
João Pedro Matos da Costa

MASSIVELY SCALABLE DATA WAREHOUSES

WITH PERFORMANCE PREDICTABILITY

Tese do programa de doutoramento em Ciências e Tecnologias da Informação orientada por Professor Doutor Pedro Nuno San-Bento Furtado

e apresentada ao Departamento de Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

2014

Jo
ão

 P
ed

ro
 M

at
os

 d
a

Co
st
a

MA
SS

IV
EL

Y
SC

AL
AB

LE
 D

AT
A

W
AR

EH
OU

SE
S

W
IT

H
PE

RF
OR

MA
NC

E
PR

ED
IC

TA
BI

LI
TY

Massively Scalable Data Warehouses with
Performance Predictability

by

João Pedro Matos da Costa

A dissertation submitted to the University of Coimbra

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Information Science and Technology

Adviser:

Professor Doutor Pedro Nuno San-Bento Furtado

Assistant Professor at University of Coimbra

Coimbra, Portugal

September, 2014

Financial support by:

Portuguese Foundation for Science and Technology (Fundação para a Ciência e

a Tecnologia – co-financiamento do Programa Operacional Potencial Humano/POPH e

da União Europeia, Programa de apoio à formação avançada de docentes do Ensino

Superior Politécnico) through the PhD grant SFRH/BD/49892/2009.

 “A satisfação está no esforço e não apenas na realização final.”

Mahatma Gandhi

i

Abstract

Data Warehouse (DW) systems are a fundamental tool for the decision-making

process. Today these systems have to deal with increasingly large data volumes, which

is typically stored as a star schema. The query workload is also more demanding,

involving more complex, ad-hoc and unpredictable query patterns, with more

simultaneous queries being submitted and executed concurrently.

Modern competitive markets require decisions to be taken in a timely fashion. It

is not just a matter of delivering fast analysis, but also of guaranteeing that they will be

available before business-decisions are made.

Moreover, the data volumes produced by data intensive industries are

continuously increasing, stressing the processing infrastructure ability to provide such

timely requirements even further. As a consequence, IT departments are continuously

upgrading the processing infrastructure with the objective that, hopefully, the newer

architecture will be able to deliver query results within the required time frame, but

without any guarantees that it will be able to do so. There is no concrete method to

define the minimal hardware requirements to deliver timely query results.

Several factors influence the ability of the DW infrastructure to provide timely

results to queries, such as the query execution complexity (query selectivity, number of

relations that have to be joined, the joins algorithms and the relations’ size), the

heterogeneity and capabilities of the processing infrastructure, including IO throughput,

and the memory available to process joins and the implementation of the join

algorithms. Larger data volumes and concurrent query loads; concurrent queries that are

 Abstract

ii

executing simultaneously also influence the system ability to provide predictable

execution times.

In spite of all the time and effort to come up with a parallel infrastructure to

handle such increase in data volume and to improve query execution time, it may be

insufficient to provide timely execution, particularly for ad-hoc queries. The

performance of well-known queries can be tuned through a set of auxiliary strategies

and mechanisms, such as materialized views and index tuning. However, for ad-hoc

queries, such mechanisms are not an alternative solution. The query patterns

unpredictability result in unpredictable query execution times, which may be

incompatible with business requirements.

This dissertation proposes a data warehousing architecture that provides

scalability and timely results for massive data volumes. The architecture is able to do

this even in the presence of a large number of concurrent queries, and it is able to meet

near real-time requirements. The ability to provide timely results is not just a

performance issue (high throughput), but also a matter of returning query results when

expected, according to the nature of the analysis and the business decisions.

Query execution is highly influenced by the number of relations that have to be

joined together, the relations’ size and the query selection predicates (selectivity),

influencing the data volume that has to be read from storage and joined. This data

volume and the memory available for joins, influence both the join order and the used

join algorithms. These results in unpredictable execution times. The data volume is

another factor of unpredictability, since there is no simple and accurate method to

determine the impact of larger data volumes in query execution time.

To handle the unpredictability factors related to joining relations, we proposed

the ONE data model, where the fact table and data from corresponding dimensions are

physically stored into a single de-normalized relation, without primary and foreign

keys, containing all the attributes from both fact and dimension tables. ONE trades-off

storage space for a simpler and predictable processing model.

To provide horizontal scalability, we partitioned the de-normalized ONE

relation into data fragments and distribute them among a set of processing nodes for

parallel processing, yielding improved performance speedup. ONE delivers unlimited

 Abstract

iii

data scalability, since the whole data (fact and dimensions), and not just the fact table, is

linearly partitioned among nodes (with η nodes, each will have 1/η of the ONE node).

Therefore, since the addition of more nodes to the processing infrastructure does not

require additional data replication of dimensions, ONE provides massive data

scalability.

By ensuring a linear distribution of the whole data, and not just the fact table,

query execution time is improved proportionally to the data volume in each node.

Moreover, since data in each node is already joined and thus query processing does not

involve the execution of costly join algorithms, the speedup in each node is enhanced

(almost) linearly as a function of the data volume that it has to process.

By de-normalizing the data, we also decrease the nodes’ requirements, in what

concerns physical memory (needed for processing joins), and query processing tasks,

since the join processing tasks that were repeatedly (over and over) processed are

removed. The remaining tasks, such as filtering and aggregations, have minimum

memory and processing requirements. Only group by aggregations and sorting have

memory requirements.

The concept of timely results (right-time execution) is introduced, and we

propose mechanisms to provide right-time guarantees while meeting runtime

predictability and freshness requirements.

The ability to provide right-time data analysis is gaining increasing importance,

with more and more operational decisions being made using data analysis from the DW.

The predictability of the query execution tasks is particularly relevant for providing

right-time or real-time data analysis. We define right-time as the ability to deliver query

results in a timely manner, before they are required. The aim is not to provide the fastest

answers, but to guarantee that the answers will be available when expected and needed.

We proposed a Timely Execution with Elastic Parallel Architecture (TEEPA)

which takes into consideration the query time targets to adjust and rebalance the

processing infrastructure and thus providing right-time guarantees. When the current

deployment is unable to deliver the time targets, it adds more processing nodes and

redistributes the data volumes among them. TEEPA continuously monitors the local

 Abstract

iv

query execution, the IO throughput and the data volume allocated to each processing

node, to determine if the system is able to satisfy the user specified time targets.

TEEPA was designed to handle heterogeneous nodes and thus it takes into

account their IO capabilities when performing the necessary data rebalancing tasks. The

data volume allocated to each node is adjusted as a function of the whole data load

(total number of tuples), the tuple size and the node’ sequential scan throughput, with

larger data volumes allocated to faster processing nodes. The node allocation (selection

and integration of newer nodes) and data rebalancing tasks are continuously executed

until the time targets can be assured.

There is an increasing demand for data analysis over near real-time data, with

low latency and minimum freshness, which requires data to be loaded more frequently

or loaded in a row-by-row fashion. However, traditionally DWs are periodically

refreshed in batches, to reduce IO loading costs and costs related to the refreshing

indexes and pre-computed aggregation data structures. Main memory DBMS eliminate

IO costs and thus can handle higher data loading frequencies. However, physical

memory is limited in size and cannot typically hold the whole tables and structures.

To provide freshness guarantees, the proposed architecture combines a parallel

ONE deployment with an in-memory star schema model holding recent data. The in-

memory part (Os) maintains the recently loaded data, to allow the execution of real-time

analyses. By using a star schema model in Os, existing DW applications can be easily

replaced and integrated with the architecture without the need to recreate the existing

ETL tasks. Data is loaded into the in-memory Os and remains there for real-time

processing while there is memory available, so that the most recent data is held in the

star schema. When the physical memory is exhausted, the data in Os stored in the star

schema model is moved to Od in the ONE data model.

From the user perspective and data presentation, the architecture offers a logical

star schema model view of the data, in order to provide easy integration with existing

applications and because the model has advantages in what concerns users

understanding and usability. A logical to physical layer manages data and processing

between the Os and Od parts, including the necessary query rewriting for querying the

data stored in each part, and merging of results.

 Abstract

v

Finally we present the mechanisms of the architecture that allow it to still

guarantee right-time execution in the presence of huge concurrent query loads. Modern

DWs also suffer from workload scalability limitations, with more and more queries (in

particular ad-hoc) being concurrently submitted. Larger parallel infrastructures can

reduce this limitation, but its scalability is constrained by the query-at-time execution

model of custom RDBMs, where each query is individually processed, competing for

resources (IO, CPU, memory,…) and accessing the common base data, without data

and processing sharing considerations.

We propose SPIN, a data and processing sharing model that delivers predictable

execution times for concurrent queries and overcomes the memory and scalability

limitations of existing approaches. SPIN views the ONE relation in a node, as a logical

circular relation, i.e. a relation that is constantly scanned in a circular fashion. When the

end is reached, it continues scanning from the beginning, while there are queries

running. Each query processes all the required tuples of relation ONE, but the scanning

and the query processing does not start from the same first physical row. As the relation

is read in a circular fashion, the first logical row is the one that already is cached in

memory. The remaining tuples of the query are processed as they are being read from

storage until the first logical row is reached. Data is read from storage and placed into

an in–memory pipeline to be shared by all running concurrent queries.

IO reading cost is constant and is shared between running queries. Therefore, the

submission of additional queries does not incur in additional IO costs and joins

operations. The execution time of concurrent queries is influenced by the number and

complexity of the query constraints (filtering) and the cost of aggregations.

To provide massive workload scalability, it shares data and processing among

queries, by combining the running queries in logical query branches for filtering clauses

and by extensive reuse of common computations and aggregation operations. It

analyses the query predicates, and if there exists a logical branch in the current

workload processing tree with common predicates, it is registered in that logical branch,

and the corresponding query predicates are removed. Otherwise, if it does not exist a

logical branch that meets the query predicates, it is registered as a new logical branch of

the base data pipeline. This enhances processing sharing, and reduces the number of

filtering conditions. The architecture has a branch optimizer that is continuously

 Abstract

vi

adjusting the number and order of the existing branches, and reorganizing them as

required. Whenever possible, a query can merge and combine the results that are being

processed by other branches, thus simplifying and reducing the data volume that the

query branch has to filter and to process.

Since tuples flow using the same reading order, if data doesn’t change, the

evaluation of the branch predicates against every tuple that flows along the branch will

not change. The result of predicate evaluation will be the same as the last time it was

evaluated. To avoid subsequent evaluation of unchanged data tuples, we extended the

SPIN approach with a bitset processing approach. A branch bitset (bitmap) is built

according to the branch’ predicates, where each bit represents the boolean result of the

predicate evaluation (true/false) applied to a corresponding tuple index. Future

evaluations of the tuple can take advantage of the existence of this bitset, since the

selection operator that evaluates the predicate can be replaced by a fast lookup operator

to the corresponding position in the bitset to gather the result. Bitsets are small and

reside in memory in order to avoid introducing overhead at IO level. This is particularly

relevant for predicates with high evaluation costs.

Through the analysis of the data path (branches) of queries, and the required

computational costs of each branch, it is possible to determine high accurate estimations

of query execution times. Therefore, predictable execution times can be given for

massive workload scalability.

Tighter right-time guarantees can be provided by extending the parallel

infrastructure, and redistributing data among processing nodes, but also by

redistributing queries, query processing and data branches between nodes holding

replicated fragments. This is achieved by using two distinct approaches, a parallel fine-

tuned fragment level processing, named CARROUSEL, and an early-end query

processing mechanism.

CARROUSEL is a flexible fragment processor that uses idle nodes, or nodes

currently running less time-stricter queries, to process some of the fragments required

by time-strict queries, on behalf of the fragment node’s owner. By reducing the data

volume to be processed by a node, it can provide faster execution times. Alternatively,

it may distribute some logical data branches among nodes with replicated fragments,

 Abstract

vii

and thus reduce query processing. This is only possible with nodes having replicated

data fragments.

The execution of a query ends when all tuples of the data fragments are

processed and the circular logical loop is completed. But as the system is continuously

spinning, reading and processing over and over the same data, it collects insightful

information regarding the data that is stored in each data fragment. For some logical

data branches, this can be relevant to reduce memory and computational usage by using

a postponed start (delaying the query execution until the first relevant fragment is

loaded) and early-end approaches (detaching the query pipeline when all the relevant

fragments for a query have been processed). This information is useful when the

architecture needs to perform a data rebalancing process, with the rebalanced data being

clustered according to logical branch predicates and stored as new data fragments.

ix

Resumo Alargado

Data Warehouses (DW) são ferramentas fundamentais no apoio ao processo de

tomada de decisão, que processam volumes de dados cada vez maiores, e que

normalmente são armazenados usando um modelo em estrela (star schema). Os

resultados das pesquisas e das análises devem estar disponíveis em tempo útil. No

entanto, a complexidade das pesquisas que são submetidas é cada vez mais exigente,

com padrões de pesquisa imprevisíveis (ad-hoc) e a execução simultânea de pesquisas

faz com que o tempo de execução seja imprevisível. A Fig. 1 ilustra os fatores de

imprevisibilidade que influenciam a capacidade de fornecer resultados em tempo útil.

Fig. 1 – Fatores que influenciam a capacidade de fornecer resultados em tempo útil

Mercados competitivos requerem que os resultados sejam disponibilizados em

tempo útil, para ajudar o processo de tomada de decisão. Não é apenas uma questão de

rapidez na obtenção dos resultados, mas de garantir que estes ficam atempadamente

Data Volume

(V)

Q
u

e
ry

(q
)

 Resumo Alargado

x

disponíveis para a tomada de decisão. Estratégias de pré-computação das pesquisas

podem ajudar na obtenção de resultados mais rápidos, no entanto a sua utilização é

limitada apenas a pesquisas com padrões conhecidos. As consultas com padrões de

pesquisa imprevisíveis (ad-hoc) são executadas sem quaisquer garantias de tempo de

execução.

Existem vários fatores que influenciam a capacidade da DW fornecer resultados

às pesquisas em tempo útil, como a seletividade da pesquisa, número de tabelas que

necessitam de ser relacionadas, os algoritmos de junção e o tamanho das tabelas, a

heterogeneidade e a capacidade da infraestrutura de processamento, incluindo a

velocidade de leitura de disco, e a memória disponível para a junção das tabelas. O

aumento do volume de dados e do número de pesquisas que estão em execução

simultânea, também influenciam a capacidade do sistema em fornecer tempos de

execução previsíveis.

Foram propostas diversas infraestruturas de processamento paralelo com

capacidade para lidar com o aumento do volume de dados, e melhorar o tempo de

execução das pesquisas, no entanto estas não permitem garantir a disponibilização

atempada dos resultados, particularmente das pesquisas ad-hoc. O tempo de execução

de pesquisas com padrões conhecidos pode ser otimizado através de um conjunto de

estratégias e mecanismos auxiliares, tais como, a utilização de vistas de materializadas e

índices. No entanto, para consultas ad-hoc, tais mecanismos não são uma solução. A

imprevisibilidade do padrão de pesquisas origina tempos de execução imprevisíveis,

que podem ser incompatíveis com os requisitos de negócio.

Em muitos negócios, o crescente volume de dados condiciona ainda mais a

capacidade da infraestrutura de processamento de fornecer resultados em tempo útil.

Como consequência, os departamentos de TI têm a necessidade de atualizar, com

frequência, a infraestrutura de processamento, na expectativa que esta consiga processar

atempadamente as pesquisas, mas sem garantia de que o consiga. Não existe um

método concreto que permita definir os requisitos mínimos de hardware que permita a

execução atempada das pesquisas.

Esta dissertação propõe uma arquitetura de Data Warehouse escalável com

capacidade de lidar com grandes volumes de dados e de fornecer resultados em tempo

útil, mesmo quando um grande número de pesquisas estão a ser simultaneamente

 Resumo Alargado

xi

executadas. A capacidade de fornecer resultados em tempo útil não é apenas uma

questão de desempenho, mas também uma questão de ser capaz de retornar

atempadamente os resultados às pesquisas, quando esperado, de acordo com a natureza

da análise e as decisões de negócios.

A complexidade da execução de uma pesquisa é influenciada por vários fatores,

tais como a seletividade da pesquisa, o tamanho das tabelas, o número de junções e os

algoritmos de junção. O volume de dados e memória disponível influenciam tanto a

ordem de junção como o algoritmo de junção utilizado, resultando em custos de

execução imprevisíveis. A necessidade de juntar as tabelas de dimensão com a tabela de

factos advém do modelo em estrela (star schema). O volume de dados é outro fator de

imprevisibilidade, não sendo possível determinar com precisão o impacto do aumento

do volume de dados no tempo de execução das pesquisas.

Fig. 2 – Variação do tempo de execução com o aumento (2x) do volume de dados

A Fig. 2, extraída da secção experimental, mostra a estimativa do tempo de

execução (a vermelho) e o tempo real (a azul) para a execução de um conjunto de

pesquisas da benchmark do TPC-H, quando o volume de dados (neste caso 5GB, fator

de escala SF=5) aumenta para o dobro (10GB, fator de escala SF=10).

Para lidar com os fatores de imprevisibilidade relacionados com a junção de

tabelas, propusemos o modelo de dados desnormalizado, chamado ONE. Neste modelo,

os dados da tabela de factos, assim como os correspondentes dados das tabelas de

dimensão, são fisicamente guardados numa única tabela desnormalizada, como

ilustrado na Fig. 3, contendo todos os atributos das tabelas, exceto as chaves

 Resumo Alargado

xii

estrangeiras da tabela de factos e chaves artificiais das tabelas de dimensão. O modelo

de dados ONE requer mais espaço para guardar os dados, no entanto o modelo de

processamento é mais simples e oferece tempos de execução previsíveis.

Fig. 3 – O modelo em estrela vs o modelo ONE

No modelo de dados ONE, a tabela desnormalizada pode ser particionada em

fragmentos de dados mais pequenos e distribuídos, sem overheads, pelos nós da

infraestrutura de processamento paralelo. ONE possibilita uma escalabilidade quase

ilimitada, uma vez que a totalidade dos dados, dos factos e das dimensões (e não apenas

da tabela de factos), é linearmente dividida pelos nós da infraestrutura de

processamento (com η nós homogéneos, cada nó terá 1/η dos dados). A Fig. 4 ilustra o

particionamento e distribuição dos fragmentos do modelo de dados ONE numa

infraestrutura de processamento paralelo.

Fig. 4 – Particionamento e distribuição dos fragmentos do modelo ONE pelos nós

Ao garantir uma distribuição linear de todos os dados, e não apenas os dados da

tabela de factos, o tempo de execução das pesquisas é melhorado proporcionalmente ao

volume de dados existente em cada nó. Além disso, e porque os dados estão

desnormalizados, o processamento das pesquisas é bastante simplificado e previsível,

pois fica reduzido às operações de filtragem e de agregação dos dados, o que reduz os

requisitos da infraestrutura de processamento.

Por norma, quando uma pesquisa é submetida, não existe uma noção clara de

quanto tempo irá demorar e se o resultado será obtido em tempo útil, por exemplo antes

da tomada de decisão. Definimos o conceito de execução em tempo útil (right-time)

como a capacidade de executar pesquisas de modo que os resultados estejam

SALES
Fact table

Customer
Dimension

Product
Dimension

Store
Dimension

Time
Dimension

SALES (de-normalized)

SALES
(de-normalized)

SALES
(de-normalized)

node 1 node 2

SALES
(de-normalized)

node n

 Resumo Alargado

xiii

disponíveis antes de um determinado objetivo temporal (execução atempada). O

objetivo não é obter execuções mais rápidas, mas sim garantir que os resultados estarão

disponíveis quando esperado. São propostos mecanismos que permitem fornecer

previsibilidade de tempo de execução de pesquisas e garantias de execução atempada

das que tenham objetivos temporais.

Para pesquisas que tenham objetivos temporais inferiores ao oferecido pela atual

infraestrutura de processamento, propusemos um modelo de processamento chamado

TEEPA (Timely Execution with Elastic Parallel Architecture), que toma em

consideração os objetivos temporais das pesquisas para ajustar e rebalancear a

infraestrutura de processamento até que estes sejam atingidos. Quando a infraestrutura

atual não consegue executar atempadamente as pesquisas, são adicionados novos nós de

processamento e o volume de dados é posteriormente redistribuído entre eles. TEEPA

monitora continuamente a execução da pesquisa, o volume de dados alocado em cada

nó, e a taxa de transferência IO, para determinar se as pesquisas são executadas

atempadamente.

Para nós de processamento heterogéneos, TEEPA toma em consideração as

capacidades de IO de cada nó para determinar quantos nós adicionais são necessários e

qual a redistribuição de dados. O volume de dados alocado em cada nó é ajustado em

função do volume total (número total de registos), do tamanho do registo e da taxa de

transferência de cada nó. Deste modo, a nós mais rápidos são atribuídos maiores

volumes de dados. O processo de seleção e integração de novos nós e posterior

reequilíbrio dos dados é executado até que os objetivos temporais sejam atingidos.

Por outro lado, a necessidade de analisar dados obtidos quase em tempo real,

com mínima latência e frescura (freshness), é cada vez maior, o que requer que os

dados sejam carregados mais frequentemente, à medida que são registados. Tipicamente

as DW são refrescadas em batch, de modo a reduzir os custos de carregamento e os

custos relacionados com o refrescamento de estruturas relacionadas, como índices e

vistas materializadas. Sistemas de base de dados em memória minimizam estes custos, e

possibilitam que os dados sejam carregados mais frequentemente. No entanto, a

memória é finita e insuficiente para conter a totalidade dos dados.

De modo a oferecer latência mínima, os dados são divididos em duas partes

distintas: os dados antigos são guardados num modelo de dados ONE, ao qual

 Resumo Alargado

xiv

chamámos Od, e os dados mais recentes são guardados em memória num modelo,

designado de Os. Os dados podem ser carregados com maior frequência para Os,

reduzindo a sua latência, e são mantidos aí enquanto existir memória disponível.

Quando necessário, por exemplo para libertar memória e permitir a inserção de novos

dados, os dados mais antigos existentes em Os são movidos para Od, como ilustrado na

Fig. 5.

A existência deste modelo híbrido, composto por Od e Os, permite que as DW

existentes, que utilizam o modelo em estrela, possam ser substituídas por este modelo

com mínimo impacto ao nível dos processos de ETL.

Fig. 5 – Fluxo dos dados entre Od e Os

Na perspetiva do utilizador e das aplicações, este modelo híbrido oferece uma

visão lógica dos dados num modelo em estrela, possibilitando uma fácil integração com

aplicações e processos de carregamento existentes, e oferecendo as vantagens do

modelo em estrela, nomeadamente ao nível de usabilidade e facilidade de utilização.

Uma camada de abstração gere a coerência de dados e processamento entre as duas

componentes (Os e Od), incluindo a reescrita das pesquisas, de modo a processar os

dados que se encontram em cada uma das componentes.

Nesta tese são também propostos mecanismos que oferecem garantias de

execução atempada de pesquisas, mesmo quando um grande número de pesquisas está a

ser processado simultaneamente. Infraestruturas paralelas podem minimizar esta

questão, no entanto a sua escalabilidade é constrangida pelo modelo de execução dos

sistemas de bases de dados relacionais, onde cada pesquisa é processada isoladamente e

SALES (de-normalized)

SALES
Store

Time

Customer

Product

F⋈D

New inserted data

Moved to

Os

Od

 Resumo Alargado

xv

competindo com as outras pelos recursos (IO, CPU, memória, …). É proposto um

modelo de processamento de pesquisas, chamado SPIN, que analisa as pesquisas

submetidas e, sempre que possível, partilha dados e processamento entre elas,

conseguindo assim oferecer tempos de execução previsíveis. SPIN utiliza o modelo de

dados ONE, mas considera a tabela como sendo circular (tabela lida continuamente de

uma forma circular). Enquanto existirem pesquisas a serem executadas, os dados são

lidos sequencialmente, e quando chega ao fim da tabela, recomeça a lê-los desde o

início. À medida que os dados são lidos, são colocados sequencialmente numa janela

deslizante em memória (base pipeline), para serem partilhados pelas várias pesquisas,

como ilustrado na Fig. 6. Cada pesquisa processa todos os registos da tabela, no entanto

a leitura e o processamento não começa no registo número 1, mas sim no primeiro

registo da janela deslizante (início lógico). Os restantes registos são processados à

medida que forem lidos e colocados na janela deslizante, até que o próximo registo a ser

processado seja o do início lógico, isto é, após um ciclo completo.

Fig. 6 – Modelo de leitura e partilha de dados pelas pesquisas

O custo da leitura dos dados é constante e partilhado por todas as pesquisas.

Deste modo, a submissão de novas pesquisas não introduz custos adicionais ao nível da

leitura de dados. O tempo de execução das pesquisas é influenciado pela complexidade

e número dos filtros (restrições) das pesquisas e pelo custo das agregações e ordenações

dos dados. SPIN partilha dados e processamento entre pesquisas, combinando filtros e

computações comuns a várias pesquisas num único fluxo (ramo) de processamento. Os

vários ramos (branches) são sequencialmente conectados, formando uma estrutura em

árvore que denominámos de WPtree (Workload Processing Tree), tendo como raiz o

base pipeline. Quando uma pesquisa é submetida, se existir um ramo de processamento

com predicados comuns aos da pesquisa, a pesquisa é encadeada como um novo ramo

desse ramo comum, e são removidos os respetivos predicados da pesquisa. Se não

existir um ramo com predicados comuns, a pesquisa é encadeada como um novo ramo

do base pipeline. Deste modo, reduz-se o volume de dados que está em memória para

 Resumo Alargado

xvi

processamento, bem como o custo de processamento dos predicados. A Fig. 7 ilustra

um exemplo de uma árvore de processamento.

Fig. 7 – Exemplo de uma árvore de processamento

A árvore de processamento é continuamente monitorizada, e quando necessário,

um optimizador reorganiza dinamicamente o número e a ordem dos ramos. Sempre que

possível, uma pesquisa é processada através da combinação dos resultados que estão a

ser processados por outros ramos, deste modo simplificando e reduzindo o volume de

dados que a pesquisa tem que processar.

Como os registos são lidos e processados pela mesma ordem, enquanto os dados

não forem alterados, o resultado da avaliação dos predicados de cada registo é o mesmo

que o da última vez que foi avaliado. Para evitar o custo da avaliação de registos

anteriormente avaliados, e que não foram alterados, é proposta uma extensão ao modelo

de processamento SPIN que utiliza uma abordagem de processamento baseada em

bitsets (estruturas similares aos índices bitmaps). Para cada ramo é criado um bitset com

o resultado da avaliação dos seus predicados, sendo o resultado de cada registo

guardado na correspondente posição do bitset. Após o bitset estar completo, a posterior

avaliação desses predicados pode ser substituída por uma simples verificação no bitset.

Os bitsets têm um tamanho reduzido e são guardados em memória para evitar a

introdução de custos adicionais ao nível de IO. Bitsets são particularmente relevantes

para predicados complexos e com elevado custo de processamento, sendo criados e

removidos dinamicamente de acordo com uma política de retenção, que toma em

consideração vários aspetos, tais como a memória disponível, cardinalidade, e o custo

da avaliação dos predicados.

Através da análise do conjunto sequencial de ramos de uma pesquisa (path), e

dos custos de processamento de cada ramo, é possível estimar, com elevada precisão, o

tempo de execução da pesquisa, mesmo quando existe um grande número de pesquisas

dsp=a

q1

dsy=2000

q2

q3

dsp=a

ag

ag

ag

ag merge

ag mergey≠2000;p≠a

 Resumo Alargado

xvii

a serem executadas simultaneamente. Para satisfazer pesquisas com objetivos temporais

mais exigentes, é proposto um mecanismo de processamento, denominado

CARROUSEL, que além de redistribuir e/ou replicar fragmentos dos dados pelos vários

nós de processamento, redistribui também o processamento das pesquisas e dos ramos

pelos nós. Tomando em consideração os bitsets existentes, é possível determinar quais

os fragmentos de dados que cada pesquisa necessita processar e deste modo reduzir o

custo de processamento através da ativação/desativação dinâmica dos ramos (consoante

os fragmentos que estão nesse momento em memória). É possível terminar

antecipadamente a execução de uma pesquisa, antes do término do ciclo.

CARROUSEL é um processador flexível de fragmentos que utiliza nós inativos,

ou nós que estão a executar pesquisas com objetivos temporais menos exigentes, para

processar em paralelo alguns dos fragmentos de dados requeridos por pesquisas com

objetivos temporais mais exigentes, como ilustrado na Fig. 8. Ao reduzir-se o volume

de dados que é processado por cada nó, consegue-se tempos de execução mais rápidos.

Alternativamente, alguns dos ramos de processamentos podem ser redistribuídos por

nós com fragmentos replicados.

Fig. 8 – CARROUSEL - processamento de fragmentos

A execução da pesquisa termina quando todos os registos foram processados.

No entanto, como os dados estão continuamente a ser lidos e à medida que são

processados é recolhida informação relevante sobre os dados que existem em cada

fragmento. Esta informação é relevante para decidir quais os fragmentos e os ramos a

processar que devem ser redistribuídos pelos nós, por forma a reduzir custos de

processamento e tempos de execução.

SKIP

DR3
DR2

1

7

1
0

1

7

1
0

1

7

1
0

DR1

Node 1 Node 2 Node 3

Parallel Nodes

xix

Acknowledgement

First, I would like to thank to Professor Pedro Furtado for his advice. During the

last years, he continuously encouraged me and was always ready to discuss directions

and objectives. His critical comments and observations helped me to keep moving

forward with this work.

I gratefully acknowledge the funding sources that made my Ph.D. work possible.

I was partially funded by the Portuguese Foundation for Science and Technology

(SFRH/BD/49892/2009) and the by IPC-ISEC (Polytechnic Institute of Coimbra -

Coimbra Institute of Engineering).

Finally, I would like to dedicate this thesis to my wife Renata, who always kept

motivating and supporting me, and to my sons Diogo and Luis. I thank them for their

love and patient, which were indispensable.

Thank you all.

xxi

Publications

 “Data Warehouse Processing Scale-up for Massive Concurrent Queries with

SPIN”, João Pedro Costa & Pedro Furtado, in TLDKS Journal, Transactions on Large-

Scale Data- and Knowledge-Centered Systems, Springer 2015, ISBN 978-3-662-46334-

5.

 “Improving the Processing of DW Star-Queries under Concurrent Query

Workloads”, João Pedro Costa & Pedro Furtado, In Proceedings of the 16th

International Conference on Data Warehousing and Knowledge Discovery - DaWaK

2014, Munich, Germany. Springer 2014, ISBN 978-3-319-10159-0

 “SPIN: Concurrent Workload Scaling over Data Warehouses”, João Pedro

Costa & Pedro Furtado, In Proceedings of the 15th International Conference on Data

Warehousing and Knowledge Discovery, DaWaK 2013. Prague, Czech Republic.

Springer 2013, ISBN 978-3-642-40130-5

 “Providing Timely Results with an Elastic Parallel DW”, João Pedro Costa,

Pedro Martins, José Cecilio & Pedro Furtado, In Proceedings of the 20th International

Conference on Foundations of Intelligent Systems, ISMIS’12, Macau, China. Springer,

ISBN 978-3-642-34623-1

“TEEPA: a Timely-aware Elastic Parallel Architecture”, João Pedro Costa,

Pedro Martins, José Cecilio & Pedro Furtado, In Proceedings of the 16th International

Database Engineering & Applications Symposium, IDEAS’12, Prague, Czech

Republic, 2012. ACM 2012, ISBN 978-1-4503-1234-9.

 “Overcoming the Scalability Limitations of Parallel Star Schema Data

Warehouses”, João Pedro Costa, José Cecílio, Pedro Martins & Pedro Furtado, In

Proceedings of the 12th International Conference on Algorithms and Architectures for

Parallel Processing, ICA3PP’12, Fukuoka, Japan. Springer, ISBN 978-3-642-33077-3

“A Predictable Storage Model for Scalable Parallel DW”, João Pedro Costa,

Pedro Martins, José Cecílio, & Pedro Furtado, In Fifteenth International Database

 Publications

xxii

Engineering and Applications Symposium (IDEAS 2011), Lisbon, Portugal. ACM

2011, ISBN 978-1-4503-0627-0

“ONE: a Predictable and Scalable DW Model”, João Pedro Costa, José Cecílio,

Pedro Martins & Pedro Furtado, In Proceedings of the 13th International Conference on

Data Warehousing and Knowledge Discovery, DaWaK’11, Toulouse, France. Springer

2011, ISBN 978-3-642-23543-6

 “Blending OLAP Processing with Real-Time Data Streams”, João Pedro Costa,

José Cecílio, Pedro Martins & Pedro Furtado, In the 16th International Conference

Database Systems for Advanced Applications, DASFAA 2011, Hong Kong, China,

April 22-25, 2011. Springer 2011, ISBN 978-3-642-20151-6

“StreamNetFlux: Birth of Transparent Integrated CEP-DBs”, João Pedro Costa,

Pedro Martins, José Cecílio & Pedro Furtado, in proceedings of the Fourth ACM

International Conference on Distributed Event-Based Systems, DEBS 2010,

Cambridge, United Kingdom, July 12-15, 2010. ACM 2010, ISBN 978-1-60558-927-5

 “Towards a QoS-aware DBMS”, João Pedro Costa & Pedro Furtado, in

proceedings of the IEEE 24th International Conference on Data Engineering

Workshops, the 3rd International Workshop on Self-Managing Database Systems

(SMDB), Cancun, México. IEEE Computer Society 2008

xxiii

Table of Contents

Abstract -- i

Resumo Alargado --- ix

Acknowledgement --- xix

Publications -- xxi

Table of Contents -- xxiii

List of Figures --- xxvii

List of Tables --- xxxi

List of Acronyms ---xxxiii

1 Introduction --- 1

1.1 Problem Statement and Research Goals --- 2

1.2 Dissertation Contributions --- 5

1.3 Organization of the Dissertation -- 7

2 Background and Related Work --- 9

2.1 Data Warehouse Background -- 9

2.1.1 Data Warehouse models --- 10

2.1.2 Typical aggregation queries --- 11

2.2 Query processing -- 12

2.2.1 Join processing -- 13

2.2.2 Mechanisms for improving query performance --- 14

2.3 De-normalization and decomposition --- 15

2.4 Data sharing and Pipeline Processing --- 17

2.5 Parallel DW, Data Partitioning and Placement -- 19

2.6 Predictable execution time --- 24

3 A Timely and Massively Scalable DW --- 27

3.1 Providing predictable execution -- 28

3.2 Mechanisms for Providing Unlimited Scalability --- 29

3.3 Mechanisms for Providing Right-time --- 32

3.4 Providing Freshness guarantees -- 34

3.5 Handling massive concurrent queries (query workload) ----------------------------------- 35

3.6 Performance and auxiliary data structures -- 39

3.7 Limitations of the proposed mechanisms -- 39

3.8 Chapter Summary --- 40

4 A Scalable and Predictable Data Model -- 41

4.1 Unpredictability factors --- 42

4.2 The ONE Data Model --- 43

4.3 Handling scalable data volumes -- 46

4.4 Providing Freshness -- 46

 Table of Contents

xxiv

4.5 ONE Query Processing --- 48

4.6 Changes to the ETL process --- 50

4.7 Storage size requirements -- 51

4.8 Partial de-normalization -- 53

4.8.1 Partial de-normalization of larger dimension tables -- 53

4.8.2 Workload-driven de-normalization -- 56

4.9 Chapter Summary --- 58

5 Providing Right-time with a Elastic Parallel Architecture ------------------------------ 59

5.1 Introduction -- 60

5.2 Speeding up the ONE data model – ONE-P --- 61

5.3 TEEPA - Timely Execution with an Elastic Parallel Architecture -------------------------- 64

5.3.1 TEEPA Manager --- 68

5.3.2 Node Processing Service (TEEPA - NS) -- 71

5.4 Logical to Physical Translator -- 72

5.5 Data Allocation to Heterogeneous Nodes -- 74

5.6 Detection of node unbalancing and overloading --- 75

5.6.1 Resolving overloads by rebalancing data among nodes --- 76

5.6.2 Resolving overload by allocation of additional nodes -- 77

5.7 Chapter Summary --- 79

6 SPIN: Concurrent Workload Scaling over Data Warehouses -------------------------- 81

6.1 SPIN Processing Model -- 82

6.2 SPIN query handling -- 84

6.3 SPIN operators and data processing pipelines -- 85

6.4 Query processing path --- 87

6.5 Building the Workload Processing Tree --- 89

6.6 Reorganization of the workload processing tree --- 93

6.7 Handling data updates and deletes -- 95

6.8 SPIN Prototype --- 96

6.8.1 The data access layer -- 97

6.8.2 The query handler layer -- 98

6.8.3 The SPIN processing layer -- 99

6.9 Chapter Summary --- 99

7 Providing Right-Time Guarantees to Scalable Concurrent Workloads ------------ 101

7.1 SPIN predicate evaluation overload --- 101

7.2 The bitset branch processing approach --- 103

7.2.1 Creation of Bitsets -- 105

7.2.2 Bitset lookup operators --- 106

7.2.3 Mixed branch processing: branches with and without bitsets ----------------------------------- 107

7.2.4 Merging bitsets along the query logical path --- 108

7.2.5 Pushing forward bitsets to the data reader --- 109

7.2.6 In-Memory Bitmap Management and Retention -- 110

7.3 Optimizing the processing of data fragments --- 112

7.4 Parallel Processing - CARROUSEL --- 116

7.4.1 Managing fragment metadata -- 117

7.4.2 Balancing Data and Query processing among nodes --- 119

 Table of Contents

xxv

7.4.3 Rebalancing processing data load --- 120

7.4.4 Rebalancing processing load -- 122

7.5 Fragment level data reorganization -- 123

7.6 Chapter Summary --- 125

8 Experimental Evaluation --- 127

8.1 Experimental Setup and benchmarks --- 128

8.1.1 Benchmark --- 128

8.1.2 Data Schemas-- 129

8.1.3 Query workload --- 130

8.1.4 Processing Infrastructure --- 131

8.1.5 DBMS engines --- 131

8.2 Storage requirements of the ONE data model -- 132

8.2.1 Storage overheads of the star schema model -- 132

8.2.2 Storage size in each node of a parallel infrastructure -- 133

8.3 Evaluation of Execution Time of ONE -- 135

8.3.1 Predictable performance with scalable data volumes-- 135

8.3.2 Execution Time (single node with Oracle) --- 138

8.3.3 Execution time variability -- 140

8.4 Evaluation of ONE-P -- 141

8.4.1 Execution time (in each node) -- 141

8.4.2 Speedup with larger processing infrastructures --- 143

8.4.3 Impact of query selectivity in performance --- 144

8.4.4 Inter-node variance of query execution time --- 144

8.4.5 Cost of exchanging partial results -- 145

8.5 TEEPA Right-Time Evaluation -- 147

8.6 SPIN Evaluation -- 150

8.6.1 Influence of number of queries in query performance -- 150

8.6.2 Influence of number of queries in Throughput --- 152

8.6.3 Influence of the data volume in throughput -- 152

8.6.4 Influence of the workload query pattern in query performance -------------------------------- 154

8.6.5 Evaluation of SPIN with bitset processing --- 155

8.7 Chapter Summary --- 158

9 Conclusions and Future Work --- 159

9.1 Conclusions --- 159

9.2 Future Work -- 161

References --- 163

Appendix A – TPC-H Queries -- 173

xxvii

List of Figures

Fig. 1 – Fatores que influenciam a capacidade de fornecer resultados em tempo útil -------------------------- ix

Fig. 4 – Particionamento e distribuição dos fragmentos do modelo ONE pelos nós ---------------------------- xii

Fig. 5 – Fluxo dos dados entre Od e Os -- xiv

Fig. 6 – Modelo de leitura e partilha de dados pelas pesquisas -- xv

Fig. 7 – Exemplo de uma árvore de processamento -- xvi

Fig. 8 – CARROUSEL - processamento de fragmentos -- xvii

Fig. 2.1 – The Data Warehouse environment -- 10

Fig. 2.2 – An example of a sales star schema model --- 11

Fig. 2.3 – Template of typical aggregation query --- 12

Fig. 2.4 – Example execution plan -- 12

Fig. 2.5 – Parallel approaches a) shared-memory b) shared-disk c) shared-nothing ---------------------------- 20

Fig. 2.6 – A parallel deployment of a star schema with replicated dimensions ---------------------------------- 20

Fig. 2.7 – Query processing in shared-nothing -- 21

Fig. 3.1 – Unpredictability factors that influence the ability to provide timely results ------------------------- 27

