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Abstract 

Plasticity induced crack closure (PICC) has been widely studied using numerical models. Different 

numerical parameters can be considered to quantify the opening level, namely one based on the analysis of 

contact stresses at minimum load. A modified version of this parameter is proposed here, based on nodal 

contact forces instead of contact stresses. The predictions were found to be similar to those 

obtained from the contact status of 2
nd

 node behind crack tip. The PICCcontact parameter was also 

found to be very consistent and adequate for parametric studies of the influence of different 

physical parameters. The contributions to the opening stress intensity factor of different points 

along crack flank were found to strongly decrease with distance to crack tip. The cumulative Kopen between 

the crack tip and a distance of 0.1 mm was found to vary from 30% to 100%, increasing with stress ratio, 

R. Finally, a K solution was developed for punctual forces applied on crack flank and compared with a 

literature solution for infinite plates. A good agreement was found for plane strain state but significant 

differences of about 10% were found for plane stress state.  
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1. Introduction 

Crack closure, i.e., the contact of fracture surfaces, affects the fatigue crack 

growth rate and must be considered in the design of components submitted to cycling 

loading. Plasticity induced crack closure (PICC) is linked to the residual plastic field 

formed as the crack propagates. The deformed material acts as a wedge behind the crack 

tip and the contact of fracture surfaces is forced by the elastically deformed material 

recovering its position during unloading (Elber, 1970, 1971). Numerical models based on 

finite element method have been successfully developed to predict PICC. These models 

comprise the modelling of the cracked body with elastic-plastic behaviour, the 

application of a cyclic load, the extension of the crack and the measurement of crack 

closure level. The procedure is ideal for parametric studies about the influence of 

physical parameters like stress ratio (R), overload ratio, crack length or material 

hardening parameters. Main numerical parameters are the finite element mesh 

(particularly the size of crack tip elements), the number of load cycles between crack 

increments, the crack propagation required to stabilise PICC, and the parameter 

considered to quantify PICC.  

 Although the large number of studies already developed to optimise the numerical 

models devoted to PICC, there some unsolved issues. The parameter considered in the 

numerical studies to quantify the level of PICC has a major influence on the predictions, 

therefore deserves a particular attention. Different PICC numerical parameters have been 

considered, namely, the last contact of nodes behind crack tip, the stress inversion at the 

crack tip, the variation of compliance measured at a remote position relatively to crack 

tip, and the PICC based on the contact stresses at minimum load. The last contact of 

crack flank, which corresponds to the contact of first node behind current crack tip, was 

first used by Newman (1976) and is the most popular approach (Fleck 1986; McClung 
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and Sehitoglu, 1989; Solanki, 2004a; Jiang, 2005). The opening stresses are found when 

the displacement of the monitored node becomes positive during the loading stage of a 

load cycle and the closing stresses are found when the displacement of this node is zero 

during the unloading stage. Alternatively, the second node behind crack tip has also been 

used (Pommier, 2001; Roychowdhury and Dodds, 2003a). This second node may be 

expected to be less influenced by finite element errors associated with the severe near 

crack tip gradients. However, the results from both nodes are mesh dependent, since the 

approximation of the node to the crack tip with mesh refinement increases the opening 

load. An alternative parameter is the stress inversion at the crack tip, first used by 

Sehitoglu and Sun (1991) and followed by Wu and Ellyin (1996), González-Herrera and 

Zapatero (2005) and Matos and Nowell (2007). Initially the opening stress was defined 

as the remote stress for which all the compressive stresses along the crack plane were 

overcome. In a later work Sun and Sehitoglu (1992) defined crack opening stress as the 

external applied stress for which the stress at the crack tip node changes from 

compressive to tensile. When the size of crack tip element tends to zero, the contact 

status and the tip tension are expected to give the same result (Antunes and Rodrigues, 

2008). However, important differences in the crack closure levels were obtained between 

classical definition and stress inversion for typical element sizes (Antunes and Rodrigues, 

2008; Wei and James, 2000). Global measurements of PICC based on the analysis of 

remote change have also been considered numerically (Antunes 2010) replicating an 

experimental approach widely used (Borrego, 2001). This parameter overcomes the 

limitation of focusing attention on a single node, considering instead the global behaviour 

of the entire crack surface, however it cannot be used to obtain the distribution of PICC 

along a 3D crack front. An alternative approach is the contact stress method, which uses 

the contact stresses at minimum load to calculate the stress intensity factor required to 
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open the crack (Solanki, 2004b). This method also involves several nodes along crack 

flank and can be used to quantify PICC distribution along a 3D crack front. However, it 

is based on elastic analysis and may not apply to cases where the small scale yielding 

conditions do not hold. 

