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Abstract

High-pressure torsion was employed to refine the microstructure of grade 2 Ti under 

an imposed pressure of 3.0 GPa at room temperature. The microhardness of grade 2 Ti 

increased from 1.82 GPa for the coarse grain state to 3.05 GPa after high-pressure torsion 

processing, where this value is very close to the hardness of the Ti-6Al-4V alloy. 

Subsequently, several diamond-like carbon (DLC) coatings with thicknesses of ~1.4 �m were 

deposited on as-received Ti, high-pressure torsion processed Ti and Ti-6Al-4V samples via 

physical vapour deposition. Both indentation and scratch tests showed a much improved 

adhesion of DLC-7Zr, DLC:H-7Zr and DLC-9Zr coatings with high-pressure torsion 

processed Ti as the substrate by comparison with the same coatings on coarse-grained Ti. The 

results suggest that commercial pure Ti processed by high-pressure torsion and coated with a 

diamond-like carbon coating provides a potential candidate material for bio-implant 

applications. 
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1 Introduction 

Human joints might suffer from pain and functional loss due to degenerative diseases, aging 

and accidents. A total joint replacement is regarded as an effective procedure for treating 

joint diseases and fractures [1]. A technical survey reported that there is an increasing 

demand for new and improved implants because of a rapidly growing patient population and 

increasing numbers of younger patients [2]. The Ti-6Al-4V alloy was designed originally for 

the aerospace industry but it has been used widely for biomedical applications due to its high 

strength, good fatigue characteristics, bio-tolerance and excellent corrosion resistance [1]. 

Despite these attractive qualities, Ti-6Al-4V has significant drawbacks which limit its further 

capacity to be used as an orthopaedic and dental implant material. For example, the toxic Al 

and V ions released from Ti-6Al-4V may cause long-term health problems and adverse 

reactions with body tissues [3, 4]. Therefore, there is now an urgent need for exploring the 

potential for developing other bio-metals.  

 

Pure titanium has excellent properties including high corrosion resistance, low electronic 

conductivity, a low ion-formation tendency and very good biocompatibility.  All of these 

characteristics make it a very good candidate as an implant material. Nevertheless, pure 

titanium has a relatively low strength and a very poor wear resistance when it is subjected to 

sliding and abrasion. Thus, it is generally not suitable for use in artificial joints which seek 

materials with high strength and good tribological properties. Recently, pure titanium with 

ultra-fine grain sizes, processed through the application of severe plastic deformation (SPD), 

appears to offer an alternative possibility for the production of implant materials [5, 6]. In 

severe plastic deformation processing, a high level of straining is imposed on a metal using 

an extensive hydrostatic pressure and the strain is achieved without changing the overall 

dimensions of the material [7, 8]. Thus, a very large strain may be imposed on materials via 
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repeated severe plastic deformation processing. The ultrafine-grained (UFG) materials 

produced by severe plastic deformation often possess extraordinary properties, including both 

high strength and toughness [9], long fatigue life [10, 11] and reasonable wear resistance [12, 

13].  To date, various severe plastic deformation processing methods have been applied 

successfully for the production of high strength pure Ti [6, 14-17]. However, the evidence 

suggests that severe plastic deformation processing may lead to only a relatively minor 

improvement in the wear resistance of Ti [5, 18]. As an alternative approach, it appears that 

surface treatments or coatings may be necessary to enhance the service durability of titanium 

as implant components [19].  

 

The idea of improving wear resistance of Ti alloys via surface treatment has been reported 

extensively. Surface engineering technologies such as thermal oxidation, ion implantation 

and thin coatings can significantly improve the tribological properties of Ti alloys. The high 

strength of coatings were favourable to maintain the low surface roughness during sliding 

motion, which also led to less wear loss of the polyethylene counterpart [20, 21].  

 

In recent years, attention has moved to surface engineering of ultrafine-grained Ti. High-

current-density nitrogen ion implantation was used to enhance the wear resistance of 

ultrafine-grained Ti and the results demonstrated the potential for forming a hard layer with 

good wear and corrosion resistance on the surface of ultrafine-grained Ti via ion implantation 

[22]. However, this method required that the samples were held at the relatively high 

temperature of 820 K and there is evidence this may be recrystallization of the ultrafine-

grained structure of Ti when the temperature is above ~620 K [23]. It appears, therefore, that 

Chemical vapour deposition (CVD) and Physical vapour deposition (PVD) may be better 

approaches for this purpose because this permits the use of a lower processing temperature 
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and easier control over the surface roughness. It is important to note that PVD methods such 

as magnetron sputtering can be controlled at room temperature leading to a much lower 

internal stress at the interface. For example, a thin and hard TiN coating was deposited on 

both coarse-grained and ultrafine-grained Ti substrates using PVD at a temperature below 

420 K in a recent study [19].  The subsequent wear tests showed that the TiN coating 

improved the wear resistance of Ti by nearly two orders of magnitude and the ultrafine-

grained Ti was a better substrate than coarse-grained Ti due to its higher strength. Therefore, 

a PVD coating on ultrafine-grained Ti shows significant promise for further exploration in 

future bio-implant applications. 