Fig. 3.3 – Execution time for a 2x increase in data volume -- 30

Fig. 3.4 – ONE fragments distributed among nodes --- 30

Fig. 3.5 – TEEPA framework -- 33

Fig. 3.7 – In-memory data buffering and ONE data flushing --- 35

Fig. 3.8 – SPIN Data processing model --- 36

Fig. 3.10 – Branch processing -- 37

Fig. 3.11 – A high level integration view of the proposed mechanisms -- 40

Fig. 4.1 – A typical star schema and an example of query execution plan --- 42

Fig. 4.2 – Execution time of different TPC-H queries -- 43

Fig. 4.4 – Query execution plan a) star schema b) ONE --- 45

Fig. 4.5 – Execution time of different TPC-H queries with the ONE data model --------------------------------- 45

Fig. 4.6 – ONE fragments distribution among nodes -- 46

Fig. 4.7 – The hybrid Os and Od data model -- 47

Fig. 4.9 – Decomposition of query q -- 49

Fig. 4.10 – Data size distribution of the TPC-H schema --- 52

Fig. 4.11 – Partial de-normalized schema --- 54

Fig. 4.12 – Example of a set of Ap with k=4 in a 2-dimensional data space --- 57

Fig. 5.1 – ONE fragments distribution among nodes -- 62

Fig. 5.2 – Speedup comparison between TPCH-P and ONE-P --- 62

 List of Figures

xxviii

Fig. 5.3 – Data allocation size: a) evenly partitioned b) by nodes’ performance --------------------------------- 64

Fig. 5.4 – The timely execution triangle --- 64

Fig. 5.5 – TEEPA over an elastic set of heterogeneous nodes --- 65

Fig. 5.6 – TEEPA framework -- 66

Fig. 5.8 – TEEPA modules in detail -- 68

Fig. 5.9 – Syntax of the time target clause added to a SELECT statement --- 69

Fig. 5.10 – Syntax of the time target at session level -- 69

Fig. 5.11 – Additional node added -- 71

Fig. 5.12 – Storage space scope --- 73

Fig. 5.13 – a) ONE-P partitioning and placement b) ONE-P Query processing ----------------------------------- 74

Fig. 5.14 – Rebalancing the data volume when a new node is added --- 76

Fig. 6.1 – SPIN base data processing model -- 82

Fig. 6.2 – SPIN Fragment Metadata --- 83

Fig. 6.3 – SPIN sequential data reading loop --- 84

Fig. 6.4 – SPIN Data pipeline with operators --- 86

Fig. 6.5 – SPIN Logical Branch Processing Model --- 88

Fig. 6.6 – SPIN deployment of query-specific pipelines --- 89

Fig. 6.7 – Aggregation Branch processing --- 92

Fig. 6.8 – Number of times tuples are evaluated --- 93

Fig. 6.9 – WPTree reorganization with group removal (1) -- 93

Fig. 6.10 – WPTree reorganization with group removal (2) -- 94

Fig. 6.11 – WPTree reorganization with group removal (3) -- 94

Fig. 6.12 – SPIN - handling deletes -- 95

Fig. 6.13 – SPIN - Handling updates -- 96

Fig. 6.14 – SPIN prototype diagram - release 1.6.3 (June2013) --- 97

Fig. 7.1 – Increasing processing costs for large WPtree --- 102

Fig. 7.2 – An example of a WPtree -- 104

Fig. 7.3 – Online predicate bitmap indexes --- 104

Fig. 7.4 – Predicate evaluation and building the bitset -- 105

Fig. 7.5 – A branch processing layout using bitsets -- 106

Fig. 7.6 – Selection operators a) NOT b) NOR c) NOR -- 107

Fig. 7.7 – Branch processing with a bitwise AND of the logical path branches --------------------------------- 108

Fig. 7.8 – Data Reader Bitset computed as a bitwise OR of the branches bitsets ------------------------------ 109

Fig. 7.9 – Early-end execution and query lifetime -- 113

Fig. 7.10 – Data reader fragment skipping -- 113

Fig. 7.11 – Carrousel (parallel processing) -- 116

Fig. 7.12 – Data readers at different positions a) single node b) multiple nodes ------------------------------ 117

Fig. 7.13 – A parallel deployment with inactive fragments in each nodes that can be skipped ------------ 119

 List of Figures

xxix

Fig. 7.14 – Distribute Qr fragments and run WPtree in parallel -- 121

Fig. 7.15 – Replicate a subset of q fragments among nodes and run q in parallel ----------------------------- 122

Fig. 7.16 – Split WPtree branches among nodes -- 123

Fig. 8.1 – TPC-H benchmark schema --- 128

Fig. 8.2 – TPC-H storage size distribution --- 133

Fig. 8.3 – Storage size distribution with different numbers of processing nodes (TPCH-P)) ---------------- 134

Fig. 8.4 – Storage scalability of the schemas --- 135

Fig. 8.5 – TPCH execution times for large data volumes -- 136

Fig. 8.6 – ONE predictable execution time for larger data volumes --- 137

Fig. 8.7 – Error estimation in predicting the query execution time for higher data volumes --------------- 138

Fig. 8.8 – Average execution time for queries 1 .. 10 -- 138

Fig. 8.9 – Average execution time of ONE for varying SF for queries 1-10 (Oracle) --------------------------- 139

Fig. 8.10 – Execution time variability for varying SF --- 140

Fig. 8.11 – Data volume a) in each node b) total (sum each node) -- 141

Fig. 8.12 – Average time to process partial results (tn) in each node -- 142

Fig. 8.13 – Execution time to compute the partial results of Q1..10 -- 142

Fig. 8.14 – ONE-P and TPCH-P speedup --- 143

Fig. 8.15 – %time increase for Q5 with different selectivity --- 144

Fig. 8.16 – Q5 node query variability --- 145

Fig. 8.17 – Total exchange of the partial results (ttpr) for queries Q1..Q10 -------------------------------------- 146

Fig. 8.18 – Partial execution time of TPCH per query in each node -- 147

Fig. 8.20 – TEEPA partial execution times (10-node setup) -- 148

Fig. 8.21 – TEEPA partial execution times (30-node setup) -- 149

Fig. 8.22 – Average execution time for varying query loads (lower is better) ---------------------------------- 150

Fig. 8.23 – Overhead per query in the average execution time (lower is better) ------------------------------ 151

Fig. 8.24 – Throughput for varying query loads (higher is better) -- 152

Fig. 8.25 – Throughput for varying query loads with a) SF =1 and b) SF =10 (higher is better) ------------- 153

Fig. 8.26 – Impact in throughput of a 10x increase in data volume (lower is better) ------------------------- 153

Fig. 8.27 – Influence of the query workload pattern in average execution time ------------------------------- 154

Fig. 8.28 – Total predicate evaluation time -- 155

Fig. 8.29 – Number of tuple evaluations -- 156

Fig. 8.30 – Average execution time --- 157

xxxi

List of Tables

Table 4.1 – Storage space required by each schema organization --- 53

Table 8.1 – Number of rows and estimate size of the TPC-H tables --- 129

Table 8.2 – Relations needed by each query --- 130

Table 8.3 – Storage space required by each schema organization --- 132

Table 8.4 – Storage space required by each schema organization for SF100 (in GB) ------------------------- 133

xxxiii

List of Acronyms

BI Business Intelligence

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DB Database

DBA Database Administrator

DBMS Database Management System

DFS Distributed File System

ETL Extract, Transform, Load

FIFO First In First Out

FK Foreign Key

GB Gigabyte

I/O Input/output

I/O Input/output

ISO International Organization for Standardization

IT Information Technology

JDBC Java Database Connectivity

JDK Java Development Kit

LOC Lines of Code

OLAP On-Line Analytical Processing

QoS Quality of Service

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RDBMS Relational Database Management System

RISC Reduced Instruction Set Computer

RLE Run-Length Encoding

SQL Structured Query Language

SSD Solid-State Drive

1

Chapter 1

Introduction

Data Warehouses (DW) are large repositories of historical business data

especially organized for reporting and analysis, and to gather insightful knowledge from

the past. For that reason, DWs are becoming a fundamental tool for the decision-

making process in every modern organization, especially for data-intensive

organizations.

Data volumes produced by data intensive industries in competitive markets,

such as telecom and smart-grids, stress the limits of DW systems. DBAs of such

systems have to maintain a constant supervision of the query load, query patterns and

selectivity to ensure performance. Moreover, in some industries it is also common for

the results of business analysis to be feedback as inputs of operational business decision

processes.

The ability to provide timely results is not just a performance issue (high

throughout), but also a matter of returning query results when expected for the business

decision-making process. Queries may have different time requirements according to

the nature of the analysis and the business decisions. For instance, some decisions may

require that the results of recent data be available in a small time frame (seconds or

couple of minutes), while more strategic data analyses that span a larger temporal scope

and data volume (e.g. historical data used as baseline data) may have wider time

requirements (e.g. hours or days). But all are relevant, in their own way, to the business

processes. The ability to deliver timely results to queries is gaining increasing interest.

Pre-computation strategies can provide faster results, but their usability is limited to the

Chapter 1 Introduction

2

well-know (planned) queries and need to be periodically refreshed, typically after each

periodic load.

On the other hand, there is also an increasing need for some data analysis to be

performed over low-latency data (near real-time data) in order to more rapidly react to

business and market changes. The traditional overnight periodic data load is

unacceptable to some kinds of systems, like operational BI, which require more

frequent data loads, preferably near real-time. This also constrains the ability of DW

systems to provide timely results, even for planned queries, because of all the refreshing

costs.

Parallel architectures are used to handle such increasing data volumes and to

provide improved performance, by dividing both data and processing among nodes.

However, they introduce several issues related to data placement, network bandwidth

and parallel query processing that limits the scalability of such architectures. Moreover,

they only focus in improving query performance and not in providing timely query

results. Dimensioning the parallel architecture’ size - the number of processing nodes -

to be able to deliver timely query results is a relevant issue that is not satisfactorily

answered.

1.1 Problem Statement and Research Goals

Most Data Warehouses are organized following a star schema model, commonly

accepted for the last decades as the de facto data model in Relational Database

Management Systems (RDBMS) for those applications. In this model, business

performance metrics (facts) are stored in a central table (the fact table) and all relevant

business perspective attributes (dimension data) are organized into a set of surrounding

tables (dimension tables). Fact tables also store a set of foreign keys that reference the

dimensions, and usually contain a large number of tuples. This organization of the star

schema avoids redundancy. This is important, since fact tables represent a large

proportion of the overall star schema size. On the other hand, dimension tables, which

are usually significantly smaller in size but not in width, are stored as de-normalized

relations for performance purposes [Kimball et al. 2008].

Since DWs store historical business data, they are continuously growing in size,

particularly the central fact tables that store the data measures being produced by

Chapter 1 Introduction

3

operational systems, stressing the limits of the RDBMS, and thus resulting in increased

query execution times.

Parallel architectures are used to handle such increase in data volume and

provide improved performance, by dividing data and processing among nodes, usually

following a shared-nothing organization. One possibility is for fact tables to be

partitioned among nodes and the surrounding dimensions replicated, so that each node

can independently compute partial results. However, parallel system scalability is

constrained, not only by the network costs related to the exchange of temporary results

between nodes, but also by the star schema model. As only the fact table is partitioned

among nodes and dimensions are replicated, when the size of dimension(s) is not small,

the fact that they are copied into nodes instead of partitioned may severely limit the

parallelization advantage. Therefore, adding more nodes to the parallel architecture will

result in limited performance improvement, and thus in sub-linear speedup.

Modern competitive markets also require results to be available in a timely

fashion for helping the decision-taking process. It is not just a matter of delivering fast

results, but also of guaranteeing that they will be available before business-decisions are

made. While pre-computation strategies can help in providing faster results, their

usability is limited to the well-know (planned) queries. In contrast, ad-hoc queries are

executed without any time execution guarantees. Moreover, different levels of data

processing analysis are concurrently being carried out with different aggregation levels

and time-bound constraints.

In spite of all the time and effort to come up with a parallel infrastructure to

handle such increase in data volume and to improve query execution time, it may be

insufficient to provide timely query execution, particularly for ad-hoc queries. The

performance of well-known queries can be tuned through a set of auxiliary strategies

and mechanisms, such as materialized views and index tuning. However, for ad-hoc

queries, such mechanisms are not an alternative solution. The query patterns

unpredictability result in unpredictable query execution times, which may be

incompatible with business requirements. Moreover, the query execution time is also

influenced by the query load that is being run simultaneously, each competing for

resources (IO, CPU, memory,...).

Chapter 1 Introduction

4

Given these issues, we formulate the aims of this dissertation as:

How to provide scalable, predictable and timely results for DW queries with

large data volumes and concurrent query workloads? How to dimension the

parallel architecture to provide timely execution even when large query loads are

being executed simultaneously? How to provide unlimited scalability for recent and

historical data?

To address the above-discussed issues, we had to investigate new approaches for

solving query execution time unpredictability and for providing timely results, and also

overcoming the scalability limitations related to the star schema model. In particular,

this research aimed to:

 Provide predictable execution times for all queries, both well-known

(planned) and ad-hoc queries

 Propose mechanisms to overcome the scalability limitations of

traditional parallel data warehouse architectures

 Propose an architecture that can handle unlimited data volume

scalability, and be deployed over an elastic set of heterogeneous

processing nodes

 Propose mechanisms that can provide the query execution with

different timely constraints (bounded time)

 Propose mechanisms that allow a massive number of queries to be ran

concurrently without significant performance degradation

Chapter 1 Introduction

5

1.2 Dissertation Contributions

This dissertation proposes a massively scalable parallel DW architecture that

uses an elastic set of processing nodes to provide predictable and timely results. The

main research contributions can be summarized as:

 To investigate how to deliver predictable execution time, particularly for

ad-hoc queries. The approach must be able to provide:

o predictable execution times for current and future data volumes.

o methods for providing and expressing temporal objectives;

 To investigate how to provide unlimited data scalability using a parallel

DW approach. The approach must be able to:

o provide improved scale-up capabilities

o handle huge volumes of data and be massively parallel

 To investigate how to support massive concurrency without performance

degradation and while guaranteeing target response time metrics.

 To investigate how to provide timely results under variable query

workloads. The approaches must be able to:

o handle variable query loads

o maximize and share the processing effort among concurrent queries

 To investigate how to manage the architecture on an elastic set of

heterogeneous nodes. The approaches must be able to provide:

o query and cost requirements

o methods to allocate data and work according to the processing nodes

characteristics.

Parts of this work are described in the following publications:

 “Data Warehouse Processing Scale-up for Massive Concurrent Queries

with SPIN”, João Pedro Costa & Pedro Furtado, in TLDKS Journal,

Transactions on Large-Scale Data- and Knowledge-Centered Systems,

Springer 2015, ISBN 978-3-662-46334-5.

 “Improving the Processing of DW Star-Queries under Concurrent Query

Workloads”, João Pedro Costa & Pedro Furtado, In Proceedings of the

16th International Conference on Data Warehousing and Knowledge

Discovery, DaWaK 2014, Munich, Germany. Springer, ISBN 978-3-319-

10159-0

Chapter 1 Introduction

6

 “SPIN: Concurrent Workload Scaling over Data Warehouses”, João

Pedro Costa & Pedro Furtado, In Proceedings of the 15th International

Conference on Data Warehousing and Knowledge Discovery, DaWaK

2013. Prague, Czech Republic. Springer 2013, ISBN 978-3-642-40130-5

 “Providing Timely Results with an Elastic Parallel DW”, João Pedro

Costa, Pedro Martins, José Cecilio, & Pedro Furtado, In Proceedings of

the 20th International Conference on Foundations of Intelligent Systems,

ISMIS’12, Macau, China. Springer, ISBN 978-3-642-34623-1

 “TEEPA: a Timely-aware Elastic Parallel Architecture”, João Pedro

Costa, Pedro Martins, José Cecilio, & Pedro Furtado, In Proceedings of

the 16th International Database Engineering & Applications Symposium,

IDEAS’12, Prague, Czech Republic. ACM 2012, ISBN 978-1-4503-1234-9.

 “Overcoming the Scalability Limitations of Parallel Star Schema Data

Warehouses”, João Pedro Costa, José Cecílio, Pedro Martins, & Pedro

Furtado, In Proceedings of the 12th International Conference on

Algorithms and Architectures for Parallel Processing, ICA3PP’12,

Fukuoka, Japan. Springer, ISBN 978-3-642-33077-3

 “A Predictable Storage Model for Scalable Parallel DW”, João Pedro

Costa, Pedro Martins, José Cecílio, & Pedro Furtado, In Fifteenth

International Database Engineering and Applications Symposium (IDEAS

2011), Lisbon, Portugal. ACM 2011, ISBN 978-1-4503-0627-0

 “ONE: a Predictable and Scalable DW Model”, João Pedro Costa, José

Cecílio, Pedro Martins, & Pedro Furtado, In Proceedings of the 13th

International Conference on Data Warehousing and Knowledge

Discovery, DaWaK’11, Toulouse, France. Springer, ISBN 978-3-642-

23543-6

Chapter 1 Introduction

7

1.3 Organization of the Dissertation

The remainder of this dissertation is divided into eight chapters:

Chapter Two: Background and Related Work. Initially we provide background

concerning costs of processing queries over parallel data warehouses (PDW), and the

influence of data volume and query workload on such costs. We also discuss the

scalability limitations of the star schema model, and its inability to efficiently scale-up

with larger data volumes.

The second part of the chapter examines related work concerning data and

processing models, parallel data warehouses architectures, time-related Quality of

Service approaches, and strategies for data processing sharing.

Chapter Three: A Timely and Massive Scalable DW. This chapter describes the

mechanisms of the scalable architecture proposal for providing timely results for

scalable data volumes, concurrent queries and near-real time requirements.

Chapter Four: A Scalable and Predictable Data Model. In this chapter, we

propose a de-normalized data model, called ONE. The physical de-normalized data

organization and simplified query processing approach provides predictable time

guarantees and unlimited data volume scalability.

The second part of the chapter proposes a method that adapts the data model

organization, and the data de-normalization level to best fit node characteristics. It also

discusses a logical to physical model view that performs the necessary query rewriting

and processing actions according to the data model organization.

Chapter Five: Providing Right-time with an Elastic Parallel Architecture. In this

chapter we describe an approach which uses an elastic set of heterogeneous nodes to

adapt the parallel infrastructure to handle dynamic amounts of data and query loads, and

guarantee tight time requirements. This chapter proposes different cost-based

approaches to selecting the node configuration that best fits the specified time and cost

requirements.

Chapter Six: SPIN: Concurrent Workload Scaling over Data Warehouses. In this

chapter, we propose the SPIN data processing model, which as opposed to the query-at-

Chapter 1 Introduction

8

a-time model, uses the data-at-time model. SPIN minimizes data IO costs by sharing

data reads among all running queries, and therefore handles massive concurrent queries

without significant performance degradation.

Chapter Seven: Providing Right-Time Guarantees to Scalable Concurrent

Workloads. In this chapter, we propose mechanisms that determine if the current SPIN

workload processing tree can provide a query’s right-time guarantees, which for large

data volumes it may result in data reading costs greater than the required right time, and

propose a parallel SPIN approach, called CARROUSEL, that orchestrates several SPIN

processing engines in parallel, to speedup query processing and to reduce query

execution time below the required time targets.

Chapter Eight: Experimental Evaluation. This chapter evaluates the proposed

mechanisms. It presents some experimental results that demonstrate the ability of the

proposed architecture to scale over large data volumes, to scale over high numbers of

concurrent queries and guarantee timings, even with massive data amounts.

Chapter Nine: Conclusions and Future Work. This chapter concludes this

dissertation by presenting a summary of the key contributions, and presents some final

considerations and finishes with a discussion of open aspects left for future work.

9

Chapter 2

Background and Related Work

In this work, we propose strategies to provide timely execution of DW queries

for scalable data volumes and under large concurrent query loads. This chapter starts by

presenting some background introduction to Data Warehouses (DW), including storage

models and query processing, and their influence in the execution times, which is

unpredictable, particularly for ad-hoc queries (non-planned queries).

In the following sections, we review related work on data de-normalization and

decomposition, and approaches in data sharing and pipeline processing.

In the next section we overview different parallel architectures, and discuss how

parallel query processing, the data volume, data partitioning and allocation issues

influence the query execution time. We discuss the scalability limitations of the star

schema model, and its inability to efficiently scale-up with larger data volumes. In the

last section we examine related works on providing predictable execution and strategies

for data processing sharing.

2.1 Data Warehouse Background

Data warehousing emerged in the nineties, aiming to support organizations in

decision-making process. Management demanded the ability to make business analyses

with the data gathered by operational systems. However, these systems were designed

for business operations purposes and were complex and not well suited for processing

business analyses.

Data Warehouses (DW) are large repositories that store large amounts of past

historical business data, structured and organized to deliver business analyses and thus

Chapter 2 Background and Related Work

10

support the decision making processes. Kimball [Kimball 1996] defines a Data

Warehouse as "… a copy of transaction data specifically structured for query and

analysis". Fig. 2.1 depicts the data warehousing environment.

Fig. 2.1 – The Data Warehouse environment (figure extracted from [Strohm 2011])

Data produced by operational systems, must be Extracted from operational and

external data sources an integrated into a common staging area for Transformation and

cleansing before being Loaded into the DW and made available for business analyses.

This process is commonly known as the ETL process. The ETL process can be complex

and resource demanding and therefore usually it is performed at given time intervals

(every day or hour) to batch processing the new data produced between loads.

2.1.1 Data Warehouse models

With the advent of Data Warehouses, two distinct data models were proposed to

store DW base data: the star schema model and the snowflake model.

The star schema model [Kimball 1996] organizes the base data, for instance the

sales data, in a star fashion schema. A central fact table contains the business metrics

(e.g. unit sold, unit price) and is surrounded by a set of dimension tables representing

the different business perspectives (e.g. by product, by customer, by store). Fig. 2.2

illustrates a typical sales star schema.

Chapter 2 Background and Related Work

11

Fig. 2.2 – An example of a sales star schema model

The fact table is highly normalized, containing a set of foreign keys that

reference the surrounding dimension tables, and stores the measure facts. The physical

division in normalized fact tables (with metrics) and de-normalized dimension tables

allows a trade-off between performance and storage space. It also offers a simple

business understanding of the model, composed by a set of metrics (facts) and attributes

for business analysis (dimensions). The central fact table is highly normalized in order

to minimize data redundancy and storage space. Usually, the fact table represents a

large percentage of the overall storage space. On the other hand, dimension tables are

highly de-normalized and represent a smaller fraction of the overall DW storage space.

The star schema model has becoming the de facto data model followed in most DW

deployments in relational database management systems (RDBMS), because of its

simplicity and ease of understanding by non-IT users.

The snowflake model is related to the star schema model, but normalizes (splits)

some of the dimension tables, particularly the wider dimensions, to reduce the level of

data redundancy.

2.1.2 Typical aggregation queries

The query workload of a DW is typically composed by star-join aggregation

queries, accessing the fact and dimension tables. Dimension attributes are used as

filtering conditions (WHERE clause) and as grouping attributes, and aggregation

functions are applied to fact attributes (measures). Each dimension table is joined with

the fact table using a primary to foreign key join. Fig. 2.3 illustrates such type of

queries, which typically returns a small number of rows as a result set.

Chapter 2 Background and Related Work

12

SELECT dim attributes, aggregation functions

FROM fact, set of dimension tables

WHERE join conditions

AND dim attribute conditions

GROUP BY dim attributes

Fig. 2.3 – Template of typical aggregation query

Since a DW stores historical business data and is periodically loaded with new

data gathered from operational systems, it is continuously growing in size, particularly

the central fact table that stores the data measures of new events produced by

operational systems. Due to its nature, a fact table is usually only subject to insert

operations, while the same doesn’t necessary happens to the dimension tables. Inserts

also occur, but at lower rates when compared with the fact table. Dimension tables are

also subject to update operations.

An overview of data warehousing is presented in [Chaudhuri & Dayal 1997;

Kimball et al. 2008] and a survey on logical and physical design issues of Data

Warehouses is presented in [Golfarelli & Rizzi 2009].

2.2 Query processing

For each query, the database system builds a query execution plan containing all

the necessary processing steps to produce the query results. This execution plan is

query-specific, and depends of several factors, such as the query predicates, the number

and size of the required tables, how they are joined and the join order, the table

selectivity and the access method used. Fig. 2.4 shows an example of an execution plan.

Fig. 2.4 – Example execution plan

⋈

σstore

store

⋈

σcustomer

customer

⋈

σtime

time

⋈

σsales

sales

σproduct

product

SALES
Fact table

Customer
Dimension

Product
Dimension

Store
Dimension

Time
Dimension

Chapter 2 Background and Related Work

13

The query execution time involves the cost of joining all the required relations

(fact and dimensions). For large relations this result in costly tasks and therefore in poor

query execution times. It is also hard to predict execution times since they are highly

influenced by each relation’s size, selectivity and number of involved relations. The

influence of these unpredictability factors is higher as the data volume increases.

2.2.1 Join processing

Over the past decades, significant effort has been made to develop efficient join

algorithms. Nested-loop and sort-merge [Blasgen & Eswaran 1977] are the two most

common ones that can be found in most databases engines. The former is used for small

relations and the latter used for large relations. The grace hash join [Kitsuregawa et al.

1983] and the hybrid hash join [Zeller & Gray 1990] algorithms apply a hash function

to relations to speed up the join process. The evaluation costs of the algorithms were

revisited in [Patel et al. 1994] and [Harris & Ramamohanarao 1996]. More recently

[Kim et al. 2009] revised the algorithms on modern multi-core CPUs.

DeWitt et al [DeWitt et al. 1984] compared the sort-merge, simple hash, grace

hash and hybrid hash join algorithms and concluded that hybrid hash has the lowest

cost. Graefe et al. [Graefe et al. 1994] concluded that both sort merge and hash join

should be available in any database system and the join algorithm to be used should be

chosen by a query optimizer based on the input data.

The G-Join algorithm [Graefe 2011] combines elements of the three traditional

join algorithms, acting like a merge join in the case of two sorted inputs and like hash

join in the case of two unsorted inputs, including taking advantage of different input

sizes.

Surveys of join algorithms appear in [Mishra & Eich 1992; Graefe 1993; Graefe

et al. 1994; Kim et al. 2009; Graefe 2011].

Analysis: The join processing cost is highly influenced by factors such as the

data inputs, the join order, and query selectivity. Since our goal is to provide predictable

query execution times to large data warehouses, we remove these unpredictability

factors by using a “no-join” approach, where all data attributes are stored in a single

relation.

Chapter 2 Background and Related Work

14

2.2.2 Mechanisms for improving query performance

The query execution time is also influenced by the access method used to gather

the relevant data, e.g. full sequential scan, indexes. The types of indexes available on

most databases engines are B-Tree index [Bayer & McCreight 1970; Comer 1979] and

Bitmap index [O’Neil & Quass 1997; Johnson 1999].

A B-Tree is a self balancing search tree that maintains attribute values in a

sorted order, together with a reference to its position in the table. However, since each

query frequently involves a different set of attributes, a separate index for nearly every

combination of attributes is required to deliver top performance to all the queries. As

the number of indices grows, the associated storage space requirements increase

exponentially with the number of attributes.

Bitmap indexes use each distinct value of the indexed attribute as a key, and

generate a bitmap containing as many bits as the number of records in the data set for

each key. For low-cardinality attributes, it requires less space and provides performance

advantage by performing bitwise logical operations on the bitmaps. An evaluation of

bitmap index is given in [Chan & Ioannidis 1998; O’Neil et al. 2007]. [Stockinger &

Wu 2006] review various bitmap index technologies, including bitmap encoding,

compression and binning, in data warehouse applications.

Bitmap join indexes [O’Neil & Graefe 1995] are very efficient materialized

structures for avoiding costly joins. A bitmap indicates which fact rows correspond to

each attribute value of a dimension table and represents a pre-computed result of a join

between the fact and a dimension table.

A materialized view [Roussopoulos 1998] physically stores (materializes) all the

rows of a view in storage system, to provide fast answers to queries that follow the view

pattern. It is particularly useful to frequent, well known and planned queries. After each

periodic load, the materialized results have to be refreshed in order to maintain data

consistency. The maintenance costs and the storage limitations restrict the number of

materialized views.

The problem of selecting the views to materialize in order to optimize the total

query response time under a disk-space constraint is studied in [Gupta 2000]. A more

flexible materialization strategy to reduce the storage space and view maintenance costs

http://en.wikipedia.org/wiki/Bitwise_operation

Chapter 2 Background and Related Work

15

is proposed in [Zhou et al. 2007], which selectively materializes only a subset of rows,

for example, the most frequently accessed rows. A survey on selection of views is

presented in [Mami & Bellahsene 2012].

[Abiteboul & Duschka 1998] show that the complexity of answering queries

using materialized views depends on whether views are assumed to store all the tuples

that satisfy the view definition, or only a subset of it. An experimental evaluation of an

automated selection of materialized views and indexes is presented in [Agrawal et al.

2000].

Although some queries submitted to a DW may be known in advance, and

therefore can be materialized, most queries are ad-hoc. Sampling [Acharya et al. 1999]

can provide fast approximate results to all aggregated queries. Sampling trades-off

precision for performance by employing the power offered by statistical methods to

reduce the data volume that has to be processed to compute an acceptable result.

However, the sampling size and the lack of data samples of some aggregation groups

limit the execution time and results precision. To overcome this issue, a minimal group

representation sampling is proposed in [Acharya et al. 2000] and a time-based stratified

sampling is proposed in [Costa & Furtado 2003]. [Jermaine et al. 2004] proposed an

online maintenance of very large random samples.

Analysis: DW deployments extensively use both indexes and materialized

views to provide faster execution times to some query patterns. But they do not provide

predictable execution times and the additional storage space and maintenance costs can

be very large. Although these structures can be combined with our proposals, we aim to

provide predictable performance by extensively promoting data and processing sharing

among queries. While the storage requirements of our “no-join” data model (called

ONE), is higher than the star schema model, these difference decreases when the

storage size of these auxiliaries structures is also accounted.

2.3 De-normalization and decomposition

Our proposed model (ONE), follows a de-normalized approach and physically

stores all the star schema data in a single relation, i.e. the fact table also contains the

related dimension attributes, while providing a conceptual star schema logical view.

Chapter 2 Background and Related Work

16

The first research works on schema de-normalization where proposed in the

context of universal relations [Fagin et al. 1982; Korth et al. 1984]. A methodology to

assess the de-normalization effects using relational algebra operations and query trees is

presented in [Sanders & Shin 2001].

The use of hierarchical de-normalization as a possibility to optimize the data

warehouse design is evaluated in [Zaker et al. 2008; Zaker et al. 2009]. A framework

for systematic database de-normalization is proposed in [Pinto 2009]. However these

works do not focus on the de-normalization benefits of the star schema model, and they

do not offer a clear insight of the query performance predictability.

The decomposition data model was first discussed in [Copeland & Khoshafian

1985]. More recently [Stonebraker et al. 2005; Zhang et al. 2010] proved that vertical

partitioning and column-wise store engines are effective in reducing the disk IO and

thus boosting query performance. However, these works focus on improving query

performance and minimize the cost of joining DW relations using a star schema model,

and not on providing a predictable and time invariant execution time environment.

Blink [Raman et al. 2008] partitions data by frequency to achieve good

compression while maintaining long runs of fixed length codes, however is unable to

efficiently handle updates against this compressed data format, requiring huge

processing costs to reorganize and repartition data. The implementation and

performance of compressed databases is studied in [Westmann et al. 1998; Westmann

et al. 2000; Chen et al. 2001; O’Connell & Winterbottom 2003; Poess & Potapov 2003;

Holloway et al. 2007].

Analysis: We also use de-normalization as a way to increase query

performance. We de-normalization the star schema (fact and dimensions tables) provide

a conceptual star schema logical view and propose mechanisms for predictable

execution time.

Recently, WideTable [Li & Patel 2014] extended the ONE de-normalized model

to a subset of the dimensions, thus converting complex queries into simple scans, and

demonstrated its effectiveness in terms of raw performance and scalability.

Chapter 2 Background and Related Work

17

2.4 Data sharing and Pipeline Processing

When analyzing a query execution plan, we observe that the low-level data

access methods, such as sequential scan, represent a major weight in the total query

execution time. One way to reduce such a burden is to store relations in memory.

However, the amount of available memory is limited and may be insufficient to hold

large DW, and it is also required for performing join and sort operations.

Cooperative scans [Zukowski et al. 2007] enhance performance by improving

data sharing between concurrent queries. It performs a dynamic scheduling of queries

and their data requests taking into account the current executing actions. A query

execution can be postponed, waiting for similar queries to arrive in order to share the IO

cost. While this minimizes the overall IO costs, by mainly using sequential scans

instead of a large number of costly random IO operations, and the number of scan

operations (since scans are shared between queries), it introduces undesirable delays to

query execution and does not deliver predictable query execution times.

QPipe [Harizopoulos et al. 2005] applies on-demand simultaneous pipelining of

common intermediate results across queries, avoiding costly materializations and

improving performance when compared to tuple-by-tuple evaluation. Each operator is

promoted to an independent micro-engine, called μEngine, which accepts requests and

serves them as queues. It introduced the concept of “Window of opportunity”, as the

time interval where newly submitted operators can take advantage of the one already in

progress. Resource utilization is improved when requests of the same nature are

grouped together, and when dedicated processes are used to process each group of

similar requests.

CJoin [Candea et al. 2009; Candea et al. 2011] applies a continuous scan model

to the fact table, reading and placing fact tuples in a pipeline, and sharing dimension

join tasks among queries, by attaching a bitmap tag to each fact tuple, one bit for each

query, and attaching a similar bitmap tag to each dimension tuple referenced by at least

one of the running queries. Each fact tuple in the pipeline goes through a set of filters

(one for each dimension). A bitwise operation is performed against the dimension

bitmap of the corresponding tuples to determine if it is referenced by at least one of the

running queries. If not, the tuple is discarded. Tuples that reach the end of the pipeline

Chapter 2 Background and Related Work

18

(tuples not discarded in filters) are then distributed to dedicated query aggregation

operators, one for each query.

CJoin schedules processing tasks so that they share IO, particularly scanning

tasks. However it requires that each dimension table be in memory so that it can probed

to perform hash joins, and to continuously update the dimension bit vectors (with

varying numbers of bits) when a new query is submitted or running queries finishes.

However, if the size of a dimension is large, it may require the execution of an external

hash-join, resulting in slower performance and unpredictable query execution time.

[Candea et al. 2011] did not evaluate the impact of selectively adding tuples to

dimension hash tables, and concurrency issues related to registering and de-registering

queries and the bitwise computation. An overhead analysis is required, regarding the

necessary memory and computational costs for maintaining the bit vector when the

number of concurrent queries increases.

Crescando [Unterbrunner et al. 2009] is based on parallel and collaborative

scans in main memory and the so-called "query-data" joins known from data-stream

processing. Crescando loads a tuple into memory and then “joins” the tuple with all

interested queries, so that the cost associated with loading the tuple into memory is

amortized.

DataPath [Arumugam et al. 2010] is a “data-centric” system where queries do

not request data, instead the data is automatically pushed onto processors. It resembles

the QPipe and the main-memory-based Crescando system in the way it attempts to

share memory access latency and bandwidth.

SharedDB [Giannikis et al. 2012] introduce the concept of Global Query Plans,

which compiles a single plan for the whole workload, instead of compiling each

individual query into separate plans. This plan serves multiple concurrent queries and

may be reused over a long period of time. The proposed Shared Join plans approach,

which combines (union) relation tuples of all concurrent queries before performing a

single large shared join, instead of multiple smaller joins, only proved to be efficient for

large number of concurrent queries. SharedDB batches queries and updates and thereby

makes use of traditional, best-of-breed algorithms to implement joins, sorting, and

grouping. While one batch of queries and updates is processed, newly arriving queries

and updates are queued. When the current batch has been processed, a new batch is

Chapter 2 Background and Related Work

19

created with the queued queries. This batch-based execution model adds latency to each

query.

Analysis: Our proposal shares some similar characteristics with those solutions,

namely the data sharing, the data pipeline processing, and processing and sharing data

scans in a circular loop. While SharedDB uses standard query processing techniques

such as index nested-loops, hashing and sorting for any kind of operator of the

relational algebra (e.g., joins, grouping, ranking, and sorting), CJoin and DataPath are

limited to sharing the join computation and to the cases in which the particular CJoin

and DataPath join methods show good performance.

We tackle the dimension size problem using a different approach, which has

smaller memory requirements and can effectively be deployed into a wide range of

parallel shared nothing architectures composed of heterogeneous processing nodes. Our

SPIN proposal is conceptually related to CJoin, and QPipe in what concerns the

continuous scanning of fact data, but it uses a less complex approach and does not have

the memory limitations of such approaches. SPIN uses a de-normalized model, as

proposed in [Costa, Cecílio, et al. 2011] as a way to avoid the join costs, at the expense

of additional storage cost. Since it provides full data and processing scalability, it

allows massive parallelization [Costa, Martins, et al. 2011], provides balanced data

distribution, scalable performance and predictable query execution times. However, the

CJoin logic for small in-memory relations and the dynamic scheduling of cooperative

scans can be integrated in SPIN.

2.5 Parallel DW, Data Partitioning and Placement

A survey of parallel and distributed DW is given in [Furtado 2009a]. Since DW

store historical business data, they are continuously growing in size, stressing the limits

of the database systems and thus resulting in increased query execution times. Parallel

architectures are used to handle such increase in data volume and provide improved

performance, by dividing the data and processing among nodes. Three basic parallel

computer architectures are presented in [Dewitt & Gray 1992; Ozsu & Valduriez 2011],

illustrated in fig. 2.5, depending on how main memory or disk is shared: shared-

memory, shared-disk and shared-nothing.

Chapter 2 Background and Related Work

20

Fig. 2.5 – Parallel approaches a) shared-memory b) shared-disk c) shared-nothing

(figure extracted from [Dewitt & Gray 1992])

Each as its merits, but in what concerns data scalability the shared-nothing

approach minimizes interference by minimizing resource sharing [Dewitt & Gray

1992]. To minimize network exchange costs for processing joins in a shared-nothing

approach and maximize the local computation of partial results, the data is usually

distributed using a Partition and Replicate Strategy (PRS) [Epstein et al. 1978;

Copeland et al. 1988; Yu et al. 1989; Liu & Yu 1992; Baru et al. 1995; Noaman &

Barker 1999], where the larger relation is partitioned and the others are replicated. In

parallel shared-nothing DWs, fact tables are partitioned into smaller partitions and

allocated to nodes, and dimensions are frequently fully replicated into each node

(regardless of their size), as illustrated in Fig. 2.6. DWS [Bernardino 2002] replicates

dimensions and uses a uniform data striping approach to evenly divide the fact data

among processing nodes, which allows it to deliver approximate query results when one

or more nodes fail.

Fig. 2.6 – A parallel deployment of a star schema with replicated dimensions

With this data distribution scheme, each node independently computes its partial

results locally, as shown in Fig. 2.7. Parallel database systems split the processing of a

query in a set of steps [Dewitt et al. 1990; Shatdal & Naughton 1994; Graefe 1993;

Jaedicke & Mitschang 1998; Bernardino 2002]. A query (1) received by a submitter

node is rewritten (2) and forwarded to the processing nodes (3). Each processing node

executes the rewritten query against the local data (4) before sending the partial results

(5) to the merger node. The merger node, which may be the submitter node, waits for

SALES
Fact

Custom

er

Product

Store

Time
SALES

Node 1

Custom

er

Product

Store

Time

SALES

Node 2

Custom

er

Product

Store

Time

SALES

Node n

Chapter 2 Background and Related Work

21

the intermediate results, and merges them (6) to compute the final query result, before

sending it (7) to the user.

Fig. 2.7 – Query processing in shared-nothing

The overall query execution time is mostly influenced by the local query

execution of the slowest node, the number of nodes, the partial results’ size and the cost

of sending them to the merger node. The local query execution time can be improved by

reducing the amount of data allocated to each node.