 There is no agreement in the literature about which parameter effectively expresses 

the effect of crack closure on fatigue crack growth. Borrego et al. (2003, 2004, 2005) 

used a small pin-gauge placed at the centre of a M(T) specimen to obtain the compliance 

curve (Toyosada and Niwa, 1994) and the technique known as maximisation of the 

correlation coefficient (Allison, 1988) to identify the crack closure load. The resulting 

crack closure levels were able to explain the influence of stress ratio, overloads and load 

blocks on fatigue crack growth rate in aluminium alloys. Zapatero et al. (2008) 

developed experimental and numerical work to identify the most adequate PICC 

parameter. CT specimens with thicknesses of 4, 8 and 12 mm were tested under constant 

amplitude loading with R=0.1, 0.3, 0.5 and 0.7. Several definitions of effective stress 

intensity factor range, ∆Keff=U∆K were tried in plane stress and plane strain states, using 

different parameters to quantify U, namely, node contact, tip tension and 

opening/closure. Best correlation coefficients were obtained for plane stress state from 

averaging the loading and unloading values of PICC obtained from tip tension and node 

contact. Further work is clearly necessary to objectively identify the PICC parameter that 

is effectively controlling crack tip fields and crack propagation. Comparisons between 

different PICC parameters can be found in Solanki et al. (2004b), Matos and Nowell 

(2007), Antunes and Rodrigues (2008) and Ismonov and Daniewicz (2010). However, 

Antunes and Rodrigues (2008) did not include the analysis of contact stresses, and the 

other studies used relatively simple material models. In fact, Solanki et al. (2004b) and 

Matos and Nowell (2007) considered an elastic-perfect plastic behaviour, while Ismonov 



  

 - 5 - 

and Daniewicz (2010) used a bilinear kinematic hardening. Considering the relevance of 

PICC parameter on numerical predictions, further comparisons are important, 

particularly for relatively complex material models. 

 The contact forces have also been used to analyse different aspects of PICC 

phenomenon. Hou and Charng (1996) studied the effect of crack propagation on residual 

stresses in the presence of overloads, Hou (2004) compared the surface and deepest 

point of a surface crack at R=0 and R=-1, while Zhao et al. (2004) compared plane 

stress and plane strain states. Roychowdhury and Dodds (2003b) studied the variation of 

closure along the thickness in a through-thickness geometry, Zhang et al. (1999) used 

the contact forces to study the effect of an overload, Matos and Nowell (2008) studied 

the effect of crack propagation and number of load cycles between propagation and 

Singh et al. (2008) analysed the progressive contact of elements behind crack tip. 

 The contact stress method has not been widely used to quantify PICC and further 

work is required with different material models and loading parameters to check its 

robustness. Therefore, the main objective here is to explore the use of contact forces to 

analyse plasticity induced crack closure. The approach proposed by Solanki et al. 

(2004b) and Matos and Nowell (2007) to calculate the opening stress is slightly modified 

by considering only the nodal forces, instead of the stress distribution along crack flank. 

The corresponding PICC parameter is compared with classical solutions, namely the 

contact status of first and second nodes behind crack tip and the variation of remote 

compliance. This comparison is made for a wide range of load parameters and a 

relatively complex material hardening model. A numerical K solution is also developed 

for punctual loads applied at the crack flanks, and compared with Isida’s solution for 

cracks in an infinite plate (Tada, 2000). 
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2. Numerical procedure 

Figure 1a illustrates the geometry of Middle-Tension (M(T)) specimen studied 

here, which is in agreement with ASTM E647 standard (2011). Due to the symmetry of 

the sample and loading conditions, only 1/8 of the MT specimen was simulated, by using 

adequate boundary conditions. The opposite crack surface was simulated by assuming 

frictionless contact conditions over a symmetry plane placed behind the growing crack 

front. A straight crack was modelled, with an initial size ao of 5 mm (ao/W=0.083). Pure 

plane strain conditions were simulated constraining out of plane deformation in a 

specimen with a small thickness (t=0.1 mm). All the simulations were performed 

assuming a constant amplitude cyclic loading. Table 1 indicates the load parameters 

defined in the five sets of constant amplitude tests considered. Sets with constant Kmin, 

Kmin, ∆K and R were studied, as can be seen. 

