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Abstract 

Neuroimaging is a vast area that includes a wide range of brain-mapping 

techniques, each with specific information about the brain. As each technique has its 

strengths and weaknesses, it is desirable to aim for multimodal studies to possibly 

obtain more relevant information. Currently, the typical strategy in neuroimaging data 

analysis consists of a massive univariate approach, using the General Linear Model 

(GLM) in voxel based morphometry (VBM). However, this may be insufficient to 

obtain a realistic analysis due to the complexity of the structure of the brain. This leads 

to the application of multivariate methods, whereby information from different 

modalities can be integrated. Support Vector Machines (SVMs) and related tools are 

widely used, but these do not use statistical inference tests or provide p-values for 

every voxel of an image, leading to difficulties in interpretation and generalization. As 

such, this thesis focuses on implementation of inferential multivariate methods that are 

both a natural extension of the univariate methods commonly used and allow for the 

integration of the information from different imaging modalities. Given time and data 

constraints, the focus of this thesis rested on two MRI contrasts: volumetric T1 

(‘Anatomy’ scans) and T2 (‘Pathology’ scans) scans obtained from 42 control and 34 

type II diabetes mellitus (T2DM) subjects. This simultaneous analysis is pertinent 

because it is known that T2DM leads to gray matter atrophy and vasopathies that 

predispose the brain to ischemia and subcortical lacunar infarcts. All inferential 

methods were implemented in Matlab and were compared with those conducted with 

SPM8 software. The classification method (SVM) was performed in the PRoNTo 

toolbox. Results in both univariate and multivariate analyses showed gray matter 

atrophy and possible vascular changes in the limbic lobe, sub-lobar, insular and 

temporal areas of the T2DM brains. Furthermore, results indicate that the multivariate 

methods may lead to more specific results than the univariate ones. A toolbox was 

developed to be used in the software package SPM8, where the featured methods may 

be made publicly available. Despite the limitations, notably that some of the pre-

requisites to perform multivariate statistical tests were not tested, this proof of 

concept shows great promise. Future work will focus on surpassing these limitations 

and on preparing the methods to be applied in other multimodal (PET, fMRI) studies.      
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Resumo 

A neuroimagem é uma vasta área que inclui uma ampla gama de técnicas de 

mapeamento cerebral, cada uma com informações específicas sobre o cérebro. Como 

cada técnica tem os seus pontos fortes e fracos, é desejável o uso de estudos 

multimodais para possivelmente obter informação mais relevante. Atualmente, a 

estratégia típica na análise de dados de neuroimagem consiste numa abordagem 

univariada em massa, utilizando o Modelo Linear Geral (GLM, em inglês) no VBM 

(Voxel Based Morphometry). Contudo, esta abordagem pode não ser suficiente para se 

obter uma análise realista devido à complexidade da estrutura cerebral. Por isto surge 

a necessidade do uso de métodos multivariados, através dos quais é possível integrar 

informação de diferentes modalidades. As máquinas de vetores de suporte (SVMs, em 

inglês) e outras ferramentas relacionadas são amplamente usadas, no entanto estas não 

usam testes de inferência estatística ou fornecem valores p para cada voxel de uma 

imagem, o que leva a dificuldades de interpretação e generalização. Portanto, esta tese 

foca-se na implementação de métodos multivariados inferenciais que são uma extensão 

natural dos métodos univariados já usados e, para além disto, permitem a integração 

de diferentes modalidades de imagem. Com as limitações de tempo e de dados, o foco 

desta tese recaiu sobre dois contrastes de Imagem por Ressonância Magnética (MRI, 

em inglês): T1 (scans de 'Anatomia') e T2 (scans de ‘patologia’), obtidos de 42 

controlos e de 34 pacientes com diabetes tipo 2. A análise simultânea destes dois 

contrastes poderá possibilitar uma melhor compreensão desta patologia, uma vez que 

se sabe que a diabetes tipo 2 contribui para a atrofia da massa cinzenta e vasopatias 

que predispõem o cérebro a isquemia e enfartes lacunares subcorticais. Todos os 

métodos inferenciais foram implementados em Matlab e comparados com os 

realizados no software SPM8. O método de classificação (SVM) foi realizado na toolbox 

PRoNTo. Os resultados, tanto das análises univariadas como das multivariadas, 

revelaram atrofia da massa cinzenta e possíveis alterações vasculares no lobo límbico, 

sub-lobar, áreas insulares e temporais do cérebro de doentes com diabetes tipo 2. 

Para além disto, os resultados indicam que os métodos multivariados podem levar a 

resultados mais específicos do que os univariados. Foi ainda preparada uma toolbox 

para ser usada no pacote de software SPM8, onde os métodos desenvolvidos podem 

ser disponibilizados publicamente. Apesar de algumas limitações, nomeadamente que 
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alguns dos pré-requisitos para a realização de testes estatísticos multivariados não 

foram testados, esta prova de conceito apresenta-se promissora. O trabalho futuro 

focar-se-á em superar estas limitações e preparar estes métodos para outros estudos 

multimodais (PET, fMRI). 

Palavras-chave: MRI, VBM, Diabetes tipo 2, GLM multivariado 
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Symbols & Abbreviations 

Symbols 

      Residual variance estimates 

   ,        Sample mean vectors 

      Variance-covariance matrix 

      Fitted values matrix/vector 

       Weight vector 

               Degrees of freedom 

     Parameters estimates matrix/vector 

      Chi-square  

A, M   A and M matrices of multivariate contrast matrix 

B0   Magnetic field  

C, c   Contrast matrix and contrast vector 

f   Larmor frequency   

Mg   Net magnetization vector 

Mgxy   Transversal net magnetization vector 

Mgz   Longitudinal net magnetization vector 

R   Multiple correlation coefficient 

t, F   t and F statistics 

T2   Hotelling’s T2 

Var   Variance 

X   Design matrix 

Y   Observation vector/matrix 

   Gyromagnetic ratio  

     Residual errors matrix/vector 

    Wilk’s lambda  

B, W   Sum of squares and cross products matrices between and within 

λ   Eigenvalues  
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Abbreviations 

ANCOVA  Analysis of Covariance 

ANOVA  Analysis of Variance 

CSF    Cerebrospinal Fluid 

DV   Dependent Variable 

fMRI    functional Magnetic Resonance Imaging 

FOV   Field Of View 

FT   Fourier Transform 

FWHM Full Width at Half Maximum 

GLM    General Linear Model 

GM    Gray Matter 

IV    Independent Variable 

LOO   Leave One Out 

MANCOVA   Multivariate Analysis of Covariance 

MANOVA  Multivariate Analysis of Variance 

MGLM   Multivariate General Linear Model 

MNI   Montreal Neurological Institute 

MOG   Mixture of Gaussians  

MPRAGE Magnetization-Prepared Rapid Gradient Echo 

MRI  Magnetic Resonance Imaging 

PET    Positron Emission Tomography 

PoC   Proof of Concept 

PRoNTo Pattern Recognition for Neuroimaging Toolbox   

RF    Radiofrequency 

ROI   Region of Interest 

SAR  Specific Absorption Rate 

SPACE  Sampling Perfection with Application optimized Contrasts using 

different flip angle Evolution 

SPM    Statistical Parametric Mapping 

SSB   Sum of Squares Between 

SSCP Sum of Squares and Cross Products 

SST    Sum of Squares Total 

SSW   Sum of Squares Within 
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SVM   Support Vector Machine 

T1DM    Type I Diabetes Mellitus 

T2DM    Type 2 Diabetes Mellitus 

TE   Echo Time 

TIV   Total Intracranial Volume 

TPM    Tissue Probability Map 

TR   Repetition Time 

VBM   Voxel Based Morphometry 

WHO World Health Organization 

WM   White Matter 
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Chapter 1  

Introduction 

Neuroimaging is a vast field that covers a wide range of brain-mapping 

techniques, each with specific information about the brain. Broadly, magnetic 

resonance imaging (MRI) is used for structural analyses, functional MRI (fMRI) for 

functional analyses, and positron emission tomography (PET) for metabolic and 

neurochemical analyses. Each modality has its strengths and weaknesses, and the 

information that each can provide is complementary when building to the broad array 

of scientific hypotheses in the field. As such, it is desirable to aim for multimodal 

studies, i.e. studies in which several imaging modalities are combined: with the 

integration of imaging techniques, more information may be obtained, reaching beyond 

the scope of any individual method [1]. 