 

Diamond-like carbon (DLC) coatings are regarded as other good candidates for the purpose 

of wear protection because of their excellent mechanical and tribological properties such as 

high hardness, good wear and corrosion resistance. Moreover, DLC coatings also have a 

much lower coefficient of friction (COF) which can also reduce the wear of the counter 

surface during sliding [24]. To date, several studies have explored DLC coatings for bio-

implant use [25-27]. Despite the excellent tribological properties of DLC coatings, 

delamination of the coatings was a major problem which appeared to limit their application as 

articulating joints [25]. It is reasonable to anticipate that, once removed from the substrate, 

these DLC coating particles would act as a third body causing severe damage to the substrate 

or even severe reactions with the tissue. In order to solve these issues, studies have been 

reported exploring the use of new interlayers to improve the bonding of DLC coatings [28]. 

Doping with metallic elements, such as Cr [21, 29], Ti [30] and W [31], may also improve 

the adhesion and wear resistance. Recently, zirconium was used as a dopant metal to provide 

low-toxicity, good tribological behaviour and high corrosion resistance [32-34]. 
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The present investigation was therefore initiated in order to explore the effect of substrate 

microstructure on the adhesion behaviour and scratch resistance of DLC-7Zr, DLC:H-7Zr 

and DLC-9Zr coatings deposited on grade 2 pure titanium substrates both with and without 

high-pressure torsion processing and, in addition, to make a direct comparison with 

deposition on a Ti-6Al-4V substrate.  
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2 Experimental materials and procedures 

2.1 Materials and processing 

The experiments were conducted using grade 2 pure titanium having a composition of 0.015 

H, 0.1 C, 0.25 O, 0.03 N, 0.3 Fe and Ti for balance (wt. %) and the Ti-6Al-4V alloy with 

extra low interstitials. Initially, some of the grade 2 Ti samples were subjected to high-

pressure torsion processing. The samples for high-pressure torsion were machined into disks 

with a diameter of 10 mm and thicknesses between 0.80 and 0.85 mm. During high-pressure 

torsion, the disk samples were held in shallow depressions on the faces of two massive anvils, 

a load was applied and then torsional straining was achieved through rotation of the lower 

anvil. In high-pressure torsion, the shear strain, �, at different position of the disk can be 

estimated using the relationship [35]: 

    
h
NR�� 2

�                                                                   (1) 

where N is the number of rotation revolutions, R is the distance from the centre of the disk 

and h is the height (or thickness) of the sample. In this study, high-pressure torsion 

processing was conducted using an imposed pressure of 3.0 GPa for 10 revolutions under 

quasi-constrained conditions in which there is some restricted outflow of material around the 

periphery of the disk during the processing operation [36, 37]. Additional details on the 

principles of high-pressure torsion processing are given in earlier reports [38-40].  

 

Microhardness testing of the samples was performed under an indentation load of 1 kg for 15 

seconds. As described earlier [19], tensile testing was conducted at room temperature after 

high-pressure torsion processing using an initial tensile strain rate of 1.0×10-2 s-1. The 

microstructures of the materials were examined using a JEM 3010 transmission electron 

microscope (TEM) operating under an accelerating voltage of 200 kv. A detailed description 

of these analytical procedures was given in earlier reports [5, 19]. 

2.2 Coating Deposition and Characterization  
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Prior to deposition, the substrates were polished to a roughness less than 50 nm, cleaned in an 

ultrasonic bath in acetone, ethanol and distilled water for 15 min, and then etched using Ar+ 

bombardment for 1 h at a substrate bias voltage of -650 V in order to remove all 

contaminants and oxides on the substrate surface. The coatings were deposited using dc dual 

magnetron sputtering in an Ar atmosphere (non-reactive process) and Ar+CH4 (reactive 

process) to produce non-hydrogenated and hydrogenated coatings, respectively. Two targets 

were used: Titanium was used to deposit an interface layer and a graphite target was used 

with embedded Zr pellets to prepare functional film. Table 1 summarizes the deposition 

parameters. The work pressure was maintained constant for both reactive and non-reactive 

sputtering by adjusting the gas flow. A pulsed bias voltage of -50 V and a frequency of 250 

kHz were applied. A TiN/TiCN interlayer with a varying composite gradient and a thickness 

of 450 nm was deposited in order to improve adhesion. The thickness of the functional 

coating was approximately 1 μm so that the total film thickness was of the order of ~1.4 μm. 