The material considered in this research was the 6016-T4 aluminium alloy 

(HV0.5=92). Since PICC is a plastic deformation based phenomenon, the hardening 

behaviour of the material was carefully modelled. In the present work, an anisotropic 

yield criterion (Hill, 1948) was considered, which is expressed by the quadratic function: 

( ) ( ) ( )
2 22 2 2 2

2 2 2 1yy zz zz xx xx yy yz zx xyF G H L M Nσ σ σ σ σ σ τ τ τ− + − + − + + + =  (1) 

where xxσ , yyσ , zzσ , xyτ , xzτ  and yzτ  are the components of the effective stress tensor 

( Xσ −′ ) defined in the orthotropic frame and F, G, H, L, M, N, are coefficients that 

characterise the anisotropy of the material. In order to model the hardening behaviour of 

this aluminium alloy, three types of mechanical tests have been performed: uniaxial 

tensile tests and monotonic and Bauschinger shear tests. From the experimental data and 

curve fitting results, for different constitutive models, it was determined that the 
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mechanical behaviour of this alloy is better represented using an isotropic hardening 

model described by a Voce type equation: 
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In these equations Y is the equivalent flow stress, pε  is the equivalent plastic strain, Y0 

is the initial yield stress, Rsat is the saturation stress, nν, Cx and Xsat are material constants, 

σ'σ'σ'σ' is the deviatoric stress tensor, X is the back stress tensor, and pε�  is the equivalent 

plastic strain rate. The material constants determined for the batch of material in study, 

that were used in the numerical simulations, are: F=0.5998; G=0.5862; H=0.4138; 

L=1.2654; M=1.2654; N=1.2654,  Y0=124 MPa, Rsat=291 MPa, nν= 9.5, Cx= 146.5 and  

Xsat= 34.90 MPa (Chaparro, 2008).  

Figure 2 presents the finite element mesh, which was refined at the crack front to 

model the severe plastic deformation gradients and enlarged at remote positions to 

reduce the numerical effort. Three sizes were considered for the near crack tip elements, 

L1=32; 16 or 8 µm, while only one layer of elements was considered along the thickness. 

The total number of linear isoparametric elements were 1275, 2587 and 12632, 

respectively, while the number of nodes was 2712, 5382 and 6169, respectively. The 

coordinate system considered to define the numerical model is indicated in figure 2. 

Crack propagation was simulated by successive debonding of nodes at minimum load. 

The increment at minimum load was adopted to overcome convergence difficulties. 

Each crack increment (∆ai) corresponded to one finite element and two load cycles were 

applied between increments. In each cycle, the crack propagates uniformly over the 

thickness by releasing both current crack front nodes. Total crack increments of 0.96 mm 
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were considered, which correspond to 30, 60 and 120 crack propagations for meshes 

with L1=32; 16 or 8 µm, respectively. 

The opening load, Fop, necessary for the determination of the closure level was 

determined considering three approaches. The first consisted in evaluating the contact 

status of the first nodes behind the current crack tip with the symmetry plane. In order to 

avoid resolution problems associated with the discrete character of load increase, the 

opening load was obtained from the linear extrapolation of the applied loads 

corresponding to two increments after opening. The second approach was a global 

method (Toyosada and Niwa, 1994) based on the analysis of the global compliance data 

captured at the centre of the specimen. From the load-displacement records, variations of 

Pop were derived using the maximisation of the correlation coefficient technique (Allison, 

1988). This technique involves taking the upper part of the F-ε data and calculating the 

least squares correlation coefficient. The next data pair is then added and the correlation 

coefficient is again computed. The procedure is repeated for the whole data set. The 

point at which the correlation coefficient reaches a maximum could then be defined as Fop 

(Borrego, 2003). The third approach is based on the contact forces at minimum load and 

will be described in detail in next section. 

The numerical simulations were performed with the Three-Dimensional Elasto-

plastic Finite Element program (DD3IMP) that follows a fully implicit time integration 

scheme (Menezes and Teodosiu, 2000). The mechanical model and the numerical 

methods used in the finite element code DD3IMP, specially developed for the numerical 

simulation of metal forming processes, take into account the large elastic-plastic strains 

and rotations that are associated with large deformation processes. However, the 

isoparametric elements have a deficient behaviour when used to solve elastic-plastic 

problems, since the full integration scheme causes the appearance of artificial hydrostatic 
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stresses. To avoid the locking effect a selective reduced integration method is used in 

DD3IMP (Alves and Menezes, 2003; 2001). The optimum values of the numerical 

parameters of the DD3IMP implicit algorithm have been well established in previous 

works, concerning the numerical simulation of sheet metal forming processes (Oliveira 

and Menezes, 2004) and PICC (Antunes and Rodrigues, 2008). 