At its most basic, neuroimaging analyses proceed by localizing brain regions that 

exhibit experimental variation, either correlative with a covariable or comparative 

between groups. In brain morphometry, where the goal is to study changes in the 

shape and volume of brain structures (e.g. atrophy in dementia), the typical strategy 

consists of a massive univariate approach where the statistical model is performed on a 

voxel-by-voxel basis: the result is a 3D statistical map that can be used to infer on the 

presence of an effect at each voxel [2]. The statistical models usually used are based on 

linear models, notably ANOVA/ANCOVA (Analysis of Variance/Covariance), 

correlation coefficients and t-tests. All of these are specials cases of the General Linear 

Model (GLM), which lies at the basis of the statistical parametric maps hypothesis 

testing on regionally specific effects in neuroimaging data [3]. 
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Although these univariate methods have been fundamental tools in modern 

neuroimaging, by aiding in the detection of group differences and in the understanding 

of spatial patterns of functional activation, the presence of multivariate relationships 

between different brain regions may not be explained by univariate analyses alone. This 

leads to the application of multivariate methods, whereby multiple imaging modalities 

can be analyzed simultaneously, eventually leading to a better understanding of imaging 

profiles of brain activity, structure and pathology. A common example of this recent 

trend is the support vector machines (SVMs) and related tools [4]. These supervised 

machine learning methods are useful in identifying features that aid in group/pathology 

classification [5]. Nonetheless, SVMs do not use statistical inference tests or provide p-

values for every voxel of an image, leading to difficulties in interpretation and 

generalization [4]. Instead, SVMs determine a ‘weight coefficient’ for every voxel of an 

image, the distribution of which does not have a clear analytic interpretation [6].  

Bypassing the limitations seen in SVMs, and focusing solely on inferential 

analyses rather than pattern recognition, this thesis presents multivariate methods that 

are a natural extension of the massive univariate approach commonly used, allowing 

for the integration of different imaging modalities such as fMRI, PET and MRI. Given 

time and data constraints, the focus will lie on two MRI contrasts: volumetric T1 and 

T2 scans obtained from subjects who participated in the Diamarker project. 

The Diamarker project aims to evaluate the genetic susceptibility of multi-

systemic complications of type II diabetes mellitus (T2DM) in order to identify new 

biomarkers for diagnosis and therapeutic monitoring. One of the tasks, where this 

thesis fits in, is related to the structural and functional analyses of the brain through 

MRI scanning. The project is built around a consortium, which includes the Faculty of 

Medicine of the University of Coimbra, the University Hospital of Coimbra, IBILI, 

IEETA/UA, as well as members of the industry, notably Siemens. 

T2DM is known to be characterized by early onset endothelial dysfunction and 

vascular damage [7], cognitive decline [7-11] and emotional alterations [11], as well as 

brain structural and functional alterations [8, 9]. This thesis will focus on brain 

structure and vascular alterations: it is known that T2DM leads to gray matter (GM) 
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atrophy [7-11] and vasopathies that predispose the brain to ischemia and subcortical 

lacunar infarcts [7-11]. In order to extract information about both GM atrophy and 

vascular alterations, it is necessary to acquire both T1 and T2 magnetic resonance 

(MR) images. It is important to underline that, although both types of image can 

provide structural information of the brain, T1 images (‘Anatomic’ scans) have better 

contrast than T2 images and so better anatomic information. However, T2 images 

(‘Pathology’ scans) provide a better examination of the brain vasculature [12]. 

Therefore, the integration of T1 and T2 MR images, in order to obtain more 

information, is a sensible approach.  

 

 

Figure 1.1 – Examples of T1 (right) and T2 MR (left) images. 

Hereupon, the main goals of this thesis are as follows:  

1) Replicate the univariate VBM analyses between controls and T2DM 

patients, using SPM8 software (Statistical Parametric Mapping, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) as a reference; 

2) Explore and implement multivariate methods that can integrate 

information from T1 (structural information) and T2 (structural + 

vascular information) MR images – each type of image can be seen as 

a Dependent Variable (DV) – contrasting controls to T2DM patients 

(Independent Variables, IVs);  

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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3) Insertion of these algorithms into the pipeline of SPM8 in order for it 

to be used in further multimodal studies. 
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Chapter 2  

Structural brain imaging of type 2 diabetes 

2.1 Type 2 diabetes mellitus 

Diabetes mellitus is a chronic metabolic disease characterized by a disorder of 

the carbohydrate metabolism, which can be divided in two major types: type 1 and 

type 2 diabetes mellitus, T1DM and T2DM, respectively. T1DM appears mainly in 

children [7] and results from dysfunction in insulin-producing pancreatic  cells, 

possibly due to inadequate autoimmune destruction, leading to low insulin release - it 

is also known as insulin-dependent diabetes mellitus [7, 8]. T2DM appears mostly in 

adults and represents about 90% of all diabetes cases [7]. It presents itself as an 

insensitivity to insulin, and is also known as non-insulin-dependent diabetes mellitus. 

This latter presentation of diabetes has been linked to obesity, as well as to other co-

morbidities, known together as the metabolic syndrome [7, 8]. Both of types of 

diabetes lead to hyperglycaemia if uncontrolled.  

In the literature, it is well accepted that diabetes may potentiate microvascular 

lesions (as linked to nephropathy and retinopathy) as well as macrovascular lesions 

(arteriosclerosis and cardiovascular disease). Furthermore, both T1DM and T2DM can 

induce both peripheral (neuropathy) and central nervous system (CNS) complications 

[7]. This thesis will only focus on brain alterations caused by T2DM. 

T2DM is known to be characterized by early onset endothelial dysfunction and 

vascular damage [7], cognitive decline [7-11] and emotional alterations [11], as well as 

brain structural and functional alterations [8, 9]. Furthermore it is known that T2DM 
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leads to GM atrophy [7-11] and vasopathies that predispose the brain to ischemia and 

subcortical lacunar infarcts [7-11]. These brain abnormalities, particularly in the elderly, 

have also been associated with the increased risk for dementia [9]. 

It is the most prevalent metabolic chronic disease worldwide (by 2030, 82 

million of elderly over 64 years of age are projected to have T2DM in developing 

countries and over 48 million in developed countries) [7]. Consequently, it is both 

relevant and urgent to better understand the impact of this pathology in the brain.  

2.2 Magnetic Resonance Imaging 

Magnetic Resonance Imaging is a diagnostic imaging technique that uses a 

combination of strong magnetic fields, radiofrequency signals and dedicated equipment 

including a powerful computer to create pictures of internal body structures [13]. 

2.2.1 The formation of the MR Signal 

 Biological tissues are composed of atoms, such as hydrogen, carbon, sodium 

and phosphorus, which have magnetic properties that make them inherently 

susceptible to a magnetic field. As the hydrogen nuclei are the most abundant in any 

biological system, clinical MRI is focuses on these nuclei - in essence single protons - in 

both water and macromolecules, such as proteins and fat [14].  

Sub-atomic particles and protons in particular, have a quantum property known 

as spin: in a classical sense, protons can be pictured as spinning around their axes, thus 

behaving like small magnetic dipoles. The magnetic momentum generated, under 

standard thermal circumstances, has a random spatial orientation: globally, within a 

tissue, the individual nuclei magnetic moments cancel each other out, leading to a null 

net magnetization vector (Mg) [14, 15] (Figure 2.1). In the presence of a strong 

external magnetic field, however, they become aligned with this field and can adopt 

two possible orientations: parallel (lower energy state) or antiparallel (higher energy 

state) to the magnetic field. As the parallel is the preferred alignment, the result is a 
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longitudinal (as defined by the direction of the external field) net magnetization vector 

(Mg) parallel to the external magnetic field (Figure 2.1) [15]. 

In fact, individual nuclei do not actually align themselves perfectly with the 

external magnetic field but rather precess around the direction of the field (Figure 

2.2A) [15]. The frequency of this precessional movement is also known as the Larmor 

frequency and it is proportional to the strength of the magnetic field (B0) by the 

gyromagnetic ratio of the nucleus (). This frequency is given by the Larmor equation 

[14, 15]: 

       

 

Figure 2.1 - (Left) The distribution of the magnetic moments of the nuclei without a magnetic field. 

(Right) The distribution of the magnetic moments of the nuclei when there is a strong external 

magnetic field, along with the resulting net magnetization vector [15]. 

The presence of an external magnetic field is not sufficient to obtain 

information: the resulting Mg, being in equilibrium while B0 is on, is static and does not 

yield a measurable signal. To obtain information from the nuclei, this stasis has to be 

perturbed. For this to happen, the spins are excited by applying radiofrequency (RF) 

energy pulses of exactly the Larmor frequency, which coincides with the resonance 

frequency of the system [14, 15]. When this happen, Mg flips from the longitudinal 

plane (the positive z-axis, Mgz) towards the transverse plane (x-y plane, as seen in 

Figure 2.2B), while maintaining its precession around B0 at the Larmor frequency. The 

flip angle is proportional to the energy of the RF pulse, but for illustrative purposes it 



Chapter 2 – Structural brain imaging of type 2 diabetes 8 

 

 

will be assumed to be 90º: in this situation, the magnetization becomes fully transversal 

(Mgxy). When placing a receiver coil along the x or y axis (in practice, two coils are 

used in quadrature), this rotation will induce an alternating current that can be 

measured by a receiver coil – this signal is called free induction decay (FID), for 

reasons that will become apparent below [15]. 

 

 

Figure 2.2 - (A) The orientation of the spins in presence of an external magnetic field. (B) The net 

magnetization vector (M) flips 90° from the longitudinal plane (the positive z-axis) to transverse x-y 

plane [15]. 

