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• The influence of methodological issues in the particleboard CF calculation was 
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• Accounting for delayed emissions may reduce the particleboard CF by 80-200%. 

• The CF was very sensitive to different accounting of electricity from incineration. 

• Capital goods accounted for 12-20% of the particleboard CF and should not be 

neglected. 
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Abstract  

This article aims to assess: i) the carbon footprint (CF) of particleboard produced in Portugal, and ii) the 

influence of different methodological issues in the particleboard CF calculation by comparing four CF 

methodologies (ISO/TS 14067; GHG Protocol Product Standard; PAS 2050; Climate Declaration). A life-

cycle model was developed for particleboard (functional unit: 1 m3). Both cradle-to-gate and cradle-to-

grave (end-of-life scenarios: incineration and landfill) assessments were performed. Six methods to assess 

delayed emissions were analyzed. The main methodological differences between the CF methodologies 

are the treatment of biogenic CO2, multifunctionality, and unit process exclusions (e.g. capital goods). A 

wide range of CFs was calculated: -939 to 188 kg CO2 eq/m3 (cradle-to-gate); 107 to 201 kg CO2 eq/m3 

(cradle-to-grave; incineration) and -692 to 433 kg CO2 eq/m3 (cradle-to-grave; landfill). The inclusion 

(negative CF) or exclusion (positive CF) of biogenic carbon storage in the reported CF dominated the 

differences in results and the ranking of end-of-life scenarios strongly depended on that assumption.  

ISO/TS 14067, the GHG Protocol and PAS 2050 explicitly include both emissions and removals of 

biogenic CO2 in the CF calculation. On the other hand, the Climate Declaration does not account for 

biogenic CO2 or carbon storage, which may bias the comparison with competing products that do not 

store biogenic carbon (e.g. fossil-based materials). The CF of particleboard was also very sensitive to the 

different approaches to deal with multifunctionality in the incineration process by the various CF 

methodologies. Moreover, although not mandatory, delayed emission accounting significantly affected 

the results for the incineration scenario. Capital goods accounted for 12-20% of the CF. Future guidelines 

for wood-based panels, such as Product Category Rules, should, therefore, require that carbon storage is 

assessed and reported, accounting of waste-to-energy burdens is harmonized and capital goods are 

included. 

Keywords: Biogenic CO2; carbon storage; delayed emissions; multifunctionality; wood-based panels. 
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1. Introduction 

Wood-based panels have been gaining increasing importance as an alternative to solid wood in the 

furniture industry and the construction sector (FAO, 2012). Wood-based panels are produced using 

processed wood and a synthetic binder and their properties (e.g. size, strength, fire resistance and bio-

resistance) can be engineered depending on the expected usage (e.g. structural applications in buildings, 

or nonstructural applications, such as furniture, interior doors, and decorative paneling). Europe is one of 

the largest worldwide producers and consumers of wood-based panels. The main types of wood-based 

panels produced in Europe are particleboard and fiberboard (including medium density fiberboard, high 

density fiberboard and hardboard).  

There are a number of critical issues associated with the life cycle (LC) of wood-based panels, 

particularly regarding the calculation of the carbon footprint (LC greenhouse gas emissions).Wood-based 

panels are generally perceived as a potentially carbon-neutral material since they incorporate biogenic 

carbon. Nevertheless, greenhouse gas (GHG) emissions related to its production, such as those associated 

with ancillary materials or manufacturing processes, can have a high contribution to the carbon footprint 

(CF) (Werner and Richter, 2007). Moreover, wood-based panels, in general, have a relatively long service 

life (more than 10 years), therefore, understanding the dynamics related to storage and delayed carbon 

emissions in both use and disposal phases is of key importance. There are several approaches to account 

for temporary storage and delayed emission of biogenic carbon (e.g Fearnside et al., 2000; Moura-Costa 

and Wilson, 2000; Levasseur et al., 2010, 2012; EC JRC, 2010; Mueller-Wenk and Brandão, 2010; BSI, 

2011; Kendall, 2012). However, there is no consensus neither on whether temporary carbon storage 

should be accounted for nor which is the best approach to assess it (Brandão and Levasseur, 2011; 

Brandão et al., 2013). Another characteristic of wood production chains is its multifunctionality, which 

introduces an important methodological question of how to allocate environmental burdens between the 

different outputs (Jungmeier et al., 2002a).  

Several methodological approaches for CF calculation have recently been developed, e.g. the Climate 

Declaration (IEC, 2008a); BP X30-323 (AFNOR, 2009), PAS 2050 (BSI, 2011); the Japanese CFP 

Communication Program (JEMAI, 2012); the GHG Protocol Product Standard (WRI and WBCSD, 

2011); ISO/TS 14067 (ISO/TS, 2013). Different CF tools adopt different methodological approaches, 

which can compromise comparisons between products (Draucker et al., 2011; Whittaker et al., 2011; Dias 

and Arroja, 2012). Because of the methodological challenges associated with the wood-based panel 
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supply chain, understanding how different methodologies treat these issues and how important are those 

to the results is of key importance for decision makers, companies and LCA researchers and practitioners.  

Several LC-based studies assessed the environmental impacts of wood-based products (e.g. timber: 

Cambria and Pierangeli, 2012; Eshun et al., 2012; wooden building products: Werner and Richter, 2007; 

wood floor coverings: Nebel et al., 2006; paper: Lopes et al., 2003; Dias and Arroja, 2012; paper pulp: 

González-García, 2009a). Regarding wood-based panels, particleboard was assessed by e.g. Rivela et al. 

(2006), Wilson (2010a), Saravia-Cortez et al. (2013), Silva et al. (2013); medium density fiberboard by 

e.g. Rivela et al. (2007); Wilson (2010b) and hardboard by e.g. González-García et al. (2009b, 2011). 