To facilitate a detailed description of the results, the coatings were denoted as DLC-XZr and 

DLC:H-XZr, where X represents the zirconium content. 

 

The chemical composition was determined by electron probe microanalysis (EPMA) 

applying a 10 keV voltage. The coating hardness was measured by depth-sensing indentation 

using a Berkovich indenter and a load of 5 mN. A series of 32 indentations from two distinct 

areas was carried out in order to critically evaluate the hardness of the coatings. In addition, 

the reduced Young modulus was derived from the indentation measurements using the 

standard method [41]. The Young modulus was calculated using the following parameters: Ei 

= 1140 GPa and �i = 0.07 for the diamond indenter and � = 0.3 for the coating [41]. 

 

2.3 Rockwell C Indentation and Scratch Test  
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The coating adhesion to the Ti substrates was evaluated using Rockwell C indentation and 

scratch testing where these are standard techniques commonly used to quantify the interfacial 

strength of coating-substrate systems. During the Rockwell C indentation test, a cone-shaped 

diamond 120° tip (200 μm in radius) was indented perpendicularly onto the coating applying 

a normal load of 200N, thereby causing layer damage to the boundary of the indentation. The 

results of the test were qualitatively evaluated by comparing the optical microscope images of 

the crack network and the degree of delamination with an adhesion quality chart which 

classifies the images into six levels from HF1-HF6 [42]. In this classification, HF1 is featured 

with only a few minor cracks after indentation which indicates a good bonding while at the 

other extreme HF6 denotes extensive delamination of the coating and very poor adhesion. 

Adhesion levels from HF1 to HF4 are typically considered as acceptable coating adhesions 

for use in commercial applications. 

 

The scratch test was performed by using a spherical Rockwell C diamond indenter (200 μm 

radius) according to standard testing methods [43]. The indenter was slid over the coating 

surface and the load increased from 2 to 50 N at a speed of 10 N/mm. The lower critical load, 

Lc1, was defined as the load where the first cracks occurred (representing cohesive failure) 

and the upper critical load, Lc2,, was defined as the load associated with the first delamination 

at the edge of the scratch track (representing adhesive failure). In addition, a load Lc3 was 

defined as the load under which the coating was totally removed from the substrate. The 

scratch tests were repeated for three times in order to obtain reliable results. After scratch 

testing, the cracking or delamination of the coating was observed using optical microscopy 

along the scratch track. The cross-section profiles of the DLC coatings at the critical load 

were measured using an ultimate focus optical microscope operating in the line scanning 

mode. 
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3 Experimental results 

3.1 Mechanical properties of Ti substrates 

The results of optical microscopy and TEM showed that high-pressure torsion processing 

significantly refined the grain size of pure Ti from ~8.6 �m in the as-received state to ~130 

nm after high-pressure torsion processing. Due to this grain refinement, the microhardness of 

pure Ti increased from an initial value of ~1.82 GPa in the coarse-grained state to ~3.05 GPa 

after high-pressure torsion processing. This latter value for the ultrafine-grained pure Ti is 

comparable with the hardness of 3.09 GPa for the Ti-6Al-4V alloy used in this study [5]. 

 

The tensile testing demonstrated that the ultimate tensile strength (UTS) of Ti increased from 

~660 MPa in the coarse-grained state to ~940 MPa after high-pressure torsion with some 

associated reduction in ductility [19]. This high strength and reasonable ductility of ultrafine-

grained pure Ti is compatible with the Ti-6Al-4V alloy where the UTS is ~980 MPa and the 

elongation to failure is ~14%. 

