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A B S T R A C T

Nowadays, novel robotic applications are appearing, where humans
and robots collaborate in multiple tasks, ranging from house hold du-
ties to surgical interventions. These applications deal with complex hu-
man and environment interactions, requiring advanced modeling and
control techniques to boost performance. The identification of robot
dynamics, which includes the dynamic parameters, is a key issue for
model-based controllers, having also a key role in realistic robot simu-
lation. The dynamic parameters are constants related to robot link in-
ertias, joint frictions, and other dynamic aspects. In order to identify
the dynamic parameters, regression methods based on recorded posi-
tion and force based data are usually the only viable option. However,
there is a problem which often appears in the regression of dynamic pa-
rameters: it is the so-called physical feasibility issue. Robot dynamic
parameters have physical meaning, they represent physical quantities,
and thereby the parameter estimations must correspond to physically
feasible values. If the parameters are not feasible, i.e., not consistent
from the physical point of view, then they will render an unrealistic
and unstable dynamic model. A simple example of a not physically
feasible parameter is a mass with negative value: its use in simulation
or in a model-based controller entails positive feedback and divergent
behavior. It is straightforward to verify whether a complete set of stan-
dard dynamic parameters comply with the physical feasibility condi-
tions. Nevertheless, when identifying dynamic parameters though re-
gression, it is only possible to identify linear combinations of parame-
ters, the so-called base parameters. Moreover, the direct feasibility veri-
fication method for the standard parameters is not applicable to the base
parameters. Although physically infeasible estimations are intrinsically
unstable, there are cases where they are so close to the feasible region
that the effects can remain hidden until the robot preforms specific mo-
tions entailing dangerous behaviors. An effective and efficient method
for base parameter feasibility test had yet not been devised, hence pos-
ing an open problem.

This thesis presents a novel approach that describes the physical
feasibility conditions as a linear matrix inequality (LMI). This approach
enables easy representation of the feasible region either using the stan-
dard or the base parameter space. With this representation it is possible
to devise methods for feasibility test and correction, rooted in recent
mathematical formulations and tools related to semidefinite program-
ming (SDP). Furthermore, a novel method which finds the optimal fea-
sible parameter solution that best fits a given regression data set is also
presented. These methods are experimentally tested in the real case of
the parameter identification of a WAM robot, a seven-link manipulator
widely used in applications that require both motion and contact. The
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vi ABSTRACT

manipulator model is devised from software tools developed within
this work, which also implement feasibility methods. The software
stack is available for free and is completely open, relying only on open-
source languages and libraries. Experimental validation has shown to
be effective, and the physically feasible parameter identification of the 7-
link WAM robot is absolutely necessary when tested in simulation and
model-based control applications. This novel approach is compared
with previous works addressing feasibility issues. Although previous
works solve part of the problem, all of them present several drawbacks
when compared to the methods presented here. The approach based on
linear matrix inequalities and semidefinite programming addresses the
problem from an elegant mathematical perspective. The methods pro-
vide optimal solutions and are very efficient, even when the problem
size scales up.



R E S U M O

Presentemente, estão a surgir novas aplicações robóticas, onde hu-
manos e robôs colaboram em múltiplas tarefas, que vão desde trabalhos
domésticos a intervenções cirúrgicas. Estas aplicações lidam com com-
plexas interacções com o ambiente, e requerem técnicas avançadas de
modelação e controlo para melhor resultados. A identificação da dinâ-
mica de robôs, que inclui os parâmetros dinâmicos, é uma peça funda-
mental para os controladores baseados no modelo, e é também funda-
mental para a simulação realística de robôs. Os parâmetros dinâmicos
são constantes relacionadas com a inercia dos elos do robô, fricções das
juntas e outros aspectos dinâmicos. Para se poder identificar os parâ-
metros dinâmicos, métodos de regressão baseados em dados de posi-
ção e força são normalmente a única opção viável. No entanto, há um
problema que aparece muitas vezes na regressão do parâmetros dinâmi-
cos: é o problema da factibilidade física. Os parâmetros dinâmicos dos
robôs têm significado físico, representam quantidades físicas, e por isso
os parâmetros estimados devem corresponder a valores fisicamente fa-
zíveis. Se os parâmetros não forem fazíveis, isto é, não consistentes de
um ponto de vista físico, então eles irão tornar o modelo dinâmico irrea-
lista e instável. Um exemplo simples de um parâmetro fisicamente não
fazível é o de uma massa com valor negativo: o seu uso em simulação
ou num controlador baseado no modelo implica realimentação positiva
e um comportamento divergente. É possível verificar directamente se
um conjunto completo de parâmetros dinâmicos obedece às condições
de factibilidade física. No entanto, quando se identificam os parâmetros
dinâmicos através de regressão, é apenas possível identificar combina-
ções lineares dos mesmos, os chamados parâmetros base. Além disso,
o método de verificação de factibilidade dos parâmetros completos não
é aplicável aos os parâmetros base. Embora as estimações fisicamente
não fazíveis sejam intrinsecamente instáveis, há casos em que elas es-
tão tão próximas da região de factibilidade que os efeitos permanecem
escondidos até que o robô faça determinados movimentos que levam
a comportamentos perigosos. Um método efectivo e eficiente para tes-
tar a factibilidade de parâmetros base não tinha sido ainda concebido,
sendo por isso um problema em aberto.

Esta tese apresenta uma nova abordagem que descreve as condições
de factibilidade física através de uma inequação linear de matrizes. Tal
abordagem permite a fácil representação da região fazível usando o es-
paço dos parâmetros completos ou dos parâmetros base. Com esta re-
presentação é possível conceber métodos para teste e correcção de facti-
bilidade, baseados em formulações e ferramentas matemáticas recentes,
relacionadas com programação semidefinida. Além disso, é também
apresentado um novo método que encontra a solução óptima dos parâ-
metros fazíveis que melhor se adaptam a um dado conjunto de dados de
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regressão. Este métodos são testados experimentalmente no caso real da
identificação dos parâmetros de um robô WAM, um manipulador com
sete juntas, muito usado em aplicações que requerem movimentação e
contacto. O modelo do manipulador é obtido com ferramentas de soft-
ware desenvolvidas neste trabalho, que também incluem métodos de
factibilidade. Tal software está disponível gratuitamente, e é completa-
mente aberto, sendo baseado apenas em linguagens e bibliotecas aber-
tas. A validação experimental mostra ser efectiva, e a identificação fisi-
camente fazível dos parâmetros do robô WAM é absolutamente neces-
sária quando testada em aplicações de simulação e de controlo baseado
no modelo. Esta nova abordagem é comparada com trabalhos anterio-
res que também visam problemas de factibilidade. Embora os trabalhos
anteriores tenham resolvido parte do problema, todos eles apresentam
várias desvantagens quando comparados com os métodos aqui apre-
sentados. A abordagem baseada em inequações lineares de matrizes e
programação semidefinida faz uma aproximação ao problema de uma
perspectiva matemática elegante. Os métodos fornecem soluções ópti-
mas e são bastante eficientes, mesmo quando o tamanho do problema
cresce.
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D̄ matrix from the non-strict LMILMI of the feasible
standard parameter set

(3.293.29)

δ standard (barycentric) dynamic parameters (2.202.20)
δA additional dynamic parameters (2.192.19)
δb independent standard dynamic parameters (2.492.49)
δd dependent standard dynamic parameters (2.492.49)
δL link inertial dynamic parameters (2.182.18)
D set of physically feasible standard dynamic pa-

rameters
(2.652.65), (3.303.30)

DA matrix from the LMILMI of the additional dynamic
parameter feasibility conditions

(3.233.23)

DA set of physically feasible additional dynamic
parameters

(2.642.64)

xx
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D̄β matrix from the non-strict LMILMI of the feasible
base–dependent parameter set

(3.323.32)

Dβ set of physically feasible base–dependent dy-
namic parameters

(3.313.31)

Diag(·) function to create a diagonal matrix with the
vector argument elements

diag(·) function to extract the diagonal elements from
the argument matrix

DL generalized inertia matrix; matrix from the
LMILMI of inertial parameter feasibility conditions

(3.203.20)

DL set of physically feasible link inertial parame-
ters

(2.632.63)

ε vector of regression/prediction residuals (2.442.44), (2.562.56)

Fc Coulomb friction constant (2.192.19)
Fo Coulomb friction offset (can include motor

torque offset too)
(2.192.19)

Fv viscous friction constant (2.192.19)

g gravity force term (2.72.7)

h non-conservative forces affecting robot dy-
namics

(2.92.9)

H regressor matrix function for the dynamics (2.222.22)
Hb independent parameter regressor function (2.492.49)
Hd dependent parameter regressor function (2.472.47), (2.492.49)
HS regression matrix (2.402.40)

I inertia tensor about the center of mass (2.122.12)
Ia motor rotor inertia (2.192.19)

J Jacobian relating joint and task space veloci-
ties

(2.22.2, 2.32.3)

k link/joint index
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K standard to base parameter combination ma-
trix

(2.542.54)

Kd matrix of linear dependencies of dependent
parameters with respect to independent pa-
rameters

(2.472.47)

l first moment of inertia (2.132.13)
L inertia tensor about the link frame (2.142.14)

m mass
m linear mapping from standard to base param-

eters
(3.93.9)

mp projection from base–dependent to base pa-
rameters

(3.123.12)

mt bijective mapping from standard to base–
dependent parameters

(3.113.11)

M inertia matrix (2.72.7)
µ end-effector forces in task space (2.32.3)
µc joint actuator forces seen in task space (2.292.29)
µe task space environment forces (2.292.29)

N robot number of links/joints; the number of
degrees of freedom (DOF)

n total number of dynamic parameters
nb number of base dynamic parameters; number

of independent dynamic parameters
(2.462.46)

nd number of dependent dynamic parameters (2.462.46)

ω regression regressand vector (2.412.41)

P permutation matrix for dynamic parameter or-
dering

(2.482.48)

Pb independent parameter slice of permutation
matrix

(2.482.48)

Pd dependent parameter slice of permutation ma-
trix

(2.482.48)
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q joint positions (2.42.4)
q̇ joint velocities (2.42.4)
q̈ joint accelerations (2.42.4)
q̇m motor velocities (4.24.2)

R set of real numbers
R1 base reduced regression matrix (3.463.46)
ρ1 reduced regressand vector (3.493.49)
r center of mass position (relative to link frame) (2.112.11)

S number of excitation trajectory measurements
sign(·) signal function
S(·) skew-symmetric matrix operator (2.172.17)

T joint-motor coupling matrix (4.14.1, 4.24.2)
τ generic joint forces (2.42.4)
τc actuator joint forces (2.92.9)
τe environment contact forces seen in joint space (2.92.9)
τm motor forces (4.14.1)
t time

U matrices from the LMIsLMIs of least squares (LS)
minimizations

(3.393.39), (3.433.43),
(3.523.52), (3.573.57)

Vβ̂ virtual parameter set of a base parameter vec-
tor β̂

(2.602.60)

W base regression matrix (2.572.57)

x end-effector position in task space (2.12.1)





Essentially, all models are wrong, but some are useful.

— George E. P. Box
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I N T R O D U C T I O N

1.1 Motivation

Well established in industry contexts, manipulation robots have been slowly
entering new application domains in the last decades. Although the first
thought of a manipulator robot may be an image of a bulky robot working
in an assembly line of some factory, far from any human contact, the truth is
that they are already much closer than that. In fact, robots are already being
used close to humans, even inside them, in surgical applications.

The present work is in the context of a research group focused on medical
robotic applications where advanced dynamic robot control for human–robot
contact is essential. In industrial applications, robots often perform repet-
itive tasks, with predefined trajectories, both in space and time, and high
precision. On the other hand, robots interacting with persons, as in medi-
cal applications, have to perform much less structured tasks, usually having
humans not only in the task space but also in the control loop. Actual and po-
tential medical robot applications include surgical procedures, rehabilitation,
tele-echography and other remote procedures. Robots present a huge poten-
tial for these tasks. They are not meant to completely replace physicians, as
many repetitive tasks were replaced by robots in industry, but rather to en-
hance and extend their skills. The best capabilities both from humans and
robots are merged together creating a system with advantages for physicians
and ultimately for patients. On one hand, robots are great at geometrical ac-
curacy and fine movements, and they are able to work endlessly. Humans,
on the other hand, have much higher capacity to take decisions, and to learn
and deal with unpredictable environments. Medical robots must be seen as
“smart” instruments which enlarge medical procedures effectiveness (Taylor
20062006). Moreover, robots also have the potential to physically decouple the hu-
man operator from the task, enabling humans to perform remote operations.

A classic example of medical assistance robot is the da Vinci system11, used
for minimally invasive surgeries where medical tools enter into the patient
body through small incisions. In such systems, the physician controls the

1da Vinci Surgical System: http://www.davincisurgery.com/http://www.davincisurgery.com/.

1

http://www.davincisurgery.com/
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robot that holds surgical instruments. This approach helps mitigating some
of the major drawbacks of minimally invasive surgical procedures (Palep
20092009). The surgeon is at a master station, sending commands to the slave
robot from where he receives visual feedback. One of the most appointed
disadvantages of this kind of systems, however, has been the lack of haptic
feedback, i.e., force feedback, and thus this has been an emerging field with
growing number of research works (van der Meijden and Schijven 20092009). The
introduction of force feedback in the human–robot loop dramatically changes
the system dynamics. Although the visual feedback also closes the loop, the
motion–force loop create a bilateral tele-manipulation scheme, introducing
new big challenges to the system dynamics modeling and control. Robot,
operator, environment, master station and transmission channel, all those
system sub-parts have to be carefully studied and modeled. Moreover, force
feedback is a key research not only in robotic-assisted surgery but in general
tele-manipulation and other medical fields too. For example, robot-assisted
tele-echography, i.e., echographic exams executed by a remotely commanded
robot (Sousa et al. 20102010; Santos and Cortesão 20142014), can take advantage of
force feedback. The intrinsic nature of master–slave systems enable remote
manipulation through the physical separation of master and slave stations.
In surgery, such possibility was realized for the first time on an intercontinen-
tal operation, which became known as the Lindbergh Operation (Marescaux
et al. 20012001), using an adapted da Vinci surgery system.

While robot dynamic modeling is fundamental for tele-manipulation con-
trol, it is also a key issue in other control schemes, both medical and non-
medical related. For example, it is essential for co-manipulation, where robot
and human operator share the control of the end-effector22 (Lamy et al. 20092009;
Cortesão et al. 20102010). It has also been more and more important in industry
applications, where new high-speed and compliance-force requirements are
becoming important.