However, the majority of these studies only assessed the cradle-to-gate impacts of wood-based products 

and aspects like carbon storage and delayed emission dynamics were not addressed. Moreover, only a few 

studies (e.g. Dias et al. 2012) compared different methodologies to estimate CFs, and a comprehensive 

assessment of the influence of different methodological issues in the results is still lacking, namely 

regarding wood-based panels. 

The purpose of this article is twofold. Firstly, it aims at assessing the CF of particleboard produced in 

Portugal. Secondly, it aims at assessing the influence of different methodological issues in the 

particleboard CF calculation by comparing four different CF methodologies: i) ISO/TS 14067; ii) the 

GHG Protocol Product Standard; iii) PAS 2050; iv) the Climate Declaration. In Portugal, there is an 

important production of particleboard (more than 50% of the wood-based panel production) and the wood 

industry as a whole represents about 14% of the industrial gross national product and 11% of exports 

(AIMMP, 2010).  

This article is structured in five sections including this introduction. Section 2 briefly presents the four CF 

methodologies. Section 3 describes the life-cycle model developed as well as the main methodological 

differences between the four methodologies. Section 4 presents and discusses the results, focusing on the 

contribution of different methodological issues. Finally, Section 5 draws the conclusions together.  
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2. Carbon footprint methodologies  

This section introduces the four CF methodologies used to assess the CF of particleboard: i) ISO/TS 

14067; ii) the GHG Protocol Product Standard; iii) PAS 2050; iv) the Climate Declaration. The first three 

are specific standards or specifications to calculate the CF of products, while the Climate Declaration is a 

subset of an Environmental Product Declaration, which assesses several environmental impacts. 

The recently published Technical Specification ISO/TS 14067 (ISO/TS, 2013) provides specific 

requirements and guidelines for the quantification and communication of the CF of products, based on 

existing ISO standards on life cycle assessment (ISO, 2006a, 2006b) and on environmental labels and 

declarations (ISO, 2000, 2006c). In particular, it provides requirements for the treatment of specific GHG 

emissions and removals (e.g. fossil and biogenic carbon, carbon storage in products, land-use change) and 

additional requirements for the communication of the CF.  

The GHG Protocol Product Standard, from the World Resources Institute (WRI) and the World Business 

Council for Sustainable Development (WBCSD), was published in 2011 and provides requirements to 

quantify the GHG inventories of products and also requirements for public reporting (WRI and WBCSD, 

2011). It is based on a LC and attributional approach and builds on the ISO standards for LCA (ISO, 

2006a, 2006b) and the first version of PAS 2050 (BSI, 2008). In order to enable meaningful comparisons 

between products, the development and use of sector specific rules, termed ‘product rules’, is promoted. 

Nevertheless, no product rules for particleboard were available and the general GHG Protocol Product 

Standard was applied.  

The Publicly Available Specifications (PAS) 2050, from the British Standard Institution, also builds on 

the existing ISO 14040 and 14044 standards for LCA (ISO, 2006a, 2006b) and further specifies them for 

the assessment of the LC GHG emissions of goods and services (BSI, 2011). It was first introduced in 

2008 (BSI, 2008) and was revised in 2011 (BSI, 2011), in alignment with the GHG Protocol Product 

Standard (WRI and WBCSD, 2011) regarding key topics (e.g. sector/product rules, biogenic carbon, 

recycling, land-use change, delayed emissions) (for details, please refer to BSI et al., 2011). PAS 2050 

sets directions on how to deal with several common methodological issues such as system boundary 

definition and allocation as well as more specific issues, for example carbon storage and delayed 

emissions. The latter are particularly important in the context of wood-based panels and are discussed in 

Section 3.3. However, PAS 2050 does not give specific guidelines for products or sectors. Instead, 

similarly to the GHG Protocol, it recommends the use and development of sector specific rules known as 
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‘supplementary requirements’. General PAS 2050 guidelines were applied to the particleboard case study, 

since no supplementary requirements were available.  

A Climate Declaration is a single-issue environmental product declaration (EPD) focused on GHG 

emissions. This concept was first introduced by the International EPD system (IEC, 2008a). The Climate 

Declaration builds on the same standards as a full EPD, namely ISO 14040 and 14044 standards for LCA 

methodology and ISO 14025 standards for environmental declarations (ISO, 2006a, 2006b, 2006c). The 

assessment is based on specific guidelines, termed Product Category Rules (PCR), developed for each 

product category (i.e. group of products that can fulfill equivalent functions). In particular, PCRs define a 

similar set of rules for calculating the environmental or climate impacts of products within the same 

product category, e.g. functional unit, system boundary, allocation rules, cut-off criteria. There are 

various EPD program operators which results in duplicate PCRs and lack of harmonization between them 

(Ingwersen and Stevenson, 2012; Subramanian et al., 2012). The PCR for particleboard used to assess the 

Climate Declaration in this article is the most recent one developed in the context of the International 

EPD System, a well-known and internationally recognized EPD program (Environdec, 2012).  

3. Methods 

3.1 System boundary and functional unit 

A LC model was developed for particleboard produced in Portugal, which served as the basis for the 

application of the different CF methodologies. Fig. 1 shows the LC model flowchart. A particleboard is a 

wood-based panel made from wood particles, mainly wood residues from different sources, usually 

aggregated using urea-formaldehyde (UF) resin. The wood used to produce particleboard is assumed to 

come from four different sources: sawmill co-products (30%), post-consumer waste wood (30%), pine 

(pinus pinaster) forest residues (25%) and eucalypt (eucalyptus globulus) forest residues (15%), which 

represents the typical particleboard produced in Portugal (Garrido et al., 2010). A functional unit of 1 m3 

of uncoated particleboard for non-structural use (density of 640 kg/m3) was defined based on the PCR for 

the Climate Declaration, which is the only methodology assessed that establishes a specific functional 

unit for this product. 
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Fig. 1 System boundary of the particleboard life-cycle model. 