The longitudinal relaxation, directly linked to the process of realignment to the 

external magnetic field, also known as spin-lattice relaxation, is characterized by the T1 

relaxation (decay) time. This is defined as the time required for the system to recover 

to 63% of its equilibrium value after it has been exposed to a RF pulse (Figure 2.3) [14, 

15]. It occurs due to the energy losses between the spin of any given nucleus and the 

surrounding atomic lattice, hence the name. The transverse relaxation, or spin-spin 

relaxation, is caused by the loss of the phase coherence amongst the precessing H-

protons in the transverse plane and is characterized by T2 relaxation time. This 

corresponds to the time it takes to the signal to decay to 37% of its original value 

(Figure 2.3) [14, 15]. Biological tissues have different T1 and T2 values, but the T2 time 

is always shorter than the T1 time: this is the fundamental basis of MRI soft tissue 

contrast. 
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Figure 2.3 - T1 and T2 relaxation time representation [15]. 

2.2.2 Image Formation (Spatial Encoding) 

The FID signal generated by the relaxation process does not contain much 

information about where protons are positioned in the patient, i.e. the information 

about the location of the volume excited [15]. To create an image, it is necessary to 

extract this information, only possible through spatial encoding [14]. This can be 

achieved in three steps: slice selection, phase encoding and frequency encoding, with 

the application of magnetic field gradients in the three orthogonal directions [14]. 

In slice selection, a magnetic gradient is added along the main magnetic field 

that leads to a spatial variation of the magnetic field. As the frequency of precession is 

dependent on the strength of the magnetic field, it is possible to selectively excite a 

thin slice (in the z-axis) of the sample being imaged [15]. To obtain information for the 

individual points (pixels) within a slice, another two gradients are used that enable the 

encoding of both the frequency and phase of the spins. For phase encoding (y 

direction), a temporary gradient is applied between the RF excitation pulse and the 

readout, causing a shift in the phase of the precessing nuclei. Changing the duration of 

the temporary gradients, it is possible acquire signals with different phase encoding 

[15]. The third gradient (frequency encoding, x direction) is used to differentiate pixels 

within the same phase encoding. This gradient is applied during the readout of the 

signal and results in a specific shift of the resonance frequency for pixels with the same 

phase shift [15]. The phase and frequency information are stored in phase-space, or k-

space, where each row corresponds to the frequency information and each column 

corresponds to the phase information. The image construction is done by calculating 
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the 2D (or 3D, if pure three dimensional acquisition) inverse Fourier Transform (FT) 

of the samples gathered in k-space.    

2.2.3 Tissue Contrast 

The differences in proton density over the different tissues provide a basic form 

of MR imaging contrast, i.e. there are organs with low proton density (e.g. lungs) that 

contrast with organs with high proton density (e.g. heart muscle) [14]. However, there 

are other ways to discern differences between tissues, which imply the construction of 

imaging sequences of RF pulses that allow for the visualization of the difference in T1 

and T2 time constants. It is therefore fundamental to tune two important parameters 

of pulses sequences: the time between two consecutive RF pulses, known as repetition 

time (TR), and the time between two consecutive RF pulses and echo, known as echo 

time (TE). For short TR and TE, the contrast in the image will be potentiated by the 

difference in T1 value of the tissues (T1-weighted sequences or T1 images). On the 

other hand, using long TR and TE, the contrast will be dependent on T2 differences 

(T2-weighted sequences or T2 images) [15]. 

T1 brain images display excellent contrast and clearly show the boundaries 

between gray and white matter in the brain. For this reason, they are often known as 

‘anatomy scans’ (Figure 2.4). Furthermore, T1 images accentuate fat-rich tissues and 

soft tissues, but are poor for evaluating brain vasculature and lesions [12]. On the 

other hand, T2 images, also known as ‘pathology scans’, display worse tissue contrast 

than T1 images, but allow a better understanding of brain vasculature and abnormal 

accumulations of fluid that can be associated with pathology (Figure 2.4) [12]. 

Therefore, the integration of T1 and T2 MR images, in order to obtain more 

information, is a sensible approach.   
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Figure 2.4 – T1 and T2 images, respectively, obtained in SPM8. 

 

2.3 Voxel Based Morphometry (VBM) 

A number of pathologies, such as diabetes type 2, implicate subtle changes in 

shape and local volume of the brain [16]. The assessment of these can be made using 

structural MRI images and measuring the volume of certain brain regions, called 

regions of interest (ROIs). This method, however, fails to assess the overall brain 

structure and, by design, presents regional bias. Besides, it is time consuming when 

performed manually (the gold standard), and may be prone to errors. An alternative, 

or at least a first port of call, is to use whole brain automated morphometry methods. 

The most common of these methods is Voxel Based Morphometry (VBM), which 

allows for the localization of regions of volumetric differences in brain tissue, notably in 

GM [17]. VBM implies the voxel-wise analysis of local tissue volumes within a group or 

across groups: the final result is a map of statistically significant alterations in tissue 

volume, between groups or correlated with a given metric [16, 17].  For this, the data 

are pre-processed in three steps in order to sensitize the tests to regional tissue 

volumes: spatial normalization, segmentation and smoothing. After that, a statistical 

analysis is performed to localize significant alterations in volume [16, 17]. 
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2.3.1 Spatial Normalization/Registration    

Spatial normalization consists in matching MR images and a suitable template 

(Figure 2.5), by removing both global and local structural differences between brains. 

This process ensures that all results are reported in standard stereotactic space (the 

current standard being the MNI - Montreal Neurological Institute - space), allowing the 

analysis of the voxels in a coordinate consistent manner [16]. This can be achieved in 

two main steps. The first step removes global differences between subject and 

template; this involves matching the MR images to the template by (linearly) estimating 

the optimal 12-paremeter affine transformation (three translations, three rotations, 

three scales and three for shearing) [16, 17]. The second step corresponds to a 

nonlinear registration that accounts for local nonlinear shape differences, which may be 

modelled by linear combination of low-frequency periodic basis functions [16, 17]. The 

nonlinear registration minimizes a cost function between the MR image and the 

template and, simultaneously, maximizes the smoothness of the deformations [16].  

Spatial normalization attempts to match every cortical feature exactly, but that 

is not possible due to anatomical variability. However, it can achieve very close 

matches, which can be enough to remove key differences between subjects and the 

template. If this happens, no significant differences will be detected by VBM. In order 

to prevent this, the amount of local volume change is registered by calculating the 

voxel-wise determinant of the Jacobian of the deformation field. This is then multiplied 

to the segmentation output, as seen in the next section.  
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Figure 2.5 - Spatial normalization in VBM (images obtained in SPM8). 

2.3.2 Segmentation and Modulation  

MRI scans may reveal a lot of anatomical detail, but not all of it may be 

interesting for analysis. In order to extract relevant information, images can be 

segmented into three main tissue types: GM, white matter (WM) and cerebrospinal 

fluid (CSF) (Figure 2.6) [17]. This approach may be achieved by using a priori 

expectation information from MNI based tissue probability maps (TPMs, provided by 

the International Consortium for Brain Mapping): these can be used to provide a 

spatially varying prior distribution of different tissues in normal subjects, which can 

then inform a Mixture of Gaussians (MOG) model that classes each voxel into a tissue 

type by taking into account its position and image intensity [17]. Furthermore, the 

segmentation step also incorporates a bias correction component to account for 

smooth intensity variations caused by magnetic field imperfections and subject-field 

interactions [17]. 
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Both segmentation and registration can be achieved together, and so they 

should as the former is based on MNI tissue maps. Besides, bias correction can hinder 

both and should be done simultaneously as well. This can be achieved in the unified 

segmentation model, as implemented in SPM8 [18]. 

  After the segmentation step, the modulation step is applied (as mentioned 

above). As such, the voxel intensities are multiplied by the Jacobian determinants from 

the normalization process, so that the total GM/WM quantity remains the same: the 

intensity at each voxel now represents the change of volume relative to the template. 

This step compensates for changes in brain volume caused by the nonlinear 

registration and it allows to make inferences about volumes rather than concentration 

[17]. 

 

 

Figure 2.6 - Segmentation in VBM (images obtained in SPM8). 
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2.3.3 Smoothing 

The resulting registered, segmented and modulated images are then smoothed 

by convolving them with an isotropic three dimensional Gaussian kernel. The size of 

the kernel depends on the intrinsic resolution of the image and the quality of 

registration (usually between 8 and 14mm) [16, 17]. The motivation for smoothing the 

images has several reasons. First, smoothing renders the data more normally 

distributed by the central limit theorem, leading to an increase of the validity of the 

parametric statistical tests [16, 17]. Second, smoothing improves spatial overlap by 

blurring over minor anatomical differences that remain due to registration errors or 

limitations. Third, smoothing ensures that neighbouring voxels (where the region 

around the voxel is defined by the smoothing kernel) contain similar amounts of GM 

or WM, leading to noise suppression. Finally, smoothing reduces the effective number 

of statistical comparisons by increasing the spatial dependence of the image [16].          

