, requiring a lower 

number of lags, give rise to multiple low singular values (one per additional lag, 

after the numbers of lags necessary to fully describe their linear relations are 

achieved). All of them appear at the end of the ordered vector of singular values. 

It can be shown that, only after the point where there is a sufficient number of 

lags to describe all linear descriptions present, a small value appears in the KSV, 

indicating that the addition of variable replicates with more lags is no longer 

relevant for the DPCA model. 

 Key Singular Value Ratio. We have seen that, under the assumption of having m 

dynamical relationships present, a small value for the KSV at stage l, indicates 

that one has attained the point where no more lags necessary to add. However, 

due to the presence of noise and small-moderate non-linear effects, the 

identification of this condition is not always clear. Therefore, we introduce a 

second element in the algorithm, in order to increase the robustness of the 

detection of the maximum number of lags required. In fact, following the 

behaviour of the successive values obtained for the KSV(l), (l=1,2,…), we have 

empirically observed that there is a point where it decays more or less sharply 

(corresponding to the stage where KSV(l) starts getting low values) and then 

becomes approximately constant (see the left plot in Figure 1, for an example). 

Therefore, by defining the Ratio of successive Key Singular Values at stage l, 
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KSVR(l), by      / 1KSVR l KSV l KSV l  , one can capture this behaviour 

more effectively. In fact, from this definition, one can verify that the required 

number of lags should have a low value for KSVR, indicating that a significant 

decrease in the KSV has just occurred, i.e., the current singular value is 

significant lower than the previous one. After this point, the ratio tends to have 

values closer to 1 and to be approximately constant. 



 

Figure 1. KSV and KSVR obtained in the analysis of the Wood and Berry case study (left). The analysis of the 

parameter KSVR, leads, in this case, to an estimated maximum number of lags of 16. Also shown, is the objective 

function for the auxiliary optimization problem for selecting the number of lags (right). 

In resume, the maximum number of lags to be considered in the extended matrix for 

implementing DPCA should obey the following two criteria: (i) have a small KSV and 

(ii) have a low value for KSVR. 

In order to find the number of lags that match both of these conditions, we implement a 

procedure that seeks for the number of lags introduced, l, for which KSV and KSVR are 

closer to their minimums – the minimums attained individually in the analysis, i.e., 

min(KSV) and min(KSVR). This task is performed by minimizing the objective function, 

Distance To Optimum, , given by Equation (4), where KSVN and KSVRN are 

normalized versions of KSV and KSVR, constructed in order to remove the effects of 

scale and provide equal weight to both criteria in the analysis (Equations(5) and (6)). 
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    
2 2

N NKSV l KSVR l    (4) 

 
 

   

( ) min
( )

max min
N

KSV l KSV
KSV l

KSV KSV





 (5) 

 
 

   

( ) min
( )

max min
N

KSVR l KSVR
KSVR l

KSVR KSVR





 (6) 

The pseudocode for the proposed algorithm for estimating the maximum number of lags 

to use in DPCA, is presented in Table 2. The plot in the right hand side of Figure 1 

illustrates this objective function for the Wood and Berry case study. 

 

Table 2. Pseudocode for the Method I: selection of the maximum number of lags to use in DPCA. 

 

1. Set 0l  ; 

2. Form the extended data matrix      0 1 l   X x x x ; 

3. Perform the singular value decomposition of the covariance of the extended 

matrix: T
X

Σ USV ; 

4. Set   1 mlKSV l s  ;
(1)

 

5. If 0l   set      –1KSVR l KSV l KSV l ; 

6. If 
maxl l , set 1l l   and go to step 2, otherwise proceed; 

7. Normalize KSV and KSVR; 

8. Determine:  
2 2

1,
arg min ( ) ( )N Nl lmax

KSV l KSVR l


 , s.t. l ≥ l
*
 (where l

*
 is the 

first l, such that KSVR(l) <KSVR(l – 1));
 (2)

 

Notes: 
(1)

 1mls   is the (ml+1)
th

 singular value of 
X

Σ . 
(2)

 A justification for this condition is provided in 

section 3.1.3.1. 