 

Both cradle-to-gate and cradle-to-grave models were developed to enable a more comprehensive 

assessment. This is also consistent with the Climate Declaration, which clearly defines downstream 

processes as optional and states that these must be defined separately. The cradle-to-gate model includes 

the pine forest operations (site preparation, planting and logging, including harvesting and forwarding), 

the eucalypt forest operations (logging), the sawmill process, the post-consumer waste wood recovery 

process and the particleboard production. In addition, it takes into account the production of fuels, 

electricity, urea-formaldehyde (UF) resin and other chemicals as well as transport of raw and ancillary 

materials. No land-use change was considered since pine forest area in Portugal has been decreasing since 

1970 (ICNF, 2013). The cradle-to-grave model also includes transport of particleboards to the distribution 

platform and two alternative end-of-life (EoL) scenarios: incineration with energy recovery and landfill 

disposal. The main simplifications and exclusions to these models due to the application of the various CF 

methodologies are described in the next section. 

3.1.1 Cut-off criteria, capital goods and other exclusions 

Cut-off criteria are established to determine the input and output flows to be included in the assessment. 

ISO/TS 14067 states that if cut-off criteria are used their effect on the outcome of the study shall be 

assessed and refers to ISO 14044 for additional guidance (ISO, 2006b, 4.2.3.3.3). The GHG Protocol 

allows exclusions based on significance when a data gap exists (the definition of insignificance is 
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established by the company). PAS 2050 and the Climate Declaration require the inclusion of all the 

processes that contribute to more than 1% of the anticipated LC GHG emissions of the functional unit and 

at least 95% of the total GHG emissions associated with the product. These cut-off criteria combined with 

the different allocation approaches (see Section 3.4) result in the exclusion of different unit processes by 

the four methodologies, as presented in Table 1. The cut-off in PAS 2050 was 98% and in the Climate 

Declaration 99%. 

Table 1 Unit processes excluded from the particleboard system boundary due to cut-off criteria. 

 Unit processes excluded due to cut-off criteriaa 

 PAS 2050 Climate Declaration 

Biomassb  Pine residue harvesting; 
Eucalypt residues harvesting; 
Chip and shaving production 

Pine residue harvesting; 
Eucalypt residue harvesting 

Chemicals Ammonium sulfate production Ammonium sulfate production 
a No cut-off criteria was applied in ISO/TS 14067 and the GHG Protocol. 
b GHG removals were included (only GHG emissions were excluded). 

According to PAS 2050 and the PCR for the Climate Declaration, the production of capital goods (e.g. 

building of site, infrastructure and equipment, their maintenance and decommissioning), transport of 

workers to and from the place of work and transport of costumers to and from the point of purchase shall 

be excluded from the system boundary. The GHG Protocol does not require “non-attributable” processes 

(i.e. not directly connected to the studied product, such as capital goods) to be included, but encourages 

their inclusion when relevant (WRI and WBCSD, 2011, pp. 42). On the other hand, ISO/TS 14067 only 

allows exclusions if they do not significantly affect the overall conclusions. Capital goods, namely 

infrastructure processes, were excluded from the system boundary in the GHG Protocol, PAS 2050 and 

Climate Declaration assessments. 

3.2 Data collection 

Unit process data for the assessment of the particleboard CF is the same for all the methodologies. 

Primary data for Portugal was collected in the context of research projects and thesis at the Center for 

Industrial Ecology, University of Coimbra. Some of this data is available in Nunes (2008); Nunes and 

Freire (2007); Garcia (2010); Garcia and Freire (2011); Freire and Marques (2012). Fuel consumption 

(diesel and gasoline) in eucalypt and pine forest activities were estimated based on Nunes (2008) and 

Dias et al. (2007), respectively. Electricity generation for the main processes was modeled with reference 

to the 2010 Portuguese mix (Freire and Marques, 2012). Average transport distances for Portugal were 
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assumed for materials used in the main production processes and distribution of particleboards. Transport 

of inputs was done by truck with a payload of 20-27 t. 

The main sources of secondary data were peer-reviewed literature and databases (mainly Ecoinvent v.2, 

Ecoinvent, 2012). Data regarding the sawmill process was collected from Milota et al. (2006) and the 

production of UF resin was modeled based on Wilson (2010c). The main data source for the particleboard 

manufacturing process was Rivela et al. (2006). Recovering of post-consumer waste wood was modeled 

based on Merrild and Christensen (2009). 

Regarding particleboard end-of-life, GHG emissions from incineration were assumed similar to those 

from wood. Ecoinvent data for incineration with energy recovery of wood was considered (Doka, 2009). 

GHG emissions from the decomposition of particleboard in landfill were calculated according to Wang et 

al. (2011), which estimates the degradability of particleboard in landfill to be 1.3%. Emissions were 

assumed to be released at a constant rate during the first 20 years after landfill disposal, according to 

Micales and Skog (1997) (0.8% of carbon is released as methane and 0.5% as carbon dioxide). 

3.3 Biogenic carbon: carbon storage and delayed emissions 

During biomass growth, there is an uptake of carbon (C) from the atmosphere through photosynthesis (C 

uptake) which is temporarily stored in wood-based products (biogenic C storage). This stored C may be 

re-emitted to the atmosphere during the LC of the product (delayed emission of temporarily stored C) or 

be indefinitely stored as a result of waste management (e.g. in landfill). When stored C is left out of the 

atmosphere for a certain period of time, its effect on global warming is postponed (Brandão and 

Levasseur, 2011; Brandão et al., 2013). Fig. 2 illustrates the concepts of biogenic carbon storage and 

delayed emission of temporarily stored carbon for two particleboard EoL scenarios. 

 
Fig. 2 Schematic diagram of carbon storage and delayed emissions of the temporary stored carbon for two 

particleboard end-of-life scenarios: a) incineration; b) landfill disposal. 
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The current approach to treat biogenic CO2 emissions (emissions of C temporarily stored in biomass) in 

LCA and CF studies is often to exclude them from the assessment, as it is assumed that the same amount 

of CO2 was previously sequestered by biomass, giving a net zero emission (Guinée et al., 2002; Hischier 

et al., 2010). However, it is increasingly acknowledged that biogenic CO2 should be taken into account, 

since not considering it could lead to accounting errors (Searchinger et al, 2009; Bird et al., 2010). On the 

other hand, even when C uptake during biomass growth is accounted for (as a negative emission) as well 

as the subsequent release (as a positive emission), the duration of storage is usually disregarded, i.e. the 

effect of delaying the emission of the temporarily stored C is not taken into account (Brandão et al., 

2012). The different CF methodologies adopt different approaches to these issues.  