1.1.1 Dynamic model-based control and simulation

Initially, the control of robots was a matter of moving the end-effector to a
desired position, following predetermined trajectories. This is accomplished
by the knowledge of the geometric model which relates robot joint positions

2The robot tip; the tool performing the task.
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(can be angles) with the end-effector position in the environment. The ge-
ometric model can be derived to obtain the kinematic model, which relates
velocities in joint and task spaces. These models enable the design of mo-
tions with controlled end-effector position and velocity, often used in pick-
and-place tasks, and are only dependent on the robot geometry, i.e., the way
robot links are positioned relative to each other.

For more advanced tasks, with higher motion dynamics and unstruc-
tured contacts with the environment, dynamic model knowledge and dy-
namic model-based controllers are needed. The dynamic model of a robot
relates joint accelerations to forces, which is an extension of Newton’s sec-
ond law (and Euler’s laws of motion),

force = mass× acceleration ,

to the system formed by robot links. Force and acceleration are vectors, with
a value for each joint, and the mass is a matrix, the inertia matrix. These
terms are non-linear functions dependent on robot geometry and posture,
i.e., joint positions at a given time. The inertia matrix is also dependent on
robot dynamic parameters: masses, centers of mass, and inertia tensors. The
forces, also dependent on dynamic parameters, refer to both translational
forces and rotational torques, and include robot actuator forces, environment
contact forces and other forces like weight and frictions. The knowledge of
the dynamic model enables advanced control techniques such as

computed torque where the robot low-level command is done in force or
torque;

resolved acceleration where a trajectory can be designed and controlled by
the desired acceleration;

feedback linearization where the non-linear terms of the model are canceled
by non-linear feedback computed torque, entailing a linear plant for
control design;

gravity compensation an example of feedback linearization, where the grav-
ity forces actuating on the robots are canceled by commanding equal
but symmetric forces to the joint actuators;

impedance shaping where the robot stiffness, damping and inertia felt by
an external interactive agent is imposed by the robot controller.
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Model-based control allows advanced robot applications necessary in medi-
cal fields (bilateral tele-manipulation, co-manipulation, etc.) and also in new
industrial fields. Furthermore, the dynamic model is the cornerstone of robot
simulation. The simulation of the robot behavior is very important in control
and application design phases as it enables safe and early testing. For ap-
plications with a human in the control loop, simulation enables safe training
with higher system availability. That is specially relevant for medical appli-
cations. Additionally, robot simulation can be important even for application
where no model-based control is used.

The quality of model-based control and simulation depends directly on
the accuracy of the available robot model, hence the need for good modeling
techniques.

1.2 Problem definition

A robot can be modeled employing non-parametric and semi-parametric mod-
els (for example, Peters (20102010)). However, as a robot is a structured system
of links, fully parametric models are much more common in article literature,
as well as in robotics textbooks (for instance, Yoshikawa (19901990), Murray et al.
(19941994), Siciliano and Villani (19991999), Khalil and Dombre (20022002), Craig (20042004),
Spong et al. (20052005), Siciliano and Khatib (20082008), and Siciliano et al. (20092009)).
The dynamic model of a robot can be described by expanding the equation
presented above into

(inertia× acceleration)− internal forces = actuator forces + external forces .

Actuator forces are the forces produced by the motors or other actuation
mechanism which are commanded by the controller. External forces come
from the robot–environment contact. Internal forces are due to joint frictions,
weight and other link-to-link forces. Robot inertia and internal forces are de-
pendent on robot posture, as well as on dynamic parameters.

Model formulation in terms of equations is a well studied subject. Two
main approaches for equation derivation exist: the Euler–Lagrange (EL) for-
mulation, based on the derivation of the system energy as a whole, and the
recursive Newton–Euler (RNE) formulation, based on the application of New-
Euler equations to link interactions. While being equivalent, the RNERNE formu-
lation has easier computational implementation since it includes no differ-
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ential terms and has a direct relation to programming language loops. Al-
though generic RNERNE implementations run on current computers with enough
performance, in the late eighties there was the need to generate smaller and
faster custom code for each robot. Such code is obtained by running the
formulations within symbolic algebra systems and taking advantage of each
robot particularities to generate code with less operations. These optimiza-
tions are still very important nowadays in applications where the dynamic
model has to be computed in real-time, several times per cycle. Currently,
there are some implementations of robot custom code generation available,
however, all of them rely on proprietary and closed software.

Besides model equations, dynamic model parameters must also be known.
These parameters are constant and must be identified (estimation of con-
stants) to fully model the robot. Among few others, the usual process for
parameter identification refers to regression techniques applied to force and
position based data. By measuring a large number of motion points — joint
positions, velocities and accelerations — and the respective actuator and envi-
ronment forces, it is possible to infer the dynamic parameters which produce
such data set. Although being composed by large expressions, the robot dy-
namic model is linear with respect to the dynamic parameters, thus allowing
simple linear regression techniques like the classical ordinary least squares
(OLS). On the other hand, it is usually not possible to identify all parameters,
and many of them can only be obtained in linear combinations, leading to the
so-called base parameters. As in any estimation process, the error from mea-
surements and errors in modelling propagate to the dynamic parameter esti-
mation. There is a countless number of parameter identification techniques
which aim at reducing such error, be it by employing better ways to collect
the data set, be it by using regression techniques more meaningful in terms
of statistics theory.

Often, measurement and model errors lead to what is know as physically
infeasible, or physically inconsistent, parameter identifications. These esti-
mations, which were studied in deep for the first time by Yoshida and Khalil
(20002000), are comparable to a negative mass, i.e., they are not possible in a real
physical system. The arise of this kind of issues in robot model identification
is not necessarily associated with high regression error, and many times they
can appear in well modeled robots with low optimal regression error. One
of the major problems of mitigating infeasible estimations is that while it is
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straightforward to check the physical feasibility of a complete set of all dy-
namics parameters, that is far from being true for the identifiable parameters
(the base parameters). The effect of using infeasible estimations in model-
based controllers or in simulation is comparable to the effect of a negative
mass in the Newton’s second law: they lead to intrinsically unstable models.
Furthermore, in robot modeling, the effects of theses problematic estimations
are not always obvious, and may show up only at few robot postures, lead-
ing to potentially dangerous applications. Although more accurate models
and more accurate regression data are more likely to provide physically feasi-
ble estimations, that is not by itself a guarantee of feasibility. Although there
have been some works in this field, proposed solutions tend to be not effec-
tive or not efficient. There is a lack for a common framework, effective and
efficient, and with simple implementation to deal with robot parameter fea-
sibility checking and identification. This problem is addressed in this thesis.

1.3 Objectives

Quoting Box and Draper (19871987, 74),

“Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.”

In the case of robot modeling, while an estimation can entail very low regres-
sion and prediction errors, if it is physically infeasible it can be considered
completely useless for model-based control and simulation applications. In
this work we seek to study the physical feasibility of the parameters, trying
to answer the following questions:

1. Is it possible to tell solely from a given base parameter estimation if it
is physically feasible or not?

2. If so, how to efficiently and effectively check the feasibility of any given
estimation?

3. How to obtain an estimation from a regression data set that is guar-
anteed to be physically feasible and, at the same time, minimizes the
regression error?
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Recalling to the quote of Box and Draper, it must be stressed out that this
work is not about quantitative results, but rather about qualitative ones. Fur-
thermore, as this work integrates a research group which uses a WAMTM

robot, it is also an objective to model and identify it, taking physical feasibil-
ity issues into account.

1.4 Contributions

This thesis presents a novel theory for dynamic parameter identification tak-
ing into account physical feasibility. Key contributions address the questions
stated above. This work picks from recent mathematical theory and control
tools and combines them to solve the physical feasibility problem in an un-
precedented way. A complete framework based on linear matrix inequality
(LMI) and semidefinite programming (SDP) is proposed to deal with the feasi-
bility issue, and three LMILMI–SDPSDP main methods are devised: a method for base
parameter feasibility test, a method for base parameters feasibility correction,
and a method for optimal and feasible base parameter estimation. Those
methods show to be very effective and efficient. Moreover, an elaborated
model of the WAM robot is devised and a feasible set of dynamic parameters
is identified. All the robot model and identification software is made from
ground up based only on open source software. The modeling software em-
ploys custom code generation techniques, providing very efficient code, on
par with other solutions. Since it is based only on open source, the devel-
oped software is the first, up to this date, to be completely free and openly
available.

1.5 Thesis structure

The thesis is organized as follows. Chapter 2Chapter 2 introduces the robot modeling
fundamentals. The dynamic model is formulated and the dynamic param-
eters are presented along classical techniques for their identification. The
physical feasibility problem is introduced and analyzed, and state of the art
works on the subject are presented. The main theoretical contribution of the
thesis is in chapter 3chapter 3. There, the structure of physical feasibility conditions
is explored and properly identified in terms of mathematical nomenclature,
first as semialgebraic sets and second as LMIsLMIs. Then, SDPSDP methods are de-
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vised to deal with the problems of feasibility testing and guaranteed feasible
parameter identification. In chapter 4chapter 4, the complete identification process of
the WAM robot is presented. The proposed LMILMI–SDPSDP methods are applied
to identification and compared to the classical approach. Chapter 5Chapter 5 presents
real applications of the identified WAM model, showing the importance of
physically feasible estimations. Further discussion on the importance of the
LMILMI–SDPSDP approach and on its advantages over previous works is addressed
in chapter 6chapter 6. Chapter 7Chapter 7 presents a description of the practical implementa-
tion of the robot modeling and feasibility methods, as well as an overview to
the software developed within this work. Chapter 8Chapter 8 concludes the thesis and
presents future work directions.
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R O B O T M O D E L I N G A N D

I D E N T I F I C AT I O N

2.1 Serial robot manipulators

link
frame

center of
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link k
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joint 1

link 1
end-effector

rk

Figure 2.1: Links, joints and frames of a serial manipulator.

A serial robot manipulator is a set of N rigid bodies11 — the so-called links
— connected by movable joints which form a chain from the robot base to the
robot end-effector as present in figure 2.12.1. To each link k, for k = 1, . . . , N,
there is an associated joint whose position is denoted by qk. In serial robots,
the number of links/joints usually entails the same number of degrees of
freedom (DOF). Each joint is subject to a force (or torque) τk resulting from
the sum of all forces applied by external contacts, inter links contacts and
joint actuator. The ordered set of all joint positions forms the joint position
vector q, which fully describes the robot posture, whereas the set of joint
forces (or torques) gives the joint force vector τ.

Since the robot end-effector is the effective tool which performs the task,
the relation between joint positions and end-effector position in the task space
forms the basic modeling problem, the geometric model. Computing the end-
effector position and orientation, denoted by x, from a set of joint positions
values is usually done by referring to inter-link matrix transformations. Such
transformation matrices are obtained from the known robot link geometry,
which is often described by the Denavit–Hartenberg (DH) notation (Harten-

1There is also a class of robots whose links are flexible. These are not directly addressed
in this thesis, but the presented formulation is extensible to them.

9
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berg and Denavit 19551955; Craig 20042004). That is called the direct geometric model,
a usually nonlinear but always unique transformation from q to x:

x = DirGeo(q) . (2.1)

On the other hand, the computation of how to position the robot joints in or-
der to obtain a desired end-effector posture usually poses a harder problem:
the inverse geometry problem. While the geometric model relates positions,
the relation between joint velocities, q̇, and end-effector velocities, ẋ, is de-
scribed by the kinematic model which is given by the Jacobian matrix J(q):

ẋ = J(q) q̇ . (2.2)

Due to the velocity–force duality, the Jacobian also relates the forces in the
joints, τ, with the forces in the end-effector, µ, by

τ = J(q)T µ . (2.3)

Geometric and kinematic models are traditionally used in pick-and-place
tasks where the controllers make the robot follow predefined position trajec-
tories. Whenever a task requires higly unpredictable trajectories or higher
accelerations, a dynamic model-based controller is additionally needed.

2.2 The dynamic model

The dynamic model of a robot relates the full motion of its joints — positions,
velocities and accelerations (q, q̇ and q̈) — with the forces (τ) being applied
to those joints.

The relation can be written as an inverse dynamic equation, where the
joint force is defined as a function of the joint motion:

InvDyn(q, q̇, q̈) = τ . (2.4)

The dynamics is dependent on the robot geometry itself and robot dynamic
parameters, which are constant. A classical way to devise the inverse dynam-
ics equation is the Euler–Lagrange (EL) formulation, a differential equation of
the system Lagrangian. The Lagrangian is the difference between the system
kinetic and potential energies, Ek and Ep receptively,

L = Ek − Ep . (2.5)
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The ELEL differential equation relates the Lagrangian to the non-conservative
joint forces, τ:

d
dt

(
∂L
∂q̇

)T

−
(

∂L
∂q

)T

= τ . (2.6)

It is common to split such differential equation into three terms, one for each
differential order:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2.7)

where M(q) is the inertia matrix (aforementioned in section §1.11.1), C(q, q̇) is
the Coriolis and centripetal forces matrix and g(q) is the term of forces due
to gravity. The matrix C is non-unique, although the Coriolis and centripetal
forces term given by

c(q, q̇) ≡ C(q, q̇)q̇ (2.8)

is. In (2.82.8), all forces not related to link inertia, such as drive chain forces, are
included in τ. Equation (2.82.8) can be further split into additional terms as

M(q)q̈ + c(q, q̇) + g(q) + h(q, q̇, q̈) = τc + τe , (2.9)

where τc represents the joint actuator forces, τe represents the forces due to
contact with the environment, and h(q, q̇, q̈) represents any other forces re-
lated to additionally modeled dynamics related to other joint dynamic ef-
fects. For instance, a classical formulation of h, often presented in textbooks,
includes the joint friction forces as given given by

h(q, q̇, q̈) = Fvq̇ + Fcsign(q̇) , (2.10)

where Fv and Fc are diagonal matrices of viscous and Coulomb friction con-
stants, respectively. Often, motor rotor inertias are also included to the model.