 

2.3.3 Defining the fine lag structure: Method II – Selection of the number of lags for 

each variable 

Method I provides an approach for selecting a single number of lags to be used for all 

variables (as in the benchmark method). Such lag is the one corresponding to the 

dynamic relation requiring a longer tail into the past, in terms of the number of lags 

involved. However, analysing different multivariate systems, one can verify that quite 
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often the order of the dynamics is not the same for all variables. Therefore, the number 

of lags required to describe them will also be different. Under these circumstances, it is 

both opportune and important to devise a methodology for fine tuning the number of 

lags to be adopted for each variable, in order to increase de accuracy and stability of the 

DPCA approach. In order to obtain such a finer selection of the number of lags for each 

variable, we propose a second algorithm (Method II) that presents some similarities 

with Method I, but that includes, in each stage, a variable-wise analysis. 

In Method II, at each stage, k, m versions of the extended matrix are analyzed, 

     1 2, , , mk k kX X X . These matrices are obtained from that relative to the 

preceding stage,  1k X , modified by the inclusion of a single time-shifted variable, 

with one more lag than the number of lags used in the preceding stage for the same 

variable. In more precise terms, let us define 
 k

l , as the m-dimensional vector 

containing in its entries the number of lags considered for each variable in stage k:  k

i  

( 1, ,i m ). In other words, the first entry of 
 k

l  contains the number of shifted 

versions for x1, 
 

1

k
 , the second contains the number of shifted version for x2, 

 
2

k
 , and 

so on and so forward, until the m
th

 entry: 

        
1 2

k k k k

ml    
 

 (7) 

Let us also consider the m-dimensional indicator vector,  k , as a vector composed by 

zeros, except for the k
th

 position, where it has a 1: 

  
1 2

0 0 1 0

k m

k


 
  
  

 (8) 

In this circumstances, the lag structure corresponding to the i
th

 version of the extended 

matrix at stage k,  i kX , summarized in the vector  k

il , is given by (see also Figure 2 

for more details about this process): 
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        1k k i i

il l k


   X  (9) 

 

 

Figure 2. Illustration of the implementation of Method 2. In this example, the stage 4 of a 3 variables system is 

presented. On the previous stages 1 lag was selected for x1 and 2 lags to x2. In the current stage, the several versions 

of the extended data matrices are defined (three in this case), and their singular values determined. Based on the 

analysis of quantities computed from them, variable x3 is selected to be incorporated into the extended matrix with an 

additional time-shift. 
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Now, for each version of the extended matrix,  i kX , the smallest singular value of the 

corresponding covariance matrix,   cov i kX , is determined and saved. Let us call it, 

ci. This set of values, ci (i= 1, …,m), are then analyzed in order to find the minimum at 

stage k , say (
 k

s ). The lagged variable to be incorporated in the extended matrix is the 

one for which such minimum was found. This will result in the extended matrix for 

stage k,  kX , and the procedure is repeated again for stage k+1, where another lagged 

version of some variable is added again (which can be any of the m variables under 

consideration). This process continuous until the maximum number of lags to analyze is 

attained. The total number of stages will always be equal to the sum of the lags for all 

variables, as in each stage a single lag is introduced for some variable under analysis. 

The maximum number of lags to analyze, 
maxl , is a parameter that can be either provided 

after the implementation of Method I, or selected in a more conservative way (i.e., 

slightly above of what we expect to be a reasonable value for this parameter).  

In order to remove potentially redundant lagged variables that might be included in this 

forward addition process, a final pruning stage is performed, where the results obtained 

at all stages are analyzed for their significance and improvement of the objective 

function, using a similar criterion to the one presented before, in Equation (4) (the only 

difference lies in the redefinition of the normalization factors). The complete procedure 

for implementing Method II is summarized in the pseudocode presented in Table 3. 
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Table 3. Pseudocode for the algorithm that estimates the fine lag structure of the extended matrix, for implementing 

DPCA (Method II). 