Figure 3a presents the stress-strain curve σyy-εyy registered at a Gauss point (GP) 

during crack propagation. The stresses were normalized by the yield stress of the 

aluminium alloy (124.2 MPa). Figure 3b shows the Gauss point and the successive 

positions of crack tip. Although the initial distance between the GP and the crack tip, the 

first loading produces plastic deformation, which indicates that the GP is within the first 

forward plastic zone. A compressive stress state is observed at minimum load but no 

reversed plasticity occurs. As the crack propagates the GP approaches the crack tip, and 

the stress level increases producing more plastic deformation. The compressive stress at 

minimum load also increases and starts producing reversed plastic deformation. The 

maximum plastic deformation happens when the GP is immediately ahead of crack tip, 

i.e., when the crack tip is at position 29 in figure 3b. The two load cycles applied 

between crack propagation are now clearly visible, and the stress level reaches about 3 

times material’s yield stress as a consequence of isotropic hardening. When the crack 

moves ahead of the GP (crack tip at position 30 in figure 3b), the stress level applied to 

the GP becomes relatively low and the plastic deformation ceases. The plastic 

deformation is now a residual deformation. 

3. Contact stress method 

At minimum load, residual compressive stresses exist along the crack flanks. This 

residual stresses can be used to calculate a negative residual stress intensity factor (Kres). 



  

 - 10 - 

This does not have physical sense, but by employing a superposition argument it may be 

used to calculate the opening stress intensity factor, Kopen, needed to overcome the 

residual stress field and open the entire crack. The contact forces are obtained at 

minimum load, therefore the opening level is given by (Matos and Nowell, 2007): 

Kopen=Kmin+Kres (4) 

It is assumed that only elastic deformation takes place until the crack opens. The contact 

stress method has advantages, namely, it involves several nodes instead of focusing on a 

single node; it is expected to be less affected by finite element errors since it does not 

study only near crack tip nodes; and no extrapolation is needed which avoids resolution 

problems associated with discrete load increments (Solanki, 2004b). 

Dill and Saff (1976) were the first to introduce a contact stress method to compute 

crack opening loads, and employed the methodology in a strip-yield model. Newman 

(1981) has long employed this method within the strip yield model Fastran. Solanki et al. 

(2004b) for the first time applied the method to finite element analysis. They considered 

analytical expressions of K for infinite plates and applied the methodology to CT and 

M(T) specimens. Matos and Nowell (2007) used the weight function method introduced 

by Bueckner (1970) to calculate the residual stress intensity factor. In both studies a 

linear variation of stresses was assumed along each finite element. The opening results 

were compared with values from the contact at first and second nodes behind crack tip. 

The contact stress method gave higher predictions than the first node behind crack tip. 

A solution for a crack in an infinite plate submitted to pairs of punctual forces on 

the crack flank can be found in literature, proposed by Isida (Tada, 2000). However, 

considering the finite size of the M(T) specimen it was decided to develop a new 

solution. A relation between a punctual contact force and its distance to crack tip (d) 

was therefore defined here numerically using the finite element method. A mesh with 1 
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µm elements at the crack front was considered in a linear elastic analysis and K was 

calculated from J integral. A direct method based on the extrapolation of K values 

obtained from crack opening displacements was also considered to validate the J integral 

results. The punctual load imposed difficulties to the numerical calculation of J, 

particularly for small values of distance d. The path of J integral must lie between the 

load and the crack tip, therefore a quite refined mesh is required. Non-dimensional 

parameters were defined as:  

 
W/(t.W)F

K
K*

p

=  (5) 

 
W

d
*d =  (6) 

where Fp is the punctual force, d is its distance to crack tip, t and W are the thickness and 

the width of the M(T) specimen, respectively. Figure 4 shows the results of K* versus d* 

for plane stress and plane strain states, which were found to be independent of crack 

length (2a) at least for values of a in the range 5-7.5 mm. The stress intensity factor 

presents an asymptotic behavior, increasing to infinity when the punctual force 

approaches the crack tip. For relatively large distances the resulting stress intensity factor 

approaches zero, as could be expected. The stress state produced a relatively low 

influence on K. A numerical model with two fitting constant was applied to the results of 

figure 4: 

  
2C

1
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C
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Fitting difficulties were observed for the values remote to the crack tip, therefore d* was 

divided into 2 regions, as indicated in figure 4 by the vertical dashed line. Table 2 

presents the ranges of d* and respective fitting constants, which were obtained by 

regression analysis using the optimisation tools of Excel. For d/W lower than 0.012, the 
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average of absolute differences are less than 0.5% for both plane stress and plane strain 

states. As can be seen in table 2, near the crack tip C2 is close to 0.5, which is according 

to Isida’s solution ( cF)d/(2K π= ). The results of figure 4 were compared with this 

literature solution and a good agreement was found for plane strain state and small 

distances of the punctual force relatively to the crack tip. On the other hand, significant 

differences of about 10% were found for plane stress state, which justify the need for the 

solution developed here. 

