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Abstract

Liver cancer is the sixth most frequently diagnosed cancer and the third cause of cancer-
related deaths worldwide. Hepatocellular Carcinoma (HCC) represents more than 90% of
primary liver cancers and it’s a major global health problem. Clinical guidelines aim to assist
clinicians in their decision-making process, under the assumptions of Evidence-Based Medicine
(EBM). However, clinical practice often deals with the mismatch between EBM and the desired
Personalized Medicine (PM), adjusted to a given patient. In order to make a reasoned decision,
clinicians frequently need to access the patient’s information, which is a difficult quest in the
great majority of hospital contexts. The patient’s clinical files are often dispersed in physical
files, subjected to loss and inconsistency. Furthermore, such scenario also makes patient’s
clinical data susceptible to missing data.

In this work, we present a Clinical Decision Support System (CDSS) for managing clinical
data of HCC patients, and an Artificial Intelligence (AI) module to be integrated with the
developed CDSS. We have conducted several clustering approaches to profile a HCC patients
database with heterogeneous and missing data. Our analysis led to the patients division into
two groups, G1 and G2, with statistically significant overall survivals. HCC stage C patients
were present in both groups, which suggested some heterogeneity between these patients. We
have also performed some classification studies in order to access group assignment for a new
patient presented to our CDSS.

In brief, we have developed a framework that allows cancer data management in the HCC
context. Our results show that it is possible to develop a CDSS for HCC patients which integ-
rates clinical data management with AI techniques, targeting the treatment of these patients
within the paradigms of PM. We have demonstrated that CDSSs allow the clinicians access to
the patients’ clinical data at all times, while supporting them in their daily decisions.

Keywords: Hepatocellular Carcinoma (HCC), Evidence-Based Medicine (EBM), Person-
alized Medicine (PM), Missing Data (MD), Imputation, Clinical Decision Support System
(CDSS), Profiling Prognostic Groups, Cancer Data, Clustering, Artificial Intelligence (AI),
clinical data

i





Resumo

O Cancro do f́ıgado é o sexto cancro mais frequentemente diagnosticado e a terceira causa de
morte por doenças relacionadas com cancro em todo o Mundo. O Carcinoma Hepatocelular
(CHC) está na origem de mais de 90% dos tumores primários do f́ıgado, sendo considerado um
problema à escala global.

As guidelines cĺınicas, suportadas pela Medicina Baseada na Evidência (MBE), procuram
auxiliar os cĺınicos no seu processo de tomada de decisão. No entanto, a prática cĺınica lida
frequentemente com o desfasamento entre a MBE e a desejada Medicina Personalizada (MP),
ajustada a um dado doente. De modo a poderem tomar decisões fundamentadas, os cĺınicos
necessitam de ter a informação dos doentes dispońıvel para consulta, a qualquer altura. Na
maioria dos contextos hospitalares, a informação cĺınica do doente está muitas vezes registada
em suporte f́ısico (papel), distribúıda por várias instalações. Isto torna os ficheiros igualmente
suscept́ıveis a dados em falta.

Neste trabalho, apresentamos um Sistema de Apoio à Decisão Cĺınica, para a gestão de dados
cĺınicos de doentes com CHC. É também apresentado um módulo de Inteligência Artificial a ser
integrado no sistema. Vários métodos de análise de agrupamentos foram utilizados de modo a
determinar grupos prognósticos com diferentes caracteŕısticas, considerando dados heterogéneos
e com valores em falta. A análise propiciou a divisão em dois grandes grupos, G1 e G2, com
sobrevivências globais estatisticamente significativas. Os nossos resultados sugerem igualmente
uma heterogeneidade entre os doentes no estádio avançado da doença. Foram ainda avaliados
alguns métodos de classificação, de modo a desenvolver modelos preditivos para a atribuição
do grupo mais correcto para um determinado doente.

Em resumo, este trabalho foca-se no desenvolvimento de uma ferramenta que alie a gestão
de dados cĺınicos a um ”motor inteligente” de inferência que permita gerar recomendações úteis
aos cĺınicos nas suas actividades diárias. O sistema integra algoritmos de Inteligência Artificial
que permitem orientar os tratamentos dos doentes no âmbito da Medicina Personalizada.

Palavras-Chave : Carcinoma Hepatocelular (CHC), Medicina Baseada na Evidência
(MBE), Medicina Personalizada (MP), Preenchimento de dados em falta, Sistema de Apoio
à Decisão Cĺınica (SADC), Personalização de Grupos Prognósticos, Métodos de Agrupamento,
Inteligência Artificial (IA), dados cĺınicos
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”In an era when today’s truths become tomorrow’s outdated concept, an indi-
vidual who is unable to gather pertinent information is almost as helpless as those
who are unable to read and write.”

Breivik and Gee, 1989
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Chapter 1

Introduction

This project was developed in the Department of Informatics Engineering (DEI) of the Faculty
of Sciences and Technology of the University of Coimbra, within the Biomedical Engineering
Master’s program. The work results from a collaboration with Coimbra Hospital and Universit-
ary Centre (CHUC), more specifically at the Service of Internal Medicine A. The aim of this
chapter is to provide an overview of our work. The first two sections focus on contextualization
and motivation for this work. Its objectives and planning are stated in the third and forth
sections. Finally, the thesis structure is presented.

1.1 Contextualization

For the past few years, we have been witnessing an exponential growth of cancer incidence
and related deaths worldwide. Solely in 2012 were reported about 14,1 millions of new cancer
cases and 8,2 millions of deaths, according to the statistics published by GLOBOCAN [1]. Liver
cancer is the sixth most frequently diagnosed cancer and the third cause of cancer-related deaths
worldwide, accounting for 7% of all cancers [2]. Hepatocellular Carcinoma (HCC) represents
more than 90% of primary liver cancers and is a major global health problem [3].

In the last decade, liver cancer has been of great concern to Portuguese League Against
Cancer, Portuguese Association for the Study of the Liver (APEF) and other entities of reference
in Portugal, as the Portuguese Association of Family Medicine (APMGF) and the Portuguese
Society of Hepatology (SPH). In 2010, SPH predicted an increasing number of liver cancer cases
by approximately 70% by the end of 2015, seeking a greater national awareness regarding liver
diseases [4]. Other several studies concerning this neoplasia have sought to define its dimension
in Portugal. According to the work of Tato Marinho et al. [5], HCC patients’ hospital admissions
tripled from 1993 to 2005, with the overall costs of admission rising proportionally. Despite
the significant growth of this disease in the last decades, the epidemiological data of HCC in
Portugal are scarce and scattered [6,7], complicating the planning of health promoting activities
such as vaccination and screening, but also compromising the patient’s healing process, caused
by the lack of information and case studies regarding this pathology.

1.2 Motivation

When treating patients, physicians are often faced with difficult decisions and considerable
uncertainty regarding their options. They rely on clinical guidelines, professional experi-
ence, knowledge, previous decisions and observed outcomes to guide their decisions. Clin-
ical guidelines are summarized consensus statements on best practice regarding a certain dis-
ease, and they intend to assist physicians and other healthcare professionals in the decision-
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making process, under the assumptions of Evidence-Based Medicine (EBM) [3]. However, these
guidelines are not limited to a ”cookbook” or a blind application of protocols. Guidelines have
to be adapted to each hospital’s regulations, team capacities, infrastructures and cost-benefit
strategies. Moreover, the application of EBM to an individual patient may turn out to be an
infeasible task. Clinical practice often deals with the mismatch between EBM and the desired
Personalized Medicine (PM), adjusted to a specific patient [8]. Given the biological variability
among patients, the applicability of a given therapeutic to a particular case must be evaluated
by the clinician. In order to make a reasoned decision, it is fundamental that the patients’
information is available for clinicians to consult at all times, which may not happen in most
cases.

In the majority of hospital contexts, the patient’s clinical information is dispersed in phys-
ical files [9], sometimes divided in multiple facilities, turning the access and share of existing
information into a problematic issue. Every day, a large amount of clinical information is gener-
ated. Laboratory results, imaging findings, pathological information and several other patient
variables evolving in time are managed by various people within the institutions, recorders in
different times, formats and types of files. Without a proper registration system, these data are
subjected to loss and inconsistency. This scenario also makes datasets compiled from patient’s
clinical information susceptible to missing data.

1.3 Objectives

In our work, we focus on the development of a web-based registration system to store relev-
ant clinical information of HCC patients of CHUC. Our system can be accessed through a
standard web browser and allows the clinician to access all patients information, inserting new
information, editing the existing records and search for particular fields or cases, if necessary.
Furthermore, a reporting system is included, in a way that it is possible to consult some aspects
regarding the demographic and epidemiological characterization, risk factors, stage of tumours
and survival analysis. However, we want this system to be more than a tool for data collection
and storage, a HCC recommendation system that supports medical decision, based on case-
based reasoning. Besides allowing the information retrieval and management, it should analyse
the complete patients’ clinical information and assess the best treatment choices that maximize
the overall survival of each patient. Our main goals can be described as follows:

• To develop a web-based application for managing clinical data of HCC patients: a Clinical
Decision Support System (CDSS). The system should be build so that data entry is
constrained to a set of rules, in order to avoid inconsistency in patient’s records and to
enable automatized patient’s data consultations. Thus, the entry fields are predefined,
default values are settled when applicable and some data structures have to respect some
constraints.

• To build a ”data mining” module, that should be integrated with the web-application.
This is intended to be an inference motor that can assist physicians in their daily activities,
by analysing the available patients’ information in the database and generating a set of
appropriate recommendations.
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1.4 Planning

In this section we present a visual comparison between the expected scheduling (the one defined
at the beginning of the thesis) and the real schedule (during the development of the thesis)
(Figure 1.1).

Figure 1.1: Project’s expected vs. real work plan.

As analysed in Figure 1.1, the schedule was composed by 11 tasks:

• Definition of the work to be developed: At this phase, it was important to define
the project’s objectives, methodologies, scheduling and work plan. During this task, we
started contacting CHUC’s team to understand what are their needs and expectations
towards the project. Getting in contact to their system, evaluating its flaws and suggest
new approaches were the most important objectives performed in this task.

• Study and analysis of the state of the art: In order to develop an up-to-dated clinical
information system, is was fundamental to study the state-of-the-art on recommendation
systems, whether they were developed for HCC in particular or similar diseases. This
task was mainly focused on the analysis of similar work, identifying the requisites that
met our objectives and exposing their advantages and disadvantages.
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• Definition and collection of clinical variables: For the purpose of establishing a
complete and appropriate registry for HCC patients, it was required to review the state-
of-the-art on the management of Hepatocellular Carcinoma, according to the current
evidence on the matter. The validation of the variables was performed through continu-
ous contact with CHUC’s clinicians, in order to guarantee the consistency of our set of
proposed variables. During this process, some variables were added to the initial set,
while others were discarded. The experience and expertise of clinicians was essential to
define our final set of features. The collection of data consisted in retrieving the patients’
physical files, currently available at CHUC’s Service of Internal Medicine, and gathering
each patient’s follow-up data. Each patient’s file was reviewed by five clinicians which
used a cross check validation in order to avoid error in the stored data. In February
also took place the project’s first intermediate presentation and a poster presentation at
Congresso Português de Hepatologia, in the 17th APEF’s Annual Reunion.

• Prototype development: In this task, the system’s requirements analysis was made
through successive meetings with CHUC’s team. We documented the list of our system’s
features and their priority. After gathering all the fundamental requirements, a prototype
was developed, successfully validated by CHUC’s team.

• Writing the intermediate report: The intermediate report was written, based on the
state-of-the-art regarding clinical decision support systems and management of Hepato-
cellular Carcinoma.

• Development of the clinical information system: After the validation of the pro-
totype, the next task was the development of the system. The final set of variables was
defined, as well as the system’s requirements including functional and non-functional re-
quirements, database structure and other aspects related to the system interface design.
In consequence, at this phase, the prototype was improved. These improvements in-
cluded new application and forms layout and a reporting tab, web access and database
implementation.

• Target definition: Target definition is an iterative process, in which we seek to identify
the most influential factors to patient’s personalization. At this point, the tumour stage,
the performed treatment and the overall survival can be seen as target variables. However,
the choice of target varies according to the data that is used. In our case, it may depend
on the clinicians’ needs, or timing of the analysis, i.e., risk factor analysis, first medical
evaluation or other follow-up data.

• Dealing with missing data: This was not initially covered in the original project
proposal. Patients’ data contained a lot of missing values, which meant that a literature
review of research works in the area of missing data was performed in order to overcome
the problem. According to this review, we’ve selected the most appropriate approaches
to overcome this issue regarding our dataset.

• Incorporation of Artificial Intelligence (AI) techniques into the system: This
task was not completely fulfilled. The data mining module was fully developed, but was
not integrated in the developed platform. The data collection process was very time
consuming, the missing data issues were not expected, and thus there wasn’t enough time
to rewrite the code from MATLAB to PHP or JavaScript. For that reason, we called this
task ”AI module development”, which consisted in a study of AI techniques to profile
HCC patients according to their characteristics, aiming to achieve the fittest survival
estimation function to each group. At the end of May took place the project’s second
intermediate presentation.
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• System Testing: This task consisted in the validation of the defined systems require-
ments.

• Writing the final report: The writing of the final report concludes our work.

There is a clear difference between the expected and real work plan. This was mainly due to
the delay in the data collection. Gradually changing the data affects our study. Some variables
were added or discarded after data examination (pre-processing, correlation between variables,
distance metrics). These frequent adjustments in the dataset made it even more susceptible
to missing data and erroneous values. This slowed down the data pre-processing and the
data importation to the system. Moreover, when different sets of patients are considered, the
conclusions from the previous analysis can not be accepted. This changes forced us to update
our study files and remake our analysis more often.

Updated patient’s info are a more problematic issue. If a new patient is inserted, we need
to add new information in the files. Or, if a patient is removed from the study, we simply
remove his information. However, if something changes in the previous entered patient’s file,
this requires a closer examination. The clinicians could have entered variables that previously
were missing, or delete them if they found out they had made a mistake in the previous registry.

As a final remark, in spite of all these issues, the majority of the project’s goals were
accomplished. The incorporation of the data mining module into the developed system was the
only goal that wasn’t met.

1.5 Document Structure

The remainder of this thesis is organized as follows: Chapter 2 presents some background
regarding Hepatocellular Carcinoma. Chapter 3 exposes a brief review of the literature, con-
sidering Decision Support Systems. Chapter 4 deals with some aspects of Missing Data theory
and Chapter 5 presents our software implementation and further details on our clinical decision
support system. Finally, Chapter 6 reports the achieved results and Chapter 7 presents the
conclusions and proposals for further studies.
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Chapter 2

Hepatocellular Carcinoma

In order to design an appropriate CDSS for HCC patients, it’s fundamental to understand some
underlying aspects of this pathology. In this chapter we’ll review some important concepts in
HCC characterization, in particular its etiology and risk factors, staging system and treatment
allocation.

The cell is the structural and functional unit of any living organism. The human body
consists of trillions of cells. All of them have a useful lifetime. They grow, divide themselves
and die when they become older or suffer irreparable structural damages. During the early
years of someone’s life, normal cells divide too quickly to allow the person to growth. However,
when the individual reaches adulthood, most cells divide only to replace worn-out or damaged
cells. Cancer arises when there is a proliferation of abnormal cells. The division process, that is
usually controlled, goes wrong. New cells are formed without the body’s need while the worn-
out cells do not die. However, not all tumours are necessarily cancer - there are malignant
and benign tumours. Only malignant tumours are cancer. Malignant tumours can invade
surrounding tissues and organs, and even free themselves from the primary tumour and enter
the bloodstream or lymphatic system, ”travelling” to other distant organs. In this case, we
are dealing with the process of metastasis: from the original cancer (primary tumour), new
tumours are formed in other organs - these are called secondary tumours.

The human body is composed of four types of tissues: connective, nervous, muscular and
epithelial. Epithelial tissue is widely distributed throughout the body because it is responsible
for coating the skin and internal organs. Each organ has its own epithelial tissue, often con-
sisting of more than one type of epithelial cell, each with a different function in the body. A
Carcinoma is a type of cancer that arises when an epithelial cell undergoes a malignant trans-
formation. Most cancer names derive from the origin of their primary tumour. Thus, when
the source of cancer is an epithelial cell cancer of the liver, known as hepatocyte, the cancer
is called hepatocellular carcinoma. HCC may have different growth patterns. Some malignant
tumours begin as a single tumours that grow larger and only spread to other parts of the liver
in later stages. A second pattern is described by the appearance of small cancerous nodules
scattered throughout the liver. This pattern is particularly common in patients with cirrhosis,
and the most frequently detected in Portugal.

2.1 Etiology and risk factors

Approximately 90% of HCCs are associated with a known underlying risk factor. The most
frequent factors include chronic viral hepatitis (types B and/or C), alcohol intake and aflatoxin
exposure. Worldwide, approximately 54% of cases are associated with Hepatitis B Virus (HBV)
and 31% with hepatitis C Virus (HCV), leaving around 15% associated with other causes (Table
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2.1).

Table 2.1: Geographical distribution of main risk factors for HCC worldwide. (Updated from [3],
according to the International Agency for Research on Cancer (IARC) 2012 data [1]).

Geographic area HVC(%) HBV(%) Alcohol(%) Others(%)
Europe 60-70 10-15 20 10
America 50-60 20 20 10 (NASH)1

Asia and Africa 20 70 10 10 (aflatoxin)

2.1.1 Hepatitis

In simple terms, the word ”hepatitis” means ”liver inflammation”. Hepatitis can be caused by
bacteria, viruses, but also by the consumption of toxic substances (e.g. alcohol, certain drugs),
and autoimmune diseases.

There are 5 main hepatitis viruses, referred to as types A, B, C, D and E. These viruses
can be transmitted via contaminated water or food (hepatitis A and E), through contact with
contaminated blood or infected body fluids (B, C and D) and also sexual contact (B and D).
There are also autoimmune hepatitis, which are due to a disorder of the immune system. The
body creates autoantibodies that attack the liver cells, rather than protecting them. However,
viral hepatitis is the most common cause of hepatitis, and have become a matter of great
concern in recent years due to its potential to become the largest current pandemic. Viral
hepatitis can be acute or chronic. Acute hepatitis mostly heal themselves, but some can evolve
to chronic hepatitis. In particular, hepatitis B and C are more likely to progress to chronic
stages. Hepatitis is considered to be chronic if it is not healed after 6 months. They can lead
to cirrhosis and, at later stages, to hepatocellular carcinoma.

2.1.1.1 Hepatitis B Virus (HBV)

HBV is usually transmitted via infected blood. It can be transmitted in medical and dental
procedures where there are flaws in the sterilization process, by sharing needles or dirty syringes,
unprotected intercourse and even saliva or other body fluids. HBV is only transmitted from
human to human and it’s more contagious than HIV or HCV.

Most individuals infected with HBV infection recover without realizing it. However, in less
than 10 % of infected individuals, the immune system is unable to deal with the virus and the
disease persists for more than 6 months, evolving to chronic hepatitis. Clinical manifestations
and outcomes of HBV infection depend on the amount of virus present in the body and the
strength of the body’s immune system. The degree of virus activity can be determined by
assessing the presence of certain viral components present in blood, the production of antibodies
in response to these viral components and other clinical markers. Thus, the HBV serological
tests involve the measurement of various antigens and specific antibodies of this virus. Antigens,
as well as HBV-DNA, are parts of the virus, a sign that an individual is infected and can infect
others. Antibodies are created by the immune system and their purpose is to ”fight the virus”.
The major serological markers for HBV are:

• Hepatitis B Surface Antigen (HBsAg): It is a part of the virus’ surface. It appears
between 2 and 6 months after infection and indicates that an individual has acute or

1Nonalcoholic Steatohepatitis
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chronic hepatitis B. If HBsAg disappear and antibodies are produced (negative HBsAg
and positive HBsAb), it is considered that the infection is healed.

• Hepatitis B Surface Antibody (HBsAb): It is created by the immune system with
the aim of destroying the virus. HBsAb is positive in the case of a ”cure” or in case of a
successful vaccination against HBV. The HBs antibodies also make an individual immune
to HBV, so that he/she can not be reinfected with the virus.

• HBV-DNA (or viral load): It measures the virus’s replication (virus production by the
disease) and how infectious an individual really is. Some forms of hepatitis B produce only
small quantities of virus in the body (low-replicative). Other forms of the disease produce
the virus in very large amounts (high-replicative chronic hepatitis B). Low-replicative
chronic hepatitis B is not usually associated with rapid disease progression. Most patients
have normal results in liver function tests.

• Hepatitis B Core Antibody (HBcAb): Similarly to HBsAb, HBcAb is produced by the
immune system but its main objective is to destroy the core of HBV. When an individual
is infected, HBcAb becomes positive and remains so forever, even if the infection is later
cured or becomes chronic. However, HBcAb does not appear in healthy and vaccinated
individuals. In brief, HBcAb allows to determine if the subject ever been (or is still)
infected with HBV.

• Hepatitis B e Antigen (HBeAg): HBeAg is an indirect marker of active virus replic-
ation. HBV-DNA is typically very high in case of a high-replicative hepatitis. However,
there is always a vulnerable part of the virus, HBeAg. The immune system can create
HBe antibodies to destroy it. This process does not qualify as a ”cure”, but means that
the virus is being controlled by the body and is no longer able to replicate successfully.

• Hepatitis B e-Antibody (HBeAb): This antibody is specialized in destroying HBeAg.
It can ”sabotage” the virus’ replication process and inhibit its growth during several years
or even decades. Again, this situation is not considered a cure, but a body’s control over
the virus.

2.1.1.2 Hepatitis C Virus (HCV)

Similarly to HBV, hepatitis C virus (HCV) is generally spread by direct or indirect blood contact
(parental transmission). It can also be spread by contaminated syringes or needles, as well as
through open wounds, sharing razors or other sharp objects and toothbrushes. This virus can
be transmitted in sexual contact, despite the risk of contracting the disease by infected subject’s
sexual partner is low. So far there is no record of transmissions through the skin (healthy) or
saliva. Unlike hepatitis B, there is no vaccine for hepatitis C. HCV is considered a major public
health problem by WHO 2, particularly dangerous for causing liver cirrhosis and hepatocellular
carcinoma [10].