1. Set stage 0k  , and initialize the lag vector (whose i
th

 entry, contains the number of 

lags for the corresponding i
th

 variable),    0 0
k

l  ;  

2. Form  0X and determine the smallest singular value (
 0

s ); 

3. Set 1k k  ; 

i. For 1i   to m 

 Form  i kX , whose lagged structure is given by the 

vector:      1k k i

il l 


  ; 

 Compute the covariance matrix of  i kX ; 

 Determine the smallest singular value of the covariance matrix obtained 

in the previous step: 
ic ; 

ii. Find the variable corresponding to the smallest value of the 

set 
1, ,i i m

c


:  
 1,

min  
k

ii m
s c


 ;

 (1)
 

iii. Obtain the final extended matrix for stage k:  kX ; with      1 mink k i
l l 


  , 

where
 1,

arg min  min ii m
i c


 ;

 (1)
 

iv. Set 
  ( ) ( 1)k k kr s s  ; 

v. If  
min

k

maxl l , go to step 3, otherwise proceed; 

4. Determine the stage that provides the best description of the linear dynamics involved: 

         
max

2 2
*

1,
arg min

k k

k k
k k s r


  

(2)
, s.t. l ≥ l

*
 (where l

*
 is the first l, such that 

   1r l r l 
 
(3)

). 

Notes: 
(1)

 in ii), s
(k) 

contains the minimum singular values, whereas in iii), imin corresponds to the index for the 

minimum value.  
(2)

y  represents the normalized score corresponding to y. 
(3)

 A justification for the condition used in stage 4 is provided in section 3.1.3.1. 

 

3 Results 

In this section we present the results obtained from the application of the methods 

presented in the previous section, to different test scenarios. In the first subsection, we 

demonstrate the improved accuracy in estimating the lag structure obtained with the 

proposed methodologies. Then, we illustrate the consequences of using such improved 

methods, in the tasks of statistical process monitoring (SPM) and systems identification 

(SI).  
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3.1.1 Comparative assessment study  

In order to demonstrate the increased lag estimation accuracy of the proposed 

methodologies, we consider two testing scenarios. In the first scenario, a large number 

of systems from the same class were randomly generated, and then the Benchmark and 

Method I were employed in order to estimate the appropriate maximum number of lags 

necessary to describe the dynamical relationship for each realization of the model 

structure. In the second scenario, several multivariate systems found in the literature, 

with known dynamics, are employed, in order to test the estimation accuracy 

performances of Method II in selecting the specific number of lags for each variable. 

3.1.2 Systems with random lag structure 

In order to access the accuracy performance of the methods presented in section 2, they 

were employed in the estimation of the number of lags for a large number of systems 

with randomly generated structures. The systems under study were based on the 

following continuous first order dynamic transfer function with time delay, defined by 

 
1

sKe
g

s










 (10) 

where K is the system gain, τ the time constant and θ the time delay. A large number of 

different realizations of this set of parameters were generated (following independent 

uniform distributions), which will imply different time lags in the corresponding 

discrete models.  

Following this procedure, 5000 SISO systems and another 5000 MIMO 2x2 systems 

were generated, all of them subjected to additive white noise (d) with different 

magnitudes of signal-to-noise ratio (SNR) and noise structures (with and without 

autocorrelation). The SNR is defined by: 

 
 

 
10

var
10log

var

x
SNR

d

 
   

 

 (11) 
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The deviations obtained between the estimated and the true maximum delay of the 

system (equivalent to the maximum lag), are presented graphically in Figures 3 to 6. 

 
Figure 3. Graphical representation of the deviation between the estimated and the true number of lags (Estimated - 

True) for SISO systems, corrupted with additive white noise (20 dB), without autocorrelation.  

  

 
Figure 4. Graphical representation of the deviation between the estimated and the true number of lags (Estimated - 

True) for SISO systems, corrupted with additive autocorrelated noise (20 dB). 
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Figure 5. Graphical representation of the deviation between the estimated and true number of lags (Estimated - True) 

for MIMO 2x2 systems, corrupted with additive white noise (20 dB), without autocorrelation. 

 

 
Figure 6. Graphical representation of the deviation between the estimated and true number of lags (Estimated - True) 

for MIMO 2x2 systems, corrupted with additive autocorrelated noise (20 dB). 

 

Regarding SISO systems, Figures 3 and 4 indicate that the deviations distribution from 

application of Ku et al. method is almost uniform between -11 and -2. This may happen 

because the true delays were also generated by an uniform distribution and the estimates 

from this method typically vary little, indicating a 0-lag model in about 95% of the 

SISO systems, and a 1-lag model in approximately 95% of the MIMO 2x2 systems. 