The model based on equation 7 was applied to obtain individual crack opening 

levels for each contact force along crack front. The total residual stress intensity factor 

was finally found by summing the contributions from the individual nodes in contact. The 

linear superposition is assumed to be valid, which was demonstrated in previous work 

(Antunes 2013, in press). Notice that in Solanki’s proposal a linear stress distribution is 

assumed across each finite element along the crack flank, while in here only the nodal 

forces are used to predict the crack opening values. This is interesting since the nodal 

forces are primary outputs of the finite element method, while the stresses are obtained 

by extrapolation from the Gauss points. 

4. Numerical results 

4.1. Contact forces and K distribution 

Figure 5 shows typical distributions of contact stresses at minimum stress versus 

distance to crack tip, d. These forces are a first order output of the elastic-plastic FEM 

analysis, and the smooth variations observed are a good indication for the accuracy.  The 

contact stresses obtained by Solanki et al. (2004b) were more irregular which can be 

explained by the extrapolation required to obtain the nodal stresses from Gauss points 

values. The contact extends over the entire crack flank submitted to crack propagation, 
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with a non uniform distribution of contact forces. The nodes closest to crack tip have the 

largest contact forces, as could be expected. For plane stress state a sharp decrease is 

observed up to about d=0.25 mm, and for distances to crack tip greater than 0.25 mm 

the variation is relatively small. For plane strain state the contact stresses are significantly 

lower, as was expected. In fact, there is a general agreement in literature about the 

relatively low PICC level observed under plane strain conditions. For plane strain state 

the contact is observed not only immediately behind current crack tip, but also at the 

position corresponding to the beginning of crack propagation. This remote contact is 

explained by the relatively high plastic deformation observed in plane strain state at the 

first load cycles. Fleck (1986) also indicated that a residual wedge of material is left at a 

location immediately ahead of initial location of crack tip, which leads to discontinuous 

crack closure (first contact of crack flanks at a position remote from current crack tip). 

Figure 6 shows the effect of crack propagation on nodal contact forces for plane 

stress state (open symbols) and plane strain state (filled symbols). For plane stress state, 

as the crack propagates more nodes have contact forces. Immediately behind the crack 

tip the contact forces do not vary significantly with crack propagation. The extent of the 

region with contact forces is, for constant amplitude loading, only related with the extent 

of numerical crack propagation. However, as will be seen next, only the contact near the 

crack tip contributes significantly to the crack opening level. The peak of contact forces 

corresponding to the beginning of crack propagation, evident for plane strain state, is 

also observed for plane stress state in this plot. 

Figure 7 shows the contributions to the opening stress intensity factor of different 

points along crack flank. There is a strong decrease from the crack tip, more pronounced 

than observed for the variation of contact stresses along crack flank. In fact, the stress 

intensity factor decreases substantially with distance d from crack tip, as equation 7 
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expresses. Additionally, the contact forces at minimum load decrease substantially from 

crack tip, as figures 5 and 6 illustrate. These two effects, i.e., the decrease of contact 

forces and of their influence with distance to crack tip, explain the variation of PICC 

observed in figure 7. The dashed line was obtained for plane stress state considering that 

the contact stress is constant along crack flank (σcontact=186 MPa). The difference 

relatively to the plane stress set (filled circles) expresses the effect of force variation 

along crack flank. A power-type curve was fitted by regression to the plane stress 

results, showing that there is an exponential decrease from crack tip. For plane stress 

state, the exponent obtained (-0.928) is significantly higher, in absolute terms, than 

obtained for the dashed line, i.e., for the iso-stress curve which is about -0.5. 

The contact forces method is very interesting to understand and quantify how 

closure develops behind crack tip. Figure 8 shows the cumulative stress intensity factor 

along the crack flank, from the crack tip up to a distance dmax. Two curves of cumulative 

K are presented for dmax of 0.1 or 0.2 mm. The cumulative K varies significantly from 

about 30% to 100%, depending on stress ratio, R. For stress ratios lower than zero, the 

distribution is not so concentrated near the crack tip and the effect of R is moderate. On 

the other hand, for R higher than zero the increase of stress ratio produces a rapid 

increase of closure near crack tip. For relatively high R there is a strong concentration of 

closure immediately behind the crack tip, i.e., the contact only happens immediately 

behind crack tip. Solanki et al. (2004b) analysed the contribution of the first element 

behind crack tip to the total opening value and also found significant values at R=0, 

namely for the CT specimen under plane strain state. 

4.2. Comparison of PICC parameters 
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Figure 9 shows the variation of crack opening level with crack propagation, ∆a, 

obtained with the contact stress method, with the remote compliance technique and with 

the analysis of contact status of first, second and third nodes behind crack tip (nodes 1, 2 

and 3 respectively). For plane stress state all the PICC parameters, including the one 

based on the contact forces, show a strong increase of closure at the beginning of crack 

propagation, and a stabilised behaviour afterwards. In numerical studies some crack 

propagation is always required to built the residual plastic wake and obtain stabilised 

opening values. PICCcontact is lower than the value obtained from node 1, higher than the 

value obtained from compliance analysis and node 3, and similar to node 2 predictions. 

