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Abstract

Sequential order statistics can be used to describe the lifetime of a
system with n components which works as long as k components function
assuming that failures possibly affect the lifetimes of remaining units. In
this work, the reversed hazard rates of sequential order statistics are exam-
ined. Conditions for the reversed hazard rate ordering and the decreasing
reversed hazard rate property of sequential order statistics are given.

Keywords: sequential order statistics; stochastic orderings; ageing
properties; DRHR
Mathematics Subject Classification (2000) 62G30 ; 60E15 ; 60K10

1 Introduction

Kamps (1995) introduced the concept of sequential order statistics (SOS) as
an extension of the order statistics (OS) model. Following Cramer and Kamps
(2003), sequential order statistics can be defined as follows: Let F4,...,F,
be continuous distribution functions with F;*(1) < --- < F; (1) and let
By, ..., B, independent random variables where B; is beta distributed with
parameters n — i+ 1 and 1, 1 < ¢ < n. Then the random variables

X, = F;l(1 - BiE(X;,M)), fori=1,...,n,

are called sequential order statistics.

Note that OS are contained in the model of SOS via the specific choice
Fy = -.- = F,. In the reliability context, there exists a relation between SOS
and the lifetimes of sequential k-out-of-n systems, in the same way that there
exists a connection between OS and the lifetimes of k-out-of-n systems. In this
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case, the (n — k + 1)th SOS in a sample of size n represents the lifetime of
a sequential k-out-of-n system (see Cramer and Kamps (2001)). A sequential
k-out-of-n system is more flexible than a k-out-of-n system in the sense that,
after the failure of some component, the distribution of the residual lifetime of
the components at work may change.

The model of SOS is closely connected to several other models of ordered
random variables. For instance, it is well known that the specific choice of
distribution functions F(t) = 1 — (1 - F(@))*, t € R, 1 < i < n, with a
continuous distribution function F' and positive real numbers aq, ..., a;, leads
to the model of generalized order statistics with parameters v; = (n —i + 1)ay,
1 < i < n. Further results about SOS and related models can be found, for
instance, in Kamps (1995); Cramer and Kamps (1996); Kamps and Cramer
(2001); Cramer (2006); Balakrishnan et al. (2008); Beutner (2008); Beutner and
Kamps (2009); Burkschat (2009); Bedbur (2010); Beutner (2010); Burkschat
et al. (2010); Balakrishnan et al. (2011) and Bedbur et al. (2012).

In this article, we focus on particular stochastic comparisons and ageing
properties of SOS. Some recent articles on these subjects are, e.g., Zhuang and
Hu (2007); Burkschat and Navarro (2011); Navarro and Burkschat (2011) and
Torrado et al. (2012). We will present some results on the reversed hazard rate
ordering and its associated ageing notion, the decreasing reversed hazard rate
(DRHR) property (see, e.g., Block et al. (1998); Sengupta and Nanda (1999);
Chandra and Roy (2001); Nanda and Shaked (2001); Finkelstein (2002); Nanda
et al. (2003); Ahmad and Kayid (2005); Marshall and Olkin (2007); Shaked and
Shanthikumar (2007)). Recent results on the DRHR property of some ordered
random variables are given in Kundu et al. (2009) and Wang and Zhao (2010).

In Section 2, we recall the definitions of the reversed hazard rate ordering,
the DRHR property and give some notations for SOS. The main results are given
in Sections 3 and 4. More precisely, we investigate conditions on the underlying
distribution functions on which the SOS are based, in order to compare SOS in
the reversed hazard rate ordering and to obtain the DRHR property of SOS.

Throughout the article we use the terms increasing and decreasing in the
weak sense, that is, a function ¢ is called increasing (decreasing) if < y implies
g(x) < (>)g(y). Furthermore, we assume that the distributions of the occurring
random variables have the same support which is given by an interval of the
real line.

2 Definitions and notations

Let X be a non-negative random variable describing a lifetime with distribution
function F, survival function F' = 1 — F, density function f and reversed hazard
rate function rxy = f/F. Analogously, let Y be be a non-negative random
variable with distribution function G, survival function G = 1 — G, density
function g and reversed hazard rate function ry = ¢g/G. First, we recall the
definition of the reversed hazard rate order (see, e.g., Shaked and Shanthikumar
(2007), Section 1.B.6).




Definition 1 The random wvariable X is said to be smaller than Y in the re-
versed hazard rate order (denoted by X <., Y ) if rx(t) < ry(t) for all t > 0.