The PCR for the Climate Declaration excludes both the uptake and the emission of biogenic CO2 from the 

global warming calculations, and C storage in wood products is not taken into account. On the other hand, 

ISO/TS 14067, the GHG Protocol and PAS 2050 explicitly include in the CF assessment both emissions 

to and removals from the atmosphere from biogenic sources. Regarding C storage, the GHG Protocol 

requires that the amount of C contained in the product in cradle-to-gate inventories is reported and that C 

not released to the atmosphere during waste treatment, therefore considered permanently stored, is also 

reported. In PAS 2050, the portion of removed C not emitted to the atmosphere during the 100-year 

assessment period is treated as stored C and accounted for in the CF calculation. On the other hand, in 

ISO/TS 14067, C storage in products shall be reported separately in the CF study report and not included 

in the CF.  

Due to the relatively long service life and/or end-of life time period of particleboard, the effect of delayed 

emissions may be important to the particleboard CF calculation. The use of a weighting factor to calculate 

the effect of delayed emissions is optional in ISO/TS 14067, the GHG Protocol and PAS 2050. If the 

effect of delayed emissions is taken into account, it shall be documented separately. In ISO/TS 14067 and 

the GHG Protocol no recommended method is provided for delayed emission assessment. Therefore, a 

sensitivity analysis was performed using six approaches to understand the effect in the particleboard CF 

of delayed emissions calculated by different methods: i) the fixed GWP approach; ii) the Lashof approach 

iii) the Moura-Costa approach; iv) the ILCD handbook method; v) the dynamic LCA approach and vi) the 

time-adjusted warming potential (TAWP) method. The fixed GWP approach does not take into account 

the temporal distribution of emissions. It considers that the amount of C stored in biomass is added to the 

amount of C released at the product end-of-life, i.e. the CO2 absorbed in photosynthesis is assigned a 
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GWP of -1, while the biogenic CO2 released at the end-of-life is assigned a GWP of 1 (Guinée et al., 

2009). All the other approaches account for the temporal distribution of emissions. The Moura-Costa 

(Moura-Costa and Wilson, 2000) and Lashof (Fearnside et al., 2000) methods are explained in further 

detail in Brandão and Levasseur (2011). Details on the ILCD handbook method can be found in EC JRC 

(2010). The dynamic LCA method and its application are explained in detail in Levasseur et al. (2010, 

2012). The TAWP method is detailed in Kendall (2012).  

In PAS 2050, two methods for the calculation of the weighted average impact of delayed emissions based 

on the Lashof approach (see Clift and Brandão, 2008) are suggested. For emissions delayed up to 25 years 

from the formation of the product, the delayed single release method shall be used; for longer delay 

periods, the delayed release method, similar to the ILCD handbook method, shall be used. The two 

methods used in PAS 2050 apply to all delayed GHG emissions, as CO2 eq, although care should be taken 

when a significant amount of non-CO2 emissions are involved, as these methods were developed 

specifically for CO2 emissions and, therefore, the result would be less accurate, as detailed in BSI (2011, 

Annex E). 

The particleboard is composed of about 90% of wood (576 kg/m3) with an average C content of 52% 

(Wilson, 2010a), resulting in about 300 kg of stored C per m3 of particleboard. The particleboard service 

life is assumed to be 10 years. The chosen time-horizon for the assessment of the particleboard CF is 100 

years, which is consistent with all the CF methodologies analyzed and is the most common time horizon 

used in LCA and CF (Levasseur et al., 2010; WRI and WBCSD, 2011; Brandão et al., 2013). 

Nevertheless, a sensitivity analysis to the time-horizon was also performed, presented in Section 4.2. Fig. 

3 shows the biogenic C content of the particleboard over 100 years following the formation of the product 

for the two end-of-life scenarios: incineration (the biogenic C is released after the 10-year service life, i.e. 

it is temporarily stored for 10 years) and landfill disposal (1.3% of the biogenic C is released after the 10-

year service life at a constant rate during the following 20 years, i.e. 98.7% of the C is permanently stored 

and 1.3% is temporarily stored for 20 years on average). C is assumed to be taken up at year 0 of 

formation of the product, i.e. the timing of C uptake in forest is not considered, which complies with 

ISO/TS 14067 and PAS 2050. Although recent studies addressing this issue (e.g. Cherubini et al., 2011; 

Levasseur et al., 2012) showed that results are sensitive to the temporal boundary, this is out of the scope 

of this article. 
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Fig. 3 Biogenic carbon content of particleboard over 100 years after the formation of the product. 

 

Table 2 shows the factors calculated with different methods to account for the delayed emission of 1 kg of 

CO2 at particleboard EoL. These factors reflect the time of delay in the emissions for each EoL scenario, 

according to the biogenic carbon content profile presented in Fig. 3 (except for the fixed GWP approach, 

which does not account for the timing of emissions). For the incineration scenario, the values were 

obtained for a delay of 10 years in the emission of 1 kg of biogenic CO2 and represent the impact of that 

delayed emission. For the landfill scenario, the values were calculated considering that 1 kg of biogenic 

CO2 is emitted at a constant rate during 20 years (0.05 kg CO2/year) between the 10th and 30th year 

following formation of the product and represent the total impact of those delayed emissions. By 

multiplying these factors by the total biogenic CO2 emissions arising at the particleboard EoL, the impact 

of these emissions reflecting the timing of release according to the different methods is obtained (this can 

be guaranteed for the landfill scenario since the emission release is assumed linear).  In PAS 2050, the 

same factors, termed weighting factors, apply to the other GHG emissions (as CO2 eq) arising at the EoL 

of particleboard. In dynamic LCA and the TAWP model, different characterization factors were 

calculated for the other type of GHG emission (namely CH4), according to Levasseur et al. (2010) and 

Kendall (2012), respectively. 
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Table 2 Factors reflecting the delayed impact of particleboard end-of-life (EoL) biogenic CO2 emissions. 