In most cases (60%-80% of subjects), the body’s defences can not effectively resist the
virus, and hepatitis C becomes chronic. However, in the other 20%-40% of cases, HCV is
eradicated after 6 months from the onset of infection without treatment. HCV can be detected
in the blood directly via its genetic information (RNA) or indirectly through the presence of
antibodies formed by the patient’s white blood cells. There are three main markers for this
virus: HCV-RNA, HCV Core Antigen and HCV Antibody [12].

• HCV Antibody (Anti-HCV): Determines if the person was ever exposed to HCV.

2World Health Organization
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• HCV-RNA: HCV-RNA is a viral ribonucleic acid (RNA) which is created in the blood.
Its presence is a reliable marker of active replication of HCV. In other words, it determines
the amount of circulating virus in the body at the time of the test.

• HCV Core Antigen (HCVAg): Detects the presence or absence of the virus.

2.1.2 Cirrhosis

In almost every study about hepatocellular carcinoma, cirrhosis is mentioned as its major risk
factor. Overall, it is estimated that one third of patients with cirrhosis will develop HCC during
their life time [3]. In chronic infections, hepatitis viruses increasingly damage the liver cells.
The immune system responds to infection and white blood cells migrate to liver tissue, ensuring
that dead liver cells are destroyed. Nevertheless, most of times they are unable to completely
destroy the virus. Thus, dead liver cells keep accumulating and are later replaced by scar
tissue. The spread of such tissue in the liver causes liver fibrosis and later on liver cirrhosis.
This is quite a gradual process, but as more cells are damaged and die, with the formation of
increasingly portions of scar tissue, the liver loses its ability to function normally.

There are several possible causes for cirrhosis. It can be induced by viral chronic hepat-
itis, abusive alcohol consumption, hereditary metabolic diseases such as hemochromatosis or
Wilson’s disease, and by Non-alcoholic fatty liver disease (NAFLD). NAFLD is a condition in
which people who consume little or no alcohol develop a fatty liver, very common in obese
people. NAFLD can be divided in the following stages:

Simple fatty liver (steatosis): ”Steatosis” means ”fatty liver”. In this phase, excess fat
build up in the liver cells, but is considered harmless. The accumulation of fat is relative
small and does not lead to liver inflammation.

Non-alcoholic steatohepatitis (NASH): NASH is a more agressive form of NAFLD, where
the liver has become inflamed, which suggests that the liver cells are being damaged and
that some are dying. This stage is much more concerning that steatosis, since 20% of
patients with NASH progress to cirrhosis.

Fibrosis: In this stage, persistent inflammation of the liver results in the generation of fibrous
scar tissue around the liver cells and blood vessels. The scar tissue replaces some of the
healthy liver tissue, though most of liver cells remain functioning normally.

Cirrhosis: This is the more severe stage, in which great parts of the liver present fibrosis. The
liver shrinks and becomes lumpy, since regenerative nodules are formed to attempt to
repair the damaged tissue.

The Child-Pugh (CP) score is used to assess the prognostic of chronic liver disease, such as
cirrhosis. The score employs five clinical measures of liver disease : Total Bilirubin, Albumin,
Encephalopathy, Ascites and Prothrombin Time or International Normalized Ratio (INR). Each
one is scored from 1 to 3 points, with 3 indicating the most severe condition, as can can be
seen in Table 2.2.
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Table 2.2: Child-Pugh Classification for severity of cirrhosis.

Clinical and Lab Criteria 1 point 2 points 3 points
Encephalopathy None Grade I/II Grade III/IV
Ascites None Moderate Severe
Bilirubin (mg/dL) < 2 2-3 > 3
Albumin (g/dL) > 3,5 2,8-3,5 < 2,8
Prothrombin time < 4 4-6 > 6
INR < 1,7 1,7-2,3 > 2,3

Bilirubin is the main product resulting of the destruction by the spleen of worn out or
injured red blood cells. High levels of bilirubin in the blood might indicate the presence of
some pathology which causes red blood cells destruction. On the other hand, billirubin may be
in high levels because the liver is unable to eliminate it, causing its accumulation in the blood.
Thus, bilirubin allows an evaluation of the overall status of liver function.

Albumin is the most abundant protein in the blood plasma, produced exclusively in the liver
and extremely sensitive to liver disease. Its main function is to produce coagulation factors and
its concentration decreases when the liver is injured. The analysis of the blood’s coagulation
level is made by assessing the time of prothrombin and is presented through a standardized
measure known as INR (International Normalized Ratio). Basically, INR measures the speed
of a particular pathway of coagulation, comparing it to the normal speed. If the INR is higher,
it means that the blood is taking longer to clot than normal, and the synthesis of coagulation
factors is being hindered. This is indicative of liver injury.

Ascites is the accumulation of fluid in the abdomen. This fluid may have different com-
positions, such as lymph, bile, pancreatic juice and others. At the context of liver diseases,
ascites is the overflow of blood plasma to the interior of the abdominal cavity and indicates
that the disease is advanced and related to the onset of other complications such as cirrhosis,
the esophageal varices’s bleeding or the encephalopathy.

Hepatic encephalopathy is a condition in which the brain function deteriorates due to the
increase of toxic substances in the blood that should have been eliminated in the liver in a
normal situation. Substances are absorbed across the intestine and they pass to the blood
through the liver where the toxic ones are eliminated. In hepatic encephalopathy, this does not
happen due to a decrease of the liver function. Thus, these toxic substances may reach the
brain and affect its operation.

The evaluation of liver disease is made by adding the score of each criterion. According to
this sum, the disease is assigned to one of three different classes: A (least severe liver disease),
B (moderately severe liver disease), and C (most severe liver disease).

2.2 Staging System

Staging systems in HCC define the outcome prediction and treatment assignment, based in
the main HCC prognostic variables: tumour stage (defined by number and size of the nodules,
presence of vascular invasion, extrahepatic spread), liver function (defined by Child Pugh’s class,
bilirubin, albumin, portal hypertension, ascites) and performance status (general health-status,
defined by ECOG 3 classification and presence of symptoms). The recommended staging system
for HCC patients is BCLC 4 staging system [3]. Other systems applied alone or in combination

3Eastern Cooperative Oncology Group
4Barcelona-Clinic Liver Cancer
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with BCLC are not recommended in clinical practice. The BCLC classification divides HCC
patients in 5 stages (0, A, B, C and D), according to Performance Status (PS), Child-Pugh class,
number and size of HCC nodules. The Performance Status evaluates how the disease affects
the patient’s daily activities (Table 2.3). Accordingly, HCC patients are staged as follows:

Very early HCC (stage 0) is defined as the presence of a single tumour < 2 cm of diameter
without vascular invasion in patients with good health status (PS-0) and well-preserver
liver function (Child-Pugh A class). Those who behave as carcinoma in situ are also
defined as stage 0.

Early HCC (stage A) is defined in patients presenting single tumours >2 cm or nodules <3
cm of diameter, PS-0 and Child-Pugh class A or B.

Intermediate HCC (stage B) is defined in patients presenting multinodular asymptomatic
tumours without an invasive pattern.

Advanced HCC (stage C) is present in patients with cancer related-symptoms (sympto-
matic tumours, PS 1-2), macrovascular invasion (either segmental or portal invasion) or
extrahepatic spread (lymph node involvement or metastasis). The outcome varies accord-
ing to the liver functional status (Child-Pugh A or B).

End-Stage HCC (stage D) patients have tutors leading to a very poor performance status
(PS 3-4), similarly to Child-Pugh C patients.

Table 2.3: Performance Status Classification.

Performance Status Evaluation
Grade 0: Fully active, able to carry on all pre-disease performance without restric-
tion.
Grade 1: Restricted in physically strenuous activity but ambulatory and able to
carry out work of light or sedentary nature, e.g, light house work, office work.
Grade 2: Ambulatory and capable of all self-care but unable to carry out any work
activities. Up and about more than 50% of waking hours.
Grade 3: Capable of only limited self-care, confined to bed or chair more than 50%
of waking hours.
Grade 4: Completely disabled. Cannot carry on any self-care. Totally confined to
bed or chair.
Grade 5: Dead.

2.3 Treatment Allocation

Treatment allocation is based on BCLC allocation system. Recommendations in terms of
selection of different treatment strategies are based on evidence-based data in circumstances
where all potential efficacious interventions are available.

2.3.1 Resection

Resection is the first-line treatment option for patients with solitary tumours and very well
preserved liver function, defined as normal bilirubin with either hepatic venous pressure gradient
≤ 10 mmHg or platelet count ≥ 100 000. Tumour recurrence is the major complication of
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resection and influences the subsequent therapy allocation and outcome. In order to select
the ideal candidates for resection, the assessment of liver function has moved from the gross
determination of Child-Pugh class to a more sophisticated measurement of indocyanine green
retention rate at 15 min (ICG15) or hepatic venous pressure gradient (HVPG) ≥ 10 mmHg as a
direct measurement of relevant portal hypertension. Surrogate measures of portal hypertension
include platelet count below 100 000 mm−3, and it has been confirmed as an independent
predictor of survival in resected HCC cases [3]. Anatomical resections are recommended and
intraoperative US enables de detection of nodules between 0,5 and 1 cm and is considered
the standard of care for discarding the presence of additional nodules and guide anatomical
resections. The tumour extension, as said before, should be evaluated using last generation
Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. Considering
the available information, the EASL-EORTC 5 panel does not recommend adjuvant interferon
due to lack of significant patient number and partially conflicting data.

2.3.2 Liver Transplantation

Considered for patients with single tumours less than 5 cm and advanced liver dysfunction or
tumours consisting in less than 3 nodules ≤ 3 cm (Milan criteria [3]) not suitable for resection.
Patients within the Milan criteria while on the waiting list are treated with adjuvant therapies
to prevent tumour progression. It is recommended to treat patients waiting for transplant
with local ablation, and as a second choice with chemoembolization when waiting times are
estimated to exceed 6 months. Extension of tumour limit criteria for liver transplantation
has not been established. There is no clear upper limit for eligibility of downstaging. LDLT
(Living Donor Liver Transplant) has associated risks of death and life-threatening complications
for both donor and recipient and must be restricted to centers of excellence in hepatic surgery
and transplantation. The policy adopted by the panel is that LDLT can be offered to patients
with HCC if the waiting list exceeds 7 months.

2.3.3 Radiofrequency Ablation and Percutaneous Alcohol Injection

Local ablation with radiofrequency (RFA) or percutaneous ethanol injection (PEI) is considered
for patients with BCLC 0-A tumours not suitable for surgery. The prime technique used
is PEI, which induces coagulative necrosis of the lesion as a result of cellular dehydration,
protein denaturation and chemical occlusion of small tumour vessels. RFA is the most widely
assessed alternative to PEI for local ablation of HCC. The energy generated by RF ablation
induces coagulative necrosis of the tumour producing a safety ring in the peritumoural tissue,
which might eliminate small-undetected satellites. In tumours smaller than 5 cm, RFA is
recommended as the main ablative therapy. PEI is recommended in cases where RFA is not
feasible. In tumours ≤ 2 cm, BCLC 0, both techniques achieve complete responses in more
than 90% of cases. Child-Pugh A patients are ideal candidates to RFA, but, at this point,
there are no data to support RFA as a replacement of resection as the first-line treatment for
patients with early HCC (BCLC A) stage.

2.3.4 Chemoembolization and transcatheter therapies

This procedure is recommended for patients with BCLC stage B, multinodular asymptomatic
tumours without vascular invasion or extra hepatic spread. It is discouraged in patients with
decompensated liver disease. Chemoembolization (TACE) is the most widely used primary

5European Association for the Study of the Liver - European Organisation for Research and Treatment of
Cancer
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treatment for unresectable HCC and the recommended first-line-therapy for patients at inter-
mediate state of the disease.

2.3.5 Systemic therapies

Sorafenib [13] is the standard systemic therapy for HCC. It is indicated for patients with well-
preserved liver function (Child-Pugh A) and with advanced tumours (BCLC C). There are no
clinical or molecular biomarkers to identify the best response to Sorafenib, and there is no
second-line treatment for patients with intolerance or failure to Sorafenib. In this setting, best
supportive care or the inclusion in clinical trials is recommended. Patients at BCLC D should
receive palliative support, but should not be considered for participating in clinical trials. HCC
is recognized as among the most chemo-resistance tumour types, and Sorafenib emerged as the
first effective treatment in HCC. It Is currently the standard-of-care for patients with advanced
tumours. Other therapies, including chemotherapy, hormonal compounds, immunotherapy and
several others showed inconclusive or negative results.

Figure 2.1 sumarizes the BCLC classification system and therapy allocation described in
the previous sections.

Figure 2.1: BCLC staging system and treatment strategy resume [3].

2.4 Conclusions

The main purpose of this chapter is to summarize the most recent medical evidence regarding
HCC management. The study of HCC characterization, in terms of clinical variables, staging
and allocation systems allowed us to define the requirements for the development of our CDSS,
analysed in Chapter 5. Furthermore, in order to evaluate the results of the applied Artificial



2.4. CONCLUSIONS 15

Intelligence techniques (Chapter 6), one must be familiarized with the aspects of HCC discussed
in this chapter.
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Chapter 3

Clinical Decision Support Systems

In 1969, Goertzel introduced the concept of a Clinical Decision Support System (CDSS) as
”a tool that assists in patient’s clinical care, facilitating the acquisition of data and decision-
making” [14]. Over the past four decades, many definitions have arisen. Musen defined a
CDSS as ”any software that processes information relating to a particular medical condition and
produces inferences in the form of outputs that assist clinicians in their decision-making process,
being considered a smart program on the part of their users” [15]. Miller and Geissbuher
described a CDSS as ”an algorithm to assist the clinician in one or more steps of the diagnostic
process” [16]. Sim et al. consider that a CDSS ”is a software developed with the aim of
directly supporting the clinician in decision-making, in which the individual characteristics of a
patient are compared with a computerized knowledge base so that it can make assessments and
generate specific recommendations for that particular case, presenting them to the clinician or
to the patient, as a basis for their decisions” [17].

Each one of these definitions reflect its authors’ points of view, and thus can generate
some discussion. However, regardless the definition that one considers more adequate, it is
undisputed that all authors acknowledge the potential of such systems to provide benefits in
healthcare quality and patients’ healing process outcomes [18]. In our work, we will adopt Sim’s
definition. However, our system does not intend to generate recommendations to be presented
to the patient. Our system intends to support only the clinician, in his daily activities.

3.1 Types of Clinical Decision Support Systems

Metzger et al. consider that CDSSs can be described according to their structure, behaviour
and accessibility [19]. Regarding their structure, they differ in the timing at which they provide
decision support: before, during or after the decision has been made. Concerning their beha-
viour, they are considered active or passive, according if the CDSS actively generates alerts
and other warnings or only responds to the clinical inputs, respectively. According to their ac-
cessibility, they can provide general or specific/specialized information. Another categorization
scheme of CDSSs is its differentiation into knowledge-based systems or non-knowledge-based
systems. The majority of CDSSs are knowledge-based systems, composed essentially of three
components: a knowledge base, the inference structure and the communication procedure [21].
The CDSSs lacking the first component (the knowledge base) are called ”non-knowledge-based”.

3.1.1 Knowledge-Based Systems

The knowledge-based systems are in some way similar to human reasoning. The knowledge base
consists of a wide range of information about a particular domain, structured to be efficiently
processed by the system. There are several schemes of information representation. Logical
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representation, where information is presented in the form of ”if-then” statements, is the most
frequently used and described in the literature. The efficiency of a CDSS depends on the quality
of its knowledge base. The way it is exploited towards the development of rules for decision
support is a major factor influencing the success of the recommendation system [15].

The ”formulas” that combine these rules or associations constitute the second component
of knowledge-based systems, the structure of inference. Essentially, these formulas involve the
application of Artificial Intelligence (IA) techniques, able to analyse the existing information in
the knowledge base and form new conclusions regarding a particular patient [21]. The inference
mechanisms mentioned in the literature include the following [19]:

• Rule-based reasoning: These systems are based in ”if-then” statements, which are
seen as ”standards”. The inference engine seeks to associate the data under study with
those known ”standards”. Rule-based systems ”translate” the physicians’ knowledge into
expressions that can be evaluated as ”rules”. Therefore, they are often called ”evidence-
based systems” [22]. When acquired a considerable set of rules that support the knowledge
base, the data under study are evaluated according to those rules (or their combination)
until a conclusion is achieved. These type of systems are used for storing a large amount
of information. However, its main disadvantage lies in the difficulty to translate the
clinicians’ experience and knowledge in simple and concrete rules.

• Case-based reasoning: These systems are mainly developed when it’s not possible
to model medical knowledge through formal methods of representation (such as Arden
Syntax [20], for instance). The success of this approach is linked to the quality of the
similarity metrics used to evaluate the existing cases and the efficiency of the methods
chosen to discover and associate similar cases. Case-based reasoning are mostly used
for subgroup analysis, and one of its great advantages is that analysis based in similar
cases often produce more reliable and persuasive findings than the evidence-base medicine
results. However, the assessment of similarity between cases may not prove to be a trivial
process.

• Model-based reasoning: This method uses human pathophysiological models to define
the dynamics of the body’s biological processes. It is a promising and useful concept for
application in CDSSs, frequently called ”Patient Specific Modeling” [21]. The expected
behaviour of a certain case according to these models is compared to the manifested be-
haviour. It is assumed that if the model is properly formulated, then the discrepancies
between the predicted behaviour and the observed behaviour will not be significant. How-
ever, the major difficulty with this implementation arises when the validity of the model
is not guaranteed. The more complex the system is, the more challenging it will be to
design a model that accurately describes it [23].

• Bayesian reasoning: Bayesian Decision Theory is the core of these systems, establishing
probabilistic relationships between the knowledge base’s variables, for instance, symptoms
and diseases, treatments and overall survival or medications and complications. These
systems are based on Statistical Bayes classification, where a pattern is assigned to the
most probable class, that is, the class with the maximum a posteriori probability. A pos-
teriori probabilities are determined according to a priori probabilities, class conditional
probabilities and Bayes rule. It is very useful to traduce disease progression over time or
the relation between various diseases, assuming a cause-effect relationship between the
variables under study. The main obstacle to its implementation is precisely the diffi-
culty in specifying the cause, the effect and their relation in the clinical context, given its
complexity [21].
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• Heuristic Reasoning: Heuristics systems include statistical measures, and are used
when there is no knowledge and/or computational resources to produce a ”perfect an-
swer”. Heuristics methods reduce the problem’s complexity; however, by definition, do
not guarantee that the optimal solution is achieved. Heuristic methods are exploratory
algorithms that seek to solve the problem, taking as a starting point a plausible solution
and iterating through successive approximations aimed at an optimal solution. Com-
monly, the ”best possible” solution is found, though not the ”optimal solution”. This
approach may suggest a certain subjectivity or lack of precision. However, this is not
necessarily a disadvantage, but a similar feature to human intelligence: we often use our
personal experience to find solutions for everyday problems.

• Semantic Networks: A semantic network is a graphical way of representing knowledge,
where the domain’s concepts in question are represented by a set of ”nodes” connected
to each other through a set of arcs that describe the relationships between the existing
nodes. The application of semantic networks in clinical inference is limited, since medical
knowledge itself involves a plurality of concepts, making it particularly difficult to define
a formal semantic framework able to translate it [15].

Finally, the communication mechanism is how information is entered into the system and the
results (outputs) are returned to the user. In ”stand-alone” systems, this information is often
manually entered by the clinician. When CDSSs are integrated to other clinical management
systems, the patient’s information is incorporated in its electronic record, thus, containing data
from several different services: laboratory, pharmacy or imaging. The output is then given to
the physician in the form of recommendations and alerts [19].

3.1.2 Non-knowledge-based systems

Non-knowledge-based systems rely on machine learning techniques to produce useful inferences
for decision making. Machine Learning is a branch of Artificial Intelligence that concerns the
study and construction of systems that can learn from data. The system can learn from its
past experiences and recognize patterns in clinical data. Artificial Neural Networks (ANN)
and Genetic Algorithms (GA) are the most widely used approaches in the construction of such
systems [19].

Neural networks are mathematical-computational models inspired by neuronal cells’ func-
tioning, simulating human reasoning, since they are a typical example of ”example-based learn-
ing”. Indeed, the structural units of ANN are called ”neurons”. A generic ANN model is
composed by three layers: the input, output and processing layer (or hidden-layer). The in-
put layer receives the data, while the output layer communicates the result. The hidden-layer
is responsible for data processing and results’ calculation. This type of structure has some
similarities to knowledge-based systems, but in this case the knowledge-base is not derived
from scientific literature nor clinical experience. ANN analyse existing patterns in the patient’s
information and derive associations between his input variables (symptoms, risk factors) and
his output variables, for instance, his diagnosis or appropriate treatment strategy [22]. This
is how the system ”learns by example”. The available information is studied and inferences
are made about the most correct output for each input. These inferences are compared to the
correct output (the targets, i.e., the actual results) and, based on the conclusion from these
comparison, the system resets the associations between the input data and the previously de-
termined output. This process continues iteratively until the correct result is achieved. Then,
the system memorizes the model of such association between inputs and outputs in order to
classify new cases. This iterative process is known as ”training”. The great advantage of this
method is that it avoid the construction of ”if-then” rules, and its definition by experts: as
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discussed, in medical contexts, these cause-effect rules may not be clearly defined a priori.
Furthermore, ANN can more easily deal with missing data, because they can infer their values
from the remaining set of complete data [22]. They also do not need a very large set of data to
produce estimates, though the larger the ”training” set is, the more accurate the results are.
On the other hand, the training phase can be time consuming. However, the main disadvant-
age of this type of inference is its model’s interpretation. This technique is often referred as
a ”black-box” inference model [15, 23], since the associations between data are complex and
difficult to explain. For that reason, the use of these systems in the medical context is limited.
Clinicians have the need to understand the mechanisms behind the system’s recommendations.
When these mechanisms become ”less logical” and more complex, their confidence in system’s
responses considerably decreases [23].

GA are similar to ANN to the extent that derive their conclusions from patient’s past
information. GA are based in Darwin’s Evolution’s Theory, which explains the evolution of
species through natural selection. As species evolve in order to adapt to their environment,
GA also ”reproduce” in various recombination in order to achieve the combination that best
fits the data. When there is no specific knowledge about the domain under study, several sets
of solutions are evaluated. The best sets (those that best fit the data) are then recombined
(”mutated”) to form the next set of possible solutions to be evaluated. The process continues
iteratively until the optimal solution is reached. A ”fitness function” determines which solutions
should be kept and which should be eliminated [19]. The major difficulty here lies in the
definition of ”fitness”, that is, what is considered a ”good/poor” adjustment to data [15].