 

Figure 2.7 - Smoothing in VBM (images obtained in SPM8). 

2.3.4 Statistical Analysis 

Following the pre-processing, the final step of a VBM analysis consists in 

applying a massive univariate approach where the statistical model (GLM) is performed 

on a voxel-by-voxel basis. The GLM is a flexible framework that includes most 

parametric statistical tests, such as group comparisons and correlations with covariates 

of interest [16, 17]: e.g. it is possible to identify the differences in GM volume between 

patients and controls while removing effects from specific covariates, such as the total 
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intracranial volume - TIV. The standard statistical tests used are thus parametric (t 

tests and F tests, the validity of which ensured by the smoothing step as explained 

above), allowing for voxel-wise hypotheses testing [16, 17]. If the pre-processing and 

the choice of the statistical model are correct, after fitting the model, the resulting 

residuals should be independent and normally distributed. As the statistical parametric 

map generated comprises the result of many voxel-wise statistical tests, correction for 

multiple comparisons is usually required when assessing the significance of an effect in 

any given voxel [16, 17]. The statistics that are implicated in this final step of VBM will 

be further explained in the next chapter. 
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Chapter 3   

Statistics 

3.1 Univariate Statistics  

In inferential statistics, one intends to explain a variable - said dependent - 

based on the influence of another variable or other variables, said independent, in a 

way that can be generalized to the population, starting off with a sample.  

When only one dependent variable is at stake, then this analysis is designated as 

univariate: this is by far the most common statistical approach given the simplicity of 

the methods involved and their ease of implementation. Nonetheless, such an 

approach may miss important information stored in the structure of the data, which 

may not be reducible to a single dependent variable. It is, however, important to 

explain the basis of key univariate tests, such as t tests, F tests, ANOVA and 

ANCOVA, as these are the building blocks of more complex approaches. These simple 

tests allow for the testing of the null hypothesis (i.e. absence of effect) of one or more 

independent variables relating to one dependent variable [3]. As these tests are all 

special cases of GLM, it is pertinent explain the mathematics and algebra that are used 

in this unifying framework. 

3.1.1 Univariate GLM  

A basic linear regression explains a dependent continuous variable y by the 

behaviour of a single independent continuous variable x, modelled by the line equation 

as seen in 3.1: 



Chapter 3 – Statistics  18 

 

 

           
3.1 

where    is the intersect,    is a regressor that represents the slope of the line, 

and   is the residual error of the model. The regressor    is positive if the relation 

between x and y is direct, and negative if inverse. Importantly, there is a p-value 

attached to the regressor, the null hypothesis of which is that there is no relation 

between y and x. 

This basic model can be expanded in order to include more independent 

variables, either continuous (covariates) or categorical (factors), each with its own 

regressor, the interpretation of which is very similar to what was described for the 

basic linear regression. This extension is called the general linear model. 

The GLM facilitates a wide range of hypothesis testing with statistical 

parametric maps [19]. When formulating a linear model, one observes a phenomenon 

represented by an observed data vector (response or dependent variable), which can 

be related to a set of linearly independent fixed variables (predictor or independent 

variables): together they form the explanatory model being tested [2, 19]. 

To construct a general linear model, in presence of univariate data, an 

observation vector     , where N is the number of the observations, is related to k 

unknown parameters, where k is the number of the predictor variables, represented 

by a vector      through a known design matrix     . Simply put, each observation 

can be described as a linear combination of independent factors and/or covariates that 

influence the outcome. As with any model, an error term must be included to absorb 

the unexplained variance of the system: as such, an error vector     ,  where each 

element is independent and generated by identically distributed normal random 

variables, is added to the model [19, 20]: 

                    3.2 
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Or in extended matrix form: 

 

  
 
  
 
  

   

       
   

       
  
  
 
  

   

  
 
  
 
  

  3.3 

where   is the column vector of observations,   the column vector of 

parameters,   the column vector of error terms and   the design matrix. The rows of 

the design matrix correspond to observations and the columns to predictor variables. 

The design matrix preserves a near complete description of our model and it is where 

the experimental knowledge about the expected signal is quantified [2, 20]. 

 As the simultaneous equations implied by the GLM (with    ) cannot be 

solved (the number of parameters k is typically less than the number of observations), 

some method of estimating parameters that “best fit” the data is required, usually 

ordinary least squares. The least squares estimates correspond to the parameter 

estimates that minimize the residual sum of squares [20]. 

 If the design matrix is full column rank, the least squares estimates can be 

calculated by: 

              3.4 

 With these parameters, the residual errors         (where        are 

fitted values) can be minimized, ensuring that the effects of interest are not buried in 

the noise component. After that, the t- or F-statistics may be used to make inferences 

in the data, as in the corresponding basic statistical tests [21]. 
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3.1.1.1 Contrasts 

One of the great advantages of the GLM is the use of contrasts for inference 

about regressors. Contrasts are vectors (if t-contrasts) or matrices (F-contrasts) that 

can be used to focus the inferential analysis on a subset of regressors, defining the 

relationship between them, while possibly ignoring others. The ignored independent 

variables are seen as nuisance variables, i.e. their effects are accounted for but 

removed from the analysis. 

As a simple example, with the GM volume as the dependent variable and 4 

independent regressors -1 to-, corresponding to the independent variables related 

to, e.g. T1 brain images: control, disease, TIV and age, respectively, a t-contrast = [1 -1 

0 0] can be used to find the brain regions where there are more GM volume in control 

subjects than disease subjects, excluding from the analysis the nuisance variables TIV 

and age.  

Another type of contrast that may be used is the F-contrast. While a t-contrast 

tests a single linear constraint, the F-contrast is used to test whether any of several 

linear constraints is true, i.e. can be seen as an OR statement containing several t-

contrasts. Using from the example above the same regressors, but different 

independent variables, as follows: T1 brain images of control subjects, T1 brain images 

of subjects with a disease, T2 brain images of control subjects, T2 brain images of 

subjects with a disease and the same nuisance variables TIV and age, a F-contrast = 

 
     
    

 
  

 
  
  
 
 
 
  can be used to find any brain region, in T1 or T2 images, where 

GM atrophy is present, excluding from the analysis the nuisance variables TIV and age. 

The dependent variable remains a vector, but now it is the concatenation of the GM 

values of T1 and T2 images (stacked one on top of the other).  

3.1.1.2 T-test 

A t-test is a statistical hypothesis test that is used for testing the mean of one 

population against a hypothesised value or for comparing the means of two 
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populations; it is used when the standard deviation of a population needs to be 

estimated.  

Within the GLM, the t-test can be calculated to make inferences about the 

linear combinations of regressors. For that, the residual variance    is estimated by the 

quotient between the residual sum of squares and the degrees of freedom:     
   

   
 

[20]. 

As parameters estimates are normally distributed, then                   . 

Considering a contrast vector   containing p weights (as described above), the 

following distribution is obtained: 

                          3.5 

After some mathematical approximations, the t-value can be calculated by: 

  
        

               

 
3.6 

As in SPM, all tested null hypotheses are of the form       , the formula 

above can simply be:  

  
    

               

 
3.7 

Finally, the p-value can be calculated by comparing the t-value   with a t-

distribution with     degrees of freedom [20]. 
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3.1.2 Implemented Methods 

As mentioned above, the GLM has several special cases. However, for the 

purposes of this thesis, the focus will lie on the ANOVA and ANCOVA models.   

3.1.2.1 Analysis of Variance / F-test 

Using simple hypothesis testing (e.g. with t-tests) the variability lies only in one 

“place”, i.e. between two groups. However, ANOVA is used to test hypotheses about 

differences between three or more groups (more “places” to look) around a single 

grand mean (central tendency) [22]. In general, ANOVA assesses the variance of group 

means around a central tendency that tells, on average, how much each group is 

different from the central tendency as well as from each other.  

As such, ANOVA may be defined as the ratio of two univariate variances: (1) 

sum-of-squares-between (SSB) that is a measure of the variability of each group mean 

around the grand mean; (2) sum-of-squares-within (SSW) that is a measure of the 

variability of each subject’s score around their group mean. The total variation (sum-

of-squares-total, SST) is related to the sum of this two measures and the ratio 

SSB/SSW is proportional to F (also termed F-ratio and F-test), which is used to assess 

the variability of the groups means [21, 22].  

The shape of distribution of the values of the F distribution (Figure 3.1) depends 

on two degrees of freedom: one for SSB             and one for SSW       

    , where k is the number of groups and the N is the number of observations for 

the groups [21, 22]. So, the F-ratio can be calculated by: 

  
         
         

 3.8 
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Figure 3.1 - F distribution [23]. 

Finally, the p-values can be calculated by comparing the F-value with an F 

distribution with     degrees of freedom. With these p-values, it is possible create a 

map of statistical significance and analyze the effects of interest. 