These results are consistent with the authors’ comments about their method, namely that 

it usually provides estimates of the systems order in the range 1-2. However, the method 

fails in the estimation of the true number of lags, which necessarily leads to less 

adequate DPCA models, which are not correctly modelling the dynamic behaviour of 

the systems. 
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On the other hand, our proposed method estimates 1 more lag than the correct one in all 

the generated SISO systems (Figures 3 and 4). In the case of the MIMO 2x2 systems 

(Figures 4 and 5), one can see that it also presents some estimation error, which 

nevertheless is lower than that for the Ku et al. method. In fact, the absolute deviations 

obtained with the Ku et al. method ( 1e ) are greater than the ones obtained by our 

proposed method ( 2e ). This can be seen in Figure 7, where the difference 1 2D e e   is 

represented. From this figure we can conclude that our approach indeed presents higher 

estimation accuracy of the true number of lags. The statistical significance of the 

difference between the methods, was also assessed with a permutation test [37] leading 

to highly significant p-values, much lower that 0.01, confirming the lower absolute 

deviations obtained with the proposed method. 

 
Figure 7. Graphical representation of the difference between the absolute deviation obtained on the number of lags 

estimated by the Ku et al. method and our proposed method. d1, d2 and d3 refer to 3 different dynamic transfer 

functions applied to the additive autocorrelated noise. 

 

3.1.3 Multivariate dynamic systems collected from the literature 

We have also applied the lag estimation methods to three MIMO systems found in the 

literature, namely those proposed by (i) Wood and Berry, (ii) Wardle and Wood, and 

(iii) Ogunnaike and Ray. The corresponding transfer functions are presented in Table 4 

[38]. 
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In this study the proposed method was applied in two parts: in the first part, we 

employed Method 2 for selecting the number of lags for the output variables only. In the 

second part, the same was done for the input variables, using the previously selected 

number of lags for the outputs. This procedure turned out to be the most effective one 

for handling complex higher-order dynamical systems. 

Table 4. Transfer functions for the three MIMO systems used in the comparison study. 

 Wood and Berry Wardle and Wood Ogunnaike and Ray 

11g  12.8

16.7 1

se

s




 

60.126

60 1

se

s




 

2.60.66

6.7 1

se

s




 

12g  
318.9

21 1

se

s




 

  

120.101

48 1 45 1

se

s s



 
 

3.50.61

8.64 1

se

s




 

13g    
0.0049

9.06 1

se

s




 

21g  
76.6

10.9 1

se

s




 

80.094

38 1

se

s




 

6.51.11

3.25 1

se

s




 

22g  
319.4

14.4 1

se

s




 

80.12

35 1

s

s




 

32.36

5 1

se

s




 

23g    
1.20.01

7.09 1

se

s




 

31g    
9.234.68

8.15 1

se

s




 

32g    
9.446.2

10.9 1

se

s




 

33g    
 

  

0.87 11.6 1

3.89 1 18.8 1

ss e

s s



 
 

True number of 

lags (after 

discretization) 
 2 2 9 5   2 2 10 15   3 3 4 14 14 5  

 

The true number of lags for each system is a function of the sampling rate adopted, and 

was determined here through the Matlab function c2d (that converts a continuous model 

into a discrete one), and by the transformation equations described by Roffel [39]. All 

systems were simulated using the Matlab function lsim, and subject to a SNR of 10 dB. 

Each data set analyzed was composed by 3000 samples. 
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3.1.3.1 Wood and Berry system 

By application of our proposed method to the Wood and Berry system, on the first part 

of the procedure, the number of lags of the outputs was determined according to the 

algorithm presented in Table 3. This algorithm makes use of the singular values of a 

data matrix successively extended by additional lagged variables and the ratio between 

the singular values before and after the inclusion of each lagged variable. These values 

are introduced into an optimization function (), from which the lagged variable leading 

to the lower value is the one to be included in the extended matrix. This procedure is 

repeated until the maximum number of stages is achieved. 

In the case of the Wood and Berry systems, the results obtained in each stage are 

presented in Figure 8. 

 
(a) 



 
(b) 

Figure 8. Graphical representation of (a) the singular values, their ratio and (b) the output from the optimization 

algorithm, , during the first part of the proposed method, in the Wood and Berry system. 