2.3 Dynamic parameters

Besides robot geometry, dynamics is also dependent on the set of parame-
ters related to link inertias and to the additional dynamic constants — the
dynamic parameters. Each robot link k inertia can be fully characterized by
the mass, mk, the center of mass (COM) position relatively to the link frame
(see figure 2.12.1),

rk ≡

rxk

ryk

rzk

 , (2.11)
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and the inertia tensor about the COMCOM,

Ik ≡

Ixxk Ixyk Ixzk

Ixyk Iyyk Iyzk

Ixzk Iyzk Izzk

 . (2.12)

However, for identification purposes it is common to use the so-called barycen-
tric parameters (Maes et al. 19891989). By such formulation each link inertia is
parameterized by the mass, mk, the first moment of inertia,

lk ≡

lxk

lyk

lzk

 , (2.13)

and the inertia tensor about the link frame,

Lk ≡

Lxxk Lxyk Lxzk

Lxyk Lyyk Lyzk

Lxzk Lyzk Lzzk

 . (2.14)

The first moment of inertia is equal to the mass times the COMCOM position vector,

lk = mkrk =

mkrxk

mkryk

mkrzk

 , (2.15)

and the inertia tensor about the link frame is related to the tensor about the
COMCOM by the Huygens–Steiner theorem (also known as parallel axis theorem):

Lk = Ik + mk S(rk)T S(rk) , (2.16)

where S(·) is the skew-symmetric matrix operator,

S(v) ≡

 0 −vz vy

vz 0 −vx

−vy vx 0

 for v =

vx

vy

vz

 . (2.17)

All inertial parameters of link k can then be grouped into a parameter vector
δLk as

δLk ≡
[

Lxxk Lxyk Lxzk Lyyk Lyzk Lzzk lxk lyk lzk mk

]T
. (2.18)

Besides link inertia, robot dynamics is also dependent on the parameters re-
lated to the additionally modeled dynamics, which can include drive chain
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friction and inertia constants, as mentioned above. Depending on the robot
characteristics and on the modeling purposes one can opt to use more or less
detailed models, with more or less parameters. Throughout this document,
the set of the joint k additional dynamic parameters will be generally denoted
by δAk. A possible set of additional parameters related to joint k is, for exam-
ple,

δAk =
[

Fvk Fck Fok Iak

]T
, (2.19)

where Fvk and Fck are viscous and Coulomb friction constants, Fok is a con-
stant offset including the Coulomb friction offset and the motor torque offset
(due to current offset), and Iak is the motor rotation inertia seen by the joint.

The complete set of robot dynamic parameters, of all links, forms the stan-
dard dynamic parameter vector δ given by

δ ≡



δL1

δA1
...

δLk

δAk
...

δLN

δAN



, (2.20)

which length will be denoted by n. The equation of inverse dynamics can in
fact be written as

InvDyn(q, q̇, q̈, δ) = τc . (2.21)

The rational of not using r and I but rather l and L to characterize link inertias
is the fact that the dynamic model is linear to the latter (Atkeson et al. 19861986;
Maes et al. 19891989). Considering that the model is also linear to the additional
dynamic parameters, which happens most of the times, the whole dynamics
can be rewritten in the linear form as

H(q, q̇, q̈) δ = τc , (2.22)

where the matrix H, function of q, q̇ and q̈, is called the regressor.
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2.4 Dynamic model-based technique examples

To better understand the usefulness of the dynamic model, some model-based
techniques are presented in the sequel.

2.4.1 Model linearization by nonlinear feedback

Equation (2.92.9) describes a nonlinear system plant by the fact that it is non-
linearly dependent on the robot posture and velocity (q and q̇). It is possible
to apply linearization by nonlinear feedback, canceling nonlinear effects with
a symmetric joint torque command. If the command torque τc is computed
as

τc = ĉ(q, q̇) + ĝ(q) + ĥ(q, q̇, q̈) + τc
′ , (2.23)

where ĉ, ĝ and ĥ, are good estimations of their respective real values, and τc
′

is the new command, the system plant becomes

M(q)q̈ = τe + τc
′ . (2.24)

Having this, it is possible to perform resolved acceleration control, for in-
stance, by doing

τc
′ = M̂(q) ac − τ̂e , (2.25)

where M̂ is the inertia matrix estimation and τ̂e is the estimation of external
forces obtained, for example, from a force sensor. Vector ac becomes the new
control command and the new system plant is then given by

q̈ = ac , (2.26)

which is equivalent to a simple double integrator, described in Laplace space
representation (s domain) by

q(s)
ac(s)

=
1
s2 . (2.27)

The new plant is not only independent from the robot posture and velocity,
but it is also decoupled at joint level. This technique is know as model lin-
earization through non-linear feedback, and the computed command τc is
the so-called computed torque.
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2.4.2 Task space

Computed torque control can also be design in task space, i.e., in a referential
other than the joint space, more appropriated for task design and control. The
task space is often the Cartesian space associated with the robot environment.
The task space version of (2.92.9) is given by (from Khatib 19871987)

A(q)ẍ + cx(q, q̇) + gx(q) + hx(q, q̇) + νx(q, q̇) = µc + µe , (2.28)

which relates to (2.92.9) through the following equations22:

A =
(

JM−1 JT
)−1

cx = J+Tc

gx = J+Tg

νx = − J̇q̇

hx = J+Th

τe = JTµe

τc = JTµc ,

(2.29)

where J+ is the generic inverse of the Jacobian J, the solution that minimizes
the robot instantaneous kinetic energy (Khatib 19871987), given by

J+ = M−1 JT A . (2.30)

Linearization is also possible in task space through the feedback of task space
term estimations, doing

µc = ĉx(q, q̇) + ĝx(q) + ĥx(q, q̇) + ν̂x(q, q̇) + µ′c , (2.31)

where µ′c is the new command, thus leading to the system plant

A(q)ẍ = µe + µ′c . (2.32)

Doing
µ′c = Â(q) axc − µ̂e , (2.33)

decoupled resolved acceleration in task space is obtained:

ẍ(s)
axc(s)

=
1
s2 . (2.34)

2Dependencies on q and q̇ were omitted in the equations.
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2.4.3 Impedance model

Dynamic model enables impedance shaping, i.e., the design of robot force
output as a function of motion input, also know as impedance control (Hogan
19851985). The impedance Z is given, in Laplace domain, by

Z(s) =
µ(s)
ẋ(s)

=
µ(s)
sx(s)

. (2.35)

For instance, the impedance of a typical mass-damper-spring system with
mass A, damping gain D, and spring gain K is

Z(s) =
As2 + Ds + K

s
, (2.36)

since in time domain the system dynamics is given by

Aẍ + Dẋ + Kx = µ . (2.37)

In fact (2.282.28) is in the form of (2.372.37). Impedance control enables the robot
to have a designed compliant behavior, like a mass-damper-spring system,
instead of being a rigid positioning system. With the knowledge of the dy-
namic model, a robot can be controlled in such a way that, for example, the
impedance seen from the environment,

Ze(s) =
µe(s)
sx(s)

, (2.38)

is shaped as desired. This technique is know as impedance shaping, and is
very useful in co-manipulation applications.

Additionally, a system can also be described by its admittance Z−1, the
inverse of impedance, which relates the response motion to the input force:

Z−1(s) =
ẋ(s)
µ(s)

. (2.39)

2.4.4 Adaptive control with AOB

Cortesão et al. (20062006) presented a bilateral tele-manipulation architecture where
force is used both for robot command and for feedback to the operator. Such
force is computed through a virtual coupling spring dependent on position
tracking error. The architecture features an adaptive force controller in the
robot side and makes use of computed torque, feedback linearization and
other model-based techniques. Furthermore, the control scheme includes a
task environment stiffness estimator and an active observer (AOB) for force
estimation. The AOBAOB is a reformulation of the Kalman filter which uses:
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• closed loop plant model (instead of open loop);

• n augmented states to model disturbances of order n;

• stochastic information of measures and model (including disturbances)
for design.

Figure 2.22.2 schematizes the robot plant and force control architecture. The

≡ Ks
s

µcax ẋ

K̂s

µe
Σ

K2

1
s

µ̂e

Σ

control

Σ
+ +

++−− −

robot environmentlinearization

La AOB

Lc
µr

Z−1 ZeẐ

Figure 2.2: Adaptive force control with AOBAOB. µr is the reference force; Ẑ is
the slave robot estimated impedance; Lc, La and K2 are control gains. The
environment is modeled by a spring Ks, whose estimation is K̂s.

control gains and the AOBAOB are real-time adaptive to estimated environment
stiffness. Only force data is used in the robot side of the controller: reference
force, µr, environment contact measured force, µe, and its estimation, µ̂e. This
architecture is a good example of an advanced controller based on the robot
dynamic model. This and other model-based controllers must take possible
modeling errors into account, however, the better the model is, the better the
controller performance will be.

2.5 Dynamic model identification

The complete knowledge of a robot dynamic model includes the knowledge
of the dynamic parameters. The identification of the dynamic parameters is
a common problem in robotics. Classically, three major techniques exist:

1. identification through computer-aided design (CAD) software;
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2. identification through experimental measurements of individual robot
parts;

3. identification through dynamic model regression methods.

The CADCAD estimation is known to not provide the most accurate results (Khalil
and Dombre 20022002; Wu et al. 20102010). On the other hand, the measurement of
individual robot parts, although accurate, is often impracticable. The use
of regression techniques is more common, well studied and there is a high
quantity of literature about it. See for example Atkeson et al. (19861986), Gautier
(19861986), and Swevers et al. (20072007) for articles, and Khalil and Dombre (20022002), Si-
ciliano and Khatib (20082008), and Siciliano et al. (20092009) for books on the basics of
dynamic parameter identification by regression. As seen in section §2.22.2, the
robot dynamic model can be formulated linearly to the dynamic parameters,
thus allowing linear regression techniques to be applied.

The classical regression methods involve the collection of a large amount
data. Usually, joint position and force measurements are collected by moving
the robot along an excitation trajectory. Doing S measurements (with S� N),
one can construct a regression matrix

HS =


H(q1, q̇1, q̈1)
H(q2, q̇2, q̈2)

...
H(qS, q̇S, q̈S)

 , (2.40)

and a regressand vector

ω =


τc1

τc2
...

τcS

 , (2.41)

where q1 to qS are the S measured joint position vectors, and τc1 to τcS are the
S measured force vectors. Depending on the robot sensors, q̇1 to q̇S and q̈1 to
q̈S are obtained either by direct measurement or by numerical differentiation.
The identified dynamic parameter vector, δ̂, will then be the one which best
fits

HSδ̂ ≈ ω , (2.42)

where ≈ represents an approximation. One of the simplest regression tech-
nique is the ordinary least squares (OLS), whose solution, δ̂OLS, minimizes the
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sum of the squared residuals,

δ̂OLS = arg min
δ

‖ε‖2 , (2.43)

where
ε = ω− HSδ , (2.44)

is the residuals vector.

2.5.1 Base dynamic parameters

When the rank of the regression matrix is equal to number of estimation vari-
ables (n in the present problem) the OLSOLS has an analytic solution. However,
with some very special exceptions, all robots have regressor functions with
some null columns and some columns linearly dependent between them.
Those columns correspond to standard dynamic parameters which have no
effect on the dynamics, and to parameters which have proportional contribu-
tions, respectively. This implies that no matter how many or how exciting
the measurement points are, the regression matrix HS will always have rank
lower than n. To overcome this issue, a set of base dynamic parameters (also
know as minimal parameters) can be found through the elimination of the
unidentifiable parameters and through the grouping of the dependent ones
(Khalil and Kleinfinger 19871987; Gautier and Khalil 19901990; Mayeda et al. 19901990).
Equation (2.222.22) can be rewritten, by reordering, as

[
Hb Hd

] [δb

δd

]
= τc , (2.45)

where Hb are a maximum number nb of linearly independent columns of H,
and Hb are the remain nd null and dependent columns, with

n = nb + nd . (2.46)

Since the columns of Hb form a base, the columns of Hd can be written as a
linear combinations of such base:

Hd = HbKd , (2.47)

where Kd is the matrix encoding the linear combination. The vectors δb and
δd are the standard dynamic parameters reordered according to the same
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reorder of H. The vector δb includes the parameters corresponding to the
base columns of H; the vector δd includes the remaining parameters, which
are related to the dependent columns of H. The reordering can be described
by a permutation matrix P,

P =
[
Pb Pd

]
, (2.48)

where Pb and Pd are, respectively, the nb first columns and the nd last columns
of P, which verify

Hb = HPb ,

Hd = HPd ,

δb = PT
b δ ,

δd = PT
d δ .

(2.49)

From (2.452.45) and (2.472.47),

Hb

[
1 Kd

] [δb

δd

]
= τc , (2.50)

therefore
Hb(δb + Kdδd) = τc . (2.51)

The inverse dynamic equation, (2.222.22), can then be written in terms of base
parameters by

Hb(q, q̇, q̈) β = τc , (2.52)

where Hb is the base regressor, given in (2.492.49), and β is the base dynamic
parameter vector of size nb, given by the linear combination of the δ dynamic
parameters:

β = Kδ , (2.53)

with
K = PT

b + KdPT
d . (2.54)

In practice, matrices Pb, Pd and Kd can be obtained either by rule-based (Gau-
tier and Khalil 19901990; Mayeda et al. 19901990; Khalil et al. 19941994; Khalil and Bennis
19951995) or numerical-based methods (Gautier 19901990, 19911991). The linear combina-
tions, and therefore these matrices, are not unique. However, it is common to
choose the base by selecting the first linearly independent columns starting
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from the left of H. The linear regression can then be performed with respect
to base parameters whose OLSOLS solution is given by

β̂OLS = arg min
β

‖ε‖2 , (2.55)

with the residuals given by

ε = ω−W β , (2.56)

and the regression matrix given by

W =


Hb(q1, q̇1, q̈1)
Hb(q2, q̇2, q̈2)

...
Hb(qS, q̇S, q̈S)

 . (2.57)

Providing that the measurement points excite well all parameters and lead
to a W matrix with rank equal to nb, the optimal solution β̂OLS is unique and
can be analytically computed by

β̂OLS = (W TW)−1W Tω . (2.58)

All the non-unique optimal solutions of (2.432.43) map to the same base parame-
ter solution:

β̂OLS = Kδ̂OLS . (2.59)

In fact, for each β̂ vector picked from the β space there is more than one
vector in the δ space mapping into it. Yoshida and Khalil (20002000) called the set
of all δ vectors that map to the same β̂, the virtual parameters of β̂, defined by
Vβ̂ as:

Vβ̂ ≡ {δ ∈ Rn : K δ = β̂} . (2.60)

There is a rich literature on robot dynamic parameter identification, high-
lighting many different aspects. Some literature focus the regression data
generation, by studding techniques to create trajectories which excite well
the parameters and also by discussing how such parameter excitation can
be measured. See, for example, the works of Armstrong (19891989), Gautier and
Khalil (19921992), Vandanjon et al. (19951995), Swevers et al. (19971997), Calafiore et al.
(20012001), and Park (20062006). Some works study how to better deal with the data
noise and bias, proposing methods more advanced than the classical OLSOLS,
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taking into account the uncertainties from not only the output variable τ but
also from the input ones, q, q̇ and q̈ (using maximum-likelihood approaches
for example). See, for instance, the works of Swevers et al. (19971997), Gautier
and Poignet (20012001), Calafiore et al. (20012001), Olsen and Petersen (20012001), Olsen
et al. (20022002), Ting et al. (20062006), Ting et al. (20112011), Janot et al. (20092009), and Janot
et al. (20142014). Other literature explore the dynamic model itself, proposing al-
ternative models (e.g., the power model, filtered models) which can provide
some advantages in the parameter identification. See, for example, the works
of Prufer et al. (19941994), Gautier (19961996), Gautier (19971997), Gautier and Poignet
(20012001), and Gautier et al. (2013b2013b). A good overview on the state of the art of
dynamic parameter identification techniques has been compiled by Wu et al.
(20102010).