For plane strain state the level of PICC is significantly lower compared with the plane 

stress state, but the effect of PICC parameters was found to be similar. A peak was 

observed at the beginning of crack propagation which is explained by the significant 

plastic deformation occurring at the first load cycles, which is evident in the contact 

stresses presented in figure 5. With propagation the crack tip moves away from the 

plastic wedge and its influence on PICC attenuates progressively. 

Figure 10 compares PICCcontact with the other parameters for the load conditions 

presented in table 1, and the trends observed in figure 9 are confirmed. The predictions 

obtained from the analysis of contact status of node 2 behind crack tip are always similar 

to those obtained with the contact forces, the remote compliance gives lower opening 

values and the node 1 gives higher values. Note that 2nd node method and the contact 

stress method are quite distinct approaches and the coincidence of results cannot be 

easily explained. The values obtained by Solanki et al. (2004) and Matos and Nowell 

(2007) with the contact stresses were higher than those obtained with the first node 

behind crack tip. However, notice that they assumed a linear distribution of stresses in 

each element along crack flank, while in here only the nodal forces are used. The contact 
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stresses between the crack tip and the first node behind it have significant a contribution 

to the K opening value, which is not considered here. Roychowdhury and Dodds 

(2003b) suggested that node 1 closes prematurely and exhibits opening loads much 

higher than the other nodes, therefore they used the second node behind crack tip. The 

detailed analysis of the effect of the different loading parameters indicated in table 1 

showed that the PICCcontact is a consistent parameter, giving the same trends than 

observed with other parameters namely the well-established node 1 parameter. Further 

work is however necessary to understand which parameter is effectively adequate to 

quantify the effect of crack closure on fatigue crack growth rate. 

4.3. Effect of PICC variation on fatigue life 

 The effect of PICC variations, shown in figures 9 and 10, on fatigue life was 

analysed in a parallel study. Fatigue crack propagation was simulated using a fully 

automatic three-dimensional finite element technique (Lin and Smith, 1999). This 

technique comprises five main steps cyclically repeated, i.e. definition of a numerical 

model representative of the cracked body; calculation of the displacement field; 

determination of the SIF values at the crack front nodes; computation of the crack front  

advances by applying experimental da/dN-∆K results; and optimization of the new crack 

front by applying a cubic spline. Detailed information about the technique can be found 

elsewhere (Lin and Smith, 1999). 

 The geometry analyzed was the M(T) specimen. The cracks were assumed to be 

planar, normal to the longitudinal axis of the specimen and existing in its middle-section. 

Three different thicknesses were studied, namely 2t=15, 20 and 25mm. Due to 

symmetries in terms of geometry, material and loading, only one-eighth of the specimen 

was modelled (W=25 mm, L=100 mm). The initial crack was straight and with a length 
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a0/W=0.06. A constant amplitude cyclic loading was applied with σmax=50 MPa and R=0. 

The material simulated was the 6016-T4 aluminium alloy, which was defined as 

homogeneous, isotropic and linear elastic (E=70 GPa and ν=0.33). The constants of the 

Paris law (C=1.45×10
-11

 and m=3.4) were obtained experimentally (Antunes, 2010) from 

da/dN-∆K results (da/dN in m/cycle and ∆K in MPa·m
1/2

). A detailed description of finite 

element mesh, which had 35,070 nodes and 2,625 elements can be found elsewhere 

(Branco and Antunes, 2008). The mesh was created using isoparametric hexahedric 

elements with 20 nodes and isoparametric pentahedric elements with 15 nodes. Singular 

pentahedric elements with nodes at quarter-point positions were used along crack front. 

Crack closure was introduced into the fatigue crack growth simulation considering 

effective stress intensity factor ranges, i.e.: 

  )()(

,

j

ii

j

ieff KUK ∆⋅=∆  (7) 

where )( j

iK∆ is the SIF range of the i
th
 node of the j

th
 iteration and iU  is the fraction of 

the load cycle for which the crack remains fully open. Near the surface the values of U 

varied linearly from the value for plane stress state (UA) to the value for plane strain state 

(UB). In the other regions, predominantly subjected to plane strain state, the values of U 

were equal to UB. The extent of surface region, S1, was determined applying the 

procedure proposed by Branco et al. (2012) and a value S1=0.1 mm was obtained. Four 

different closure parameters were studied: node 1, node 2, remote compliance, and 

contact forces. The values considered in the propagation study are summarized in Table 

3. 

Figure 11 plots the fatigue life variation (Ni/NR) for three different thicknesses. 