Delayed impact of 1 kg of biogenic 
CO2 emitted at particleboard EoL Methods to assess delayed 

emissions 
Incineration Landfilla 

Fixed GWP  1 1 

Lashof  0.924 0.850 

Moura-Costa   0.791 0.592 

ILCD 0.900 0.805 

Dynamic LCA 0.924 0.848 

TAWP100 0.922 0.845 

PAS 2050 0.924b 0.805c 
a Considers that 1 kg of biogenic CO2 is emitted at a constant rate during 20 years (0.05 kg CO2/year) between the 
10th and 30th year following formation of the product (see Fig. 3). 
b Delayed single release method (see BSI, 2011, Annex E for more details). 
c Delayed release method (see BSI, 2011, Annex E for more details). 

3.4 Multifunctionality and allocation 

Biomass-based production chains are often multifunctional, i.e. they are associated with more than one 

co-product (Jungmeier et al., 2002a; Malça and Freire, 2006, 2011). In the particleboard LC, there are two 

multiple output processes: the sawmill process and the end-of-life incineration with energy recovery of 

particleboard. The treatment of the multifunctionality in those processes by the different methodologies is 

explained in the next sections.  

Forest residues, namely logging residues, resulting from forest production for the wood industry or from 

energy crops were considered as residues with no economic value (waste) and thus (following the 

standard approach in LCA for waste, e.g Clift et al., 2000; Jungmeier et al., 2002b) no environmental 

burden resulting from previous processes was allocated to them. Therefore, only collection, transport and 

further processing of forest residues were included in the calculations performed with the CF four 

methodologies. 

3.4.1 Sawmill 

The sawmill process is a multiple output process since it simultaneously produces planned lumber for the 

construction industry, which is the main product, and sawdust, chips and shavings, co-products with low 

economic value, which are used in the production of particleboard. Fig 4 shows the flowchart of the 

sawmill process. 
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Fig 4 Flowchart of the sawmill process. 

 

The ISO/TS 14067 standards establish a hierarchy of procedures to deal with multifunctional processes 

based on ISO 14044 (ISO, 2006b), and similar guidance is provided in the GHG Protocol (WRI and 

WBCSD, 2011). Following these standards, system expansion should be the first option to solve the 

multifunctionality problem, since subdividing the unit process is not possible due to joint production. 

However, the application of system expansion to this multi-output system is very complex and was not 

considered to avoid increasing the complexity of the CF methodology comparison. According to ISO 

14044 (ISO, 2006b), whenever several alternative allocation procedures seem applicable, a sensitivity 

analysis shall be conducted. In this article, two allocation methods were used: mass allocation (ma) and 

economic allocation (ea), since they are used in the CF methodologies addressed. Other allocation 

methods, e.g. based on the carbon content or energy content of the co-products, were not analyzed 

observing that the allocation factors for mass, carbon and energy content are similar, which would lead to 

similar results.   

The allocation factors calculated for each method are presented in Table 3. Economic allocation factors 

were calculated taking into account average annual market prices for 2009 (INE, 2010). Mass balance 

regarding carbon content of wood was preserved. A sensitive analysis to the influence of the allocation 

approach was also performed, considering that 100% of biomass inputs to particleboard production come 

from sawmill co-products (extreme situation), presented in Section 4.2. 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

Table 3 Allocation factors for sawmill co-products. 

Sawmill sub-process Co-products Mass allocation Economic allocationa 

Sawing Rough green lumber 56.0% 85.7% 

 Sawdust 7.0% 2.3% 

 Chips 37.0% 12.0% 

Planing Planed dry lumber 85.0% 96.4% 

 Shavings 15.0% 3.6% 
a INE, 2010. 

 

PAS 2050 uses a similar approach to ISO/TS 14067 and the GHG Protocol. If avoiding allocation is not 

practicable, supplementary requirements should be used. If none of these procedures is applicable, 

allocation shall be made according to the economic value of the co-products. In this article, economic 

allocation was used for the PAS 2050 CF calculations. The PCR for the Climate Declaration defines mass 

allocation as the approach to deal with multifunctionality and that was used in this study for allocating 

burdens in the sawmill process. 

3.4.2 Incineration with energy recovery 

Waste incineration plants may also generate electricity. In Portugal, electricity generated in incineration 

plants is sold to the grid. Following ISO/TS 14067 and the GHG Protocol approaches, system expansion 

should be the first option to solve the multifunctionality associated with this joint process. Therefore, the 

avoided burdens approach was followed for ISO/TS 14067 and the GHG Protocol CF calculation to 

assess electricity generated in incineration assuming it displaces the Portuguese grid mix. As stated in 

section 3.2, it was assumed that emissions from particleboard incineration are similar to wood waste 

incineration. According to Doka (2009), the incineration of 1 kg of waste wood generates about 1.3 MJ of 

electricity. As a result, the incineration of 1 m3 of particleboard avoids the generation of about 231 kWh 

of electricity from the grid, i.e. avoids the emission of about 90 kg CO2 eq/m3 of particleboard, as the 

GHG intensity of the Portuguese electricity grid was estimated as 390 g CO2 eq/kWh in 2010 (Freire and 

Marques, 2012). 

The PAS 2050 has a specific procedure to deal with multifunctionality in waste combustion with energy 

recovery: both GHG emissions and removals shall be allocated to energy generation. Therefore, only 

transport of waste to the incineration plant was considered within the particleboard system boundary. The 

Climate Declaration addresses this issue in the opposite way since it applies the “polluter-pays” approach. 