2.6 The physical feasibility problem

A drawback of dynamic parameter identification through regression is the
fact that the estimation solution can be not physically feasible. An estimated
solution is physically feasible when it is possible to exist in real world, since
the dynamic parameters express quantities of physical properties which are
bounded to values with meaning. The most straight example of such quan-
tity is the mass: it is always positive.

The physical feasibility of identified robot dynamic parameters was first
studied in a seminal work by Yoshida et al. in the nineties (Yoshida et al. 19941994;
Yoshida 19951995; Yoshida and Khalil 20002000). They studied how the estimated pa-
rameters affect the positive definiteness of the inertia matrix (M in (2.92.9)). This
matrix is know to only present positive semidefinite values in practice, which
are associated with always positive energy. Yoshida et al. showed that some
dynamic parameter solutions lead to non-positive inertia matrices at some
(or even all) robot postures. The fact that some estimations present these is-
sues can be related not only to errors and lack of richness in the regression
data, but also to model accuracy itself (Yoshida et al. 19941994; Farhat et al. 20082008).
Moreover, regression methods may be used considering some assumptions
about the model that are seldom meet, for example, the assumption of deter-
minism in OLSOLS methods. On the other hand, the robot model itself is always
an approximation to an infinitely more complex system. For example, while
its almost a standard procedure to consider the robot dynamic model as being
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linear in the parameters, it is also true that joint frictions can present highly
nonlinear behaviors. The extent to which each of these factors contribute to
obtaining infeasible solutions has not yet been studied.

While the problem of checking the feasibility of standard dynamic param-
eters can be solved by verifying a set of conditional inequalities, the same
does not applies to the case of a base parameter estimation. Adding to that,
the feasibility issues appear in contexts of identification by regression where
only base parameter can be uniquely identified. The problem of having in-
feasible estimations that entail inertia matrix not always positive definite is
directly related with the usefulness of such matrix itself. Non-positive matri-
ces are intrinsically unstable when used in model-based controllers and entail
unrealistic results when used in robot simulations (Yoshida and Khalil 20002000),
thus they have limited usefulness. Although some estimations are “so infea-
sible” that their application is clearly problematic, a bigger problem can come
from solutions which entail non-positive definite inertia matrices at very few
robot postures. For the latter case, an identification can be being used without
visible problems until the robot performs an uncommon trajectory where the
inertia matrix becomes not positive definite and unexpected and dangerous
behavior occurs.

Although the physically consistency of identifications has paramount im-
portance, few are the published works on dynamic identification which do
not disregard this aspect. Nevertheless, there are some articles whose au-
thors have acknowledged the feasibility issue. Besides the seminal work of
Yoshida et al. the first works to acknowledge the issue were done by Calafiore
et al. (20012001), Benimeli et al. (20032003), Mata et al. (20052005), Ting et al. (20062006), and
Radkhah et al. (20072007). In many of these works, the obtained estimations are
clearly inconsistent, and some propose techniques to overcome the problem.
The feasibility issue seems to arise even more often in works addressing the
identification of parallel arms (Farhat et al. 20072007) and humans/humanoids
(Venture et al. 20092009; Ayusawa and Nakamura 20102010), which pose parameter
excitation difficulties and large number of DOFDOF. To the extent of our knowl-
edge, up to this date, the physical feasibility subject has never been treated
in any textbook on robotics.

It can be argued that adequate experiments can lead to estimations that
are accurate enough to be physically feasible. However, no matter how good
the parameter excitation and regression techniques are, a mathematical proof
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that guarantees physical feasibility of robot base parameter estimation is nec-
essary. Moreover, a regression method constrained to physically feasible solu-
tions can be of interest. In the sequel, the feasibility conditions, following the
base work of Yoshida et al., are introduced. Then, the various approaches to
the problem which have been proposed up to now are presented. It has to be
noted that several terms have been used among authors to refer to the same
problem, hence the terms “physical impossibility”, “physical inconsistency”,
and “physical infeasibility” (or “unfeasibility”) must be taken as synonyms.

2.6.1 Feasibility of inertial parameters

Yoshida and Khalil (20002000) defined that inertial parameters are feasible if the
following conditions are verified:{

mk > 0

Ik � 0
for k = 1, . . . , N , (2.61)

where the � 0 notation means that the left-hand side is a positive definite
matrix. Through (2.162.16), (2.612.61) can be rewritten in terms of link inertial param-
eters as 

mk > 0

Lk −
1

mk
S(lk)T S(lk) � 0

for k = 1, . . . , N . (2.62)

The set of all dynamic parameter vectors which are physically feasible, with
respect to inertial parameters, can be defined as

DL = {δ ∈ Rn : mk > 0, Lk −
1

mk
S(lk)T S(lk) � 0 | k = 1, . . . , N} . (2.63)

2.6.2 Feasibility of additional dynamic parameters

Besides the physical conditions on the link inertial parameters, any other ad-
ditional parameter included in the model must be conditioned to the physical
meaning it represents. The set of dynamic parameter vectors which verify
those additional conditions will be denoted by DA. For example, the joint
viscous and Coulomb frictions and the reflected motor inertia parameters, as
given in (2.192.19), must be positive in order to be physically feasible. Hence, for
that example, DA is defined as

DA = {δ ∈ Rn : Fvk > 0, Fck > 0, Iak > 0 | k = 1, . . . , N} . (2.64)
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Considering the conditions on all parameters, the set of physically feasible
dynamic parameter vectors is given by

D = DL ∩DA , (2.65)

i.e., it is the set defined by the intersection of all conditions.

2.6.3 Feasibility conditions defined by additional robot
information

The physical feasibility conditions presented above are valid for any robot.
However, additional information about a given robot can be used to better
define the physical feasibility of the dynamic parameters. For instance, if
it is possible to detach a group of links, from k = a to k = b, and measure
their total weight ma,b, an additional condition can be added to the feasibility
conditions:

b

∑
k=a

mk = ma,b . (2.66)

The position of the centers of mass may also be used to refine the feasibility
conditions. The center of mass of a link is always positioned within the link
body convex hull, i.e. the smallest convex volume which contains the link.
Hence, if additional information about the geometry of a given robot links is
available, additional conditions on centers of mass can be devised. Interval
of confidence from other estimation procedures may also be used as addi-
tional feasibility conditions. Additional conditions can be appended to the
definition of (2.652.65) and many can be integrated into the methods that will be
presented in the sequel.

2.6.4 Feasibility of standard dynamic parameters

Given a standard dynamic parameter estimation δ̂, it is straightforward to
verify its feasibility by checking if it verifies the conditions of D. In order to
verify the positive definiteness conditions, several simple techniques can be
applied. They are the the Sylvester’s criterion (Gilbert 19911991), the verification
of eigenvalues positiveness, and the Cholesky decomposition which shows
to be impossible when the matrix is not positive definite.
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Figure 2.3: Relation between feasible sets in δ and β spaces (2D illustration).
β̂ f is a feasible parameter vector and β̂i is an infeasible one.

2.6.5 Feasibility of base dynamic parameters

A given base dynamic parameter vector, β̂, is said to be physical feasible if
there is at least one feasible standard dynamic parameter vector mapping
into it (Yoshida and Khalil 20002000). Therefore, merging (2.602.60) and (2.632.63), the set
of all base dynamic parameter vectors which are physically feasible, can be
defined by

B = {β ∈ Rnb : ∃ δ ∈ D | Kδ = β} . (2.67)

Since the set of all standard dynamic parameters mapping into a given β̂ is
its virtual parameter set, Vβ̂, one can say that such β̂ is feasible if, and only if,
Vβ̂ intersects D:

β̂ ∈ B ⇔ Vβ̂ ∩D 6= ∅ . (2.68)

The relation between this sets in both δ and β spaces is illustrated Figure 2.32.3.
The transformation from δ to β space, performed by the matrix K, is surjec-
tive since each δ maps to a single β while the opposite is not true, thus en-
tailing a non-bijective transformation. Due to that fact, the definition given
in equation (2.672.67) cannot be used straightforwardly to verify if a β̂ if physi-
cally feasible. This raises the problem: how to verify whether a β̂ solution
obtained from a regression method is feasible?
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2.6.6 Previous works on the physical feasibility issue

Along with the feasibility/infeasibility condition definition, Yoshida et al.
proposed a method to check if a given base parameter estimation is physi-
cally possible (Yoshida et al. 19941994; Yoshida 19951995; Yoshida and Khalil 20002000).
The method is recursive, starting from the end-effector and then iterating
over each link. At each link one must try to find a vector of standard inertial
parameters which verify the feasibility constraints given by (2.612.61) and at the
same time correspond it to the identified base parameters of that link. When-
ever a solution is found, one moves to the next link towards the robot base,
and repeats the procedure taking the previous standard parameter solutions
into account. The search for each solution is performed within regions with at
most 3 degrees of freedom, which are defined and reduced by the very same
rules used to group parameters into the base by Mayeda et al. (19901990) and
Gautier and Khalil (19901990). The choice of values in the regions is done recur-
ring to visual graphs. If it is possible to complete the process up to the base
link, then the found standard inertial parameter solution is a feasible virtual
parameter of the given base parameter estimation, thus proving its feasibility.
If at some link, a solution cannot be found, the method must move back to
the previous link and try again with a valid but different solution. Hence,
although the method is systematic, it is in fact a trial and error procedure.
While the feasibility can be proved when a valid solution is found, the proof
of infeasibility seems to be harder to obtain since the search region of each
link depends on the solutions chosen at the others. That makes the method
impracticable for larger DOFDOF robots.

Constrained regression methods

Mata et al. (20052005) proposed a method for parameter identification taking
physical feasibility into account. The method extends the classical OLSOLS regres-
sion into a nonlinear optimization with nonlinear constrains. The optimiza-
tion objective is to find a standard parameter estimation which minimizes the
regression error and the distance to a prior base estimation, as given by the
function

f (δ) = λω‖ω−WKδ‖2+λβ‖β̂− Kδ‖2 , (2.69)

where β̂ is the prior estimation to be fitted, and λω and λβ are weighting
factors. The optimization is performed referring to sequential quadratic pro-
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gramming (SQP) methods which enable the inclusion of nonlinear constrains
in the space of δ to ensure feasibility. The constrains impose that all masses,
mk, and all the eigenvalues of all COMCOM inertia tensors, Ik, are positive, which
effectively is equivalent to (2.612.61). Since the convergence of this optimization
was not studied and not guaranteed, Mata et al. opted to use a two-step for-
mulation and recurred to parameter estimations taken from literature as ini-
tial guess. In the first step, only mass and inertia tensor diagonal positiveness
is constrained. The solution of the first step is then the initial guess of a sec-
ond step where the eigenvalues positiveness is take into account too. The se-
lection of the prior solution β̂ of (2.692.69) and the tuning of the weighting factors
λω and λβ are not discussed. In a work with a 3-DOF parallel robot by Farhat
et al. (20072007, 20082008), nonlinear optimization constrained to feasible solutions is
also performed. Although no details are given about the optimization formu-
lation, that work seems to be related to the one of Mata et al. (20052005), with the
difference that the Sylvester’s criterion, rather than the eigenvalues positive-
ness, is used for the feasibility constraints. It is worth mentioning that in the
latter work, nonlinear friction models are also used, hence the requirement
for a nonlinear optimization processes does not comes exclusively from the
feasibility constrains.

Ting et al. proposed a nonlinear Bayesian parameter identification method
with physical feasibility assessment (Ting et al. 20062006; Ting et al. 20112011). Rather
than being done in the standard or base parameter space, the regression opti-
mization step of the identification method is done in a new parameter space,
the “virtual parameters” θ (not related to (2.602.60)) which has a nonlinear map-
ping to feasible standard parameters only. The space of such virtual parame-
ters is defined for each link k by the vector θk,

θk =
[
θ1k θ2k · · · θ11k

]T
, (2.70)

which maps to the standard inertial parameters δLk (plus the viscous friction
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constant) through the following equations:

mk = θ2
1k

lxk = θ2
1kθ2k

lyk = θ2
1kθ3k

lzk = θ2
1kθ4k

Lxxk = θ2
1k
(
θ2

3k + θ2
4k
)

+ θ2
5k

Lxyk = − θ2
1kθ2kθ3k + θ5kθ6k

Lxzk = − θ2
1kθ2kθ4k + θ5kθ7k

Lyyk = θ2
1k
(
θ2

2k + θ2
4k
)

+ θ2
6k + θ2

8k

Lyzk = − θ2
1kθ3kθ4k + θ6kθ7k + θ8kθ9k

Lzzk = θ2
10k + θ2

1k
(
θ2

2k + θ2
3k
)

+ θ2
7k + θ2

9k

Fvk = θ2
11 .