Let the random variable X,y be distributed as the time elapsed since the
failure time X of a unit, given that the unit failed at or before time t > 0, i.e.,
let the distribution theoretical identity

X 2t - X[ X <4

hold. The random variable X ;) is known as the inactivity time or the reversed
residual life of X at time t. Its survival function is given by

F(t—=x)

P(Xy >2)= Fo)

0<z<t.

The reversed hazard rate ordering is related to the random variable X(;),
since X <, Y if Xy >g Yy forall t > 0 (see Shaked and Shanthikumar
(2007), Section 1.B.6).

Related to this ordering, the decreasing reversed hazard rate (DRHR) class
of life distributions have been introduced and studied in the literature (see, e.g.,
Sengupta and Nanda (1999)).

Definition 2 The random variable X is said to have a decreasing reversed haz-
ard rate (denoted by DRHR) if rx (t) is decreasing in t.

Finally, we recall some results from the distribution theory of SOS. Let
Xin, -, X, be the SOS based on distribution functions Fi,..., F,, with re-
spective density functions fi,..., f,. Let h; = fi/F;,i = 1,...,n, denote the
hazard rates. Based on the results in Cramer and Kamps (2003), we can assume
that

Xf:n :Hfl(Zl)’
X, =H; Y (Z;+ H/(X;

i—1l:n

), fori =2,3,...,n,

where H; ' denotes the inverse function of the cumulative hazard function
H; = —InF; and Zi,...,Z, are independent random variables where Z; is
exponential distributed with parameter n — i + 1, 1 < ¢ < n. The density
function of the first SOS is given by

fea(t) = nhi(t)F.q(2),

with reversed hazard rate

F.1(t)

7’*71(t) = nhl(t) F* 1(t) .

Moreover, for i = 2, ..., n, the density function of the ith SOS is given by

Fei(t) = (n =i+ Dhi(t) (Fui(t) — Fria (1)) (1)




and its reversed hazard rate is given by

Fo(t) — F*,il(t)>
Fii1(t) — F*z(t)>

rest) = 0= i+ Do)

= (n—i+1)hi(t) (
3 Reversed hazard rate ordering of SOS

In this section, we will study conditions on the underlying distribution functions
on which the SOS are based, in order to compare SOS in the reversed hazard
rate ordering.

Theorem 3 Let X7.,,..., X}, be the SOS based on Fi,...,F,. Let h; denote
the hazard rate function of F; fori=1,2,...,n. Let 1 <k <n—1. If hj/hit1
is decreasing for i =1,2,... k, then Xp, <on Xj 1.,

Proof: The proof is carried out by induction. At first, we want to show that
Xi, = Hy Y(Ho(X7,)) <m X3, = Hy *(Zo + Hay(X7,)). Since the reversed
hazard rate order is closed under increasing transformations (see Lemma 1.B.43
in Shaked and Shanthikumar (2007)), it is sufficient to show

H2(Xikn) Srh Z2 T HQ(Xikn) (3)

According to Lemma 1.B.44 in Shaked and Shanthikumar (2007), if Ho(X7,,)
is DRHR, then (3) holds. Let us introduce the notation y; = H; '(t), for
i=1,...,n, which is an increasing function in ¢t. Let T» = H2(X7.,). Then its
reversed hazard rate function is given by

rea(ye)  halye) < LA 1) .

TTz(t) = = F*,l(yQ)

ha(ys) | ha(ye)

The function in large brackets is decreasing and Z—l is decreasing by assumption.
Thus, T is DRHR, and hence, X7, <;n X3.,,. Now, let us assume that the

assertion is valid for i — 1(< k), that is, X} ;,, <m X/, and we will show

that X7, <mn X/i1.,. Let Ti11 = Hiy1(X},). Then its reversed hazard rate

n n

function is given by

(s hi (s Foo (s
rr () = ei(it1) _ (n—i+1) i(Yit1) ( wim1(Yit1) 1) _
hit1(yit1) hivi(Yiv1) \ Fei(Yit1)
By the induction hypothesis, F}:? is decreasing since X ., <., X7, and hf‘bj»l

is decreasing by assumption. He’nce7 Ti1 = Hi+1(X7,,) is DRHR. Now, again
from Lemma 1.B.44, H;11(X/,,) <ih Zit1 + Hi+1(X},,) and since the reversed
hazard rate order is closed under increasing transformations, we have proved

that X7, < X7\ 1-

wn —




The condition of the above theorem is easy to check, since it is based on the
parent distributions Fi, ..., F,. If the condition of Theorem 3 is not satisfied,
then SOS do not need to be ordered according to the reversed hazard rate order
as the following example illustrates.