3.1.3 Clinical Decision Support System inference mechanism

As one can conclude from the above review, there is a wide range of available inference tech-
niques for CDSSs development. Different inference engines have different advantages and disad-
vantages, and the appropriate choice of method (or combination of methods) for the implement-
ation of an efficient inference engine, adequate to its application domain, is a delicate task. The
main objective of a CDSS’s inference engine is to analyse the data and ”translate them” into
useful conclusions. This process of data analysis is called ”Data Mining”. In literature, there
are various applications of the discussed methods and data mining algorithms to distinct areas
of Medicine [24]. In most cases, while studying a certain disease, various inference methods are
used and their results compared. As an example, Soni et al. [25] compare Bayesian networks,
case-based methods (Clustering algorithms) and rule-based methods (Decision Trees) and ANN
applied to cardiovascular diseases diagnosis.

The selection of CDSS’s type and a proper inference mechanism is dependent on the context
of its application. Choosing a particular approach depends on the problem’s domain, and on
plenty other factors such as the cost of the system, the desired degree of efficiency and sensitivity
and the amount of available data [22]. According to the ”No Free Lunch Theorem” [26], no
classification method is superior to all others in every context, i.e., there is no global ”best
classifier”, superior to all others, whatever is the domain application under study. The selection
of a CDSS inference model follows the ”No Free Lunch Theorem”, since the model itself is
based on data mining techniques. This is the reason why various authors of the review articles
mentioned above [18,19,22–24] suggest the evaluation of several inference techniques regarding
the problem under consideration, in order to proceed with the selection of the most appropriate
one. In conclusion, it’s not possible to determine a priori the ”greatest” CDSS type and
inference model. This choice requires a thorough study of the domain in which the system is
intended to operate, the type of data that will be analysed and the sort of recommendations
that are intended to be generated.
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3.2 Clinical Decision Support Systems in Healthcare

Information systems (ISs) in healthcare have been taking an increasing significance in the
support provided to health professionals and patients themselves. In fact, the development
of computerized systems for clinical data representation and management was instrumental in
assisting the progress of clinical practice in recent decades [27]. Among the various applications
of Information Technology to Healthcare are Clinical Information Systems (CISs) and Clinical
Decision Support Systems (CDSSs).

The design and development of CISs is a key area of Medical Informatics and its main
purpose is to improve the quality of health services, seeking to fulfil objectives such as allowing
access to patient’s information in all health facilities; return mechanisms for distributing and
sharing that information among different health professionals; standardize clinical procedures
and patient management services and also provide contextualized medical information to the
patient himself, giving them personalized information about his health profile, clinical status
and history [28]. Regarding the above objectives, a CIS should meet a set of requirements,
through the registration and characterization of patients and their clinical information manip-
ulation: management of medical consultations, integration of laboratory data in the context of
diagnosis and therapy and statistical data of interest.

According to the World Health Organization (WHO), the amount of information in health-
care doubles every three years, affecting the clinical practice in various forms, with the emer-
gence of new methods of diagnosis and therapy, innovations in the fields of molecular biology,
genetics or chemistry and further studies on the effect of various drugs [29]. From this context
arises the main motivation for the use of CDSSs. Taking advantage of computational resources,
these systems have the ability to incorporate and represent an enormous amount of medical
information and code selection strategies that produce useful responses to the process of de-
cision making. According to this, a CDSS can be seen as a ”information subsystem”, associated
with different medical specialities. They are developed in order to assist health professionals
to make decisions that directly impact the patient’s diagnosis or the management of processes
that lead to diagnosis and thus their application, together with patient’s contextual data, can
help reduce the uncertainty associated to some clinical decisions. For instance, they may assist
the physician in selecting the most suitable lab exam to validate a diagnosis, propose diagnostic
or therapeutic strategies regarding a certain clinical condition and support the choice of the
best treatment in order to control the progression of the disease, preventing unwanted drug
interactions.

Health services involve a number of entities that need to share information to provide the
best possible care to the patient. When an electronic record (EPR) is used to characterize
the patient, it’s necessary to consider the information flow related to the patient’s follow-up.
The process of decision making depends largely on how the patient’s EPR is structured and
properly updated. His medical record is of fundamental importance in the various steps of
a medical decision, since that it consists in the knowledge base with which these actions will
be taken. Thus, clinical activities, such as consultations, records of observations, diagnostic
data, therapies and previous taken decisions must be duly registered in the CDSS in order to
automate certain processes and define (and redefine) the system’s learning and decision rules.
Thus, we consider that there are two fundamental aspects in the development of a CDSS. On
one hand, a good CIS that can collect, store and manage the access to healthcare information
and patient’s data - the knowledge base. On the other, the ”introduction of intelligence” to the
process, applying the knowledge base given by the CIS to build predictive models and decision
rules to assist the clinician - the inference mechanism. In the following subsections, we will
present some recent CISs and CDSSs used across several areas of Medicine.
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3.2.1 Clinical Information Systems for sharing and managing clin-
ical data

3.2.1.1 Caisis: Cancer Data Management

Caisis [30] is a web-application that combines cancer research with patient care (Figure 3.1).
The main objective of this project, developed by BioDigital in 2002, is to improve the quality
of cancer data so that they can be used in cancer research, while providing, in an organized
and well structured way, every patient’s history and relevant information, so that they can be
managed by health professionals. Currently, Caisis is an academic application, mostly used as
a tool to support research: patients’ medical records are available for consultation and edition
by the clinician, but they’re part of a larger, standardized and ”noiseless” dataset.

Figure 3.1: Caisis Interface [30].

Caisis is open-source, runs on .NET Framework and is mostly written in C #, HTML and
JavaScript. The requirements for the server include Windows Server 2000 or later, IIS 6 or later
and the Microsoft .NET Framework 3.5 or 4.0. The used database is Microsoft’s SQL Server
2008++. The client needs only to install one of Caisis current version’s supported browsers:
Internet Explorer 7+, Firefox, Safari 3+, or Chrome 12 +. Caisis is free to download and install
under an open-source user license, referred to as the General Public License (GPL). GPL allows
the user to download the application files and all source code, modify and distribute it, provided
that such changes are shared with BioDigital and redistributed with the GPL.

The main features of this system are resumed in Table 3.1:



3.2. CLINICAL DECISION SUPPORT SYSTEMS IN HEALTHCARE 23

Table 3.1: Main Caisis features [30].

Patient Lists
Allows the user to browse by patient groups (by last name, current status, referring physician) and
find a particular patient.

Patient Data
The user can enter and view the patient’s clinical information.

Forms
Printing paper forms, blank or filled, with patient’s information.

E-forms
Electronic forms allow computerized data entry.

Data Analysis
Enables data exportation (Access or Excel format) by type of illness, level of privacy or objective.
Also allows the user to select datasets for research and access to reports, clinical trials and other
studies already conducted.

3.2.1.2 DOCgastro: A Clinical Information System for Gastroenterology

DOCgastro is currently implemented in North Lisbon Hospital Centre (NLHC). DOCgastro
(Figure 3.2) is an Integrated Gastroenterology System, developed by Mobilware 1. It was
specially designed for Gastroenterology for gathering and storing information concerning this
speciality exams. Allows video or photography capture during the exam, image editing and
archiving the patient’s record and its integration in the procedure reports. Such reports can
be set previously in the system, in text or timely topics and changed if necessary. In addition
to clinical information, DOCgastro ensures a complete record of the proceedings and consum-
ables for proper accounting of resources. The application also allows the user to query specific
tables for clinical procedure, conduct research and statistics on the database, the scheduling of
examinations and their billing. DOCgastro can also be integrated with other hospital informa-
tion systems such as hospital management systems, laboratory and pharmacy applications and
Picture Archiving and Communication System (PACS).

3.2.2 Clinical Decision Support Systems and Nomograms used in
Healthcare

3.2.2.1 MyRisk: Support System for Cancer Diagnosis

MyRisk prototype [32], developed at the Polytechnic Institute of Castelo Branco, Portugal, is
a CDSS used to calculate cancer risk for each individual patient. Its graphical interface (Figure
3.3) is very intuitive and simple, where the user can get expert information about patholo-
gical characteristics, risk factors and behaviours associated with certain cancers, namely breast
cancer, skin cancer and uterine cancer. The application also provides specialized warnings,

1www.mobilware.com
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(a) (b)

Figure 3.2: DOCgastro’s Interface for exam registration (a) and patient’s information manage-
ment (b).

according to each disease and type of risk, giving some information about necessary procedures
for appointments or recommendations to adopt.

Figure 3.3: MyRisk Interface [32].

The application has three access levels: two for users (registered or unregistered) and a
third for administrators and health professionals (physicians). The system’s functionalities are
described in Table 3.2.
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Table 3.2: MyRisk main features [32].

Unregistered Users Consultation of useful information concerning the three types of cancer;
To take advantage of other features, the user must be registered;

Registered Users Personal Information Management;
Calculation of cancer risk;
Book appointments;
Query answered questionnaires;

Physicians Consultation of appointments’ schedules;
Definition of pathologies evaluation’s parameters;
Appointments’ management;
Conducted diagnosis consultation;
Definition of cancer risk degree that implies an appointment’s suggestion;

Administrators Users Management
Management of information and useful tips about cancer;
Questionnaires management;

The calculation of cancer risk is based on filling a form prepared for this purpose. Each form
(Figures 3.4 and 3.5) is composed of a set of questions. These issues can be changed depending
on the considerations of the physician face to advances in investigations of the different types
of cancer. Each question is associated to a 0-100% percentage, depending on the totality of
survey questions and the degree of importance given by health professionals to each one of them.
Likewise, for each question, the answers have an associated percentage that depends also on
the number of possible responses and their degree of importance. Based on the percentage of
each question and response, the cancer risk is calculated: Low (i), Medium (ii) and High (iii).
The physician can change the percentages corresponding to each level and also the minimum
percentage suggestive of an appointment.

(a) (b)

Figure 3.4: Example of a form (a) and cancer risk percentage calculation (b) [32].

This prototype was developed using exclusively open-source tools, namely PHP and MySQL
for the business logic and data storage, respectively, and HTML, CSS and JavaScript to design
the user interface.
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(a) (b)

Figure 3.5: Appointment’s form (a) and definition of cancer risk percentages (b) [32].

3.2.2.2 CancerNomograms.com

The CancerNomograms.com [33] is a project developed by Fox Chase Cancer Center, which
currently includes nomograms’ web-applications for kidney, prostate and bladder cancer (Figure
3.6). The implemented predictive models were developed based on published scientific articles
in prestigious medical journals. The criteria used for selecting the used algorithms was an Area
Under the Curve (AUC) of 0.7 or higher.

Figure 3.6: CancerNomograms interface [33].

The application provides two access levels: for physicians and patients. However, the avail-
able information to each is exactly the same, the only thing that changes is the forms submis-
sion’s format. For the physician, the menus (Figure 3.7a) are written in a more formal way,
with acronyms and familiar clinical concepts. For the patient, the menus (Figure 3.7b) are
adapted so that the actions become intuitive and understandable to a layperson in the clinical
context. In most cases, the forms are presented through suggestive questions, in a way that is
easier for the patient to select the information he wants, choosing the questionnaire for which
he wants to know the results, or, in other words, ”choosing the question that he wants to see
answered.”
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(a) (b)

Figure 3.7: CancerNomograms - doctor’s menu (a) and patient’s menu (b) for kidney cancer
nomograms (Kidney Cancer Predictive Tools) [33].

The variables’ collection to evaluate the nomogram is done using a simple form (Figure 3.8).
The answers to each question are predefined, so filling out the form is done by selecting the
appropriate answer to each patient’s condition. The risk calculation result is then returned on
a scale of 0 to 100%.

Figure 3.8: CancerNomograms - Form and results for prostate cancer risk [33].

3.2.2.3 Nomogram.org

Nomogram.org [34], developed by Cancer Prognostics and Health Outcomes Unit, University
of Montreal, offers nomograms to assist clinicians and patients based on personalized inform-
ation. Its main objective is to facilitate the process of decision making by both assisting the
physician in choosing the best diagnostic and therapeutic methods and offering the patient
reliable information, enabling him to form a reasoned opinion about his treatment’s options.
Up to date, there are nomograms for prostate, kidney, bladder, greater urinary tract, penis and
adrenal cancer. The interface does not distinguish between users, whether they are healthcare
professionals or patients.
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Prostate cancer’s nomogram (Figure 3.9) was the first to be developed hence is the most
complete. The pathology’s related risks can be calculated from the pre-diagnosis to a more
advanced stage of the disease, also accounting for intermediate stages. Accordingly, the physi-
cian (or patient) may query the application for predictions at any step of the treatment (Figure
3.12).

Figure 3.9: Nomogram.org - prostate cancer related nomograms [34].

(a) (b)

Figure 3.10: Nomogram.org - Form to calculate the probability of prostate cancer risk (a) and
the nomogram’s results (b) [34].

Table A.1 (Appendix A) summarizes the main characteristics of each application presented
in Sections 3.2.1 and 3.2.2.
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3.2.3 Clinical Decision Support Systems and Nomograms applied to
Gastroenterology

3.2.3.1 Leeds Abdominal Pain

The first successful CDSS in gastroenterology was developed in the late 60’s, specifically applied
to the diagnosis of acute abdominal pain: Leeds Abdominal Pain System. It became opera-
tional in 1971 at Leed’s University Hospital, UK, achieving high rates of success in real time
diagnosis of seven different pathologies: appendicitis, diverticulitis, perforated ulcer, colitis,
small bowel obstruction, pancreatitis and unspecified abdominal pain. The system was based
on the communication between a KDF9 English Electric computer, located in the Computer
Laboratory of Electronics, University of Leeds, and a Westrex 33 ASR terminal located in the
Department of Surgery of the University Hospital in Leeds, about 800 meters. The system’s
creators wrote a FORTRAN program which integrated Bayes’s Probability Theory, and based
on previously entered patient’s data, generated the ”diagnosis” for a new patient.

The collection of clinical data was done by filling in a form created for the purpose. This
introduced some noise into the system to the extent that it was unavoidably subject to the
”inter-observer variance”, i.e., to differences in completing the questionnaire from physician
to physician. The authors sought to minimize the influence of this factor through the use of
training on patient’s clinical information registration for clinicians. Instead of inserting all the
hand-written patient’s clinical history, each patient’s variables (sex, age, pain location, among
others), were represented by 3-digit codes, reducing the computational burden of later analysis.
The use of such simple codes also allowed the data entry by some family member or other
person with access to those codes. Therefore, the clinician is not required to have any direct
contact with the computer or even with the terminal. In fact, once the the form is complete,
no one needs to access the system until the diagnosis is achieved and returned by the terminal.

Ideally, given a certain set of clinical data, the computer would return a diagnosis based
on the known characteristics of various diseases. Unfortunately, as evidenced in this study,
it is necessary to assign each patient to a particular category. Thus, the systems selects the
”database” related to the group where the patient falls, stored in disk. Then, a Bayesian
analysis is computed and the resulting probabilities are stored. The response algorithm takes
into account the request made to the system. It examines all cases that can be used in the
analysis and when there are no more cases to include, the results are presented. The achieved
diagnosis can also be compared to the one made by the clinician. If they do not match, the
system selects patient’s informations that may be responsible for the discrepancy, and presents
them as a suggestion for further verification. If the probabilities returned by Bayes analysis are
unsatisfactory (the results’ accuracy is not enough to confidently ”ensure” any of the considered
diagnosis), the system suggests a list of rare diseases, which can help the clinician in less common
cases.

This system does not make any recommendations concerning treatment strategies, its ”re-
sponsibility” is only limited to (a) return the diagnosis probabilities for a set of pre-established
diseases and (b) recommend, if necessary, the acquisition of additional information. The same
team of researchers conducted a study from Jan 1st to Dec 1st (1971) seeking to compare the
diagnostic efficacy with and without the use of their system. The accuracy rate obtained by
this CDSS reached 91,8%, considering a total of 304 cases examined during this period, a value
much higher than the rate of correct diagnoses mentioned by doctors, ranging between 65%
and 80%.
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3.2.3.2 Memorial Sloan Kettering Cancer Center
Prediction Tools for Cancer Care

Researchers from Memorial Sloan Kettering Cancer Center have been pioneers in the develop-
ment of nomograms for predicting the risk of cancer and treatment outcomes. The evaluation
of these parameters is done according to the patient’s characteristics and pathology. The nom-
ograms available online include bladder, gastrointestinal tract, breast, colorectal, endometrial,
melanoma, ovarian, prostate, renal, pancreatic, thyroid, sarcoma, uterine leiomyosarcoma, lung
and liver cancer. In the particular case of liver cancer, the nomogram is used to predict the need
for red blood cells transfusion before, during or after an hepatectomy - a surgical procedure in
which part of the liver is removed. The test’s results allow the physician a better monitoring
and guidance of his patient (Figure 3.11).

(a)
(b)

Figure 3.11: Liver Cancer Nomogram - Form that assesses the need for blood transfusion (a)
and results presented by the system (b).

3.2.3.3 Other Clinical Decision Support Systems applied to Gastroenterology

In the original article by Horrocks et al. [35], some important questions concerning CDSSs
in gastroenterology arose: are they really useful for physicians? Can they offer a measurable
advantage in diagnostic/therapeutic decision?

Seeking to answers these questions, a review article published in the Journal of Health
Informatics sought to describe the most recent experiences regarding the implementation of
CDSSs in gastroenterology, in order to establish the level of development, testing and advant-
ages in medical practice associated to the introduction of these software [36]. In this paper,
CDSSs are evaluated according to the following parameters: concerned clinical issue/disease to
which the CDSS is applied, system’s architecture, integrated Artificial Intelligence (IA) tools,
sizes of the used samples (number of clinical cases), achieved results, comparison of such results
with the expert reviews, user feedback, evidence of improvement in clinical practice and en-
countered critical problems. After an exhaustive search in PubMed, LILACS 2 and ISI Web of
Knowledge databases, 9 of 104 publications were selected. Excluded articles did not meet the
inclusion criteria: to be a computerized CDSS in gastroenterology and provide the full text.

The study conducted by Das et al. [37] consisted in the development and validation of an
experimental model to predict the need for an endoscopic treatment. The study by Chu et

2Literatura Latinoamericana y del Caribe en Ciencias de la Salude
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al. [38] was based on the development of a predictive model to determine the source of bleed-
ing, need for blood transfusion, urgent endoscopy or predisposition to acute gastrointestinal
bleeding, with the aim of assisting clinical practice in an emergency situation. Berner et al. [39]
created a recommendation system for safe medication prescribing. Farion et al. [40] described
a CDSS for patients’ triage, through their clinical history’s analysis, physical examination and
laboratory tests, using notebook computers. Sadeghi et al. [41] developed a system based on a
Bayesian network for the purpose of automating the screening of patients with non-traumatic
abdominal pain. Lin [42] divided his project into two phases: the first with the aim of distin-
guishing between healthy individuals and individuals with liver disease; the second to identify
the pathology within the group of sick individuals. Finally, Aruna et al. [43] designed a system
for gastrointestinal disorders’s diagnosis, DIAGNET.

Table A.2 (Appendix A) summarizes the main characteristics of each CDSS described in
these articles, according the outlined parameters referred above.

3.2.4 Clinical Decision Support Systems for Hepatocellular Car-
cinoma

3.2.4.1 Information Technology Systems in Personalized Medicine
A clinical use-case for Hepatocellular Carcinoma

In the work [44], the authors seek to understand how the current evidence present in guidelines,
clinical practice and the requirements of a Personalized Medicine based solution can be con-
ciliated with the development of an information management and recommendation system,
regarding the particular case of HCC. The authors propose to identify the factors that reflect
the patient’s clinical condition as well as relating them to the tumour’s nature, individual pa-
tient response and results of therapeutic strategies. All these variables (which are given the
name of ”Information Entities” - IEs) would then be used for general ”Digital Patient Mod-
els” (DPMs), customized models for each patient, through MultiEntity Bayesian Networks -
(MEBNs). According to the authors, this structure of standard clinical information of a HCC
patient, together with structured information about the disease itself and the several clinical
approaches, would enable the creation of a statistical model, able to produce reliable diagnosis,
prognosis and personalized treatment’s recommendations. This model could then be used to
build a decision support system, to which the authors call MBME - Model-Based Medical
Evidence.

Until today, this system is no more than a proposal. The authors have reviewed the literat-
ure regarding HCC’s epidemiology, etiology, risk factors, biomarkers, and therapeutic strategies,
identifying the essential IEs, and trying some MEBNs for data mining and decision support.
However, these algorithms are not presented nor described in [44]. Furthermore, their results
are not clear. The authors attempt to justify these flaws through the lack of available in-
formation, identifying the need for more clinical cases to develop a larger amount of models,
and more detailed ones, in order to validate the criteria used in the algorithms’ modelling.
However, in their opinion, it is very clear that the understanding, prevention and treatment of
HCC will benefit from the construction of such a recommendation system that emphasizes the
patient’s individual characteristics and his personal medical history, providing a new paradigm
of Evidence Based Medicine: the use of specific models for patients individuals, i.e., subgroup
analysis [44].
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3.2.4.2 A database for cirrhotic patients for early detection of Hepatocellular
Carcinoma

Cirrhosis is present in over 80% of HCC cases, being clearly identified as the main precursor
lesion of this pathology. In this study, the authors address the main features of e-Hepar III, a
support tool for the diagnosis of liver disorders [45]. This system is integrated with a database of
200 patients. Each clinical case is described using 170 variables, such as patient’s demographics,
physical examination’s results, laboratory tests, and histopathological diagnosis. e-Hepar III
provides a set of statistical methods that enables data analysis regarding patients’ diagnosis
and prognosis, assessing liver cirrhosis evolution.