 

3.2 Coating characterisation 

Table 2 shows the zirconium content, the hardness and the values of the Young modulus of 

the deposited coatings. It should be noted that the low indentation depth for the indenter 

(approximately 10% of the coating thickness) made it difficult to ascertain the effect from the 

substrate material when obtaining these mechanical properties. Details of the coating 

structure were studied by X-Ray diffraction, Raman spectroscopy and X-Ray photoelectron 

spectroscopy and these results were reported elsewhere [33, 44]. All of the coatings 

investigated in this study (with Zr contents of 7-9 at.%) exhibited a nanocomposite structure 

with very small ZrC nanograins (up to ~2  nm) embedded within an amorphous carbon 

matrix. 
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3.3 Adhesion performance of the DLC coatings 

Table 3 summaries the adhesion results of DLC coating on all three substrates. The Rockwell 

C indentation tests showed HF3 and HF4 for all samples with only minor delamination and 

micro-cracking observed around the indentation marks, thereby demonstrating an acceptable 

adhesion for all tested coatings. The scratch test results showed that the DLC coatings with 

UFG Ti and Ti-6Al-4V substrates had similar critical loads and these loads were much higher 

than with the coarse-grained Ti as substrates. Thus, the UFG Ti and Ti-6Al-4V substrates 

provided better support with their higher hardness and this produced a higher critical load of 

the DLC coating. These results demonstrate again the important role of substrates for the 

adhesion of thin DLC coatings. 

  

Optical images of the Rockwell indentations are shown in Fig. 1. It can be seen that the load 

of 200 N led to radial plastic deformation of the coating which caused circumferential 

cracking of the film outside the indentation area. Through-thickness cracks were observed on 

all coatings which may be related to the elastic-plastic boundary of the substrates. The 

indentation marks had a diameter of ~380 �m on the DLC/coarse-grained Ti samples which 

would cause more deformation at the edge and more delamination compared to the 

DLC/ultrafine-grained Ti and DLC/Ti-6Al-4V samples. This effect was mainly caused by the 

different hardness of the Ti substrates. Furthermore, the doping of H content led to a decrease 

of the adhesion strength because all the indents of the DLC:H-7Zr coating showed a higher 

delamination than DLC-7Zr. It is obvious that the DLC-9Zr coatings with higher Zr content 

presented the best adhesion behaviour with only small cracks and minor coating delamination. 

Therefore, it may be possible to further enhance the coating adhesion by increasing the 
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zirconium content. A more comprehensive study of the adhesion of DLC coatings with 

different Zr content is given elsewhere [44]. 

 

The scratch test results matched well with observation from the Rockwell indentations. 

Figure 2 shows the scratch tracks of the DLC-7Zr coating on the Ti substrates with increasing 

loads from 2 to 50 N. Generally, the plastic deformation of the Ti substrates was the main 

cause for the coating failure. As the diamond stylus was sliding with increasing normal load 

on the coating surface, the coating followed the deformation of the Ti substrate. The tensile 

stress both inside the coating and at the interface led to cracking and delamination of the 

coatings. As shown in Fig .2 (a), the DLC-7Zr coating on coarse-grained Ti failed at an early 

stage during the scratch test and the indenter caused extensive deformation of the substrate. 

On the other hand, the DLC-7Zr coatings deposited on ultrafine-grained Ti and Ti-6Al-4V 

failed at a higher load and the adhesion of the films deposited on both substrates was almost 

identical (Fig.2 (b) and (c)). The cross-section of the scratch tracks where the substrate was 

revealed in the scratch track (see the short vertical lines in Fig. 2 (a), (b) and (c)) was 

measured using an ultimate focus optical microscope. Although the coating was deposited 

onto different substrates, these measurements showed that it always failed when the scratch 

track was approximately 7 �m deep and 130 �m wide as illustrated in Fig. 3.  
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4 Discussion 

In this study, a grade 2 pure Ti was processed using high-pressure torsion to achieve 

significant grain refinement and then DLC coatings were successfully deposited on the 

different Ti substrates and their scratch behaviour was studied. In terms of future bio-medical 

applications, the results provide a clear demonstration that it is possible to replace the 

conventional Ti-6Al-4V alloy with ultrafine-grained pure Ti having preferable mechanical 

properties which may be achieved through high-pressure torsion processing. 

 

Various coating technologies are now available to provide wear resistance for bio-implants. 

Technologies such as plasma electrolytic oxidation (PEO) and internal oxidation (IO) have 

been used extensively to process Ti-6Al-4V and other bio-metals but these methods often 

involve a high processing temperature which may  lead to recrystallization of ultrafine-

grained structures [45, 46]. When ultrafine-grained materials are chosen as the substrates, the 

post processing temperature must not exceed the recrystallization temperature in order to 

restrict any grain growth of the ultrafine-grained structures. Moreover, the oxidation layers 

produced through these methods are often very rough and this will entail additional polishing 

before their use in implants. Thus, PVD methods are regarded as one of the best choices for 

surface modifying ultrafine-grained materials. 