The NR variable, termed reference fatigue life, was calculated using the values of PICC 

given by the remote compliance 3. The Ni variable represents the fatigue life obtained 

from the other PICC parameters used here. As can be seen, the method of PICC selected 



  

 - 18 - 

has a significantly influence on the fatigue life. The fatigue life obtained with the Node 1 

method is about 56-64% higher than the reference fatigue life which a relatively high 

discrepancy. Even in the case of the Node 2 method, the differences relatively to the 

reference method are notorious, about 12-17%. With regard to the contact forces 

method, the variations are less expressive, i.e. lower than 4%.  It is also important to 

refer that crack closure does not affect only the fatigue life but also the crack shape. 

Different crack curvatures, in particular near the free surface, were observed in these 

simulations. These results demonstrate the importance of the crack closure values on 

fatigue crack growth lives. 

4.4. Variable amplitude loading 

Figure 12a shows the effect of overloads on nodal contact forces measured at 

minimum load. The vertical lines indicate the positions along the crack flank where the 

overloads where applied. The plastic wedge resulting from an overload produces a peak 

of contact forces. A shielding effect can also be observed behind the plastic wedge, i.e., 

there is almost no contact. For a relatively low overload (σol/σmax=1.13) these effects are 

limited to a relatively narrow region on the crack flank. The increase of the overload to 

σol/σmax=1.43 enlarged significantly the contact distance. The shielding effect is also 

significantly stronger and almost no contact is observed beyond the point where the 

overload was applied. 

Fig. 12b presents PICC versus crack increment obtained with two distinct 

numerical parameters. Immediately after the application of the overload the level of 

PICC drops suddenly and then it increases over the value corresponding to constant 

amplitude loading. The decrease may be explained by crack tip blunting or by reversed 

plastic deformation, which tend to reduce PICC. The position of the peak is linked with 



  

 - 19 - 

the plastic deformation field generated by the overload ahead of crack tip. Finally, a 

relatively slow convergence to the constant amplitude behaviour is observed as the crack 

tip moves ahead of overload position. The results obtained with the contact stress 

method are once again relatively low compared with those from node 1 behind crack tip. 

Finally, figure 13 presents the effect of high-low and low-high load blocks on 

contact forces. For low-high conditions, the contact forces indicate that the region of 

crack faces corresponding to the initial load block simply does not contact, because the 

crack face corresponding to second load block has a shielding effect over it. On the other 

hand, for the high-low regime two peaks can be identified at the current crack tip 

position and at the load transition. The final low level regime has relatively low contact 

forces and most of contact exists in the high level regime. This discontinuous closure, 

i.e., the remote contact of crack flanks, has a protective effect on crack tip (Paris, 1999). 

5. Conclusions 

The present paper studies the use of contact forces along the crack flanks to the analysis 

of plasticity induced crack closure (PICC). The main conclusions are: 

• A numerical solution was developed for the stress intensity factor of a M(T) specimen 

submitted to pairs of punctual forces at the crack flank. The solution was compared with 

Isida’s solution for a crack in an infinite plate and significant differences were found for 

plane stress state which justified the solution here developed.  

• Contact forces along crack flank were determined numerically at minimum load using 

the finite element method. Smooth variations were obtained which is a positive indication 

for the accuracy of the numerical model. The effect of overloads, and Low-High and 

High-Low load blocks was studied through the analysis of contact forces at minimum 

load. 
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• The analysis of contact forces was found to be an excellent tool to understand and 

quantify the distribution of closure on crack flanks. The contributions to the opening 

stress intensity factor of different points along crack flank strongly decrease with 

distance to crack tip, d. Two cumulative factors explain this variation: the decrease of 

contact forces and the decrease of the contribution of a contact force with distance d. 

The cumulative K between the crack tip and a distance of 0.1 mm was found to vary 

significantly from about 30% to 100%, depending on stress ratio, R. For stress ratios 

lower than zero, the distribution is not so concentrated near the crack tip and the effect 

of R variations is moderate. On the other hand, for R higher than zero there is a strong 

concentration of closure immediately behind the crack tip, which increases significantly 

with stress ratio. 

•••• The approach proposed by Solanki et al. (2004) and Matos et al. (2007) to calculate 

PICC was slightly modified by considering only the nodal forces, instead of a stress 

distribution along crack flank. This change modified the predictions obtained from the 

contact method relatively to other PICC parameters. The values obtained here for a wide 

range of loading parameters were found to be similar to those obtained from the analysis 

of contact status of node 2 behind crack tip. Solanki et al. and Matos et al. got PICC 

values even higher than those obtained from node 1. 

•••• A fatigue crack propagation study was developed in M(T) specimens with different 

thicknesses. A great sensitivity of fatigue life to PICC variations was found, which 

reinforces the importance of having accurate values. 