The support rules for diagnosis and prognosis are based on diagnostic maps, case-based
reasoning and regression models. Each patient has multivariate data, that is, each clinical case
is described by a set of variables that compose multidimensional patterns. In diagnostic maps,
these variables have to be transformed so that they can be represented in only two dimensions.
This allows the ”translation” of each clinical case as a point and the representation of all patients
as ”points” on graph. A symbol is assigned to each disease and thus these ”diagnostic maps”
show all points (patients) represented by symbols according to their pathology. In this way,
the differences between the various diseases are visually highlighted. In the authors’ opinion,
this graphical representation is important since it allows the clinicians to better understand the
processes that lead the system to generate recommendations based on patients’ characteristics,
and thus increasing their interest and involvement in this ”assisted decision-making process”.
Rather than simply receiving a response from the system, the clinician can understand the
response’s underlying reasons. It is the case-based reasoning that enables decision support in
selecting diagnostic and therapeutic strategies. The system uses information regarding past
experiences (similar cases) to solve a new decision problem. e-Hepar’s regression models are
used to find patients at high risk of liver cancer, indicating its prognosis based on the evolution
of the disease. This paper describes in slightly shallow way a data mining tool that identifies
common patterns in the collected data and uses them in the decision-making process.

The authors express their interest in publishing more details about the system and its
performance in terms of accuracy in the early diagnosis of HCC in patients with cirrhosis but
so far they do not describe the algorithms/techniques used for assessing the similarity between
cases, nor the regression models used. Furthermore, initially there were only 2 out of 200
cirrhosis patients with an HCC diagnosis. This number rose to 10 in the two-year follow-up
that followed. As seems clear to us, these numbers are not sufficient to validate the system’s
performance. Any preliminary results of the system would be inconclusive, so the added value
of this study relates to the most interesting variables selected to define each patient’s clinical
condition.

3.2.4.3 Disease-Free Survival after hepatic resection in Hepatocellular Carcinoma
patients

Ho et al. attempted to establish a model to describe free survival disease at 1, 3 and 5 years
after hepatic resection in a study population of 482 patients with HCC [46]. Three prediction
models were tested: ANNs, logistic regression and decision trees. According to the authors,
the conclusions driven from a comparison between different models may help in the selection of
the best method to be integrated into a CDSS for this pathology. The existing patients in the
database constructed for this study were divided into 3 groups according to their disease-free
survival. In each group, patients were labelled as disease-free hepatic resection survivors if no
death or recurrence occurred during the period considered in the three survival models (1, 3 or
5-years). The selected clinical cases were reviewed, in order to collect information concerning
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each patient demographics, risk factors, clinical variables regarding laboratory tests, tumour
stage and others associated with the results after resection and with the surgical procedure
itself.

After collecting the data, the variables suffered some transformations before the models
could be developed. In particular, continuous variables were categorized to minimize the ef-
fects of extreme values and increase the algorithms’ computational efficiency. The correlation
between the variables was also found, keeping only the statistically significant variables.

To construct ANNs models and decision trees the authors used Waikato Environment Know-
ledge Analysis (WEKA), while to implement the logistic regression models Statistical Package
for the Social Sciences (SPSS) was used. From each of the three groups, 80% of the cases was
selected to train the models and the remaining 20% for validation. The comparison between
the models’ performance was done by evaluating the respective area under the curve (AUC)
values. ANNs outperformed the other models in the great majority of training and validation
groups. Accordingly, the authors consider that ANNs have shown encouraging potential in
CDSSs regarding this particular context: using HCC patient’s clinical records to predict their
disease-free survival after resection. According to the authors’ interpretation, ”physicians may
also consider machine-learning methods as a supplemental tool for clinical decision-making and
prognostic evaluation.” [46]

This is an interesting work, but with limited potential as regards our objectives. In the first
place, its area of application boils down to the prognosis of patients who have received hepatic
resection. The ”inclusion criteria” are very strict, which means that patients treated with
transplantation and ablation, patients with histological evidence of benign tumours, patients
in advanced stages of the disease or patients for which the tumour was not completely removed
are automatically discarded. The same with patients with incomplete data, which does not
reflect the reality of most clinical contexts. In addition, the study also does not take into
account the patient’s clinical evolution, and his prognosis is constrained to a dichotomous state:
”free-disease survivor” or ”non-free-disease survivor/dead”. Thus, this work may be seen as a
classification task, where a set of clinical variables are evaluated and a binary classification is
produced, indicating whether or not the patient is free of disease in the considered interval (1,
3 or 5 years). Of extreme importance is to notice that the prognosis is made after resection,
which means that the model will not be very useful as regards the decision-making process,
since the decision has already been taken.

3.2.4.4 Mortality Prediction for Hepatocellular Carcinoma patients after hepatic
resection

From the same authors of [46], this study compares the performance of ANN and logistic
regression models to predict mortality of HCC patients who underwent liver resection [47].
The methodology is very similar to the previous study, however, the variables’ selection is
made in a different way. For each model and each group of survival (1, 3 and 5 years), the
selected variables vary. Another difference is that recurrence is also considered as an input
variable, in addition to those described in [46], being recognized as an important predictor of
mortality in patients with HCC.

The only relevant difference between the two studies is the response of the algorithms - one
seeks to predict disease-free survival and the other only intends to predict if the patient is alive
or dead in the considered periods, may he be disease-free or not. Thus, the same limitations
as [46] may be encountered.
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3.2.5 Interactive decision support in hepatic surgery

Hepatic surgery covers a set of complicated operations with significant perioperative and post-
operative risks for the patient. Researchers from University of Munich developed a web-based
risk assessment tool that collects and analysis patient’s data and determines what kind of pa-
tients do benefit from specific procedures based on survival and complication rates [48]. The
basic idea is to find similar cases to a given patient. The similarity criteria is quite simple: a
case is similar to a certain patient if all considered predictive parameters correspond with a
given level of tolerance. Similar cases are displayed to the physician, so that he can verify the
analysis, excluding the cases he finds inappropriate, if necessary. The prognosis of matching
cases is then aggregated and taken as an estimate for the risk of an individual patient. The risk
is visualized as a Kaplan-Meier plot, the standard for visualizing survival data in Medicine [48].

The risk assessment tool is written in PERL, running on a Linux machine providing Apache
web server, and a PostgreSQL database. Data entry is performed with a standard web browser.
The authors developed a software tool for ”rapid prototyping of highly adaptive web forms
and management of data transformations” [48], similar the UltraDev extension of Macromedia
Dreamweaver 3 , but adapted to the needs of medical databases, that is, with more specific
templates. This tool allows an interactive definition of database tables. A preview of the forms
is generated and shown to the physicians, and once the structure is defined, all PERL programs
and database tables are generated. Each item in the data structure has a set of attributes: type
of item (text, pulldown menu, checkbox, radio button, textarea, date, time), default values, con-
straints, layout and a unique object ID, so that data transformations can be easily made if the
data structure is updated. The database itself consists in eight tables (demographics, medical
history, volumetrics, surgical documentation, histology, laboratory values, complications and
outcome), with an overall number of 451 items (numerical and categorical) that can be stored.
This high number of items makes avoiding missing data an impossible task. However, according
to the authors, the similarity search also includes records which have missing values, though
they do not explain the search processes in these cases. Furthermore, the research database
provides a set of specific reports, e.g. the number of patients per diagnostic category or a list
of patients with lost-followup [48]. Other functions of the system include user authentication
and access control (to secure patient information) and tools for data export, in XML format.

When the physicians access the application, a form is presented (Figure 3.12), requiring
patient’s demographic data for whom a suggestion is needed. Additionally, five clinical relevant
parameters have to be specified, namely diagnosis, type of planned resection, partial hepatic re-
section (PHRR), prothrombin activity (Quick) and gamma-GT. After submitting the form, the
system connects to the database to retrieve the appropriate results, computes the Kaplan-Meier
estimates and generates a web page displaying the plot and the underlying data. By simply
clicking on a similar case, the physician can go directly to the database and verify the source
information and decide whether that case is appropriate or not. If considered inappropriate, it
can be excluded from the analysis by selecting an ”exclude” button. Accordingly, the analysis
are then recalculated, if necessary.

Of all the studied applications, this is the closest to our objectives. The system is not
limited to strict criteria as in [46] or [47], being able to find similar cases to a larger set of HCC
patients. Unlike [46], this system considers patients with and without liver resection, and with
or without liver transplantation. However, it considers the overall survival, and thus, it does
not give information about free-disease survival. The Kaplan-Meier plot is a superior approach
for survival analysis than [47]. Using this method, the physician has more information than
a simple binary classification (dead or alive). He can get an estimate of how long will that

3www.macromedia.com
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(a)
(b)

Figure 3.12: Risk assessement form (a) and an example of a Kaplan-Meier plot for HCC patients
(b) [48].

patient be alive, according to the chosen surgical procedure. Moreover, he gets involved into
the analysis and has the ability to verify and adjust it for an individual patient according to
his expertise. However, one might argue that the similarity research is quite simplistic. If a
set of 451 variables is stored, why use solely 5 parameters in similarity search? The authors
argue that ”a risk assessment tool must be fast and easy to use”, justifying the choice of only
5 parameters, shown to be predictive for patient outcomes. The exportation format may also
be questioned. XML is a standard integration format; however, it may be difficult to interpret
by physicians, with no knowledge in the subject.

Table A.3 (Appendix A) summarizes the main characteristics of each study exposed in
Section 3.2.4.
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Chapter 4

Dealing with Missing Data

Missing or incomplete data are a part of almost every study involving collected information, a
common drawback that researchers need to deal with when solving real-life classification tasks.
There are a number of alternative ways to deal with missing data. However, the choice of
an appropriate alternative must result of a careful missing data process analysis. Thus, any
discussion of missing data should begin with the question of why is data missing in the first
place. Missing data occurs in a variety of application domains, for several different reasons.
Data could be missing for perfectly simple reasons, such as equipment malfunction, because
a participant was on vacation or the data was incorrectly entered due to misinformation or
human error. On the other hand, data could be missing on the basis of either the participant’s
observed values on the dependent variable or any of the independent variables. Understanding
the reasons of missing data is fundamental to determine how those data will be treated.

Healthcare is a particularly problematic domain regarding missing data. Every day, a
large amount of clinical information is collected from multiple sources and stored in database
systems. Patients’ data are managed by various people within the institutions, recorded in
different times and formats, thus making datasets compiled from patients’ clinical information
very susceptible to missing data. Accordingly, modelling and predicting clinical outcomes
may turn out to be a difficult quest. Survival prediction, as an example, plays an important
role in end-of-life decisions, as it helps to determine which treatments should be attempted.
Therefore, it is extremely important that the accuracy of this prediction is neither biased or
weak in terms of statistical power. However, survival prediction models are trained with clinical
datasets frequently containing missing values. In the last few decades, missing data became
an attractive area of statistics, with growing studies proposing and comparing strategies for
achieving the best possible result solution for missing data drawbacks, neither losing records
from the database or distorting the results with the introduction of bias in the prediction
process.

4.1 Missing Data mechanisms

The most two conventional approaches used for managing missing data are to delete or impute
values. However, this is not an easy fix, since the latter can cause bias, while the former causes
both bias and loss of statistical power [57]. This drawback can be attenuated by classifying
the underlying data missing mechanism. Basically, the missing mechanism can be seen as the
process underlying the generation of incomplete datasets.

Most authors agree with the taxonomy of missingness presented by Rubin and colleagues
[58] [59], inferring three different explanations for missing data. Accordingly, data can be
missing completely at random (MCAR), missing at random (MAR) or missing completely not
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at random (MNAR).

When the probability that an observation is missing is unrelated to the value of such obser-
vation or to the value of any other variables in the same study, data are MCAR. For instance,
in a survey, data would not be considered MCAR if obese subjects were less likely to report
their weight than individuals with normal weight - the probability that the dependent variable
”weight” is missing is unquestionably related to the the value of such variable. Moreover, if
women are less likely to report their weight than men, data cannot be considered MCAR, since
missingness would clearly be correlated to gender. However, if a participant’s data were missing
for reasons that are in no way related to the study, such as a doctor’s appointment, schedule
difficulties, a flat tire, that patient’s would be MCAR. MCAR values can also be generated
by others, besides the participants. For instance, if the person responsible for filling the data
misplaces or misreads documents or information. In MCAR the probability of missing data is
a constant, i.e., any observation on a variable is as likely to be missing as any other.

Data are MAR if the probability of missing data on a variable is correlated with values
from other variables in the study, but not with the values that would have been present in that
variable, had them not been missing. The word random in ”Missing at Random” makes the
concept more difficult to grasp. A real life example would be people who are depressed being
less likely to report their weight. The variable ”weight” would be correlated to depression.
If, in addition, depressed people had a lighter weight in general, the probability of missing
would be correlated with the dependent variable as well, the weight itself: with a high rate of
missing data among depressed people, the existing mean weight may be lower than it would
be without missing data. However, if within depressed subjects the probability that reported
weight is missing was unrelated to the values of weight itself (imagine that the weight varies
among depressed individuals as much as among normal weighted ones), then data would be
considered MAR, though not MCAR.

The third type of missing data, MNAR or Nonignorable Missing Data (NIMD), occurs when
the probability that an observation is missing is correlated with the values of the other variables
in the study and, in addition, directly related with the value of such observation. Following
the previous examples, this would be the case if people with higher weights (obese people) are
in fact more reluctant to report their weight when compared to people with normal weights.
Data is not missing at random. The average weight obtained with the available data is clearly
biased when compared to the mean that would be obtained with the complete data. As another
example, a participant may fail to answer a question either by shame or lack of comfort: some
people simply do not feel comfortable about revealing personal information, for instance. And
although the information that lead to the lack of response may or may not be in the study, this
doesn’t make it neither random or ignorable.

Regardless of the domain, nearly every study in this field agrees with Rubin’s definition of
missingness patterns. However, Cismondi et al. [60] consider that it might not be correct to
focus only on finding the appropriate imputation method according to the classification of miss-
ing data into one of the three categories described above, especially when it comes to medical
databases. In some cases, missing data are generated by virtue of the sampling frequency of
the study design. A good example is given in [60]: for instance, blood pressure may be sampled
hourly, and lab tests 4 hourly. Considering a gridding template with 1h frequency, lab tests will
show many periods of missing data. However, data is only missing because of the choice of such
sampling frequency, rather than lab test not being done. According to this line of thought, not
every missing datum is a ”true missing”, and both deletion and imputation may actually lead
to wrong conclusions. Following the examples in [60], a patient with normal blood pressure
has a lower blood pressure sampling frequency, when compared to another that has a blood
infection, requiring, for instance, an hourly monitoring. In the case on normal blood pressure,
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if other variables are deleted when blood pressure is not measured, information loss may occur.
Similarly, if a patient has been periodically connected and disconnected from a ventilator, there
are only records of some segments of data. Imputing values for the ”disconnected” segments
would not be correct, since it would suggest the patient was always under monitoring, which is
false, thus biasing predictive results.

Despite this considerations, previous studies have accepted that missing data are related to
some missing mechanism without attempting to discriminate if absent values are created by the
study design. In this review, we’ll make the same assumptions. Instead of analysing if missing
data should be imputed or not, and distinguish between ”recoverable” and ”non-recoverable”
missing values [60], we’ll survey some studies that lay emphasis on comparing several imputation
techniques, according to the characteristics of incomplete datasets, particularly with regard to
the type of illness, mechanism of missing data, number of samples, variables and percentage of
missing values in the dataset.

4.2 Strategies for Missing Data imputation

Some authors distinguish between ”traditional” or ”conventional” treatments for missing data
and ”modern approaches” for dealing with missing data [57, 61, 62]. However, for sake of
simplicity, we’ll distinguish between ”Case Deletion methods” and ”Imputation methods”. Case
Deletion methods consist on case elimination techniques while ”Imputation methods” refer
to the process of replacing missing data with substitute values. Regarding the ”Imputation
methods”, we’ll further divide them in ”statistical methods” and ”machine learning methods”,
since this is the common terminology used in most recent publications [63,64,66].

4.2.1 Case Deletion Methods

By far, the most common approach to missing data is the elimination of cases [59]. Omitting
these cases and running the analysis on what remains is the most basic of case deletion methods.
Following Howell’s example, if 5 subjects in the study have missing scores in one or more
variables, the study is 5 observations short. [57]. This approach is known as Listwise Deletion
(LD) or Complete Case Analysis. As the name implies, LD consists in eliminating cases with
missing values so that only complete cases remain for analyses. The advantage of LD is allowing
the application of standard analysis techniques, since the remaining data are complete. Under
the assumption that data are MCAR, it leads to unbiased parameter estimates [57]. However,
with data containing a great amount of missing values, LD often results in a decrease in the
sample size. This leads to a loss of statistical power, even if data are MCAR. Moreover, when
this assumption is incorrect, the results may be biased.

Pairwise Deletion (PD) consists in removing cases on an analysis-by-analysis basis. In other
words, the cases are evaluated according to the variables they are related to. If, those cases have
missing values in the considered variables, they are removed. For instance, if one participant
report his weight and gender, but not his age, then he is included in the analysis involving
weight and gender, but not in the analysis involving age. The problem with this approach is
that the parameters of the models constructed under these method’s assumptions will be based
on different datasets, with different sample sizes, which lead to bias. Furthermore, similarly
to LD, PD also shares the assumption that data are MCAR. As mentioned, this may lead to
biased estimates when that assumption is incorrect.
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4.2.2 Imputation Methods

Imputation is the process of replacing a missing datum with a substitute value. There are
several imputation approaches, according to the method used to determine such ”substitute”
value for each absent observation. Following the definitions of most recent papers in the subject
[63,64,66], we will also distinguish between ”statistical” and ”machine learning” methods. Both
statistical and Machine Learning methods use the available complete information to impute
absent values. This is an advantage compared to discarding incomplete cases, since imputing
missing values provide additional information that can enhance the classification performance
[65].

Statistical methods consist on the substitution of a missing value with a meaningful es-
timate. Typical statistical methods are based on replacing the missing values with the most
similar among existing data point, without the need of constructing a predictive model to eval-
uate ”similarity”. Roughly, it consists on the application of heuristics to achieve ”plausible”
estimates. Statistical imputation methods include mean imputation, hot-deck imputation and
multiple imputation [66]. Imputation methods based on machine learning are more complex
procedures. They consist in constructing a predictive model based on the complete available
data to estimate values for substituting those that are missing.

4.2.2.1 Statistical Imputation Methods

A once-common method for Statistical Imputation (SI) was hot-deck imputation [57, 61, 62],
where a missing value was imputed from a randomly selected similar record. For instance,
suppose an obese young female, resident in Coimbra refused to participate in a depression
survey. The researches might simple get a record that came from an obese, young woman in
Coimbra from another database and use it to substitute the missing record and continue their
studies.

Replacing missing values with the mean of the corresponding variable, known as Mean
Imputation, is the most common of the SI techniques. Though there are more sophisticated
procedures, Mean Imputation is used in almost every study concerning missing data [63–67,69,
70]. The mean is calculated using only the complete cases for the variable whose observations
are missing. There are a few issues with this approach: it adds no new information to the
analysis and it leads to an underestimate of error, as pointed by Little [59]. As stated in [68],
this underestimation derives from two sources [57]. In the first place, from the loss of the natural
variation in the data. Secondly, from the smaller standard errors produced: no new information
is added, although the sample size increases, increasing the denominator in standard error’s
calculation, thus reducing it. Moreover, as shown in [59], Mean Imputation can attenuate the
overall correlation estimate between variables.

Regression Imputation (RI) is another SI approach for handling missing data [58]. In RI, the
existing variables are used to make a prediction, using a regression equation, and the predicted
value is used as a substitute of the missing datum. As Little describes it, ”in a bivariate analysis
with missing data on a single variable, the complete cases are used to estimate a regression
equation where the incomplete variable serves as the outcome and the complete variable is
the predictor” [59]. The imputed value is in some way related to other information that we
have about the subject or sample. In fact, as seen in [59], the imputed values will have a
correlation of one with the values from the variable used in their prediction. Thus, although
RI can be considered a step forward regarding the previously described methods, it can lead to
an overestimation of the correlation between variables. Furthermore, the imputed values lack
variability and thus the standard error of classification performance may be underestimated.



4.2. STRATEGIES FOR MISSING DATA IMPUTATION 41

4.2.2.2 Machine Learning Imputation Methods

Missing data imputation through machine learning-based methods has recently attracted much
attention. They consist in creating a predictive model to estimate the absent values from
complete available information in the dataset. Some well-known learning algorithms have been
applied to missing data handling, namely the Multi-Layer Perceptron (MLP) [64,65], K-Nearest
Neighbours (KNN) [63,67,69], Self-Organizing Maps (SOM) [66], Decision Trees (DT) [70] and
Support Vector Machines (SVM) [64,70].

A Multi-layer perceptron is a modification of the standard linear perceptron and can dis-
tinguish non-linearly separable data [65]. It consists of multiple layers of nodes interconnected
in a feed-forward way. A MLP model is trained using only the complete cases as a regression
model. Given D input features, each incomplete attribute is learned (used as target) by using
the other D−1 attributes as inputs. When several attributes are missing, several MLP schemes
have to be designed, one per missing variables combination, as described in [66]. This method
has some disadvantages. First of all, though MLP can solve non-linear problems, it cannot use
missing data for training directly, the incomplete cases are not considered for training. Thus,
when a considerable percentage of input vectors are incomplete, the results achieved by this
algorithm may lead to biased learning [65]. Another downside is that when missing values
appear in several combinations of attributes in a high-dimensional problem, many MLP models
have to be implemented.

KNN is a classification algorithm in which the k nearest neighbours (samples or subjects)
are chosen from the complete set of cases, found by minimizing a similarity measure. After
finding those k closest examples in the feature space, the missing value is determined according
to the type of data [66]. A majority voting of its neighbours can be used for discrete data
and the mean for continuous data. Another alternative for continuous data is to weight the
contribution of each k-neighbour according to its distance to the incomplete pattern [69]. This
way, a greater contribution is given to the closest neighbours. It has been shown that this
method provides a robust procedure for missing data estimation [65, 71]. However, its major
drawback is related to the fact that KNN is a lazy learning algorithm. That is, it does not
use the training data to do any generalization. Whenever the algorithm looks for the most
similar neighbours, it has to search the entire dataset. This is especially problematic for large
databases. Another issue is finding the optimal number of neighbours (value of k) and the most
appropriate distance metric to be used. This requires a careful study of the dataset and the
developement of several KNN models, in order to achieve the best results [69–71].