When dimensions are replicated, their relative weight in each node local storage

space increases with the number of nodes. As a consequence, we observe smaller

decrease in the local query processing time to a point that adding more nodes represents

a minimal local performance improvement. [Costa & Madeira 2004] proposed a

selective loading strategy to deal with data warehouses with big dimensions. Equi-

partitioning may help in this matter, by partitioning both the fact table and some large

dimension on a common attribute, usually the dimension primary key, and allocating

related partitions into the same node. [Bellatreche et al. 2000] proposed an algorithm

that selects dimensional tables for fragmentation and then fragment fact table based on

these dimensional tables. [Shasha & Wang 1991; Liu & Chen 1996] explored horizontal

fragmentation and hash partitioning of relations and intermediate results to perform

parallel multiway join queries and increase the parallelism. [Stöhr et al. 2000]

developed a multi-dimensional hierarchical data fragmentation and allocation method to

partition the fact table and distribute among nodes. Data placement issues in shared-

(2) Rewrite

(1) Query

(3) Send
partial
queries

(4) Run partial queries on local data

(5) send
partial results

(6) Merge

(7)
query
result

Chapter 2 Background and Related Work

22

nothing parallel architectures are discussed in [Copeland et al. 1988; Achyutuni et al.

1995; Mehta & DeWitt 1997; Cheung et al. 2012; Bellatreche et al. 2000].

[Furtado 2004] exploits a workload-based data placement and join processing in

parallel DW. A map-reduce-like approach was explored in [Furtado 2008; Furtado

2009b; Yang et al. 2010] to overcome this load unbalance, by partitioning data into a

large number of small data chunks (greater than the available nodes), with some being

replicated for dependability or performance reasons. Chunks are processed as nodes

become available to process new data. However, it does not solve the increasing weight

of dimensions and results in higher network costs, since more partial results (one for

each chunk) have to be exchanged. While this overcomes the storage scalability

limitations, it introduces additional query complexity related to processing parallel

network joins, and is sensitive to network costs related to exchanging intermediate

results. The parallel nested loop (PNL) algorithm, the parallel associative join (PAJ)

algorithm, and the parallel hash join (PHJ) algorithm are presented in [Ozsu &

Valduriez 2011, chap. 14]. A performance evaluation of parallel joins is presented in

[Schneider & Dewitt 1989], and a thorough discussion of how parallel and distributed

DW work is presented in [Furtado 2009a].

Frequently, large non-equi-partitioned dimensions are also partitioned and

distributed among nodes, without being co-located according to the fact table data.

However, since business data inherently do not follow a random distribution, and data

is skewed, equi-partitioning may introduce another limitation to scalability, with some

nodes storing more data than others. Research in handling skew in parallel joins include

[DeWitt et al. 1992; Xu et al. 2008; Xu & Kostamaa 2009; Wu & Madden 2011]. A

skew-aware automatic database partitioning scheme is proposed in [Pavlo et al. 2012].

Cyclo-join [Frey et al. 2009; Frey et al. 2010] is a distributed join processing

approach that leverages the potential of RDMA-enabled hardware provided by modern

high-throughput networks. It organizes the hosts in a circular ring and reduces the

amount of data that is shipped over the network, by only forwarding the data partition to

the next host.

The scalability of parallel architectures is thus constrained by those correlated

factors: the local data processing, data unbalance among nodes, in-network parallel

joins, the number of nodes, and the number of partitions per node. Two main paradigms

Chapter 2 Background and Related Work

23

are used to attain that goal: parallel DBMS and Map-Reduce (MR) frameworks. Pavlo

et al. [Pavlo et al. 2009] presents a comparison of approaches to large-scale data

analytics, identifying their limitations both in performance and usability. While MR

offers elastic scalability, it lacks the expressiveness and usability of SQL. A hybrid

system that approaches parallel databases in performance and efficiency, yet still yields

the scalability, fault tolerance, and flexibility of MapReduce-based systems is explored

in [Abouzeid et al. 2009; Xu et al. 2010]. Hive [Thusoo et al. 2009] is an open-source

data warehousing solution built on top of Hadoop that compiles queries expressed in

SQL-like language (HiveQL) into hadoop map-reduce jobs.

Both paradigms show scalability limitations in processing in-network joins and

in providing timely executions. As a consequence, the traditional approach of adding

more nodes to the parallel infrastructures is insufficient to provide timely guarantees,

because of their inability to provide scale-up execution guarantees. In spite of all the

effort to devise improved parallel joins algorithms, this network scalability limitation

introduced by parallel joins is not solved.

Analysis: Our proposals also consider a shared-nothing environment. We

advocate that, to achieve massive scalability and provide timely results, parallel joins

have to be removed. Our proposed data model (ONE) is skew-free and can be

extensively partitioned and deployed into an elastic set of heterogeneous nodes to

provide execution time guarantees. We proposed a data placement algorithm that uses

the time targets and each node characteristics, to determine the data volume allocated to

each node.

Chapter 2 Background and Related Work

24

2.6 Predictable execution time

The ability to provide predictable execution time and query results in a timely

manner is gaining increasing importance, as more and more operational decisions are

being made using DW data analyses. It is not just a matter of providing fast answers,

but also of guaranteeing that the answers will be there (available) when expected and

needed.

Main-memory solutions [Kallman et al. 2008; Huang et al. 2009; Grund et al.

2010] enhance query performance by removing the associated IO reading costs.

However, since memory is limited and the DW volume is continuously increasing in

size, the available memory may be insufficient to process join and sort operations and

also to maintain the entire DW in memory.

Blink [Raman et al. 2008] is an in-memory based query processor that heavily

exploits the underlying CPU infrastructure. It uses a frequency partitioning scheme, to

provide good lossless compression, which produces long runs of fixed length codes and

thus provide constant time decoding. However, it is unable to efficiently handle

periodic data loads with this compressed data format. It requires huge processing costs

to reorganize and repartition data in order to maintain order-preserving codes. This

order-preserving is essential to allow the evaluation of equality and range predicates to

coded values.

Crescando [Unterbrunner et al. 2009] attempts to share the memory access

latency and bandwidth among queries. Crescando loads a tuple into memory and then

“joins” the tuple with all interested queries, so that the cost associated with loading the

tuple into memory is amortized. While the proposed approach is not always optimal for

a given workload, it provides latency and freshness guarantees for all workloads.

CJoin [Candea et al. 2009; Candea et al. 2011] improves throughput in large-

scale data analytics systems processing many concurrent join queries. It employs a

single physical plan that shares I/O, computation, and tuple storage across instead of

using the conventional query-at-a-time model. The predictable performance is obtained

by employing a sequential scan to the fact table and performing joins with in-memory

dimensions. However, dimensions could be large and may not fit in memory.

Predictable performance can only be given for star-join queries.

Chapter 2 Background and Related Work

25

SharedDB [Giannikis et al. 2012] batches queries and updates, thereby making

use of traditional, best-of-breed algorithms to implement joins, sorting, and grouping.

While one batch of queries and updates is processed, newly arriving queries and

updates are queued. When the current batch has been processed, a new batch is created

with the queued queries and then the queue is emptied. This batch-based execution

model adds latency to each query. A specific advantage of SharedDB as compared to

QPipe and DataPath is its ability to meet SLAs and bound the response time of queries.

Analysis: Our work distinguishes from these works in the following aspects: we

do not have joins, therefore we have minimum memory requirements, while SharedDB

and CJoin have large memory requirements to hold dimensions and to perform in-

memory joins; we can handle small and large dimension sizes, while CJoin and Blink

can only provide predictable performance to dimensions that can fit in-memory; we can

provide predictable performance to data residing in memory and our model does not

suffer from data skew. We also proposed a right-time manager that takes advantage of

the minimum processing instruction set of our approach, to balance the data load among

an elastic set of heterogeneous processing nodes.

27

Chapter 3

A Timely and Massively Scalable DW

Data Warehouse systems are a fundamental tool for the decision-making

process. Today, they have to deal with increasingly large data volumes, which is

typically stored as a star schema. The query workload is also more demanding,

involving more complex, ad-hoc and unpredictable query patterns, with more

simultaneous queries being submitted and executed concurrently. Fig. 3.1 illustrates the

unpredictability factors that influence the ability to provide timely results to queries.

Fig. 3.1 – Unpredictability factors that influence the ability to provide timely results

Several factors influence the ability of the DW infrastructure to provide timely

results to queries, such as the query (query selectivity, number of relations that have to

be joined, the join algorithms and the relations sizes), the heterogeneity and capabilities

of the processing infrastructure (P), including IO throughput, the memory available to

process joins, and the implementation of the join algorithms. The data volume (V) and

the concurrent query load (C), number of concurrent queries that are executing

simultaneously, also influence the system ability to provide predictable execution times.

Data Volume

(V)

Q
u

e
ry

(q
)

Chapter 3 A Timely and Massively Scalable DW

28

Definition 3.1

For a star schema model S composed of {F, D}, where F denotes the fact

relation and D={d1,d2, ..., dn} denotes the set of dimensions, with d ranging

on D. Let Q = {q1,q2, ..., qn} denotes a set of aggregation queries, with q

ranging on Q, submitted to {F, D’} with D’⊆D. Let V be the data volume, C the

number of queries that are currently being executed and P the processing

infrastructure. The query execution time of q, texec (q), is

texec (q) = f (aq , V, P, C)

where aq = π (σq (F⋈ D’)), represents the relational algebra representation of

the query q (for simplicity of the formula we did not include aggregation, which

can be added).

This chapter describes the data warehousing architecture proposed in this

dissertation, which aims to provide scalability and timely results for massive data

volumes. The architecture is able to do this even in the presence of a large number of

concurrent queries and is able to meet near real-time requirements. The ability to

provide timely results is not just a performance issue (high throughput), but also a

matter of returning query results when expected, according to the nature of the analysis

and the business decisions.

The chapter starts by proposing mechanisms to provide predictable execution

and unlimited data scalability. The concept of timely data analysis (right-time

execution) is then introduced, and we propose mechanisms to provide right-time

guarantees while meeting runtime predictability and freshness requirements. Finally we

present the mechanisms of the architecture that allow it to still guarantee right-time

execution in the presence of huge concurrent query loads.

3.1 Providing predictable execution

For a query q submitted to a particular processing infrastructure p with a given

data volume ν, the execution time of q, texec (q) = f (aq, v, p, 1), is mostly influenced by

aq, the query selectivity, the number of relations that have to be joined together, the

memory available for joins, the used join algorithms and the join order.

The query execution complexity is highly influenced by the number of relations

that have to be joined together (D’), the relations’ size and the query selection

Chapter 3 A Timely and Massively Scalable DW

29

predicates (selectivity), which influences the data volume that has to be read from

storage and joined. This data volume and the memory available for joins, influence both

the join order and the used join algorithms. These unpredictable costs related to joining

the fact table with dimensions relations (F ⋈ D’) arise from the star schema

organization.

To provide predictable execution times, we propose the ONE data model, where

the fact table and the corresponding dimensions are physically stored into a single de-

normalized relation, without primary and foreign keys, containing all the attributes from

both fact and dimension tables, as illustrated in Fig. 3.2.

Fig. 3.2 – Star schema model vs ONE data model

ONE, since data is already joined (ONE ⇔ F ⋈ D), uses a simpler and

predictable execution plan where aq = π (σq (ONE)). The join costs, which are

unpredictable, are replaced by predictable IO cost of reading sequentially the ONE

relation.

Query processing in ONE is scan-oriented. Data is mainly read sequentially

from storage. Since the system is reading data sequentially, it is read at high rates. This

change in IO pattern provides predictable query execution times, which can be

determined as a function of the storage throughput, and also allows an enhanced data

and processing sharing among concurrent queries (discussed in Section 3.4). Chapter 4

discusses ONE in detail.

3.2 Mechanisms for Providing Unlimited Scalability

Another source of unpredictability of the star schema is the data volume. An

increase in data volume results in an unpredictable increase in query execution times,

mainly because of the unpredictability of joining costs. Fig. 3.3, extracted from chapter

8, depicts the execution times for a set of TPC-H queries for a given data volume (5GB,

SALES
Fact

table

Customer
Dimension

Product
Dimension

Store
Dimension

SALES (de-normalized)

Time
Dimension

Chapter 3 A Timely and Massively Scalable DW

30

SF=5) and what happens when there a 2x increase in data volume (10GB, SF=10). The

expected execution time, based on a linear proportion of the execution time with 5GB,

and the actual execution time, are depicted respectively in red and blue. We can observe

that the actual execution time is frequently larger than the expected execution time.

Fig. 3.3 – Execution time for a 2x increase in data volume

Larger DWs are frequently supported by parallel shared nothing organizations.

As discussed in Chapter 2, fact tables can be partitioned into smaller fragments and

allocated to nodes, while dimensions can be replicated or partitioned.

Scalability and performance speedup are constrained by the size of replicated

dimensions and by the complex inter-node joins when dimensions are partitioned. This

is especially relevant when managing large data volumes and multiple nodes. Since

query processing involves operations with both facts and dimensions, adding nodes can

limit the speedup.

To provide unlimited data scalability, we de-normalize completely and partition

the de-normalized relation into data fragments distributed among a set of processing

nodes for parallel processing. Fig. 3.4 illustrates ONE partitioned into multiple nodes in

parallel infrastructures.

Fig. 3.4 – ONE fragments distributed among nodes

SALES
(de-normalized)

SALES
(de-normalized)

node 1 node 2

SALES
(de-normalized)

node n

Chapter 3 A Timely and Massively Scalable DW

31

ONE delivers unlimited data scalability, since the whole data (fact and

dimensions), and not just the fact table, is linearly partitioned among nodes (with η

nodes, each will have 1/η of the data). The addition of more nodes triggers the data

redistribution (re-balancing) among a wider set of processing nodes, without

introducing any data overheads. For dependability or for query load balancing purposes,

the architecture may consider the replication of some data fragments, particularly those

that are more frequently used. Therefore, since the addition of more nodes to the

processing infrastructure does not require additional data replication of dimensions,

ONE provides massive data scalability.

By ensuring a linear distribution of the whole data, and not just the fact table,

query execution time is improved proportionally to the data volume in each node.

Moreover, since data in each node is already joined and thus query processing does not

involve the execution of costly join algorithms, the speedup in each node is enhanced

(almost) linearly as a function of the data volume that it has to process.

By de-normalizing the data we also decrease the nodes’ requirements, in what

concerns physical memory (needed for processing joins), and query processing tasks,

since the join processing tasks that were repeatedly (over and over) processed are

removed. The remaining filtering and aggregations tasks have minimum memory and

processing requirements. Only group by aggregations and sorting have larger memory

requirements. Queries are then executed using a simplified and predictable query

processing approach, in a RISC-like manner [Patterson & Ditzel 1980]. We characterize

the simplified query processing of the approach as a RISC-like capability by analogy to

the simplified reduced instruction computing [Patterson & Ditzel 1980].

In summary, the ONE model presents several key advantages:

- No (in-memory or external) joins are required;

- Reduced memory requirements, mostly required for sorting and

aggregation;

- Simpler processing model (RISC-like), composed by filter and aggregations

- Predictable, since it is based on predictable execution tasks

- Can be massively deployed over a parallel shared nothing infrastructure,

with linear horizontal and vertical scalability. An increase in the number of

Chapter 3 A Timely and Massively Scalable DW

32

processing nodes linearly reduces the data load in each node, and therefore

results in an almost linear drop in execution time;

- Data load and data processing is linearly divided among processing nodes

- Removal (or merging) of redundant keys (primary and foreign)

There are two issues that should be addressed in the context of ONE. It is scan-

oriented and has larger storage space requirements. As ONE de-normalizes the star

schema into a single relation, with dimension attributes being redundantly stored in the

de-normalized relation, there is an increase in storage space requirements to hold the

entire DW. However, this issue is minimized since ONE can be massively deployed

over a parallel shared nothing infrastructure. Chapter 4 discusses ONE in detail.

3.3 Mechanisms for Providing Right-time

We define right-time as the ability to deliver query results in a timely manner,

before they are required. The aim is not to provide the fastest answers, but to guarantee

that the answers will be there (available) when expected and needed.

Definition 3.2

Let ttarget (q), denote the execution time target of query q, ∀q∈ Q. We define that

the system is able to provide timely results, or right-time execution, iff

∀ q ∈ Q, texec (q) ≤ ttarget (q)

The ability to provide right-time data analysis is gaining increasing importance,

with more and more operational decisions being made using data analysis from the DW.

The predictability of each of the query execution tasks is fundamental for providing

right-time data analysis.

As discussed in Section 3.1, the proposed ONE data model is scan-oriented. The

execution time is mostly influenced by the data volume that a node has to read and

process. Therefore, for larger data volumes or tighter execution targets, a parallel

infrastructure is needed. To meet specific right time targets, the number of processing

nodes (p) and the data volume allocated to each node (v), which may differ according

to the nodes’ characteristics, have to be planned according to those targets.

∀q∈ Q, texec (q) = f (π (σq (ONE) , v, p, 1) ≤ ttarget (q)

Chapter 3 A Timely and Massively Scalable DW

33

The architecture includes a Timely Execution with Elastic Parallel Architecture

(TEEPA) module, illustrated in Fig. 3.5, which provides right-time guarantees to

aggregated queries. The figure shows TEEPA middleware, which communicates with a

node service daemon (NS) running in each node to manage their availability and

processing. TEEPA takes into consideration the query execution time targets, expressed

at query or session level (details in Chapter 5), to adjust and rebalance the data volume

and the processing infrastructure.

Fig. 3.5 – TEEPA framework

When the current deployment is unable to deliver the time targets, it adds more

processing nodes and redistributes the data volumes among them. TEEPA continuously

monitors the local query execution, the IO throughput and the data volume allocated to

each processing node, to determine if the system is able to satisfy the user specified

time targets.

When TEEPA determines that a query may miss the time target, it starts the

node allocation and data rebalancing process. TEEPA begins by determining the

maximum data volume that each node can process within the specified time target, and

then it determines how many additional nodes are needed in order to process the whole

data volume within the execution time target. After an additional node has been

included in the parallel architecture, it sends to each node a set of data reallocation

tasks, indicating the amount and the destination of the data to be rebalanced.

TEEPA was designed to handle heterogeneous nodes and thus it takes into

account their IO capabilities when performing the necessary data rebalancing tasks. The

Chapter 3 A Timely and Massively Scalable DW

34

data volume allocated to each node is adjusted as a function of the whole data load

(total number of tuples), the tuple size and the node’ sequential scan throughput.

Therefore, larger data volumes will be allocated to faster nodes. The node allocation

(selection and integration of new nodes) and the data rebalancing tasks are continuously

executed until the time target can be assured (as illustrated in Fig. 3.6). Chapter 5

discusses TEEPA in detail.

Fig. 3.6 – Data rebalancing process

3.4 Providing Freshness guarantees

Usually a DW is periodically refreshed (loaded) in batches, to reduce IO loading

costs and also the costs related to refreshing the indexes and the pre-computation of

aggregated data structures. However, there is an increasing demand for data analyses

over near real-time data, with low latency and minimum freshness, which requires data

to be loaded more frequently or loaded in a row-by-row fashion.

Main memory DBMS eliminate IO costs and thus can handle higher data

loading frequencies. However, physical memory is limited in size and cannot typically

hold the whole tables and structures.

To provide freshness guarantees, the proposed architecture combines a parallel

ONE deployment with an in-memory star schema model holding recent data. The in-

memory part (Os) maintains the recently loaded data with minimum latency, thus

allowing analysis to be carried out over almost real-time data. By using a star schema

model in Os, existing DW applications can be easily replaced and integrated with the

architecture without the need to recreate the existing ETL tasks.

Chapter 3 A Timely and Massively Scalable DW

35

When the physical memory is exhausted, the data in Os model is moved to Od,

from a star schema representation into the ONE model, as illustrated in Fig. 3.7. The

data shift process is triggered when one of the following thresholds is not satisfied: the

maximum memory threshold occupied by the data; and a maximum time interval

between two flushes.

Fig. 3.7 – In-memory data buffering and ONE data flushing

Tuples from the fact table in Os, after being de-normalized and loaded into Od,

are then deleted, to free memory for accommodating new fresh recent data.

Queries may require data that is stored in Os (the in-memory part), in Od (the de-

normalized part) or in both parts. Section 4.5 details how the logical to physical layer

manages data and query processing with this two schema models. The architecture

includes a logical to physical layer that manages data and processing consistency

between models, including the necessary query rewriting to process the data stored in

each part, and merging the partial results.

From the user perspective and data presentation, the architecture offers a logical

star schema model view of the data, in order to provide easy integration with existing

applications and because the model has advantages in what concerns user understanding

and usability.

3.5 Handling massive concurrent queries (query workload)

In the previous sections, we focused in providing massive data scalability and

right-time guarantees for individual queries. However, modern DWs also suffer from

SALES (de-normalized)

SALES
Store

Time

Customer

Product

F⋈D

New inserted data

Moved to

Os

Od

Chapter 3 A Timely and Massively Scalable DW

36

query load scalability limitations, as more and more queries (in particular ad-hoc) are

being concurrently (simultaneously) executed. Larger parallel infrastructures can reduce

this limitation, but its scalability is constrained by the query-at-time execution model of

custom RDBMS, where each query is individually processed, competes for the existing

resources (IO, CPU, memory,…) and access the common base data, without data and

processing sharing considerations.

We propose SPIN, a data and processing sharing model that delivers predictable

execution times for concurrent queries without the memory and scalability limitations

of existing approaches. SPIN views a ONE relation, as a logical circular relation, i.e. a

relation that is constantly scanned in a circular fashion. When it reaches the end, it

continues scanning from the beginning, while at least one query is being executed. Data

is read from storage and placed into an in–memory pipeline to be shared by all running

concurrent queries, as illustrated in Fig. 3.8. Each query q, q∈Q, processes all tuples of

relation ONE, but the scanning and the query processing does not start from the same

first physical row. As the relation is read in a circular fashion, the first row processed by

a query (first logical row) is the one that is cached in memory. The remaining tuples are

processed as they are being read from storage until the first logical row is reached.

Fig. 3.8 – SPIN Data processing model

A Data Reader is continuously loading tuples from the ONE relation, and

putting them in an in-memory data pipeline. Each query registers itself as a consumer of

the data pipeline, following a publish-subscribe model, and starts processing the tuples

as they pass through the pipeline. It registers the starting point (Fig. 3.9 depicts the

starting point of queries q1, q2 and q3), representing the first logical row (position in the

circular relation). When a full loop is completed, it stops the query processing, de-

registers the query as a consumer of the data pipeline and sends the query results to the

user. Thus, IO reading cost is constant and shared between running queries. Therefore,

the submission of additional queries does not introduce additional IO costs and joins

operations. The execution time is influenced by the number of concurrent queries that

Chapter 3 A Timely and Massively Scalable DW

37

are currently running and also by complexity of the query constraints (filtering) and the

cost of aggregations.

Fig. 3.9 – SPIN concurrent query processing model

Since the data is shared among processing queries, the workload scalability of

SPIN is not constrained at IO level. To provide massive workload scalability it also has

to share processing among queries. To achieve that goal, SPIN employs two different

approaches: orchestrate query predicates in common logical branches, creating a

workload processing tree and the reuse and merging of partial results from different

branches.

The query predicates of a newly submitted query are analyzed to determine if the

current workload has already created a logical branch with common predicates. If one

exists, the query is registered as a consumer of that logical branch, and the

corresponding query predicates are removed. Otherwise, if there exists no logical

branch that meets the query predicates, it is registered as a new logical branch of the

base data pipeline. This enhances processing sharing, and reduces the number of

filtering conditions. SPIN has a branch optimizer that is continuously adjusting the

number and order of the existing branches, and reorganizing them as required. Fig. 3.10

illustrates an example of a workload processing tree, composed with several branches

that were built according to the query predicates that are being executed. The figure

illustrates the WPTree created when queries q1 (SUM(σp =a (sales))), q2 (SUM(σy =2000

(sales))) and q3 (SUM(σy=2000 Λ p=a (sales))) are submitted. Branches are created for

shared predicates, e.g. σy=2000 and orchestrated into a WPtree.

Fig. 3.10 – Branch processing

dsp=a

q1

dsy=2000

q2

q3

dsp=a

ag

ag

ag

ag merge

ag mergey≠2000;p≠a

Chapter 3 A Timely and Massively Scalable DW

38

High accurate estimations of the query execution time can be calculated as

function of the computational costs of each of the branches that belong to the query

path (set of sequentially connected branches from the base pipeline). Therefore,

predictable execution times can be given for massive workload scalability.

Whenever possible, a query can merge and combine results that are being

processed by other branches, thus reducing the data volume that query branches have to

filter and to process.

Tighter right-time guarantees can be provided by extending the parallel

infrastructure, and redistributing the data volume amongst processing nodes, but also by

redistributing queries, query processing and data branches between nodes that have

replicated fragments. This is achieved by using two distinct approaches, a parallel fine-

tuned fragment level processing, named CARROUSEL, and an early-end query

processing mechanism.

CARROUSEL is a flexible fragment processor that uses idle nodes, or nodes

that are running queries with looser execution targets, to process some of the fragments

required by other queries that have tighter execution targets, on behalf of the fragment

node’s owner. By reducing the data volume to be processed by a node, we can provide

faster execution times. The query processing costs can also be reduced by redistributing

the processing of some logical data branches amongst nodes with replicated fragments.

The query execution ends when all tuples of the data fragments have been

processed and the circular logical loop is completed. As the system is continuously

spinning, reading and processing over and over the same data, it collects insightful

information regarding the data that is stored in each data fragment. For some logical

data branches, this information can be relevant to reduce memory and computational

usage by using a postponed start (delaying the query execution until the first relevant

fragment is loaded) and an early-end approach (detaching the query pipeline as soon as

all the fragments that are relevant for a query have been processed), discussed in detail

in chapter 7.

This information is also useful when the architecture needs to perform a data

rebalancing process, in order to cluster the rebalanced data into new data fragments

Chapter 3 A Timely and Massively Scalable DW

39

according to the predicates of logical branches. Chapter 6 and 7 discusses SPIN in

detail.

3.6 Performance and auxiliary data structures

Besides the main concepts presented above, the architecture also encompasses a

set of auxiliary structures designed for performance and usability purposes. It

exhaustively uses a set of in-memory bitmap-like indexes, named bitsets, which are

built on-the-fly with the results of branch level processing (evaluation of predicates).

Afterwards, subsequent evaluations of these predicates can be replaced with faster

lookup operations.

This provides faster query results, since the evaluation of some filter conditions

are substituted by bitmap positional lookups. These bitsets are also built at fragment-

level to improve the rebalancing of data fragments.

3.7 Limitations of the proposed mechanisms

The approaches discussed in this thesis are based on de-normalization of the star

schema. De-normalization is beneficial when the schema contains large dimensions and

users require predictable and timely query execution.

De-normalization has some potential disadvantages. These include higher

storage requirements and more IO dependent processing. This means that full de-

normalization should not be used when all dimensions are small, because performance

would be worse than using an ordinary star schema. To minimize this problem, we also

considered the possibility to de-normalize the schema partially, according to the

dimension sizes and whether they can be maintained in memory or not.

Parallelism can have an important role to reduce problems raised by the data

volume, namely, higher storage requirements and the excessive time taken to read all

that data. That costly task will be divided by many nodes, since the data is fully

partitioned among the nodes of the processing infrastructure.

Modifying the number of nodes in TEEPA incurs in relevant IO, temporary

space and network communication costs, due to data rebalancing needs, in order to

Chapter 3 A Timely and Massively Scalable DW

40

adjust the data volume and data layout according to the specific characteristic of each

node.

By sharing data scans and processing of several queries, SPIN reduces the IO

dependency in a multi-query environment. The major performance limitation of SPIN

then becomes the CPU (CPU-bound). To reduce the amount of processing we also

proposed some of the extensions to SPIN, so that it becomes extremely scalable even to

a huge number of simultaneous queries.

3.8 Chapter Summary

This chapter described the main concepts behind the mechanisms of the

proposed scalable architecture, to provide timely results for scalable data volumes,

concurrent queries and near-real time requirements, and introduced the concept of

timely data analysis (right-time execution). Fig. 3.11 depicts a general overview of the

proposed mechanisms and how they integrate.

Fig. 3.11 – A high level integration view of the proposed mechanisms

The ONE data model can easily be used with any DBMS engine, but in order to

be a seamless alternative to existing star schema models and for integration with

existing client applications, it would require the use of a logical to physical rewriter

module of TEEPA. SPIN is a processing engine that shares data and processing to allow

the execution of a large number of concurrent queries, but it can also be used as an

accelerator of existing DW infrastructures. The following chapters present a detailed

discussion of the mechanisms outlined in this chapter.

node n

ONE
storage
model

SPIN
concurrent

data
processor

Carrousel
Parallel concurrent

processor

TEEPA
node elasticity

& data allocation

node 2

ONE
storage
model

SPIN
concurrent

data
processor

node 1

ONE
storage
model

SPIN
concurrent

data
processor

41

Chapter 4

A Scalable and Predictable Data Model

For decades Data Warehouses (DW) have been deployed in relational database

systems (RDBMS) using the de facto star schema model. Several factors contributed for

its popularity and massive deployment, such as: ease of comprehension by both

managers, power users and IT managers; the use of existing relational infrastructures

(all the data is stored in relational tables) with minimum management and learning

costs. This data organization, into fact and dimension tables, provides a performance-

space tradeoff. However, today’s increase in both data volume and query workload

stresses those systems, limits performance and cannot take advantage of the advances in

both storage and data processing capabilities.

In this chapter we propose ONE, a de-normalized data model, which trades

storage space for predictable execution times to massive scalable data volumes. The

chapter is organized as follows: Section 4.1 discusses the unpredictability factors that

constrain the ability to deliver predictable execution times and handling larger data

volumes; Section 4.2 presents the ONE processing model which combines the

predictability and scalability characteristics of the de-normalized model, with the ease

and user understanding of the star schema model; the ability of ONE to handle scalable

data volumes and freshness requirements is discussed in Sections 4.3 and 4.4,

respectively; Section 4.5 shows how queries are processed with the proposed approach;

Section 4.6 discusses the changes in existing ETL tasks and how data can be loaded into

ONE; Section 4.7 analyses the impact of the ONE model in what concerns storage

requirements, Section 4.8 presents partial de-normalization approaches to reduce

storage space requirements and Section 4.9 presents a summary of the chapter.

Chapter 4 A Scalable and Predictable Data Model

42

4.1 Unpredictability factors

The increasing data volume is stressing the DBMS engines in delivering

predictable execution times, particularly because of the execution costs related to

joining large relations that cannot fit in memory. The IO costs related to joins overkill

the ability to provide predictable performance and scalable data volumes. To provide

predictable execution times for scalable data volumes we first identify the

unpredictability factors and how to overcome them.

The query execution time over a star schema is highly influenced by a set of

factors, such as query selectivity, number and size of the relations that have to be

joined, the join algorithms, the available memory for joining relations, and the

additional IO operations (random and sequential) when the available memory is

insufficient to process in-memory joins. The query optimizer has to choose the most

appropriate execution plan and fine-tune the alternative execution plans with hardware

characteristics, taking into account aspects such as the available memory for hashing

and sorting. Fig. 4.1 depicts a possible star-query execution plan, which may change

according to the selectivity and the required dimensions (not all may be needed).

Fig. 4.1 – A typical star schema and an example of query execution plan

The query execution time involves the cost of joining all the required relations

(fact and dimensions). For large relations this results in costly tasks and therefore in

poor query execution times. Execution time is hard to predict, since it is highly

influenced by each relation’s size, selectivity and number of involved relations. The

influence of these unpredictability factors is higher as the data volume increases.

Dimensions frequently occupy a small percentage of the overall DW storage

space. However, with time, dimensions tend to be not so small, with new dimension

characteristics (attributes) being added (e.g. add order validity date to table orders or a

⋈

σstore

store

⋈

σcustomer

customer

⋈

σtime

time

⋈

σsales

sales

σproduct

product

SALES
Fact table

Customer
Dimension

Product
Dimension

Store
Dimension

Time
Dimension

Chapter 4 A Scalable and Predictable Data Model

43

new type of product characteristics), or with a larger number of tuples (e.g. for dealing

with slowing changing dimensions where additional tuples are added for storing

changes in dimension attributes) or both. The change in the size of dimensions also

influences the cost of the execution plan.

Fig. 4.2, extracted from chapter 8, depicts the execution time of 9 queries of the

TPC-H benchmark (1..9), with different query execution complexities. The figure

depicts results for two distinct scale factors: SF1 (1GB) and SF10 (10GB, represents

10x times the data volumes of SF1). The primary y-axis shows the execution time for

SF1, and the secondary y-axis shows the execution time for SF10. The scale of the

secondary y-axis is 10 times that of the primary y-axis. From the figure we observe that

for most queries the execution time with SF10 is more than 10x the execution time with

SF1. Besides, different queries have quite different execution times. Therefore, to

provide predictable execution time, we focus our research in an alternative data

organization, with less unpredictable factors.

Fig. 4.2 – Execution time of different TPC-H queries

These unpredictability factors and joining costs arise from the star schema data

model.

4.2 The ONE Data Model

To overcome such unpredictability factors and to provide predictable execution

times, we propose to de-normalize the whole star schema model to be physically stored

in a single (ONE) relation containing all the attributes from both the fact table and

dimension tables without primary and foreign keys. Since no joins are required, we can

Chapter 4 A Scalable and Predictable Data Model

44

remove both the primary and foreign keys (key overhead). The cardinality of ONE,

|ONE| is the same as the cardinality of the fact table, |sales| in the example. Fig. 4.3

depicts the star schema and the corresponding representation using the ONE data

model.

Fig. 4.3 – The star schema and the corresponding ONE data model

This de-normalization increases the overall space necessary for storing all the

data, since data from dimension tables is redundantly sorted in ONE relation. For

instance, in the TPC-H benchmark, each tuple of table CUSTOMERS is, on average,

inserted (repeated) 40 times. This redundancy requires extra storage space for storing

all the de-normalized data, and consequently may cause performance issues, since it

now is more IO dependent. The ONE data model organization can be easily

implemented using existing DBMS engines.

Definition 4.1

A star schema model S, where F denote the fact relation and D={d1,d2,..., dn}

denotes the set of dimensions, with d ranging on D. ONE denotes the de-

normalized data model equivalent to S, such that ONE = π (F ⋈ D). Let V be

the data volume, C the number of queries that are currently being executed and

P the processing infrastructure. The query execution time of q, texec (q), is

texec (q) = f (aq, V, C, P) ,

where aq= π (σq (ONE)), represents the relational algebra representation of the

query q (for simplicity of the formula we did not include aggregation, which can

be added).

With this data model, submitted queries can be processed through a more

simplified query execution plan, since all the necessary join operations are removed and

filter predicates are applied to the de-normalized relation. The execution plans are

simpler, based only on predictable processing tasks over a known number of tuples,

where the unpredictability factors related to joining the relations, namely the order of

SALES
Fact

table

Customer
Dimension

Product
Dimension

Store
Dimension

SALES (de-normalized)

Time
Dimension

Chapter 4 A Scalable and Predictable Data Model

45

joins, the join algorithms and the available memory, are removed. Fig. 4.4 depicts a side

by side comparison of a typical execution plan for both data models: the star schema

and ONE.

Fig. 4.4 – Query execution plan a) star schema b) ONE

Queries submitted against the ONE data model result in simpler execution plans,

without joins, where selection tasks are placed according to their selectivity. In what

concerns IO, query processing is then based on sequential scans, without slow random

reads, yielding predictable execution times. Query execution time is dependent of

system storage throughput and also the data volume. Fig. 4.5, extracted from chapter 8,

depicts the execution time with the ONE data model for the queries shown above.

Fig. 4.5 – Execution time of different TPC-H queries with the ONE data model

As the data volume stored in DW systems is continuously growing in size, the

ability to provide predictable execution time for scalable data volumes is important for

DBA and IT managers to better estimate and determine the current limitations of

existing hardware infrastructure and determine the requirements of the new

infrastructure to handle a given data volume without even testing it.

σstore

σcustomer

σtime

σsales

σproduct

Sales denormalized

⋈

σstore

store

⋈

σcustomer

customer

⋈

σtime

time

⋈

σsales

sales

σproduct

product

Chapter 4 A Scalable and Predictable Data Model

46

4.3 Handling scalable data volumes

With a parallel infrastructure, the ONE de-normalized relation can be partitioned

into data fragments and distributed among a set of processing nodes for parallel

processing, thus providing performance gains. Fig. 4.6 illustrates the ONE data

partitioning scheme in a parallel infrastructure.

Fig. 4.6 – ONE fragments distribution among nodes

ONE scales-out almost linearly, since the whole data (fact and dimensions), and

not just the fact table, can be linearly partitioned among nodes (with n nodes, each will

have 1/n of the ONE node). For dependability reasons or for query load balancing

purposes, some data fragments may be replicated, particularly those that are more

frequently used (fragment replication is discussed in more detail in chapter 5).

By ensuring a linear distribution of the whole data, and not just the fact table,

query execution time is improved proportionally to the data volume in each node.

Moreover, since data in each node is already joined and thus query processing does not

involve the execution of costly join algorithms, the speedup in each node is enhanced

(almost) linearly as a function of the data volume that it has to process. As discussed

above, the performance of joins is highly influenced by factors such as the available

memory (in-memory vs external joins) and the number of dimensions to join with the

fact table.

As a result of using a de-normalized data model, we get a simplified query

processing model with minimal memory requirements, only used for aggregations and

sorting. Queries are then executed using a set of simple and predictable tasks.

4.4 Providing Freshness

Traditionally, DWs are periodically refreshed in batches, to reduce IO loading

costs and costs related to the refreshing indexes and pre-computed aggregation data

structures. However, there is an increasing demand for data analyses over near real-time

SALES
(de-normalized)

SALES
(de-normalized)

node 1 node 2

SALES
(de-normalized)

node n

Chapter 4 A Scalable and Predictable Data Model

47

data, with low latency and minimum freshness, which requires data to be loaded more

frequently or loaded in a row-by-row manner. Main memory DBMS eliminate IO costs

and thus can handle more frequent data loads. However, physical memory is limited in

size and cannot typically hold the whole tables and auxiliary structures.

Since the ONE data model has reduced memory requirements, we propose to

combine a ONE data model (Od) with an in-memory star schema model for holding

recent data (Os), as illustrated in Fig. 4.7.

Fig. 4.7 – The hybrid Os and Od data model

Os maintains the recently loaded data, which can be more frequently loaded with

minimum loading costs, and thus allows the execution of most data analyses over fresh

data with minimum latency. The use of Os also allows an easier integration with

existing DW applications without the need to recreate the existing ETL tasks. Data is

loaded into the in-memory Os and remains there for real-time processing while there is

memory available, so that the most recent data is held in the star schema.

Since physical memory is limited and is rapidly exhausted, the data stored in Os

(in memory using the star schema model) has to be moved to Od (in the ONE data

model), as illustrated in Fig. 4.8. The data shift process is manually initiated by the

DBA, or it can be triggered when one of the following thresholds is not satisfied: Smemory

- the amount of physical memory occupied by the data stored in Os (defaults to 30% of

physical memory); tdenorminterval - maximum time interval between two flushes (defaults

to 10 min). Periodically, a watchdog daemon wakes up, every tdaemonCheck (defaults to 10

sec), to check if the values defined by those parameters have been exceeded. When that

occurs, a full Os flush is done.

SALES

Store

Time

SALES (de-normalized)

Customer

Product

Os

Od

Chapter 4 A Scalable and Predictable Data Model

48

Fig. 4.8 – In-memory data buffering and ONE data flushing

Flushing is done by submitting a query q against Os, which performs a natural

join (F ⋈ D) between the fact table F and all dimensions D. The result is materialized

into de-normalized Od. Afterwards, every fact tuple tf that has a corresponding tuple to

in the de-normalized relation Od, such that ∃ toϵ Od, tf ϵ F, tf ⊆ to, is removed from the

fact table F.

Tuples from the fact table in Os, after being de-normalized and loaded into Od,

are deleted from Os to free memory to accommodate new fresh data. In what concerns

dimensions D, three approaches are available: left unchanged, remove all dimensions

tuples, remove all dimension tuples td unreferenced by fact tuples tf, or a combination of

both, i.e. tuples td of a subset of dimensions Dr, Dr ⊂ D are removed, while the

remaining dimensions Du ,Du ⊂ D, Dr∩ Du=∅, are left unchanged. The former has the

disadvantage that subsequent queries q, although F being smaller, experience poor

performance since F has to be joined with relatively larger dimensions (F ⋈ D) in

comparison with F. By removing unreferenced tuples from dimensions D, they will

became smaller and consequently the join processing cost of F ⋈ D will be

significantly smaller.