Example 4 Let us consider two SOS, X7.5 and X5.5, based on Fy, Fy. Accord-
ing to the results in Cramer and Kamps (2003), the survival function of the first
SOS is given by

Foa(t) = FE(t)

with hazard rate hy1(t) = 2hq(t), where hy is the hazard rate function of F}.
The survival function of the second SOS is given by

" fon(z)
0 ()

where f. 1 is the density function of X{.5. Note that the density function of X35
defined in (1) can be written as

f*,?(t) = f2 (t)I(t)a

Fuo(t) = Fun(t) + Fa(t)

where
¢
I(t) = fale) )
o Ia(z)
Now let us assume that Fy(t) = e~! and

B - o2t 0<t<In(2)/2,
Fy(t) = {26-225(1 —e72), t>In(2)/2.

Note that hq(t) =1 and

(2 0<t<In(2)/2,
wor {2(1 21— e, 1> n2)/2

In particular, the condition of Theorem 3 is not satisfied. Then, we have

Foi(t)=Fit)=e

)

and we get for 0 < t <1In(2)/2

I(t) = /O J;:Z;((ZZ)) dz = 2t

and for t > 1n(2)/2

I(t) = In(2) + / t 2

1
R —(2)4 (1l — e )+t
In(2)/2 26" %(1 — e~27%) 2




Hence, we obtain

1—e 2 —2te™ 2, 0<t<In(2)/2,
Foa(t) = —2t —2t —2t 1 —2t
I—e ™ =27 (1 —e #)(In(2) + 5In(1 —e™2") +1t), t>In(2)/2.
Then, we get
F, 2(0.37) F. 2(0.43)
————= =~ 0.295 > 0282~ ——
F,1(0.37) F,1(0.43)
so that Xi.5 and X3, are not ordered according to the reversed hazard rate

ordering.

In the following examples, we discuss two distributions that satisfy the as-
sumptions of Theorem 3 (see also Sengupta and Deshpande (1994) and Rowell
and Siegrist (1998)). Hence the corresponding sequential order statistics are
reversed hazard rate ordered.

Example 5 Let us consider the Weibull distributions defined by

Fi(t) =1—exp (—Gitﬁi)
for t > 0, where 0;,6; > 0 for i = 1,...,n. In this case, the hazard rate
functions are given by

ha(t) = 0,8,

fort >0 andi=1,...,n. In particular,

hi(t) — 0i0i tBi—Bit1

hivi(t)  Oiy1Bin

is decreasing in t if and only if B; < Bi+1. Then, the assumptions of Theorem 3

are satisfied and we get that Xy, <qn X} .., for every 0; >0 when B < ... <
Br < Br+1-

Example 6 Let us consider the power function distributions defined by

forO<t<canda; >0 fori=1,...,n. In this case, the hazard rate functions
are given by

hi(t) =

fort >0 andi=1,...,n. In particular,

hi (t) _ Q5 <Cai+1 — i+l ) taquai+1

hi+1(t) - Qg1 c¥ — t%

is decreasing in t if and only if a; < ajr1. Hence, the assumptions of Theorem
3 are satisfied and we get that X, <;n Xj 1., for everyc >0 whena; < ... <
ap < Qggq.




In Torrado et al. (2012), sufficient conditions are given for the likelihood
ratio ordering of SOS. First, let us recall the definition of a TP, function. A
positive function h of two variables, « and y, say, is called T Ps if h(z',y)/h(z,y)
is increasing in y whenever z < /. Then, the following result for the likelihood
ratio ordering of SOS can be proven (see Theorem 5 in Torrado et al. (2012)).

Theorem 7 Let X{,,,..., X, be SOS based on P, ..., Fy. If 2405 and hy(t)
are TPy in (i,t), and F; <p, Fiqy1 fori=1,...,n—1, then

Xz*n SZT X;+1:n7
fori=1,...,n—1.

Note that h;(t) is TPz in (i,t) means that h,11(t)/hi(t) is increasing in ¢.
Thus, this is the same condition as in Theorem 3. However, this condition is
not a sufficient condition for the likelihood ratio ordering as we illustrate in the
following example.

Example 8 Let us consider two sequential order statistics based on Fy, Fy,
where Fy(t) = e~ (exponential) and Fy(t) = et (Weibull), for t > 0. Then
their hazard rate functions are hi(t) = 1 and ha(t) = 2t, respectively, so hi/ho
is decreasing in t, and hence, the sequential order statistics are reversed hazard
rate ordered according to Theorem 3. However, it can be shown that X{., and
X3.5 are not hazard rate ordered (see Example 3.1 in Navarro and Burkschat
(2011)) and, as an immediate consequence, the sequential order statistics are
not ordered according to the likelihood ratio ordering. Note that hi and hs are
not ordered for t > 0. Therefore, the condition F; <p, F;11 of Theorem 7 does
not hold.