Self-Organizion Maps (SOM), as described in [66], are a type of artificial networks that use
unsupervised learning that describe a mapping to a lower dimensional space. Basically, SOM
consists of nodes placed in a d-dimensional array, where each node has a d-dimensional weight
vector associated. Like most ANNs, SOM performs ”training and testing”, or in this case,
”training and mapping”. In the ”training” phase, SOM build the map using input examples.
A vector in data space is placed onto the map by finding the node with the closest weight
vector. Thus, nodes that are spatially close in the map have similar weight vectors. For each
training input vector, the neuron that has the most similar vector is called the Best Matching
Unit (BMU). The ”mapping” phase classifies a new input vector, according to the distances
between the vector and the nodes. The ”distance function” is called neighbourhood function,
explained in detail in [66]. When an incomplete vector is used as input to SOM, the missing
observation are ignored during the selection of the BMU. The incomplete values are imputed
with the values of the BMU in the missing dimensions. In other words, each missing value is
imputed based on the weight vector of the BMU in the incomplete attributes.

Decision Trees (DT) are a well-known data mining algorithm, expressed as a ”recursive
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partition of the instance space” [70]. Their main advantage is that they are self-explanatory
and can handle both continuous and nominal data, missing data and datasets that may have
errors. With a reasonable number of leaves, DT can be compacted and converted to a set of
rules, which are an easy-to-grasp representation of data [72]. One of DT’s disadvantages is that
some DT algorithms require that the target attribute has only discrete values, which could be
problematic to input continuous variables.

The Support Vector Machine (SVM) is a state-of-the-art approach to pattern classification
and regression, due to its ability to deal with high-dimensional data and flexibility in modelling
diverse sources of data [73]. SVM can provide a good generalization performance since they
tackle the principle of structural risk minimization [74] by balancing the model’s complexity
against its success at fitting the training data. They provide a good tradeoff between the
flexibility of the model and the error in training data [75]. Thus, SVMs satisfy the Occam’s
Razor Principle: among competing solutions, with similar results, the one with the fewest
assumptions should be chosen. SVMs belong to the general category of kernel methods. A
kernel methods can operate in high-dimensional spaces, since they depend on the data only
through dot-products. This has two main advantages: it allows to generate non-linear decision
boundaries and enables the classification of data that have no obvious fixed-dimensional vector
space representation [76, 77]. SVMs are known for excellent classification performance [70].
However, they require a comprehensive understanding of how they work. When training SVMs,
researchers have to face several decisions: how to preprocess data, which kernel function to
use and setting the SVM and kernel parameters. Uninformed decisions may lead to reduced
performance, and thus, the use of SVM requires a comprehensive understanding of these choices,
which can be considered a disadvantage. In Support Vector Machines Imputation (SVMI), the
SVM model is trained using all examples that have no missing values. After achieving the
optimal SVM parameters, the model is used to impute missing values. Absent attributes are
treated as targets, using the remaining complete attributes as inputs.

4.3 Conclusions

In several papers in the literature [63–67,69,70], the authors evaluate the performance of several
statistical and machine learning imputation methods, to investigate how different imputation
methods can overcome the missing data problem. They all reach the same conclusion: machine
learning techniques outperform statistical methods. However, as stated in [66], imputation
techniques ”depend on the available data and the prediction model used”, and thus they have
to be adapted according to the context, that is, the best imputation technique found for a
particular dataset may not generalize well to different datasets. In our approach, we intend
to impute values according to case-similarity (an instance’s missing values should be imputed
according to its most similar instance). In addition, we looked for methods fairly simple to
explain to clinicians, and that did not require a high computational effort, that could prejudice
our CDSS’s performance. Therefore, we have chosen Mean Imputation, Logistic Regression
and KNN to impute our dataset’s missing values, as discussed in Chapter 6.



Chapter 5

Clinical Information System
Development

In this chapter, we’ll present our clinical system in detail, through the main steps of its develop-
ment: requirement analysis, use cases definition, architecture, technological choices, prototype
and final software platform.

5.1 Requirements Analysis

The software requirements specification is fundamental to delineate the boundaries of our clin-
ical information system design and functionality. The Software Requirement Specification
(SRS) will define and illustrate the overall project and its requirements - both functional and
non-functional. In addition, the SRS will also define the users and their respective character-
istics as well as any constraints to the system development the team has identified.

Functional requirements describe the behaviour of the system as it relates to the system’s
functionality. According to [79], they are ”statements of services the system should provide, how
the system should react to particular inputs, and how the system should behave in particular
situations”. Non-functional requirements elaborate the performance’s characteristics of the
system. Typically, non-functional requirements fall into areas such as accessibility, efficiency,
extensibility, privacy and maintainability, among others.

In sections 5.1.1 and 5.1.2, we will list the identified requirements. They are presented
with a requirement id, a brief decription and priority category, according to the MoSCOW
method [80]:

M - MUST: Describes a requirement that must be satisfied in order to the final solution to
be considered a success.

S - SHOULD: Represents a high-priority item that should be included in the solution, if
possible.

C - COULD: Describes a requirement that is considered desirable but not necessary. This
type of requirement is included if time and resources permit.

W - WOULD: Represents a requirement that stakeholders have agreed will not be imple-
mented in a given release, but may be considered in the future.

43
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5.1.1 Functional Requirements

This section presents a list of the functional requirements, classifier according the MoSCOW
method. These requirements are aggregated according to their context. Thus, we have con-
sidered Filtering, Consultation, Importation, Edition, Creation, Data Exportation, Reporting
and Deletion requirements.

Filtering requirements concern the user’s filter searches to the system. A user must (M) be
allowed to search data by patient’s name or ID.

Table 5.1: Filtering Requirements.

F-1 Filtering Category
F-1.1 Patient’s filtering by name M
F-1.2 Patient’s filtering by Patients ID (PID) M

Consultation requirements describe the mandatory need to consult clinical data. The clini-
cians must (M) be able to see any patient’s medical evaluation, exams, risk factors or performed
treatments.

Table 5.2: Consultation Requirements.

C-2 Consultation Category
C-2.1 Patient’s medical evaluation consultation M
C-2.2 Patient’s exams consultation M
C-2.3 Patient’s risk factors consultation M
C-2.4 Patient’s treatments consultation M

Importation is a fundamental requirement of our system. It is mandatory (M) that the
system can import .xls files (the format required by CHUC’s team). Since .csv files are also
commonly used within the institution to manipulate and share data, they should (S) be impor-
ted as well, if possible.

Table 5.3: Importation Requirements.

I-3 Importation Category
I-3.1 Importation of .xls files M
I-3.2 Importation of .csv files S

Editing patient’s data is a major system’s functionality. A user must (M) be able edit
any type of patients’ records, whether they are risk factors, medical evaluations, exams or
treatments.

Table 5.4: Edition Requirements.

E-4 Edition Category
E-4.1 Edition of patient’s risk factors M
E-4.2 Edition of patient’s medical evaluation M
E-4.3 Edition of patient’s exams M
E-4.4 Edition of patient’s treatments M
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Without the creation of patients or patient’s records, the systems has no use. Thus, there
are clearly mandatory (M) requirements. The system mus enable the creation of all types of
patient’s data (risk factor forms, medical evaluations, exams and treatments).

Table 5.5: Creation Requirements.

CR-5 Creation Category
CR-5.1 Creation of a new patient M
CR-5.2 Creation of a new patient’s risk factors M
CR-5.3 Creation of a new patient’s medical evalu-

ation
M

CR-5.4 Creation of a new patient’s exams M
CR-5.5 Creation of a new patient’s treatments M

CHUC’s team manifested the need to export system’s data. In particular, they required
.png files (M). Other formats such .pdf, .svg and .xls are also a priority, and they should (S)
be covered by the system. These formats should be included in future releases. .jpeg could (C)
be included, but it is not a absolute necessity.

Table 5.6: Data Exportation Requirements.

DE-6 Data Exportation Category
DE-6.1 Exportation in .pdf format S
DE-6.2 Exportation in .svg format S
DE-6.3 Exportation in .png format M
DE-6.4 Exportation in .xls format S
DE-6.5 Exportation in .jpeg format C

The CHUC’s team has expressed a great interest in a reporting functionality. This must
(M) be included. The user must be able to query the systems according to a predefined set of
options. More elaborate queries, such as results per group or filter are also desired and thus
the system should (S) meet this requirements, if possible. Other types of queries (such as per
filter and group) are not a priority, and could (C) if the time constraints allow.

Table 5.7: Reporting Requirements.

R-7 Reporting Category
R-7.1 Reporting results per filter S
R-7.2 Reporting results per group S
R-7.3 Reporting results per filter and group C
R-7.4 Reporting results per option M

The user must (M) be able to remove any of the inserted patient clinical data: risk factors,
medical evaluations, exams or treatments.

Table 5.8: Deletion Requirements.

D-8 Deletion Category
D-8.1 Deletion of patient’s risk factors M
D-8.2 Deletion of patient’s medical evaluation M
D-8.3 Deletion of patient’s exams M
D-8.4 Deletion of patient’s treatments M
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Authentication is an important requirement that must (M) be verified in our system. The
patients’ data protection has to be guaranteed through a unique password per clinician. Each
clinician’s credentials must (M) be verified every time the clinician accesses the system. The
user’s passwords should (S) meet some complexity rules. The need to change passwords period-
ically and to lock accounts in case of multiple login failures is to be accessed in future releases.

Table 5.9: Authentication Requirements.

A-9 Authentication Category

A-9.1 Each user must have his own password M

A-9.2 User credential are verified each time the
user accesses the system

M

A-9.3 Require a minimum password of at least 8
characters

S

A-9.4 Require passwords with Lowercase, Upper-
case, Numbers and Special characters

S

A-9.5 Require users to choose new passwords at
least 90 days and prevent the reuse of a
password for 1 year

C

A-9.6 Lock acess to accounts if there are 30 failed
authentication attempts within 5 minutes

W

As our system is intended to be a recommendation system, the integration of an AI module
is also considered to be a functional requirement. The system should use the patients data to
provide meaningful information regarding treatment options and/or survival prognosis.

Table 5.10: Artificial Intelligence Module Requirements.

AIM-10 Artificial Intelligence Module Category

AIM-10.1 Classify a given patient into a prognostic
group

S

AIM-10.2 Predict overall survival according to a pa-
tient’s characteristics

S

AIM-10.3 Update currently existing patient profiles W

AIM-10.4 Recommend the most appropriate treat-
ment according to a patient’s similar cases

C

5.1.2 Non-Functional Requirements

Non-functional requirements relate to the system’s performance characteristic. They may also
describe aspects of the system that do not relate to it’s execution, but rather to it’s evolution
over time. We have identified Implementation and Documentation requirements.

Implementation requirements include a user-friendly interface (a requisite especially em-
phasised by CHUC’s team), system’s extensibility, availability and usability. Extensibility is
the system’s capability to grow, that is, to incorporate new functionalities without affecting
its internal structure and data flow. System’s availability concerns the system’s capability to
work as required whenever the user needs. Usability includes metrics of effectiveness (if the
users can successfully achieve their goals), efficiency (users’ effort to achieve those goals) and
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satisfaction (users’ experience feedback). System’s documentation could (C) also be helpful for
future users and developers.

Table 5.11: Implementation Requirements.

IM-11 Implementation Category
IM-11.1 User-friendly Interface M
IM-11.2 System’s Extensibility W
IM-11.3 System’s Availabilty M
IM-11.4 System’s Usability M

Table 5.12: Documentation Requirements.

DC-12 Documentation Category
DC-12.1 System’s features documentation C
DC-12.2 System’s accessibility documentation C

Some users may not be used to deal with web-applications and related technologies. There-
fore, some aspects of the application may not be so intuitive as we planned to be. Thus, a help
section could (C) be useful to users that have some doubts about the system’s functionalities
and usability.

Table 5.13: Help Section Requirements.

H-13 Help Section Category

H-13.1 Help section in main menu (filter options,
insert new data, visualize reports)

C

H-13.2 Help section in each secondary menu (edit
and delete previous entered data)

C

H-13.3 Help section in Reporting tab (available
filter options, available reports, exporting
options)

C

Navigation is a key component of a web-application. Navigation is the gateway into different
sections of content, and needs to be very easy and intuitive. It must (M) be organized, with
tabs for general actions and sub menus for specific actions. It must (M) use obvious section
names, so that the user can quickly find what he is looking for (general and ambiguous words
should be avoided). Once a user clicks into a application section, the system should (S) remind
him ”where he is”, using a consistent methods to highlight the section the user is in, such as
a change in color or appearance. Drop-down menus that break down top-level buttons into
sub-sections should (S) be considered. Also, one should avoid too many separate navigation
bars. The application must (M) be consistent, maintaining the same style, type and colors, to
enable the users to get used to the application and feel comfortable browsing it.
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Table 5.14: Navigation Requirements.

N-14 Navigation Category

N-14.1 Main tabs for major actions and sub menus
for secondary tasks

M

N-14.2 Obvious Section Names M

N-14.3 Highlight the section the visitor is in S

N-14.4 Few navigation buttons S

N-14.5 Maintain the same style, type and color in
all the menus

M

Data visualization should help the used to discern relationships in the data. Thus, the type
of display choices should be chosen in such way that they do not distort reality, contain the
necessary information and are presented in a way that the clinician understands.

Table 5.15: Visualization Requirements.

V-15 Visualization Category

V-15.1 Enable data visualization through bar
charts (e.g, risk factors distribution)

M

V-15.2 Enable data visualization through Kaplan-
Meier Curves (e.g Survival Analysis)

M

V-15.3 Enable data visualization through simple
tables (reporting results)

M

V-15.4 Use data-driven visualization libraries for
data presentation layer

S

V-15.5 Allow user interaction with the graphs (see
a particular point in the graph or label in-
formation)

S
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5.2 Use Cases - UML Diagram

In this section we present the Use Case Diagram of the system using UML. The objective of
this diagram is to illustrate the system’s actors and their roles (Figure 5.1). Each use case has
an associated ID, which will be used to identify and describe each one in the following section.

Figure 5.1: Use Cases Diagram.

Actors are divided in two major groups: User and Admin. The User is the general applic-
ation user, for whom the application was intended. After authentication, he has access to all
the application’s features, except for data importation. The Admin is a more specialized user,
usually the application’s developer. He has access to the User’s functionalities in addition with
data importation. Admin also manages the users’ accounts.

5.2.1 Brief Description of Use Cases

This section presents a brief description of each use case. After illustrating the general envir-
onment in Figure 5.1, we elaborate this analysis with more detailed information.

Table 5.16 lists the different use cases, indicating their IDs, actors and names. Each one
of the following tables is related to a single use case, identified with its own ID and a short
expression that represents its name. After indicating the actors involved, the use case is defined
in a small description. In some cases, there are other characteristics in the table, namely the
trigger, the use case’s preconditions and postconditions, normal and alternative flow or special
requirements. In particular, U-2 has the indication of the assumptions, and A-1 the frequency
of use. Some tables have also the indication of notes and uses.
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Table 5.16: Use Cases List.

Use Case ID Primary Actor Use Cases

U-1 User Patient Quick Filter

U-2 User Enter Patient View

U-3 User Insert Patient

U-4 User Edit Patient General Information

U-5 User Remove Patient

U-6 User Insert New Patient Evaluation

U-7 User Insert New Patient Biopsy

U-8 User Insert New Patient Exam

U-9 User Insert New Patient Treatment

U-10 User Insert Patient Risk Factors

U-11 User Edit Patient Data

U-12 User Remove Patient Data

U-13 User Authentication

U-14 User View Distribution Report

U-15 User View Kaplan-Meier Survival Function Estimation

A-1 Admin Import Data

A full description of the use cases in terms of their description, triggers, normal and altern-
ative flows, notes and related issues can be consulted in Appendix B.

5.2.2 Entity-Relationship Diagram

The Entity-Relationship (ER) diagram presented in Figure 5.2 illustrates the logical structure
of the developed database.

Our database is composed by seven entities (Users, Patients, Medical Evaluations, Risk
Factors, Biopsy, Exams and Treatments) that relate to each other with different cardinalities:

Users: This entity describes the Users’ information to be stored. Each User has an unique id,
a username and password, a type (general user or admin), and a date of his last login and
last activity in the platform. The Users entity has a 1-to-N relationship with all the other
entities, except Patients entity. That is, a user can be associated to N exams, risk factors,
medical evaluations, biopsies and treatments. In this context, ”to be associated” simply
means each user can has access and can insert/edit records from all the other entities.

Patients: Basically, Patient’s entity describe the patient’s essential attributes: id, name, date
of birth, sex, age at the diagnosis, among others. Patients entity also has a 1-to-N rela-
tionship with the remaining entities (except Users), since each patient may have recorded
data concerning each one of the other entities. In other words, for each patient, there
may have N recorded exams, medical evaluations, risk factors and so on.

Medical Evaluation: This entity aggregates information related to each medical evaluation -
date, blood tests variables and results of physical examination. Each medical evaluation
is related to a patient and is created by a user (a clinician). There can be N exams,
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Figure 5.2: Entity-Relationship Diagram.
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treatments or biopsies associated to each medical evaluation: for instance, sometimes
the diagnosis requires several imaging exams or a biopsy to be performed. As another
example, a medical evaluation may suggest the need for several treatments, such as a
sequence of radiofrequency ablations, or a transplantation followed by chemoembolization.

Risk Factors: Risk factors entity is self-explanatory. It includes all risk factors that might
be verified for each patient. It only relates to two other entities: Users (the actors that
insert these information in the system) and Patients (to whom the information refers).

Exams, Treatments and Biopsy: These three entities encompass clinical data regarding
exams, treatments and biopsies. They all relate to Patients, Users and Medical Evaluation
entities: Users insert these Patients’ information in the system; Medical Evaluations may
include N exams, treatments and biopsies as previously explained.

5.3 Framework

Adopting a Web Application instead of a Desktop Application is a choice that is becoming
more and more frequent over the years in software development. This is mainly because web
technologies have advanced to such a point where the behaviour of the interface in terms of
usability and animation rival with the Desktop Applications. Moreover, the ubiquity of web
browsers allow to cross any platform boundaries without the need of additional code. On the
other end, a Web Application allows us to fill other requests like centralization, multi-user
support and real time access to updated information from the Institution internal network, or
any computer with access to the internet, without any additional configuration (Figure 5.3).
However, Web Applications also have disadvantages. In our case, they relate to the need of an
internet connection in order to access the application. However, in our work context, this did
not constitute an important issue.

Figure 5.3: System’s external interaction diagram.

Clinicians access the database through our web-application, using the Institution computers
and internal network, or any other devices (personal computers, smartphones, tablets) as long
as they are connected to the Internet. The Admin has local access to the system’s database,
so that he can manage, configure and update it, as shown in Figure 5.3.

5.3.1 Technologies

The application was implemented using PHP 5 as the server side scripting language. Running
on a Apache 2.X Web server, it was supported by a MySQL 5.5 database. On the client side
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we took full advantage of HTML 5 features and associated technologies, CSS3 for styling, Ajax
requests for in-page loading of content and JavaScript for interface management and control.

In order to avoid unnecessary development time we’ve chosen several frameworks and mod-
ules that would fit our system’s features and behaviours. We have also used the following third
party libraries:

1. MooTools 1JavaScript framework (mootools-core-1.5.0.js and mootools-more-1.5.0.js)

2. MooTools Plugins:

• History (mootools.history.js)

• Auto-completer (Autocompleter.js)

• Date picker (Picker.js)

3. D3.js JavaScript library (d3.js)

4. Dimple Charts (dimple.js)

5. Canvg SVG to Canvas converter (canvg.js)

6. PHPExcel v1.8

Quoting the MooTools developers, ”MooTools is a compact, modular, object-oriented JavaS-
cript framework designed for the intermediate to advanced JavaScript developer. It allows to
write powerful, flexible, and cross-browser code with its elegant, well documented, and coherent
API”. MooTools’s API is similar to some extent to the more popular API jQuery, and was an
indispensable tool in terms of easing the manipulation of DOM 2 objects in order to provide
the user with a simple-to-use, yet rich application.

5.3.2 Prototype

This section describes the first steps in the construction of our CDSS. Our prototype is a less
detailed initial release, developed to validate some user requirements and preferences. The
prototype’s architecture is fairly simple (Figure 5.4). The patients’ data are entered into an
.xls file and parsed to a XML file. PHP reads the XML file, processes the data, and creates the
web pages. HTML is used to structure the web pages while CSS is used for styling. JavaScript
and jQuery are used for HTML manipulation, event handling and animation. The prototype 3

was developed in Portuguese, according to the CHUC’s preferences.

The prototype’s functionalities are shown in Figures 5.5 to 5.14. When users first try to
access the application from a web browser, an HTML login page appears prompting the users
for a username and password. The user’s authentications, were used to determine the his role:
admin or clinician. However, the same information was available for both types of users, since
the only difference in their permissions was the authorization to data importation or not. This
detail was not contemplated in the prototype.

When the user’s login credentials are validated, the application presents a list of all the
existing patients (Figure 5.6). Only the most relevant attributes for patient’s identification are

1http://mootools.net/
2Document Object Model (DOM) is an application programming interface (API) for valid HTML and well-

formed XML documents. It defines the logical structure of documents and the way a document is accessed and
manipulated.

3The prototype may be explored by accessing http://chucdb.dei.uc.pt/login.php
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Figure 5.4: Prototype’s architecture and technologies.

Figure 5.5: Prototype’s login page.

presented: ID, Name, Date of Birth, Gender and Age at Diagnosis. The user has to scroll
down in order to see all of them, since the application of filters is not covered. Each patient’s
complete set of clinical data can be consulted by clicking over the patient’s name (Figure 5.7).
Non-existing information is identified by blank spaces in text fields, no filling in radio buttons
or check boxes and a pre-defined option in drop-down list, such as ”No information” (Figure
5.8).

Figure 5.6: Prototype’s list of patients.

The application’s horizontal menu, on the top of the page, contains an array of options,
namely ”List Patients”, ”Add Patient”, ”Edit Patient”, ”Delete Patient” and ”Log Out”. By
clicking in a chosen menu item, the user opens a defined part of the web application.
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(a)

(b)

Figure 5.7: By clicking over the patient’s name (a), his clinical data may be consulted (b)
.

Figure 5.8: Non-existing information is identified in various ways.
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When the option ”Add Patient” is chosen, a web form appears, allowing the user to insert
a new patient and fill his demographics (Figure 5.9), risk factors (Figure 5.10), exams (Figure
5.11) and medical evaluation data (Figure 5.12).

Figure 5.9: Prototype’s demographics page.

Some fields are mandatory (identified with a red asterisk) and are validated to avoid incon-
sistency errors (Figure 5.13). A validation message is shown to inform the user about the cause
of the error.

”Edit Patient” form shows all the patient’s information, which can be altered by the user
(Figure 5.14). Any modification to the data are saved by pressing the ”Save” button.