(2.71)

The parameters θ correspond to the mass square root, the COMCOM position (r),
a said “Cholesky decomposition of the DOFDOF’s inertia matrix at the center of
gravity”, and the viscous friction square root, which according to Ting et al.
(20112011) encode the feasibility conditions in such a way that every possible θ

vector maps to a physically feasibility standard parameter vector. Due to the
difficulty in including the nonlinear mapping into the Bayesian identification
formulation, a two-step solution is proposed. Firstly, an unconstrained solu-
tion δ̂uc in the standard parameter space is found by the Bayesian method
(or possibly other identification method). Then, a nonlinear least squares op-
timization is performed in the θ parameters space, seeking to minimize the
distance to the unconstrained solution under a metric given by the regression
matrix H:

θ̂ = arg min
θ

‖Hδ̂uc − Hδθ‖ , (2.72)

with δθ being given by the function fθ ,

δθ = fθ(θ) , (2.73)

which performs the mapping formulated by (2.712.71) for all links. Since the least
squares minimization is weighted by the regression matrix H, the optimal so-
lution δ̂ = fθ(θ̂) will be the one that best fits the regression data. The same
physical feasibility assessment technique also appear in the work Nakanishi
et al. (20082008), where the prior unconstrained solution is obtained by classical
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least squares methods. While claiming that the presented nonlinear map-
ping guarantee always feasible standard parameters, no further details on
the proof of such claim and no details on the nonlinear optimization imple-
mentation are given in the cited works. It is also not discussed if every feasi-
ble vector in δ has a corresponding solution in the space of θ, i.e., if the best
θ solution really corresponds to the best feasible δ solution.

Ayusawa and Nakamura (20102010) proposed an identification technique en-
abling physically feasible parameter identification for robots with a high num-
ber of DOFDOF. The work extends the formulation of Mata et al. (20052005) introduc-
ing two major differences to mitigate two major problems of the formulation
on large DOFDOF robots. First, the feasibility constraints are approximated by lin-
ear inequalities which helps reducing the complexity of the optimization and
improve its performance and effectiveness — in fact, Ayusawa et al. were un-
able to obtain a converged solution in their 34-DOFDOF identification experiment
when using the nonlinear constrain formulation. Second, a prior solution
taken from CADCAD data is used, adding stability to the identification when it
is not possible to successfully excite all identifiable dynamic parameters —
which is the common case for large DOFDOF robots. To obtain linear conditions,
instead of considering the links as generic rigid bodies, the links are consid-
ered to be composed by a finite number of mass points at fixed positions,
leading to a set of parameters only including masses. Being p the vector of
mass parameters for all mass points grouped by link, the link inertial param-
eter vector is given by

δ = Rp , (2.74)

where R is a block-diagonal matrix (a block per link) encoding the position
of the mass points and thereby the contribution of each to the link inertia.
With such formulation, the physical feasibility conditions are reduced to the
parameters positiveness, which can be defined by simple linear inequalities:

p1 > 0

p2 > 0

p3 > 0
...

. (2.75)
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The regression optimization problem is then formulated by

minimize
p

‖G f (ω− HSRp)‖2 + ‖Gp(p̂− p)‖2

subject to p > 0 ,
(2.76)

where p̂ is a prior estimation obtained from CADCAD data, and G f and Gp are
weighting matrices. If R is full rank, which can be achieved by having a
minimum of 10 well distributed mass points per each link, then any δ vector
has at least one corresponding p solution. Hence, if the feasibility inequalities
and the second term of (2.762.76) are discarded, the problem will be equivalent
the classical OLSOLS one. However, when considering positive p solutions only,
it is not possible to fully map the δ space into the p (positive) space. The set
of δ vectors given by all possible feasible p estimations, defined as

Dp = {δ ∈ Rn : ∀p > 0 | δ = Rp} , (2.77)

is a polyhedral convex cone contained by the feasibility convex cone defined
by (2.632.63) (Ayusawa and Nakamura 20102010),

Dp ⊂ DL . (2.78)

The higher the number of distinct mass points used per link, the better the
approximation ofDp toDL will be. Ayusawa et al. proposes the use of 33 = 27
mass points per link placed at the center, at the vertexes, at the centers of the
edges, and at the centers of the faces of the bounding box enclosing the re-
spective link (obtained from CADCAD data too). This approach guarantees that
the link centers of mass are inside their bounding boxes, which indeed is
known to be true. While the simplification entails a error inverse to the num-
ber of mass points, such simplification enables faster optimization processes,
up to the point that this formulation enabled the identification of human
body segments in real-time (Ayusawa et al. 20112011).

Model reduction methods

Díaz-Rodríguez et al. (20102010) proposed an identification method which also
considers parameter physical feasibility but differing from previous approaches
both in the way the feasibility is checked and in the way the infeasibility is
mitigated. Such identification method has an iterative process where the re-
gression is performed in the base parameters space by a classical weighted
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least squares (WLS) technique at each step. After each step, if the solution is
feasible the process stops. If not, the model is reduced by removing the base
parameter which presented the higher relative standard deviation in the pre-
vious solution (Pham and Gautier; Khalil and Dombre 20022002) and the process
repeats. To verify the feasibility of a given base estimation β̂, a feasible so-
lution is searched for in the standard parameter space. Since through (2.532.53),
(2.542.54) and (2.492.49)

δb = β̂− Kdδd , (2.79)

Díaz-Rodríguez et al. search for a δd that in conjunction with the computed
δb entails a δ,

δ = P

[
δb

δd

]
, (2.80)

which verifies the feasibility conditions. The proposed procedure performs
a discrete and bounded brute-force search in the space of δb. If at some it-
eration a feasible solution is found, the remaining base parameters are con-
sidered to be the “relevant” parameters for that model. Nevertheless, Díaz-
Rodríguez et al. acknowledge that in some cases it may not be possible to
find feasible solutions for any level of model reduction.

Gautier et al. (2013a2013a) presents a method where “essential” parameters are
also used to tackle the physical infeasibility problem. In this method, unlike
in the one of Díaz-Rodríguez et al. (20102010), the essential parameters are de-
vised one time only by the techniques of Pham and Gautier. The regression is
then performed in the standard parameter space minimizing the torque pre-
diction square error through singular value decomposition (SVD) techniques.
Additionally, taking advantage the of standard parameter null space, the the
solution is pulled towards a prior feasible CADCAD estimation. Hence, in case
the least squares solution allows it, it is more probable for the final standard
parameter solution to be feasible. In the experiments present in the work, the
estimation in the essential parameters shows to be feasible, while no feasible
estimation can be found when considering all parameters. Similar results are
also found in the work of Gautier and Venture (20132013). In the experiments
of Venture and Gautier (20122012), these techniques are applied to the identifica-
tion of human body parameters, however no feasible solution was found at
all. In all these related works, the feasibility is checked using the Cholesky
factorization whose tolerance is used to infer the degree of infeasibility.



3
S O LV I N G T H E P H Y S I C A L

F E A S I B I L I T Y P R O B L E M

3.1 Semialgebraic set approach

Physical feasibility conditions define the set D in the standard dynamic pa-
rameter space. For any given point in this space, it is possible to verify if
it is in the feasibility region by checking the conditions in a closed-form ap-
proach. In this section, an attempt to obtain a closed-form expression for the
base feasibility set B is presented.

3.1.1 Physically feasible dynamic parameter set as a semialgebraic
set

It is known through the Sylvester’s criterion, that a positive definite matrix
has positive leading principal minors, i.e., all the leading sub-matrices have
positive determinants. Applying this necessary and sufficient criterion, the
positive definiteness condition on Ik in (2.612.61), Ik � 0, can be rewritten as

Ixxk > 0

det

([
Ixxk Ixyk

Ixyk Iyyk

])
> 0

det (Ik) > 0 .

(3.1)

Mapping to link inertial parameters through the Huygens–Steiner theorem
(2.162.16), expanding the determinants into closed-form formulas, and then mul-
tiplying by m2

k (entailing equivalent inequalities), equation (3.13.1) can be writ-
ten as 

P1k(δLk) > 0

P2k(δLk) > 0

P3k(δLk) > 0

, (3.2)

where P1k, P2k and P3k are polynomials in the variables of vector δLk defined
by (2.182.18):

P1k(δLk) = Lxxkm2
k − l2

ykmk − l2
zkmk , (3.3)

33
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(3.4)
P2k(δLk) = LxxkLyykm2

k − Lxxkl2
xkmk − Lxxkl2

zkmk − L2
xykm2

k − 2Lxyklxklykmk

− Lyykl2
ykmk − Lyykl2

zkmk + l2
xkl2

zk + l2
ykl2

zk + l4
zk ,

and

P3k(δLk) = LxxkLyykLzzkm2
k − LxxkLyykl2

xkmk − LxxkLyykl2
ykmk − LxxkL2

yzkm2
k

− 2LxxkLyzklyklzkmk − LxxkLzzkl2
xkmk − LxxkLzzkl2

zkmk + Lxxkl4
xk

+ Lxxkl2
xkl2

yk + Lxxkl2
xkl2

zk − L2
xykLzzkm2

k + L2
xykl2

xkmk + L2
xykl2

ykmk

+ 2LxykLxzkLyzkm2
k + 2LxykLxzklyklzkmk + 2LxykLyzklxklzkmk

− 2LxykLzzklxklykmk + 2Lxykl3
xklyk + 2Lxyklxkl3

yk + 2Lxyklxklykl2
zk

− L2
xzkLyykm2

k + L2
xzkl2

xkmk + L2
xzkl2

zkmk − 2LxzkLyyklxklzkmk

+ 2LxzkLyzklxklykmk + 2Lxzkl3
xklzk + 2Lxzklxkl2

yklzk + 2Lxzklxkl3
zk

− LyykLzzkl2
ykmk − LyykLzzkl2

zkmk + Lyykl2
xkl2

yk + Lyykl4
yk

+ Lyykl2
ykl2

zk + L2
yzkl2

ykmk + L2
yzkl2

zkmk + 2Lyzkl2
xklyklzk

+ 2Lyzkl3
yklzk + 2Lyzklykl3

zk + Lzzkl2
xkl2

zk + Lzzkl2
ykl2

zk + Lzzkl4
zk .

(3.5)

It follows that the feasibility set D can then be rewritten as

D = {δ ∈ Rn : mk > 0,

P1k(δLk) > 0, P2k(δLk) > 0, P3k(δLk) > 0,

Fvk > 0, Fck > 0, Iak > 0

| k = 1, . . . , N} .

(3.6)

Therefore, the set D is as subset of Rn defined by M polynomial inequalities,

D = {δ ∈ Rn : Qi(δ) > 0 | i = 1, . . . , M} (3.7)

where Qi(δ) are polynomials, which proves that D is in fact a semialgebraic
set.

3.1.2 Base–dependent parameter space

The transformation from the δ space to the β space can be defined by a map
m,

m : Rn Rnb

δ β
, (3.8)
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with
m(δ) ≡ Kδ . (3.9)

Such mapping can be decomposed into two mappings, mt and mp,

m = mt ◦mp : Rn Rn Rnb

δ (β, δd) β

mt mp

, (3.10)

where mt is a bijective linear transformation defined by

mt(δ) ≡
[

1nb Kd

0 1nd

]
PTδ (3.11)

and mp is a projection defined by

mp(β, δd) ≡
[
1nb 0

] [ β

δd

]
. (3.12)

The mapping mt is bijective since it has inverse, which is given by

m−1
t (β, δd) ≡ P

[
1nb −Kd

0 1nd

] [
β

δd

]
. (3.13)

Therefore, there is a one-to-one correspondence between points in the space
δ and points in the space formed by (β, δd) parameters. Henceforward, the
(β, δd) parameter space will be referred as base–dependent parameter space.
One advantage of the base–dependent parameter space it that (β, δd) vectors
have the identifiable and the unidentifiable terms split into β and δd, respec-
tively, while δ vectors are a mix of identifiable and unidentifiable values.

The set of feasible parameters can be mapped into the base–dependent
parameter space, defining the set of feasible base–dependent parameters,Dβ,
as

Dβ = {(β, δd) ∈ Rn : Qiβ(β, δd) > 0 | i = 1, . . . , M} , (3.14)

where Qiβ are the polynomials of (3.73.7) rewritten in terms of (β, δd):

Qiβ(β, δd) = Qi(m−1
t (β, δd)) . (3.15)

Since m−1
t is a linear mapping, Qiβ are still polynomials, and the set Dβ is

still a semialgebraic set. Figure 3.13.1 extends the example given in figure 2.32.3 to
include the new base–dependent parameter space.
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Figure 3.1: Relation between feasible sets in δ, (δ, β), and β spaces (2D illus-
tration). β̂ f is a feasible parameter vector and β̂i is an infeasible one.

3.1.3 Feasible base parameter set as a semialgebraic set

The feasible base parameter set can be rewritten in terms of Dβ as

B = {β ∈ Rnb : ∃ δd ∈ Rnd | (β, δd) ∈ Dβ} . (3.16)

which in fact represents a projection of Dβ onto the Rnb subspace defined by
the dimensions of β. By the Tarski–Seidenberg theorem (Bierstone and Mil-
man 19881988), it is known that a projection of a semialgebraic set onto some of
its dimensions is still a semialgebraic set. Therefore, an important conclusion
is devised:

• the set B is a semialgebraic set, and its closed-form representation, free
of existential quantifier (∃) and definable in terms of polynomial iden-
tities and inequalities, exists.

Being quantifier free means that that the set B can be formulated with condi-
tions expressed in terms of β variables only. Hence, such formulation can be
directly used to check whether a given β̂ solution is physically feasible.

In order to obtain such quantifier free expressions, a quantifier elimina-
tion algorithm is needed, being the cylindrical algebraic decomposition (CADec)
algorithm developed by Collins (19751975) the most effective one. Unfortunately,
while the CADecCADec can be effectively implemented in a computer, it has a dou-
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ble exponential complexity associated to the space dimension. Therefore, al-
though it has been proven that a closed-form semialgebraic representation of
B exists, in practice it may be impossible to find such representation. For
small planar robots, where the number of inertial parameters can be cut
down to 4 per link, the CADecCADec algorithm may be capable of finding the closed-
form conditions. However, for a common robot manipulator, the number of
parameters grows to several dozens, rendering a computationally intractable
CADecCADec problem.

3.2 Linear matrix inequality and semidefinite
programming approach

It has been shown that physical feasibility conditions define a semialgebraic
set. In this section, the positive definite structure of the feasibility conditions
will be further exploited, referring to linear matrix inequalities and semidefi-
nite programming techniques.