4.5 ONE Query Processing

A query may require data that is stored in Os, in Od or in both parts. The

architecture includes a logical to physical layer that manages data and processing

consistency between models, including the necessary query rewriting for querying the

data stored in each part, and merging of results. From the user perspective and data

SALES (de-normalized)

SALES
Store

Time

Customer

Product

F⋈D

New inserted data

Moved to

Os

Od

Chapter 4 A Scalable and Predictable Data Model

49

presentation, the architecture offers a logical star schema model view of the data, in

order to provide easy integration with existing applications and because the model has

advantages in what concerns user understanding and usability.

Query processing has to take into account these two distinct data structures: the

in-memory star schema structure buffer Os (S (F; D)) that temporarily holds the newly

inserted data, and a de-normalized relation Od holding the remaining data after it is de-

normalized. The data is de-normalized opportunistically, based either on memory size

limit or time intervals. Os also represents a logical view of the star schema model,

providing a seamless integration with existing applications.

Since the processing model is composed by two data structures, each query q is

rewritten and decomposed into two distinct queries, qs and qd, and each executed

against the respective part of the model (Os, Od). The results are then combined with a

merging query qm to deliver the query result, as illustrated in Fig. 4.9.

Fig. 4.9 – Decomposition of query q

An aggregation query q ϵ Q, which takes the form of

q: G1, G2, …, Gm, g f1 (a1'), f2 (a2'), …, fk (ak') (F ⋈ D), where aj', 1 ≤ j ≤ k, aj'ϵ A

where G1, G2, …, Gm are group by attributes, g f1 (a1'), f2 (a2'), …, fk (ak') are aggregation

functions, e.g. SUM, COUNT,…

is rewritten into 2 distinct sub-queries, qs and qd, one for each part of the ONE

model (Os, Od), and a merging query qm , for merging intermediate results from both

parts. qm is only built when Os≠∅ Λ Od ≠∅.

qs is similar to q, except for the aggregations functions fk (ak') which have to be

rewritten as a set of functions fk‘(ak') that take into consideration the need to merge

partial aggregation results. For instance, an average aggregation avg(a) has to be

q

qs

qd

qm

Chapter 4 A Scalable and Predictable Data Model

50

rewritten as sum(a) and count(a), so that the merging query be able to compute the

average as (sum(a)Od + sum (a) Os)/ (count (a) Od + count(a) Os). The query selection

predicates of q are left unchanged in qs. The resulting query qs is,

qs : G1, G2, …, Gm, g f1 ‘(a1'), f2 ‘(a2'), …, fk ‘(ak') (F ⋈ D), where aj', 1 ≤ j ≤ k, aj'ϵ A

Qd is rewritten in the following manner: in what concerns aggregation functions,

the rewriting process is similar to qs. However, the join conditions are removed and the

relations in the FROM clause are replaced with Od.. The resulting query qd is,

qd : G1, G2, …, Gm, g f1 ‘(a1'), f2 ‘(a2'), …, fk ‘(ak') (Od), where aj', 1 ≤ j ≤ k, aj'ϵ A

The merge query qm processes the partial results (qd ∪ qs) of qd and qs, to

compute the result of query q.

qm : G1, G2, …, Gm, g f1 (a1''), f2 (a2''), …, fk (ak'') (qd ∪ qs), where aj'', 1 ≤ j ≤ k, are the

intermediate aggregation results

4.6 Changes to the ETL process

ETL processes, after extracting and cleansing the data, usually have to perform

the following steps:

 Step 1 - Load tuples into dimension tables

For a new tuple, a new surrogate id is generated to be used as a dimension key

before loading it into the dimension table. An updated tuple is handled

according to the dimension SCD (slowly changing dimension) strategy. With a

type 2 or type 4 strategy, data is inserted as new tuples, whilst with a type 1 or

type 3 strategy the existing (already loaded) tuples have to be updated according

with the new data values.

 Step 2 - Load tuples into the fact table

For new data values (measures), a set of lookup key tasks are required to obtain

the corresponding foreign key values, one for each dimension, before it can be

loaded into the fact table.

Since we use two distinct data structures (Os and Od), new data can be loaded

using two distinct approaches: loading into Os, which uses a star schema model, or

loading directly into Od.

Chapter 4 A Scalable and Predictable Data Model

51

Loading the data into Os offers better transparency and easy replacement of

existing star schema implementations, since the existing ETL plans can be used without

changes. As discussed in section 4.4, the data in Os afterwards will be moved to Od.

However, until the data is flushed from Os to Od it cannot take advantage of the Od

representation.

For loading new data directly into Od, a new ETL plan has to be built, which

takes into consideration the data format of Od, that includes a transformation step that

performs a natural join of the new data before loading it into the de-normalized table.

The plan does not require the typical steps related to the generation of dimension key

values, and for each new fact tuple, the subsequent fetching of the corresponding

dimension key values from all dimension tables. With a de-normalized Od, the costs

with the generation of key values, the subsequent key lookup, the enforcing of the

dimensions SCD strategy and the rebuilding of key based indexes are avoided.

Regarding SCD, with the de-normalized data model Od, we follow a insert only

policy, rare updates are only admissible to correct erroneous values that were

previously loaded. The data is loaded as a continuous time-snapshot historical log, i.e,

each fact tuple t is joined with the current value of the dimension tables, that reside in

Os, before being loaded. Therefore the ETL plans for loading into Od are simpler and be

processed in parallel.

4.7 Storage size requirements

The star schema uses a normalized central fact table, which reduces the overall

DW storage size, since it only stores a set of measures (mmeasures), which are mainly

numerical attributes (facts) and a set of foreign keys (n foreignkeys) that are also numerical

identifiers. The size of the fact table (ssF) increases as a function of the number of

tuples.

ssF = ss (F) = |F| × (length(n foreignkeys) + length(m measures))

The star schema model includes a set of primary and foreign keys, which are

usually generated artificially (surrogate keys) and do not have operational meaning, to

allow the join of fact with dimension tables. These keys are required and represent a

storage space overhead of the star schema. In most scenarios, the number of foreign

Chapter 4 A Scalable and Predictable Data Model

52

keys represents a large percentage of the fact table attributes. For instance, a factless

table, a fact table that doesn’t have measures, is entirely composed with foreign key

attributes.

Beside the overhead related with storing the foreign key attributes, we also have

to account for other key related overheads related to key indexes, because most

RDBMS engines automatically create indexes on unique and primary key attributes.

Fig. 4.10, extracted from experimental section 8.2.1, which illustrates the storage size

distribution of the TPC-H schema, shows that the storage size overhead can reach up to

25% of the relations’ size.

Fig. 4.10 – Data size distribution of the TPC-H schema

Considering ssDW as the storage space requirements of a schema model, the total

storage space occupied by a DW is obtained as the sum of the tables and indexes.

Where sstables is the size of the fact table, ss (F), and related dimensions,

∑ss(di),di∈D. The size of each dimension is determined as

ss (di) = |di| × (length (primarykey) + length (miattributes))

The storage space required by the ONE data model is determined as

Where the storage size of the ONE data model is determined as

 = |F|× (length (mmeasures) + ∑ length (miattributes))

Chapter 4 A Scalable and Predictable Data Model

53

We define as the storage space increase ratio in comparison with the base

DW star schema model

Using as an example the TPC-H schema, shows the storage requirements of

TPC-H, with and without indexes, and the equivalent de-normalized data model

representation. The ONE data model represents a 4,47x increase in the storage size in

comparison with the base tables, but when we also consider the space required by key

related indexes, it is reduced to about 3,32x times.

Schema (SF1) Size (MB)

base TPC-H 1.144,7 MB 4,47

base TPC-H + Indexes 1.448,4 MB 3,32

ONE 6.270,0 MB

Table 4.1 – Storage space required by each schema organization

For quite some time, this increase in storage space was unacceptable since

storage space was expensive, disks had limited capacity and with slow transfer rates.

However, current disks are much faster, providing sequential transfer rates of hundreds

of MB per second, at affordable prices (with prices below 0.05€/GB). With the ONE

data model, a query has to read larger data volumes from storage, perform less equality

predicates to join relations and are bound-free from memory requirements needed by

join algorithms, such as sort-merge and hash joins, which may require the use of costly

random IO operations as well.

4.8 Partial de-normalization

In some scenarios, where dimensions have large width but reduced cardinality

(reduced number of tuples) and can be loaded entirely in memory, a partial de-

normalization approach can be used to reduce the storage size requirements. This

section presents two distinct approaches for partially de-normalizing the star schema.

4.8.1 Partial de-normalization of larger dimension tables

Dimensions of a star schema (D) have distinct characteristics. Some dimensions

DS (DS ⊆ D) are small and can be efficiently joined using in-memory join algorithms,

Chapter 4 A Scalable and Predictable Data Model

54

but frequently there is a subset of dimensions DL (DL ⊆ D, Ds ∩ DL=∅) that do not fit

exclusively in memory and to which the join of (F ⋈ DL) may need to store temporary

results to disk, thus significantly degrading query performance. If Ds are small and can

reside exclusively in memory, the de-normalization can be applied only to the larger

dimensions DL. In this case, Od will be a de-normalized model of (F, DL), which

contains the attributes Ao=AF∪ADL, without attributes from smaller dimensions ADS. Fig.

4.11 illustrates a partial de-normalized schema, where all dimensions are de-

normalized, except the STORE dimension, which is small and contains a reduced

number of tuples.

Fig. 4.11 – Partial de-normalized schema

With a partially de-normalized schema, large dimensions are stored in Od, thus

avoiding costly joins, and the remaining dimensions are joined using fast in-memory

joins. Since a partial de-normalized Od is narrower than the full de-normalized relation,

it has less storage space requirements, may yield faster IO performance (Od tuples per

second), but has higher memory requirements, for holding Ds and carrying out joins.

To determine if it is beneficial to de-normalize two relations, we compare

analytically the cost of reading and joining these relations, with the cost of reading the

already de-normalized data. For joining relations we used the hybrid hash join, which,

as discussed and evaluated in [DeWitt et al. 1984], is a join algorithm that delivers

enhanced execution time.

SALES

Store
lookup

Time

SALES (denormalized)

Customer

Product

SALES (de-normalized)

Chapter 4 A Scalable and Predictable Data Model

55

Definition 4.1

Considering two relations R and S, let tjoin (R,S) be the time needed to join R

with S, and tONE (R,S) the time to read the equivalent de-normalized data (R⋈ S).

It is beneficial to use a de-normalized data model when tjoin (R,S) > tONE (R,S).

Hash Join algorithms use a hash function to partition relations R and S into hash

partitions and are particularly efficient for joining large data sets [DeWitt et al. 1984].

The optimizer selects the smaller relation as the inner relation, used as the lookup driver

relation, and builds a hash table in memory based on the join key. It then scans the

larger table, probing the hash table to find the joined rows. This method is best used

when the smaller table fits entirely in memory. The optimizer uses a hash join to join

two tables if they are joined using an equijoin and a large amount of data needs to be

joined together.

When the available memory is insufficient to hold the entire inner relation, the

Hybrid Hash Join algorithm splits both relations into partitions, such that a hash table

for a partition of the inner relation can fit entirely in memory. Corresponding partitions

of the two input relations are then joined by probing the hash table with the tuples from

the corresponding partition of the larger input relation. Partitions that cannot fit into

memory have to be temporally written to disk, before being joined together.

Definition 4.2

Consider R as a dimension d, d∈ D, and S the fact table F, and R is smaller than

S. For relation R, consider that αR is the number of tuples, ρR is the number of

tuples that can fit in a block (or page) with size , βR is the number of blocks (or

pages) and ξR is the tuple size of R.

The cost of joining relations R with S, using a Hybrid Hash Join algorithm

[DeWitt et al. 1984][Patel et al. 1994] can be computed as

Chapter 4 A Scalable and Predictable Data Model

56

Where Ihash, Icopy and Iprobe represent the number of instructions needed to

perform the corresponding operation.

Considering
 , and Ro as the size of the first partition that can reside

in memory, which doesn’t need to be written to disk, and IO the cost of retrieving a

page from disk. The cost of processing a join between relations R and S can be

determined as,

Using ONE data model, the cost for executing the same query, without

considering filters and computations, can be determined as

 , but assuming that

, then

When the cost of joining a dimension d with the fact table F, is greater than

 , then the F⋈d should be de-normalized. The partial_de-

normalization algorithm shown below evaluates if it is beneficial to de-normalize each

dimension, d:d∈D, with d ranging in D, from the largest to smallest one.

 Algorithm: partial_de-normalization

 De-normalization of largest dimensions

 Input: F – the fact relation

 Input: D – set of dimensions sorted according to its size (from largest to smallest)
 Output: Od – the de-normalized schema

 Output: D’ – set of dimensions not de-normalized, D’⊆ D, |D’|≥0
1 Od ← F

2 foreach d in D do

3 │ if tONE (d, Od) > tjoin (d, Od) then

4 │ │ Od ← Od ⋈ d

5 │ │ D’← D’ ∪ {d };
 │ └
 └

4.8.2 Workload-driven de-normalization

Workload-driven de-normalization takes into consideration the query pattern

workload Q submitted against Os to determine frequently used query predicates.

Considering A as the set of all the star schema attributes, where AD are dimension

Chapter 4 A Scalable and Predictable Data Model

57

attributes and AF are fact attributes, such that A = AD ∪ AF, the goal is to determine the

set of attributes Ap , such that Ap={ a1,…, ak }, ak ϵ A, that are frequently used by the

query workload. For attributes Ap, it determines the set of most frequent values. Top k

subsets Ap are selected for de-normalization, with each subset Ap representing distinct

data ranges. For example, Fig. 4.12 illustrates a set of Ap for a given workload with k=4

and considering a 2-dimensional data space (product; time).

A1 ={(prod ≥ 2 ∨ prod ≤ 3) Λ time ≤ 8 }

A2 ={(prod ≥ 6 ∨ prod ≤ 9) Λ (time ≥ 5 ∨ time ≤ 9)}

 A3 ={(time ≥ 6 ∨ time ≤ 7)}

A4 ={(prod ≥ 2 ∨ prod ≤ 10) Λ (time≥ 2 ∨ time ≤ 4)}

Fig. 4.12 – Example of a set of Ap with k=4 in a 2-dimensional data space

The de-normalization is performed when a new query q, which has predicates P

that match a subset of Ap, is submitted. Its execution plan is altered in order to push

forward the predicates P just before join of (F ⋈ D). Therefore, the intermediate result

of F ⋈ D, represents a fragment (a subset) fp, with predicates p of the overall de-

normalized data. For instance, a query q such that σq ⋂ A4 = A4, then the intermediate

result of σA4 (F ⋈ D) is moved to Od as a new data fragment fp.

A metadata repository M maintains information regarding which subsets of the

overall data space Ap have been de-normalized, and where each fragment fp is stored.

After a fp is made available for processing and until the corresponding data tuples tf are

not removed from the fact table F, subsequent sub-queries qs that are submitted against

Os are rewritten to exclude the query predicates of the fp fragment.

As a consequence, the data volume of both F and D is reduced, and thus

improves the join cost.

The query planner uses the information stored in the meta-data repository M,

regarding the fragment predicates, where it is located, and in which data model, in order

to rewrite the queries accordingly.

Chapter 4 A Scalable and Predictable Data Model

58

4.9 Chapter Summary

This chapter described ONE, a de-normalized data model, which trades storage

size for predictable execution times of massive scalable data volumes and without the

unpredictability issues of the star schema model. We described the ONE processing

model which combines the predictability and scalability characteristics of the de-

normalized data model, with the ease and user understanding of the star schema model,

and described how data freshness can be achieved.

We discussed the impact of the model in storage size requirements, in the

existing ETL tasks, and presented alternative methods for loading new fresh data. We

also described methods for processing partial de-normalization of the schema.

ONE data model offers predictable execution time, and scales linearly with the

volume of data.

59

Chapter 5

Providing Right-time with a Elastic

Parallel Architecture

The query execution time is constrained, among other factors, by the volume of

data that has to be processed. To handle huge amounts of data with acceptable response

times, usually we have to use parallel shared-nothing architectures. They yield good

performance and scalability capabilities, by distributing data among nodes to maximize

the local computation of partial results. With a star schema model, while the fact table

is partitioned into smaller partitions and allocated to nodes, dimensions can be

replicated into each node. The replication of dimensions, particularly large dimensions,

constrains the system scalability, and therefore some sort of execution time guarantees

can only be provided by over-dimensioning the processing infrastructure. This issue is

even more relevant when the processing infrastructure is composed by heterogeneous

nodes.

To provide execution time guarantees, we split the ONE data model into data

partitions and distribute them over a set of processing nodes. Since the ONE data model

provides predictable performance, the data volume allocated to each node is

proportional to the node ability to process it in a timely manner. We also propose

TEEPA (Timely Execution with an Elastic Parallel Architecture) that uses an elastic set

of heterogeneous nodes to provide right-time execution guarantees. We describe the

mechanisms that verify when the current deployment is unable to provide timely

execution times, that determine how many nodes, and which nodes, have to be

integrated into the parallel deployment, and also the data volume that has to be

redistributed amongst nodes.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

60

5.1 Introduction

In a parallel shared nothing deployment, each node computes partial results

based on the data that is stored locally. A merger node waits for these partial results,

and then merges them to compute the query result, before sending it to the user.

Therefore, each submitted query q has to be rewritten into a set of sub-queries that

computes the partial results (qp) in each node, and a merging query that merges the

partial results (qpR) to gather the query result (qR).

Definition 5.1

Consider a parallel deployment P with η nodes, P={nodej}j=1,..,η. For a query q,

q∈ Q, let texec be the query execution time, trw be the time needed to rewrite and

build the partial queries, ttpq the time to transfer the partial query to each node,

 the local execution time in a node j; ttpr the time required by a node to

transfer its partial results to the merger node; tm the time required by the merger

node to receive and merge the partial results and to compute the final result and

ts the time required to send the final results. The query execution time texec (q) is

computed as

 (1)

Assuming that trw, ttpq and ts are negligible then texec can be estimated as

 (2)

The overall query execution time texec (q) is mostly influenced by the local query

execution of the slowest node tmaxlocalexec, determined as

 , the number of

nodes η, the partial results’ size and the cost of sending them to the merger node.

The local query execution time tn can be improved by increasing the number of

processing nodes η of the parallel infrastructure, and thus reducing the amount of data

that each node has to process. However, to allow independent local query processing of

star schema DW, only the fact table is split among nodes whereas dimensions are fully

replicated. As dimensions are replicated, their relative weight in storage space in each

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

61

node, and consequently in the local query processing time, increases with the number of

nodes to a level where adding more nodes represents a minimal local performance

improvement. Moreover, the costs related to exchanging and merging partial results

increases with the number of nodes, gaining an increasing weight in the overall query

execution time texec. Equi-partitioning may help in this matter, by partitioning both the

fact table and some large dimension on a common attribute, usually the dimension

primary key, and allocating related partitions into the same node. However, since

business data inherently do not follow a random distribution, and data is skewed, the

used equi-partitioning may introduce another limitation to scalability, with some nodes

storing more data than others.

Definition 5.2

For a query q, q∈ Q, let texec (q, P) be the query execution time over a parallel

infrastructure P composed with |P| nodes, and ttarget (q) be the query execution

target. We define that the parallel infrastructure P can meet the query q time

target iff texec (q, P) ≤ ttarget (q). texec (q, P) is constrained by tmaxlocalexec the

execution time of the slowest node.

5.2 Speeding up the ONE data model – ONE-P

The ONE data model has minimal processing requirements and delivers

predictable execution time, as it is highly influenced by the storage IO capacity (making

it IO dependent), but it does not fully explore the individual computational and memory

capabilities of existing heterogeneous nodes. ONE-P extends the ONE data model by

partitioning it horizontally and distributing the partitions among processing nodes.

Since ONE-P does not require complex join algorithms (data is already joined), it has

reduced memory requirements, and it can be employed with a wide set of non-dedicated

processing nodes.

Definition 5.3

Consider a data volume V to be deployed over P. Let vi be the data volume

allocated to node i, vi=f (V), V=∑ vi, and let tn (i, vi) be the time required by

node i to read and process the data volume vi. Let tmaxlocalexec be the maximum

local execution time of processing nodes, ∀i∈ [1;η]: tmaxlocalexec ≥ tn (i, vi). The

goal is to determine the number nodes η that are needed and the data volume vi

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

62

allocated to each node i, in order to guarantee that ∀i∈ [1;η], tn (i,vi)≤

tmaxlocalexec.

ONE-P horizontally partitions the ONE data model into smaller and manageable

partitions, which are distributed among processing nodes. ONE-P does not require

additional storage space since the ONE relation is horizontally partitioned without

overheads between processing nodes. Fig. 5.1 illustrates a parallel deployment of ONE-

P, with each node containing a data fragment.

Fig. 5.1 – ONE fragments distribution among nodes

Since ONE is a single relation, it can be freely partitioned without constraints

and the scalability limitations introduced by the replication of dimensions of the star

schema. ONE-P scales-out almost linearly, since the whole data (fact and dimensions),

and not just the fact table, can be linearly partitioned among nodes (with η nodes, each

node will have 1/η of the ONE-P). Fig. 5.2, extracted from the experimental chapter,

depicts the speedup comparison between the parallel deployment of a TPCH-P schema

and the equivalent ONE-P data organization, over a variable number of processing

nodes.

Fig. 5.2 – Speedup comparison between TPCH-P and ONE-P

SALES
(de-normalized)

SALES
(de-normalized)

node 1 node 2

SALES
(de-normalized)

node n

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

63

By ensuring a linear distribution of the whole data, and not just the fact table,

query execution time is improved proportionally to the data volume in each node. In

contrast with the star schema, with ONE-P there is no data overhead when we vary the

number of processing nodes. The overall data size required by ONE-P remains constant,

while the overall size of a parallel deployment of a star schema DW increases as a

function of the number of nodes.

With a parallel deployment composed with homogeneous nodes, and since the

overall storage size is constant, regardless of the number of nodes, the storage size in

each node decreases linearly as a function of the number of nodes. The data volume

allocated to a node and the node IO throughput are the factors that have greater impact

in the node local execution time, because ONE is IO-bound. To meet specific right time

targets, the number of processing nodes has to be planned according to those targets.

Definition 5.4

Considering a ONE data model with the total data volume V, the local query

execution time tn in node i depends of the node’s characteristics and the fraction

of V that can be stored in node i, the vi = f (V). For a homogenous deployment,

vi = f (V) = V/η .

Since ONE does not require joins, the execution time t(q) of a query Q varies

according to the data volume and the cost of filter and aggregation operations.

Therefore, we can deliver accurate query execution time estimations. For any query q,

we can provide right-time guarantees by adjusting the number of processing nodes and

the data volume allocated to each node.

Since the performance of parallel shared-nothing deployments is constrained by

the slowest node (Fig. 5.3-a), the amount of data allocated to each node (and how it is

stored) should fully explore the nodes’ characteristics, to evenly divide the processing

time among nodes (Fig. 5.3-b). Data distribution, placement and join complexity (and

processing cost) are all interrelated and dependent of the used data model. The simple

addition of nodes to the parallel architecture is not sufficient to guarantee timely

executions.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

64

Fig. 5.3 – Data allocation size: a) evenly partitioned b) by nodes’ performance

Our focus is in guaranteeing timely results for queries (including ad-hoc) by

adapting the processing infrastructure, using an elastic parallel infrastructure where

processing nodes are (de)allocated as required, the data placement and the data model,

by redistributing the DW base data to provide query execution times within defined

time targets (Fig. 5.4).

Fig. 5.4 – The timely execution triangle

5.3 TEEPA - Timely Execution with an Elastic Parallel Architecture

This section introduces TEEPA (a Timely Execution with an Elastic Parallel

Architecture), a parallel architecture that provides timely execution results to queries

submitted to DW schemas, by using an elastic set of heterogeneous nodes. It

encompasses a set of modules that manage and seamlessly integrate an elastic set of

heterogeneous nodes, and adjusts the data model and data volume allocated to each

node according to the nodes’ characteristics, in order to attain the required timely

execution targets. TEEPA was designed as a transparent middleware and can be

deployed with a wide range of heterogeneous nodes (illustrated in Fig. 5.5).

Definition 5.5

Consider an elastic parallel shared nothing infrastructure E composed with η

nodes, E={nodei}i=1,..,η and let ioi be the storage throughput of node i. Let P be a

parallel shared nothing infrastructure composed with k nodes, P={nodek } k=1,..,k,

such that P⊆E. Consider Qr the set of running queries, Qr⊆ Q, let ttarget (Qr) be

the tighter time target, such that target ttarget (Qr)=min{ttarget(q):∀ q∈ Qr}. A

parallel infrastructure is called elastic, iff for a different Qr’ and ttarget (Qr’) it

Node3

Node2

Node1

time data

Node3

Node2

Node1

time data

scalability

Data volume

Storage

model

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

65

can determine and compose a processing nodes P’, P’⊆ E, and redistribute the

data volume among P’, such that texec (Qr’, P’) ≤ ttarget (Qr’).

Fig. 5.5 – TEEPA over an elastic set of heterogeneous nodes

TEEPA follows a shared-nothing approach and has the ability to adjust the data

model and query processing to fully explore the characteristics of added nodes that can

be heterogeneous. The addition of more parallelism is performed with minimum

disturbance and complexity, regardless of the new nodes characteristics. Willing nodes

are registered with TEEPA middleware and their characteristics, such as available

memory, processing and storage capacity, are accounted. When required, selected nodes

are activated and after some data reorganization they are fully integrated within the

processing infrastructure. This flexibility allows the use of an elastic set of

heterogeneous nodes, that are added and/or removed as needed, in order to deliver

timely execution targets. The additional nodes may include offline servers (to reduce

energy costs) or other online non-dedicated nodes.

Definition 5.6

Let tmaxlocalexec be the maximum local execution time of each processing node,

∀i∈ [1;η]: tmaxlocalexec ≥ tn (i, vi). The goal is to determine the number nodes η that

are needed to guarantee that ∀i∈[1;η], tn (i,vi) ≤ tmaxlocalexec, and the data volume

allocated to each node i, vi=f(V).

TEEPA takes into account the user specified time targets, expressed at query or

session level (see Section 5.3.1), to adjust and rebalance the processing infrastructure.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

66

When the current deployment is unable to deliver the time targets, it adds more

processing nodes and redistributes the data volume among them. These tasks are

performed, respectively, by the Right Time Evaluator, the Node Allocation and Data

Balancer sub-modules. TEEPA continuously monitors the local query execution, the IO

throughput and the data volume allocated to each processing node, to determine if the

system is able to satisfy the user specified time targets.

Fig. 5.6 – TEEPA framework

When TEEPA determines that a query may miss the time target, it starts the

node allocation and data rebalancing process. TEEPA begins by determining the

maximum data volume that a node can handle within the specified time target, and then

it determines how many additional nodes are needed to process the whole data volume

and satisfy the time targets. After the additional nodes are included in the parallel

architecture, it emits a set of data reallocation tasks, indicating for each node the

amount and the destination of the data to rebalance.

TEEPA is also designed to handle heterogeneous nodes. In this scenario, the

data rebalancing tasks are issued according to each node capability. The data volume

allocated to each node is adjusted as a function of the whole data load (total number of

tuples), the tuple size and the scan throughput, with faster processing nodes handling

larger data volumes. The node allocation (selection and integration of newer nodes) and

data rebalancing tasks are continuously executed until the time targets can be assured

(as illustrated in Fig. 5.7).

(2)
Schema
mapping

&
Rewrite

(1)
Query

(3) Send
partial
queries

(4) Run partial queries on local data

(5) send
partial
results

(6)
Merge

(7) query result

Timely Evaluator

Node Alocation
& data balancer

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

67

Fig. 5.7 – Data rebalancing process

Definition 5.7

Considering a ONE data model with the total data volume V, let ioi be the

storage throughput (in MBps) of a node i. For a heterogeneous deployment, let

tio be the aggregated storage throughput of active processing nodes, tio = ∑ ioi,

the data volume to allocate to a node i is, vi=f(V)=V× (ioi / tio), i.e. the node i

will hold a fraction of V that is proportional to its io throughput in the overall.

TEEPA integrates with a wide range of heterogeneous nodes and existing

DBMS systems, and is composed by a set of interconnected and extensible modules.

TEEPA is composed by two distinct services: the TEEPA manager, a managing service

that handles the timely execution targets and manages the elastic set of processing

nodes to ensure that the timely execution targets are delivered; and the TEEPA node

service (TEEPA NS), a service that runs locally in each node and is responsible for

locally processing the partial queries and also for processing all local management tasks

related to the nodes’ participation, or not, in the processing infrastructure. Fig. 5.8

depicts a detailed sketch of the TEEPA modules. The next sub-sections discuss in more

detail their layers and functionalities.

TEEPA was conceived as a transparent middle-layer to users and applications,

allowing a full compatibility with existing applications. TEEPA NS was designed to

interact with the TEEPA manager, but it also can be deployed and usable as a

standalone module, without the manager.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

68

5.3.1 TEEPA Manager

The flexibility and scalability provided by the TEEPA architecture is achieved

by the supervision of a TEEPA Manager, which processes all the necessary

management tasks to adjust the processing infrastructure, by load-balancing data using

an elastic set of heterogeneous nodes, to attain the timely execution targets. It handles

the query timely execution requirements, manages nodes’ availability and schedules the

processing of tasks among nodes. It is divided in five replaceable components. Not all

are mandatory in all deployments, e.g. a scalability manager is only required if the

additional nodes can be added in runtime. Whilst the prototype version (illustrated in

Fig. 5.8) uses a centralized management, TEEPA can also be run in decentralized

manner for improved robustness and dependability purposes.

Fig. 5.8 – TEEPA modules in detail

TEEPA includes a module TETH which manages the time execution targets.

The time execution targets are expressed through a set of additional clauses that are

parsed and interpreted by TETH. Although TEEPA can be organized (dimensioned) to

satisfy a global time execution target, it also allows the definition of a time execution

target for a particular query (Fig. 5.9 shows the WITHIN clause of SELECT statement)

or session (Fig. 5.10 shows the ALTER SESSION with time target clause). The timely

TEEPA Manager

Timely Execution Target Handler

External
Job Manager

Scalability
Manager

AssessmentRewriter

TEEPA NS
TETM

Risc-like proc

L2PT

TEEPA NS
TETM

Risc-like proc

L2PT

TEEPA NS
TETM

Risc-like proc

L2PT

node 1 node 2 node n

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

69

execution targets can be expressed as an absolute temporal instant, through the use of a

AT clause (e.g. AT 3PM), or a relative time interval (e.g WITHIN 5 minutes).

SELECT <attributes>

FROM <tables>

WHERE <conditions>

GROUP BY <grouping attributes>

[WITHIN <value> {minutes | seconds} | AT <datetime>]

Fig. 5.9 – Syntax of the time target clause added to a SELECT statement

ALTER SESSION SET TIME_TARGET

[WITHIN <value> {minutes | seconds} | AT <datetime>]

Fig. 5.10 – Syntax of the time target at session level

A submitted query is parsed to gather the time execution target. If it exists, then

the query processing tasks are evaluated to assess if the time execution target can be

satisfied. When it cannot, a data reorganization and rebalancing process is triggered (the

scalability manager is signaled) in order to re-tune TEEPA parallel architecture

according to the newly specified time execution target. Optionally, according to the

management configuration, admission control actions can be employed (e.g. load

shedding) when the current query load and processing infrastructure are unable to

guarantee such time execution targets.

Each submitted query is rewritten by a Query Rewriter, into a set of parallel

sub-queries (processing tasks) that are sent and run at each processing node. Additional

sub-queries are also generated for merging (to aggregate) the partial intermediate results

(computed locally in each node), to obtain the final result (the merging task). Since

TEEPA acts as a transparent middleware, it always provides a consistent logical view of

the star schema model to users and applications, without affecting the usability of

existing applications. The rewriting process takes into account the node’s data model,

which may be different of the logical star schema model.

Sub-queries (processing tasks) and the merging tasks are scheduled by an

External Job Manager which manages their orderly execution until the computation

of the final results. Tasks are scheduled according to the nodes’ availability, data

placement, time execution targets and the currently running tasks. For dependability

purposes, tasks may be redundantly scheduled for processing in different nodes

containing data replicas.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

70

TETH also collects the execution times of past queries, in order to determine if a

new submitted query can execute within its time target. If is a known query, i.e. a query

that have been executed in the past, it uses its query execution time do determine if this

time is above the query target. For an unknown query, the maximum execution time of

those past queries is used instead. TETH is modular and can be extended to include, for

instance, the estimation of query execution costs provided by the underlying DBMS.

When TETH assesses that there is a high probability of missing the query

execution targets, it signals a Scalability Manager to start the rebalancing process.

Deployment of a large star schema DW on complex and over-dimensioned

clusters of parallel dedicated nodes may provide fast query results using an expensive

brute-force approach. It follows the assumption that a large amount of top-edge

hardware will be sufficient to have the job done. The over-dimensioning is lead by

future performance and data load expectations, and by the fact that future upgrades are

costly and may require a full architecture substitution, if similar (homogeneous) nodes

became obsolete (unavailable). And a good balance of the amount of data allocated to

heterogeneous nodes in a parallel shared-nothing architecture is hard to accomplish,

since query time is constrained by the performance of the slowest node (see equation 2

in Section 5.1).

The Scalability Manager determines how many new nodes are required, to

satisfy the demanded computational power, and the data volume that has to be moved

from each node in order to achieve the specified query execution times (Section 5.6

discuss the overload detection and the rebalancing algorithms).

When additional nodes are available, or can be made available, they are

activated, and after a data reallocation tasks have been processed, they are incorporated

as processing nodes of the parallel infrastructure, as illustrated in Fig. 5.11.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

71

Fig. 5.11 – Additional node added

The amount of data has to be reallocated from current nodes to the newly added

nodes and the detection of node unbalancing and overloading are discussed in detail in

Sections 5.5 and 5.6 respectively.

After the rebalancing process is completed, it changes the status of these new

nodes to online, before they became full members of the parallel infrastructure. This

feature allows TEEPA to provide elastic processing capability and runtime load

scalability. This module is also responsible for handling nodes availability, node

failures, and for all the processing tasks related to the rebalancing of data and

processing.

To provide top performance and perform informed rebalancing decisions, there

is a continuous monitoring (Assessment) module that collects statistics, both at global

and node level. Decisions taken by the TETH, the scalability handler and also the job

scheduler are made taking into consideration the performance gathered statistics, and

their quality.

5.3.2 Node Processing Service (TEEPA - NS)

Each processing node runs a small daemon, composed with three independent

layers (shown in Fig. 5.8), that can be extended to include different implementations, as

long as the interconnection interfaces are implemented. Not all layers may be required

in all deployments. For instance, the TETM (defined below) can be excluded if its

TEEPA MW

NS NS NSNSNSNS

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

72

functionalities are delivered by the TETH module. The same applies to the Logical to

Physical Translator module (L2PT).

Query acceptance decisions can be made locally in each node, by a Local

Timely Execution Target Manager (TETM), through delegation or for queries that

are submitted locally, outside the scope of the parallel execution infrastructure. Queries

are analyzed and rewritten according to local data model, which may differ from the

logical star schema data model, and are then scheduled according to the timely

requirements. The local scheduling decisions also try to maximize the data sharing

among running tasks.

TEEPA NS also includes an extensible Data Storage layer that abstract data

processing tasks from the underlying storage organization, allowing the use of different

storage systems, such as DBMS or raw file systems, in a seamless manner. This is

possible since data processing is reduced to a minimal set of simple primitives.

To provide a seamless integration with users and applications, the architecture

contains a Logical to Physical Translator (L2PT) module, which adapts the data

physical organization, data placement and processing complexity to provide the

required timely execution guarantees, while maintaining a consistent logical star

schema view of the data. While the data model can change, by adapting the de-

normalization level (fully or partially with small-sized dimensional data residing in

memory), the logical view presented to users remains consistent and invariant. It

provides a JDBC interface to allow seamless integration with users and applications and

the submitted SQL queries are syntactically analyzed according to the logical star

schema view.

5.4 Logical to Physical Translator

As the physical schema may diverge from the logical star schema view, queries

have to be rewritten according to the physical schema representation, into a set of

simpler processing tasks with more predictable execution time. A query q, syntactically

valid according to the logical schema, is translated (rewritten) into query q’ (or a set of

sub-queries) according to the internal physical organization.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

73

L2PT uses the partial de-normalization algorithms discussed in Section 4.8 to

determine the level of data de-normalization and includes primitives that perform

changes in the physical data representation, by varying the de-normalization level to

guarantee timely execution guarantees. It also offers physical schema interface that

transparently adapts to the query load. Multiple physical representations can coexist in

each node while sufficient storage space is available. Each node can autonomously

decide to change the de-normalization level to another model that best fits to the local

data distribution and the timely execution requirements. The data model used in each

node can fluctuate from the star schema data model to the fully de-normalized ONE

data model, according to the node’s characteristics (Fig. 5.12).

Fig. 5.12 – Storage space scope

An increase in the de-normalization level also increases the storage size

requirements, since more redundant data has to be physically stored. However, all

complex joins are removed (full de-normalization) or reduced to a minimal set of in-

memory joins (partial de-normalization) where only dimensions that can fully reside in

memory are left unchanged. Query processing requirements is thus reduced to a

minimal subset of processing primitives without complex and costly join processing

primitives. Queries are decomposed into a set of simpler and predictable processing

instructions (see Section 4.1). Without costly joins (both in CPU and memory), and

since it requires less memory for processing data, nodes change their memory

management pattern by increasing the amount of memory used for caching the data, and

consequently enhancing query performance even further.

Denormalizednormalized

More space
Constant time

predictable

Less space
In-memory joins

memory
CPU

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

74

5.5 Data Allocation to Heterogeneous Nodes

TEEPA manages an elastic set of heterogeneous nodes, added or removed

according to the current timely execution targets, and re-balances data load between

processing nodes until the variance of local query processing is below an acceptable

threshold. Since ONE-P does not require joins, it provides predictable and almost

invariant query execution times, with less demanding DBMS systems, and therefore it

can be deployed on COTS (see acronym) hardware with minimal memory and

processing requirements. [Costa, Cecílio, et al. 2011; Raman et al. 2008] demonstrated

that schema de-normalization provides predictable query execution times. Since ONE-P

provides a high degree of predictability, and query processing is highly IO dependent,

the de-normalized relation can be freely partitioned according to each node’s capacity.

Query processing of a de-normalized relation in a shared-nothing fashion,

illustrated in Fig. 5.13 b) for active nodes is similar to typical shared nothing

infrastructures. The main difference in query processing resides on step 2, which

rewrites a query into a set of partial queries to be executed by the local nodes. Besides

rewriting, it also has to remove all join conditions and perform the necessary attribute

mapping, translating all the existing references of the star schema model to the

corresponding attributes in the de-normalized relation. To ensure that dimension

aggregates results do not include double-counting, some additional predicates have to

be included.

Fig. 5.13 – a) ONE-P partitioning and placement b) ONE-P Query processing

SALES
(de-normalized)

node 1

node n

SALES
(de-normalized)

(2)
Schema
mapping

&
Rewrite

(1)
Query

(3) Send
partial
queries

(4) Run partial queries on local data

(5) send
partial
results

(6)
Merge

(7) query result

Timely Evaluator

Node Alocation
& data balancer

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

75

In a parallel deployment with homogenous nodes, the amount of data is evenly

divided between nodes to deliver the expected execution time. The number of

nodes is determined as a function of the desired timely execution, so that

 (3)

However, in parallel architecture with heterogeneous nodes, and since the ONE

is highly IO dependent, data is allocated to each node in order to minimize the variance

of the inter-node local query execution time.

 (4)

The maximum local query execution local time (equation 4), is adjusted when

the number of processing nodes increases, to account for the additional intermediate

results that have to be exchanged and merged before computing the final result.

5.6 Detection of node unbalancing and overloading

Local execution time is tightly related, not only to the node’s physical

characteristics, but also to the data volume that the node has to process. Therefore to get

a local processing execution time below a given maximum local execution time

(max_ltime), it is fundamental to reduce the data volume allocated to each node

according to its capability.

 Algorithm: exceeding_load

 For a given maximum local execution time, determine the exceeding data load

 that has to be removed and distributed among nodes

 Input: on_nodes – list of online nodes

 Input: max_ltime – maximum execution local execution time

 Output: exceed_nodes – list of overloaded online nodes with exceeding data

 Output: under_nodes – list of online nodes with underused data

 Output: exceedload – amount of exceeding data volume in online nodes

1 if on_nodes = ∅ then return 0;

2 Let exceedload ←0;

3 foreach node in on_nodes do

4 │ Let ntuples ← getNumberofTuples (node);

5 │ Let nltime ← exec_time_history (node);

6 │ Let nltps ← nltime / ntuples;

7 │ if nltime > max_ltime then

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

76

8 │ │Let exceed_nodes (node) ← (nltime - max_ltime) × nltps;

9 │ │Let exceedload← exceedload + (nltime - max_ltime) × nltps;
 │ └

10 │else

11 │ │Let under_nodes (node) ← (max_ltime - nltime) × nltps;
 │ └ └

12 return exceedload;

When the exceed_nodes list is not empty, it means that some of the processing

nodes are overloaded and are unable to timely process their local data, and therefore

some sort of data rebalancing is required. The overloading can be resolved by

redistributing the exceeding data of the overloaded nodes among the other nodes (if

exists) or by the allocation of additional nodes.