The system’s final version included several other features that were not initially covered,
such as a reporting tab, filters to query the database, importation tab (for admins) and several
compact forms for data entry, that do not require the user to scroll the page. In the next
section, we will describe these functionalities in greater detail.

5.3.3 Final Version

Considering the requirements gathered from previous phases of the development, and having
in mind the lack of technological experience of the final user (and thus the need to build an
intuitive interface), the prototype was re-built, resulting in this new final version 4. It consists
of a common frame, carrying CHUC’s logo and name, and similarly to the prototype, the
application’s name. It is important to state that the final version of the system’s was developed

4The system’s final version may be explored by accessing http://chucdb.dei.uc.pt/index.php
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Figure 5.10: Prototype’s risk factors form.

(a) (b)

Figure 5.11: Prototype’s exams form: type of exam and findings (a) and conclusions (b).
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Figure 5.12: Prototype’s medical evaluation form.

with a team composed by a biomedical and an informatics engineer. The first contact of the
user with the application is via the login window (Figure 5.15).

After accessing the application, the user can choose one of the application’s views. For
instance, the list of patients can be accessed by clicking the ”Patients” horizontal tab. Each
patient’s ID, Name, Date of Birth, Gender and Age at Diagnosis is shown (Figure 5.16). This
triggers the presentation of filter boxes (by Name or ID), which provides an easier way of finding
a particular patient. A vertical scroll bar was added to the patients’ table, so that the user
doesn’t have to scroll the entire web page, but only the the table. There is also the option of
adding new patients, risk factors, evaluations, exams, treatments or biopsies, by clicking the
left, vertical menu.

As mentioned, there are several types of information that can be entered into the system.
Figure 5.17 illustrates the addition of a medical evaluation. In this case, we can verify the use
of the autocomplete feature, as the user starts to write the patient’s name.

The user might want to examine a certain patient. After selecting the desired patient, a new
page is displayed, revealing the patient’s basic information (Name, Gender, Age at diagnosis
and the type of diagnosis). Coupled with this, a left vertical menu is shown too, enabling the
access of several subcategories of the patient’s information, for instance, risk factors or medical
evaluations (Figure 5.18).

In this final version, a reporting section is also included. The system allows several other
types of data analysis, without the clinicians’ need to understand a single line of code in order
to retrieve the information they desire. A set of the most relevant questions for clinicians
were specified by the CHUC’s team, and pre-defined queries were written, so that the system
produces the desired results at a touch of a button. The reporting section also allows the filtering
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Figure 5.13: Prototype’s demographics page showing a validation error for field ”Name”.

Figure 5.14: Prototype’s editing page.
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Figure 5.15: Interface: login.

Figure 5.16: Interface: list of patients.



5.3. FRAMEWORK 61

Figure 5.17: Interface: evaluation insertion.

Figure 5.18: Interface: patient visualization. Risk factors menu was selected in order to see
this patient subcategory information.
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of patients to be used in each analysis. For instance, the clinician might want to explore the
distribution of alcoholic patients by stage of tumour (Figure 5.19). As another example, Figure
5.20 shows a Kaplan-Meier survival curve with patients’ with alcohol consumption and divided
by stages of tumour. The clinician may also save the presented graphics in .png or .svg formats
by clicking the options ”save png” or ”save svg”, respectively.

Figure 5.19: Reporting tab: alcohol intake per tumour stage.

Data exportation is also enabled. The detailed information regarding the analysis performed
is shown to the user, and he can select the complete table (clicking in the ”Select table” button)
and copy it to, for instance, an Excel file (Figure 5.21).
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Figure 5.20: Reporting tab: Kaplan-Meier survival curves.

Figure 5.21: Reporting tab: The Kaplan-Meier data is shown in the table, containing each
patient’s overall survival in months and survival probability ordered by tumour stage.
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Chapter 6

Profiling Hepatocellular Carcinoma
Patients

In this chapter we describe several clustering methods to profile a database of HCC patients,
with heterogeneous and missing data. We have conducted various analysis (using MATLAB)
to find prognostic groups with significantly different survival characteristics. Furthermore,
we intended to determine whether the generated prognostic groups comprised heterogeneous
populations which could be profiled by the cluster analysis. The following sections report our
approaches and findings.

6.1 Risk Factors analysis

We’ve analysed 23 features related to HCC risk factors. Three of them (age, number of cigar
packages smoked per year and alcohol intake per day) were continuous while the remaining were
categorical (binary). Four features were complete: Gender, Age, Alcohol intake and Cirrhosis.
The remaining all had missing values with 6 features having more than 20% of absent values,
namely alcohol intake per day (55%), staying in endemic countries (23%), smoking (25%),
cigar packages smoked per year (66%) and esophageal varices (31,52%). Overall, the dataset
contained around 14,25% of missing values, with 153 patients having missing observations.

Though some of our dataset’s features’ missing rates were higher than 20%, we’ve decided
not to discard them for several reasons. First of all, some of them can be coherently imputed
according to others related to them. This is the case of cigar packages and alcohol intake per
day, that may be filled according to ”smoking” and ”alcohol intake”. That is, if a certain patient
doesn’t smoke, the number of cigar packages is ”0”. If he does smoke, the number of packages
is filled with the mean of the smokers’ number of cigar packages. The same for alcohol intake
per day. Given the type of data (mostly categorical features), the size of our sample, and since
the remaining missing features rates did not drastically exceed 20% (20%-30%), we’ve preferred
to apply some imputation techniques to our data. Furthermore, clustering binary data is also
more complex than clustering numerical data, and thus we avoided deleting features in order
to keep as much information as possible.

However, we have studied the influence of the four complete feature vectors in overall sur-
vival. In brief, we tried to answer the following question: ”Is it possible to model overall survival
using only the complete feature vectors?”. First, we have studied the correlation between the
features and afterwards, applied the Multivariate Adaptive Regression Splines (MARS) as a re-
gression analysis to model the interactions between the considered features and overall survival.
Section 6.2 discusses our conclusions.

The correlation between the our dataset’s complete feature vectors was analysed for feature

65
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selection. If two features are highly correlated, one of the features in the correlated pair may be
discarded, since the other contains the same (or related) information. Since these four features
are not all of the same type (age at diagnosis is continuous and the remaining are categorical),
we had to use appropriate measures to calculate the correlation between features of different
types. Table 6.1 resumes the most appropriate correlation indexes for different types of features.

Table 6.1: Appropriate correlation coefficients according to the considered pair’s type of fea-
tures.

Feature 2
Feature 1 Interval/Ratio Ordinal Nominal Dichotomous
Interval/Ratio Pearson’s rxy Spearman’s rs Point Biserial rpb
Ordinal Spearman’s rs Spearman’s rs Rank Biserial rrb
Nominal Contingency

C
Cramer’s Phi
φc

Dichotomous Point Biserial rpb Rank Biserial rrb Phi Coefficient
rφ

Accordingly, we have chosen the Phi Coefficient to determine the correlation between the
categorical features (gender, alcohol and cirrhosis) and the Point Biserial to calculate the correl-
ation between age and the remaining categorical features. Phi Coefficient is given by equation
(6.1),

rφ =

√
χ2

N(k − 1)
(6.1)

where N is the total number of subjects, k is the minimum between the number of rows and
columns and χ2 is the Chi-squared test p-value.

The Point Biserial coefficient is calculated according to the formula 6.2:

rp.bis =
M1 −M0

σt
×√pq (6.2)

M1 = the mean score of those in one category of the dichotomised feature;

M0 = the mean score of those scoring in the other category;

p = the proportion scoring in the first category;

q = the proportion scoring in the other category;

σt = the standard deviation of all scores on the continuous features;

Table 6.2 shows the respective correlation coefficients. Since the correlation between features
is considerably low (< 0, 5), none was discarded.
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Table 6.2: Correlation coefficients between the complete feature vectors.

Gender Alcohol Cirrhosis

Gender - - -

Alcohol 0,4421 - -

Cirrhosis 0,2537 0,4587 -

Age 0,1716 0,1624 -0,0015

6.2 Multivariate Adaptive Regression Splines

In univariate regression analysis, the relationship between a certain independent feature and
the target feature is evaluated, without considering all others. Multivariate models ”choose”
the most suitable features for regression, using univariate analysis, and then combine them in
a multivariate analysis. That is, multivariate analysis verifies the relationship between a set of
features and the target features. MARS is a form of multivariate regression analysis. It can
handle both continuous and categorical data, and can be used for classification or regression.
In our case, we will use MARS in the regression mode, since our target feature (survival) is
continuous.

MARS model pronouncedly failed to fit the data, with a coefficient of determination (R2)
of 0,277. Basically, the R2 value is a measure of ”how well” the independent features describe
the target feature. MARS also determines the most appropriate number of basis functions to
model the features’ relations. The basis functions of our final model are:

BF1 = max(0;Age− 41)

BF2 = max(0; 1− Cirrhosis)
BF3 = BF1×max(0;Cirrhosis)

BF4 = BF2×max(0; 74− Age)
BF5 = max(0;Age− 67)×max(0; 1− Cirrhosis)

(6.3)

The final model equation is a combination of all its basis functions:

y = 1010, 2−570, 46×BF1+1622, 9×BF2+556, 86×BF3−347, 99×BF4+411, 56×BF5 (6.4)

According to the model’s basis functions, only Cirrhosis and Age are used to build the
model. When the MARS model uses only these two features, R2 rises to 0,42. Figure 6.1 shows
the model built considering only Cirrhosis and Age at Diagnosis.

The complete set of features is not sufficient to create a reliable model for overall survival.
This results confirmed the need to explore missing data strategies, as we initially expected.
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Figure 6.1: MARS model built only with Cirrhosis and Age at Diagnosis.

6.3 Missing Data imputation

For cigar packages and alcohol intake per day we’ve used mean imputation. Using the dataset
with this imputed features, we also explored other two imputation methods: Logistic Regression
(SI method) and KNN (ML imputation method).

6.3.1 Logistic Regression Imputation

Regression is mostly used to build models where the target feature is continuous. Thus, the
name ”Logistic Regression” is somehow misleading. Logistic Regression is used when the re-
sponse is binary (0/1, Live/Die, Yes/No), and is considered a technique for classification, not
regression. Logistic Regression involves a probabilistic view of classification. Overall, Logistic
Regression maps a point of a multidimensional feature space to a value in the range 0 to 1, using
a logistic function. The logistic model can be interpreted as a probability of class membership
by applying a certain threshold to such probability. That is, the logistic models gives the class
probability of a certain data point. The class assignment depends on the threshold on chooses
to consider.

To impute our absent values, we’ve built a logistic regression model for each feature with
missing values, using only the complete features as predictors. That is, each model was built
with Gender, Age at Diagnosis, Alcohol intake and Cirrhosis. For each feature, we’ve tested
several probability thresholds in a 10-fold crossvalidation. The best threshold value was chosen
to impute the missing observations. Table 6.3 presents the optimal probability threshold (Op-
timal t), average F-measure (Avg F-measure) and error (Error F-measure) for each imputed
categorical feature.



6.3. MISSING DATA IMPUTATION 69

Table 6.3: Logistic Regression imputation results.

Feature Optimal t Avg F-measure Error F-measure

3 0,6 0,6086 0,0169

6 0,7 0,9677 0

7 0,6 1 0

8 0,7 0,8099 0,0024

9 0,5 0,886 0,0883

11 0,6 0,7913 0,003

12 0,5 0,7842 0,0188

14 0,5 0,8602 0,005

15 0,6 1 0

16 0,9 1 0

17 0,7 0,8047 0,0058

18 0,9 0,9375 0

19 1 1 0

20 0,6 0,9286 3, 85× 10−17

21 0,5 0,7018 0,0191

22 0,5 0,8489 0,0214

23 0,5 0,7276 0,0607

6.3.2 KNN Imputation

KNN imputation requires the distances between samples to be calculated, and k nearest neigh-
bours to decide class membership. This assumptions rise many issues in our dataset. First of
all, the choice of a similarity measure that can handle both continuous and categorical features.
Secondly, dealing with missing values in different features, per sample. For instance, a certain
sample may have missing values in features V1 and V17, while another can have values in both
of such features, but have missing observations V6 and V9. Discarding samples with missing
data is impractical for us: we would only keep 12 patients. And keeping only the complete
feature vectors also didn’t seem the best approach. In LR, a model is built according to the
feature to impute, and different thresholds can be applied. In KNN imputation, the distances
between samples in the four complete feature vectors previously considered are always the same.

Here we describe a different approach. We implemented KNN in order to consider all the
samples and features. We have used an distance that handles both continuous and categorical
features, Heterogeneous Euclidean-Overlap Metric (HEOM), explained in more detail in the
next section. In this metric, unknown values are not ignored in distance calculation. The
more missing values a certain sample has, the higher its distance will be regarding all others.
Usually, in KNN classification, a crossvalidation (or other sampling technique) is used in order to
evaluate the model’s performance, and choose k according to the best accuracy of F-measure.
However, this cannot be applied to our approach. Different samples have missing data in
different features, and thus, a certain k might achieve great results for one particular fold but
work terribly in another. Thus, we’ve opted to fill the absent values according to the closest
neighbour (k=1). Moreover, our objective is to keep the dataset’s variability, bearing in mind
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that this is not an ”usual classification approach”. In order to build patients’ personalization
models, homogenizing the data may not be the best choice.

6.3.3 Conclusions

The MARS model was again evaluated with LR and KNN imputation. The results are quite
interesting. For LR, R2 did not significantly changed (0,4050). This was expected, since data
imputation was only based in the complete set of features, that we had already tested with
MARS. However, for KNN, R2 rose up to 0,4751. This increase in the determination coefficient
indicates that our KNN imputation approach resulted in a better fitness in the overall survival
method. The final model created for both imputation approaches included the same features:
Age at Diagnosis, Symptoms, quantity of alcohol intake per day, HBcAb, Anti-VHC and portal
hypertension. The results agree with the main HCC risk factors, presented in BCLC guidelines.
KNN imputation has proven to be a better approach than LR, since it maintains as much as
possible, the variations in data. Accordingly, we have proceed with a clustering analysis of our
data based in KNN imputation, in order to find prognostic profiles for HCC patients.

6.3.4 Agglomerative Clustering with Heterogeneous Data

Computing distances between two examples is a crucial step for many data mining tasks. As
mentioned in Section 6.3.2, distance-based algorithms, such as KNN, manage distances as a
inner step. Computing the proximity between two instances on the basis of continuous data is a
widely common task. A variety of functions are available for such uses, including the Euclidean,
Squared-Euclidean, Minkowsky, Mahalanobis and Chebychev. However, none of these functions
appropriately handle categorical input attributes. For categorical features, the simplest measure
is overlap. Overlap is a similarity measure that increases proportionality according to the
number of attributes in the two samples that match. Hamming and Jaccard are other two widely
known functions to deal with categorical data. Heterogeneous data contain both continuous
and categorical attributes. In these cases, mixed distances are the most appropriate to calculate
distances between instances.

Wilson and Martinez [84] performed a detailed study of heterogeneous distance functions.
The measure in their study are based upon a supervised approach where each data instance
has binary information in addition with a set of continuous features. In our study, we will use
their distance function, HEOM, described by equation (6.5).

HEOM(x, y) =

√√√√ n∑
a=1

da(xa, ya)2 (6.5)

da(x, y) =


1 , if x or y is unknown
overlap(x, y) , if a is nominal
m diffa(x, y) , otherwise

overlap(x, y) =

{
0 , if x = y
1 , otherwise

m diffa(x, y) =
|x− y|
rangea
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rangea = maxa −mina

a is the i-th feature, in the n-dimensional feature space. x and y are feature vectors.

Overall, we have used 6 different approaches:

HEOM: Heterogeneous Euclidean-Overlap Metric, by Wilson and Martinez (equation (6.5));

HLND: Heterogeneous Linear-Nominal Distance, a heterogeneous distance function similar to
HEOM, that reduces the effect of extreme values (equation (6.6));

Discretizing + Hamming distance (DH): We have coded the continuous features into
dummies and calculated the distances between instances with the Hamming distance;

Discretizing + Jaccard distance (DJ): Discretizing the continuous features and applying
the Jaccard distance;

Normalizing + Euclidean distance (NE): The continuous features were normalized in the
range 0-1 and the euclidean distance was computed between instances;

Gower distance: Gower’s Similarity Coefficient, described by equation (6.7). Sijk is 1 -
m diffijk(i, j, k) for ordinal and continuous features, overlap for nominal features and
Jaccard’s for binary features;

HLND(xa, ya) =

{
linear(xa, ya) , if a is continuous
overlap(xa, ya) , if a is nominal

(6.6)

linear(xa, ya) =
|xa − ya|

4σa

overlap(xa, ya)) =

{
1 , if xa 6= ya
0 , if xa = ya

Sij =

∑n

k
wijkSijk∑n

k
wijk

(6.7)

where Sijk denotes the contribution provided by the k-th feature, and wijk is usually 1 or 0
depending if the comparison is valid or not for the k-th feature.

6.3.5 Prognostic Groups

Each distance metric above was used in a hierarchical clustering in order to find different patient
profiles. We are trying to find hidden structures in unlabelled data. In this approach, we have
performed agglomerative clustering. Each pattern is considered as a cluster at the start of
the process, and pairs of clusters are merged according to their distance. Commonly used
linkage metrics include single linkage (SL), complete linkage (CL) and average linkage (AL).
We have used those three and others, such as WPGMA (weighted average distance), centroid
(unweighted center of mass distance) and ward’s (inner squared distance between clusters).
Besides an appropriate distance metric, hierarchical clustering algorithms require the desired
number of clusters. Finding this optimal clustering solution is not a trivial task. In healthcare
contexts, clustering solutions often depends on the clinicians’ domain expertise. In our approach
we have used the cophenetic correlation coefficient to compare the results of clustering data
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using different distance calculation methods (Table 6.4). The results were also analysed by
CHUC’s team, to evaluate the coherence of our conclusions.

Table 6.4: Results of the explored approaches.

Approach Clusters Linkage Cophenetic coefficient
HEOM 2 AL 0,9475
HEOM 2 CL 0,9209
HEOM 2 WPGMA 0,9220
HLND 2 AL 0,9469
HLND 2 CL 0,9276
HLND 2 WPGMA 0,9274
HLND 4 WPGMA 0,9274
HLND 2 SL 0,9129

DH 2 AL 0,8978
DH 3 AL 0,8978
DH 3 CL 0,8630
DH 2 WPGMA 0,8483
DJ 2 AL 0,8281
DJ 2 CL 0,8765
DJ 3 CL 0,8765
DJ 3 WPGMA 0,9003

Gower 2 SL 0,9190
Gower 2 CL 0,7877

NE 4 AL 0,9275
NE 3 CL 0,9209
NE 3 ward 0,7196

Finding the most appropriate distance metric to determine HCC profiles was an iterative
task, always having the validation of the CHUC’s team. According to our results, 2 main
profiles were found. We considered HEOM + AL as the best combination for profiling HCC
patients (Figure 6.2). Table 6.5 presents our Prognostic Groups (PG) characterization.

Figure 6.2: HEOM + AL dendogram showing a clear data division in two groups.
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Table 6.5: Prognostic groups’ characterization.

Prognostic
Group

Characterization

Prognostic
Group 1 (PG1)

PG1 patients are mostly males. Age: 58 − 76 years. 60% of them
have symptoms of HCC when diagnosed, 80% are alcoholic (they con-
sume about 95 grams of alcohol per day). They are mostly HBsAg and
HBcAb negative and all are HBeAg negative. Almost all of them are
Anti-VHC positive. 30% have Cirrhosis. Most PG1 are smokers (they
smoke about 24 cigar packs per day). Most of them are negative for
Diabetes, Obesity, Hemochromatosis, HTA, IRC, HIV and NASH, but
usually have esophageal varices, splenomegaly and portal hyperthen-
sion.

Prognostic
Group 2 (PG2)

PG2 patients are mostly males. Age: 45 − 81 years. They usually
have symptomatic HCCs, and no not abuse alcohol (about 5 grams per
year). They are mostly HBsAg, HBcAb and HBeAg negative. Half of
them are Anti-VHC positive and they usually do not have Cirrhosis.
They are light smokers (about 7 cigar packs per day). Most of them
are negative for Diabetes, Obesity, Hemochromatosis, HTA, IRC, HIV
and NASH esophageal varices, splenomegaly and portal hyperthension.

Although the groups present different characteristics, their overall survival is not signific-
antly different, according to Mann-Withney’s test (p−value = 0, 6157). The Kaplan Meier [88]
plots for 1-year survival and 3-year survival are presented in Figures 6.3 and 6.4.

(a) (b)

Figure 6.3: Kaplan-Meier survival curves for 1-year survival: prognostic group 1 (a) and pro-
gnostic group 2 (b).

According to our analysis, although a patient can be associated with a certain prognostic
group, according to his risk factors characterization, this is not sufficient to make any assump-
tions regarding his overall survival. Heterogeneous data is more complicated to deal with than
continuous data, and this unavoidably influences our analysis. The variation between patients
cannot be expressed in categorical data, in particular when high percentages of missing data
are present in the dataset. This led us to pursue a different approach: Clustering Laboratory
Tests. Our findings are presented in Section 6.4.
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(a) (b)

Figure 6.4: Kaplan Meier survival curves for 3-year survival: prognostic group 1 (a) and pro-
gnostic group 2 (b).

6.4 Laboratory Tests analysis

Partitioning Clustering

Our work encompasses several segments of patient’s follow-up data. To simplify, we’ve divided
them in ”clinical evaluations”. Accordingly, each one of these segments contain the pathological
information required to make an assessment of patient’s conditions, so that an appropriate
treatment could be applied. That is, each ”clinical evaluation” occurs before the patient engages
a new stage of treatment. As they advance in treatment, some patients die. Consequently, the
number of available patients to study decreases as clinical evaluations progress, thus reducing
our statistical power as regards survival prediction.

The first clinical evaluation is composed of 23 clinical features (heterogenous data). Three
features are ordered, while the remaining are numeric. All of these features contained missing
values. Particularly, 4 of them contained more than 20% of missing values, causing the dataset
to have over 10% of missing values, with 116 patients having missing information in their
records. Therefore, these 4 pronouncedly incomplete features were removed from the study.
This procedure resulted in a considerable decrease of the dataset’s missing data percentage,
becoming about 3%, with only 42 patients having absent observations in some features.