Furthermore, within the GLM, the F-ratio can be calculated through the square 

of the multiple correlation coefficient R, an important measure of the “goodness of fit” 

of a GLM, which provides a measure of the proportion of the variance of the data:  

   
       

      
 

       

              
 3.9 

  
       

           
 3.10 

As mentioned before, the F value can be converted in an error probability, 

where an high F value leads to a low p-value and vice versa (Figure 3.1) [24].  
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3.1.2.2 Analysis of Covariance  

In its most general definition, an ANCOVA may be seen as a combination of a 

regression analysis with an ANOVA, i.e. ANCOVA assesses group differences on a DV 

after the effects of one or more covariates (“control variables” that are related to the 

DV) are statistically accounted for [21, 22, 25]. The prime advantage of using the 

ANCOVA model is to minimize the variability of the residual errors that are 

associated with covariates, resulting in more precise estimates and more powerful 

analysis [21, 25]. Design studies for ANCOVA can be performed by using the 

equations 3.2-3.7, while pertinently adjusting the design matrix and contrasts.   
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3.2 Multivariate Statistics  

Multivariate statistical methods are an extension of univariate statistics 

methods: instead of performing a series of univariate analysis each with only one DV, 

multivariate models allow a single analysis with multiple DVs [21]. This is important 

because it allows looking at an analysis in different “views”, providing multiple levels of 

inference. Consequently, multivariate methods provide a richer realistic design which 

may offer the explanation of more complex research problems [21, 22, 26, 27].   

As in univariate statistics, there is a multivariate statistical model that can 

integrate various multivariate methods that may be essential in inferential procedures, 

i.e. the multivariate general linear model (MGLM).  

3.2.1 Multivariate GLM  

3.2.1.1 Multivariate GLM Representation and Parameter Estimation 

The MGLM is a straightforward generalization of the univariate GLM that are 

presented in section 3.1.1. Instead of having one vector of response variables (Y), we 

have a set of p dependent variables in the several columns of the matrix Y. So, the 

model becomes: 
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Which implies that the number of columns of the  and  matrices match with 

the number of p dependent variables and, consequently, the number of columns of Y 

matrix. The equations that are used to estimate the parameters  and the residual 

errors   are the same formulas as the univariate model, i.e.               and 

       (where        are fitted values), respectively [28]. 
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3.2.1.2 Testing the Multivariate General Linear Hypothesis  

As the matrix have multiple columns of possible interest, testing linear 

hypotheses about these several columns is possible. The general form of the 

hypothesis is then: 

                    3.12 

where the q rows of A test hypotheses concerning the k independent variables 

and the l columns of M test hypotheses about the p dependent variables. With these 

three matrices, a multivariate contrast matrix      can be calculated and it will allow 

to test several hypotheses in the regressors [28]. 

As in the univariate model, it is possible to calculate the sum of squares 

regarding the hypothesis, i.e. the amount of variance associated with the contrast being 

tested. For that, the following equations that produce the sum of squares and cross 

products (SSCP) matrix between (B) and within (W) groups, respectively, can be used: 

          
 
       

  
   

  

         3.13 

                         3.14 

After the calculation of these matrices, the multivariate hypothesis may be 

tested in several different ways: the calculation of Hotelling-Lawley Trace, Roy’s Largest 

Root, Pillai’s Trace or Wilk’s Lambda [28]. For the purpose of this thesis, it will only use 

the Wilk’s Lambda: 
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 3.15 

With this parameter, the approximation based on Wilk’s determinant criterion 

to calculate the F ratio can be calculated [28]: 

  
      

    
 
     

  
 3.16 

where q is the number of rows of A and l is the number of columns of M. The 

other values are equal to: 

  
    

 
 

      
     

 
 

   

      

       
                  

                                          

  

where n is the sample size and k is the number of columns of the design matrix. 

The degrees of freedom for F are     in the numerator and       in the 

denominator. Finally, as mentioned several times before, the F value can be converted 

in an error probability value p and a map of significance can be achieved. 
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3.2.2 Implemented Methods 

3.2.2.1 Hotelling’s T2 

The two-sample Hotelling’s T2 is the multivariate extension of the common 

two-sample Student’s t-test. Hotelling’s T2 is a special case of multivariate analysis of 

variance (MANOVA), just as two-sample t-test is a special case of ANOVA, i.e. 

Hotelling’s T2 is used in presence of two dependent variables and one categorical IV 

with two levels. Instead of using separate t tests, for each dependent variable, to look 

for differences between groups (not legitimate because it inflates type I error due to 

unnecessary multiple significance tests), Hotelling’s T2 can be used to if groups differ on 

both DVs [21, 22]. As confirmed in the expression below, this involves the 

computation of differences in the sample mean vectors (    and      and the 

multiplication of the pooled variance-covariance matrix (  ) with the sum of the 

inverses of the sample size (   and   ) [29]: 

                
 

  
 

 

  
  

  
            3.17 

3.2.2.2 Multivariate Analysis of Variance  

MANOVA is used to test hypotheses about differences between one or more 

IVs, among two or more DVs. Therefore, MANOVA can be seen as a multivariate 

extension of ANOVA. In general, MANOVA is preferable to performing a series of 

ANOVAs, i.e. one for each DV, because multiple ANOVAs can increase the type I 

error and the intercorrelations between DVs are ignored in ANOVA. However the 

choice of DVs must be well made because these may be redundant, adding complexity 

and ambiguity to the analysis [21, 22]. 

MANOVA designs evaluate whether groups differ on at least one optimally 

weighted linear combination of at least two DVs. This can be achieved by using 
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equations 3.13-3.15 to calculate the SSCP matrices and estimate the Wilk’s Lambda. 

Then a chi-square approximation to calculate the p-values can be done:  

                             3.18 

where N is the number of observations for the groups, k and p are degrees of 

freedom related to the number of independent variables and to the number of groups, 

respectively.  

3.2.2.3 Multivariate Analysis of Covariance  

In its most general definition MANCOVA can be seen as the multivariate 

extension of ANCOVA, where a linear combination of DVs is adjusted for differences 

on one or more covariates, i.e. MANCOVA assesses the group differences on several 

DVs across multiple IVs, after the effects of one or more covariates are statistically 

removed [21, 22]. This makes possible the statistical matching of groups even when 

random assignment to groups is not possible. Furthermore, as the variance associated 

with the covariates is removed, a smaller error variance can be achieved. 

Consequently, this provides a more precise estimates and more powerful tests of 

mean differences among groups [21]. In an experimental design, the effects of nuisance 

covariates in DVs are accounted for but removed from the analysis. This can be 

achieved by using equations 3.11-3.16 and pertinently choosing the design matrix and 

contrasts to insert in the model.   

3.2.2.4 Alterations in SPM8 interface 

Currently, only univariate methods can be performed in SPM8. So, in order to 

calculate multivariate methods in SPM8 (the main objective of the thesis), several 

alterations in the interface had to be done. For that, several SPM8 functions were 

altered, notably: spm_cfg_con, spm_cfg_factorial_design, spm_conman, spm_contrasts, 

spm_design_factorial, spm_getSPM, spm_run_factorial_design and spm_spm.  
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These alterations lead to the creation of a new design menu (Figure 3.2), where 

several dependent variables can be inserted: the user can chose the name of the DV, 

associate with each DV the scans to analyze, as well as the number of levels and the 

nuisance covariates, among other options.  

As explained in section 3.1.1.1, given the flexibility provided by the use of 

contrasts, their multivariate versions were also implemented. As such, a new contrast 

interface (Figure 3.3) was also created, where one partition for the M-contrast 

(contrast for multivariate procedures) can be found.  

Altogether, these alterations, notably the insertion of the MANCOVA 

algorithm explained before, allowed for the first calculation of a multivariate inferential 

method in a publicly available brain imaging platform (see Annex A to perceive how 

these alterations can be implemented). 

 

Figure 3.2 - The new design menu for the MANCOVA algorithm. 
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Figure 3.3 - The new contrast window for the multivariate contrast. 
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3.3 Support Vector Machine  

Machine learning can be seen as an alternative to inferential multivariate 

analyses and plays an important role on computed techniques for automatic 

classification of imaging scans [30]. These algorithms are trained with previously 

labelled data (training data). The learned classifier corresponds to a model of the 

relationship between the features (i.e. relevant information in the data) and the class 

label in the training set [31]. When the size of the training data set is small or when the 

number of parameters in the model is large, a cross validation procedure is needed in 

order to prevent overfitting. The goal of cross validation is to define a dataset to test 

the model in the training phase (i.e. the validation dataset), giving an insight on how the 

model will generalize to an independent data set. One example of this is the Leave 

One Out (LOO) method, in which the learning algorithm is trained multiple times, 

using all but one of the training set data points.    

Once trained, the classifier is used on a different set of examples, the test data, 

which origin the predict labels. After that, the predicted labels are then compared to 

the true labels and the accuracy of the classifier can be achieved [31]. The general 

process of a classification algorithm is described below on Figure 3.4. 