 

From Figure 8 (b) we can verify that stage k=2 led to the lowest value of . However, 

this value is greatly affected by the singular values ratio,  k
r  (see Table 3, stage 4), 

which is expected to be low in the first stages, because of the rapid decrease in the 

singular values (s) after the first inclusions of lags. Furthermore, the use of the ratio in 

the optimization functions, , is mainly for the purpose of identifying significant 

changes in s, once its value is already low, and not in the initial stages. This is the 

reason way the ratio condition is present in the proposed methods (Method 1 see Table 

2, stage 8; Method 3 see Table 3, stage 4). It should be also noted, that the decreasing 
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profile of s is related to the amount of variability explained. Thus, after the point where 

all significant lagged variables have been included, the decrease on the singular values 

will be lower. Consequently, the desirable combination of lags should have a low value 

for the singular values, s, followed by an almost constant profile (which is equivalent to 

a ratio near 1). From Figure 8 (a) we observe that stage 4 (that has the second lowest ) 

has a closer match to these specifications, and was therefore, chosen for providing the 

number of lags in the output variables. 

On the second part of the method, the number of lags for the input variables is also 

determined, given the information about the number of lags for the output variables. 

Following the same procedures and considerations, we select stage 14 for the outputs 

(see Figure 9). In this part, the singular value profile is not as ambiguous as in the 

outputs case, and a clearer, almost constant, profile appears after stage 14 (see Figure 9 

(a)), which is also identified by the lowest of . By selecting stage 14, we obtain a lag 

vector of  2 2 9 5 which is equal to the theoretical one (see Table 4). 

 
(a) 



 
(b) 

Figure 9. Graphical representation of (a) the singular values, their ratio and (b) , during the second part of the 

proposed method, in the Wood and Berry system. 

 

3.1.3.2 Wardle and Wood system 

The second case study was the Wardle and Wood system. The two part procedure was 

also implemented, as for the previous example. From the first part of the method we 

obtained the profiles presented in Figure 10. 
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(a) 



 
(b) 

Figure 10. Graphical representation of (a) the singular values, their ratio and (b) , during the first part of the 

proposed method, in the Wardle and Wood system. 

 

As can be seen on Figure 10 (b), the minimum of  is obtained on stage 1. However, as 

in the case of the Wood and Berry system, the ratio in stage 1 has a big effect on the 

value of  and it also results from the high reduction in the singular value after the 

addition of the first lagged variable, and therefore should not be considered, in 

accordance with the ratio condition. Stage 4 respects this condition and has the 2
nd

 

lowest , along with an almost constant singular values profile after it. Given these 

considerations, we select stage 4 for the first part of the method. 

In the second part of the method, we obtain the minimum value of  in stage 23 (see 

Figure 11(b)). Note that this stage is also related to the almost constant profile of the 

singular values (Figure 11(a)), even with the small decrease in stage 32, that is 

considered as less relevant due to its smaller ratio. Therefore, stage 23 is the one 

selected, giving a lag vector of  2 2 10 14 which is quite similar to the theoretical 

one,  3 2 10 15
 
(see Table 4). 
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(a) 



 
(b) 

Figure 11. Graphical representation of (a) the singular values, their ratio and (b) , during the second part of the 

proposed method, in the Wardle and Wood system. 

 

3.1.3.3 Ogunnaike and Ray system 

The third case study regards the Ogunnaike and Ray system. From the application of the 

proposed method, we obtained the profiles presented in Figure 12 for the output 

variables (first part). In this case, the progressive decrease in s is more evident, and 

therefore a careful analysis of the first stages should be conducted. As can be seen in 

Figure 12 (b), the first stages have the lowest values of . However, as explained before, 

the first stages correspond to a rapid, but not stable, reduction of s. Note that the 

required stage of almost constant values of s, only starts between stage 10 and 20 

(Figure 12 (a)). The algorithm is capable of dealing with this situation by the inclusion 

of the ratio condition explained in Section 3.1.3.1. With this condition, the algorithm 

selects stage 11 for the outputs. This could be considered a good choice since s is 

already low and, in the subsequent stages, no significant decrease of s occurred. 

In the second part, we obtain a characteristic profile that becomes almost constant after 

stage 30, where the lowest ratio is obtained, i.e., the greatest decrease in s relatively to 

its previous value (see Figure 13). 