The characteristics of this dataset substantially simplify our personalization studies. Ordered
features may be converted to numeric, transforming the ordered attributes in numeric while
preserving their natural order. The three ordered features correspond to required features
for Performace Status (PS) and Child Pugh’s (CP) classification, and thus they are codified
accordingly to their respective scores for PS and CP calculation.

Based on the final 19 considered features, two clustering algorithms were used - k-means
and Partition Around Medoids (PAM). Unlike the previous clustering, there is no need to use
a mixed distance to compute similarity between the individuals. We can take advantage of
well-known similarity measures such as Euclidean or Cityblock distances.

6.4.1 Data Preprocessing

Good data preparation is the key to produce valid and reliable models. Normalization is one
of the steps often performed in data preprocessing, when dealing with numeric features. Nor-
malization allows more robust comparisons of distances between samples or subjects, since the
differences in the ranges of the features are minimized. There are several types of normalization
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approaches. We chose to compare z-score with min-max normalization, given by equations (6.8)
and (6.9), respectively.

zi =
xi − µ
σ

(6.8)

yi =
xi −mina

maxa −mina
(6.9)

In equation (6.8), z is the standard score, µ is the mean of all samples for a certain feature
and σ is the standard deviation of such feature as well. Equation (6.9) fits each data point in
a specific range: between the maximum (maxa) and minimum (mina) of a given feature a.

6.4.2 k-means results

We performed 50 runs of k-means, where the initial centroids were randomly chosen, and con-
sidering several distance metrics. The number of clusters is not known prior to the algorithms
implementation, as thus a clustering validity index may be used to find the optimal number
of clusters for the dataset. The algorithm was run between 2 and 10 clusters to achieve the
optimal k, 50 times. After each iteration, Silhouette values were computed in order to assess the
group distribution. The best Silhouette values were obtain by min-max normalization, consid-
ering the Squared Euclidean distance for both k-means distance and Silhouette’s dissimilarity
computation (Table 6.6).

Table 6.6: Best average Silhouette results after 50 runs of k-means clustering for each of the
considered combinations of clustering metrics and Silhouette’s inter-point distances.

k-means Silhouette Number Averaged
distance metric inter-point distance of Clusters Silhouette Results

sqEuclidean Euclidean 2 0,1927
sqEuclidean sqEuclidean 2 0,3220
sqEuclidean cityblock 2 0,2085

cityblock Euclidean 2 0,1671
cityblock sqEuclidean 2 0,2691
cityblock cityblock 2 0,1899

As can be seen, Silhouette gives the best results when 2 clusters are considered. On further
inspection, we computed the Silhouette plot to visually evaluate cluster assessment for squared
euclidean distance and for 2 clusters in particular (Figure 6.5).

Besides Silhouette values, two other clustering validation indices were explored, namely
Calinski and Rand index. Again, 50 k-means iterations were performed, for k ranging from 2 to
10 clusters. The optimum number of clusters estimated by each index strengthens our previous
conclusions, as can be seen in Figure 6.6.
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(a) (b)

Figure 6.5: Visual evaluation of Silhouette results: (a) Silhouette values ranging 2 to 10 cluster,
considering sqEuclidean distance for both k-means and as Silhouette inter-point distance. (b)
Silhouette plot for k = 2 clusters, considering sqEuclidean distance for both k-means and
Silhouette.

Figure 6.6: Validity indices calculated for k-means: (a) Calinski index and (b) Rand index.

(a) (b)
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6.4.3 PAM results

With the same procedure (50 iterations for k ranging between 2 to 10 clusters and using several
distance metrics), PAM algorithm was also run. Again, Silhouette values were inspected to
evaluate cluster assessment. Table 6.7 and Figures 6.7 and 6.8 resume our conclusions: 2 is the
appropriate number of clusters for this dataset.

Table 6.7: Best average Silhouette results after 50 runs of PAM clustering for each of the
considered combinations of clustering metrics and Silhouette’s inter-point distances.

PAM Silhouette Number Averaged
distance metric inter-point distance of Clusters Silhouette Results

seuclidean Euclidean 2 0,1493
seuclidean sqEuclidean 2 0,2499
seuclidean cityblock 2 0,1845
cityblock Euclidean 2 0,1566
cityblock sqEuclidean 2 0,2269
cityblock cityblock 2 0,1563

(a) (b)

Figure 6.7: Visual evaluation of Silhouette results: (a) Silhouette values ranging 2 to 10 cluster,
considering sqEuclidean distance for both PAM and Silhouette inter-point distance. (b) Sil-
houette plot for k = 2 clusters, considering sqEuclidean distance for both PAM and Silhouette.

6.4.4 Principal Components Analysis (PCA)

To enable visualization, the original data space (19 features) was transformed by principal
component analysis (PCA), and the points were plotted at their projected position against
the two (and three) principal components axes (Figures 6.9 and 6.10). Such a plot allows
the visualization of the clusters, that are ”spread out” as much as possible according to the
components considered.
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(a) (b)

Figure 6.8: Validity indices calculated for PAM: (a) Calinski index and (b) Rand index.

(a) (b)

Figure 6.9: Biplots of clusters projected on the first and second principal component axes for
(a) k-means clustering and (b) PAM clustering.

(a) (b)

Figure 6.10: Plots of clusters projected on the first, second and third principal component axes
for (a) k-means clustering and (b) PAM clustering.
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From these plots it can be seen that both methods split the clusters similarly: one in the
left side of the plot and the other on the right. However, k-means clusters are more compact
and better separated than PAM’s clusters, which is in agreement with the results of the cluster
validation indexes, where k-means indices are higher. It is important to state that we should
choose our clustering method based on the validation results rather than the PCA visualization,
given that the two/three principal components do not retain enough information about the data,
as shown by Table 6.8.

Table 6.8: PCA results. The first two components only retain about 39% of the information,
while the first three retain about 50%.

Component Eigenvalues Cumulative Variance Percentage (%)
1 0,1838 22,9234
2 0,1291 39,0319
3 0,0873 49,9259
4 0,0707 58,7431
5 0,0496 64,9344
6 0,0464 70,7198
7 0,0412 75,8625
8 0,0332 80,0089
9 0,0285 93,5599
10 0,0257 86,7605
11 0,0216 89,4535
12 0,0172 91,5945
13 0,0163 93,6245
14 0,0129 95,2309
15 0,012 96,7302
16 0,0093 97,8891
17 0,0084 98,9404
18 0,0049 99,5556
19 0,0036 100

According to the Kaiser criterion [74], the components with eigenvalues above 1 should be
kept. This is impracticable in our case, since none of them is above such value. Scree Test [74]
suggests discarding the eigenvalues starting where the Scree plot levels off, which in this case,
would amount to retain all the eigenvalues (Figure 6.11).

From our experiments we found a slight difference between the this two similar methods,
k-means and PAM. Looking at the validity indices values, we found that k-means suggested a
clear classification in two groups, although theoretically PAM is a more robust method. Thus,
we have chosen k-means as our clustering approach for further work.

6.5 Clusters characterization

k-means clustering was performed 2000 times to assess group assignment for each data point.
The resulted in a division into two groups, including 78 patients in Group 1 (G1) and 87 in
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Figure 6.11: Scree Plot: plot of the eigenvalues for our Laboratory Test features.

Group 2 (G2). It is important to examine whether the overall survival in this two groups is
statistically significant. In order to do so, the overall survival was subjected to some statistical
tests. First of all, it is essential to know if overall survival (our dependent feature) is normally
distributed. If so, parametric tests can be applied. On the contrary, if the feature does not
meet the normality criterion, it can only be applied non-parametric tests. According to the
Kolmogorov-Smirnov test [86], the overall survival is not normally distributed at an α = 0, 05%
significance level, with p-value = 6, 2394×10−9. For visual assessment, the histogram of overall
survival and its empirical cumulative distribution function (ecdf) were plotted, as shown in
Figure 6.12.

(a) (b)

Figure 6.12: Histogram of overall survival, in days (a) and a plot of overall survival ecdf against
a normal cumulative distribution function around the same mean and standard deviation.

Since the overall survival does not follow the normal distribution, the most appropriate test
to be applied is Wilcoxon-Mann-Whitney’s [86], to see if the two clusters shown statistically
significant differences in overall survival (Figure 6.13 and Table 6.9). According to this test,
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Figure 6.13: Overall survival box-plot for both groups.

there are significant differences in the overall survival of these two groups, with p-value =
8, 2050× 10−11.

Table 6.9: Mean and Standard deviation of the both groups.

Mean (days) Standard Deviation (days)
Group 1 312,7 464,8
Group 2 1096,4 1252,3

The Kaplan-Meier curves for 1-year survival and 3-years survival for both groups are shown
in Figure 6.14.

It’s easily perceived that the groups show a substantial difference at both 1-year and 3-years
survival estimates. Group 1 generally has a lower probability of survival than Group 2, when
the same intervals are considered. For instance, regarding the 6 month period in the 1-year
survival interval. The probability that patients in Group 1 live more than 6 months is about
37% while in patients of Group 2, the same probability rises to 57%. Another example would
be to consider the time of survival higher that 30 months (3-year survival curve): patients in
Group 1 have less than 20% estimated probability of survival, while patients in Group 2 have
an estimated probability of survival over 55%. This can be explained relating the groups to the
tumour stages. In fact, as explained by Tables 6.10 and 6.11, G1 includes almost every patient
in terminal stage (D), and a good percentage of patients in advanced stage (C). In turn G2
consists mostly in patients in early stage (A) and intermediate stage (B), despite having some
cases of stage C. As stated in the BCLC guidelines, stages A and B are expected to have a
greater survival, since patients are in early stages of the disease. Thus, the results agree with
the expected ones, considering tumour staging.

Table 6.10: Distribution of tumour stages present in G1.

Tumour Stage Number of Patients Percentage (%)
A 1 1,30
B 6 7,79
C 33 42,86
D 36 46,75
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(a) (b)

(c) (d)

Figure 6.14: Kaplan-Meier curves for both groups at 1-year survival - Group 1 (a) and Group
2 (b) and at 3-year survival - Group 1 (c) and Group 2 (d).
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Table 6.11: Distribution of tumour stages present in G2.

tumour Stage Number of Patients Percentage (%)
A 28 33,73
B 33 39,76
C 20 24,10
D 1 1,20

In recent researches, it has been suggested that the BCLC intermediate stage (BCLC-B)
should be further divided, since its definition is rather broad and includes a heterogeneous
patient population according to tumour extension and liver function [87]. Our results suggest
that there is also some heterogeneity in BCLC-C patients.

After concluded that the overall survival is different between the achieved groups, it is
fundamental to carry out a detailed examination of how these clusters relate to clinical factors.
Thus, we conducted Kolmogorov-Smirnov tests for all the considered 19 features, applying the
t-student test to those that followed the normal distribution and the Wilcoxon-Mann-Whitney’s
test for those which did not. The results are presented in Table 6.12.

Table 6.12: Kolmogorov-Smirnov test for the dataset features.

Feature Kolmogorov-Smirnov (p-value)
PS (Performance Status) 8, 7669× 10−13

Encephalopathy 1, 2751× 10−37

Ascites 7, 6678× 10−24

INR (Renal Impairement) 1, 1051× 10−4

AFP (Alpha Fetoprotein) 1, 3025× 10−29

Hemoglobin 6, 0014× 10−1

VGM (Average Globular Volume) 6, 6328× 10−1

Leukocytes 7, 2312× 10−29

Platelets 2, 2035× 10−3

Albumin 2, 9314× 10−1

Total Bilirubin 7, 7710× 10−14

ALT (Alanine Amino-Transferase) 9, 4971× 10−6

AST (Aspartate Amino-Transferase) 4, 0045× 10−7

GGT (Gamma Glutamyl-Transferase) 4, 6849× 10−5

FA (Alkaline Phosphatase) 1, 0671× 10−5

PT (Total Proteins) 2, 5283× 10−27

Creatinine 1, 6011× 10−11

Number of Nodules 1, 5794× 10−9

Major Dimension 2, 6241× 10−3

As can be seen, Hemoglobin, VGM and Albumin fail to reject the null hypothesis that the
feature comes from a normal distribution. So, for these features, t-student test is the most
correct in order to perceive if they are good features to distinguish between the two groups
(Table 6.13).
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Table 6.13: Mann-Whitney’s and t-student’s test results for the 19 considered features.

Feature Wilcoxon-Mann-Whitney (p-value) t-student (p-value)
PS 1, 3332× 10−20 -
Encephalopathy 1, 0000× 10−3 -
Ascites 2, 6340× 10−15 -
INR 4, 3000× 10−3 -
AFP 7, 0000× 10−4 -
Hemoglobin - 1, 1002× 10−7

VGM - 6, 0060× 10−1

Leucocytes 1, 1120× 10−1 -
Platelets 6, 5830× 10−1 -
Albumin - 1, 1143× 10−12

Total Bil. 3, 2602× 10−5 -
ALT 5, 0650× 10−1 -
AST 2, 9000× 10−3 -
GGT 4, 7000× 10−3 -
FA 6, 9192× 10−6 -
PT 8, 9798× 10−6 -
Creatinine 2, 5720× 10−1 -
Number of Nodules 2, 7707× 10−5 -
Major Dimension 1, 4800× 10−2 -
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Smaller p-values indicate higher discriminative power. According to Mann-Whitney’s and
t-student’s test results, PS, Ascites, Albumin and Hemoglobin are the most significant features
to distinguish between G1 and G2 (Figure 6.15).

(a) (b)

(c) (d)

Figure 6.15: Box-plots for the four most discriminative features, namely PS (a), Ascites (b),
Albumin (c) and Hemoglobin (d).

These results are in accordance with the BCLC staging system (Section 2.2). Regarding PS,
stages A-C are classified as those ranging from 0-2. It is important to notice that stage A and
B have PS 0, while C has PS 1 or 2 and D has PS 2 or higher. This is an interesting observation
since it may the division of stage C patients in the two groups. Ascites and Albumin are two
of the factors considered in Child Pugh’s score (Section 2.1.2) calculation, which along with PS
defines the patients stage of cancer. A-C stages have CP - A or B (in terms of score), while
stage D includes the patients with CP - C. Again, this shows that the staging criteria may not
consider the heterogeneity present in patients in the same stage. The ”advantage” in dealing
with the ”raw features”, so to speak, is that we are able to study the impact of such features,
rather than study only those already used to define the BCLC staging system. Hemoglobin is
one of such features. Anemia is a common complication of chronic liver diseases, and a frequent
side effect associated with cancer. Normal values range from 12-18 mg/dL, and as we can see
from Figure 6.15 (d), G2 has lower ranges, as seems logical.

Our clustering results suggest that stage C patients are somehow heterogeneous. Similarly
to the study conducted in the previous section, we’ve examined the features that might explain
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the reason why these patients have been placed in different groups. Tables 6.14 and 6.15 show
the Kolmogorov-Smirnov’s and Mann-Whitney’s or t-student’s tests according to the criteria
applied above.

Table 6.14: Kolmogorov-Smirnov test for all features, considering only the stage C patients.

Feature Kolmogorov-Smirnov (p-value)
PS 3, 3846× 10−3

Encefalopathy 3, 8381× 10−14

Ascites 8, 3060× 10−9

INR 2, 8494× 10−3

AFP 6, 8028× 10−9

Hemoglobin 8, 3737× 10−1

VGM 9, 3145× 10−1

Leucocytes 4, 2127× 10−8

Platelets 8, 3394× 10−2

Albumin 8, 2605× 10−1

Total Bil 6, 6037× 10−3

ALT 4, 1136× 10−2

AST 2, 5582× 10−2

GGT 5, 3700× 10−2

FA 2, 2391× 10−2

PT 1, 7418× 10−10

Creatinine 9, 6001× 10−2

Number of Nodules 5, 9828× 10−6

Major Dimension 5, 7275× 10−2

Table 6.15: Mann-Whitney’s and t-student’s test results for all the features considering only
the stage C patients.

Feature Wilcoxon-Mann-Whitney (p-value) t-student (p-value)
PS 1, 4025× 10−2 -
Encefalopathy 4, 5956× 10−1 -
Ascites 1, 5827× 10−4 -
INR 3, 3980× 10−1 -
AFP 1, 2775× 10−1 -
Hemoglobin - 1, 5816× 10−1

VGM - 5, 9043× 10−1

Leucocytes 9, 4900× 10−2 -
Platelets - 9, 7334× 10−1

Albumin - 3, 5729× 10−3

Total Bil 2, 0164× 10−1 -
ALT 1, 0029× 10−1 -
AST 1, 3572× 10−2 -
GGT - 2, 4225× 10−2

FA 1, 8952× 10−1 -
PT 1, 2714× 10−1 -
Creatinine - 7, 2624× 10−1

Number of Nodules 2, 4395× 10−3 -
Major Dimension - 6, 4405× 10−1
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Box-plots for the most interesting features are shown in Figure 6.16. Again, PS, Ascites and
Albumin are found between the four most discriminative features. As regards these features
related to liver function, BCLC stage C is defined as patients with PS 1 or 2 and CP A or B,
which itself encompass heterogeneous patients. Thus, it seems logical that these features are
considered discriminative, as, according to our data and results, there can be a set of more
specific rules to characterize those patients, creating a new subdivision. Besides PS and CP,
stage C consists in patients with multinodular tumours, portal invasion, tumours in regional
lymph nodes and metastasis in distant lymph nodes or other organs. This is ”the rule” that
correctly classifies the majority of patients according to the BCLC system. However, it does not
account for every combination: some patients may not verify the rule (or may verify only in part)
and furthermore, this staging system does not consider the rest of the features in our study. An
interesting results is that the Number of Nodules suggests a good group discrimination. This
suggests that some patients in stage C may not have multinodular tumours, and they should
be treated accordingly, with a set of personalized ”rules”. In fact, the mean number of nodules
in G2 is 2,5 while the mean in G1 is 4 (multinodular).

(a) (b)

(c) (d)

Figure 6.16: Box-plots for the four most discriminative features, namely PS (a), Ascites (b),
Albumin (c) and Number of Nodules (d).

To evaluate the differences between the overall survival in these two groups, we’ve per-
formed Kolmogorov-Smirnov normality test to stage C patients’ survival (p-value = 0,0025),
followed by Wilcoxon-Mann-Whitney’s, p-value = 0,1550. The returned p-value indicates that
Mann-Whitney’s fails to reject the null hypothesis that the two samples come from the same
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distribution both at a 1 and 5% significance level. Figure 6.17 and Table 6.16 present the
summary statistics for each stage C group.

Figure 6.17: Overall survival box-plot for stage C patients in both groups.

Table 6.16: Mean and Standard deviation for stage C patients in both groups.

Mean (days) Standard Deviation (days)
Stage C, Group 1 198,2 217,9
Stage C, Group 2 493,5 658,4

Although the Mann-Whitney’s test did not return a significant difference between the stage
C groups, G2 patients generally have a better prognosis, as shown by the Kaplan-Meier plots
in Figure 6.18.

To confirm our findings, we’ve further inspected the distribution of stage C patients with
portal invasion, portal vein tumours and metastasis across both groups. According to the
BCLC system, the presence of these three factors are indicative of stage C tumours.

Table 6.17: Comparing the distribution of portal invasion, portal vein tumours and metastases
of G1 ad G2.

Portal Invasion Portal Vein Tumour Metastases

G1
Absent 51,52% 60,61% 33,33%
Present 48,48% 39,39% 66,67%

G2
Absent 65,00% 63,19% 35,00%
Present 35,00% 36,84% 65,00%

The distribution is very similar between both groups, which clearly indicates that the het-
erogeneity between these stage C patients relies on the difference between the patients’ general
health (Performance Status) and liver function.

According to the BCLC staging systems, the adequate treatment for stage C patients is
Sorafenib. We’ve also examined the combination of treatments performed by stage C patients
in G1 and G2. Tables 6.18, 6.19 and 6.20 resume the results.
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(a) (b)

(c) (d)

Figure 6.18: Kaplan-Meier curves for stage C patients divided in G1 and G2, at 1-year survival
- (a) and (b) - and 3-years survival - (c) and (d).
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Table 6.18: BCLC treatments codification. RF: radiofrequency ablation, PEI: percitaneous
ethanol injection.

Treatment Description

0 No treatment
1 Liver Transplantation
2 Resection
3 PEI
4 RF
5 Microwaves ablation
6 Chemoembolization
7 Sorafenib
8 Supportive Care
9 Clinical Trials
10 Waiting list for transplantation

Table 6.19: Treatments performed by stage C patients in G1.

Stage C, G1

Treatment Code Number of Cases

467 1
8 13
7 2
6 3
1 3

878 1
61 1
4 1
42 1
67 2
62 1
268 1
47 1
287 1
2 1
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Table 6.20: Treatments performed by stage C patients in G2.

Stage C, G2

Treatment Code Number of Cases

41 1
7 5
2 1
67 1
8 5
47 1
78 1

46478 1
4 1
27 1
48 1

Unknown 1

Considering the patients’ follow-up data, we’ve constructed a set of codes which identify
the sequence of treatments performed by each patient. For instance, if a certain patient’s
treatment code is 67, this means the patients has undergone a Chemoembolization, followed
by Sorafenib. Examining Tables 6.19 and 6.20, becomes clear that not every stage C patient is
treated only with Sorafenib. Some undergo treatments for earlier stages first, other are never
treated with Sorafenib. However, it is noticeable a difference between treatments performed
on stage C patients in G1 and G2. Almost half of C-G1 patients are treated in the first place
with Supportive Care, not experiencing other earlier stage alternatives. The number of cases in
C-G1 that undergo Sorafenib is also considerably lower than C-G2, which explains why these
patients have been considered to be closer to stage D cases.

6.6 Classification Task

In order to integrate our findings in the system’s AI module, we have developed some clas-
sification approaches. Every time the system is given a new clinical case, it should generate
some recommendations based on the patient’s data. This could be achieved by performing
k-means clustering with the new complete set of cases, retrieving the best number of clusters
and produce recommendation based on the new patient’s cluster. However, this would be com-
putationally expensive and time consuming, since the complete set of data had to be analysed
each time a new patient was entered into the system. According to our previous conclusions,
CHUC’s patients can be divide into two main groups: G1 and G2. Thus, our approach consists
in studying classification techniques that can accurately predict a new patients group, without
the need to evaluate all the data. We have two main objectives: reduce data dimensionality to
decrease computation time and finding a model that accurately classifies our data.