It considers that “the environmental impacts of collecting and transportation of the waste to the 
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incineration plant as well as those impacts caused by the incineration process itself are allocated to the 

waste generator” (IEC, 2008b, pp. 14). Following this approach, all the burdens from the incineration 

process were allocated to the particleboard LC in the Climate Declaration CF calculation. 

4. Results and discussion 

This section presents and discusses the CF calculated by the four methodologies (ISO/TS 14067, GHG 

Protocol, PAS 2050 and Climate Declaration). Firstly, the cradle-to-gate CF is assessed and the main 

hotspots in the production of particleboard are identified. Secondly, a cradle-to-grave assessment is 

presented considering two end-of-life (EoL) scenarios: incineration with energy recovery and landfill 

disposal. The contribution of different methodological issues to the differences in results is discussed, 

particularly the inclusion or exclusion of capital goods, the approaches used to deal with multifunctional 

processes, the cut-off rules and the influence of using different methods to assess delayed GHG 

emissions.  

4.1 Cradle-to-gate assessment 

Fig. 5 compares the cradle-to-gate CF of particleboard calculated by the four CF methodologies and 

shows the relative contribution of each LC stage. There is a major difference in the reported CF between 

the methodologies that include (GHG Protocol, PAS 2050) and exclude (ISO/TS 14067, Climate 

Declaration) biogenic carbon storage. The GHG Protocol (mass allocation, ma) and PAS 2050 calculated 

negative CFs (-913 and -939 kg CO2 eq/m3, respectively) while ISO/TS 14067 (ma) and the Climate 

Declaration calculated positive CFs (188 and 168 kg CO2 eq/m3). It should be noted that carbon stored in 

particleboard (equivalent to 1098 kg CO2/m
3) shall be reported separately in ISO/TS 14067 CF report and 

is shown in a separate column in Fig. 5. The GHG Protocol also requires that the amount of carbon 

embedded in the product is reported when performing a cradle-to-gate assessment (highlighted in Fig. 5). 

Reporting the amount of C stored in the product is particularly important in cradle-to-gate assessments in 

order to avoid misleading comparisons with other products, since the embodied carbon at gate may be 

released later during use or end-of-life phase (i.e. may be only temporarily stored). 

For the ISO/TS 14067, GHG Protocol and PAS 2050 CF, the biomass production stage had a high 

contribution to GHG removals, due to the uptake of CO2 from the atmosphere during tree growth. On the 

other hand, the industrial process was the one contributing the most to GHG emissions due to the 
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biogenic CO2 released in the combustion of biomass for energy purposes. For the Climate Declaration, 

the relative contribution of LC stages to the CF differs from the other methodologies, since emissions and 

removals of biogenic CO2 are not included. For the CF calculated using the Climate Declaration, the UF 

resin production had the largest contribution (40% of GHG emissions). The industrial process stage 

contributed 36% to the total. The main source of GHG emissions in the UF resin production were the 

production of urea (67%), due to ammonia production (47%). In the industrial process, the major 

contributor to the GHG emissions was the combustion of natural gas for wood drying. The other LC 

stages individually contributed to less than 10% of the total CF. 

 

Fig. 5 Carbon footprint of particleboard (cradle-to-gate assessment). Results for ISO/TS 14067 and GHG 

Protocol are for mass allocation in the sawmill process. Others include energy inputs, transport of inputs 

and production of other chemicals. 

4.2 Cradle-to-grave assessment 

Table 4 shows the cradle-to-grave CF of particleboard obtained for the different CF methodologies for the 

two end-of-life (EoL) scenarios and allocation approaches to sawmill co-production (mass, ma and 

economic, ea). A great variation in results can be observed among the various CF methodologies for both 

EoL scenarios. Moreover, the ranking of EoL scenarios strongly depends on the CF methodology used. 

For the methodologies that include biogenic carbon storage (GHG Protocol, PAS 2050), the scenario with 

landfill disposal had always a lower carbon footprint than the incineration one. This result diverges from 

the EU Landfill Directive which sets narrow targets for diverting biodegradable waste from landfill and 

gives preference to other waste management practices such as recycling or incineration (European 

Commission, 1999). However, landfilling may be preferable from a GHG standpoint in this case but may 
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not be environmentally better, since a GHG-only assessment cannot be considered a full environmental 

assessment.  

Table 4 Carbon footprint of particleboard (cradle-to-grave assessment). 

CF (kg CO2 eq/m3 of particleboard) 

Incineration Landfill CF methodologies 

ma ea ma ea 

ISO/TS 14067a 140 133 
433  

(-1092) 

426  

(-1092) 

GHG Protocol 113 107 -682 -688 

PAS 2050  189  -692 

Climate Declaration 201  287  

ma: mass allocation (sawmill); ea: economic allocation (sawmill). 
a Carbon storage reported as a negative value within parentheses. 
 
Regarding landfill scenarios, where only part of the C stored in particleboard is released, contradictory 

results were obtained depending on the inclusion or exclusion of biogenic carbon storage. A positive CF 

was calculated using the Climate Declaration and ISO/TS 14067, although the latter also provides 

information about C stored (reported as a negative value within parentheses in Table 4). On the other 

hand, both PAS 2050 and the GHG Protocol calculated negative CF, meaning that particleboard 

landfilling may act as a carbon sink. Carbon stored in landfill is estimated to be equivalent to 1092 kg 

CO2/m
3 of particleboard. 

Differences in results in the incineration scenario were less significant but reached 47% (Climate 

Declaration vs. GHG Protocol ea). The differences observed were due to different approaches to 

methodological issues, namely the approach used to deal with multifunctionality in the incineration 

process, the allocation approach in the sawmill process, the inclusion or exclusion of capital goods, and 

the cut-off criteria. The major difference in the results was due to the approach used to deal with 

multifunctionality in the incineration process. By crediting the avoided burden from grid electricity 

generation, the ISO/TS 14067 and GHG Protocol CFs were reduced by 39-46%. If no electricity credit 

was assigned to particleboard, the CF calculated with ISO/TS 14067 and the GHG Protocol would be 10 

to 18% higher than that calculated with the Climate Declaration and PAS 2050. The ISO/TS 14067 and 

GHG Protocol CFs are thus highly dependent on the GHG intensity of the electricity grid. 