 

Figure 3.4 - The general process of classification algorithms [31]. 

There are several classification algorithms, but for the purposes of this thesis, 

the focus will lay on the SVMs. SVMs attempts to find the optimal solution for the 

classification of subjects according to pre-defined criterion. This optimal solution 

corresponds to the highest distance that can separate two subjects with different 
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characteristics in two different classes [4, 30]. For that, SVMs attempts to find the 

largest margin hyperplane that separates data from different groups (e.g. patients/ 

controls) [4]. In Figure 3.5, it is possible see an illustration of the SVM concept in two 

dimensions that are adequate to this study, i.e. the axes may be seen as DVs (the type 

of image: T1 and T2) and dots and crosses represent imaging scans taking from 

controls and T2DM patients, respectively, which can be separated in two different 

classes. As such, these methods can also be seen as multivariate. 

 To apply SVMs in neuroimaging data, an image with D voxels is converted into a 

vector (each component of the vector is equal to the intensity image at the 

correspondent voxel in the image). As such, for m images, the ith image has to be 

reorganized into a D-dimensional point. This ith point may be denoted by xi where 

        indexes of all subjects in the study. Furthermore, in imaging studies it is 

necessary to associate a label to each image, which informs to which group (e.g. 

control or patient) each image belongs. These labels may be denoted by      

       . Then the algorithm finds ‘hyperplane coefficients’ denoted by w* and b* such 

that [4]: 

                            
 

 
         

 

   

 

subjected to     
                      

                        

 

 

3.19 

 

where w* is the weight vector that represents the direction in which the SVM 

deems the two classes to differ the most,    are nonnegative slack variables and   is a 

user-specified positive parameter. This vector can be represented as ‘discriminative 

map’, where each voxel has a positive or negative weight. However, the interpretation 

of the sign and strength of the voxels’ weights, as well as of increase/decrease of the 

differences between the groups is not necessarily direct. This is because these weights 

do not provide a value of statistical significance associated with a voxel of an image [4, 
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6]. As such, other multivariate methods that can obtain maps of statistical significance 

are needed. This is the main objective of this thesis, i.e. the implementation of 

multivariate statistics methods that simultaneously may be used in more complex 

problems (i.e. problems with several DVs and IVs) and are capable of generating maps 

of statistical significance, which will allow for better and more reliable conclusions.  

 

 

Figure 3.5 - Illustration of the SVM concept in an imaginary 2D space [4]. 
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Chapter 4  

Implementation 

4.1 Methods 

4.1.1 Patient Selection 

Thirty-four participants with T2DM and forty-two gender matched control 

subjects were recruited. Controls were recruited from the general population of 

Hospital or University staff, and T2DM patients from the Endocrinology Department, 

of the University Hospital (Centro Hospitalar e Universitário de Coimbra). T2DM 

patients presented with the condition for at least one year prior to the 

commencement of this study, and were diagnosed using standard WHO (World 

Health Organization) criteria [32] [33]. Participants were included between November 

2011 and November 2013. Exclusion criteria for both groups were severe 

cardiovascular disease (trasient ischemic attack or stroke), neurologic diseases 

unrelated to diabetes likely to affect cognitive functions, known history of psychiatric 

disease and alchool abuse. 

4.1.2 Image Acquisition  

The MR scans were acquired at the Portuguese Brain Imaging Network facilities 

in Coimbra, Portugal, on a 3T research scanner (Magnetom TIM Trio, Siemens) using a 

phased array 12-channel birdcage head coil (Siemens). 

For each participant, a 3D anatomical MPRAGE (magnetization-prepared rapid 

gradient echo) scan was acquired using a standard T1-weighted gradient echo pulse 
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sequence with TR = 2530 ms, TE = 3.42 ms, TI = 1100 ms, flip angle 7°, 176 single shot 

slices with voxel size 1x1x1 mm, and FOV (field of view) 256 mm. True 3D, high-

resolution, T2-weighted images will be acquired. The turbo spin echo with variable flip-

angle distribution (sampling perfection with application optimized contrasts using 

different flip angle evolution; SPACE) pulse sequence was used with the following scan 

parameters: TR/TE/NEX = 3200ms/450ms/2; matrix, 192x192x144 slices; voxel 

resolution 1.25x1.25x1.25mm3.  

4.1.3 SPM Analyses 

Images were processed with SPM8, running on Matlab R2012a® (The Math-

Works, Inc., Natick, MA), in order to perform the VBM analysis. This included spatial 

normalization and GM segmentation using the unified segmentation algorithm, 

explained before. Modulated GM segments, registered to the ICBM152 template, were 

then smoothed with an 8mm full width at half maximum (FWHM) three-dimensional 

Gaussian kernel to ensure the normality of the data.  

The statistical analyses performed in SPM8 can be divided in two types: 

univariate and multivariate. For univariate analyses (ANOVA and ANCOVA, seen in 

the section 4.2.1), the GLM was adapted to the study in terms of design and contrasts. 

With the alterations mentioned in 3.2.2.4, a multivariate analysis (MANCOVA) was 

performed.  

4.1.4 Image analyses outside SPM 

The results of all implemented methods presented in chapter 3 were obtained 

with functions scripted in Matlab, outside the framework of SPM. As above, two type 

of analysis were performed: the univariate and multivariate analyses.  

4.1.5 Overlap of results with a high resolution image  

As the results obtained in Matlab, outside the framework of SPM, do not 

provide good spatial localization of the differences detected, it was necessary to create 
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a script in Matlab that allows the overlap of these results with a high resolution image. 

So, using the functions spm_orthviews and spm_select, the outcome of all implemented 

algorithms (an image with the extension ‘.nii’) was overlaid with a high resolution image 

(a canonical image of SPM8, single_sub_T1.nii) (see Figure 4.1). This provides a better 

localization of the affected regions. 

 

Figure 4.1 - An example of overlapping a (blue) significance map image with a high resolution image. 

 

4.1.6 Pattern Recognition for Neuroimaging Toolbox  

The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-

source, cross-platform Matlab-based and SPM compatible, based on pattern 

recognition techniques for the analysis of neuroimaging data, notably SVM as 

introduced in section 3.3. In PRoNTo, brain scans are treated as spatial patterns and 

several statistical learning models can be used to identify statistical properties of the 

data that allow to discriminate between experimental conditions or groups of subjects 

(classification models) or to predict a continuous measure (regression models) [34, 

35].  
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4.2 Results 

4.2.1 Univariate Analyses 

The univariate methods used were: ANCOVA and ANOVA. For all the 

analyses, the thresholds used were the same: relative threshold masking 5% and p 

value threshold 0.001 uncorrected.  

4.2.1.1 ANCOVA 

In order to perform the ANCOVA analyses in Matlab, the univariate GLM 

algorithm used in VBM was replicated by applying the function glmfit of Matlab, 

together with equations 3.2-3.7 seen in the section 3.1.1. The design matrix was 

constituted by two IVs (controls and TD2M subjects) and two covariates (TIV and 

age). As a single DV, T1 images and T2 images were used separately. In order to 

extract the GM difference map, a t-contrast = [1 -1 0 0] was used to find the brain 

regions where cortical atrophy was present in T2DM subjects, comparing with control 

subjects while excluding from the analysis the nuisance variables TIV and age. The 

outcome is a map of p-values (Figure 4.2 and Figure 4.5 for T1 and T2 images, 

respectively) with statistically differences between controls and T2DM subjects. This 

was overlaid with a high resolution image (Figure 4.3 and Figure 4.6 for T1 and T2 

images, respectively), using the script explained in the section 4.1.5 to better assess the 

localization of the affected regions. 

 Finally, as a benchmark for the expected results, an ANCOVA, with the same 

design matrix and t-contrast, for T1 and T2 images was performed (Figure 4.4 and 

Figure 4.7, respectively) using SPM8. 
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4.2.1.1.1 T1 images 

 

Figure 4.2 - ANCOVA obtained with an in-house function in Matlab, using T1 images. 

 

 

 

Figure 4.3 – The previous ANCOVA image overlaid with a high resolution image. 
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Figure 4.4 - ANCOVA obtained in SPM8 (VBM), using T1 images. 
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4.2.1.1.2 T2 images 

 

Figure 4.5 - ANCOVA obtained with an in-house function in Matlab, using T2 images. 

 

 

Figure 4.6 - The previous ANCOVA image overlaid with a high resolution image. 
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Figure 4.7 - ANCOVA obtained in SPM8 (VBM), using T2 images. 

4.2.1.2 ANOVA with concatenation of T1 and T2 images 

The ANOVA algorithm was implemented in Matlab, using equations 3.2-3.4 and 

3.9-3.10. To build the design matrix, four independent variables were included: T1 

brain images of control subjects, T1 brain images of subjects with T2DM, T2 brain 

images of control subjects and T2 brain images of subjects with T2DM. In order to 

extract the gray matter differences between the T2DM and controls subjects, an F-

contrast =  
     
    

 
  

   was used. The outcome is a map of p-values (Figure 4.8) 

with statistical differences between controls and T2DM subjects. This was overlaid 

with a high resolution image (Figure 4.9), using the script explained in the section 4.1.5 

to better assess the localization of the affected regions. 
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As a benchmark for the expected results, an ANOVA, with the same 

conditions used before, was performed (Figure 4.10) using SPM8 (VBM). 