In Section 6.4.4, we have studied the dataset’s principal components. Our cases suggested
to be linearly separable, and thus our first approach was to explore the Fisher Linear Dis-
criminant with both PCA and LDA (Linear Discriminat Analysis). We’ve performed a 10-fold
crossvalidation and bootstrap sampling (20 bootstraps with 100 samples each), using an in-
creasing number of projections (Tables C.1 to C.4). Table 6.21 summarizes the classification
results. We have chosen to rely on the 10-fold-crossvalidation experiences, since bootstrap uses
resampling, which may not give accurate results in our case, given the dataset’s size.
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Table 6.21: Classification results for Fisher Classifier, regarding PCA and LDA.

Accuracy (%) F-measure AUC
Fisher PCA (3D) 98,7868 0,9867 0,8847
Fisher LDA (3D) 98,2353 0,9816 0,8806

The best results are given for 3 projections, considering both PCA and LDA results. Fig-
ure 6.19 illustrates Fisher’s class assignment for PCA (3D) and LDA (3D), respectively. PCA
outperforms LDA in terms of Accuracy, F-measure and AUC, though the results do not pro-
nouncedly differ. Besides Fisher Classifier, we have studied KNN and Bayes Classifier. KNN is
an easy concept to grasp for clinicians, and thus our choice. However, KNN is a lazy learner,
that is, it does not perform any generalization when creating the predictive model. If a new
patient is given to the system, KNN needs to evaluate all the data, in order to classify this new
instance. KNN results for different k-neighbours and sampling methods (k-fold and bootstrap)
are shown in Tables C.5 and C.6. Table 6.22 resumes the results found for KNN considering
all the data, but also considering only 3D feature spaces, given by PCA and LDA, respectively.
The best KNN results, in both cases (all data and 3D feature spaces) are given for k=1 and
k=2 neighbours. This is not a surprising results, since the dataset’s missing values was imputed
according to the nearest neighbour for a given instance. Table 6.23 shows the same results for
Bayes classifier.

(a)

(b)

Figure 6.19: Fisher’s separability criteria for (a) 3D PCA and (b) 3D LDA.

Table 6.22: KNN classification results.

Accuracy (%) F-measure AUC
KNN (k=1) 90,3162 0,8848 0,8980
KNN (k=2) 90,9559 0,8939 0,9068

KNN PCA (3D, k=1) 95,0319 0,9473 0,9491

KNN LDA (3D, k=1) 98,1569 0,9808 0,9819
KNN PCA (3D, k=2) 95,7255 0,9523 0,9554
KNN LDA (3D, k=2) 98,1619 0,9808 0,9826
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Table 6.23: Bayes classification results.

Accuracy (%) F-measure AUC
Bayes 90,2794 0,8945 0,8505

Bayes PCA (3D) 96,3235 0,9640 0,8785
Bayes LDA (3D) 96,9485 0,9725 0,8749

According to our results, a patient’s clinical data can be reduced to 3D feature vectors,
without the prejudice of decreasing the classification performance. The best results are given for
Fisher’s classifier considering 3 principal components. A reduced dimensional space with only
3 components requires much less computational effort and allows our system to be faster and
more efficient. PCA works great with Fisher Discriminant Analysis, since it allies dimensionality
reduction to feature discrimination and data classification. Considering these results, we have
chosen the combination between PCA and Fisher Classifier to integrate our AI module and
assess a new patient’s class (group).

6.7 Conclusions

In this chapter, we have explored several clustering approaches to profile a database of Hepato-
cellular Carcinoma patients, as a basis to address two questions: first, whether there naturally
occurring clusters map onto different prognostic and survival characteristics. Second, whether
prognostic groups comprised heterogeneous populations which can be profiled by cluster ana-
lysis.

In the first part of our study, we have conducted a clustering approach to the patients’ set
of risk factors, with heterogeneous and missing data. We have used statistical and machine
learning techniques (Mean imputation coupled with Logistic Regression imputation or KNN
imputation) to fill absent values in patients’ records. MARS algorithm was used to access the
need and quality of the chosen imputation techniques: KNN outperformed Logistic Regression
imputation. Risk factors data consists in both categorical and continuous features. To perform
hierarchical clustering, different similarity measures were tested. HEOM with average linkage
distance produced the best results, profiling HCC patients in two distinct groups. However,
the groups’ overall survival was not statistically different.

This led us to explore a different approach: clustering continuous data. Thus, the second
part of our study consisted in partitioning clustering of the patients Laboratory Results. KNN
imputation was used to impute missing values. k-means and PAM were used to determine
natural clusters in the data. Several clustering solutions were evaluated according to well-known
cluster validity indexes, namely Silhouette, Calinski and Rand index. PCA enabled clustering
solutions visualization. k-means has proven to be the best clustering solution, with a division
in two groups. The prognostic groups, G1 and G2, were found to have statistically different
survival curves, as shown by Kaplan-Meier survival analysis. Stage C patients were divided in
G1 and G2, which suggested some heterogeneity between these cases. The discriminant features
responsible for stage C division were accessed. These features mainly corresponded to features
related to liver function status. The treatments performed for both C groups were studied,
which confirmed the difference in prognosis in these two types of stage C patients. Finally,
a classification task was performed in order to determine a computationally efficient model
to predict cluster assignment. Fisher Linear Discriminant, Bayes and KNN classifiers were
explored, using two different methods of feature extraction: PCA and LDA. Fisher Discriminant
combined with PCA (3D input vectors) outperformed all others, thus being chosen as the AI
combination to be integrated in our system’s data mining module.
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Chapter 7

Conclusions and Future Work

This chapter discusses our work’s findings and contributions and outlines directions for future
research. Section 7.1 presents a discussion of the conclusions and contributions of the current
work, also presenting my personal view regarding this project. Finally, Section 7.2 discusses
the future work and brings the thesis to a conclusion.

7.1 Conclusions of the work

This thesis reveals that it is possible to develop a Clinical Decision Support System (CDSS)
for HCC patients that integrates clinical data management with AI techniques to support the
clinicians’ decision-making process. We developed a structured registry system for HCC pa-
tients, where the clinicians can systematically register the most influential factors for HCC
management. The system allows centralization, multi-user support, real time access to up-
dated information and easy accessibility from any device with access to the internet, without
any additional configuration. The structure of the application avoids data inconsistency, since
each field has a clear format, and data entry is always validated. The patients’ privacy is guar-
anteed by restricted user access and authentication. An information system for patients’ data
management avoids the stated problems concerning physical files, since patients’ information
is available and can be shared at all times. As regards the data mining studies, we’ve identified
2 main prognostic groups in CHUC database, and the most significant features responsible for
this division. The conclusions of our work also suggest that there is some heterogeneity between
stage C patients. This is an interesting result which might indicate the need of a subdivision of
stage C patients, targeting the treatment of these patients within the paradigm of Personalized
Medicine. In conclusion, we have created a framework which allows cancer data management
in the HCC context. The framework was intended to allow the clinicians access to patients’
information at all times, while supporting them in their daily activities. We have demonstrated
that inference models have the potential to assist clinicians in their decisions regarding several
therapeutic strategies.

In my opinion, this was truly a challenging work. In real world domains, complex and
unexpected problems often arise. Scheduling plans are not always as they were set out to
be, and pressure is a constant. Working with a multidisciplinary team led me to develop
my knowledge in different areas of expertise. At the end of this work, I came to master
technologies and concepts that I had no contact with before. Mastering the required medical
terminology was my first obstacle. Regarding the system development, I came across unknown
programming and markup languages. Finally, I had not foreseen the need of dealing with
missing data. Nevertheless, if the project’s goals had not have been this bold, I wouldn’t have
the opportunity to experience real life situations, with all the problematic issues associated,
and learn from them.

95



96 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future Work

This work could be further developed in two main scopes: refining the developed system in the
HCC context and extending the system to other medical contexts.

As regards the HCC context, the main approaches would be to improve the data quality.
This could be achieved by revising incomplete cases and trying to fill in the absent values or
using hot-deck to replace cases with missing values. The first approach requires an extensive
review of cases, thus subjected to scheduling issues, errors in data entry, and others mentioned
in Section 1.4. The second approach consists in retrieving new cases from another hospital
service or institution and substituting patients with incomplete records with patients with
complete sets of data from that institution’s database.

Extending the developed system to other medical contexts is a more challenging idea. Ex-
tending our approach to other areas of Oncology is perhaps the most direct extension of this
work. This would require an extensive study of other disease’s patterns, in order to identify
the fundamental features to include in the system. The system’s structure would also have to
be adapted to another reality, where the information flow might differ. Finally, in terms of
imputation strategies and AI techniques, there are various techniques which could be applied,
depending on the type, quality of data and objective function defined.
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Appendix B

Function Requirements Full
Description

Table B.1: U-1 description.

Use Case ID U-1
Use Case Name Patient Quick Filter
Actors User
Description The user is provided with two input boxes, one for the patient name and

the other for Institution Patient ID (PID), that he can use to filter the
patients by name or PID in order to quickly find someone in specific.

Trigger This functionality is available as soon as the Patient List View is loaded.
Normal Flow The user selects one of the two input boxes and starts typing either the

name or the PID. Whenever the user releases a key, any previous Ajax
1 Requests are cancelled. A new Ajax Request is sent, with the content
the user has typed, and returns a filtered list of patients. When the
request finishes the previous patient list is replaced with a new one,
displaying the filtered results.

Alternative Flows The user clears the content of the Quick Filter Input boxes; the current
patient list is replaced with a new one displaying the unfiltered patient
list.

Notes and Issues If the Ajax request returns a empty patient list it means that no patient
that matched the filter was found in the database. Thus, an empty list
is displayed to the user.

1Ajax is a group of Web development techniques to exchange data with a server. An Ajax Request requests
data from the server, while an Ajax Post sends data to the server.
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Table B.2: U-2 description.

Use Case ID U-2
Use Case Name Enter Patient View
Actors User
Description This use case allows the user to access the patient’s information and

medical data.
Trigger This functionality is available as soon as the Patient List View is loaded.
Preconditions The User is in Patient List View.
Postconditions The User is in Patient View.
Normal Flow The User clicks with the left mouse button over the desired patient’s

row from the patient’s list table.
Assumptions The patients list is not empty.

Table B.3: U-3 description.

Use Case ID U-3
Use Case Name Insert Patient
Actors User
Description The user is provided with a form that allows for the insertion of a new

patient.
Trigger User clicks with the left mouse button over the button ”Insert Patient”.
Preconditions The User is in the Patient List View.
Postconditions The User is in the Patient View with the inserted patient selected.
Normal Flow The user fills the patient information regarding each of the different

fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If the request is successful, the user is taken to the
Patient View of the inserted patient.

Alternative Flows The user fills in the patient’s information regarding each of the different
fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If an error occurs during the patient insertion, the
user is informed and he is taken to the Patient View List.
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Table B.4: U-4 description.

Use Case ID U-4
Use Case Name Edit Patient General Information
Actors User
Description The user has the ability to quickly and easily edit any of the patient’s

information.
Trigger The User clicks with the left mouse button over the Text of any pair

(Label: Text) regarding any of the patient’s information (attributes)
displayed in the Patient View.

Preconditions The User is in the Patient View
Normal Flow The Text in the (Label: Text) pair where the user clicked is replaced

with an input field tailored for the respective attribute’s type. The
User clicks with the left mouse button outside of the input field (the
input field must loose its focus). The patient information edited by the
User is sent by Ajax Post Request to the server and is updated in the
database.

Table B.5: U-5 description.

Use Case ID U-5
Use Case Name Remove Patient
Actors User
Description The user has the ability to quickly and easily remove any patient and

all of his associated data from the database.
Trigger This functionality is available as soon as the Patient View is loaded.
Preconditions The User is in the Patient View.
Postconditions The User is in the Patient View List.
Normal Flow The User clicks with the left mouse button over the button ”Remove

Patient”. A confirmation box is displayed to the User. If the User
confirms his intent to remove the patient, an Ajax Post Request is sent
to the server. The User is redirected to the Patient View List.

Alternative Flows The User clicks with the left mouse button over the button ”Remove Pa-
tient”. A confirmation box is displayed to the User. The User chooses
”Cancel” option and is redirected to the initial condition.
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Table B.6: U-6 description.

Use Case ID U-6
Use Case Name Insert New Patient Evaluation
Actors User
Description The user is provided with a form that allows for the insertion of a

patient’s Medical Evaluation.
Trigger User clicks with the left mouse button over the button ”Insert New

Patient Evaluation”.
Preconditions The User is either in the Patient List View or the Patient View.
Postconditions The User is in the Patient View.
Normal Flow The user fills the information regarding each of the different fields. The

user clicks with the left mouse button over the button ”Insert”. The
form is submitted via Ajax Post Request and the new patient data
is inserted. If the request is successful the user is redirected to the
respective Patient View.

Alternative Flows The user fills in the patient information regarding each of the different
fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If an error occurs during the patient’s insertion, the
user is informed of the error and is redirected to the respective Patient
View.

Special Requirements The User is provided with two fields regarding the patient’s identific-
ation, a name field and a PID field. If the user entered the Use case
from the Patient View, these fields are already filled in. Otherwise, the
User will have to type part of patient’s the name or PID in order to
gain access to a list of patients, filtered by the user inserted text.
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Table B.7: U-7 description.

Use Case ID U-7
Use Case Name Insert New Patient Biopsy
Actors User
Description The user is provided with a form that allows for the insertion of a

patient’s Biopsy information.
Trigger The User clicks with the left mouse button over the button ”Insert New

Patient Biopsy”.
Preconditions The User is either in the Patient List View or in the Patient View.
Postconditions The User is in the Patient View.
Normal Flow The user fills the information regarding each of the different fields. The

user clicks with the left mouse button over the button ”Insert”. The
form is submitted via Ajax Post Request and the new patient data
is inserted. If the request is successful, the user is redirected to the
respective Patient View.

Alternative Flows The user fills the patient information regarding each of the different
fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If an error occurs during the patient’s insertion, the
user is informed and he is redirected to the respective Patient View.

Special Requirements The User is provided with two fields regarding the patient identification,
a name field and a PID field. If the user entered the Use case from the
Patient View, these fields are already filled. Otherwise, the User will
have to type part of the patient’s name or PID in order to gain access
to a list of patients, filtered by the user’s inserted text.
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Table B.8: U-8 description.

Use Case ID U-8
Use Case Name Insert New Patient Exam
Actors User
Description The user is provided with a form that allows for the insertion of a

patient’s Medical Exam.
Trigger User clicks with the left mouse button over the button ”Insert New

Patient Exam”.
Preconditions The User is either in the Patient List View or the Patient View.
Postconditions The User is in the Patient View.
Normal Flow The user fills the information regarding each of the different fields. The

user clicks with the left mouse button over the button ”Insert”. The
form is submitted via Ajax Post Request and the new patient data
is inserted. If the request is successful, the user is redirected to the
respective Patient View.

Alternative Flows The user fills in the patient information regarding each of the different
fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If an error occurs during the patient’s insertion, the
user is informed and he is redirected to the respective Patient View.

Special Requirements The User is provided with two fields regarding the patient identification,
a name field and a PID field. If the user entered the Use case from the
Patient View, these fields are already filled in. Otherwise, the user will
have to type part of the patient’s name or PID in order to gain access
to a list of patients, filtered by the User inserted text.
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Table B.9: U-9 description.

Use Case ID U-9
Use Case Name Insert New Patient Treatment
Actors User
Description The user is provided with a form that allows for the insertion of a

patient’s Medical Treatment.
Trigger User clicks with the left mouse button over the button ”Insert New

Patient Treatment”.
Preconditions The User is either in the Patient List View or in the Patient View.
Postconditions The User is in the Patient View.
Normal Flow The user fills the information regarding each of the different fields. The

user clicks with the left mouse button over the button ”Insert”. The
form is submitted via Ajax Post Request and the new patient’s data
is inserted. If the request is successful, the user is redirected to the
respective Patient View.

Alternative Flows The user fills in the patient information regarding each of the different
fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If an error occurs during the patient’s insertion, the
user is informed and he is redirected to the respective Patient View.

Special Requirements The User is provided with two fields regarding the patient’s identific-
ation, a name field and a PID field. If the user entered the Use case
from the Patient View, these fields are already filled in. Otherwise, the
User will have to type part of the patient’s name or PID in order to
gain access to a list of patients, filtered by the User inserted text.
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Table B.10: U-10 description.

Use Case ID U-10
Use Case Name Insert Patient Risk Factors
Actors User
Description The user is provided with a form that allows for the insertion of a

patient’s Risk Factors.
Trigger User clicks with the left mouse button over the button ”Insert New

Patient Risk Factors”.
Preconditions The User is either in the Patient List View or the Patient View.
Postconditions The User is in the Patient View.
Normal Flow The user fills in the information regarding each of the different fields.

The user clicks with the left mouse button over the button ”Insert”.
The form is submitted via Ajax Post Request and the new patient data
is inserted. If the request is successful, the user is redirected to the
respective Patient View.

Alternative Flows The user fills in the patient information regarding each of the different
fields. The user clicks with the left mouse button over the button
”Insert”. The form is submitted via Ajax Post Request and the new
patient is inserted. If an error occurs during the patient’s insertion, the
user is informed and he is redirected to the respective Patient View.

Special Requirements The User is provided with two fields regarding the patient’s identific-
ation, a name field and a PID field. If the user entered the Use case
from the Patient View, these fields are already filled in. Otherwise, the
User will have to type part of the patient’s name or PID in order to
gain access to a list of patients, filtered by the User inserted text.

Table B.11: U-11 description.

Use Case ID U-11
Use Case Name Edit Patient Data
Actors User
Description The User is allowed to edit any of the Patients Risk Factors or any

other of its Medical Data on-the-fly.
Trigger The User clicks with the left mouse button over a Text part of any pair

(Label: Text) regarding any of the patient’s information. A confirma-
tion box os shown. The user acknowledges the existence and dangers
of the on-the-fly. He edits the desired functionality and clicks ”Yes”.

Normal Flow The User clicks with the left mouse button over a Text part of any pair
(Label: Text) inside any of the Patients View: Evaluations, Biopsies,
Exams, Treatments and Risk Factors. The Text where the user clicked
is replaced with an input field tailored for the respective attribute type.
After editing the information, the User clicks with the left mouse button
outside of the input field (the input field must loose its focus). The
patient’s information edited by the User is sent by Ajax Post Request
to the server and updated in the database. The User is informed of the
success of the operation.
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Table B.12: U-12 description.

Use Case ID U-12
Use Case Name Remove Patient Data
Actors User
Description The User is able to remove any of the inserted patient medical data:

Medical Evaluations, Biopsies, Exams, Treatments and Risk Factors.
Trigger The User clicks the button labelled ”Delete”.
Preconditions The User is in the Patient View.
Postconditions The User is redirected to the closest patient’s record of the same type,

if available (Evaluation, Biopsy, Exam, Treatment or Risk Factors) or
Risk Factors by default in case there is no more information of the same
type for this patient.

Normal Flow The User clicks with the left mouse button over the button labelled
”Delete”. A confirmation box is displayed confirming the elimination
of the current selected Evaluation, Biopsy, Exam, Treatment or Risk
Factors. The User confirms his intent to delete the selected data. An
Ajax Request is sent to the server and the data is eliminated from the
database. The User is informed of the completion of the operation.

Table B.13: U-13 description.

Use Case ID U-13
Use Case Name Authentication
Actors User
Description When the application is loaded for the first time, or any time the user

session becomes void or invalid, a authentication form is presented to
the user so he can enter his login information.

Trigger The authentication form is available as soon as the page loads.
Preconditions The User’s browser loaded the page for the first time or the user session

became void or invalid.
Postconditions The User is authenticated in case of a successful authentication.
Normal Flow The user fills the information regarding the username and correspond-

ing password. The user clicks with the left mouse button over the
submit button. The provided login information is sent and validated
by the server. The page is reloaded with access to the application in
case of a successful login.

Alternative Flows The user fills the information regarding the username and correspond-
ing password. The user clicks with the left mouse button over the
submit button. The provided login information is sent and validated
by the server. The login fails and the User is redirected to the page’s
initial condition.
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Table B.14: U-14 description.

Use Case ID U-14
Use Case Name View Distribution Report
Actors User
Description The User has access to a report that includes a Bar Chart and a Data

Table regarding the patient’s distributions. The target feature for which
the User wants to see the patient’s distributions can be chosen from
several of the patient’s inserted medical data and the User has the
ability to filter the patients prior to their distribution.

Trigger The User selects ”See Patients Distribution” from the Select Input in
the Reports View.

Normal Flow The User may select a Filter and fill in the corresponding options to
filter the patients in the database prior to the distribution calculation.
The User may select a different feature as the target of the Distribution.
The View or Selected distribution is updated automatically every time
the User changes one of the selected options.

Table B.15: U-15 description.

Use Case ID U-15
Use Case Name View Kaplan-Meier Survival Function Estimation
Actors User
Description The User has access to a report that includes a Step Graph and a Data

Table regarding the Kaplan-Meier Survival Function Estimation for the
selected conditions. The target feature for which the User wants to see
the Survival Estimation can be chosen from several of the patient’s
inserted medical data and the User has the ability to filter the patients
prior to the calculation.

Trigger The User selects ”See Patients Survival” from the Select Input in the
Reports View.

Normal Flow The User may select a Filter and fill the corresponding options to filter
the patients in the database prior to the Kaplan-Meier calculation.
The User may choose a different feature for grouping the patients and
calculate the Survival Estimation for each of the groups. The View or
Selected Survival Estimation is updated automatically every time the
User changes one of the selected options.
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Table B.16: A-1 description.

Use Case ID A-1
Use Case Name Import Data
Actors Admin
Description The Admin is able to import patient data from an Excel data file that

follows a specific template determined in conjunction with the Institu-
tion during the development of the application.

Preconditions A file named ”mainxls.xlsx” must be present in the root folder of the
web server and must follow the established template of the original
Excel Data file provided by the Institution.

Postconditions The database is update with the information of the Patients included
in the Excel file.

Normal Flow The Admin opens the file import functionality URL. The script opens
and parses the information in the Excel file, inserting any Patient found
and any Medical Data regarding the Patient.

Frequency of Use This Use Case should only be used once, to setup the initial database,
or in case of a new patient database, carefully formatted to the correct
template, that will be appended to the current Patient’s database.

Notes and Issues This use case is quite destructive and should be used with care.
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