Stage 30 is, in fact, the stage selected by the algorithm, which leads to a lag vector of 

 4 3 4 14 14 2 . This lag vector is quite similar to the theoretical one, 

 3 3 4 14 14 5
 
(see Table 4). 
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(a) 



 
(b) 

Figure 12. Graphical representation of (a) the singular values, their ratio and (b) , during the first part of the 

proposed method, in the Ogunnaike and Ray system. 

 

 
(a) 



 
(b) 

Figure 13. Graphical representation of (a) the singular values, their ratio and (b) , during the second part of the 

proposed method, in the Ogunnaike and Ray system. 

 

3.2 Implementation of the proposed methodologies in Statistical Process 

Monitoring (SPM) and System Identification (SI) activities 

The proposed lag selection method aims to better estimate the real dynamic 

relationships involving all the system variables, leading to more precise and reliable 

models. This will have a natural impact in the activities built over DPCA models, such 

as statistical process monitoring (SPM) and system identification (SI), as analyzed in 

the following two subsections. 
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3.2.1 Case study: Statistical Process Monitoring 

In this section we assess and compare the effect of using the proposed lag selection 

method in DPCA models, when applied to multivariate statistical process monitoring. 

For such, several monitoring methodologies were implemented, namely the well known 

PCA-MSPC procedure [7-10], and two other related procedures, based on DPCA 

models. One of these methods uses the current lag selection method, proposed by Ku et 

al., DPCA-LS1, and the other employs our proposed methodology, DPCA-LS2. 

The system studied was the Tennessee Eastman benchmark process, developed by 

Downs and Vogel [40], which has been widely used for comparing process monitoring 

and control approaches. The simulation model has 41 measurements (XMEAS), 12 

manipulated (XMV) variables and allows for the analysis of 21 process upsets; more 

details are provided elsewhere [19, 40]. 

In this study we have used the data provided by Braatz et al. [41], where the control 

system implemented is the one after Lyman and Georgakis [42]. Each data set contains 

960 observations with a sample interval of 3 min. The faults are introduced 8 hours after 

the initial simulation instant. All the manipulated and measurement variables, except the 

agitation speed of the reactor’s stirrer (which is always constant) were collected, giving 

a total of 52 variables. 

The data set without faults was used to estimate the PCA and DPCA models. The 

number of principal components was determined by parallel analysis and the number of 

lags for the DPCA model was first selected with the approach proposed by Ku et al. 

[16]. Using these methods we constructed a PCA model with 17 PCs and a DPCA 

model with 3 lags and 29 PCs (DPCA-LS1). These estimates are in line with those 

obtained before by Russell et al. [19]. Implementing DPCA-LS2, one would obtain the 

fine lag structure presented in Table 5, along with a total of 69 PCs. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

30 

Table 5. Number of lags for each variable obtained with DPCA-LS2, in the Tennessee Eastman process. 

XMEAS(1) 17  XMEAS(14) 4  XMEAS(27) 17  XMEAS(40) 12 

XMEAS(2) 17  XMEAS(15) 17  XMEAS(28) 13  XMEAS(41) 17 

XMEAS(3) 8  XMEAS(16) 12  XMEAS(29) 3  XMV(1) 17 

XMEAS(4) 17  XMEAS(17) 17  XMEAS(30) 17  XMV(2) 17 

XMEAS(5) 17  XMEAS(18) 17  XMEAS(31) 17  XMV(3) 17 

XMEAS(6) 16  XMEAS(19) 17  XMEAS(32) 8  XMV(4) 17 

XMEAS(7) 17  XMEAS(20) 17  XMEAS(33) 8  XMV(5) 15 

XMEAS(8) 15  XMEAS(21) 17  XMEAS(34) 17  XMV(6) 16 

XMEAS(9) 17  XMEAS(22) 17  XMEAS(35) 17  XMV(7) 17 

XMEAS(10) 17  XMEAS(23) 17  XMEAS(36) 17  XMV(8) 17 

XMEAS(11) 16  XMEAS(24) 17  XMEAS(37) 17  XMV(9) 16 

XMEAS(12) 17  XMEAS(25) 17  XMEAS(38) 17  XMV(10) 17 

XMEAS(13) 17  XMEAS(26) 17  XMEAS(39) 4  XMV(11) 17 

 

The pair of monitoring statistics (T
2
 and Q) for each model (PCA, DPCA-LS1 and 

DPCA-LS2) were then applied to a second data set representing normal operation 

conditions, in order to determine their respective control limits. The control limit was 

set by trial and error, so that all the statistics lead to the same false alarm rate of 1%. 