 

A good adhesion between the thin coating and the substrate is essential for the 

coating/substrate system. The interposition of a gradient layer (Ti/TiN/TiCN) improves the 

interface shear strength and the load bearing capacity of the coating [28]. It was observed in 

this study that, when using ultrafine-grained Ti as the substrate, the load bearing capacity of 

DLC coatings was improved extensively compared to those with coarse-grained Ti as 
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substrates. A similar trend was observed also on TiN thin coatings on different Ti substrates 

[19]. The TiN on ultrafine-grained Ti also had a higher critical failure load as it prevented the 

thin coating from undergoing deformation.  Figure 4 shows the critical load of the DLC 

coatings and TiN coating on Ti substrates plotted against the hardness of the substrate. The 

trend is clear because a harder substrate after high-pressure torsion leads to a higher critical 

load for the coatings. Therefore, on one hand it is very important to explore better coating 

parameters such as new interlayer designs and coating compositions in order to achieve a 

good performance of the coatings. On the other hand, it is also very important to enhance the 

properties of substrates through surface hardening or grain refinement (i.e. increase the H/E 

ratio) and thereby give a better support to the thin coatings.  

 

The results from this research showed that the DLC coating failures occurred at the same 

depth and width of penetration for all three substrates, as is clearly observed in Fig 3. As the 

UFG Ti and Ti-6Al-4V had very similar hardness, therefore, the datum points were very 

close to each other. As shown in Fig 3, the critical load of all coatings increased with 

increasing hardness of the substrates. A similar trend was also observed on various TiN 

coated substrates including stainless steel, high speed steel and WC [47]. An explanation was 

given by assuming the TiN coating adjusted to the elastic–plastic deformation of the 

substrates, therefore the coating underwent a cohesive–adhesive failure that leads to film 

delamination. A critical indentation width of 60 �m was observed in that study, where the 

coating failed whenever it was bent to this width regardless of the substrate material. 

 

By simplifying the coating-substrate system as a two-layer composite, the overall hardness of 

the coating-substrate system may be represented by the following relationship according to 

the Burnett-Rickerby model which is based on a volume law of mixtures [47-50]: 
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where HC,S is the apparent hardness of the coating-substrate system, HS is the hardness of the 

substrate, HC is the hardness of the coating, � is a factor by which the plastic zone changes, 

and the VC, VS and Vtotal are the deformation volumes of the coating, substrate and total 

deformation volume, respectively.  

 

The volumes of the deformation zones are expressed by the following equations: 

tRV CC
2��                                                                      (3) 
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where RC and RS are the radius of deformation zone of coating and substrate. The factor, � 

was determined via fitting experimental results by Burnett and Rickerby [48] and addressed 

as: 

2/1
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where EC and HC are the Young’s Modulus and hardness of the coating, and ES and HS are the 

Young’s Modulus and hardness of the substrate. RC and RS can be obtained through the 

equation: 

2/1
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where r is the geometrical length of the indentation volume.  
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As observed in Fig 3, the indentation depths of all samples were only around 7 �m, and this 

depth was obtained after the diamond indenter was removed. In this case, the measured 

indentation depth was underestimated due to the elastic recovery of materials. Therefore, it is 

more accurate to recalculate the indentation depth using the measured indentation width 

considering the sphere shape of the indenter, according to the equation: 

3/1
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where Rind is the radius of diamond indenter and W is the track width at the critical load point.  

Therefore, the overall hardness of this coating-substrate is achieved by rewriting equations 

(2-6): 
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During the scratch testing, the indenter was travelling with an increasing normal load and it 

was always the front half of the spherical cap in the coating-substrate system. Therefore, the 

critical load, LC3, is expressed as: 

4

2
2

,3
WRRHL

indindSCC �� �                  
�
                                   (9)                         
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Thus, equations (8) and (9) clearly emphasise the effect of substrate strength on the scratch 

behaviour of thin coatings. It further explains that the DLC coatings, with thicknesses around 

1 �m, often exhibit high critical loads with hard materials as substrates, such as more than 

100 N on Si or glass [51].  

 

The track width of each sample is listed in Table 3 and this can be applied to equations (8) 

and (9). The comparison between experimental results and the Burnett-Rickerby model is 

plotted in Fig 5. It worth noting that as the interlayers had varying compositions and 

properties and were much thinner than the coatings, thus this analysis simply neglects the 

properties of the interlayers although in practice the interlayer is important in improving the 

bonding. This may lead to an underestimation of the model. Moreover, errors may also be 

introduced due to the ridges formed at the edge of the scratch tracks which made it difficult to 

measure the track widths. 