The differences between ISO/TS 14067 and the GHG Protocol CFs reached 20% and were due to the 

exclusion of capital goods in the latter. If capital goods were taken into account in the Climate 

Declaration and PAS 2050 CF, they would represent about 12% of the particleboard CF. Crediting 
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avoided burdens in ISO/TS 14067 and the GHG Protocol CFs enlarged the relative share from capital 

goods. The contribution of capital goods in the particleboard CF is in line with the findings of other 

authors that addressed the environmental relevance of capital goods in LCA of wooden construction 

materials (Frischknecht et al., 2007). This contribution was calculated relatively to the CF of 

particleboard (incineration scenario) in which most of the GHG emissions are biogenic CO2 (neutral due 

to the uptake of CO2). Thus, there is a higher relative contribution of capital goods comparatively to 

fossil-energy-based industrial processes. Despite the exclusion of capital goods being a common practice 

in LCA studies (Frischknecht et al., 2007), results show that they have a significant impact for 

particleboard and should not be neglected. Although not mandatory, the GHG Protocol encourages the 

inclusion of capital goods if relevant and the PAS 2050 refers to supplementary requirements for 

guidance on this issue. Therefore, the development of supplementary requirements or product rules for 

particleboard could have an important role here. 

The cut-off criteria, on the other hand, had a negligible contribution to the differences in results.  

Regarding the allocation approach in the sawmill process, small differences in results can be observed 

between mass and economic allocation results (about 5%) since sawmill co-products represent less than 

30% of the mass input to particleboard production and biomass production has a small contribution to the 

overall GHG emissions of particleboard. Nevertheless, as wood raw material is becoming scarce, there is 

a tendency to use more recovered wood in particleboard production, e.g. sawmill co-products (Irle and 

Barbu, 2010). The importance of the allocation approach increases as the share of sawmill co-products in 

particleboard increases. A sensitive analysis to the influence of the allocation approach was performed, 

considering that 100% of biomass inputs to particleboard production come from sawmill co-products 

(extreme situation). Fig. 6 shows the particleboard CF calculated for both the reference system and the 

100% sawmill co-product situation. As can be seen, differences in results between the CF methodologies 

were higher for the latter, reaching 51% for the Climate Declaration versus the GHG Protocol (ea) 

(against 47% in the reference system). The allocation approach can account up to a 9% difference in CF 

results (ISO/TS 14067 ma vs. ea) when 100% of biomass comes from sawmill co-products. This 

difference is, however, much lower than for other biomass systems (Werner et al., 2007; Malça and 

Freire, 2006, 2011) since allocation of emissions occurs very early in the particleboard supply chain and 

the overall GHG emissions associated with the sawmill (and upstream) process are low (about 17% of the 

overall particleboard CF).  
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Fig. 6 Comparison of the CF of the reference particleboard and of the particleboard with 100% sawmill 

co-products, for the incineration EoL scenario. 

4.2.1 Delayed emissions 

Although not mandatory in any of the CF methodologies analyzed, accounting for the effect of timing of 

emissions may be performed. Only PAS 2050 prescribes a specific method for assessing delayed 

emissions. For both ISO/TS 14067 and the GHG Protocol, six alternative methods were assessed. It 

should be noted that, in ISO/TS 14067, if emissions occur within ten years after the production of the 

product, as in the incineration scenario, they shall be assessed as occurring at the beginning of the 

assessment period. As a result, the effect of timing of emissions was not assessed in ISO/TS 14067 for the 

incineration scenario and, for that reason, the GHG Protocol results were chosen to be presented. Table 5 

shows the GHG Protocol CF of particleboard for the two EoL scenarios calculated taking into account the 

effect of timing of emissions according to the six methods and the PAS 2050 CF calculated using its 

specific method. The effect of timing of emissions was also taken into account when calculating the 

avoided burden credit in the incineration scenario.  

The method used to assess delayed emissions had a significant influence in the particleboard CF results 

for the incineration scenario, where all the stored C is released. Using the Moura-Costa and the ILCD 

approaches to account for delayed emissions of the stored C lead to a negative CF, since the credit for 

these emissions is higher than the cradle-to-gate GHG emissions including the avoided burdens credit. 

However, the reduction was lower with the Moura-Costa approach, since a yearly delayed GHG emission 

in ILCD is considered to have a higher relative impact. The Lashof, dynamic LCA and TAWP 

approaches gave similar results and the CF was reduced by 81-82% compared to the fixed GWP 

approach. In absolute terms, similar time adjusted emissions were calculated for the Lashof, dynamic 
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LCA and TAWP100 approaches (less than 0.2% difference), as emissions occur within 25 years and non-

CO2 emissions are irrelevant, which is consistent with Kendall’s (2012) conclusion. In the PAS 2050 

assessment taking into account the impact of delayed emissions, the decrease in the particleboard CF 

compared to the single release assessment (see Table 4) is insignificant, since only emissions from 

transport of waste to the incineration plant were accounted for as delayed emissions and these represent 

less than 5% of total emissions. In the landfill scenario, the use of different methods to account for 

delayed emissions lead to less significant differences in results (less than 12%), since most of the biogenic 

carbon is permanently stored. 

Table 5 Sensitivity analysis to the method used to assess delayed emissions (results for the GHG 

Protocol, mass allocation). 

CF (kg CO2 eq/m3 particleboard) Method used to assess 
delayed emissions Incineration Landfill 

Fixed GWP  113 -688 

Lashof  22 -715 

Moura-Costa -138 -771 

ILCD -7 -732 

Dynamic LCA 21 -720 

TAWP100 20 -680 

PAS 2050a 188b -745 
a CF calculated based on PAS 2050 CF presented in Table 4 (not the GHG Protocol).  
b Only accounts for delayed emissions from transport of waste to the incineration plant. 
 