The methods where then applied to the battery of 21 data sets with different types of 

faults. The results obtained, are presented in Table 6 (detection rate, i.e., the number of 

detections in the faulty regions over the total number of observations in the faulty 

regions). 

From the analysis of Table 6, it is possible to verify that the DPCA-LS2 statistics have 

the higher fault detection rates for 17 out of 21 faults, and comparable detection rates on 

the remaining ones. The superiority of our proposed lag selection method is also 

formally confirmed upon application of a paired t-test (5% significance level). 
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Table 6. Detection rates for each fault. The best performance for each type of fault, is signalled in bold. 

Fault 
 PCA  DPCA-LS1  DPCA-LS2 

 T
2
 Q  T

2
 Q  T

2
 Q 

1  0.991 0.995  0.990 0.994  0.989 0.993 

2  0.985 0.984  0.984 0.981  0.981 0.985 

3  0.036 0.006  0.035 0.010  0.059 0.032 

4  0.218 0.980  0.165 0.999  0.397 0.999 

5  0.257 0.217  0.293 0.228  0.326 0.486 

6  0.989 0.999  0.989 0.999  0.988 0.999 

7  0.999 0.999  0.986 0.999  0.888 0.999 

8  0.974 0.968  0.973 0.974  0.970 0.971 

9  0.034 0.010  0.030 0.002  0.070 0.017 

10  0.367 0.154  0.439 0.172  0.508 0.531 

11  0.414 0.638  0.340 0.829  0.542 0.991 

12  0.985 0.925  0.990 0.964  0.994 0.996 

13  0.943 0.950  0.943 0.950  0.938 0.948 

14  0.988 0.999  0.990 0.999  0.996 0.998 

15  0.035 0.007  0.059 0.009  0.072 0.040 

16  0.174 0.137  0.217 0.145  0.305 0.474 

17  0.787 0.905  0.790 0.953  0.954 0.969 

18  0.893 0.901  0.890 0.898  0.894 0.901 

19  0.115 0.059  0.046 0.298  0.072 0.956 

20  0.340 0.423  0.408 0.493  0.609 0.777 

21  0.362 0.414  0.429 0.409  0.444 0.456 

 

3.2.2 Case study 2: System identification 

Even though it is not its natural application area, DPCA can also be used in the analysis 

of input/output systems, namely in SI contexts [16, 18, 29]. In this section, we will 

address this application scenario, mostly to consolidate the results presented in the 

previous case studies and to illustrate the added-value of properly estimating the 

dynamic structure of a DPCA model. Our analysis will be based on the evaluation of the 

one-step-ahead prediction performance of the models derived from the application of 

the various lag selection methods under consideration. Input/output relationships are 

extracted from the singular vectors relative to the smallest singular values, as they 

represent the linear relations present in the extended data covariance matrix. 

The process under analysis is the Wood and Berry system described before (see Table 

4), from which 5000 samples were generated with a SNR of 10 dB. By application of 
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the method proposed by Ku et al. [16] the number of lags estimated is 1. On the other 

hand, with our proposed method, the estimated lag vector is  2 2 9 5 , as referred 

in section 3.1.3.1. With such lag structures, the extended data matrices for DPCA using 

both approaches were constructed and their corresponding covariance matrices 

determined. Then, the singular value decomposition was applied to each covariance 

matrix, and the singular vectors relative to the two smallest singular values were used to 

estimate the intrinsic systems models. 

The models thus obtained from the application of the two lag selection approaches 

where then used to provide one-step-ahead predictions, in independent data sets of 5000 

samples, repeated 1000 times. The prediction quality was assessed by the Mean Squared 

Error (MSE). The results are presented in Table 7. For illustration proposes, the MSE 

for models with 2 and 9 lags are also presented.  

Table 7. Mean squared error of one-step-ahead predictions for the Wood and Berry system. 