3.2.1 Physically feasible dynamic parameter set as an LMI

The second condition of (2.622.62), which defines the positive definiteness of a
given link inertia, can be written in a quadratic matrix inequality form as

Lk − S(lk)T (mk1)−1 S(lk) � 0 . (3.17)

Since Lk is an inertia tensor, it must be definite positive, and since mk is posi-
tive (from the feasibility condition itself), (mk1) is definite positive too. These
assertions enable the application of the Schur complement condition for posi-
tive definiteness (Boyd et al. 19941994; Goldman and Ramana 19951995) which entails
that (3.173.17) is equivalent to [

Lk S(lk)T

S(lk) mk1

]
� 0 . (3.18)

The left-hand side block matrix is a function of δLk, which can be defined as

DLk(δLk) ≡
[

Lk S(lk)T

S(lk) mk1

]
, (3.19)
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and in expanded form is given by

DLk(δLk) =



Lxxk Lxyk Lxzk 0 lzk −lyk

Lxyk Lyyk Lyzk −lzk 0 lxk

Lxzk Lyzk Lzzk lyk −lxk 0
0 −lzk lyk mk 0 0

lzk 0 −lxk 0 mk 0
−lyk lxk 0 0 0 mk


. (3.20)

The two conditions given in (2.622.62) are fully encoded in the single inequality

DLk(δLk) � 0 (3.21)

since such inequality also implies mk > 0. In fact, (3.213.21) is a linear matrix
inequality (LMI), since it can be decomposed as

DLk(δLk) = DLk0 +
10

∑
i=1

DLki δLki , (3.22)

where DLki, for i = 0, . . . , 10, are constant symmetric matrices, and δLki, for i =
1, . . . , 10, are the variables composing δLk as given in (2.182.18), i.e., the standard
inertial parameters. Indeed, the structure of the matrix DLk is often found
in many robot and rigid-body dynamic formulations. This matrix, under
the name of generalized inertia, is used in the recursive formulation of robot
dynamics using Lie Groups proposed by Park et al. (19951995). It also appears
in some dynamic formulations related to screw theory and using 6D vector
representations of motions and forces, as, for example, the spatial vectors
developed by Featherstone (20102010).

Simple physical feasibility conditions on additional dynamic parameters,
as exemplified in (2.642.64), can also be easily defined as an linear matrix inequal-
ity (LMI) by

DAk(δAk) � 0 (3.23)

with Fvk 0 0
0 Fck 0
0 0 Iak

 � 0 . (3.24)
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Finally, it is possible to combine the feasibility conditions for the parameters
of all links and joints by using a block-diagonal matrix D,

D(δ) ≡



DL1

DA1
. . . 0

DLk

DAk

0 . . .

DLN

DAN


, (3.25)

into a single LMILMI:
D(δ) � 0 . (3.26)

This LMILMI block alone is enough to define the physically feasible parameter set
(2.652.65) as

D = {δ ∈ Rn : D(δ) � 0} . (3.27)

The fact that it is possible to define the set D as an LMILMI implies and proves
that it is a convex set.

LMILMI formulations are well known in the field of system and control the-
ory, and have been around since Lyapunov’s control stability formulations
(Boyd et al. 19941994). In this fields, both strict and non-strict LMIsLMIs, i.e., defi-
nite and semi-definite inequalities, have been well studied. Nevertheless, in
recent years, mathematical formalization has been focusing non-strict/semi-
definite LMIsLMIs, leading to the concept of spectrahedral set and to the emer-
gence of the so-called semidefinite programming (SDP) field.

While the LMILMI of (3.273.27) is strict, a relaxed, non-strict, version can also be
formulated. The difference would relate to whether absolute zero valued
dynamic parameters must be considered physically feasible or not. While
the validity of absolutely zero friction constants is perfectly acceptable, the
existence of links with zero masses or null inertia tensors may be more ques-
tionable.

A way to solve this question can be the definition of a new LMILMI as

D̄(δ) � 0 , (3.28)

for
D̄(δ) = D(δ)− ε1 , (3.29)
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where ε is a positive scalar sufficiently small to consider

D = {δ ∈ Rn : D̄(δ) � 0} (3.30)

equivalent to (3.273.27). In order to adequate the physical feasibility problem into
the semidefinite programming (SDP) mathematical formulation, and benefit
from its developments and tools, the non-strict definition of D, (3.303.30), will
be used henceforth. From a practical implementation perspective, (3.293.29) can
be easily addressed taking the numerical precision of computers and SDPSDP

solvers into account. A practical example of this will be shown in section §4.54.5.
The set D, as defined in (3.303.30), is mathematically called a spectrahedron.

Spectrahedra are semialgebraic convex shapes defined by the intersection
of positive definite cones with linear affine subspaces, and are the solution
spaces of SDPSDP problems. SDPSDP optimization techniques have been under heavy
research and are remarkably known for being effective and guaranteeing con-
vergence to the global optimum very efficiently (Vandenberghe and Boyd
19961996). SDPSDP unifies and generalizes linear and quadratic programming while
maintaining easy solving.

3.2.2 SDP-representable feasible base parameter set

Since spectrahedral sets remain spectrahedral under bijective affine transfor-
mations (Goldman and Ramana 19951995), the feasible base–dependent parame-
ter set Dβ also has an LMILMI representation. The set Dβ can be defined by

Dβ = {(β, δd) ∈ Rn : D̄β(β, δd) � 0} , (3.31)

where the matrix D̄β(β, δd) is obtained by applying a change in variable from
δ to (β, δd) to the matrix D̄(δ),

D̄β(β, δd) = D̄(m−1
t (β, δd)) . (3.32)

Since Dβ is a spectrahedron, the feasible base parameter set B is a projection
of a spectrahedron which can be defined as

B = {β ∈ Rnb : ∃ δd ∈ Rnd | D̄β(β, δd) � 0} . (3.33)

Although remaining convex and semialgebraic, projections of spectrahedral
sets do not necessarily conserve the spectrahedral form (Goldman and Ra-
mana 19951995). Nonetheless, B is said to be semidefinite representable (or SDPSDP rep-
resentable), being (3.333.33) its semidefinite representation. In this context, Dβ is
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said to be the SDPSDP lift of B, and D̄β its lifted LMILMI. The fact that the feasible base
parameter set is semidefinite representable has great importance since it is
still possible to take advantage of SDPSDP techniques (Nesterov and Nemirovskii
19871987).

3.3 Base parameters feasibility test through SDP

Although the definition (3.333.33) does not provides a closed-form test to the
feasibility of β̂ vector, it can be used to devise a feasibility test using SDPSDP. A
given β̂ vector is physically feasible if the LMILMI D̄β � 0 partially evaluated at
β̂ defines a non-empty set over δd space:

β̂ ∈ B ⇔ {δd ∈ Rnd : D̄β(β, δd)
∣∣∣β=β̂ � 0} 6= ∅ . (3.34)

This is a typical feasibility SDPSDP problem which can be defined as

find δd

subject to D̄β(β, δd)
∣∣∣β=β̂ � 0 .

(3.35)

This kind of problem can be seen as a SDPSDP optimization problem where the
cost function is not relevant. If it is possible to find a solution to this problem,
then the given β̂ is physically feasible.

3.4 Distance to the physical feasible parameter set

Another method to verify the physical feasibility of a given β̂ is to search
for a feasible (β, δd) solution whose β part has minimal distance to β̂. If the
distance can be minimized down to zero then it means that the β̂ is feasible.
The distance minimization problem can be defined as

minimize
(β,δd)

‖β̂− β‖

subject to D̄β(β, δd) � 0 ,
(3.36)

for which an SDPSDP problem form can be devised. First, the problem is defined
as minimization of a slack variable u by

minimize
(u,β,δd)

u

subject to u ≥ ‖β̂− β‖2

D̄β(β, δd) � 0 .

(3.37)
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Then, the condition u ≥ ‖β̂− β‖2 is rewritten as an LMILMI:

‖β̂− β‖2 ≤ u

⇔ u− (β̂− β)T(β̂− β) ≥ 0

⇔ Uβ̂(u, β) � 0 ,

(3.38)

where the matrix Uβ̂(u, β),

Uβ̂(u, β) ≡
[

u (β̂− β)T

β̂− β 1nb

]
, (3.39)

is obtained through the application of Schur complement conditions. Hence,
problem (3.373.37) can be formulated as an SDPSDP problem by

minimize
(u,β,δd)

u

subject to Uβ̂(u, β) � 0

D̄β(β, δd) � 0 .

(3.40)

Being (u′, β′, δ′d) the solution to (3.403.40), δ′d is the feasible base parameter vector
closest to β̂, and u′ is the respective distance. In the case u′ is zero, then β̂ = β′

and β̂ is a physically feasible vector. This method can be used to correct an
infeasible base parameter estimation β̂ into a feasible β′, while not relying on
any regression data. The value of u′ provides a measure for the infeasibility
of β̂. However, it must be taken into account that the distance is dependent
on the chosen base parameter grouping (K), since distances are not linearly
mapped between different base spaces.

3.5 Base parameter regression constrained to
physically feasible solutions

The SDPSDP methods devised above can be further extended to include the dy-
namic parameter regression itself. If the regression minimization is performed
inside the feasible parameters set only, then the obtained solution will be fea-
sible.

3.5.1 OLS regression as an SDP problem

In a similar fashion to the distance minimization of (3.383.38), the regression by
OLSOLS, given by (2.552.55), can be formulated a an SDPSDP problem. Therefore (2.552.55)
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can be written as
minimize

(u,β)
u

subject to u ≥ ‖ω−W β‖2 .
(3.41)

Applying the Schur complement condition for positive definiteness once again,

‖ω−W β‖2 ≤ u

⇔ u− (ω−W β)T(ω−W β) ≥ 0

⇔ Uu,ω(β) � 0 ,

(3.42)

with

Uω(u, β) ≡
[

u (ω−W β)T

ω−W β 1NS

]
. (3.43)

Hence, the solution of the SDPSDP minimization problem

minimize
(u,β)

u

subject to Uω(u, β) � 0 .
(3.44)

is the same β̂OLS solution given by the analytic method (2.582.58).

3.5.2 LMI size reduction

Although this is a valid SDPSDP problem, its LMILMI matrix has a size of NS+1×
NS+1, a very high number which can lead to slow solving times. Neverthe-
less, this issue can be tackled through a prior decomposition of the matrix W .
Applying a QR orthogonal-triangular decomposition to the regression matrix
W , we obtain

W = QR , (3.45)

which, since W has more rows than columns, can be split into

QR =
[

Q1 Q2

] [R1

0

]
= Q1R1 , (3.46)

where R1 is a nb × nb upper-triangular matrix. Since matrix Q is orthogonal
(QTQ = 1), vectors maintain their norm when left-multiplied by its transpose.
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Therefore the regression error ‖ε‖2 can be rewritten as

‖ε‖2 = ‖ω−W β‖2

= ‖QT(ω−W β)‖2

= ‖QTω−QTQRβ‖2

=

∥∥∥∥∥
[

QT
1

QT
2

]
ω−

[
R1

0

]
β

∥∥∥∥∥
2

=

∥∥∥∥∥
[

QT
1 ω− R1β

QT
2 ω

]∥∥∥∥∥
2

,

(3.47)

and finally as
‖ε‖2= ‖ρ2‖2+‖ρ1 − R1β‖2 (3.48)

with
ρ1 ≡ QT

1 ω

ρ2 ≡ QT
2 ω .

(3.49)

The term ‖ρ2‖2 equals the minimal regression error, and it is constant and
not dependent on β. From (3.413.41) and (3.483.48),

u− ‖ρ2‖2≥ ‖ρ1 − R1β‖2 , (3.50)

hence, the SDPSDP problem from (3.443.44) can be reformulated as

minimize
(u,β)

u

subject to Uρ1(u, β) � 0 ,
(3.51)

where

Uρ1(u, β) ≡
[

u− ‖ρ2‖2 (ρ1 − R1β)T

ρ1 − R1β 1N

]
. (3.52)

In this case, the LMILMI matrix Uρ1 has a size of N+1× N+1 only, being much
more SDPSDP solver friendly than Uω.

3.5.3 SDP regression constrained to the physically feasible space

A new regression SDPSDP problem can now be defined by including the feasible
base–dependent parameter LMILMI to (3.513.51):

minimize
(u,β,δd)

u

subject to Uρ1(u, β) � 0

D̄β(β, δd) � 0 .

(3.53)
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β̂

β̂

β′

β?

physically feasible region
level curves of regression error ‖ε‖2

Figure 3.2: Regression with a non-feasible β̂ (2D illustration). The always
feasible and optimal solution β? has lower regression error than the feasible
solution β′ closer to β̂.

This problem searches for (u, β, δd) solutions which minimize the regression
error, however, such solutions will be constrained to the physically feasible
parameter set Dβ.

Being (u?, β?, δ?
d) the optimal solution to (3.533.53), the vector β? is the physi-

cally feasible base parameters which best fits the regression data. The value
u? is the respective regression error,

u? = ‖ω−W β?‖2 . (3.54)

If β? is equal to the unconstrained OLSOLS estimation, β̂OLS, given by (2.582.58), then
it means that β̂OLS is feasible and that the regression data is well conditioned
with respect to feasibility. In this case, being β′OLS the solution to the problem
(3.403.40) with the β̂ input equal to β̂OLS, then β′OLS = β̂OLS will also be verified.
If the solution β̂OLS is not feasible, β?

OLS is not necessarily equal to β′OLS, as
figure 3.23.2 illustrates.

3.6 Implementation in the standard parameter space

Although the above methods are written in the base–dependent space, it is
possible to rewrite them in the standard parameter space.

The verification of the physical feasibility of a given standard parameter
estimation δ̂ is directly performed by verifying the positive definiteness of
the matrix D(δ) (see section §3.2.13.2.1). However, it may be possible to an in-
feasible solution to still entail a dynamic model with a “feasible behavior”.
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This happens when that infeasible solution belongs to a virtual parameter set
(see (2.602.60)) that partially intersects the physically feasible set (for example,
the virtual parameter set Vβ̂ f

of figure 2.32.3). The model behavior is dictated
by the feasibility of the effective part of the parameters, i.e., the base param-
eters, which in such cases is feasible. We can then say that δ̂ estimations can
be physically infeasible, feasible, or “virtually feasible”. The method for base
parameter feasibility test (section §3.33.3) can be modified to check if a given
standard parameter estimation δ̂ is feasible or “virtually feasible”, or if it is
completely infeasible, by simply modifying the problem of (3.353.35) to

find δd

subject to D̄β(Kδ̂, δd) � 0 .
(3.55)

If some δd can be found, then δ̂ is either feasible or “virtually feasible”.
The method to find the closest feasible parameter solution devised in sec-

tion §3.43.4 can also be modified to find the closest feasible standard parame-
ters to some given standard parameter estimation δ̂. For that, the problem of
(3.403.40) can be rewritten as

minimize
(u,δ)

u

subject to Uδ̂(δ) � 0

D̄(δ) � 0 ,

(3.56)

with D̄(δ) given by (3.293.29), and

Uδ̂(δ) ≡
[

u (δ̂− δ)T

δ̂− δ 1n

]
. (3.57)

A u solution higher than zero means that δ̂ is not feasible, however, it can
be “virtually feasible”. This method can be used to find a feasible standard
parameter vector which entails the same model of a given “virtually feasible”
estimation.