Fig. 5.14 – Rebalancing the data volume when a new node is added

Fig. 5.14 illustrates the data rebalancing process, with each node determining

and distributing the exceeding data volume into the new node that was added to the

parallel infrastructure.

5.6.1 Resolving overloads by rebalancing data among nodes

The Timely Evaluator is continuously monitoring and assessing if the current

ONE-P deployment can deliver the user-specified time targets. When it cannot and

there are overloaded nodes, the Data Balancer determines if the non-overloaded nodes

can handle the exceeding data without endangering their own local execution targets.

The redistribute_exceeding_load algorithm depicted below, starts by rebalancing data

chunks from most overload nodes into under loaded nodes. When that occurs, the data

chunk is de-registered from the registry of the overloaded node, and a new registry

entry is inserted in the destination node.

node 1 node 2

SALES
(de-normalized)

SALES
(de-normalized)

new node

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

77

 Algorithm: redistribute_exceeding_load

 Redistributes the exceeding data load between the non-overloaded nodes without

 overloading them.

 Input/Output: exceed_nodes – list of online nodes with exceeding data (size)

 Input/Output: under_nodes– list of online underused nodes with capacity (size)

1 while exceed_nodes != ∅ && under_nodes != ∅ do

2 │ sort_descending_by_exceeding_load (exceed_nodes) ;

3 │ sort_descending_by_under_load (under_nodes) ;

4 │ Let enode = exceed_nodes [0];

5 │ Let unode = under_nodes [0];

6 │ Let ntuples ← MIN (load(unode) , load(enode));

7 │ rebalance_tuples_between (enode, unode, ntuples) ;

8 │ if load(enode) > load(unode) then

9 │ │Let exceed_nodes [0] ← exceed_nodes [0] - ntuples;

10 │ │Let under_nodes ← under_nodes – { unode };
 │ └

11 │else if load(enode) < load(unode) then

12 │ │Let under_nodes [0] ← under_nodes [0] - ntuples;

13 │ │Let exceed_nodes ← exceed_nodes – { enode };
 │ └

14 │else
15 │ │Let under_nodes ← under_nodes – { unode };

16 │ │Let exceed_nodes ← exceed_nodes – { enode };
 │ └ └

To fine-tune the amount of data allocated to each node, according to its

characteristics, the data reallocation process can be performed at row-level.

5.6.2 Resolving overload by allocation of additional nodes

TEEPA maintains a registry of the heterogeneous processing nodes, which can

be activated when additional processing power is required to deliver stricter timely

query results. The Timely Evaluator module is continuously monitoring and assessing if

the current ONE-P deployment can deliver the user-specified time targets. When it

cannot be guaranteed, the Node Allocation & Data Balancer module determines the

maximum data volume that can be timely processed by each node (within the time

targets), and redistributes the remaining data to the new nodes. By increasing the

number of processing nodes, the data volume allocated to each node is reduced, and

consequently the local execution time. However, as we increase the number of

processing nodes, there is also an increase in time needed for exchanging and merging

the intermediate results. Therefore, the rebalancing process reduces the maximum local

execution target in each node to accommodate these increased costs. To minimize the

exchanging time and the number of nodes present in the parallel processing

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

78

infrastructure, the new nodes are selected according to their performance (algorithm

allocate_fastest_first shown below). The node’s performance is mainly based on IO

aspects.

 Algorithm: allocate_fastest_first

 Allocate new nodes, fastest nodes first

 Input: on_nodes – list of online nodes

 Input: off_nodes – list of offline nodes

 Input/Output: exceed_nodes – list of online nodes with exceeding data (size)

 Input/Output: under_nodes – list of online nodes with under data (size)

 Input: max_ltime – maximum execution local execution time

1 sort_descending_by_IO (off_nodes) ;

2 foreach nnode in off_nodes do
3 │ activate (nnode);
4 │ Let on_nodes ← on_nodes { nnode };
5 │ Let max_ltime ← max_ltime – merge_cost (nnode);
6 │ Let exceed_load ← exceeding_load (on_nodes , max_ltime) ;
7 │ if exceed_nodes =0 then break;
 └

8 redistribute_exceeding_load (exceed_nodes, under_nodes);

The allocate_fastest_first algorithm may not deliver the fastest reorganization

time, since its goal is to minimize the number of processing nodes. If the number of

processing nodes is not an issue, but the reorganization time is, we use a variant of the

redistribute_exceeding_load where the function that sorts non-overload nodes

(sort_descending_by_under_load (under_nodes)) is replaced by similar function the

sort_ascending_by_under_load_transfertime (under_nodes) that takes into account the

nodes’ IO performance and also the network interface performance. In this case, nodes

that exhibit less transfer times are used first.

While this process is performed, the Timely Evaluator continuous to monitor the

current deployment to assess if the time target is provided, repeating the process until

the average inter-node variance falls below a given threshold. The node allocation

(selection and integration of new nodes) and the data rebalancing tasks are continuously

executed until the time targets are assured.

After the rebalancing process is completed, the Node Allocation process

changes the status of these new nodes to online before they start to be full members of

the parallel infrastructure. It is also responsible for handling nodes availability, and for

all the rebalancing data and processing tasks that are required to handle a node failure.

Chapter 5 Providing Right-time with a Elastic Parallel Architecture

79

To provide top performance and perform informed rebalancing decisions, there

is a continuous monitoring and collection of statistics, both at global and node level.

5.7 Chapter Summary

We proposed TEEPA, a parallel right-time architecture that uses the particular

characteristics of the ONE model. TEEPA provides predictable performance to scalable

data volumes and can be massively parallelized over a large set of processing nodes.

We describe the modules of the architecture, and the mechanisms that determine

when the current deployment is unable to provide timely execution times, and

determines how many, and which nodes, have to be integrated into the parallel

deployment. It also determines the optimal data layout and the data volume that has to

be redistributed among nodes to provide specific execution time targets.

81

Chapter 6

SPIN: Concurrent Workload Scaling over

Data Warehouses

Increasingly, Data Warehouse (DW) analyses are being used not only for

strategic business decisions but also as valuable tools in operational daily decisions. As

a consequence, a large number of queries are concurrently submitted, stressing the

database engine ability to handle such query workloads without severely degrading

query response times. The query at a time execution model of traditional RDBMS

systems, where each query is evaluated as a separate execution plan, does not provide a

scalable environment to handle such increase of unpredictable workload. While the

previous chapter focuses on providing guarantees for varying data volumes, this chapter

proposes strategies to provide predictable and time guaranteed execution for highly

concurrent query workloads.

This chapter proposes SPIN, a data and processing sharing model that delivers

predictable execution times to aggregated star-queries even in the presence of large

concurrent query loads, without the memory and scalability limitations of existing

approaches.

Section 6.1 describes the SPIN processing model and Section 6.2 describes how

it overcomes concurrency limitations of the query-at-time processing model of common

database engines. Section 6.3 describes the mechanisms used by SPIN to embed data

and queries into a shared query processing pipeline tree and Section 6.4. discuss the

query processing path and how SPIN dynamically reorganizes the processing tree. We

discuss how SPIN characteristics overcome the limitations of recent proposals on data

and processing sharing, such as memory limitations, reduced scalability and

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

82

unpredictable execution times when applied to large DWs, particularly those with large

dimensions.

Section 6.5 describes how data is processed and flow in the workload processing

tree (WPtree) in order to maximize the sharing of data and processing, and Section 6.6

describes how this tree is built and reorganized when new queries are submitted.

Section 6.7 discusses how SPIN handles data updates and deletes. Section 6.8

presents implementation details of the SPIN prototype. The chapter ends with some

concluding remarks.

6.1 SPIN Processing Model

SPIN uses the de-normalized data model (ONE) proposed in [Costa, Cecílio, et

al. 2011; Costa, Martins, et al. 2011], this means that the star schema is physically

organized as a single de-normalized relation (Od). SPIN provides workload scale-out by

combining (merging) data requests from all queries to be satisfied by a sequential

continuous scan executed in a circular loop. Data is read from storage and shared to all

running concurrent queries, as illustrated in Fig. 6.1.

Fig. 6.1 – SPIN base data processing model

The circular loop is continuously spinning, sequentially reading data chunks,

while there are queries running. The execution of a query ends when all tuples stored

within data fragments are processed and the circular logical loop is completed.

A Data Reader sequentially reads chunks of relation Od, and continuously fills a

data pipeline. It views the ONE relation (Od) logically as a circular relation, i.e. a

relation that is constantly scanned in a circular fashion (when the end is reached, it

continues scanning from the beginning). The relation is divided into a set of logical

fragments (or chunks), with the chunk size ranging from 32MB to 512MB in size, in

multiples of 64 tuples, adjusted to storage characteristics. A fragment metadata

repository is maintained storing information regarding each data fragment, namely its

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

83

size, its start and end logical positions within the relation and the number of tuples that

it stores. Fig. 6.2 illustrates the SPIN metadata repository which stores metadata

information about the relation and data fragments.

Fig. 6.2 – SPIN Fragment Metadata

A Data Reader sequentially reads chunks of relation Od, and continuously fills a

data pipeline. When entering the pipeline, tuples have to go through a fast initial

filtering selection operator to early discard large subsets of tuples not requested by

currently registered queries (early selection). Only tuples that are relevant for at least

one query flow to a Data Switch (DS), which diverts tuples to each running query,

building a dedicated logical flow (data branch) for each query. For performance

reasons, some fast execution and common early selection predicates are incorporated in

the Data Reader.

Definition 6.1

Let |Od | be the number of tuples of relation Od. For a Data Reader DR that is

continuously reading Od in a circular fashion, r(Od) is the index of the last tuple

read and placed into the pipeline, with r(Od) ranging in [0; |Od |].

Since Od is de-normalized, no costly join tasks need to be processed, only query

predicates and aggregations operations. Any query q, when submitted, starts consuming

and processing the tuples that are currently in the data pipeline, starting from r(Od).

Fragment id

Filename id

Relation Name

Schema id

Tuple Size

Start Position

End Position

Length (in Bytes)

Ntuples

0

1

ONE

1

1.412

0

451.840.000

451.840.000

5.000

1

1

ONE

1

1.412

451.840.000

903.680.000

451.840.000

5.000

2

1

ONE

1

1.412

903.680.000

1.355.520.000

451.840.000

5.000

3

1

ONE

1

1.412

1.355.520.000

1.807.360.000

451.840.000

5.000

Relation ONE

Filename 0 /SPIN/ONE1.DBF

Schema ID 1

Fragments 4

NºTuples 20.000

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

84

6.2 SPIN query handling

A Query Handler handles query (de)registering. Any query q registers as a

consumer of the data in the pipeline, following a publish-subscribe model. Each query

q, has to process every tuple from relation Od, at most once, although data query

processing does not need to start at record 0.

Definition 6.2

Let Qr be the current query workload, composed by a set of queries, Qr ={qi},

qi∈ Q, and let |Qr| be the number of running queries. A query qj, qj∈ Q when

submitted it is added to Qr and the current value of r(Od) is registered. Let s(qj)

be the index of the first tuple to be considered for processing query qj, then

s(qj)= r(Od).

For each running query, a Query Handler maintains an indicator of the first

logical tuple (position in the circular loop) consumed by the query. This logical first

row position is fundamental to determine when the end of each query is reached. When

that occurs, then the query q has considered all tuples for execution, therefore it

terminates execution and sends the query results to the client. Fig. 6.3 illustrates the

data reading circular process, depicting the logical starting position for queries q1, q2

and q3.

Fig. 6.3 – SPIN sequential data reading loop

Since each query q, starts consuming tuples from the current position (r(Od)) in

the circular loop, without the need to start from a specific record, the reading cost (IO

cost) is shared among all running queries Qr without introducing additional IO overhead

or random reads. Others costs related to query processing occur at subsequent executing

phases, such as selection, logical branching and pipeline processing.

q1 q2

q3

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

85

6.3 SPIN operators and data processing pipelines

SPIN follows a flow oriented processing model. Each query q is analyzed and

decomposed into a set of sequentially-organized predicates, computations and

aggregations tasks, which are mapped to operators placed along pipelines. A data

processing pipeline (or simply referenced as pipeline) is a collection of sequentially-

organized operators that transform the input tuples as they flow along the pipeline.

SPIN include the following base operators:

- Selection Operators -σ (conditions) – apply predicate clauses to filter incoming

tuples, trashing those that do not meet the predicate clauses. Each Selection

Operation maps a query predicate (default) or a set of related query predicates.

The selection operators are typically placed at the beginning of the processing

pipeline, to filter tuples that pass-through the pipeline and go into subsequent

processing operators. Selection Operators are placed in a sequential ordered

fashion according to their selectivity and evaluation costs, with more restrictive

and faster ones placed at early stages.

- Projection operators -π (attributes) – restrict to a subset of tuple attributes that

flows throw the pipeline. A projection and a selection operator can be combined

into a single step operator.

- Computation Operators -φ (computation expression) - perform tuple level data

transformations, including arithmetic (e.g. φ (a + b)) and string manipulation

(e.g. substring). A dedicated Computational Operator is built for each specific

transformation. A Computation Operator maps a tuple-level arithmetic function

or operation expressed in any of the query clauses (e.g. the arithmetic expression

QUANTITY×PRICE). The mapping into φ is particularly relevant for complex

computations that appear in several query clauses. Query predicates that include

computations (e.g. QUANTITY×PRICE>1000) may be mapped into σ,

preceded by a φ that performs the computation. The goal is to build fast

selection operation with simple and fast evaluation predicates.

- Data Switches - DS (attribute conditional switching) – forward data tuples into

a set of data outputs, called logical data branches (B). Tuples are forwarded to

all branches b, b ϵ B, or forwarded according to each branch conditions. For

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

86

each branch, a tuple is only forwarded if it matches the branch’s conditions bp (if

exists). Tuples not matching any branch predicates are trashed.

- Aggregation operators – Σ (grouping attributes; aggregation functions) –

perform group by computations, by grouping tuples according to GROUP By

clauses, and applying aggregation functions (e.g. SUM). Aggregation operators

output results when all tuples for a given query as been considered for

processing.

Fig. 6.4 – SPIN Data pipeline with operators

The initial pipeline, where the data is placed by the Data Reader, illustrated in

Fig. 6.4, is named the base (or root) pipeline pb.

When submitted, a query q is analyzed and decomposed into a sequentially-

organized set of predicates, computations and aggregations tasks, which are then

mapped into SPIN operators and placed along a query-specific pipeline, or ps(q). The

processing of query q only starts after ps(q) is built and registered as a data consumer of

the base pipeline pb.

Definition 6.3

For a query q, q∈ Q, ps(q) is the query specific pipeline containing the query

specific operators.

Since each ps(q) consumes the data from the base pipeline pb, the cost of

gathering it from storage is constant and shared among queries, regardless of number of

running queries |Qr|. However, as |Qr| increases there is also an increase in number of

operators and query-specific pipelines (one for each query).

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

87

6.4 Query processing path

In large concurrent query loads, subsets of queries, Qs ⊆ Qr, may have the same

query predicates, computations or aggregations operators, which are processed

concurrently exhausting memory and processing resources. SPIN, to avoid the

redundant processing and to enhance the sharing of data and processing, splits the

query-specific pipeline ps(q) into an equivalent ordered set of sequentially connected

pipelines {p1,…,pn}. Each pipeline is composed with one or a set of logically related

operators that have to evaluate the same incoming tuples, and is connected as a data

consumer of its predecessor. Operators that evaluate distinct sets of tuples are placed in

distinct pipelines, e.g. the selection operators σ(year=2000) and σ(product=‘P1’) are placed into

distinct pipelines since they have different selectivities. This set of sequentially

connected pipelines is called the query execution path, or path(q), and its output result

is equivalent to ps(q), path(q) ⇔ ps(q).

Definition 6.4

A data processing pipeline p is a set of sequentially organized operators that

transform tuples as they flow along the pipeline. Let pi and pj be two distinct

pipelines, pi→pj denote that pj is directly connected to pi and consumes the

results of pi. For a query q, q∈ Q let path(q)={p1,…,pn},n≥1, denotes a set of

sequentially connected pipelines that form the query path, such that

∀ pi,i>1∧ ≤n, pi→ pi-1.

For the currently running query load, similar partial pipelines (with the same

operators over the same tuples) from different queries are combined into a common

pipeline and a data switch is appended at the end to share its results. The subsequent

connected data pipelines are then connected as logical branches of this common data

pipeline, consuming its output.

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

88

Definition 6.5

A logical branch b is a pipeline, b∈ path(q), that is connected to a common

pipeline pc, or to the base pipeline pb. For a set of queries Qs={qi}, Qs ⊆ Qr,

with |Qs|>1, when exists a pipeline pc, such

∀q∈ Qs, ∃p’∈ path(q): pc⇔p’ and ∃b∈ path(q): b≠p’ ∧ b→p’,

then pc is a common pipeline, b is a branch and path (q)= {b}∩ path’(q): {b}→

path’(q), path’(q)= path(q) \ {p’}.

A set of query-specific pipelines with common operators are rearranged in order

to push–forward and orchestrate similar operators into a common processing pipeline.

At the end of this pipeline, a data switch DS diverts the data output to further processing

in subsequent logical branches. Fig. 6.5 illustrates a SPIN processing layout with two

logical branches composed by two query-specific processing pipelines connected to a

common processing pipeline.

Fig. 6.5 – SPIN Logical Branch Processing Model

Definition 6.6

For a query q, q∈Qs, let bn be the logical branch with the query-specific

operators and pb the base pipeline, then for ∀q∈ Qr, the path of a query q can be

expressed in the form of path(q) = { pb, b1, ..., bn },n≥0.

For the current query load Qr, when exists a pipeline p that is common to all

running queries, then the operators are pushed forward and combined with the base

pipeline pb, in order to early discard unnecessary data and reduce the data volume that is

placed in the base pipeline pb. ∀q ∈Qr, ∃b∈ path(q), then pb = pb ∪ b. When possible,

selection predicates are pushed forward into the Data Reader to reduce the data volume

within the pipelines and thus increasing the level of data processing sharing. The base

pipeline trashes tuples that are not required by any of its logical branches. To ensure a

fast early selection phase, complex (costly) query predicates are placed at later stages.

q2

q2 pipeline

Σ
AVG(sales)

σ cust >=342

base pipeline

Data

Switch
σ

Y=2000Circular Data
Reader

q1 pipeline

Σ
SUM(sales)

σprod >=45
q1

φ(price+VAT)

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

89

6.5 Building the Workload Processing Tree

As a result, the initial query-specific processing pipelines of running queries are

split, merged and organized into a workload data processing tree. In the end, for each

query there will be a logical data path traversing logical branches and pipelines that is

equivalent to the initial query-specific data pipeline.

Definition 6.7

For a query workload Qr, the orchestration of all the query paths, such that ∀q∈

Qr with path(q)= { pb, b1, ..., bi, pq }, in a tree manner with pb as the tree’ root,

is named the workload processing tree, or WPtree. For a pipeline p of the

workload processing tree, ∀p∈ WPtree, let β(p) denote the set of branches that

are connected as consumers of p.

The merging of common data processing pipelines is enforced through all the

query execution steps, to maximize the sharing of data and processing and consequently

reduce memory and processing requirements. For instance, consider that queries q1, q2

and q3 are currently running with different query predicates: q1 (σp =a), q2 (σy =2000) and

q3(σp = a Λ y= 2000). Without combining the common pipelines of the running queries, the

initial query-specific pipeline ps is built and connected to the base pipeline. Fig. 6.6

depicts the query-specific pipeline, one for each query. In the example we observe that

some selection and aggregator operators can be combined into common pipelines.

 q1 = SUM(σp =a (sales))

 q2 = SUM(σy =2000 (sales))

 q3 = SUM(σy=2000 Λ p=a (sales))

Fig. 6.6 – SPIN deployment of query-specific pipelines

When a new query is submitted, and instead of simply connecting the

corresponding query-specific pipeline to the base pipeline, we apply a merging

algorithm that tries to find interception points in the current workload processing tree,

that can be combined in order to maximize the sharing of data and processing of

running queries. The addPath algorithm, shown below, uses the query path of the

Base
pipeline

Data
SwitchCircular Data

Reader

q3 pipeline

σ P=a ;
Y=2000;

Σ
sum(sales)

q1

q2

q3

q1 pipeline

σ P=a Σ
sum(sales)

q2 pipeline

σ
y=2000

Σ
sum(sales)

LB 2

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

90

newly submitted query to update the workload processing tree to reflect the changes

introduced by the merging of common processing pipelines.

 Algorithm: addPath

 Adding a query-specific pipeline to the Workload Processing Tree

 Input: Qpath the query-specific pipeline of query q: Qpath = path(q)

 Input: p a WPtree’s pipeline, by default the base (root) pipeline, pb

 Data: Workload Processing Tree (WPtree)

1 if Qpath = ∅ then return addBranch (p, Qpath);

2 Let be the branches connect to p; i.e. next connected branches

3 if b , p’ ∈ Qpath : p’ ⇔ b then

4 │ Qpath Qpath - {p’};

5 │ return addPath (b, Qpath);
 └

6 if b p’Qpath : p’ b ≠ ∅ then

7 │ pcommon b p’;

8 │ prest b \ pcommon;

9 │ Qpath Qpath \ {p’};

10 │ addPath (p, Qpath + {prest});

11 │ return addPath (b, Qpath);
 └

12 return addBranch (p, Qpath);

The algorithm uses the query path, Qpath=path(q), the set of sequentially

connected pipelines, and for each pipeline p starting from the base (or root) pipeline pb,

of the current workload processing tree (WPtree) determine if exists a logical branch b

that matches a pipeline p’ of Qpath. If exists then p’ is removed from Qpath and the

remaining Qpath is connected as a logical branch of b and consumes its data output. This

process is applied to each of WPtree’s pipelines, starting from the WPtree’s root

pipeline to the leaves, while there is a WPtree’s pipeline (b) that fully matches a

pipeline of Qpath. The matching pipelines are removed from Qpath.

Otherwise, if Qpath cannot does not have a pipeline p’ that completely matches a

branch b, but there is a partial match between a WPtree’s pipeline b and a Qpath‘s

pipeline p, meaning that they share a common region (interception between their

selection predicate regions), then Qpath is divided into Qpath1 = Qpath - {p} and Qpath2 =

Qpath1 + {p b}. The algorithm is then applied separately to each of those paths.

When do not exists a branch b of pipeline p that matches any of Qpath‘s

pipelines, either fully or partially, then Qpath is connected as a new branch of the last

matching WPtree’ pipeline p. If no matching pipeline exists then Qpath is connected to

the base pipeline.

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

91

The new logical branches are connected through a DS in the last matching

pipeline. The number and placement of DSs, and logical branches, are orchestrated in

order to minimize the switching cost (DScost), the number of evaluated predicates (neval),

the predicate evaluation costs and the memory requirement for branch management.

The placement of DS, and σ, along the WPtree influences the data volume that

goes through the pipelines. Therefore, we apply an optimization process that traverses

all logical branches to find opportunities to push-forward operators into preceding

pipelines. For instance, if every branch of a pipeline has the same operator, this operator

can be moved into the pipeline. Within a pipeline, selection operators are placed at the

beginning. Whenever possible, particularly for fast selection operators, a selection

operator within a branch is replaced by a data switch condition at the DS operator of the

preceding pipeline. For instance, in Fig. 6.7 the selection operators of pipeline 3 and 4

where pushed forward to pipeline 1 as a DS. The goal is to reduce the data volume that

traverses the pipelines, and to maximize data and processing sharing.

SPIN applies a merging process that analyses selection predicates and how

processing and intermediate results can be shared among processing pipelines. For each

data path path(q), it follows the path backward to pb, and at each pipeline p ∈ path(q) ,

it determines if there exists other logical path that is processing, or has already

processed, a subset of the tuples that p has to process. When a logical path lpath exists,

then p is split into two sequential pipelines (p1 and p2) with p2 containing the DS of p,

preceded by a merging operator. p2 is connected to p1 and lpath and starts consuming

their outputs and merging the results. The selection predicates of p1 are updated to

exclude the predicates of the logical path lpath. This can result in multiple alternative

branching deployments.

To evaluate these alternative deployments, and merging configurations, the

merging process uses several data volume metrics:

- ntuples as the number of relation tuples,

- neval as the total number of evaluated tuples by the σs, and

- nag as the total number of aggregated tuples by the Σs.

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

92

In the example, the initial deployment, without considering merging, the number

of evaluated and aggregated tuples are computed, respectively, as

neval = 3 × ntuples

nag = neval (σp=a) + neval (σy=2000) + neval (σ p=a , y=2000)

After the merging process, the number of evaluated tuples neval which has

obtained as a function of the number of running queries Q, is reduced from Q×ntuples to

Σneval(pσ) with pσ the selection predicates of p. Fig. 6.7 depicts the final deployment

after the merging process.

Fig. 6.7 – Aggregation Branch processing

The number of aggregated tuples nag is also reduced from Σneval (σq) to neval

(σy=2000) + neval (σ p=a , y=2000). The total number of evaluated and aggregated tuples are

computed, respectively as

neval = neval (σ y=2000) + neval (σ y=2000) + neval (σ y≠ 2000) = ntuples + neval (σ y=2000)

nag = neval (σ p=a , y=2000) + neval (σ p=a , y≠ 2000) + neval (σ p≠ a , y=2000)

 = neval (σ y= 2000) + neval (σ p= a , y≠ 2000)

In this example, we observe that the number of evaluated tuples (neval) is

substantially reduced from 3 times the number of tuples (ntuples) to ntuples plus the number

of tuples that satisfy the predicate (σ y=2000). More than 1/3 of the tuples, depending of

the selectivity of σ y=2000, aren’t evaluated. This reduction is even greater as the number

of concurrent queries increases and as the overlapping of query predicates increases.

Fig. 6.8, extracted from Chapter 8, illustrates this behavior.

Base

DS

Y=2000?Circular Data
Reader

pipeline 1

DS
p=a?

pipeline 2

σ P=a Σ (sales)

pipeline 3

Σ (sales)

pipeline 4

DSΣ (sales)

pipeline 6

Merge
Σ (sales)

pipeline 7

Merge
Σ (sales)

q1

q2

q3

LB 3.6

LB 2.7

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

93

Fig. 6.8 – Number of times tuples are evaluated

The results show, as the number of concurrent queries increases, a significant

reduction in the number of evaluated tuples by SPIN, while observing an almost linear

increase in the number of evaluated tuples of the common query-at-time processing

model of most database systems.

6.6 Reorganization of the workload processing tree

The data branching deployment is continuously reorganized as new queries are

submitted. New queries that cannot be directly plugged into the current workload

processing tree WPtree, as discussed in Section 6.5, are maintained as distinct branches

of the base pipeline pb.

When a query finishes its execution, the Query Handler removes from the

workload processing tree the query-specific pipelines that are not being used in other

logical paths. Pipelines used by other logical paths are maintained and only the query-

specific logical branches are detached and removed. For instance, in the example

illustrated in Fig. 6.7, when the query q3 finishes its execution, the corresponding

query-specific pipeline (pipeline 7) is detached from pipelines 2 and 4 before being

removed.

Fig. 6.9 – WPTree reorganization with group removal (1)

0

20

40

60

80

100

0 20 40 60 80 100
concurrent queries

Evaluated tuples (increasing factor)

TPCH SPIN

Base

DS
Y=2000?Circular Data

Reader

pipeline 1

DS

p=a?

pipeline 2

σ P=a Σ (sales)

pipeline 3

Σ (sales)

pipeline 4

DSΣ (sales)

pipeline 6

Merge
Σ (sales)

pipeline 7

Merge
Σ (sales)

q1

q2

q3

LB 3.6

LB 2.7

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

94

When a pipeline is removed, it triggers a reorganization process to update the

workload processing tree. The goal is to determine and remove the WPtree’ pipelines

that are producing output results that aren’t consumed (i.e. without connected outputs).

Aggregation groups (e.g. SUM (σy=2000, p=a (SALES))) that aren’t needed by any

of the running queries, can be excluded from query processing. As a result, related

processing branches (pipeline 2 in the example, illustrated in Fig. 6.10) can also be

removed from the workload processing tree (reducing memory usage and data

processing).

Fig. 6.10 – WPTree reorganization with group removal (2)

The selection predicates of existing branches, pipeline 1 in example, can be

pushed forward to upper pipelines, in order to reduce the data volume that has to go

through the pipelines for processing. The pushing forward of selection predicates may

cause the removal of additional branches, with the associated benefits.

Fig. 6.11 – WPTree reorganization with group removal (3)

As a consequence, when pipeline 2 is removed, the base pipeline switch is

replaced with the switch and logical branches in pipeline 1. Then pipeline 1 is also

removed. Operators in use by other currently running queries are updated to reflect the

removal of query-specific clauses. A data branching reorganization process is triggered

to determine if a better logical branching deployment can deliver improved

performance. Fig. 6.11 illustrates the layout of WPtree after the query removal.

Base

DS

Y=2000?Circular Data
Reader

pipeline 1

DS
p=a?

pipeline 2

σ P=a Σ (sales)

pipeline 3

Σ (sales)

pipeline 4

DSΣ (sales)

pipeline 6

Merge
Σ (sales)

q1

q2

LB 3.6

Base

Circular Data
Reader

DS
p=a?

pipeline 3

Σ (sales)

pipeline 4

DSΣ (sales)

pipeline 6

Merge
Σ (sales)

q1

q2

LB 3.6

σ Y=200

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

95

SPIN employs a late garbage collection of disconnected pipelines, allowing that

the intermediate results of the disconnect pipelines can be reused by subsequent queries.

Intermediate results and corresponding pipelines are discarded when the data that

originated the results changes. When needed, a LRU policy of disconnected pipelines is

used to free memory.

6.7 Handling data updates and deletes

SPIN processes data in a log-fashion manner, where new inserted data is

appended to the existing one. Therefore, deleted tuples are nor physically removed from

storage, but only marked as being deleted to avoid being considered from processing.

Deleted tuples are only physically removed from storage when a data reorganization

occurs.

Whenever a delete statement is issued, a filter selection predicate with the

statement predicates is introduced at the beginning of the base pipeline, along with the

submission timestamp. For performance purposes, an in-memory bitset (bitmap)

marking the “dirty” (deleted) tuples is built and updated as data tuples are evaluated

against the delete predicates, as illustrated in Fig. 6.12. These “deleted” query

predicates are removed from the base pipeline after a complete circular loop and are

then replaced by a bitmap lookup.

Fig. 6.12 – SPIN - handling deletes

Periodically, or when the data fragments are sparse (with a large number of

“deleted” tuples), or when a data reallocation process is executed, the “not deleted”

tuples are copied to new data fragments. The old data fragments are removed and the

update bitmap is updated accordingly.

SPIN allows data updates to both dimension and fact tables. In practice they are

handled in the same manner, since they are stored together into a single relation.

DELETE FROM table WHERE predicates

Base Pipeline

DSσ not

(predicates)Circular Data
Reader

0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

96

However, we have to distinguish data updates, as correction of previous loaded data,

and updates to slowly changing dimensions. In SPIN the later is treated as a simple

insert, since the new dimension data express the dimension values that were valid at the

time that the events (fact values) occurred. Therefore, changes in dimension that

occurred at a given instant are registered when the related fact event (e.g. a sale)

occurred. Since data is de-normalized, when fact tuples are loaded they will include the

updated versions of referenced dimensions. See Section 4.6 for details regarding data

loading and insertion of new data tuples.

For updates of previously loaded data, SPIN treats them as a combination of a

delete and an insert, i.e., the updated tuples (new values) are inserted as new tuples and

the existing tuples (old values) are invalidated by issuing a corresponding delete

statement, as illustrated in Fig. 6.13.

Fig. 6.13 – SPIN - Handling updates

When the percentage of deleted tuples are above a given threshold a coalescing process

clear all deleted tuples and frees storage space. See Section 7.3 for more details

regarding data fragments partitioning and management.

6.8 SPIN Prototype

We have built a SPIN prototype implemented in Java to evaluate its

performance and scalability capabilities. This section presents details of the SPIN

prototype, which implements the mechanism discussed above. The prototype was built

as a set of flexible and extensible modules, organized in three main layers (illustrated in

Fig.6.14): a data access layer, a SPIN core processing layer and a query handler layer.

DELETE FROM table WHERE predicates

Base Pipeline

DSσ not

(predicates)Circular Data
Reader

0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0

UPDATE table
SET <new attribute values>
WHERE predicates

INSERT INTO table VALUES (new row)

New Data Fragment

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

97

The SPIN prototype offers a SPIN API for querying and interacting with SPIN.

It also offers a JDBC compliant interface that interprets SQL-92 SELECT queries,

allowing SPIN to be used as a replacement of the existing DW infrastructure or be used

as query accelerator.

Fig. 6.14 – SPIN prototype diagram - release 1.6.3 (June2013)

The illustrated prototype in Fig. 6.14 relates to the release 1.6.3 (June2013),

which has about 32klocs and 153 java classes and do not include several of SPIN

optimization mechanisms, such as: data columnar storage organization, compression,

partial de-normalized relations with in-memory dimensions, massive data sharding, data

loading and snapshot isolation.

6.8.1 The data access layer

The data access layer implements all the functionalities related to gathering the

data from storage to the base pipeline for processing. Data is gathered by its main

module, the data reader, which can be extended to handle distinct storage locations and

physical data organizations. The default data reader accesses tuples physically stored in

a row-wise format in a full de-normalized relation as proposed in [Costa, Cecílio, et al.

2011]. We have implemented several data readers, including sequential and mapped

memory file using row-wise tuple organization, in-memory object-oriented tuple

Query Timely
HandlerQuery Parser

L2P Query Rewriter

JDBC SPIN API

SPIN Core Engine

Data Reader

Distributed Filesystem

db

Query Handler

WTRee Branch
OptimizerJIT Query Processor

D
at

a
A

cc
e

ss

La
y

e
r

S
P

IN

P
ro

ce
ss

in
g

La

y
e

r

Q
u

e
ry

 H
a

n
d

le
r

La

ye
r

Memory
management

Catalog Metadata

QPath Plan

File

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

98

organization, compressed row-wise, and SQL based data gathering from common

databases using a JDBC driver. The later data reader allows SPIN to act as a middle-

layer query accelerator of existing DW infrastructures. This layer also manages a

buffering (caching) memory to speedup the data access time, and the processing of

frequent accessed data.

6.8.2 The query handler layer

The query handler layer is responsible for handling query requests, for parsing

and performing a syntactical and object validation against the information in the

metadata catalog. It also contains a module that extracts and validates timely related

clauses, to check if they can be satisfied under the current query load. As discussed

above, SPIN by default uses a de-normalized ONE data model to avoid joining

relations, particularly large dimensions that cannot fit entirely in memory, and therefore

providing predictable execution times, but a distinct data reader can be implemented to

use others data model organizations. SPIN, in order to be a used as a middle-layer

and/or a transparent replacement of the existing DW infrastructure, maintains a

representation of the logical star schema model of the DW, regardless of the used data

model.

A Logical-to-Physical translator module rewrites the star schema queries

according to the SPIN’s physical storage model. It provides a JDBC interface to allow

seamless integration with users and applications and the submitted SQL queries are

syntactically analyzed according to the logical star schema view. As the physical

schema may diverge from the logical star schema view, queries are rewritten according

to the physical schema representation, into a set of simpler processing tasks with more

predictable execution time. A query q, syntactically valid according to the logical

schema, is translated (rewritten) into query qt (or a set of sub-queries) according to the

internal physical organization.

Afterwards, a query planner and optimizer builds a Qpath execution plan for each

rewritten query. A query handler manages the execution and completion of the query

Qpath execution plan and triggers the WPtree reorganization when the query completes

(reaches the first logical row).

Chapter 6 SPIN: Concurrent Workload Scaling over Data Warehouses

99

6.8.3 The SPIN processing layer

The SPIN processing layer handles query execution, maximizing the data and

processing sharing among queries. It implements the algorithms discussed in Section

3.1 to plug the specific query pipeline (Qpath) to the currently running workload

processing tree (WPtree). Then, a just-in-time (JIT) query processor uses dynamic

coding, to implement all the specific operators, pipelines and data branches required to

process the running queries. Afterwards query execution can be started by the SPIN

core engine. A WPtree branch optimizer is continuously monitoring the execution, the

addition and conclusion of running queries. A workload processing tree reorganization

is triggered whenever a different deployment can provide higher data and processing

sharing and yield better performance.

6.9 Chapter Summary

In this chapter we described SPIN, a data and processing sharing model that

delivers predictable execution times to aggregated star-queries even in the presence of

large concurrent query loads, without the memory and scalability limitations of existing

approaches. We described the mechanisms used by SPIN to embed data and queries

into a shared query processing pipeline tree and how SPIN dynamically reorganizes the

processing tree. We discuss how data is processed and flows in the workload processing

tree (WPtree) in order to maximize the sharing of data and processing, and describe

how this tree is built and reorganized when new queries are submitted.

101

Chapter 7

Providing Right-Time Guarantees to

Scalable Concurrent Workloads

SPIN enhances the sharing of data and processing and can handle large

concurrent workloads. But each query can have a different time target, which can be

tighter than the maximum time target (tmax) provided by the current WPtree. This

chapter focuses on how to reorganize the data volume and branch processing of the

current deployment, so that it can be able to deliver right-time guarantees.

The chapter starts by proposing a mechanism to determine if the current SPIN

workload processing tree can provide right-time guarantees. We proposed a bitset

processing approach that extends SPIN, which stores the result of predicate evaluation

in a bitmap-like structure and replaces costly evaluation with faster lookup operators

that use these structures. For large data volumes, where tmax is higher than the query

time target ttarget, we propose a parallel SPIN approach, called CARROUSEL, that

manages a set of SPIN processing engines in parallel, to speedup query processing and

reduce query execution time below required time targets. Tighter right-time guarantees

can be provided by extending the parallel infrastructure and redistributing data among

processing nodes, but also by redistributing queries, query processing and data branches

among nodes, according to their query load and data fragments they store.

7.1 SPIN predicate evaluation overload

In SPIN, any submitted query q has to consider all tuples read from the circular

loop, and each tuple that goes through the pipelines has to be evaluated against the

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

102

pipelines’ predicates. However, some query predicates may be complex and exhibit

high computational (CPU) evaluation costs, and thus limit throughput and performance

predictability.

The query execution time texec (q) is constrained by the time required by the Data

Reader to read the data (tread) and the time needed by the WPtree to process that data

tprocess, particularly tread, since all tuples must be considered for evaluation. While tread is

constant and shared among queries, tprocess is influenced by the computation (e.g.

aggregation operators) and evaluation of predicates of each query (teval), and how these

can be shared among queries. Since reading and processing is done in parallel, the

query execution time is constrained by the largest of these times (max(tprocess, tread)).

Definition 7.1

Let Qr be the current query workload, composed by a set of queries, Qr ={qi},

qi∈ Q, and let |Qr| be the number of running queries. Let tread (R) be the time

required by the Data Reader to fully read the data of relation R. For a query

q,q∈ Qr, let teval (q) be the evaluation time of the predicates of q, and tprocess (q)

be the total processing time of query q (including teval (q)). Query execution time

texec is constrained by max(tprocess, tread), which we will denote as tmax .

For large number of simultaneous queries, the processing time (tprocess) can be

larger than the reading time (tread), thus endangering the objective of execution time

predictability (as illustrated in Fig. 7.1).

Fig. 7.1 – Increasing processing costs for large WPtree

Even though SPIN shares data reads and processing of common predicates and

computational operations, the expectable throughput and predictable performance can

be limited by the processing capacity. The submission of new queries that do not fit

entirely into the current WPtree results in an increase of tprocess, since additional

#concurrent queries

tread

ti
m
e

tprocess

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

103

branches and processing are required. It may also increase tread if the query requires

data fragments that were not considered for processing by the current WPtree. SPIN

throughput and its ability to provide stricter timely targets are constrained by both the

data volume and the complexity of the WPtree.