Number of lags MSE 

1 67,8 ± 2,91 

2 311,22 ± 80,05 

9 1,89 ± 0,89 

 2 2 9 5
 1,06 ± 0,56 

 

From the results on Table 7, it can be easily concluded that our proposed method led to 

the lowest MSE, not only comparing with the results obtained with 1 lag (Ku et al. 

method) but also with the 9 lags model (maximum lag number). This indicates that an 

individual number of lags for each variables is preferable than an overall lag number, 

since a more reliable model can be obtained. 
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4 Discussion 

In the previous section, we have demonstrated the increased accuracy of the proposed 

methodologies relatively to the benchmark method proposed by Ku et al [16], in several 

testing scenarios, and illustrated their added value in practice in situations where DPCA 

is employed for addressing SPM and SI problems. The methodologies proposed are 

theoretical-driven, but incorporate also results and improvements arising from an 

extensive analysis of possible alternatives to address the lag selection problem. This 

dose of empiricism is reflected in the adoption of solutions (such as the ratio restriction) 

that consistently led to better results, providing flexibility and robustness to the 

proposed methods. Other alternatives, even when grounded on a well established 

theoretical background, failed to provide better results, or presented implementation 

problems. For instance, one approach tested to select the maximum number of lags, 

consisted in finding the point after which the number of new relationships are the 

expected ones assuming that all the relevant linear relations were extracted until the 

previous stage. In fact, if one is able to extract all the relationships with a certain 

number of lags, by adding one more lag than necessary for all variables, one should 

theoretically obtain all the previous extracted relationships, replicated one more time. 

And this process will go on, as more lags are added. Therefore, by finding the onset of 

such regular behaviour, one could establish the maximum number of lags necessary to 

describe the dynamical behaviour of all the variables. However, such a methodology led 

to implementation problems that manifest in imprecise estimates of the onset of the 

replication process, which translate in worse results that those provided by Method I. As 

an example, consider the Wood and Berry system presented earlier. For this specific 

system, the correct number of lags is 9, and therefore, it was expected that the number 

of linear relations (NLR) increased in a proportional way after this lag. However, as can 

be seen in Figure 14, despite the near linear relation between the NLR and the number 

of lags, there is no significant difference in the regions before (I) and after (II) lag 9, 

making it impossible to identify it as the appropriate one. In this sense, the proposed 

methods proved to be empirically accurate and stable in most of the circumstances 

studied, providing a usable solution to this non-trivial problem of model structure 

definition for DPCA. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

34 

 
Figure 14. Number of linear relations obtained by parallel analysis in each lag for the Wood and Berry system. 

 

5 Conclusions 

In this paper we proposed two new methods for selecting the number of lags in DPCA 

models. These methods are based on the correspondence between the smallest singular 

values and near linear relations present on data. 

The methods for selecting the maximum number of lags were compared with the 

procedure proposed by Ku et al.[16] and applied to a series of systems with randomly 

generated structures. From this analysis, we concluded that our proposed method to 

select the number of lags gave a closer estimation of the lags and was statistically better 

than the benchmark method. The same conclusion was drawn from the implementation 

of these methods to several models collected from the literature. We also note that, 

although the proposed algorithm is capable of selecting the correct stage in most of the 

times, it is recommend to analyse the graphical representation of the singular values, 

their ratio and , and select a stage with simultaneous low values for the singular value 

I                             II 
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and ratio, with no subsequent lower ratio values. This situation should be considered 

with some attention in the first stages of the procedure, as discussed in the text. 

Finally, we also concluded that the use of the proposed methods to select the number of 

lags, ultimately leads to superior performances in other activities based on DPCA 

models, such as statistical process monitoring and system identification. Future work 

will address the application of these methodologies to high-dimensional systems and 

other application scenarios. 
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Highlights 

 Two new methods for selecting the lag structure and number of principal 

components for Dynamic Principal Components Analysis (DPCA) models, are 

proposed. 

 Proposed methods are based on the analysis of the successive singular values 

obtained after the inclusion of lagged variables in the extended matrix of 

predictors. 

 Several examples, involving SISO and MIMO systems, demonstrate the 

improved accuracy of the proposed methods regarding the current benchmark. 

 The methods were also applied to process monitoring and system identification 

activities, leading to superior performances. 