• The PICC parameter based on the contact forces emerges here as an effective 

alternative to classical parameters like the contact status of node 1 behind crack tip, the 

analysis of remote compliance or the inversion of tip tension. In fact, the calculation of 

PICCcontact is relatively simple, there is no need of extrapolation or refined load 
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increments, and it involves several nodes behind crack tip therefore is expected to be less 

sensitive to mesh variations. Additionally the PICCcontact was found to be very consistent, 

expressing the same trends observed for node 1 when the physical and numerical 

parameters are changed. Anyway, further work is necessary to understand which 

numerical parameter can effectively be used to quantify the effect of closure on fatigue 

crack growth. 
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Figure 1. Middle-cracked tension, M(T), specimen. 

 

 

 

            

Figure 2. Finite element mesh. a) Frontal view. b) Detail of frontal view. 
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Figure 3. a) Stress-strain curve for a Gauss point; b) Location of the Gauss point relatively to the 

crack tip (σmax=60 MPa, σmin=0, a0/W=0.16, L1=16 µm, ∆a=30x16=480 µm). 
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Figure 4. Non-dimensional stress intensity factor versus distance to crack tip (W=30 

mm). 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

F d 

Crack  

tip 



  

 - 29 - 

0

20

40

60

80

100

120

140

160

180

200

0.0 0.2 0.4 0.6 0.8

C
o
n

ta
ct

 s
tr

es
s 

[M
P

a]

d [mm]

Plane stress

Plane strain

 
Figure 5. Contact stresses at minimum load for plane stress and plane strain states 

(σmax=47.5 MPa; a=5.9 mm, ∆K=6.5 MPa·m
1/2

; R=0.02) 
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Figure 6. Contact forces at minimum load for plane stress (open symbols) and plane 

strain states (filled symbols), versus crack propagation (σmax=47.5 MPa; a=5.9 mm, 

∆K=6.5 MPa·m
1/2

; R=0.02). 
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Figure 7. Contribution to Kopen along crack flank  

(σmax=47.5 MPa; a=5.9 mm, ∆K=6.5 MPa·m
1/2

; R=0.02) 
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Figure 8. Cumulative stress intensity factor up to a distance d from crack tip (plane 

stress). 



  

 - 31 - 

  
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

σ
o

p
e
n
/σ

m
a
x

∆a [mm]

Node 1 Node 2

Node 3 Contact forces

Remote compliance

plane 

stress
plane 

strain

 
Figure 9. PICC versus crack increment   

(L1=8 µm; σmax=47.5 MPa; σmin=0.83 MPa, plane stress). 
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Figure 10. Comparison between different PICC parameters (L1=8 µm, plane stress). 
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Figure 11. Comparison of fatigue lives obtained with different closure values. 
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Figure 12. Effect of overloads (OLR=σol/σmax). a) Contact forces; 

b) PICC versus crack increment. (Plane stress; L1=8 µm; σmax=47.5 MPa; R=0). 
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Figure 13. Effect of load blocks on contact forces (Plane stress; L1=8 µm; R=0.02, 

σmax1=47.5 MPa, High-low: σmax2=36.7 MPa; Low-high: σmax2=60 MPa) 
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Table 1. Load parameters ([∆K], [Kmax] =MPa·m
1/2

) 

Set 1  

(Kmin=0) 

Set 2 

(Kmax= 6.4) 

Set 3 

(∆K=4.6) 

Set 4 

(∆K=6.4) 

Set 5 

(R=0.2) 

∆K R ∆K R ∆K R ∆K R ∆K R 

2.7 0 3.6 0.43 4.6 -2 6.4 -2 2.9 0.2 

3.6 0 5.5 0.14 4.6 -1 6.4 -1 3.6 0.2 

4.6 0 7.3 -0.14 4.6 -0.5 6.4 -0.5 4.4 0.2 

6.4 0 9.1 -0.43 4.6 0 6.4 0 5.1 0.2 

8.2 0 10.9 -0.71 4.6 0.25 6.4 0.25 5.8 0.2 

9.1 0 12.8 -1.00 4.6 0.5 6.4 0.5 6.6 0.2 

10.0 0 14.6 -1.29 

 

 

Table 2. Fitting constants of K* versus d* (equations 5-7). 

  C1 C2 

Plane stress d*≤0.012 
0.4389 0.5096 

 0.012<d*≤0.2 
2.2490 0.4043 

Plane strain d*≤0.012 
0.3556 0.5091 

 0.012<d*≤0.2 
1.8161 0.3701 

 

 

Table 3. Closure parameters used in FCG simulations. 

 Node 1 Node 2 Remote 
compliance 

Contact forces 

UA 0.45 0.50 0.59 0.54 

UB 0.69 0.76 0.79 0.79 
  

 