For large query loads, resulting in a complex workload processing tree, a query

q with a given time target ttarget below tread may not be timely processed because of the

complexity and costs associated to the evaluation of branch predicates.

When the current deployment cannot provide the required timely targets for

some queries, either due to the reading costs or the processing costs, there is the need to

optimize the fragment processing within a node or to use parallel processing.

7.2 The bitset branch processing approach

The evaluation time (teval) is constrained by the number of predicates and

branches of the current WPtree. Queries with common predicates are combined in

common branches, in order to avoid duplicate evaluation of the same predicates. A

submitted query has to process and evaluate each of its predicates, even though similar

queries, with common predicates, have been previously processed in the past. As

predicates of common queries are associated to common branches, a branch with a

given predicate can be repeatedly built or may persist over time while at least one

running query uses it.

In SPIN, each branch is associated with a predicate, or set of predicates, which

is evaluated against every tuple that flows along the branch. Since tuples flow using the

same reading order, if data doesn’t change, the evaluation of the branch predicates

against every tuple that flows along the branch will not change. The result of predicate

evaluation will be the same as the last time it was evaluated.

To avoid subsequent evaluation of unchanged data tuples, we extended SPIN

with a bitset processing approach, which maintains the boolean evaluation of selection

operators as tuples flow through data branches. We build a branch bitset (bitmap)

according to the branch’ predicates, where each bit represents the boolean result of the

predicate evaluation (true/false) applied to a corresponding tuple index.

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

104

Fig. 7.2 – An example of a WPtree

In the example illustrated in Fig. 6.7, the aggregation query q1 = SUM (σy=2000,

p=a (SALES)), will produce two bitmaps, one for predicate y=2000 and another for

p=a, as illustrated in Fig. 7.3. Subsequent queries that have any of these predicates can

replace the predicate evaluation with a lookup operator to the corresponding bitmap.

Fig. 7.3 – Online predicate bitmap indexes

The query q2 = SUM(σy=2000, p=b (SALES)) can be rewritten as SUM (σbitmap_lookup,

p=b (SALES)). As a consequence, the query specific pipeline (pipeline 4 in Fig. 6.7,

which consumes data tuples from pipeline 1), can then be directly connected to the base

pipeline Data Switch (DS). This DS switches relevant data tuples to pipeline 4

according to the bit value at corresponding bitmap position.

As SPIN processes tuples in a circular fashion, when the relation reaches the

end, it restarts reading from the beginning. Therefore, future evaluations of a tuple can

take advantage of the existence of this bitset, since the selection operator that evaluates

the predicate can be replaced by a fast lookup operator that lookup the corresponding

position in the bitset to gathers the result. Bitsets are small and reside in memory in

order to avoid introducing overhead at IO level. This is particularly relevant for

predicates with high evaluations costs.

The following sections discuss how the bitsets are created, the bitset operators

and the changes in the workload processing tree.

Base

DS

Y=2000?Circular Data
Reader

pipeline 1

DS
p=a?

pipeline 2

σ P=a Σ (sales)

pipeline 3

Σ (sales)

pipeline 4

DSΣ (sales)

pipeline 6

Merge
Σ (sales)

pipeline 7

Merge
Σ (sales)

q1

q2

q3

LB 3.6

LB 2.7

… …

tuples c a a a a a d b c a c a a d c c c c a b b a b c d d a c a c c d d c d a

20
00

20
01

20
00

20
00

20
01

20
00

20
01

19
99

20
00

19
99

20
01

19
99

19
99

20
01

20
00

19
99

19
99

19
99

19
99

19
99

19
99

20
01

20
01

20
00

19
99

20
00

20
00

19
99

20
00

19
99

20
00

20
00

20
01

20
00

19
99

19
99

y= 2000 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0
p= a 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

105

7.2.1 Creation of Bitsets

A bitset is built on-the-fly, as tuples go through the branches and are evaluated,

with minimum overhead, since these results are stored in an in-memory data structure.

Fig. 7.4 illustrates the process of building the bitset for each branch.

In the figure, the reader scans the table data tuples (rows with the values of two

attributes, year and product type, are illustrated in the figure). Tuples read are placed in

an initial pipeline (leftmost DS in the figure) and then consumed by the connected

branches. A branch evaluates each tuple and stores the result of the predicate evaluation

in the bitset (the bitset is illustrated in the figure as a set of bits depicted on top of each

branch). The bitset stores 1 or 0 in each position, meaning that the row at the

corresponding position evaluates to true or false, respectively. This is very important,

since it makes it possible in every future evaluation of each row, to decide whether that

row should proceed to the next step in the branch, or not, based on the simple lookup of

the bitset. This avoids most of the evaluation costs.

Fig. 7.4 – Predicate evaluation and building the bitset

For a given attribute, a bitset can be built for each value of the attribute domain

(e.g. 11, 12, 13 …), or for sets of values, or intervals, of the attribute domain (e.g.

[10;13]). In order to avoid introducing additional overhead, bitsets are built according to

the selection predicates of the queries that are being submitted. When a new selection

operator is deployed in the WPtree that does not have a matching bitset, it starts

building a new bitset with the result of the selection predicate.

This bitset is kept in memory and shared by all branches that can use it, allowing

future evaluations of these tuples to be replaced by a fast bitset lookup operator.

DS

σ P=a

σ P=b

σ Y=2000 DS

σ Y=2001

σ P!=a

σ P=bDS

DS

DS

DS

Σ

Σ

Σ

Σ

DS

20
01

20
01

20
01

20
00

20
00

20
01

20
02

20
01

20
02

20
00

B C B A C B C B C A

0 0 0 1 1 0 0 0 0 1

1 1 1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

106

7.2.2 Bitset lookup operators

Branches can be built, or reorganized, to use bitsets to evaluate tuples. A

selection operator (σ) with a matching bitset is replaced with a special bit-selection

operator (σbit), which perform bit lookups to the corresponding index position in the

bitset, thus avoiding the evaluation of these tuples. Fig. 7.5 depicts an equivalent

workload processing tree where the selection operators (σ) are replaced with σbit

operators.

A branch with a selection operator (σ) that perfectly matches a bitset is replaced

with a σbit. Selection operators that do not have a matching bitset can also take

advantage of bitset evaluation by combining the existing bitsets for other values of the

attribute domain. For that purpose, there is also a special not bit-selection operator

(σ!bit) that evaluate as true all the index positions in the bitset that are 0. σ!bit is

equivalent to NOT σbit.

Fig. 7.5 – A branch processing layout using bitsets

For instance, consider that the domain of the attribute Y (year) is 2000 and 2001,

D(Y)={2000,2001}. If there is a bitset for 2000, bitset(y=2000), the selection operators σ

(y=2001) can be replaced with a σ!bit (y=2000) operator that applies a bitwise NOT to

bitset(y=2000). The result is equivalent to NOT(σbit (y=2000)). Fig. 7.5 shows how

bitset processing can be employed to boost performance even when a perfectly

matching bitset does not exist. Fig. 7.6-a) depicts the domain complement.

DS

σbit

σbit

σbit DS

σbit

σbit

σbitDS

DS

DS

DS

Σ

Σ

Σ

Σ

DS

20
01

20
01

20
01

20
00

20
00

20
01

20
02

20
01

20
02

20
00

B C B A C B C B C A

0 0 0 1 1 0 0 0 0 1

1 1 1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

107

Fig. 7.6 – Selection operators a) NOT b) NOR c) NOR

Fig. 7.6-b) depicts the scenario of a wider domain, where there exists a bitset for

each of the values of the attribute domain except for the value Y=2001. In this case, the

σ!bit operator does a NOT to the OR of the bitsets, NOT(OR(bit (y=2000),bit

(y=2002))), or simply NOR(bit (y=2000),bit (y=2002)). The domain complement (Fig.

7.6-a)) is a particular case, where the domain has only two distinct values.

Bitset processing can still be used when the number of values, of the attribute

domain, without a matching bitset is greater than 1 (Fig. 7.6-c). In this case, the

selection operator σ is maintained in the branch, but it is preceded by a σ!bit that

applies a NOR to the existing bitsets, thus obtaining a bitset with all the index positions

that are certainly false, marked as 0. The goal of this σ!bit is to avoid the σ operator

from evaluating these tuples that are known to be false. The remaining index positions,

which can be evaluated as true or false, are set with all 1’. As the σ operator evaluates

these remaining tuples, it updates and completes the bitset with the result of the

evaluation (illustrated in the figure with a blue arrow).

7.2.3 Mixed branch processing: branches with and without bitsets

At any given time, SPIN may have branches with bitset operators and other

branches that have to evaluate the predicates, because there isn’t a bitset that matches

the selection predicate. Branches that use bitsets are pushed forward and connected

directly to the base data pipeline to maximize the sharing costs, and to reduce the

overall number of tuples that have to be evaluated with selection operators (σ).

Newly created branches that do not have σbit operators are connected, as usual,

to the base pipeline, or to other branches with common predicates, regardless if they

have a bitset or not. Whenever a branch ends building a bitset, it is replaced by an

equivalent branch that performs the same evaluation through bitset operators (σbit).

1 1 1 0 0 1 0 1 0 0

σ!bit DS

1 1 1 0 0 1 0 1 0 0

Y=2000

D(Y)={2001;2000}

σ Y=2001 DS σ!bit

0 0 0 1 1 0 1 0 1 1

D(Y)={2001;2000;2002}

0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0

Y=2000

Y=2002

σ!bit DS

1 1 1 0 0 1 0 1 0 0

D(Y)={2001;2000;2002;2003}

0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0

Y=2000

Y=2002

NOT NOR NOR

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

108

Since bitset processing is faster than the tuple predicate evaluation, branches that

contain bitset operators are reorganized and pushed forward to the base pipeline.

To create a new bitset, a branch can use existing bitsets, to narrow down the

tuples that have to be evaluated against the branch predicate. When a new branch is

added to the WPtree, the corresponding selection predicate is associated with a bitset

composed with all 1’s. If exists a bitset, or a set of bitsets, related to the branch’

predicate, then the bitset of this new branch is updated accordingly.

Over time, predicates more frequently used will have a corresponding bitset, and

therefore will deliver faster query processing times.

7.2.4 Merging bitsets along the query logical path

For a query to be processed, tuples have to follow its logical data path, which is

composed by a set of branches organized in order to maximize the sharing and

processing costs among queries with common predicates. Bitset operators (σbit) allow

faster evaluation times. However, the execution time of query can be even further

improved by replacing the branches, which belong to its logical path, that have σbit

operators, with a single branch with a σbit operator that evaluates the bitset that

corresponds to the bitwise AND of branches bitsets.

When in a logical data path, two or more branches use exclusively bitsets to

evaluate tuples, then these branches are merged into the last one, with a bitset that is a

logical AND of these branches. The resulting branch replaces the merged branches, or

is directly connected to the base pipeline. The main goal is to filter as soon as possible

the data tuples that are relevant to a query, before reaching the branches that evaluate

tuples using selection operators.

Fig. 7.7 – Branch processing with a bitwise AND of the logical path branches

σbit

Σ

Σ

Σ

Σ

DS

20
01

20
01

20
01

20
00

20
00

20
01

20
02

20
01

20
02

20
00

B C B A C B C B C A
1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

σbit DS

σbit DS

σbit DS

DS

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

109

Fig. 7.7 depicts the new deployment, where the query logical data paths are built

with less data branches, where the last branch of each query path in the previous

deployment (Fig. 7.5) is substituted with a branch that evaluates tuples using single

bitset that represents the logical evaluation of all the bitsets of the logical data path.

In the figure, the bitset of query 1 (the topmost branch, which has only the first

bit set to 1) was built by the selection operator (σ) of the last branch of the logical path,

but it could also be built by applying a AND to bitset(y=2000) and bitset(p=b). The

four queries depicted in the figure are evaluated with dedicated branches, each with a

single σbit operator. These bitsets can be pushed forward to the base pipeline and be

used by the data reader to reduce the cost of getting and forwarding the data.

7.2.5 Pushing forward bitsets to the data reader

If all the branches connected to the base pipeline use σbit operators to filter the

tuples that relevant for each branch, then it is possible to build a composed bitset with

all the index positions that are relevant for at least one of the branches. This bitset,

named the WPbitset, indicates the relevant tuples required by current workload, and can

be used to control the data to gather from storage and optimize the IO reading cost. The

WPbitset is created by applying a logical OR to all the branches’ bitsets.

In a mixed environment, with some branches using σbit operators and others

not, an all 1’s bitset is considered in the bitwise OR, when exists at least one first level

branch that does not use a σbit operator to evaluate tuples. For the previous deployment,

the result of the merging OR is depicted in Fig. 7.8.

Fig. 7.8 – Data Reader Bitset computed as a bitwise OR of the branches bitsets

SPIN partitions data in data chunks. WPbitset allows the Data Reader to read

from storage only the chunks of data that are relevant for the workload processing tree,

and thus reducing the execution time of the currently running queries. Even when the

DS

σbit

Σ

Σ

Σ

Σ

DS

20
01

20
01

20
01

20
00

20
00

20
01

20
02

20
01

20
02

20
00

B C B A C B C B C A
1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

σbit DS

σbit DS

σbit DS

σbit

1 0 1 1 1 1 0 1 0 1

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

110

data reader cannot use WPbitset to filter data chunks, for instance when at least one

tuple of each chunk is required, and thus all chunks have to be read, it can use it to

decide which tuples to place in the pipeline (only those tuples pinpointed by the

WPbitset).

Queries with logical data path containing σbit operators, do not have to wait for

the last tuple (logical end tuple) to end execution and return the result. As soon as the

number of processed tuples, tuples that satisfied the bitset reaches the bitset count

(hamming distance), then the query can stop execution since all the tuples relevant for

the query (which satisfies the selection predicates) was already processed.

When that occurs, the query execution can fall below the barrier imposed by the

IO cost of reading the full relation (in a circular loop), since with bitsets a query can end

whenever all the set positions in the bitset as been processed.

7.2.6 In-Memory Bitmap Management and Retention

Bitsets for new predicates are built on-the-fly according to the query pattern, but

since the physical memory to hold Bitsets is limited, there is the need to recycle (drop)

some of the bitsets. SPIN implements a Bitset replacement policy, where Bitsets are

built, merged and dropped taking in consideration the following factors:

 RecentlyUsed (LRU) – bitsets used more recently used should be maintained,

since there is a high probability that it will be used again in the near future.

 HitRatio (hitratio) – bitsets used more frequently used should be

maintained to provide improved performance.

 Rebuildability (rebuild) – ability to rebuild a bitset by applying bitwise

operations to existing bitsets. For instance the bitset for predicates (P=a AND

Y=2000).

is a candidate for removal if it can be rebuild with a bitwise AND between

 Predicate evaluation cost (cost) – Bitsets of more costly predicates should be

maintained, since it yields higher throughput and less computation time.

y=2000 AND p=a 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0

y=2000 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0

p=a 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

111

Numerical comparisons are faster than character comparisons and other

comparisons that include complex operations.

 Hamming Weight (population count) (count) – number of bits set as 1. A

bitset with a higher population count is a candidate for removal, meaning that

there is a large number of tuples that satisfy the predicate. Therefore it only

avoids that a small fraction of tuples are not read from storage.

 Bitset Size (size) – the bitset size (in kb). All bitsets have the same size,

unless some sort of compression is employed.

Recall that any removed bitset can be completely rebuilt after a complete

circular loop, and therefore, subsequent queries can then take advantage of it to deliver

improved processing time. However since they are built on-the-fly according to query

predicates, the number of bitsets may rapidly exhaust the memory size Msize allocated

for bitsets.

By default, a Least Recently Used policy is used, which returns a list of bitsets

(LRU) order by the last time a bitset was used (less recently used first). While the

memory required to hold all the bitsets is still above Msize, bitsets are removed

sequentially according to the given list (by default LRU).

However, other policies can yield better results, for instance a less frequently

used bitset may be used to avoid high predicate evaluation costs, and therefore for

improved performance it should not be removed. For that reason, for each of the above

factors, we implemented a set of methods that return lists of bitsets ordered according to

the factor. Considering as the set of existing bitsets, let

 LRU sortByLessRecentlyUsed () - be the list of bitsets ordered by the last

time they were used (less recently used first)

 hitratio sortByLessUsed() - be the list of bitsets ordered by their usage,

(less frequently used first)

 rebuild sortByRebuildability () - be the list of bitsets, in an ascending order

according to the number of bitsets that it needs to be rebuilt. Bitsets

that cannot be rebuilt are set in the end of the list.

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

112

 cost sortByPredicateCost () - be the list of bitsets in an ascending order

according to the cost of evaluating the predicate without the bitset

(lowest costs first). The cost is collected when the bitset is built.

 count sortByHammingWeight () - be the list of bitsets in a descending

order according to the population count (higher counts first).

 size sortBySize () - be the list of bitsets in a descending order according to

the memory size that it occupies (greatest first).

When a new bitset is being created and there isn’t enough space to holding it,

the bitset is included in the list of considered bitsets (). We also offer a method

sortByWeight, which determines an ordered list of bitsets (weight), based on a mixed

of the above methods, through the definition of a set of weights. The function used to

order this list is determined by the sum of the weight multiplied by the index position in

the corresponding list,

fweight = WLRU × LRU + Whitratio × hitratio + Wrebuild × rebuild + Wcost × cost

+ Wcount× count + Wsize× size

 weight sortByWeight () - be the list of bitsets in a ascending order

according to the function fweight presented (lowest first). It the weights

are not specified, it assumes by default that all weights are set as 0,

except for WLRU which is set to 1 (the default LRU policy).

7.3 Optimizing the processing of data fragments

After a bitset is created, we use it to create a fragment level bitsets (fbitset),

where each bit represents a data fragment f, to determine which data fragments are

required by each predicate. A fbitset is significantly smaller and is used to optimize the

query execution time by reducing its lifetime or postponing the beginning of its

execution. It can also be used to early end the query execution, before completion of the

circular loop, when all the relevant data fragments have already been processed. Fig.

7.9 illustrates this concept.

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

113

Fig. 7.9 – Early-end execution and query lifetime

When a query q is submitted, a fragment level bitset is created for the query q,

fbitsetq, with all the bits set to 1 (meaning that data fragments have to be considered for

execution). Afterwards, SPIN analyzes the query predicates to determine if any of the

existing fbitsets match the query predicates. The query fbitsetq is then updated

accordingly to the fbitsets that match the predicates of q. The goal is to determine the

data fragments that do not have relevant data for the query (based on the predicate

fbitsets), and exclude them for execution. The Data Reader may even skip the data

fragments that are not required by the current workload processing tree.

Definition 7.2

Let f be a fragment, F be a set of fragments, F={fi}i=1,..,|F| , |F| is the number of

fragments of F, and Fbitset be a set of fragment level fbitsets, Fbitset={fbitsetj}.

For a query q, q∈Q, let fbitsetq be the query fragment level bitset. For all

selection predicate σ of q with a matching fragment fbitsetσ ∈ Fbitset, then

fbitsetq) is updated accordingly with fbitsetσ. The set of fragments that q has to

process, Fq, Fq⊆, can be determined as Fq = {fi :∀ fi∈ F ∧ fbitsetq (i) =1}.

Every time a query q processes a data fragment i, the corresponding index in the

bitset is set to 0 (fbitsetq(i)=0). The query can end its execution as soon as the hamming

weight of fbitsetq is 0, i.e., fbitsetq is set to all 0.

The Data Reader determines which data fragments are required by the current

query load Qr, and have to be read from storage, by performing a bitwise OR to every

fbitsetq of the current query load, i.e., fbitsetQr=OR{ fbitsetq },q∈ Qr. With this fbitsetQr

we determine the set of fragments FQr, FQr⊆ F, that have to be read from storage. The

remaining data fragments, F \ FQr, may be skipped to reduce the overall IO cost, the

major factor in query performance, as illustrated in Fig. 7.10.

Fig. 7.10 – Data reader fragment skipping

early endPosponed start

Q lifetime

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

114

While there is a performance boost at IO level, fragment skipping is also

interesting and relevant for pipeline processing. Pipelines with predicates that match

existing fbitsets can use them to stall processing, for fragments that are market as 0, and

thus releasing processing resources for other pipelines.

For every query q: q∈Qr, with a corresponding fbitsetq, we can control its

execution time by managing (changing) the order that data fragments are read and

processed.

Since the size of data fragments are large enough, changing the order that they

are read does not introduce significant IO overhead (since we are introducing more disk

seeks). This is particularly interesting to guarantee time targets and for providing

execution times smaller than the cost of reading all the data fragments F.

Definition 7.3

For a set of fragments F, F={fi},i=1,.., |F|, let SF={s1,..,s|F|} be the sequence that

fragments will be processed, such that ∀si, sj∈SF, i <j: si=fg, sj=fh: fg, fh ∈ F, fg≠fh.

For a query q, q∈Q, let Fq be the set of fragments that q has to process, Fq ⊆ F,

and let FQr be the set of fragments that the currently running queries Qr have to

consider for processing, FQr ⊆ F, such that FQr =⋃ Fp:∀p∈ Qr.

We denote SQr as the minimum sub-sequence of SF that contains all fragments of

FQr, such that SQr⊆SF, ∀f ∈ FQr: f ∈SQr, and denote Sq as the minimum sequence

of SQr that contains all fragments of Fq, Sq⊆ SQr, ∀f ∈Fq: f ∈Sq . We define the

lifetime of q as |Sq |.

When a query q is submitted, the processing infrastructure has to assess if is able

to process the query within the time target. It determines which data fragments are

required by query (Fq) and by the current query load (FQr), and then estimates the time

needed to process Fq and FQr. It is important to notice that after a fragment f has been

processed, Fq and FQr are updated as Fq = Fq \ {f} and FQr = FQr \ {f}. The ttarget of each of

Sequential Fragment reading order

1 2 3 4 5 6 7 8 9 10 11 12 13

Changed fragment reading order

1 7 3 4 9 10 2 5 6 8 11 12 13

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

115

the running queries is updated accordingly with the elapsed time ∀ q∈ Qr, ttarget(q)=

ttarget(q) - tprocess(f).

Definition 7.4

For a query q, q∈ Q, let ttarget(q) be the time target of q, and tprocess(f) be the time

required to read and process a fragment f, f∈ F and tprocess(F) be the time

required to process the fragments F, such that tprocess(F)=∑ tprocess(fi), i=1,..,|F|.

 If tprocess(FQr ⋃ Fq) <ttarget(q) then q can be timely processed

 if tprocess(Fq)> ttarget(q) then q can be timely processed iff

∃ SQr:tprocess(S’Qr) < ttarget(q)∧ tprocess(S’Qr) < ttarget(Qr)

otherwise q cannot be timely processed by the processing infrastructure

When tprocess(Fq)> ttarget(q), q can still be timely executed if we can determine a

different sequence order S’Qr for the fragments that have to be read and processed, that

guarantee the timely execution of q and Qr.

Definition 7.5

For a sequence of fragments S, let S(i) denote a fragment of S at index i. Let

p(f,S) denote the index position where f is within S, such that ∀f∈F, ∃j: p(f,S)=j

∧ S(j)=f. For a query q, q∈ Q, let Sq be the sequence of fragments that q has to

process, q can be postponed iff f=Sq(1) ∧ p(f, SQr) >1, i.e. Sq(1) ≠ SQr(1).

The minimum lifetime of q can be determined as minimum sequence of data

fragments of Qr, SQr such that

∀f ∈Fq, f ∈SQr ∧∀g ∈SQr, f≠g: |S’Qr|>|SQr|, S’Qr=SQr f↔g,, ∧tprocess(S’Qr)<ttarget(Qr)

where S’Qr is equivalent to SQr but with the position of f exchanged with g.

A query q, q∈ Q, with Fq as the set of fragments that q has to process, can be

early ended, i.e. can end its processing before the full circular loop is completed, when

Fq ⊆ F and |Sq|=0 (or Sq=∅). Remember that as data fragments are being processed, Fq

and Sq are updated accordingly.

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

116

When for a query q, tprocess(Fq) > ttarget(q) and ∀SQr: tprocess(SQr) > ttarget(q) ∨

tprocess(SQr) < ttarget(Qr), the query q cannot be timely executed unless the data processing

infrastructure is rearranged.

7.4 Parallel Processing - CARROUSEL

CARROUSEL is a flexible fragment processor that uses idle nodes, or nodes

currently running less time-strict queries, to process some of the fragments required by

time-stricter queries, on behalf of the fragment node’s owner, as illustrated in Fig. 7.11.

By reducing the data volume to be processed by a node, it can provide faster execution

times. Alternatively, it may reduce query processing by distributing some logical data

branches among nodes with replicated fragments.

Fig. 7.11 – Carrousel (parallel processing)

Recall that query execution time of a query q,qϵQ, is texec = max(tread, tprocess)

over all data tuples, regardless of the query load. When the time a data reader dr needs

to read all tuples from storage tread, is greater than the query time target ttarget, then the

issue is related to IO reading costs. Therefore it is necessary to increase the IO

throughput, with additional Data Readers, either locally using different storage disks or

by using a set of parallel nodes.

To overcome such issue, a number ndr of concurrent data readers dri, i=1,…,ndr

may be set on opposite positions of the circular loop, at equal-size distances, dist

(dri,drj)=|F|/ndr,∀dri,drj, i,j∈{1,…,ndr}. As a consequence, the relation Od is fully read by the

set of data readers dri, after each dri has read |Od|/ ndr tuples.

The reading time tread is then reduced to tread /ndr, but only if every data reader

dri, can perform sequential reads of Od without being interrupted. It assumes that each

data reader dri is an independent process with a dedicated disk and bus, or is running in

a different node.

q1 q2

q3

Node 1 q1 q2

q3

Node 2 q1 q2

q3

Node n

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

117

Fig. 7.12 illustrates the carrousel with three Data Readers orchestrated with two

distinct approaches, where the Data Readers are positioned in equal-size distances.

Fig. 7.12 – Data readers at different positions a) single node b) multiple nodes

In the figure, the data is replicated in each node and the data readers in the nodes

are lopping around all fragments the circular loop. While this is the most flexible

approach for balancing data and query load, it requires that all the data fragments be

replicated to each node and therefore may require more network bandwidth.

7.4.1 Managing fragment metadata

While the use of multiple data readers in a node is straightforward, since it just

increases the throughput at which tuples are read and placed into the base pipeline, the

parallel processing approach requires a control of which data fragments exists in each

node, which has been processed and which are missing for each of the running queries.

For simplicity reasons, from now on, we use the term node to express an independent

process with a dedicated disk, bus, processing unit and memory, which is running in a

different physical node, or along with other processes.

Data is partitioned in data fragments (or chunks) and distributed among

available nodes. A fragment can be replicated in several nodes. Data is partitioned in

fragments which are included in the circular loop for processing. The execution of a

query ends when all tuples stored within data fragments are processed and the circular

logical loop is completed. SPIN uses a set of fragment-level bitmaps to enhance the

management and processing of the data fragments. In particular the following

 allFragmentsBitmap –a bitmap representing all the data fragments that make part

of the relation. Each bit represents a specific data fragment. In a parallel

deployment, each node will have a replica of this bitmap, and a change in the

bitmap is replicated to all nodes.

DR3DR2

1

7

10

1

7

10

1

7

10

DR1

1

7

10

DR2DR3

DR1

Node 1 Node 2 Node 3

Single Node Parallel Nodes

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

118

 availableFragmentsBitmap – a bitmap, similar to the allFragmentsBitmap,

representing all the data fragments that are currently available in a node. A node

could hold several data fragments, but some may be active (which must be included

in local circular for processing) or be inactive (e.g. a representing a replica of data

fragment that is inactive in a node but it is active in another node, and therefore

should not be include in the node local circular loop). In parallel deployments, each

node will have a local availableFragmentsBitmap representing the data fragments

that the node has available for processing.

 activeFragmentsBitmap – a bitmap, similar to the availableFragmentsBitmap,

representing all the available data fragments that are active and therefore have to

included in the circular loop for reading. Data fragments that are unavailable (e.g.

under maintenance, or been replaced by other) are market as inactive (bit set as ‘0’)

and will not be considered for processing. In parallel deployment, each node will

have a local activeFragementsBitmap representing the data fragments that the node

has active and must consider for processing.

 updatedFragmentBitmap – a bitmap representing all the data fragments that were

or are being updated. In a parallel deployment, when a data fragment is being

updated in a node, the remaining nodes have to mark the corresponding data

fragment as dirty. Only one can node can mark a data fragment as updated.

 dirtyFragmentBitmap – a bitmap representing all the data fragments that are dirty

(have been updated or are under update by other nodes) and that must be refreshed.

For consistency purposes, for updated data fragments, we also store a timestamp

corresponding with the point in time where the changes in the data fragment have

committed. Similar timestamp is also stored for dirty data fragments. The goal of this

timestamp is to guarantees that the results of queries submitted after this timestamp are

computed over the updated data fragments.

Whenever a new node is added to the processing infrastructure, these bitmap are

created in the node and updated as fragments are replicated and become available in the

node. Fig. 7.13 illustrates a setup with 3 processing nodes, where the active fragments

in each node are depicted in blue, and the available fragments are those that are active

and also the fragments depicted in grey.

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

119

Fig. 7.13 – A parallel deployment with inactive fragments in each nodes that can be skipped

CARROUSEL includes a management module, which manages the information

regarding the nodes that are active at a given moment, and its current performance

indicators.

For each node, and regarding the data fragments, it also maintains information

regarding which fragments are allocated, which are active and which are required by the

workload processing tree that is currently running at the node. The fragment that is

currently being processed and the sequence order of the following fragments are also

maintained in order to be able to optimize and guarantee timely execution. To optimize

the data redistribution, data fragments may be split and moved among nodes, and

therefore such information is also maintained.

The fragment level and the node level metadata information are used by

carrousel to maximize, when the rebalancing is required, the clustering of data and

branch processing in the same node.

7.4.2 Balancing Data and Query processing among nodes

When multiple nodes are needed to provide right time guarantees,

CARROUSEL distributes query and data processing among nodes according to the

reason why the query target is not meet.

Definition 7.6

Let q be a new submitted query, q∈ Q, added to the set of running queries Qr,

and let WPtreer be the workload processing tree of Qr. Let Fq be the set of fragments

that q has to process, ttarget as the time target of query q, tread(Fq) the time needed to read

Fq and tprocess(Fq) the time required to process Fq. Data and processing has to

rebalancing, according to the following conditions:

SKIP

DR3
DR2

1

7

10

1

7

10

1

7

10

Node 1 Node 2 Node 3

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

120

If tread(Fq) > ttarget(q), then data load has to be rebalanced

If tprocess(Fq)>ttarget(q)∧tprocess(Fq)≫tread(Fq) then processing has to be rebalanced

If tprocess(Fq)>ttarget(q)∧ tprocess(Fq)>tread(Fq) then data and processing issue

When there is a data reading issue, tread(Fq) > ttarget(q), data have to be

rebalanced among other processing nodes, in order to reduce the data volume that a

node as to read, until it is below the time target ttarget(q). Alternatively, some queries

have to be deliberately not timely executed, particularly those with tighter time targets

or having requiring more data fragments.

When there is a processing issue, tprocess(Fq) > ttarget(q), and the system is unable

to timely handle the WPtree complexity, we could rebalancing the processing among

nodes, by splitting the WPtree and allocating some branches other nodes, or we can

reduce the data volume and consequently reducing tprocess(Fq). If we rebalance the data,

it is interesting to also rebalance the processing of some branches.

 Data reorganization is processed by plugging a dedicated pipeline to the base

pipeline, which redirects tuples to the appropriate processing node. After a rebalancing

take place, this data reorganization pipelines are removed, and in each node the

selection predicates are pushed forward to the data reader to restrict as soon as possible

the data volume that it has to gather from storage.

7.4.3 Rebalancing processing data load

When the time required to read the data fragments Fq of a query q, is greater

than the time target, tread(q) > ttarget(q), the current deployment can only provide timely

results by reducing the data volume that each node has to process. Therefore, additional

processing nodes have to be used in order to reduce tread(q), with data fragments being

rebalanced as required, until guaranteeing that query q can be timely processed.

Two distinct approaches can be used: distribute a subset of the fragments

required by WPtree and replicate WPTree and process it in parallel

(splitFQrparallelQr), or replicate a set of the fragments that are required by a branch

and process that branch in parallel (splitFQparallelQ).

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

121

In splitFQrparallelQr (illustrated in Fig. 7.14) the workload processing tree

WPtree is replicated among processing nodes and a sequence of S’Qr, S’Qr ⊆ SQr, of the

fragments required by Qr are moved (or copied and marked as inactive) to the other

node. The execution time of all the queries q, q∈ Qr, may benefit with this approach

since each node has to process a subset of the initial fragments.

Fig. 7.14 – Distribute Qr fragments and run WPtree in parallel

It tries to evenly distribute the data load among processing nodes. Since the

WPtree is replicated to every node it is necessary to include an additional merging task

for each query that aggregates the partial results computed by each of the nodes. The

merging task can be avoided for any query q’, ∀ q’∈ Qr, such that Fq’∩ S’Qr = ∅ (none

of the relevant data fragment was moved).

In splitFQparallelQ (illustrated in Fig. 7.15) a subset Qr’ of the queries of

WPtree, Qr’⊆ Qr, with |FQr’|≃ |FQr| are chosen to be processed in parallel by processing

nodes and then a merging operator is applied to combine its partial results. A subset of

the data fragments of FQr’ are then copied into the other node. The execution time of all

the queries q’, q’∈ Qr, which shares common branches with Qr’ shares may benefit with

this approach since each node has to process a subset of the initial fragments. For those

queries, an additional task is required for merging the partial resuls. The remaining

queries are just indirectly affected by the skipping of the data fragments. CARROUSEL

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

122

dynamically controls when the new node (node 1 in the figure) should process some

data fragments on behalf of initial node (node 2).

Fig. 7.15 – Replicate a subset of q fragments among nodes and run q in parallel

SplitFQrparallelQr may improve the execution time of all running queries but it

adds processing overheads for the merging tasks. SplitFQparallelQ may be faster to

rearrange, since less data fragments have to be rebalanced among nodes, since it only

focuses on the predicates that require more data fragments which prevents the timely

execution.

7.4.4 Rebalancing processing load

When the processing time is the constraining factor, a distributeQr strategy

(illustrated in Fig. 7.16), which selects a subset Qr’ of the processing queries (or just

branches), Qr’⊆ Qr, such that the processing cost be distributed among processing

nodes containing the data fragments FQr’ . If the nodes do not have the data fragments

required by Qr’, FQr’, they have to be copied. In this case, it tries to evenly divide the

branch processing costs, and to select the query subset Qr’ that requires less data

fragments to be copied.

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

123

Fig. 7.16 – Split WPtree branches among nodes

Since tprocess is dependent of the data volume that has to be processed, the data

load strategies, discussed above, can also be used to reduce tprocess.

7.5 Fragment level data reorganization

When data fragments have to be rebalanced and copied among processing

nodes, CARROUSEL tries to optimize the size of the data fragments and also improve

fragment processing (e.g. fragment skipping). It uses the following strategies:

a) Tuple reordering within a fragment – cluster common tuples together and

employ a compression scheme such as RLE encoding [Lemire et al. 2012;

Lemire & Kaser 2011] to obtain smaller in-memory bitmaps. To minimize

the reordering cost, this process is performed when a similar query is placed

at the WPtree, or by using other processing node in a parallel deployment.

b) On-the-fly fragment reorganization – a data switch (DS) is placed before

more frequent branches to divert more frequently used tuples to new data

fragments and the remaining tuples to less used data fragments. Tuples are

copied to new fragments based on the current workload pattern to provide

Country Region

bitmap

Region=Europe Country Region

bitmap

Region=Europe

UK Europe 1 USA America 0
USA America 0 China As ia 0
Germany Europe 1 China As ia 0
China As ia 0 China As ia 0
UK Europe 1 UK Europe 1
China As ia 0 Germany Europe 1
China As ia 0 UK Europe 1
France Europe 1 France Europe 1

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

124

improved performance. The new fragments are added to the

allFragmentsBitmaps, but they are only considered for execution after being

registered in the activeFragmentsBitmap. Data fragments are horizontally

partitioned on-the-fly into new data fragments with related attribute values.

As a result fragment level bitmaps can be built with all “1” or “0” and thus

resulting in improved query performance through fragment skipping.

c) On-the-fly fragment reorganization with schema compression – this

strategy is similar to the previous one, but after the reorganization it

compresses attributes that, within the data fragment, have low cardinality.

Attribute values are replaced with a smaller coded representation. Attributes

with a cardinality of 1 (all tuples within the data fragment have the same

value), the attribute is removed from the data fragment, and the attribute

name and value (e.g. year=2000) is stored at the fragment metadata.

Therefore the data fragment will have smaller width, with fewer attributes

and smaller attribute values. This besides allowing fragment skipping, it also

reduces the fragment’s size and therefore improves performance.

New Data Fragment
(Region = Europe)

New Data Fragment
(others)

Old Data
Fragment

New Data Fragment
(others)

Old Data
Fragment

New Fragment
Region= Europe

Chapter 7 Providing Right-Time Guarantees to Scalable Concurrent Workloads

125

7.6 Chapter Summary

This chapter proposed mechanisms to reorganize the data volume and branch

processing of the current deployment, so that it can deliver right-time guarantees.

A method to determine if the current SPIN workload processing tree can provide

right-time guarantees is presented. We described a bitset processing approach that

extends SPIN, which stores the result of predicate evaluations into bitsets, and then

replaces costly predicate evaluations with fast bit lookup operators. Bitset processing

reduces the predicate evaluation times and the complexity of the workload processing

tree. Bitsets also allows the Data Reader to control which data fragments and the order

they are read from storage, according to the query time targets.

A parallel SPIN approach, called CARROUSEL, is presented, that manages a

set of SPIN processing engines in parallel to speedup query processing and reduce

query execution time below the require time targets. Tighter right-time guarantees can

be provided by extending the parallel infrastructure and redistributing data among

processing nodes, but also by redistributing queries, query processing and data branches

among nodes, according to their query load and the data fragments they store.

127

Chapter 8

Experimental Evaluation

This chapter presents experimental evaluation results of the proposed

mechanisms, showing their ability to provide predictable execution times in the

presence of large data volumes and large number of simultaneous queries, with almost

linear scaleup and speedup. For experimental purposes we used the TPC-H benchmark

[TPC-H], a well-known decision support benchmark.

The chapter is divided in the following sections: Section 8.1 describes the

experimental setups and the data schemas used in the evaluation; Section 8.2 compares

the storage requirements of the ONE data model; Section 8.3 evaluates the

predictability and execution times delivered by ONE. In Section 8.4 we evaluate the

scalability of ONE when running over a parallel infrastructure (ONE-P) and in Section

8.5 we evaluate TEEPA, its elasticity running over a set of heterogeneous nodes, and its

ability to add nodes when necessary until attaining a given time target. In Section 8.6

we evaluate SPIN, the concurrent query processing model, and in Section 8.7 we

conclude the experimental evaluation.

Chapter 8 Experimental Evaluation

128

8.1 Experimental Setup and benchmarks

This section describes the benchmark, the data schema, the processing

infrastructure setup and the database engines used in the experimental evaluation.

Unless mentioned otherwise, the results presented in this chapter were obtained as the

average of 30 runs for each query, and excluding the two best and worst results.

8.1.1 Benchmark

For experimental evaluation we used the TPC-H benchmark [TPC-H], a

Decision Support System benchmark, proposed by Transaction Processing Performance

Council. The benchmark defines a set of tables, illustrated in Fig. 8.1 and a set of

queries.

Fig. 8.1 – TPC-H benchmark schema

The benchmark also provides a data generator (DBGEN) for populating the

tables, where the data volume is configured with a scale factor (SF) parameter. We used

the scale factors 1, 3, 10, 30 and 100. Along the chapter we will use SFx, or SF=x, to

denote the scale factor x. Table 8.1 depicts the number of rows for SF1 and the storage

size of each table.

LINEITEM
SF x 6 000 000

ORDERS
SF x 1 500 000

PARTSUPP
SF x 800 000

PART
SF x 200 000

CUSTOMERS
SF x 150 000

SUPPLIERS
SF x 10 000

NATION
25

REGION
5

Chapter 8 Experimental Evaluation

129

Table 8.1 – Number of rows and estimate size of the TPC-H tables

8.1.2 Data Schemas

With the TPC-H benchmark, we have built the following schemas:

 TPCH - the base TPC-H schema as defined in the benchmark, populated

with the TPC-H data generator tool (DBGEN) available at [TPC-H].