   

In this study, the strength and hardness of pure Ti was successfully improved by high-

pressure torsion processing. Firstly, this improves the mechanical durability of pure Ti as the 

main body of bio-implants when they suffer fatigue and shear loadings. Secondly, ultrafine-

grained pure Ti is a good substrate for thin coatings and provides improved load bearing 

capacity of the coating. Therefore, with good strength, fatigue life, excellent bio-

compatibility and no toxic release tendency of ultrafine-grained pure Ti, and with good wear 

resistance and an extremely low coefficient of friction of the DLC coatings, the 

DLC/ultrafine-grained Ti system appears to be an exceptionally strong candidate material for 

future bio-implant applications. 
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Conclusions  

The adhesion behaviour and scratch resistance of three diamond-like carbon coatings 

deposited on grade 2 pure Ti substrates before and after high-pressure torsion processing 

were investigated and a comparison was made with a Ti-6Al-4Vsubstrate.  The following 

conclusions are reached: 

1. DLC coatings with a gradient TiN/TiCN interlayer show good adhesion on Ti 

substrates. 

2. Hydrogen-free DLC-Zr coatings have better adhesion than hydrogen-doped DLC-Zr 

coatings, and increase of the percentage of Zr increases the adhesion. 

3. The effect of substrate on the performance of the DLC coating under high load was 

highlighted, showing that coatings with ultrafine-grained pure Ti and Ti-6Al-4V 

substrates have similar scratch and indentation behaviour. Both are significantly better 

than the results obtained with coarse-grained Ti substrates. 
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Table 1 Deposition parameters of DLC-XZr and DLC:H-XZr coatings 

Parameters� DLC-XZr� DLC:H-XZr�

Reactive gas flow (%)� ---� 5�

Ar flow (%)� 45� 40�

Base pressure (Pa)� 1.5x10-3�

Work Pressure (Pa)� 0.4�

Substrate bias (V)� -50�

Graphite doped target (W/mm2)� 0.075�

 

Table 2 Summary of coatings chemical composition and mechanical properties. 

System Zr content (at.%) Hardness (GPa) E(GPa)

DLC_7Zr 7±1 11±2 120±3 

DLC:H_7Zr 8±1 13±1 117±4 

DLC_9Zr 10±1 12±2 131±3 
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Table 3 Summary of adhesion results  

Substrate Coating 

Rockwell C Scratch 

Ø (µm) adhesion Lc1 (N) Lc2 (N) Lc3 (N) Track width at Lc3 

(µm) 

CG Ti 

DLC_7Zr 375 HF3 7±2 8±1 13±2 149.7

DLC:H_7Zr 391 HF4 5±1 7±2 13±1 130.1

DLC_9Zr 384 HF4 7±1 9±1 15±1 130.7

UFG Ti 

DLC_7Zr 282 HF3 8±1 12±1 22±2 113.3

DLC:H_7Zr 286 HF3 7±2 10±1 20±1 120.9

DLC_9Zr 287 HF3 10±2 14±1 24±1 123.8

Ti-6Al-

4V 

DLC_7Zr 277 HF3 9±2 11±1 23±2 139.7

DLC:H_7Zr 274 HF4 5±1 10±2 19±2 132.1

DLC_9Zr 282 HF3 11±2 15±1 25±2 126.2

 

�

�

Research Highlights

� Grade 2 pure Ti was processed to grain size of 130 nm by using high-pressure torsion.  
� Deposited DLC coatings on ultra-fine grained Ti can improve wear resistance. 
� DLC coatings has better load bearing capacity with ultra-fine grained Ti as substrate. 
� Ultra-fine grained Ti plus DLC coating provides an important material for bio-

implants. 
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Figure 1 Rockwell indentation of DLC on different Ti substrates. 

 

Fig.2 Scratch tracks of DLC-7Zr coatings on (a) coarse-grained Ti, (b) ultrafine-grained Ti, (c) 

Ti-6Al-4V substrates.
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Fig. 3 Cross-section of the scratch tracks in the positions indicated in Fig. 2. 

 

Fig.4 Critical load of coatings versus the hardness of substrates. 

 

 

 

 



 

Fig.5 Comparison of critical load between experimental results and calculation from Burnett-

Rickerby model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