 

 

Figure 4.8 - ANOVA, with concatenation of T1 and T2 images, obtained with an in-house function in 

Matlab. 

 

 

Figure 4.9 - ANOVA, with concatenation of T1 and T2 images, image overlaid with a high resolution 

image. 
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Figure 4.10 - ANOVA, with concatenation of T1 and T2 images, obtained in SPM8 (VBM). 

4.2.1.3 ANCOVA with concatenation of T1 and T2 images 

In order to insert the covariates TIV and age in the model, the algorithm 

constructed previously for ANOVA (see section 4.2.1.2) was modified. The 

independent variables were the same and the contrast was an F-contrast = 

 
     
    

 
  

 
  
  
 
 
 
 . The outcome is also a map of p-values (Figure 4.11) with 

statistical differences between controls and T2DM subjects (overlaid with a high 

resolution image in Figure 4.12).  

Finally, using the same conditions as before, an ANCOVA was performed 

(Figure 4.13) in SPM8. 
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Figure 4.11 - ANCOVA, with concatenation of T1 and T2 images, obtained with an in-house function 

in Matlab. 

 

 

Figure 4.12 - ANCOVA image, with concatenation of T1 and T2 images, overlaid with a high 

resolution image. 
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Figure 4.13 - ANCOVA, with concatenation of T1 and T2 images, obtained in SPM8 (VBM). 
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4.2.2 Multivariate Analyses 

The multivariate methods used can be broadly divided in two groups: inferential 

(Hotelling’s T2, MANOVA, MANCOVA) and classification/pattern recognition (SVM). 

For inferential analyses, the relative threshold masking used was the same, i.e. equal to 

5%. The p-value threshold, for the analyses without covariates (Hotelling’s T2 and 

MANOVA) was equal to 0.00001 (uncorrected) and for MANCOVA was equal to 

0.001 (uncorrected). As the Hotelling’s T2 and MANOVA methods do not presuppose 

the insertion of covariates, the presence of irrelevant information is greater than in 

MANCOVA. In order to reduce the “noise” present in the image, the p-value 

threshold, for MANOVA and Hotelling’s T2 analyses was reduced. 

4.2.2.1 Inferential Methods 

4.2.2.1.1 Hotelling’s T2 

The multivariate analyses process was initiated by implementing the two-sample 

Hotelling’s T2 algorithm (multivariate extension of the common two-sample Student’s 

t-test) for simultaneous analysis of T1 and T2 images (used as DVs), using as IVs the 

control and T2DM subjects only. Please note that this analysis does not allow for the 

introduction of nuisance covariates. For the implementation, the equation 3.17 

presented in the section 3.2.2.1 was implemented in order to create an in house-

function in Matlab, which yields as final result a map of p-values (Figure 4.14) with 

statistically differences between controls and T2DM subjects. After that, this map was 

overlaid with a high resolution image, producing an image with better spatial 

localization of the affected regions (Figure 4.15).  
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Figure 4.14 - Two-sample Hotelling's T2 obtained with an in-house function in Matlab. 

 

 

Figure 4.15 - The previous Hotelling's T2 image overlaid with a high resolution image. 

4.2.2.1.2 MANOVA 

The MANOVA algorithm was implemented in Matlab in two different ways: (1) 

using the function maov1 of Matlab; (2) using an in-house function with SSCP matrices 

to estimate the Wilk’s Lambda and a chi-square approximation to calculate the p-values 

(using the equations 3.13-3.15 and 3.18). The IVs and DVs were the same as those 

used in the two-sample Hotelling’s T2 algorithm. The two resulting maps of significance 
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were the same and the representation of one of them can be seen in Figure 4.16 

(overlaid in Figure 4.17). 

 

Figure 4.16 - MANOVA obtained with an in-house function in Matlab. 

 

Figure 4.17 - The previous MANOVA image overlaid with a high resolution image. 

4.2.2.1.3 MANCOVA 

The MANCOVA algorithm was implemented in Matlab, using equations 3.13-

3.16 presented in the section 3.2.1. As in ANCOVA, the design matrix was constituted 

by two IVs (controls and TD2M subjects) and two covariates (TIV and age). As DVs, 

T1 images and T2 images were used conjointly. In order to achieve the GM 

differences, a t-contrast = [1 -1 0 0] was used to test the hypothesis concerning the 



Chapter 4 – Implementation  50 

 

IVs and covariates (matrix A in equation 3.12) and an M-contrast =  
  
  

  (matrix M 

in equation 3.12) to test the hypotheses about the DVs. With these two matrices and 

the  matrix, it is possible to construct the multivariate contrast matrix: as such, it is 

possible to find any brain region, as conjointly defined by T1 and T2 images (i.e. each 

coordinate is now a vector rather than a value), where atrophy in T2DM subjects, 

compared with control subjects, is present, while excluding from the analysis the 

nuisance variables TIV and age. As before, the outcome is a map of p-values (Figure 

4.18) with the effects of interest, which was overlaid with a high resolution image 

(Figure 4.19) to provide a better localization of the affected regions. 

After that, with the alterations mentioned in the section 3.2.2.4, a MANCOVA, 

with same design and contrast used before, was performed in SPM8. The result is 

presented in Figure 4.20. 

 

Figure 4.18 - MANCOVA obtained with an in-house function in Matlab. 
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Figure 4.19 - The previous MANCOVA image overlaid with a high resolution image. 

 

Figure 4.20 - MANCOVA obtained in SPM8 (VBM). 
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4.2.2.2 Classification/Pattern Recognition Methods 

The software used to apply a classification method was the PRoNTo toolbox 

(explained in the section 4.1.6) and the algorithm used was a linear SVM (with c 

parameter equal to one).  In order to perform a binary classification (controls versus 

T2DM patients), two modalities (T1 images and T2 images) were inserted. This 

allowed the simultaneously analysis of T1 and T2 images, comparing the brain 

differences between the controls and T2DM subjects. In order to specify the model: 

the input feature set chosen was the GM volume of each image, the kernel was the 

multiplication of all images and the cross-validation method was the LOO. The 

outcome is a map of weights that may be compared with the results of the inferential 

multivariate methods (Figure 4.21). The sensibility and specificity of the classification 

was 83.3% and 72.1%, respectively. 

 

Figure 4.21 – The results of the inferential multivariate methods (A - Hotelling’s T2, B - MANOVA and 

C - MANCOVA), compared with a map of weights, obtained in PRoNTo software using SVM algorithm 

(D), at the coordinate [-10.7 15.4 1.7] mm.  
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Chapter 5  

Discussion & Conclusions 

As stated in the introduction, this thesis had three main goals, which were 

pursued in phases: 

1) Replicate the univariate VBM analyses between controls and T2DM patients 

in Matlab, using SPM8 software as a reference; 

2) Explore and implement multivariate methods that can integrate information 

from T1 and T2 images, contrasting controls to T2DM patients; 

3) Insertion of these multivariate algorithms into the pipeline of SPM8 so that 

it can be used in further multimodal studies. 

All these goals were successfully accomplished, as further expanded below. 

5.1 Univariate Analyses and Type 2 Diabetes Mellitus 

In the first phase, the standard GLM algorithm used in SPM8 was coded, making 

it possible to perform an ANCOVA, using only T1 or T2 images, and ANOVA and 

ANCOVA with concatenation of T1 and T2 images. In both univariate analyses, the 

results obtained with the replicated algorithm were identical to the results obtained 

with the standard SPM8 version used for VBM (see sections 4.2.1.1, 4.2.1.2 and 

4.2.1.3).  

In ANCOVA for separate analysis of T1 and T2 images, the structural and 

vascular changes are clearly visible in T1 and T2 images, respectively, and they are 

more noticeable in the limbic lobe, sub-lobar, insular and temporal areas (brain areas 
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responsible for emotional and cognitive functions), bilaterally. These results are in 

agreement with the expected brain alterations in T2DM patients, described in the 

literature [7-11]. Furthermore, other publications corroborate these results: in a study 

where a relatively large population (350 patients and 364 controls) was used, a pattern 

of GM loss was found mainly in the medial temporal, anterior cingulated and medial 

frontal lobes [36]; and in a recent study where similar changes, particularly in the 

limbic system and temporo-parietal lobes (cingulum, insular area, hippocampus) are 

described [37]. 

The results of the ANOVA with the concatenation of T1 and T2 images were 

not as specific (see section 4.2.1.2) because the exclusion of the nuisance covariates 

from the analysis leads to more ‘noise’ in the images. In order to surpass this 

limitation, the script was altered and the insertion of the covariates was performed 

(see section 4.2.1.3). These results are comparable with the results of the ANCOVA 

analyses using T1 and T2 images separately (section 4.2.1.1), i.e. the atrophic tissue is 

also predominant in the limbic lobe, sub-lobar, insular and temporal areas. 