4 DRHR class of SOS

In this section, we will study the DRHR property of SOS. Since X}/_,.,, < Xj.,
Fik—1

is equivalent to the fact that — -

is a decreasing function, we immediately
obtain from (2) the relation

T*,k(t)
h (t)

Consequently, we get this sufficient condition for the DRHR property in the
presence of a reversed hazard rate ordering of SOS.

Theorem 9 Let X7,,,..., X}, be SOS based on F,...,F, with hazard rate
functions hi,...,h,. Let 2 < k < n and let hy be decreasing. If X[ .. <m
X}, then X[ is DRHR.

* *
kalzn th Xk:n

is decreasing in t. (4)

Proof: Since hy, is decreasing, relation (4) yields the assertion.

Combining this result with Theorem 3 from the preceding section, we get a
condition only in terms of the underlying hazard rates.




Theorem 10 Let 1 < k < n. If h;/hit1 is decreasing for i = 1,2,...,k — 1
and hy, is decreasing, then X, is DRHR.

Proof: Let k = 1. If hy is decreasing, it is well known that X7, is DHR
and hence DRHR. If 2 < k < n, then the result follows from Theorem 3 and
Theorem 9.

Let the underlying distributions Fi, Fs, ..., F,, be given by
F,=F*, i=12,...,n, (5)

where F' denotes an absolutely continuous distribution function and o; > 0,1 <
i < n. In this model the underlying distributions possess proportional hazard
rates.

Corollary 11 Let (5) hold. If F is DHR, then X}, is DRHR fork=1,...,n.

Proof: By assumption, hq, ho, ..., h, are decreasing and h;/h;+1 = @;/ait1
is constant for ¢ = 1,2,...,n — 1. Hence, the result follows from Theorem 10.

Remark 12 [t is well known that the DHR property implies the DRHR prop-
erty. Note that the conclusion of Corollary 11 cannot be strengthened to the DHR
property. This can be shown by considering the second sequential order statistic
in model (5) based on a standard exponential distribution F(t) =1—e~' ¢ >0,
and oy = ag =1, i.e., the usual order statistic Xo.9 based on F for a sample of
size 2. Then F is DHR (and IHR), but it is well known that Xs.o is not DHR
(but instead THR).

Remark 13 The DHR assumption on F in Corollary 11 cannot be replaced
by the DRHR property. This follows from Counterexample 3.1 in Kundu et al.
(2009).

Consider model (5) and let v; = (n — i + 1)y for ¢ = 1,...,n. If the
parameters 7q,...,7Y, are pairwise different, i.e., v; # 7; for ¢ # j, then the
distribution function and the density of the kth sequential order statistic are
given by (see Kamps and Cramer (2001))

3

k
FYa(t) =11 Y 2k (1 F(o)",
Y

i=1
k
fYRn () = o1 Y ain (1= F()" 71 f(2),
i=1
with the constants
k k 1
CkﬂZHW’j, ai,k:H , 1<i<k<n.
=1 =1 T
i




The empty product [], is defined to be 1.

In the following theorem, we give a transmission property of the DRHR class
among the first sequential order statistics when the underlying distributions
possess proportional hazard rates.

Theorem 14 Let (5) hold and 21 > ~vo. If X3.,, is DRHR, then X7, is DRHR.

Proof: If v; = 7, holds, then the result follows from Theorem 3.2 in Kundu
et al. (2009). Let 21 > 72 and 1 # 2. Then the reversed hazard rates of X7,
and X, are

_ feal) _ = F@ )
R T R (0 o
fal) 2R O-FOM -0-FORY A0
0= F 0 T - L e - FO (- Fay)

We want to show that r.1/r.2 is a decreasing function. It is sufficient to
consider the uniform distribution and then to show that

rea(l —x)

0,1
ra(l—2) z € (0,1),

m2(x) =

is increasing. After some simplifications, we obtain

1 7 — 72 7
me(z) = - (1 Epe e gl R 1, z€(0,1),

with the derivative

1 ((p—y)?am ! yfam !
! [ — f—
,'71,2('1‘) - ( (1 ¥y x’Yl—’YQ)Q (1 — x'}’l)Q ’ T e (0’ 1) (8)

"2
Consider the function

2z d?
h(z,d) = e = =@ i=1)’ z €(0,1),d#0.