 TPCH-P - the base TPC-H schema deployed on a set of processing nodes

where the relation LINEITEM is equi-partitioned with ORDERS and

distributed among processing nodes (partitioning alternatives are discussed

in Section 2.5). The remaining relations were fully replicated into all the

nodes.

 TPCH-PL –this schema is similar to the TPC-H schema, except that only

the relation LINEITEM is partitioned and distributed among nodes and the

remaining relations are fully replicated.

 ONE - is composed by a single relation using the ONE data model. It was

populated with a modified version of DBGEN that generates the de-

normalized data as single file.

 ONE-P – is a ONE schema where the relation is partitioned and distributed

among a set of parallel nodes. The data volume allocated to each node is

adjusted according to the node’ characteristics.

 SPIN – is a ONE schema processed by the SPIN engine.

For each schema we have generated data for different scale factors, SF = {1, 3,

10, 30, 100}. TPCH(1) and ONE(1), stands for, respectively the TPCH schema and

ONE schema, with a scale factor of 1. We also use the notation TPCH1 and ONE1.

SF = 1 Nº Rows Space

REGION 5 1 KB

NATION 25 5 KB

SUPPLIER 10.000 1,9 MB

CUSTOMER 150.000 31,3 MB

PART 200.000 30,5 MB

PARTSUPP 800.000 164,0 MB

ORDERS 1.500.000 190,3 MB

LINEITEM 6.000.000 726,7 MB

Total 1.144,7 MB

Chapter 8 Experimental Evaluation

130

8.1.3 Query workload

Since our focus is on providing predictable response times to aggregate queries,

from the 22 queries defined in the TPC-H benchmark we used the first 10 queries (1, 2,

3, 4, 5, 6, 7, 8, 9 and 10). We use Qx to denote query x, e.g. Q3 stands for query 3.

These queries have different selectivities and complexity and are representative of the

query workload. Q1 and Q6 only require data from the LINEITEM, Q2 only processes

dimensions, Q3 processes LINEITEM and ORDERS. Appendix A shows TPC-H

queries, and Table 8.2 shows which relations are used by each query.

Table 8.2 – Relations needed by each query

With these queries, we defined a set of query loads:

- Single query load –each of the above queries is submitted, one at-a-time, by

a single client, and thus having exclusive access to all resources of the DB

engine.

- Concurrent query load – we have a variable number of clients (NClients)

that are concurrently submitting queries (chosen in a random manner) to the

DB engine.

- Concurrent query load Q(5) – this query load is similar to the previous

one, except that each client is submitting variants of the query Q5, with

random selectivities and selection predicates.

Queries were rewritten according to the used data model. For instance, queries

run against the ONE storage model were rewritten to use the de-normalized relation,

instead of the star schema model, and the joining conditions were removed.

No specific tuning or tweaking optimizations were made to relations. We did not

create any index structures in ONE since we aim to determine the worst case scenario,

 Query

Relation
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

LINEITEM X X X X X X X X X

ORDERS X X X X X X X

CUSTOMER X X X X X

SUPPLIER X X X X X

PART X X X

PARTSUPP X X

NATION X X X X X X

REGION X X X X

Chapter 8 Experimental Evaluation

131

where a full table scan is required to process queries, and to determine a maximum

invariant time bound for query processing.

8.1.4 Processing Infrastructure

We used the following processing infrastructures:

 Single Node setup – server (SNS-Server) – An Intel i5-2500 quad core

processor server at 3,70GHz with 8GB of RAM at 1Ghz, with 3 1TB

SATA3 Western Digital Blue hard drives plugged to an onboard RAID 0

controller holding the DW data, and 2 other similar hard drives, 1 with the

OS and swap and the other with the raw data generated by DBGEN. The

server runs a default installation of Ubuntu server 12.04 LTS Linux.

 Single Node setup – pc (SNS-pc) – An Intel Dual Core Pentium D

processor, at 3.40Ghz, with 2GB Ram, with a 150GB SATA disc drive, and

running a default installation of Ubuntu server 10.10 Linux distribution.

 Parallel Node Setup (PNS) – The setup for parallel evaluation is composed

by 30 processing nodes (15 Intel Core 2 Quad CPU Q6600 @ 2,40GHz

with 4GB of RAM, and 15 Intel Core 2 Duo 2,13ghz with 2GB of RAM),

running a default Linux server installation. The processing nodes are

interconnected with a full-duplex gigabit switch. An additional node was

used as the submitter, controller and merger node. Nodes were registered

and made available for TEEPA, and added or removed as needed for

guaranteeing the time targets.

8.1.5 DBMS engines

For evaluation we used two distinct db engines: one commercial (Oracle 10g

release 2) and a open source (PostgreSQL 9.0). We also implemented and used the

following prototypes that employ the proposed mechanisms:

 SPIN (aka SPIN base) – the base SPIN prototype implemented in Java

without bitset processing and carrousel capabilities.

 SPIN bitset– the enhanced SPIN setup, which includes run-time bitmap and

bitset processing.

 CARROUSEL – a parallel deployment composed with a set of nodes, each

running a SPIN engine over a set of local data fragments.

Chapter 8 Experimental Evaluation

132

8.2 Storage requirements of the ONE data model

In this section we compare the storage requirements of the data models. Table

8.3 shows the storage size occupied by the TPC-H tables, the TPC-H tables with key

indexes, and the ONE model for a SF=1.

Data volume (SF1) Size (MB)

TPC-H tables 1.144,7 MB 4,47

TPC-H tables + key Indexes 1.448,4 MB 3,32

ONE 6.270 MB

Table 8.3 – Storage space required by each schema organization

Since the ONE data model is de-normalized, it requires more storage space than

the star schema model. We have defined, in chapter 4, as the storage space increase

ratio in comparison with the TPC-H schemas. ONE represents a 4,47x increase in the

storage size in comparison with the base tables, which is reduced to a 3,3x ratio when

space required by key indexes is also considered.

For quite some time, this increase in storage size was unacceptable, since disks

were expensive, had limited capacity and had slow transfer rates. However, nowadays

disks are larger and faster, and can yield sequential transfer rates in the order of

hundreds of MB per second, at affordable prices (with prices below 0.05€/GB).

8.2.1 Storage overheads of the star schema model

One of the characteristics of ONE is that it does not need primary and foreign

keys. With the purpose of joining relations, the star schema has a set of space overheads

related to the set of extra primary and foreign keys and related indexes, which increases

the storage requirements. In some DWs the number and space occupied with keys

represents a relevant proportion of the overall number of attributes. For instance, the

TPC-H schema has 15 attributes (of 61) that are keys, representing a 32% increase in

the number of attributes and 7,5% increase in global storage size. Fig. 8.2 depicts the

distribution of the storage size occupied by the data (all attributes except keys), the key

attributes and the primary key indexes.

Chapter 8 Experimental Evaluation

133

Fig. 8.2 – TPC-H storage size distribution

We observe that keys and related key indexes represent a 25% of the size of

tables LINEITEM and ORDERS, and data values represent 75% of the table storage

space. When considering other schema, for instance the SSB schema [O’Neil et al.

2009], the key related overhead increases to 70% in both the number of attributes and

the storage space.

8.2.2 Storage size in each node of a parallel infrastructure

The deployment of the ONE data model in a parallel infrastructure (ONE-P)

tends to be much more efficient than the star schema model. Dimensions typically

represent a small percentage of the overall DW storage space. However, in a parallel

shared-nothing infrastructure they usually are replicated in each node, and only the fact

table is partitioned. Table 8.4 shows the storage space (in each node and the total sum)

required by each schema, for a data volume of SF100: ONE-P, TPCH and TPCH-PL. In

TPCH-PL only LINEITEM is partitioned and the remaining relations are fully

replicated.

In each node

Total of all nodes

TPCH-P TPCH-PL ONE-P #Nodes TPCH-P TPCH-PL ONE-P

179,4 179,4 627,0 1 179,4 179,4 627,0

76,3 91,0 209,0 3 228,9 273,0 627,0

40,2 61,1 62,7 10 402,2 611,0 627,0

32,5 54,7 31,4 20 649,7 1.094,0 627,0

29,9 52,6 20,9 30 897,2 1.578,0 627,0

27,8 50,9 12,5 50 1.392,3 2.545,0 627,0

Table 8.4 – Storage space required by each schema organization for SF100 (in GB)

6%

5%

3%

6%

8%

10%

12%

12%

14%

13%

17%

15%

82%

83%

83%

81%

75%

75%

0% 20% 40% 60% 80% 100%

SUPPLIER

CUSTOMER

PART

PARTSUPP

ORDERS

LINEITEM

%storage size distribution

Keys Indexes Data

Chapter 8 Experimental Evaluation

134

We observe that the overall size of ONE-P remained constant, regardless of the

number of nodes, whilst the TPCH-P requires more storage space, for instance in a 30

nodes setup, the overall size of TPCH-P increased by a factor of 5. Query execution

time with ONE is volume-dependent, thus the total execution time with a ONE-P(30)

setup is linearly reduced to about 1/10th of the measured execution time with a 3-node

setup, excluding the inter-node data transfers and merging costs. Considering the

number of tuples in each node, in a 30 node setup the dimension PART (200k rows) has

the same number of tuples as LINEITEM (6M rows/ 30= 200k rows), CUSTOMER

(150k rows) has 3x more tuples than ORDERS (1,5M rows / 30 = 50k rows), and

PARTSUPP (800k rows) 4x more tuples than LINEITEM (6M rows / 30=200k rows).

Fig. 8.3 – Storage size distribution with different numbers of processing nodes (TPCH-P))

The decrease of the fact data allocated to each node, as we increase the number

of nodes, changes the data distribution in each node, as illustrated in Fig. 8.3. The

percentage occupied by dimensions increases with the number of nodes, impacting the

way queries are processed. Dimensions (which typically are smaller than fact tables),

which usually are used as the inner relation in hash join operations, but in large parallel

infrastructures they tend to be outer relations. The query execution plans tend to be

more dependent of the cost to process dimensions, as we increase the number of nodes,

and thus limiting its scalability.

We calculate storage scalability as the ratio of size(1-node) / ∑ size(n-nodes).

Fig. 8.4 depicts the results of the storage scalability for different schemas.

5%

5%

6%

7%

7%

11%

11%

12%

13%

14%

4%

11%

25%

47%

64%

80%

73%

57%

33%

15%

0% 20% 40% 60% 80% 100%

100

30

10

3

1

#nodes %storage size distribution

Keys Indexes Fact data Dimensions

Chapter 8 Experimental Evaluation

135

Fig. 8.4 – Storage scalability of the schemas

The results show that ONE-P provides linear storage scalability. The scalability

of the other schemas is constrained by the size of replicated dimensions and the key

related overheads, as illustrated in Fig. 8.3. For instance, with a 10 nodes setup, TPCH-

PL yields around 30%, this means that each node requires almost 1/3 of the single node

storage requirements.

8.3 Evaluation of Execution Time of ONE

In this section we evaluate the effectiveness of ONE in providing predictable

execution times. For the experimental setup, we used a Single Node Setup (SNS-server)

infrastructure and the TPCH and ONE data schemas with scale factors of 1,3,10 and 30.

8.3.1 Predictable performance with scalable data volumes

In this section, we evaluate the execution time predictability of both models,

using a single node setup, when the data volume increases from SF1 to SF10 (a 10x

increase in data volume). Fig. 8.5 depicts the results for TPCH. The primary vertical y-

axis (on the left side) represents the execution time scale for SF1, while the secondary

vertical y-axis (on the right) represents the execution time scale for SF10. The scales

are set so that the scale of SF10 is 10× the scale of SF1.

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50
nodes

Storage scalability

ONE-P TPCH-P TPCH-PL

Chapter 8 Experimental Evaluation

136

Fig. 8.5 – TPCH execution times for large data volumes

From the figure, we observe that the query execution times of SF10 are not

proportional to those of SF1, given the scale factor. While the results for 3 of the

queries (Q1, Q2, Q6) have similar behavior, the remaining queries behave differently

with different data volumes. The execution time is not predictable, since it varies from

query to query (each query returns a different execution time), and it also varies in an

unpredictable manner with data volumes (SF10 - in red - does not follow the pattern of

SF1 – in blue). The degradation of execution times is much bigger than the increase in

data volumes.

The execution time results for ONE are depicted in Fig. 8.6. As in the previous

figure, the primary vertical y-axis represents the time execution scale for the SF1, while

the secondary vertical y-axis represents the time execution scale for SF10. The scales

are set so that the SF10 scale is 10× the SF1 scale.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0

20

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10

time (s)
SF10

time (s)
SF1

query

Execution time SF1 and SF10

SF1 SF10

Chapter 8 Experimental Evaluation

137

Fig. 8.6 – ONE predictable execution time for larger data volumes

From the figure, we observe that with ONE the execution time for a given data

volume is almost the same for all the queries. The execution time of query 3 is slightly

higher because it returns a large number of aggregation groups and the presented results

were gathered at client (i.e. it also accounts for the network time of sending the results).

Another observation that stands out is that, for larger data volumes, ONE

provides a predictable execution time, i.e. the SF10 bar (in red) is almost similar to the

SF1 bar (in blue). They are not equal, because for each query there is a set of processing

costs that are independent of the data volume. The execution time of SF10 is less than

the execution time of 10 times SF1 (SF10 ≈ 10×SF1).

Using the execution times of SF1 to predict the execution time for larger data

volumes, ONE yields more accurate execution time estimation than TPCH. Fig. 8.7

depicts the estimation error in predicting the query execution time for larger data

volumes for both models. The estimation error was calculated as

(texec (SF10) – 10× texec (SF1)) / texec (SF10)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0

20

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10

time(s)
SF10

time(s)
SF1

query

Execution time SF1 and SF10

SF1 SF10

Chapter 8 Experimental Evaluation

138

Fig. 8.7 – Error estimation in predicting the query execution time for higher data volumes

The results show that the estimation error of ONE is always below 0, i.e. the real

execution time is below the estimation based on the execution time of the smaller data

set. On the other hand, the real execution time for larger data volumes is typically

underestimated, in some cases it requires more than 70% of the estimated time.

8.3.2 Execution Time (single node with Oracle)

We evaluated both setups using scale factors {1, 3, 10, 30, 100} for queries

Q1,…,Q10. In each setup, we run each query 30 times to obtain the query execution

time results, and excluded the two best and worst execution times for each query. Fig.

8.8 shows the average of the execution times with different scale factors.

Fig. 8.8 – Average execution time for queries 1 .. 10

1 2 3 4 5 6 7 8 9 10

ONE -3,0% -0,4% -4,5% -0,1% -2,3% -2,1% -2,2% -2,1% -2,1% -1,4%

TPCH -4,2% -10,9% 32,0% 78,2% 72,8% 0,9% 49,9% 31,3% 57,2% 64,3%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%
% estimation error (execution time)

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100

time (s)

SF

Execution time (avg of queries)

one tpch

Chapter 8 Experimental Evaluation

139

With small scale factors, TPCH may, on average, deliver better execution times,

since joins are mostly performed in memory. But as the data volume increases, some

queries require more than the available memory to process some operations such as

joins, and have to use temporary storage for executing them.

From the figure 8.8, it is clear that the execution time of ONE increases linearly

with the data volume, depicting an almost perfect line. For larger data volumes, ONE

delivers better performance results than the star schema approach, and with predictable

execution times. This is possible because of its simpler query execution plans, without

joins, and thus it is fairly independent of the amount of available memory. Fig. 8.9

depicts the execution time for each query for different scale factors.

Fig. 8.9 – Average execution time of ONE for varying SF for queries 1-10 (Oracle)

From the figure, one thing that stands out is that ONE, for the same scale factor,

presents query execution times with small variability, while the TPCH schema shows a

much larger variability. Another interesting aspect is that for small data volumes, as

expected, most queries run against TPCH exhibit faster execution times than with ONE.

This is because a large proportion of dimension data can fully reside in memory and

there is enough memory to perform in-memory joins. However, for larger data volumes,

the available memory is insufficient to hold dimension data and to allow in-memory

joins. When this happens we witness a drop in performance because of the expensive

IO operations (including some random read and write operations) required to perform

joins.

1

10

100

1.000

10.000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1 3 10 30 100

time (s)

query;
SF

Execution time for different SF

tpch one

Chapter 8 Experimental Evaluation

140

ONE may not always deliver the fastest results, since some queries show worse

execution times, when compared with TPCH, however ONE delivers better execution

times for large data sets and its execution times are almost constant and predictable. We

will show later that adding parallelism to ONE will make it even much faster than the

traditional approaches, while also maintaining predictability of query execution times.

8.3.3 Execution time variability

Besides the average execution time, we also evaluated the variability of the

query execution times. The results are depicted in Fig. 8.10 .

Fig. 8.10 – Execution time variability for varying SF

ONE provides good standard deviation, as illustrated in Fig. 8.10, resulting in

low execution time variability (less or equal to 4% of the average execution time) in all

analyzed scale factors (1, 3, 10, 30 and 100), demonstrating ONE’ capability to execute

queries with a predictable execution time. TPCH, on the other hand, provides a

minimum of 75%, with a scale factor of 3 and reaching up to 96% of the average

execution time with a scale factor of 100. Furthermore, the standard deviation of ONE

is impressive.

While TPCH performs better, at small scale factors, since a large amount of the

inner relations resides in memory, requiring less IO operations, the query execution

time is highly unpredictable. ONE, starting from a scale factor of 10 (SF=10), presents

on average, faster query execution times than TPCH (see Fig. 8.8 and Fig. 8.9).

1 3 10 30 100

one 4,0% 3,5% 3,5% 2,7% 3,6%

tpch 81,9% 75,9% 80,4% 80,3% 96,7%

0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

SF

Execution time (%stddev of all queries)

Chapter 8 Experimental Evaluation

141

8.4 Evaluation of ONE-P

In this section we evaluate the ONE data model in a parallel deployment (ONE-

P), using 3, 10, 20 and 30 nodes. An additional node was used as the submitter,

controller and merger node. The evaluation results were obtained with a data volume of

SF=100. The data volume allocated to each node and the overall storage requirements,

considering all processing nodes, are depicted respectively in Fig. 8.11 a) and b).

Fig. 8.11 – Data volume a) in each node b) total (sum each node)

With TPCH-P, as shown in Table 8.4, the data volume in each node does not

decrease proportionally with the number of nodes, as ONE-P does. In a setup with 30

nodes, each node stores about 16% of the base data volume, and the overall storage

space (sum of all the nodes) increased by a factor of 5, while the total size of ONE-P

remains constant, regardless of the number of nodes.

8.4.1 Execution time (in each node)

In a parallel shared nothing infrastructure composed with n nodes, the query

execution time is obtained as the sum of several partial times (recall definition 5.1),

some of them are not dependent of the used data model. For instance, for a query q, the

time related to the exchange and merging of partial results sent by each node is roughly

the same, regardless of the time that each node required to process ONE-P or TPCH-P.

The query is the same (except the minimal changes to select the appropriated relations)

and return the same amount of partial results. For that reason, we will focus on

evaluating the local execution time in a node (tn), which may vary when using different

data models, in a parallel architecture composed with 3, 10, 20 and 30 nodes for a scale

factor SF=100. We evaluated the average time that a node needs to compute locally the

10

100

0 10 20 30 40 50

GB

#nodes

Data Volume in each node

ONE-P TPCH-P TPCH-PL

0

500

1000

1500

2000

2500

0 10 20 30 40 50

GB

#nodes

Data Volume (Total)

ONE-P TPCH-P TPCH-PL

Chapter 8 Experimental Evaluation

142

query partial results. Fig. 8.12 depicts the average execution time for a varying number

of nodes.

Fig. 8.12 – Average time to process partial results (tn) in each node

We observe that the local execution time of ONE-P decreases almost linearly as

we increase the number of nodes, and consequently the data volume that each node has

to process is reduced proportionally. The execution times of TPCH-P is also improved

but at a lower rate. Fig. 8.13 shows, for a varying number of nodes, the average

execution time required by the nodes to compute the partial results of each query.

Fig. 8.13 – Execution time to compute the partial results of Q1..10

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

2.000

3 10 20 30

time (s)

#nodes

Average Execution Time

one-p tpch-p

1

10

100

1.000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

3 10 20 30

time (s)
(log scale)

query;
#nodes

Execution time

tpch-p one-p

Chapter 8 Experimental Evaluation

143

One thing that stands out is the low variability of the execution time delivered

by ONE-P, while with TPCH-P the execution time varies greatly from query to query.

TPCH-P only yields better results than ONE-P for queries Q1 and Q6, that only process

table LINEITEM, which is partitioned among nodes and the partition size is smaller

than the ONE partition. For the remaining queries, ONE-P presents faster execution

times for all considered parallel setups. And its execution time is reduced proportionally

to the number of processing nodes, since data can be fully partitioned among nodes.

ONE-P delivers good performance results and it is unaffected by query selectivity.

8.4.2 Speedup with larger processing infrastructures

Because the data with TPCH-P is not fully partitioned, dimensions are replicated

or partially equi-partitioned, an increase in the number of processing nodes does not

yield a proportional impact in query execution time. As a consequence, the speedup of

TPCH-P is sub-linear. Considering the query execution times of queries Q1..Q10, we

depict in Fig. 8.14 the speedup of TPCH-P and ONE-P.

Fig. 8.14 – ONE-P and TPCH-P speedup

The results show that ONE-P delivers an almost optimal speedup, because of the

processing costs related to the exchange and merging of partial results, while TPCH-P

delivers a sub-linear speedup. In a setup with 30 nodes we observe that the speedup

delivered by ONE-P is almost two times greater than with TPCH-P.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

speedup

#nodes

Speedup

one-p tpch-p Linear

Chapter 8 Experimental Evaluation

144

8.4.3 Impact of query selectivity in performance

ONE-P, in contrast with TPCH-P, is immune to the joined query selectivity. For

instance considering query Q5, which lists the revenue volume done through local

suppliers in a given year, if we increase the time interval from 1 year to 2, 3 or 4 years

we observe an increase in execution time with TPCH-P, while with ONE-P the

execution time remains unchanged. In Fig. 8.15, which depicts the impact of changing

the selectivity in query execution time, we observe that the execution time of query Q5

with a 4 year time interval (represents a selectivity of 11%) increased up to 25% in a

setup with 3 nodes.

Fig. 8.15 – %time increase for Q5 with different selectivity

ONE-P is not affected by the changes in selectivity since the number of

aggregations groups remained the same, only the number of tuples that fall in each

group have changed.

8.4.4 Inter-node variance of query execution time

Beside the average time that nodes needed to compute the partial results, over

the data stored locally, we also measured the variation of the execution times amongst

processing nodes. The results for query Q5 are depicted in Fig. 8.16.

0%

5%

10%

15%

20%

25%

30%

0 10 20 30
#nodes

% time increase

Q5(2years) Q5(3years) Q5(4years) ONE

Chapter 8 Experimental Evaluation

145

Fig. 8.16 – Q5 node query variability

We observe that ONE delivers low query variability, for all the considered

parallel setups (3, 10 and 30 nodes) it remained below 0,1%, with TPCH always

delivering higher results, reaching up to 1,18% with 10 nodes.

8.4.5 Cost of exchanging partial results

Query processing in a shared nothing parallel architecture as shown in equation

1 (in Section 5.1) is influenced by the local partial query execution time (tnj), and also

by the cost of merging (tm) and exchanging the partial results (ttpr), whose costs varies

with the size of the partial results and the number of processing nodes. We considerer

negligible the time required to rewrite the query (trw) and to transfer the partial queries

(ttpq). The cost of exchanging the partial results may be large and it depends on the

query and the number of nodes. We used TPCH-P (ONE-P returns the same amount of

partial data) in parallel setup composed with 30 nodes to measure the time needed to

exchange the partial results of each of the queries (Q1,..,Q10). The results are depicted

in Fig. 8.17.

0,04% 0,04%
0,09%

0,20%

1,18%

0,65%

3 10 30

(Q5) node query variability

ONE-P

TPCH-P

Chapter 8 Experimental Evaluation

146

Fig. 8.17 – Total exchange of the partial results (ttpr) for queries Q1..Q10

With the exception of queries Q2, Q3 and Q10, the data exchange time has

reduced impact (below 1 sec) in the overall query execution time. The exchange time of

Q2 is almost linear, since the size of the partial result computed by each node is almost

the same. Therefore a larger processing infrastructure produces more partial results that

have to be sent to the merger node. On the other hand, queries Q3 and Q10 are almost

invariant to the number of nodes, since the aggregations groups are almost fully

partitioned among nodes. In general, the exchange overhead can represent up to 8%

(Q2, Q10) and 5% (Q3) of the local query execution time.

0

1

2

3

4

5

6

0 10 20 30

sec

nodes

Exchange cost (seconds)

1 2 3 4 5

6 7 8 9 10

Chapter 8 Experimental Evaluation

147

8.5 TEEPA Right-Time Evaluation

In this section we evaluate TEEPA and its ability to provide right-time execution

times, by changing the number of nodes of the parallel processing infrastructure and

rebalancing the data volume among nodes, when the time targets cannot be guarantee.

To serve as baseline, we used TEEPA to manage a data volume of SF=100 over a

TPCH-P deployment composed with 3 nodes. Fig. 8.18 depicts the average partial

execution time for each query.

Fig. 8.18 – Partial execution time of TPCH per query in each node

Since we used TPCH-P, queries exhibit different partial execution times. When

TEEPA is running, it evaluates the current star schema deployment and the predictable

performance of ONE to determine which data model provides improved performance.

Fig. 8.19 depicts both the current star schema performance, and a performance

estimation of the ONE-P deployment. Considering the maximum execution time (max

time bound) required by each data model, TEEPA selects the data model that has least

value (depicted in the figure as a green line).

10

100

1.000

1 2 3 4 5 6 7 8 9 10

time (s)

TPCH query

Node partial execution time (log scale)

Chapter 8 Experimental Evaluation

148

Fig. 8.19 – TEEPA partial execution times (3-node setup)

Since no time targets were defined, and TEEPA determined that the current

storage model offers improved performance, the used data model was left unchanged.

To evaluate TEEPA elasticity and its ability to provide timely executions, we set the

session time execution target to 250s.

ALTER SESSION SET TIME_TARGET WITHIN 250 seconds;

 With this target, more than 2/3 of the queries fail the time target in the current

parallel deployment composed with 3 nodes. TEEPA determined that the parallel

infrastructure needs at least 10 nodes in order to be able to timely execute the queries,

before the time execution target.

Fig. 8.20 – TEEPA partial execution times (10-node setup)

Chapter 8 Experimental Evaluation

149

TEEPA extended the processing infrastructure from 3 to 10 nodes, with the

addition of 7 new nodes, and rebalanced and distributed the data volume among them.

The query execution time for this deployment is depicted in Fig. 8.20. TEEPA realized

that the execution time of 3 of the queries (Q1, Q2 and Q9) run against the star schema

model are not within the time target. And therefore additional nodes have to be added or

the data model has to be changed. It realized that the execution time estimated for the

ONE data model, is below the specified time target (green line). Therefore it triggered a

de-normalization process to switch to the ONE data model. TEEPA took around 10

minutes to include 7 additional nodes, to balance the data among the 10 nodes and to

reorganize the data into a de-normalized schema, before start delivering timely results

within the defined target.

Fig. 8.21 – TEEPA partial execution times (30-node setup)

Afterwards, we defined a tighter time target of 100s. TEEPA then determined

that at least 30 nodes were needed to provide such timely execution guarantees. It took

about 4 minutes to make all the necessary readjustments, including the addition of 20

nodes and the redistribution the data from the initial 10 nodes to the new ones, before

starting to deliver timely query results. In this case, it decided to maintain the ONE data

model. Fig. 8.21 shows that the partial query execution times with the new processing

infrastructure are below the 100 seconds time target. The variance of the execution

times remained below 0.05%.

Chapter 8 Experimental Evaluation

150

8.6 SPIN Evaluation

This section shows experimental evaluation results obtained with the SPIN

prototype (release 1.6.3). These results were obtained with the default data reader that

assumes the ONE data model and handles tuples physically stored in a row-wise format,

without optimization features (e.g. compression, materialized views, automatic in-

memory bit-selections).

To evaluate the impact of concurrent query loads in performance and scalability,

we evaluated the TPCH setup with a query load composed by several variants of the

query Q5 with different selectivity and aggregation groups. To evaluate the influence of

the workload query pattern in the average execution time, in Section 8.6.4, we use a

more complex workload composed with variants of the queries Q1, Q3 and Q5 with

distinct query predicates. The query load was generated by a varying number of

simultaneous clients that submit a total of 1000 queries, chosen randomly among the

variants. The depicted results were obtained as average of 30 runs.

8.6.1 Influence of number of queries in query performance

The query execution time of common RDBMS that follow a query-at-time

execution model is highly influenced by the number of queries that are concurrently

being executed. In this setup, we evaluate how the number of concurrent queries

influences the average execution of SPIN and TPCH. Fig. 8.22 depicts the average

execution time for a scale factor of SF=10.

Fig. 8.22 – Average execution time for varying query loads (lower is better)

10

100

1.000

10.000

0 20 40 60 80 100

Time (s)

concurrent queries

AVG Time

SPIN TPCH

Chapter 8 Experimental Evaluation

151

We observe that at low concurrent query loads (less than 20 queries being

executed simultaneously), the TPCH setup yields better average execution times.

However, as the number of concurrent queries increases, TPCH exhibits significantly

higher average execution times, because more queries are competing for resources. On

the other hand, the average execution time with the SPIN setup remains almost

constant. There is a slight increase at higher concurrent query loads due to the pipeline

management overheads and the cost of processing the query-specific pipelines that

cannot be combined with other query pipelines.

The impact of submitting additional queries in the average execution time of the

running queries is depicted in Fig. 8.23. The results show that at higher query loads,

SPIN introduces low overheads per query (below 1%) in the average execution time.

The overhead is higher at low query loads (less than 10 concurrent queries) because the

running queries exhibit fewer opportunities for sharing data and processing.

Fig. 8.23 – Overhead per query in the average execution time (lower is better)

The results also reveal that, when a query is submitted using SPIN, there is a

high degree of confidence regarding how long it will take to deliver the result,

regardless of the currently running query load.

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

0 20 40 60 80 100
concurrent queries

Increase in AVG exec time per query

Chapter 8 Experimental Evaluation

152

8.6.2 Influence of number of queries in Throughput

Since the average execution time is not significantly influenced by the

concurrent query load, SPIN yields almost linear throughput. The probability that two

or more queries may share overlapping selection predicates and processing operators,

increases as more queries are running at the same time and consequently yielding

improved throughput. Fig. 8.24 depicts the throughput in queries per hour (Qph)

achieved by TPCH and SPIN.

Fig. 8.24 – Throughput for varying query loads (higher is better)

In the figure we observe that at low concurrent query loads, TPCH yields higher

throughput than SPIN. However as we increase the number of queries that executed

simultaneously, this behavior changes drastically. SPIN does not deliver a linear

throughput due to the pipeline management overheads and also the cost of processing

the query-specific pipelines that cannot be combined with other query pipelines

8.6.3 Influence of the data volume in throughput

Throughput is influenced by the query load, but also by the data volume. Fig.

8.25 depicts the throughput for two distinct data volumes: SF1 (a) and SF10 (b).

0

100

200

300

400

500

0 20 40 60 80 100

Qph

concurrent queries

Throughput (Qph)

SPIN TPCH

Chapter 8 Experimental Evaluation

153

Fig. 8.25 – Throughput for varying query loads with a) SF =1 and b) SF =10 (higher is better)

In the figure, we observe that throughput of SPIN increases almost linearly with

the increase of the number of queries that are ran simultaneously, as more data and

processing is shared among them. With SF1, TPCH yields significantly higher

throughput since all data and processing is done almost exclusively in memory.

However as the number of concurrent queries increase we observe a significant drop in

throughput as the running queries exhaust the available memory. SPIN, does not have

these memory issues and can be massively deployed among low-end commodity

servers.

Fig. 8.26 – Impact in throughput of a 10x increase in data volume (lower is better)

This effect can be observed in Fig. 8.26, which compares the throughput ratio

(Qph(SF1) / Qph(SF10)). As the data volume increases by a factor of 10, from SF=1 to

SF=10, we observe that at low query loads (less than 10 queries running concurrently),

the throughput drops by a factor of around 30, mainly because with SF=1, TPCH is

0

2.000

4.000

6.000

8.000

10.000

12.000

1 2 10 20 75 100

Qph

#concurrent queries

SF1 - Throughput (Qph)

SPIN TPCH

0

50

100

150

200

250

300

1 2 10 20 75 100

Qph

#concurrent queries

SF10- Throughput (Qph)

SPIN TPCH

0

50

100

150

200

250

300

350

400

450

1 2 10 20 75 100
#concurrent clients

Qph(SF1) / Qph(SF10)

SPIN TPCH

Chapter 8 Experimental Evaluation

154

almost entirely in memory, while with SF=10 there is more IO operations. As the query

load increases, the throughput of TPCH drops, since more IO operations are needed to

process the queries. With 100 concurrent queries, an increase in data volume by factor

of 10 results in a drop in throughput by a factor greater than 400. On the other hand, the

throughput of SPIN drops almost proportionally to the data volume increase factor.

8.6.4 Influence of the workload query pattern in query performance

The above experiments were carried out using variants of query Q5 with

different selectivity and aggregation groups. To evaluate the influence of the query load

pattern in the average execution time of SPIN, we now evaluate more complex query

loads composed with variants of the queries Q1, Q3 and Q5 with distinct query

predicates.

Fig. 8.27 depicts SPIN results for SF=10 with three distinct query workloads:

Q1 and Q5 are query workloads exclusively composed by variants of query Q1 and Q5,

respectively; Q135 is a workload composed by a set of variants of the queries Q1, Q3

and Q5, that where randomly chosen for execution.

Fig. 8.27 – Influence of the query workload pattern in average execution time

The results show that the query workload has minimum impact in the average

execution time, for all the considered number of concurrent queries. Although some

queries (e.g. Q1) have more complex calculus, there is no significant change in the

average execution times because CPU is not the bottleneck, but the IO performance.

Chapter 8 Experimental Evaluation

155

Therefore, and because it uses the scalable and predictable ONE data model, SPIN

performance can be significantly boosted if a parallel infrastructure is used.

8.6.5 Evaluation of SPIN with bitset processing

We selected a query load, based on variants of query Q5, which SPIN already

delivers good performance results, to assess if bitset processing can improve SPIN even

further. The workload processing tree (WPtree) varies with the query load and the

evaluation order of the predicates. The query predicates of query Q5 are o_orderdate,

r_name, and c_nationkey and s_nationkey, which can originate a WPtree with up to 60

branches. Predicates can be arranged in 3 distinct WPtrees, based on the order they are

evaluated: c_nationkey = s_nationkey → o_orderdate → r_name (WPtree1);

o_orderdate → c_nationkey = s_nationkey → r_name (WPtree2);

o_orderdate → r_name → c_nationkey = s_nationkey (WPtree3).

As the relation is spinning, and tuples are evaluated, several bitsets were built:

10 for the o_orderdate attribute, one bitset for each year, with a selectivity of roughly

10%, 5 bitsets for r_name, one for each region name, each with a selectivity of 20%,

and also a bitset that represents the nationkey equality (c_nationkey = s_nationkey),

where a bit is set to true when the tuple that satisfy the equality. This bitset has a

selectivity of about 4%. We then analyzed the time required to evaluate the predicates.

The results are depicted in Fig. 8.28. Since SPIN merges queries with matching

predicates, the x-axis denotes the number of concurrent clients with distinct query

predicates.

Fig. 8.28 – Total predicate evaluation time

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

time (s)

concurrent clients

predicate evaluation time

WP bitset WPtree1 WPtree3 WPtree2

Chapter 8 Experimental Evaluation

156

From the figure we observe that the processing trees WPtree2 and WPtree3 have

higher evaluation times, since the predicate evaluation order do not follow the predicate

selectivity. WPtree1 is the one that presents lower times, since the predicates are

evaluated in an increasing order of selectivity. Bitset processing yields improved

evaluation times, represented in the figure as WP bitset, since for each submitted query

the predicates where replaced with a bitset lookup. The depicted result accounts for the

time needed to parse and find the set of bitsets that match each of the query predicates,

the time needed to build a composed bitset (perform an AND to the set of matching

bitsets) and also the tuple evaluations using this bitset. For the considered query load,

each query will have a composed bitset, which is obtained by combining bitsets that

match the query predicates, with low selectivity (10% × 20% × 4%).

The order of predicates and how the matching branches are orchestrated in the

WPtree influences the predicate evaluation times. For large query loads, with distinct

query patterns, it may not be possible to obtain the best order for each query. Bitset

processing speedups the evaluation of predicates and avoid these issues.

Another feature of bitset processing is that we also reduce the number of tuple

evaluations made by selection operators. When the current WPtree does do not require

all the data, then the WPbitset can be pushed forward to the Data Reader to avoid

reading unnecessary data fragments. For a query, Fig. 8.29 depicts the total number of

tuple evaluations made by the selection operators (σ) with the base SPIN setup (SPIN)

using WPtree1, when the bitset selection operators (σbit) are placed along the branches

(SPIN-WP bitset), and when the Data Reader uses a WPbitset (SPIN-DR bitset). The

depicted results consider that data is partitioned by o_orderdate.

Fig. 8.29 – Number of tuple evaluations

0

20

40

60

80

100

SPIN SPIN-WP
bitset

SPIN-DR
bitset

Millions # of tuple evaluations

Chapter 8 Experimental Evaluation

157

Since SPIN-DR bitset early discards uninteresting tuples, subsequent tuple

evaluations are performed only to relevant tuples. The number of tuple evaluations

when SPIN-WP bitset is also significantly smaller than the base SPIN, since after

individual bitsets have been created they can be combined according to the query

predicates, resulting into a single bitset with low selectivity (10% × 20% × 4%). In this

case the number of tuple evaluations is equal to the number of tuples, and thus it’s

particularly interesting to use a WPbitset to reduce the number of tuples that are read

and placed in the base pipeline.

Next we evaluated the impact of bitset processing in the average execution time,

for a varying number of concurrent clients. The results are depicted in Fig. 8.30.

Fig. 8.30 – Average execution time

The results shows that even though SPIN-WP bitset evaluation is faster than

tuple evaluation of SPIN (recall Fig. 8.28), SPIN-WP bitset only yields a slightly

improvement in the average execution time in comparison with SPIN (in the graph they

are almost the same). This is because we used a query load composed with variants of

Q5, and SPIN setup uses the most efficient deployment (WPtree1), organized in utmost

60 branches, and also because the overall execution costs is constrained by the IO

reading time. However when we apply the WPbitset to the data reader (SPIN-DR bitset)

the performance is significantly better since it can avoid reading large number of tuples,

and consequently reduce the number of evaluations and the evaluation time.

1

10

100

1.000

0 20 40 60 80 100

Time (s)

#concurrent queries

Avg. Exec Time

SPIN

SPIN-WP bitset

SPIN-DR bitset

Chapter 8 Experimental Evaluation

158

8.7 Chapter Summary

This chapter evaluated the approaches and mechanisms proposed in this

dissertation.

The ONE data model and the query processing mechanisms offer reliable and

predictable execution times, which can be estimated as a function of the data volume

and the underlying storage system. As the execution time of the ONE data model

increases linearly with the volume of data, DBAs and IT managers can estimate, with

an appreciable confidence, how the supporting infrastructure will behave for larger data

volumes. Moreover, since a large amount of the query execution cost is from IO

operations, particularly the sustained transfer read rate, we can, with high confidence,

estimate how the current hardware systems behave and the performance gains that can

be obtained by upgrading the processing infrastructure, even without testing it.

The experimental results show that ONE-P scales-out almost linearly, and can

be massively partitioned and distributed among an elastic set of processing nodes, and

is able to provide timely results.

The experimental results also have shown that for large concurrent query loads,

the SPIN processing model is capable of sharing data and processing in order to provide

efficient and predictable execution times.

159

Chapter 9

Conclusions and Future Work

This chapter presents the conclusions of this research and gives some directions

of future work that is worth of further investigation.

9.1 Conclusions

This dissertation proposes mechanisms for handling massively scalable data

warehouses with performance predictability. We have shown that the scalability and the

ability to provide timely results are constrained by the data and processing model.

We proposed an alternative data model, called ONE [Costa, Cecílio, et al. 2011;

Costa, Martins, et al. 2011], which de-normalizes the star schema and thus trades

storage space with the ability to provide predictable execution times, even for larger

data volumes. The data model has reduced memory requirements and is IO dependent,

i.e., storage throughput is the factor that most influences execution time. However, it

can be massively partitioned among a wide set of processing nodes with almost linear

speedup. We discussed the storage requirements of ONE, and experimentally evaluated

its performance, scalability and predictability features.