The results presented in Table 5 are for a 100 year-time horizon. A sensitivity analysis to assess the 

implications of using different time horizons (20- and 500-year) was also performed, as recommended by 

Brandão et al. (2013). Table 6 shows the CF calculated with the GHG Protocol methodology using the 

fixed GWP approach, the dynamic LCA method and the TAWP method for three different time horizons. 

No values were calculated using PAS 2050 and the ILCD delayed emission methods, since these methods 

are applied to 100-year time-horizon only.  

The major differences in results for the three time horizons in the incineration scenario occur for the 

dynamic LCA and TAWP methods, which account for the timing of emissions. These two methods 

presented similar results. A negative CF was calculated for the 20-year time horizon due to the storage 

period being half of the assessment period, which resulted in a relative impact of 0.55 and 0.53, 

respectively, for each unit of CO2 emitted in particleboard incineration. For these methods, the longer the 

time horizon, the higher the CF, since the time of storage becomes less important. In landfill, the 20-year 
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CF calculated with these methods is lower than the 100-year, since emissions occurring after 20 years of 

the formation of the product are not accounted for. The fixed GWP approach does not account for the 

timing of emissions and does not have any cut-off in the assessment period. As a result, the shorter the 

time horizon, the more important non-CO2 GHG emissions are and the higher the CF is. Regarding the 

landfill scenario, differences can reach 67%, due to CH4 emissions. On the other hand, no major changes 

occur in the incineration scenario (about 13%), since most of the GHG emissions in the particleboard LC 

are CO2. Despite the differences in the CF, the same conclusions can be drawn regarding the ranking of 

EoL scenarios. 

Table 6 Comparison of the GHG Protocol CF results calculated for three time horizons with different 

methods (in kg CO2 eq/m3 of particleboard). 

Incineration Landfill Method used to assess 
delayed emissions 20 yrs 100 yrs 500 yrs 20 yrs 100 yrs 500 yrs 

Fixed GWP 125 113 109 -286 -688 -860 

Dynamic LCA -327 21 92 -777 -720 -855 

TAWP -357 20 95 -770 -680 -837 

 

5. Conclusions  

Different methodologies can be used to quantify the carbon footprint (CF) of wood-based panels. This 

article compared the CF of particleboard calculated using ISO/TS 14067, the GHG Protocol Product 

Standard, PAS 2050 and the Climate Declaration. A controversial topic in the CF calculation is biogenic 

CO2 accounting and CF methodologies treat this issue differently. As a result, a wide range of CF was 

calculated: cradle-to-gate from -939 to 188 kg CO2 eq/m3; cradle-to-grave from 107 to 201 kg CO2 eq/m3 

(incineration) and -692 to 433 kg CO2 eq/m3 (landfill). ISO/TS 14067, the GHG Protocol and PAS 2050 

explicitly include both emissions and removals of biogenic CO2 in the CF calculation. It should be noted 

that in ISO/TS 14067 carbon storage is excluded from the reported CF, which leads to higher values 

(cradle-to-gate and cradle-to-grave landfill scenario) than those reported by the GHG Protocol and PAS 

2050; nevertheless, since carbon storage is reported separately, similar conclusions can be drawn. On the 

other hand, the Climate Declaration does not account for biogenic CO2 and does not present any 

information regarding carbon storage. 

Not including carbon storage in the assessment of the carbon footprint of wood-based products may bias 

the comparison with competing products that do not store biogenic carbon (e.g. fossil-based materials). In 
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fact, when a fraction of the biogenic C is permanently stored, as in landfill, the notion of carbon neutrality 

frequently attributed to biogenic CO2 emissions is misleading, as discussed in Levasseur et al. (2012). On 

the other hand, when presenting cradle-to-gate results, the embedded carbon should be reported, in order 

to avoid misleading comparisons with other products, since the embodied carbon at gate may be released 

later during use or end-of-life phase (e.g. through incineration). Therefore, in future guidelines for wood-

based panels, such as Product Category Rules and Supplementary Requirements, transparent accounting 

for biogenic CO2 emissions and removals, including reporting of carbon storage, should be required so 

that the implications of these issues to the overall CF are comprehensively understood. 

The CF of particleboard for the incineration scenario was very sensitive to the treatment of 

multifunctionality in the incineration process. Although ISO/TS 14067, the GHG Protocol and PAS 2050 

have a similar procedure to deal with multifunctional processes in general (based on ISO 14044), PAS 

2050 has specific guidelines for allocation of burdens from energy recovery from waste which do not 

comply with the standard ISO 14044 approach. The Climate Declaration also deals with this issue 

differently. The treatment of multifunctionality in energy recovery from waste should thus be aligned 

between CF methodologies. 

Other controversial topic in the CF calculation is delayed emissions accounting, which may significantly 

affect CF results, especially if long-living products are being assessed (80-200% reduction in 

particleboard CF). The different CF methodologies do not require that the effect of delaying emissions is 

reported and if delayed emissions are calculated, they are required to be reported separately. The Climate 

Declaration is the exception, since no reference to delayed emission accounting is made. Despite the 

consensus in delayed emission reporting between ISO/TS 14067, the GHG Protocol and PAS 2050, no 

consistent methodology is defined.  If companies wish to report the effect of delayed emissions, a 

sensitivity analysis to the method chosen should be performed since it can lead to very distinct results.  

Regarding other methodological issues addressed, attention should be paid to the inclusion of capital 

goods since these may be important. In fact, CF methodologies, in particular the GHG Protocol, PAS 

2050 and the Climate Declaration, tend to ignore capital goods as a general rule. However, in wood-based 

products the relative contribution of capital goods is higher comparatively to fossil-energy-based 

industrial processes since biogenic CO2 emissions resulting from energy requirements are neutral due to 

C uptake. Product Category Rules and Supplementary Requirements to be developed for wood-based 

panels should take this into account. 
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