Note that h(z,d) = h(z, —d) for every x € (0,1). We want to show that h(x,d)
is a decreasing function in d > 0 for fixed = € (0,1). Then, we obtain

h($7c) Z h(x,’h)» 0 < |C| S Y1,

and the assertion follows from (8) and the assumption —y; < v — 72 < 1.
Thus, we consider the derivative

2h(a:,d) =

d
54 e {227 — 22%% + 2% In(2?) + 2°? In(27) }

(1




for z € (0,1) and d > 0. It is sufficient to show that the expression in curly
brackets is non-positive. By applying the substitution —21In(z?) = z > 0, this
can be shown to be equivalent to

—4e %% 4 4e % + 2 */? 4 zeF > 0.

The last expression coincides with the density function of the sum X; + X5 of
random variables (X7, X2) that follow McKay’s bivariate gamma distribution
with parameters a = b = 2,¢ =1 (see Kotz et al., 2000, p. 432). This yields
the assertion.

Remark 15 It can be shown for vy1,7v2 > 0,71 # 72, that

O, Y1 > ’72)

lim ma(a) =5, lim ma()
m 71,2(%) = 5, m 71,2(%) =
z—1— 2 z—0+ (Y2 —71)/72 M <72

In particular, if 2y1 < v2, then the function 01 2 is not an increasing function.

Remark 16 In Kundu et al. (2009) and Wang and Zhao (2010) the trans-
mission of the DRHR property is studied for k-records and m-generalized order
statistics, in particular usual order statistics. Theorem 14 extends Theorem 3.1
in Kundu et al. (2009) in the case n = 2,k € N, and Theorem 2.3(i) in Wang
and Zhao (2010) in the case r = 2 to the model of SOS.

The following example illustrates that under the assumptions of Theorem 14
the third SOS may not possess the DRHR property although the second (and
therefore the first) SOS is DRHR.

Example 17 Let (5) hold and suppose that F is a uniform distribution over
(0,1). Assume that v1 =2, v2 =4 and v3 = 1/2. Note that the assumptions of
Theorem 14 hold. Then, from (6) and (7), we get the reversed hazard rates of
X7, and X3, namely

11
rei(t) =45 and  re(t) = 2ra(),

which are decreasing functions for t € (0,1), so X7.,, and X3.,, both are DRHR.

However, it is evident from Fig. 1 that X3, is not so.

Clearly, the preceding example does not contradict a possible general result
that X}, DRHR implies X;_,  DRHR for £ > 2. However, the proof of
Theorem 14 is tailored to the case K = 2 and an extension of this particular
derivation to k > 3 is not obvious.

Finally, we give a condition such that the DRHR property of SOS implies
their reversed hazard rate order. Let us first present the following lemma which
can be straightforwardly proven (for related results, see, e.g., Righter et al.
(2009)).
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Figure 1: Plot of the reversed hazard rate function of X3, when (5) holds with
v1=2,79 =4,73 =1/2 and F is a uniform distribution over (0, 1)

Lemma 18 Let X be an absolutely continuous random wvariable and ¢ be a
strictly increasing and convex function. If X is DRHR, then ¢(X) is DRHR.

Applying the preceding lemma, we have this sufficient condition for the
reversed hazard rate order.

Theorem 19 Let X7, ,,..., X, be SOS based on Fi,...,F, with hazard rate
functions hy, ..., hy,. Let 2 < k <n and let hy be increasing. If X};_,., or X},
is DRHR, then X}_,.,, <m X}, -

Proof: Note that the function Hj, is strictly increasing on the support.
Moreover, it is convex, because hy, is increasing. Assume that X;_, . is DRHR.
Then Hy(X}_,.,) is DRHR according to Lemma 18. By applying Lemma 1.B.43
and 1.B.44 in Shaked and Shanthikumar (2007), it follows

Xlzfl:n = Hk_l(Hk(XI:*ln)) Srh Hk_l (Z’C + Hk(lefl:n)) = XI:n

Now assume that X;, ~is DRHR. Using Lemma 18, we obtain that W} =
H,(X},,) is also DRHR. Because the reversed hazard rate of Wy, is given by

r*,k

hi

"Wy (t) = (Hk_l(t)) ’

we conclude that r, x(t)/hg(t) is decreasing in ¢. Thus, the result follows from
relation (4).

Remark 20 It can be seen from the previous proof that Hy (X}, is DRHR if
and only if Ty 1 (t)/hi(t) is decreasing in t. Taking this into accont, (4) yields
the general relation

Xl:—l:n <ih Xl::n < Hk(Xl::n) is DRHR.

11
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