5.2 Multivariate Analyses and Type 2 Diabetes Mellitus 

In the second phase, three inferential multivariate methods were implemented 

(Hotelling’s T2, MANOVA and MANCOVA). Although the results of these analyses 

seem different, they are identical, but as MANOVA and Hotelling’s methods do not 

presuppose the insertion of the nuisance covariates and MANCOVA does, the latter 

may lead to ‘cleaner’ results, i.e. more specific results, with less false positives. 

Nevertheless, the differences in cortical tissue are also visible in the three 

analyses, being more noticeable in the limbic lobe, sub-lobar, insular and temporal 

areas as well (see sections 4.2.2.1.1, 4.2.2.1.2 and 4.2.2.1.3). Though the univariate 

analyses lead to clinically sensible results, the multivariate analyses may lead to more 

powerful results without a loss of specificity: in fact, the atrophic brain areas detected 

seem more restricted (e.g. compare the MANOVA versus ANOVA results and 

MANCOVA e ANCOVA results). It is worth underlining that multivariate analyses 
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allow for the assessment of data from different “views”, providing greater 

discriminative power, which may lead to enhanced inference.  

It cannot be excluded, however, that the correlation between T1 and T2 (both 

DVs used herein) may have pose a hindrance to the application of the multivariate 

methods: this is a key limitation of this work; indeed, it must be acknowledged that a 

number of presuppositions that should have been in place to ensure the validity of the 

application of these parametric multivariate tests – apart from the normality of the 

data, which was ensure through spatial smoothing – were not tested. This is, however, 

not critical in this “proof of concept” (PoC) stage, but will be required in future work. 

After that, these multivariate results were compared with a single SVM result 

(Figure 4.21). Instead a map of significance, the latter result is a map of weight 

coefficients. It is possible to perceive the brain differences between control subjects 

and T2DM subjects: in this case, the red regions can be interpreted, though not with 

full certainty, as regions where the GM volume is greater in controls than T2DM 

patients. Seen from this perspective, this map is somewhat similar to the other maps 

obtained with the inferential multivariate methods, especially with Hotelling’s T2 and 

MANOVA – this may be so because the nuisance covariates were not introduced in 

the SVM data (Figure 4.21).  

5.3 Possible Future SPM8 toolbox  

In the last phase, in which proved to be the most challenging aspect of this 

thesis, the alterations in the SPM8 functions, mentioned in the section 3.2.2.4, were 

implemented, notably the creation of the design menu and the contrast window. With 

all of these alterations, the MANCOVA algorithm was fully inserted in SPM8 and the 

first multivariate result within this software (Figure 4.20) was obtained. This thesis is 

the groundwork for a publicly available multivariate statistics toolbox, to be inserted in 

this widely used brain imaging platform. 
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5.4 Limitations & Future work 

It is crucial understand that this work is a “proof of concept”, i.e. the main 

objective of this thesis is not create a perfect algorithm to prove the brain alterations 

in T2DM, but demonstrate that it is possible to implement inferential multivariate 

methods in an accessible programming language (Matlab) while inserting these 

algorithms in a toolbox for a widely used brain imaging platform such as SPM8. As 

mentioned before, given time and data constraints, volumetric T1 and T2 brain scans 

obtained from subjects who participated in the Diamarker project were used. The 

implementation was adapted to these limited data, not taking into account difficulties 

that may arise from using multiple modalities (e.g. PET and fMRI), notably different scan 

space and resolution.  

Additionally, as mentioned above, some of the pre-requisites to perform 

statistical tests were not tested, notably the correlation between DVs. Future work 

will focus on surpassing these limitations and preparing the methods to be applied in 

multimodal studies.  
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Annex A. Tutorial for SPM8 alterations 

In this tutorial the necessary steps to perform a multivariate analysis in any 

computer with a Matlab version compatible with SPM8 are explained, assuming that 

the images are already spatially pre-processed. 

1) Go to http://www.fil.ion.ucl.ac.uk/spm/software/spm8/ and download of 

SPM8. 

2) After the installation, insert the new functions (spm_cfg_con, 

spm_cfg_factorial_design, spm_conman, spm_contrasts, spm_design_factorial, 

spm_getSPM, spm_run_factorial_design and spm_spm) in the spm8 folder.  

3) Start the Matlab program and write ‘spm’ in the command window. The 

following window will appear: 

 

4) Choose the ‘PET & VBM’ button and the following window will appear: 

 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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5) Click on the ‘Basic models’ button and the design menu window will appear: 

 

Here it is possible to choose the directory where the SPM.mat file, with 

specified design matrix, will be written, as well as the intended design. In this case, 

choose the ‘MANCOVA’ design. 
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In this design, multiple DVs can be chosen: it is possible to choose the name of 

the DV, associate with each DV the scans to analyze, as well as the number of levels 

and the nuisance covariates, among other options. 

6) After the insertion of all design specifications, click on the ‘run’ button ( ) 

to create the SPM.mat file. 

7) Go to the main window (PET & VBM window), press the ‘Estimate’ button 

and select the SPM.mat file created previously (this lead to the estimation of 

SPM.mat file). 

8) Then click on ‘Results’ button and choose the estimated SPM.mat file. The 

contrast manager window will become visible: 
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9) Select the ‘M-contrasts’ button and click on ‘Define new contrast...’ button: 

 

10) Here, the multivariate contrast can be defined. In the upper rectangle the 

contrast name can be inserted. In the second rectangle, the contrast 

weights to test the dependent variables can be inserted; the third rectangle 

requires the input of the contrast weights to test the independent 

variables. After this, press the ‘submit’ button and finally ‘OK’ button.  

11) The contrast manager window will appear again. Select the created 

contrast and press ‘Done’.  The following window will appear: 
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12) Insert the intended parameters for the analysis and press Enter. Wait until 

the end of the calculation and a result such as the following one should 

appear: 

 

 

13) Finally, in the results window, the previous result can be overlaid with a 

template. For this, click ‘overlays...’, select the tag ‘sections’ and then 

choose a template in the spm8 folder:  
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14) After all these steps, a similar result can be obtained: 

 



Annexes   67 

 

 

 


	Acknowledgments
	Abstract
	Resumo
	Symbols & Abbreviations
	List of Figures
	Contents
	Chapter 1
	Introduction

	Chapter 2
	Structural brain imaging of type 2 diabetes
	2.1 Type 2 diabetes mellitus
	2.2 Magnetic Resonance Imaging
	2.2.1 The formation of the MR Signal
	2.2.2 Image Formation (Spatial Encoding)
	2.2.3 Tissue Contrast

	2.3 Voxel Based Morphometry (VBM)
	2.3.1 Spatial Normalization/Registration
	2.3.2 Segmentation and Modulation
	2.3.3 Smoothing
	2.3.4 Statistical Analysis



	Chapter 3
	Statistics
	3.1 Univariate Statistics
	3.1.1 Univariate GLM
	3.1.1.1 Contrasts
	3.1.1.2 T-test

	3.1.2 Implemented Methods
	3.1.2.1 Analysis of Variance / F-test
	3.1.2.2 Analysis of Covariance


	3.2 Multivariate Statistics
	3.2.1 Multivariate GLM
	3.2.1.1 Multivariate GLM Representation and Parameter Estimation
	3.2.1.2 Testing the Multivariate General Linear Hypothesis

	3.2.2 Implemented Methods
	3.2.2.1 Hotelling’s T2
	3.2.2.2 Multivariate Analysis of Variance
	3.2.2.3 Multivariate Analysis of Covariance
	3.2.2.4 Alterations in SPM8 interface


	3.3 Support Vector Machine


	Chapter 4
	Implementation
	4.1 Methods
	4.1.1 Patient Selection
	4.1.2 Image Acquisition
	4.1.3 SPM Analyses
	4.1.4 Image analyses outside SPM
	4.1.5 Overlap of results with a high resolution image
	4.1.6 Pattern Recognition for Neuroimaging Toolbox

	4.2 Results
	4.2.1 Univariate Analyses
	4.2.1.1 ANCOVA
	4.2.1.1.1 T1 images
	4.2.1.1.2 T2 images

	4.2.1.2 ANOVA with concatenation of T1 and T2 images
	4.2.1.3 ANCOVA with concatenation of T1 and T2 images

	4.2.2 Multivariate Analyses
	4.2.2.1 Inferential Methods
	4.2.2.1.1 Hotelling’s T2
	4.2.2.1.2 MANOVA
	4.2.2.1.3 MANCOVA

	4.2.2.2 Classification/Pattern Recognition Methods




	Chapter 5
	Discussion & Conclusions
	5.1 Univariate Analyses and Type 2 Diabetes Mellitus
	5.2 Multivariate Analyses and Type 2 Diabetes Mellitus
	5.3 Possible Future SPM8 toolbox
	5.4 Limitations & Future work

	References
	Annex A. Tutorial for SPM8 alterations