Parallel shared-nothing infrastructures are usually used to handle large DWs. To

overcome the scalability limitations of large parallel star schema DWs, and since the

ONE data model provides predictable execution times for scalable data volumes, we

have proposed ONE-P [Costa, Martins, et al. 2011; Costa, Cecílio, et al. 2012] which

partitions the de-normalized relation into a set of data fragments and distributes them

among processing nodes of the parallel infrastructure. The query execution time of

ONE-P is predictable and can be estimated as a function of the number of nodes, and

Chapter 9 Conclusions and Future Work

160

the data volume allocated to each of the processing nodes. We experimentally

demonstrated that ONE-P does not have the scalability limitations of the star schema

model, and it scales-out and can deliver almost linear speedup without increasing the

overall data storage size.

In large DWs, it is important to have high throughput, but it is also important to

deliver timely results to queries (including ad-hoc queries). The ability to provide

timely results before business decisions are made is gaining increasing interest.

However the continuous increase in data volume and the need for faster results may

endanger the ability of the parallel infrastructure to guarantee timely results. Therefore,

to achieve that goal we proposed TEEPA [Costa, Martins, et al. 2012a; Costa, Martins,

et al. 2012b], a Timely-aware Execution Parallel Architecture which balances the data

volume allocated to each node, the data storage organization and the query processing

among an elastic set of heterogeneous nodes to provide scale-out performance and

timely query results. In each node, the data volume is stored using an adaptable storage

model, which varyies the level of de-normalization that best fit the node’ capabilities, in

order to minimize the join costs (the major uncertainty factor), while preserving a

consistent logical view of the star schema. The experimental results demonstrated that

TEEPA is able to adapt the underlying infrastructure and storage organization to

provide timely results.

We also proposed SPIN [Costa & Furtado 2013; Costa & Furtado 2015], a data

and processing sharing model that delivers predictable execution times to aggregation

queries, even in the presence of large concurrent workloads, without the memory and

scalability limitations of existing approaches. For the current query load it combines

and merges similar predicates and computation into common pipelines and then avoids

the concurrent execution of similar tasks. The remaining query processing tasks, which

cannot be combined with others, are plugged as branches of these common pipelines,

creating a workload processing tree. Experiments have proven the usefulness of the

proposed approach, and have shown that SPIN is able to provide scalable performance

and predictable execution times even in presence of large concurrent query loads. To

handle large query loads, we extended SPIN and proposed a bitset processing approach

that builds a bitset for each branch, with the branch results for each of the evaluated

tuples. Since SPIN processes data in circular fashion, a branch that processes data

which was evaluated in previous loops can be replaced by faster bitset lookup. Along a

Chapter 9 Conclusions and Future Work

161

query path, a set of consecutive bitsets can be combined into a merged bitset, therefore

reducing even further the cost of processing the workload processing tree.

When the query execution time is higher than a query time target, we proposed a

parallel SPIN approach, named CARROUSEL, which manages a set of SPIN

processing engines in parallel, to reduce the query execution time below that time

target. Besides the data volume, it redistributes queries, query processing and data

branches, among processing nodes, according to query load and data fragments that

each node stores.

9.2 Future Work

We are currently pursuing a set of research directions that were not included in

this dissertation, which have the potential to provide further performance

improvements. The ONE cost models and the experimental evaluation was conducted

using the typical row-store organization of most DBMS engines. However, columnar-

store organization has proven to provide enhanced performance gains, since only the

required columns have to be read from storage. A columnar ONE model has the

scalability characteristics of a single relation, with a simpler and no-join approach

where columns are combined based on tuple position, with a significant reduction in

data size. A columnar approach will also yield performance gains to SPIN processing

model, with different data readers (for distinct columns) being attached to specific

branches. CARROUSEL will also benefit from it, since only the columns required by

the balanced branches have to be rearranged (copied) among processing nodes.

Data compression is another research direction that we are currently pursuing, in

order to reduce the storage requirements and consequently the time required to read the

de-normalized data. The deployment of large DW over a Hadoop infrastructure with the

scalability of ONE data model is a direction that should be explored.

Regarding the SPIN processing model, we are also considering the possibility to

trade precision for performance as an alternative approach to provide timely results.

163

References

[Abiteboul, Duschka1998] “Complexity of Answering Queries Using Materialized

Views,” Abiteboul, Serge, & Oliver M. Duschka, 1998. In Proceedings of the

17th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

254–263. PODS ’98. New York, NY, USA: ACM.

[Abouzeid, Bajda-Pawlikowski, et al.2009] “HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for Analytical Workloads,” Abouzeid,

Azza, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, & Alexander

Rasin, 2009. Proceedings of the VLDB Endowment 2 (1) (August): 922–933.

[Acharya, Gibbons, et al.2000] “Congressional Samples for Approximate Answering of

Group-by Queries,” Acharya, Swarup, Phillip B. Gibbons, & Viswanath

Poosala, 2000. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, 487–498. SIGMOD ’00. New York, NY,

USA: ACM.

[Acharya, Gibbons, et al.1999] “Join Synopses for Approximate Query Answering,”

Acharya, Swarup, Phillip B. Gibbons, Viswanath Poosala, & Sridhar

Ramaswamy, 1999. SIGMOD Rec. 28 (2) (June): 275–286.

[Achyutuni, Omiecinski, et al.1995] The Impact of Data Placement Strategies on

Reorganization Costs in Parallel Databases, Achyutuni, Kiran J., Edward

Omiecinski, & Shamkant B. Navathe, 1995. .

[Agrawal, Chaudhuri, et al.2000] “Automated Selection of Materialized Views and

Indexes in SQL Databases,” Agrawal, Sanjay, Surajit Chaudhuri, & Vivek R.

Narasayya, 2000. In Proceedings of the 26th International Conference on Very

Large Data Bases, 496–505. VLDB ’00. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.

[Arumugam, Dobra, et al.2010] “The DataPath System: A Data-Centric Analytic

Processing Engine for Large Data Warehouses,” Arumugam, Subi, Alin Dobra,

Christopher M Jermaine, Niketan Pansare, & Luis Perez, 2010. Proceedings of

the 2010 International Conference on Management of Data. SIGMOD ’10:

519–530.

[Baru, Fecteau, et al.1995] “DB2 Parallel Edition,” Baru, C.K., G. Fecteau, A. Goyal,

H. Hsiao, A. Jhingran, S. Padmanabhan, G.P. Copeland, & W.G. Wilson, 1995.

IBM Systems Journal 34 (2): 292–322.

[Bayer, McCreight1970] “Organization and Maintenance of Large Ordered Indices,”

Bayer, R., & E. McCreight, 1970. In Proceedings of the ACM SIGFIDET (now

SIGMOD) Workshop on Data Description, Access and Control, 107–141.

SIGFIDET ’70. New York, USA: ACM.

[Bellatreche, Karlapalem, et al.2000] “What Can Partitioning Do for Your Data

Warehouses and Data Marts?,” Bellatreche, L., K. Karlapalem, M. Mohania, &

M. Schneider, 2000. In Database Engineering and Applications Symposium,

2000 International, 437–445.

 References

164

[Bernardino2002] “Técnicas para o aumento do desempenho e da disponibilidade em

data warehouses,” Bernardino, Jorge Fernandes Rodrigues, 2002. (January 24).

[Blasgen, Eswaran1977] “Storage and Access in Relational Data Bases,” Blasgen, M

W, & K. P. Eswaran, 1977. IBM Systems Journal 16 (4): 363–377.

[Candea, Polyzotis, et al.2009] “A Scalable, Predictable Join Operator for Highly

Concurrent Data Warehouses,” Candea, George, Neoklis Polyzotis, & Radek

Vingralek, 2009. Proceedings of the VLDB Endowment 2 (August): 277–288.

[Candea, Polyzotis, et al.2011] “Predictable Performance and High Query

Concurrency for Data Analytics,” Candea, George, Neoklis Polyzotis, & Radek

Vingralek, 2011. The VLDB Journal 20 (2) (April): 227–248.

[Chan, Ioannidis1998] “Bitmap Index Design and Evaluation,” Chan, Chee-Yong, &

Yannis E. Ioannidis, 1998. In Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data, 355–366. SIGMOD ’98.

New York, NY, USA: ACM.

[Chaudhuri, Dayal1997] “An Overview of Data Warehousing and OLAP Technology,”

Chaudhuri, Surajit, & Umeshwar Dayal, 1997. SIGMOD Rec. 26 (1): 65–74.

[Chen, Gehrke, et al.2001] “Query Optimization In Compressed Database Systems,”

Chen, Zhiyuan, Johannes Gehrke, & Flip Korn, 2001. In In ACM SIGMOD,

271–282. ACM Press.

[Cheung, Madden, et al.2012] “Automatic Partitioning of Database Applications,”

Cheung, Alvin, Samuel Madden, Owen Arden, & Andrew C. Myers, 2012.

Proc. VLDB Endow. 5 (11) (July): 1471–1482.

[Comer1979] “Ubiquitous B-Tree,” Comer, Douglas, 1979. ACM Comput. Surv. 11 (2)

(June): 121–137.

[Copeland, Alexander, et al.1988] “Data Placement in Bubba,” Copeland, George,

William Alexander, Ellen Boughter, & Tom Keller, 1988. In Proceedings of the

ACM-SIGMOD International Conference on Management of Data.

[Copeland, Khoshafian1985] “A Decomposition Storage Model,” Copeland, George P,

& Setrag N Khoshafian, 1985. Proceedings of the ACM-SIGMOD International

Conference on Management of Data.

[Costa, Cecílio, et al.2011] “ONE: A Predictable and Scalable DW Model,” Costa, João

Pedro, José Cecílio, Pedro Martins, & Pedro Furtado, 2011. In Proceedings of

the 13th International Conference on Data Warehousing and Knowledge

Discovery, 1–13. DaWaK’11. Toulouse, France: Springer-Verlag.

[Costa, Cecílio, et al.2012] “Overcoming the Scalability Limitations of Parallel Star

Schema Data Warehouses,” Costa, João Pedro, José Cecílio, Pedro Martins, &

Pedro Furtado, 2012. In Proceedings of the 12th International Conference on

Algorithms and Architectures for Parallel Processing - Volume Part I, 473–486.

ICA3PP’12. Berlin, Heidelberg: Springer-Verlag.

[Costa, Furtado2003] “Time-Stratified Sampling for Approximate Answers to Aggregate

Queries,” Costa, João Pedro, & Pedro Furtado, 2003. In International

Conference on Database Systems for Advanced Applications (DASFAA 2003),

0:215. Kyoto, Japan: IEEE Computer Society.

[Costa, Furtado2013] “SPIN:Concurrent Workload Scaling over Data Warehouses,”

Costa, João, & Pedro Furtado, 2013. In Proceedings of the 15th International

 References

165

Conference on Data Warehousing and Knowledge Discovery - DaWaK 2013.

Prague, Czech Republic.

[Costa, Furtado2015] “Data Warehouse Processing Scale-Up for Massive Concurrent

Queries with SPIN,” Costa, João, & Pedro Furtado, 2015. In Transactions on

Large-Scale Data- and Knowledge-Centered Systems XVII, ed by. Abdelkader

Hameurlain, Josef Küng, Roland Wagner, Ladjel Bellatreche, & Mukesh

Mohania, 1–23. Lecture Notes in Computer Science 8970. Springer Berlin

Heidelberg.

[Costa, Madeira2004] “Handling Big Dimensions in Distributed Data Warehouses

Using the DWS Technique,” Costa, Marco, & Henrique Madeira, 2004. In

Proceedings of the 7th ACM International Workshop on Data Warehousing and

OLAP, 31–37. DOLAP ’04. New York, NY, USA: ACM.

[Costa, Martins, et al.2011] “A Predictable Storage Model for Scalable Parallel DW,”

Costa, João Pedro, Pedro Martins, José Cecílio, & Pedro Furtado, 2011. In

Fifteenth International Database Engineering and Applications Symposium

(IDEAS 2011). Lisbon, Portugal: ACM.

[Costa, Martins, et al.2012a] “TEEPA: A Timely-Aware Elastic Parallel Architecture,”

Costa, João Pedro, Pedro Martins, José Cecilio, & Pedro Furtado, 2012. In

Proceedings of the 16th International Database Engineering & Applications

Symposium, 24–31. IDEAS’12. New York, NY, USA: ACM.

[Costa, Martins, et al.2012b] “Providing Timely Results with an Elastic Parallel DW,”

Costa, João Pedro, Pedro Martins, José Cecilio, & Pedro Furtado, 2012. In

Proceedings of the 20th International Conference on Foundations of Intelligent

Systems, 415–424. ISMIS’12. Berlin, Heidelberg: Springer-Verlag.

[Dewitt, Ghandeharizadeh, et al.1990] “The Gamma Database Machine Project,”

Dewitt, David J., Shahram Ghandeharizadeh, Donovan Schneider, Allan

Bricker, Hui-i Hsiao, & Rick Rasmussen, 1990. IEEE Transactions on

Knowledge and Data Engineering 2: 44–62.

[Dewitt, Gray1992] “Parallel Database Systems: The Future of High Performance

Database Systems,” Dewitt, David J., & Jim Gray, 1992. Communications of the

ACM 35: 85–98.

[DeWitt, Katz, et al.1984] “Implementation Techniques for Main Memory Database

Systems,” DeWitt, David J, Randy H Katz, Frank Olken, Leonard D Shapiro,

Michael R Stonebraker, & David A Wood, 1984. In ACM SIGMOD Record, 1–

8. SIGMOD ’84. New York, NY, USA: ACM.

[DeWitt, Naughton, et al.1992] “Practical Skew Handling in Parallel Joins,” DeWitt,

David J., Jeffrey F. Naughton, Donovan A. Schneider, & S. Seshadri, 1992. In

Proceedings of the 18th International Conference on Very Large Data Bases,

27–40. VLDB ’92. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[Epstein, Stonebraker, et al.1978] “Distributed Query Processing in a Relational Data

Base System,” Epstein, Robert, Michael Stonebraker, & Eugene Wong, 1978. In

Proceedings of the 1978 ACM SIGMOD International Conference on

Management of Data, 169–180. SIGMOD ’78. New York, NY, USA: ACM.

 References

166

[Fagin, Mendelzon, et al.1982] “A Simplied Universal Relation Assumption and Its

Properties,” Fagin, Ronald, Alberto O. Mendelzon, & Jeffrey D. Ullman, 1982.

ACM Trans. Database Syst. 7 (3) (September): 343–360.

[Frey, Goncalves, et al.2009] “Spinning Relations: High-Speed Networks for

Distributed Join Processing,” Frey, Philip W, Romulo Goncalves, Martin

Kersten, & Jens Teubner, 2009. Proceedings of the Fifth International

Workshop on Data Management on New Hardware. DaMoN ’09: 27–33.

[Frey, Goncalves, et al.2010] “A Spinning Join That Does Not Get Dizzy,” Frey, Philip

W., Romulo Goncalves, Martin Kersten, & Jens Teubner, 2010. In 20th

International Conference on Distributed Computing Systems (ICDCS 2010),

0:283–292. Los Alamitos, CA, USA: IEEE Computer Society.

[Furtado2004] “Workload-Based Placement and Join Processing in Node-Partitioned

Data Warehouses,” Furtado, Pedro, 2004. In Data Warehousing and Knowledge

Discovery, 3181:38–47. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg.

[Furtado2008] “Efficient, Chunk-Replicated Node Partitioned Data Warehouses,”

Furtado, Pedro, 2008. In 2008 IEEE International Symposium on Parallel and

Distributed Processing with Applications, 578–583. Sydney, Australia.

[Furtado2009a] “A Survey of Parallel and Distributed Data Warehouses,” Furtado,

Pedro, 2009. IJDWM 5 (2): 57–77.

[Furtado2009b] “Model and Procedure for Performance and Availability-Wise Parallel

Warehouses,” Furtado, Pedro, 2009. Distributed and Parallel Databases 25 (1):

71–96.

[Giannikis, Alonso, et al.2012] “SharedDB: Killing One Thousand Queries with One

Stone,” Giannikis, Georgios, Gustavo Alonso, & Donald Kossmann, 2012.

Proc. VLDB Endow. 5 (6) (February): 526–537.

[Golfarelli, Rizzi2009] “A Survey on Temporal Data Warehousing,” Golfarelli, Matteo,

& Stefano Rizzi, 2009. In Database Technologies: Concepts, Methodologies,

Tools, and Applications, 221–237.

[Graefe1993] “Query Evaluation Techniques for Large Databases,” Graefe, Goetz,

1993. ACM Comput. Surv. 25 (2) (June): 73–169.

[Graefe2011] “New Algorithms for Join and Grouping Operations,” Graefe, Goetz,

2011. Computer Science - Research and Development (June).

[Graefe, Linville, et al.1994] “Sort vs. Hash Revisited,” Graefe, G., A. Linville, & L. D

Shapiro, 1994. IEEE Transactions on Knowledge and Data Engineering 6

(December): 934–944.

[Grund, Krüger, et al.2010] “HYRISE: A Main Memory Hybrid Storage Engine,”

Grund, Martin, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-

Mauroux, & Samuel Madden, 2010. Proc. VLDB Endow. 4 (November): 105–

116.

[Gupta2000] “Selection and Maintenance of Views in a Data Warehouse,” Gupta,

Himanshu Satishkumar, 2000. . Stanford, CA, USA: Stanford University.

[Harizopoulos, Shkapenyuk, et al.2005] “QPipe: A Simultaneously Pipelined Relational

Query Engine,” Harizopoulos, Stavros, Vladislav Shkapenyuk, & Anastassia

 References

167

Ailamaki, 2005. Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data. SIGMOD ’05: 383–394.

[Harris, Ramamohanarao1996] “Join Algorithm Costs Revisited,” Harris, Evan P, &

Kotagiri Ramamohanarao, 1996. The VLDB Journal — The International

Journal on Very Large Data Bases 5 (January): 064–084.

[Holloway, Raman, et al.2007] “How to Barter Bits for Chronons: Compression and

Bandwidth Trade Offs for Database Scans,” Holloway, Allison L., Vijayshankar

Raman, Garret Swart, & David J. DeWitt, 2007. In Proceedings of the 2007

ACM SIGMOD International Conference on Management of Data, 389–400.

SIGMOD ’07. New York, NY, USA: ACM.

[Huang, Zhang, et al.2009] “A Data Distribution Strategy for Scalable Main-Memory

Database,” Huang, Yunkui, YanSong Zhang, Xiaodong Ji, Zhanwei Wang, &

Shan Wang, 2009. In Advances in Web and Network Technologies, and

Information Management, ed by. Lei Chen, Chengfei Liu, Xiao Zhang, Shan

Wang, Darijus Strasunskas, Stein L. Tomassen, Jinghai Rao, et al., 13–24.

Lecture Notes in Computer Science 5731. Springer Berlin Heidelberg.

[Jaedicke, Mitschang1998] “On Parallel Processing of Aggregate and Scalar Functions

in Object-Relational DBMS,” Jaedicke, Michael, & Bernhard Mitschang, 1998.

In Proceedings of the 1998 ACM SIGMOD International Conference on

Management of Data, 379–389. SIGMOD ’98. New York, NY, USA: ACM.

[Jermaine, Pol, et al.2004] “Online Maintenance of Very Large Random Samples,”

Jermaine, Christopher, Abhijit Pol, & Subramanian Arumugam, 2004. In

Proceedings of the 2004 ACM SIGMOD International Conference on

Management of Data, 299–310. SIGMOD ’04. New York, NY, USA: ACM.

[Johnson1999] “Performance Measurements of Compressed Bitmap Indices,” Johnson,

Theodore, 1999. Proceedings of the 25th International Conference on Very

Large Data Bases. VLDB ’99: 278–289.

[Kallman, Kimura, et al.2008] “H-Store: A High-Performance, Distributed Main

Memory Transaction Processing System,” Kallman, Robert, Hideaki Kimura,

Jonathan Natkins, Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan P. C.

Jones, et al., 2008. Proc. VLDB Endow. 1 (2): 1496–1499.

[Kimball1996] The Data Warehouse Toolkit: Practical Techniques for Building

Dimensional Data Warehouses, Kimball, Ralph, 1996. . Wiley.

[Kimball, Ross, et al.2008] The Data Warehouse Lifecycle Toolkit, Kimball, Ralph,

Margy Ross, Warren Thornthwaite, Joy Mundy, & Bob Becker, 2008. . 2nd ed.

Wiley Publishing.

[Kim, Kaldewey, et al.2009] “Sort vs. Hash Revisited: Fast Join Implementation on

Modern Multi-Core CPUs,” Kim, Changkyu, Tim Kaldewey, Victor W Lee,

Eric Sedlar, Anthony D Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di

Blas, & Pradeep Dubey, 2009. Proceedings of the VLDB Endowment 2 (2)

(August): 1378–1389.

[Kitsuregawa, Tanaka, et al.1983] “Application of Hash to Data Base Machine and Its

Architecture,” Kitsuregawa, Masaru, Hidehiko Tanaka, & Tohru Moto-Oka,

1983. New Generation Computing 1 (1): 63–74.

 References

168

[Korth, Kuper, et al.1984] “SYSTEM/U: A Database System Based on the Universal

Relation Assumption,” Korth, Henry F., Gabriel M. Kuper, Joan Feigenbaum,

Allen van Gelder, & Jeffrey D. Ullman, 1984. ACM Trans. Database Syst. 9 (3)

(September): 331–347.

[Lemire, Kaser2011] “Reordering Columns for Smaller Indexes,” Lemire, Daniel, &

Owen Kaser, 2011. Inf. Sci. 181 (12) (June): 2550–2570.

[Lemire, Kaser, et al.2012] “Reordering Rows for Better Compression: Beyond the

Lexicographic Order,” Lemire, Daniel, Owen Kaser, & Eduardo Gutarra, 2012.

ACM Trans. Database Syst. 37 (3) (September): 20:1–20:29.

[Li, Patel2014] “WideTable: An Accelerator for Analytical Data Processing,” Li,

Yinan, & Jignesh M. Patel, 2014. PVLDB 7 (10): 907–918.

[Liu, Chen1996] “A Hash Partition Strategy for Distributed Query Processing,” Liu,

Chengwen, & Hao Chen, 1996. In Advances in Database Technology - EDBT

’96, ed by. Peter Apers, Mokrane Bouzeghoub, & Georges Gardarin, 1057:371–

387. Berlin/Heidelberg: Springer-Verlag.

[Liu, Yu1992] “Validation and Performance Evaluation of the Partition and Replicate

Algorithm,” Liu, Chengwen, & C. Yu, 1992. In , Proceedings of the 12th

International Conference on Distributed Computing Systems, 1992, 400–407.

[Mami, Bellahsene2012] “A Survey of View Selection Methods,” Mami, Imene, &

Zohra Bellahsene, 2012. SIGMOD Rec. 41 (1) (April): 20–29.

[Mehta, DeWitt1997] “Data Placement in Shared-Nothing Parallel Database Systems,”

Mehta, Manish, & David J. DeWitt, 1997. The VLDB Journal 6 (1) (February):

53–72.

[Mishra, Eich1992] “Join Processing in Relational Databases,” Mishra, Priti, &

Margaret H. Eich, 1992. ACM Computing Surveys 24: 63–113.

[Noaman, Barker1999] “A Horizontal Fragmentation Algorithm for the Fact Relation

in a Distributed Data Warehouse,” Noaman, Amin Y., & Ken Barker, 1999. In

Proceedings of the Eighth International Conference on Information and

Knowledge Management, 154–161. CIKM ’99. New York, NY, USA: ACM.

[O’Connell, Winterbottom2003] “Performing Joins without Decompression in a

Compressed Database System,” O’Connell, S. J., & N. Winterbottom, 2003.

SIGMOD Rec. 32 (1) (March): 6–11.

[O’Neil, Graefe1995] “Multi-Table Joins through Bitmapped Join Indices,” O’Neil,

Patrick, & Goetz Graefe, 1995. ACM SIGMOD Record 24 (3) (September): 8–

11.

[O’Neil, O’Neil, et al.2009] “The Star Schema Benchmark and Augmented Fact Table

Indexing,” O’Neil, Patrick, Elizabeth O’Neil, Xuedong Chen, & Stephen

Revilak, 2009. In Performance Evaluation and Benchmarking, 5895:237–252.

Lecture Notes in Computer Science. Springer Berlin / Heidelberg.

[O’Neil, O’Neil, et al.2007] “Bitmap Index Design Choices and Their Performance

Implications,” O’Neil, E., P. O’Neil, & Kesheng Wu, 2007. In Database

Engineering and Applications Symposium, 2007. IDEAS 2007. 11th

International, 72–84.

[O’Neil, Quass1997] “Improved Query Performance with Variant Indexes,” O’Neil,

Patrick, & Dallan Quass, 1997. SIGMOD Rec. 26 (2) (June): 38–49.

 References

169

[Ozsu, Valduriez2011] Principles of Distributed Database Systems, Ozsu, M. Tamer, &

Patrick Valduriez, 2011. . 3rd ed. Springer Publishing Company, Incorporated.

[Patel, Carey, et al.1994] “Accurate Modeling of the Hybrid Hash Join Algorithm,”

Patel, Jignesh M, Michael J Carey, & Mary K Vernon, 1994. In ACM

SIGMETRICS Performance Evaluation Review. SIGMETRICS ’94. NY, USA:

ACM.

[Patterson, Ditzel1980] “The Case for the Reduced Instruction Set Computer,”

Patterson, David A., & David R. Ditzel, 1980. SIGARCH Comput. Archit. News

8 (6) (October): 25–33.

[Pavlo, Curino, et al.2012] “Skew-Aware Automatic Database Partitioning in Shared-

Nothing, Parallel OLTP Systems,” Pavlo, Andrew, Carlo Curino, & Stanley

Zdonik, 2012. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, 61–72. SIGMOD ’12. New York, NY,

USA: ACM.

[Pavlo, Paulson, et al.2009] “A Comparison of Approaches to Large-Scale Data

Analysis,” Pavlo, Andrew, Erik Paulson, Alexander Rasin, Daniel J Abadi,

David J DeWitt, Samuel Madden, & Michael Stonebraker, 2009. Proc. of the

35th SIGMOD International Conference on Management of Data. SIGMOD

’09: 165–178.

[Pinto2009] “A Framework for Systematic Database Denormalization,” Pinto, Yma,

2009. Global Journal of Computer Science and Technology 9 (4) (August 15).

[Poess, Potapov2003] “Data Compression in Oracle,” Poess, Meikel, & Dmitry

Potapov, 2003. In Proceedings of the 29th International Conference on Very

Large Data Bases - Volume 29, 937–947. VLDB ’03. Berlin, Germany: VLDB

Endowment.

[Raman, Swart, et al.2008] “Constant-Time Query Processing,” Raman, Vijayshankar,

Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani, Donald Kossmann,

Inderpal Narang, & Richard Sidle, 2008. Proceedings of the 2008 IEEE 24th

International Conference on Data Engineering: 60–69.

[Roussopoulos1998] “Materialized Views and Data Warehouses,” Roussopoulos, Nick,

1998. SIGMOD Rec. 27 (1) (March): 21–26.

[Sanders, Shin2001] “Denormalization Effects on Performance of RDBMS,” Sanders,

G. Lawrence, & Seungkyoon Shin, 2001. In Proceedings of the 34th Annual

Hawaii International Conference on System Sciences, 3:3013. HICSS ’01.

Washington, DC, USA: IEEE Computer Society.

[Schneider, Dewitt1989] “A Performance Evaluation of Four Parallel Join Algorithms

in a Shared-Nothing Multiprocessor Environment,” Schneider, Donovan A, &

David J Dewitt, 1989. : 110–121.

[Shasha, Wang1991] “Optimizing Equijoin Queries in Distributed Databases Where

Relations Are Hash Partitioned,” Shasha, Dennis, & Tsong-Li Wang, 1991.

ACM Transactions on Database Systems 16 (2) (May): 279–308.

[Shatdal, Naughton1994] Processing Aggregates in Parallel Database Systems,

Shatdal, Ambuj, & Jeffrey F. Naughton, 1994. . Vol. Computer Sciences

Technical Report #123. University of Wisconsin-Madison, Computer Sciences

Department.

 References

170

[Stockinger, Wu2006] “Bitmap Indices for Data Warehouses,” Stockinger, Kurt, &

Kesheng Wu, 2006. In In Data Warehouses and OLAP. 2007. IRM. Press.

[Stöhr, Märtens, et al.2000] “Multi-Dimensional Database Allocation for Parallel Data

Warehouses,” Stöhr, Thomas, Holger Märtens, & Erhard Rahm, 2000. In

Proceedings of the 26th International Conference on Very Large Data Bases,

273–284. VLDB ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc.

[Stonebraker, Abadi, et al.2005] “C-Store: A Column-Oriented DBMS,” Stonebraker,

Mike, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel

Ferreira, Edmond Lau, et al., 2005. Proceedings of the 31st International

Conference on Very Large Data Bases. VLDB ’05: 553–564.

[Strohm2011] “Oracle Database Concepts, 11g Release 1 (11.1),” Strohm, Richard,

2011. Oracle Database Concepts, 11g Release 1 (11.1).

[Thusoo, Sarma, et al.2009] “Hive: A Warehousing Solution over a Map-Reduce

Framework,” Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng Shao,

Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, & Raghotham

Murthy, 2009. Proc. VLDB Endow. 2 (2): 1626–1629.

[TPC-H] “TPC-H Decision Support Benchmark,” TPC-H, .

[Unterbrunner, Giannikis, et al.2009] “Predictable Performance for Unpredictable

Workloads,” Unterbrunner, P., G. Giannikis, G. Alonso, D. Fauser, & D.

Kossmann, 2009. Proceedings of the VLDB Endowment 2 (August): 706–717.

[Westmann, Kossmann, et al.1998] The Implementation and Performance of

Compressed Databases, Westmann, Till, Donald Kossmann, Sven Helmer, &

Guido Moerkotte, 1998. .

[Westmann, Kossmann, et al.2000] “The Implementation and Performance of

Compressed Databases,” Westmann, Till, Donald Kossmann, Sven Helmer, &

Guido Moerkotte, 2000. SIGMOD Rec. 29 (3) (September): 55–67.

[Wu, Madden2011] “Partitioning Techniques for Fine-Grained Indexing,” Wu, Eugene,

& Samuel Madden, 2011. In Proceedings of the 2011 IEEE 27th International

Conference on Data Engineering, 1127–1138. ICDE ’11. Washington, DC,

USA: IEEE Computer Society.

[Xu, Kostamaa2009] “Efficient Outer Join Data Skew Handling in Parallel DBMS,”

Xu, Yu, & Pekka Kostamaa, 2009. Proc. VLDB Endow. 2 (2) (August): 1390–

1396.

[Xu, Kostamaa, et al.2010] “Integrating Hadoop and Parallel DBMs,” Xu, Yu, Pekka

Kostamaa, & Like Gao, 2010. In Proceedings of the 2010 International

Conference on Management of Data, 969–974. SIGMOD ’10. New York, NY,

USA: ACM.

[Xu, Kostamaa, et al.2008] “Handling Data Skew in Parallel Joins in Shared-Nothing

Systems,” Xu, Yu, Pekka Kostamaa, Xin Zhou, & Liang Chen, 2008. In

Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, 1043–1052. SIGMOD ’08. New York, NY, USA: ACM.

[Yang, Yen, et al.2010] “Osprey: Implementing MapReduce-Style Fault Tolerance in a

Shared-Nothing Distributed Database,” Yang, Christopher, Christine Yen,

 References

171

Ceryen Tan, & Samuel R. Madden, 2010. In Data Engineering, International

Conference on, 0:657–668. Los Alamitos, CA, USA: IEEE Computer Society.

[Yu, Guh, et al.1989] “Partition Strategy for Distributed Query Processing in Fast

Local Networks,” Yu, Clement T., Keh-Chang Guh, David Brill, & Arbee L. P.

Chen, 1989. IEEE Trans. Softw. Eng. 15 (6) (June): 780–793.

[Zaker, Phon-Amnuaisuk, et al.2008] “Optimizing the Data Warehouse Design by

Hierarchical Denormalizing,” Zaker, Morteza, Somnuk Phon-Amnuaisuk, &

Su-Cheng Haw, 2008. Proc. 8th Conference on Applied Computer Science.

[Zaker, Phon-amnuaisuk, et al.2009] “Hierarchical Denormalizing: A Possibility to

Optimize the Data Warehouse Design,” Zaker, Morteza, Somnuk Phon-

amnuaisuk, & Su-cheng Haw, 2009. .

[Zeller, Gray1990] “An Adaptive Hash Join Algorithm for Multiuser Environments,”

Zeller, Hansjo"rrg, & Jim Gray, 1990. In Proceedings of the 16th International

Conference on Very Large DataBases, 186–197. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

[Zhang, Hu, et al.2010] “MOSS-DB: A Hardware-Aware OLAP Database,” Zhang,

Yansong, Wei Hu, & Shan Wang, 2010. In Proceedings of the 11th

International Conference on Web-Age Information Management, 582–594.

WAIM’10. Berlin, Heidelberg: Springer-Verlag.

[Zhou, Larson, et al.2007] “Dynamic Materialized Views,” Zhou, Jingren, Per-Ake

Larson, Jonathan Goldstein, & Luping Ding, 2007. In IEEE 23rd International

Conference on Data Engineering, 526–535. Los Alamitos, CA, USA: IEEE

Computer Society.

[Zukowski, Héman, et al.2007] “Cooperative Scans: Dynamic Bandwidth Sharing in a

DBMS,” Zukowski, Marcin, Sándor Héman, Niels Nes, & Peter Boncz, 2007. In

Proceedings of the 33rd International Conference on Very Large Data Bases,

723–734. VLDB ’07. Vienna, Austria: VLDB Endowment.

173

Appendix A – TPC-H Queries

-- TPC-H/TPC-R Pricing Summary Report Query (Q1)

-- Functional Query Definition

-- Approved February 1998

SELECT l_returnflag, l_linestatus,

 sum(l_quantity) as sum_qty,

 sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

 sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,

 avg(l_quantity) as avg_qty,

 avg(l_extendedprice) as avg_price,

 avg(l_discount) as avg_disc,

 count(*) as count_order

FROM lineitem

WHERE l_shipdate <= date '1998-12-01' - interval ':1' day (3)

group by

 l_returnflag, l_linestatus

order by

 l_returnflag, l_linestatus;

-- TPC-H/TPC-R Minimum Cost Supplier Query (Q2)

-- Functional Query Definition

-- Approved February 1998

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,

 s_address, s_phone, s_comment

FROM part, supplier, partsupp, nation, region

WHERE p_partkey = ps_partkey

 and s_suppkey = ps_suppkey

 and p_size = :1

 and p_type like '%:2'

 and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey

 and r_name = ':3'

 and ps_supplycost = (

 SELECT min(ps_supplycost)

 FROM

 partsupp, supplier, nation, region

 WHERE

 p_partkey = ps_partkey

 and s_suppkey = ps_suppkey

 and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey

 and r_name = ':3'

)

ORDER BY

 s_acctbal desc, n_name, s_name, p_partkey;

 Appendix A – TPC-H queries

174

-- TPC-H/TPC-R Shipping Priority Query (Q3)

-- Functional Query Definition

-- Approved February 1998

SELECT l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue,

 o_orderdate, o_shippriority

FROM customer, orders, lineitem

WHERE c_mktsegment = ':1'

 and c_custkey = o_custkey

 and l_orderkey = o_orderkey

 and o_orderdate < date ':2'

 and l_shipdate > date ':2'

GROUP BY l_orderkey, o_orderdate, o_shippriority

ORDER BY revenue desc, o_orderdate;

-- TPC-H/TPC-R Order Priority Checking Query (Q4)

-- Functional Query Definition

-- Approved February 1998

SELECT o_orderpriority, count(*) as order_count

FROM orders

WHERE o_orderdate >= date ':1'

 and o_orderdate < date ':1' + interval '3' month

 and exists (

 SELECT *

 FROM lineitem

 WHERE l_orderkey = o_orderkey

 and l_commitdate < l_receiptdate

)

GROUP BY o_orderpriority

ORDER BY o_orderpriority;

-- TPC-H/TPC-R Local Supplier Volume Query (Q5)

-- Functional Query Definition

-- Approved February 1998

SELECT n_name, sum(l_extendedprice * (1 - l_discount)) as revenue

FROM customer, orders, lineitem, supplier, nation, region

WHERE c_custkey = o_custkey

 and l_orderkey = o_orderkey

 and l_suppkey = s_suppkey

 and c_nationkey = s_nationkey

 and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey

 and r_name = ':1'

 and o_orderdate >= date ':2'

 and o_orderdate < date ':2' + interval '1' year

GROUP BY n_name

ORDER BY revenue desc;

 Appendix A – TPC-H queries

175

-- TPC-H/TPC-R Forecasting Revenue Change Query (Q6)

-- Functional Query Definition

-- Approved February 1998

SELECT sum(l_extendedprice * l_discount) as revenue

FROM lineitem

WHERE l_shipdate >= date ':1'

 and l_shipdate < date ':1' + interval '1' year

 and l_discount between :2 - 0.01 and :2 + 0.01

 and l_quantity < :3;

-- TPC-H/TPC-R Volume Shipping Query (Q7)

-- Functional Query Definition

-- Approved February 1998

SELECT supp_nation, cust_nation, l_year, sum(volume) as revenue

FROM (

 SELECT n1.n_name as supp_nation,

 n2.n_name as cust_nation,

 extract(year from l_shipdate) as l_year,

 l_extendedprice * (1 - l_discount) as volume

 FROM supplier, lineitem, orders, customer,

 nation n1, nation n2

 WHERE s_suppkey = l_suppkey

 and o_orderkey = l_orderkey

 and c_custkey = o_custkey

 and s_nationkey = n1.n_nationkey

 and c_nationkey = n2.n_nationkey

 and ((n1.n_name = ':1' and n2.n_name = ':2')

 or (n1.n_name = ':2' and n2.n_name = ':1'))

 and l_shipdate between date '1995-01-01' and date '1996-12-31'

) as shipping

GROUP BY supp_nation, cust_nation, l_year

ORDER BY supp_nation, cust_nation, l_year;

-- TPC-H/TPC-R National Market Share Query (Q8)

-- Functional Query Definition

-- Approved February 1998

SELECT o_year, sum(case when nation = ':1' then volume else 0 end) /

sum(volume) as mkt_share

FROM (

 SELECT extract(year from o_orderdate) as o_year,

 l_extendedprice * (1 - l_discount) as volume,

 n2.n_name as nation

 FROM part, supplier, lineitem, orders, customer,

 nation n1, nation n2, region

 WHERE p_partkey = l_partkey

 and s_suppkey = l_suppkey

 and l_orderkey = o_orderkey

 and o_custkey = c_custkey

 and c_nationkey = n1.n_nationkey

 and n1.n_regionkey = r_regionkey

 and r_name = ':2'

 and s_nationkey = n2.n_nationkey

 and o_orderdate between date '1995-01-01' and date '1996-12-31'

 and p_type = ':3'

) as all_nations

GROUP BY o_year

ORDER BY o_year;

 Appendix A – TPC-H queries

176

-- TPC-H/TPC-R Product Type Profit Measure Query (Q9)

-- Functional Query Definition

-- Approved February 1998

SELECT nation, o_year, sum(amount) as sum_profit

FROM (

 SELECT n_name as nation,

 extract(year from o_orderdate) as o_year,

 l_extendedprice*(1-l_discount)-ps_supplycost*l_quantity as amount

 FROM part, supplier, lineitem, partsupp, orders, nation

 WHERE s_suppkey = l_suppkey

 and ps_suppkey = l_suppkey

 and ps_partkey = l_partkey

 and p_partkey = l_partkey

 and o_orderkey = l_orderkey

 and s_nationkey = n_nationkey

 and p_name like '%:1%'

) as profit

GROUP BY nation, o_year

ORDER BY nation, o_year desc;

-- TPC-H/TPC-R Returned Item Reporting Query (Q10)

-- Functional Query Definition

-- Approved February 1998

SELECT c_custkey, c_name,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

 c_acctbal, n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey

 and l_orderkey = o_orderkey

 and o_orderdate >= date ':1'

 and o_orderdate < date ':1' + interval '3' month

 and l_returnflag = 'R'

 and c_nationkey = n_nationkey

GROUP BY c_custkey, c_name, c_acctbal, c_phone,

n_name, c_address, c_comment

ORDER BY revenue desc;