The feasible regression problem of section §3.53.5 can be formulated in the
standard parameter space as

minimize
(u,δ)

u

subject to Uρ1(u, Kδ) � 0

D̄(δ) � 0 ,

(3.58)
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with Uρ1 given by (3.523.52). For this version of the regression, the optimal solu-
tion δ? will be not unique. Nevertheless, it will be equivalent to the unique
optimal base parameter solution β?, since β? = Kδ?. Being the solutions
equivalent, the choice of parameter space for this method becomes a matter
of how one can turn to be more practical than the other.





4
WA M R O B O T D Y N A M I C M O D E L

I D E N T I F I C AT I O N

4.1 The seven-link WAM robot

The WAMTM Arm is a lightweight robot developed by the North American
company Barrett Technology, Inc. A photograph of the WAM robot is shown
in figure 4.14.1. This manipulator has some distinct features that sets it apart
from classical industry robots. Some of the key features the WAM robot has
are:

• seven revolution joints (7-DOFDOF)

• anthropomorphic configuration,

• cable driven joints (except for the seventh joint),

• differential joints (two pairs),

• low motor–joint ratios.

The differential joints enable the placement of the motors closer to the robot
base, allowing less self payload, thus lighter links. The combination of ca-
ble driven and lower “gear” ratios enable low friction, no backlash, and very
high backdrivability. All of these characteristics contribute to a robot more
suitable to force-controlled and compliant tasks. The joints are disposed sim-
ilarly to a human arm: three shoulder joints, one elbow joint and three wrist
joints. Figure 4.24.2 depicts the geometric model of the WAM, and the DHDH pa-
rameters are given in table 4.14.1.

4.2 WAM robot modeling

With respect to the dynamic model, the WAM manufacturer provides datasheet
inertial parameters from CADCAD models. Such data includes not only link body
inertias, but also cable pulleys and rotor inertia information. In this work, for
identification purposes, the considered dynamic model includes: link iner-
tias, joint viscous and Coulomb frictions, joint torque offset, and drive chain

49
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Figure 4.1: Barrett Technology, Inc. WAMTM Arm.

Table 4.1: DHDH parameters of the WAM robot (standard notation).

Joint k αk ak dk θk

1 −π/2 0 0 q1

2 π/2 0 0 q2

3 −π/2 0.045 0.55 q3

4 π/2 −0.045 0 q4

5 −π/2 0 0.3 q5

6 π/2 0 0 q6

7 0 0 0.06 q7
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c© 2007 Barrett TechnologyTM, Inc.

Figure 4.2: Geometry schematic of the WAM robot.

inertias. The WAM has two pairs of differential joints, where two motors
have coupled actuation on two joints: joints 2 and 3 are deferentially actuated
by motors 2 and 3, and joints 5 and 6 are deferentially actuated by motors 5
and 6. The differential effects are encoded in the motor–joint transmission
rates given by

τ = T τm (4.1)

and
q̇m = TT q̇ , (4.2)

where τm are the joint forces seen in the motor-side, q̇m is the vector of motor
velocities, and T is a block-diagonal matrix. T can be split into a diagonal
matrix Tr containing motor to joint ratios and a block-diagonal matrix Tc con-
taining coupling ratios,

T = Tr Tc . (4.3)
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For the WAM, these matrices can be obtained for the datasheet:

TWAM
r =



N1 0 0 0 0 0 0
0 N2 0 0 0 0 0
0 0 N3 0 0 0 0
0 0 0 N4 0 0 0
0 0 0 0 N5 0 0
0 0 0 0 0 N6 0
0 0 0 0 0 0 N7


, (4.4)

with N1 = 42, N2 = N3 = 28.25, N4 = 18, N5 = N6 = 10.27 and N7 = 14.93, and

TWAM
c =



−1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 −1

n3

−1
n3

0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 −1

n6

1
n6

0
0 0 0 0 0 0 −1


, (4.5)

with n3 = 1.68 and n6 = 1. To proper model the differential transmission, the
friction is split into motor and joint sides, and the rotor inertia is modeled on
the motor-side. Hence, the term of additional dynamics h of (2.92.9) is defined
for the WAM, using (4.14.1), by

h(q, q̇, q̈) = fj(q̇) + T hm(q̇m, q̈m) , (4.6)

where fj is a function of joint-side frictions and hm is the term of motor-side
dynamics given by

hm(q̇m, q̈m) = fm(q̇m) + Iamq̈m , (4.7)

where fm is a function of motor-side frictions and Iam is a matrix of rotor
inertias. Through (4.24.2), hm can be defined in terms of joint-side velocity and
acceleration:

hm(q̇m, q̈m) = hm(TT q̇, TT q̈) = fm(TT q̇) + IamTT q̈ , (4.8)

thus (4.64.6) expands to

h(q, q̇, q̈) = fj(q̇) + T
(

fm(TT q̇) + IamTT q̈
)

. (4.9)
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The matrix Iam is a diagonal matrix containing the rotor inertia Iamk of each
motor k. The gyroscopic effects of the rotor inertias are not considered. The
friction is modeled by the vector functions fj and fm defined as follows: the
k-th element of function fj models the joint-side friction of joint k,

fjk(q̇k) = Fvjk q̇k + Fcjk sign(q̇k) + Fojk , (4.10)

and the k-th element of fm models the motor-side friction of motor k,

fmk(q̇mk) = Fvmk q̇mk + Fcmk sign(q̇mk) + Fomk . (4.11)

The Fv∗ symbols denote the viscous friction parameters, the Fc∗ symbols
denote the Coulomb friction parameters, and the Fo∗ symbols denote the
Coulomb friction offsets which, for the motor-side, also include motor torque
offsets (due to possible current offset). At the joints with no coupling, the fric-
tion parameters from joint and motor sides have proportional effects and can
only be identified in combinations. Although such combinations can be ob-
tained by hand, in this work they are computed by the method employed
to find the general base dynamic parameters. Due to the motor–joint ratios,
the regressor columns corresponding to motor-side friction and inertia have
a too high magnitude which degrade the regressor condition number. To
overcome this issue, the ratio matrix TWAM

r of (4.34.3) is replaced by the identity
matrix,

T = 1 TWAM
c , (4.12)

thus the identified motor-side parameters are considered as being measured
at the joint-side, not considering joint couplings though.

The final dynamic parameter vector δ for the WAM is defined by

δ ≡
[
δL

T
1 δA

T
1 . . . δL

T
7 δA

T
7

]T
, (4.13)

where for each link k, ranging from 1 to N = 7,

δLk ≡
[

Lxxk Lxyk Lxzk Lyyk Lyzk Lzzk lxk lyk lzk mk

]T
, (4.14)

and
δAk =

[
Fvjk Fcjk Fojk Fvmk Fcmk Fomk Iamk

]T
. (4.15)

The equations for the dynamic model are devised by the Python package
SymPyBotics (Sousa 2014b2014b), an open source symbolic robotics toolbox based
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on the SymPy computer algebra system, which has been developed by the au-
thors for the present work. Python and C source codes for the whole inverse
dynamic equations, as well as for each of its terms represented in (2.92.9), are
generated by the SymPyBotics toolbox. A base dynamic parameter grouping
is computed through to the numerical method developed by Gautier (19911991),
entailing a total of 76 base parameters, β, presented in table 4.24.2.

Table 4.2: Base dynamic parameters of the WAM robot.

β corresponding linear combination

β1 Lyy1 + Iam1 + Lzz2

β2 Fvj1 + Fvm1
β3 Fcj1 + Fcm1
β4 Foj1 − Fom1
β5 Lxx2 − Lzz2 + Lzz3 − 1.1 ly3 + 0.300475 (m3 + m4 + m5 + m6 + m7)
β6 Lxy2

β7 Lxz2

β8 Lyy2 + Lzz3 − 1.1 ly3 + 0.300475 (m3 + m4 + m5 + m6 + m7)
β9 Lyz2

β10 lx2

β11 lz2 − ly3 + 0.55 (m3 + m4 + m5 + m6 + m7)
β12 Fvj2 + 2 Fvm3
β13 Fcj2
β14 Foj2 + 1.68 Foj3 − 2 Fom3
β15 Fvm2 − Fvm3
β16 Fcm2
β17 Fom2 − 1.68 Foj3 + Fom3
β18 Iam2
β19 Lxx3 − Lzz3 + 0.002025 m3 + Lzz4

β20 Lxy3 − 0.045 ly3

β21 Lxz3

β22 Lyy3 − 0.002025 m3 + Lzz4 − 0.00405 (m4 + m5 + m6 + m7)
β23 Lyz3

β24 lx3 + 0.045 (m3 + m4 + m5 + m6 + m7)
β25 lz3 + ly4

β26 Fvj3 + 0.70861678 Fvm3
β27 Fcj3
β28 Fcm3
β29 Iam3
β30 Lxx4 − Lzz4 + 0.002025 m4 + Lzz5 − 0.6 ly5 + 0.092025 (m5 + m6 + m7)

continues
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Table 4.2 continued

β corresponding linear combination

β31 Lxy4 + 0.045 ly4

β32 Lxz4

β33 Lyy4 − 0.002025 m4 + Lzz5 − 0.6 ly5 + 0.087975 (m5 + m6 + m7)
β34 Lyz4

β35 lx4 − 0.045 (m4 + m5 + m6 + m7)
β36 lz4 − ly5 + 0.3 (m5 + m6 + m7)
β37 Fvj4 + Fvm4
β38 Fcj4 + Fcm4
β39 Foj4 + Fom4
β40 Iam4
β41 Lxx5 − Lzz5 + Lzz6

β42 Lxy5

β43 Lxz5

β44 Lyy5 + Lzz6

β45 Lyz5

β46 lx5

β47 lz5 + ly6

β48 Fvj5 + 2 Fvm6
β49 Fcj5
β50 Foj5 + Foj6 + 2 Fom6
β51 Fvm5 − Fvm6
β52 Fcm5
β53 Fom5 − Foj6 − Fom6
β54 Iam5
β55 Lxx6 − Lzz6 + Lyy7 + 0.12 lz7 + 0.0036 m7

β56 Lxy6

β57 Lxz6

β58 Lyy6 + Lyy7 + 0.12 lz7 + 0.0036 m7

β59 Lyz6

β60 lx6

β61 lz6 + lz7 + 0.06 m7

β62 Fvj6 + 2 Fvm6
β63 Fcj6
β64 Fcm6
β65 Iam6
β66 Lxx7 − Lyy7

β67 Lxy7

β68 Lxz7

continues
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Table 4.2 continued

β corresponding linear combination

β69 Lyz7

β70 Lzz7

β71 lx7

β72 ly7

β73 Fvj7 + Fvm7
β74 Fcj7 + Fcm7
β75 Foj7 − Fom7
β76 Iam7

4.3 Regression data set

4.3.1 WAM control for regression trajectory tracking

Unlike the majority of robots, the WAM robot is directly controlled in torque.
Each motor receives torque set points which are converted into current set
points through a constant predefined ratio. On the other hand, the WAM pro-
vides no torque or current measurements, thus good torque to current con-
version and good current tracking control is assumed. The torque controlled
joints enable computed torque control and nonlinear feedback linearization.
This is used for the controller to track an excitation trajectory and obtain re-
gression data.

The nonlinear feedback linearization is achieved by canceling the non-
linear terms of the dynamic equation (2.92.9). The commanded torque, τc, is
computed by

τc = ĉ(q, ˆ̇q) + ĝ(q) + M̂(q)q̈r + τpd , (4.16)

where ˆ̇q is an estimation of joint velocities through numerical differences, M̂,
ĉ and ĝ are estimations of M, c and g, respectively, q̈r is the reference trajec-
tory acceleration, and τpd is a proportional–derivative (PD) controller com-
mand. The estimations of M̂, ĉ and ĝ are performed using the datasheet
CADCAD-estimated dynamic parameters. The additional dynamics term h(q, q̇, q̈)
of (2.92.9) is not canceled since no prior information about friction constants is
known. Neglecting modeling and estimation errors, by (2.92.9) and (4.164.16), the
dynamic equation can be reduced to

Mq̈ = Mq̈r + τpd . (4.17)
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To achieve good trajectory tracking, a PDPD position controller with command

τpd = Kp(qr − q) + Kd(q̇r − ˆ̇q) (4.18)

is implemented, being Kp and Kd diagonal matrices with the proportional
and derivative gains, respectively. The PDPD gains, which are given in table 4.34.3,

Table 4.3: PDPD joint position control gains for the WAM robot regression trajec-
tory tracker.

Joint k Kpk Kdk

1 200.0 5.0
2 200.0 5.0
3 40.0 1.0
4 40.0 1.0
5 3.0 0.2
6 3.0 0.2
7 0.5 0.0

are tuned a joint at a time with a trial and error procedure seeking the best
position tracking while maintaining smooth robot reaction. It would be pos-
sible to feed back the PDPD commands through the inertia matrix along with
the feed-forward signal of q̈r, hence effectively implementing a PDPD controller
over a double integrator plant as presented in section §2.4.12.4.1. However, that
is not implemented at this stage in order to avoid coupling of control com-
mands between joints, and to allow the independent tune of the gains. The
overall control scheme is depicted in figure 4.34.3. Its implementation runs at a
sampling period of Ts = 0.001 s.

4.3.2 Excitation trajectories generation

To generate excitation trajectories the Fourier series formulation proposed by
Swevers et al. (19971997) is employed. This formulation has the advantages of
being easy to generate and having analytic derivative. Each joint k trajectory
is defined as a function of time t by

qrk(t) =
nH

∑
i=1

aik

ωf i
sin(ωf i t)− bik

ωf i
cos(ωf i t) + q0k , (4.19)

where ωf is the fundamental angular frequency of the Fourier series, nH is
the number of harmonics, aik and bik are the Fourier coefficients, and q0k is
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qτc

+ −
Σqr
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q̈r
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Σ

Σ Σ
+

+

++

+

Kp Kd

ĝ(q) + ĉ(q, ˆ̇q)

ˆ̇q

Figure 4.3: PDPD joint position control scheme of WAM robot with gravity
and Coriolis forces compensation and acceleration feedforward for regres-
sion data collection. qr is the joint reference position.

the initial joint position. Joint velocities and accelerations are devised directly
from (4.194.19):

q̇rk(t) =
nH

∑
i=1

aik cos(ωf i t)− bik sin(ωf i t)

q̈rk(t) =
nH

∑
i=1
−aik ωf i sin(ωf i t) + bik ωf i cos(ωf i t) .

(4.20)

To obtain the reference trajectory, the values of nH and ωf are fixed to

nH = 6 (4.21)

and
ωf = 2π0.08 (rad/s) , (4.22)

entailing a fundamental frequency of 0.08 Hz and a trajectory period of 2π
ωf

=
12.5 s. The system dynamic frequency is given by the maximum frequency of
the trajectory which is

fdyn = nH
ωf

2π
= 0.48 Hz . (4.23)

The parameters q0k, aik and bik are obtained through an optimization pro-
cess whose objective is to get a maximal dynamic parameter excitation. The
parameter excitation is as much higher as the base regression matrix condi-
tion number is lower (Gautier and Khalil 19921992). Therefore, the optimization
criterion is defined by the condition number of the regression matrix Hb eval-
uated on all the S reference points computed by (4.194.19) and (4.204.20), as given by
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Table 4.4: Parameters of identification trajectory A.

Joint k ak,1 ak,2 ak,3 ak,4 ak,5 ak,6

1 0.53 −0.01 0.17 0.08 0.60 0.20
2 0.43 −0.19 0.34 0.24 0.11 0.05
3 0.00 0.55 −0.12 0.39 −0.13 −0.07
4 0.32 −0.20 −0.50 0.17 0.06 −0.15
5 0.06 −0.03 −0.41 −0.02 0.65 0.68
6 0.48 0.03 0.32 0.13 0.04 0.20
7 0.79 0.70 0.08 0.02 1.22 −0.28

k bk,1 bk,2 bk,3 bk,4 bk,5 bk,6 qk,0

1 −0.38 −0.17 0.21 0.11 −0.35 0.15 0.50
2 −0.04 0.19 −0.43 −0.19 −0.45 0.36 −0.11
3 0.38 1.21 0.27 0.55 0.06 −0.32 0.54
4 −0.44 −0.00 0.58 −0.10 0.46 0.01 1.76
5 −0.36 0.66 0.43 −0.18 −0.14 −0.14 −1.28
6 −0.07 0.55 0.38 0.19 0.45 0.15 −0.11
7 0.40 −0.13 0.31 0.79 −0.09 0.49 0.42

(2.572.57). Since joints have limited ranges of positions, velocities and accelera-
tions, the optimization is constrained by a penalty function based on those
limits. The objective function is defined over k(2nH + 1) parameters and is
highly non-linear, hence a nonlinear optimization by linear approximation
(COBYLA) is employed. Also, due to being highly non-linear, the optimiza-
tion is very sensible to the initial state, allowing the generation of different
trajectories just by starting with different initial parameters.

Four trajectories, named A, B, C and D, are generated by the optimization
method described above. Each optimization is started with random initial
parameters and stopped when the objective, the condition number, is close
to the value 110. For illustrative purposes, the parameters obtained for tra-
jectories A and B are presented in table 4.44.4 and table 4.54.5, and their respective
reference positions are plotted in figure 4.44.4 figure 4.54.5, respectively.

4.3.3 Regression data recording and processing

The robot performs all the excitation trajectories using the joint position con-
trol described in section §4.3.14.3.1. Each trajectory period is performed continu-
ously three times, for a total of 37.5 second each. Since trajectories have non-
zero joint velocities at start and end points, additional trajectory acceleration
references are prepended and appended at those points in order to smooth
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Table 4.5: Parameters of identification trajectory B.

Joint k ak,1 ak,2 ak,3 ak,4 ak,5 ak,6

1 0.02 0.55 0.08 −0.30 0.46 0.14
2 −0.27 0.41 −0.15 −0.30 0.08 −0.15
3 0.01 −0.52 0.62 −0.14 −0.46 0.47
4 0.00 −0.16 0.06 0.39 0.55 −0.04
5 −0.79 −1.34 0.50 −0.62 −0.30 −0.55
6 0.07 0.22 0.39 0.12 −0.45 1.05
7 −0.12 −0.80 0.29 0.07 0.99 −0.28

k bk,1 bk,2 bk,3 bk,4 bk,5 bk,6 qk,0

1 −0.41 0.26 0.15 0.50 −0.60 −0.21 0.15
2 0.27 −0.47 −0.28 −0.51 0.11 −0.34 −0.24
3 −0.02 −0.20 −0.15 −0.41 0.73 0.04 0.39
4 0.60 −0.06 0.69 0.25 −0.66 0.12 1.18
5 −0.08 0.01 −0.59 0.42 −0.43 0.43 −1.41
6 −0.39 −0.15 0.51 0.14 −0.20 0.13 0.02
7 −0.64 −0.75 −0.55 0.81 0.36 −0.65 −0.07
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Figure 4.4: Joint reference for the identification trajectory A.
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Figure 4.5: Joint reference for the identification trajectory B.

the reference velocities from and to zero. Joint position and torque data is col-
lected while the robot performs the trajectories. Position measurements are
obtained from motor encoder signals. Since no torque measurements are pos-
sible, torque data is obtained from the computed torque command, τc from
(4.164.16), which is assumed to be equal to the real torque.

Joint position signals are filtered with third order low-pass Butterworth
filters with cutoff frequency of fcutoff = 10 fdyn = 4.8 Hz, according to the
general rules given by Gautier (19971997). Each filter is applied twice, once in
the positive time direction and another in the reverse direction, thus compen-
sating phase distortion. First and second order derivatives of the position,
respectively q̇ and q̈, are computed through second order central differences.
The data is then trimmed to exclude the starting and stopping acceleration
zones, entailing, for each trajectory, S = 37.5 s/0.001 s = 37500 samples of q,
q̇, q̈ and τc. The torque data of each trajectory is stacked into four regressand
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vectors, ωA, ωB, ωC and ωD, with a length of NS = 262500 each. Then, the
base regressor function, Hb, is applied to the joint motion data, and the result-
ing matrices are stacked into four regression matrices, WA, WB, WC and WD,
each with a size of NS× nb = 262500× 76. Therefore, a data set formed by a
(W , ω) pair is obtained for each trajectory. The computed condition number
of each regression matrix is 105, 111, 111 and 124 for trajectories A, B, C and
D, respectively. According to Gautier and Khalil (19921992), all these values can
be considered good conditions numbers.

4.4 Classical dynamic parameter identification

Trajectory A data is chosen to be used as the regression data set. Hence, WA

and ωA will be denoted by W and ω henceforth. The other data sets are kept
for later validation purposes. The classical OLSOLS solution, β̂OLS, is computed
by analytic means from the trajectory A data set:

β̂OLS = (W TW)−1W Tω . (4.24)

Using R1, ρ1 and ρ2 from the QR decomposition described by (3.453.45), (3.463.46)
and (3.493.49), the solution β̂OLS can be equivalently computed by

β̂OLS = R−1
1 ρ1 , (4.25)

and the regression error, given by (3.483.48), is

‖ε‖2 = ‖ω−W β̂OLS‖2

= ‖ρ2‖2 ,
(4.26)

since ‖ρ1 − R1β̂OLS‖2= 0. The solution β̂OLS is presented in the third column
of table 4.64.6. In the second column of the same table, the base parameters β̂CAD,
mapped from the datasheet CADCAD-estimated parameters δ̂CAD, are presented
for comparison.

It is possible to compute an estimation of standard deviations of the iden-
tified parameters. A common approach is the formulation given by Khalil
and Dombre (20022002) which, while making strong assumptions on the deter-
minism on the model and on the distribution of the error, can still be used to
provide an idea about the parameter excitation. Through such formulation,
the standard deviation of β̂OLS is given by the vector σ̂β̂OLS

:

σ̂β̂OLS
=
√

diag
(
σ̂2

εOLS
(W TW)−1

)
, (4.27)
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where σ̂2
εOLS

is the variance of the regression error εOLS given by

σ̂2
εOLS

=
‖ω−W β̂OLS‖2

SN − nb
. (4.28)

The percentage of relative standard deviation of the k-th parameter of β̂OLS is
given by

%σ̂β̂OLS k
=

σ̂β̂OLS k

|β̂OLS k|
· 100% . (4.29)

The values are presented in the fourth column of table 4.64.6 where it can be seen
that some parameters have high values, specially the parameters related do
the wrist links.

Table 4.6: Classical base parameter estimations for the WAM
robot.

β̂CAD β̂OLS %σ̂β̂OLS
β̂WLS %σ̂β̂WLS

Lyy1 + . . . 0.1328 0.3798 0.5 0.3712 0.6
Fvj1 + . . . — 1.6591 0.2 1.6481 0.3
Fcj1 + . . . — 1.8013 0.2 1.8033 0.2
Foj1 + . . . — −0.0611 2.6 −0.0610 3.9
Lxx2 + . . . 1.1810 0.9722 0.3 1.0195 0.4
Lxy2 0.0000 −0.0161 9.1 −0.0150 11.3
Lxz2 0.0001 0.0056 21.6 0.0135 11.8
Lyy2 + . . . 1.1890 1.1509 0.3 1.1703 0.3
Lyz2 −0.0000 −0.0007 187.6 0.0011 123.2
lx2 −0.0092 0.0399 3.2 0.0315 4.1
lz2 + . . . 2.3328 2.4008 0.0 2.3913 0.0
Fvj2 + . . . — 1.5648 0.5 1.5774 0.4
Fcj2 — −0.0496 5.6 −0.0703 3.9
Foj2 + . . . — 0.7329 1.3 0.6776 1.5
Fvm2 + . . . — −0.0814 5.4 −0.0523 8.1
Fcm2 — 0.7759 0.3 0.7613 0.3
Fom2 + . . . — −0.1328 2.2 −0.1035 2.5
Iam2 — 0.0452 3.8 0.0500 3.5
Lxx3 + . . . 0.0039 0.0834 2.4 0.0527 3.9
Lxy3 + . . . −0.0000 0.0116 6.9 0.0130 6.2
Lxz3 −0.0000 −0.0488 2.0 −0.0565 1.9
Lyy3 + . . . −0.0070 −0.0179 6.1 −0.0239 4.9
Lyz3 0.0000 −0.0442 2.1 −0.0426 2.4
lx3 + . . . 0.1476 0.1710 0.3 0.1693 0.2

continues
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Table 4.6 continued

β̂CAD β̂OLS %σ̂β̂OLS
β̂WLS %σ̂β̂WLS

lz3 + . . . −0.0005 0.0327 1.3 0.0271 1.4
Fvj3 + . . . — 0.6395 0.5 0.6417 0.5
Fcj3 — 0.3473 0.8 0.3491 0.7
Fcm3 — 0.6677 0.4 0.6895 0.4
Iam3 — 0.1137 1.8 0.1255 1.7
Lxx4 + . . . 0.1149 0.0797 1.5 0.0830 1.3
Lxy4 + . . . −0.0000 0.0379 1.8 0.0343 2.0
Lxz4 −0.0001 −0.0336 1.6 −0.0281 1.8
Lyy4 + . . . 0.1057 0.1195 1.2 0.0983 1.3
Lyz4 0.0001 0.0032 20.9 0.0070 8.9
lx4 + . . . −0.1235 −0.1129 0.3 −0.1133 0.2
lz4 + . . . 0.5010 0.4882 0.1 0.4898 0.1
Fvj4 + . . . — 0.5961 0.6 0.5813 0.6
Fcj4 + . . . — 0.5338 0.5 0.5446 0.5
Foj4 + . . . — −0.1667 1.7 −0.1257 2.1
Iam4 — −0.0450 2.9 −0.0458 2.9
Lxx5 + . . . 0.0006 −0.0185 6.0 −0.0019 32.3
Lxy5 −0.0000 −0.0115 4.3 −0.0047 4.5
Lxz5 0.0000 −0.0137 3.9 −0.0020 14.7
Lyy5 + . . . 0.0007 −0.0043 16.0 0.0028 8.9
Lyz5 0.0000 −0.0117 4.4 −0.0038 5.9
lx5 0.0000 0.0188 1.8 0.0017 7.5
lz5 + . . . −0.0066 0.0031 8.2 −0.0038 2.1
Fvj5 + . . . — 0.0734 5.2 0.0509 1.9
Fcj5 — −0.0041 64.8 −0.0020 31.4
Foj5 + . . . — 0.0156 16.9 −0.0082 7.9
Fvm5 + . . . — −0.0069 36.2 0.0148 4.3
Fcm5 — 0.0812 2.3 0.0574 0.8
Fom5 + . . . — 0.0039 45.5 0.0081 5.3
Iam5 — 0.0022 23.8 0.0041 3.4
Lxx6 + . . . 0.0006 0.0212 3.5 −0.0029 10.3
Lxy6 −0.0000 0.0146 3.0 −0.0021 6.7
Lxz6 0.0000 0.0109 3.2 0.0016 9.0
Lyy6 + . . . 0.0008 0.0104 6.9 −0.0031 7.3
Lyz6 0.0002 −0.0001 496.3 −0.0013 12.3
lx6 −0.0001 −0.0093 3.3 0.0018 6.1
lz6 + . . . 0.0142 0.0135 1.8 0.0112 0.6
Fvj6 + . . . — 0.0941 4.9 0.0551 2.1

continues
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Table 4.6 continued

β̂CAD β̂OLS %σ̂β̂OLS
β̂WLS %σ̂β̂WLS

Fcj6 — 0.0211 13.2 0.0394 1.7
Fcm6 — 0.0504 4.7 0.0608 1.0
Iam6 — 0.0068 6.4 0.0008 14.7
Lxx7 + . . . −0.0000 −0.0110 4.5 −0.0004 45.8
Lxy7 0.0000 0.0093 2.7 0.0020 4.1
Lxz7 −0.0000 0.0013 9.9 −0.0006 7.2
Lyz7 0.0000 −0.0004 33.3 0.0010 4.7
Lzz7 0.0001 0.0016 10.1 0.0003 19.4
lx7 −0.0000 −0.0002 75.3 −0.0034 1.6
ly7 0.0000 −0.0036 4.8 −0.0004 9.0
Fvj7 + . . . — 0.0364 4.3 0.0269 0.9
Fcj7 + . . . — 0.0150 13.9 0.0188 1.7
Foj7 + . . . — 0.0050 36.7 −0.0118 3.0
Iam7 — −0.0008 31.3 0.0007 8.3

In the WAM robot, joint torque amplitudes do not have the same order of
magnitude across all joints, since the first four joints have to support much
higher forces than the wrist joints. This can be appointed as a possible reason
for the OLSOLS solution to have higher relative estimation errors on the wrist
joints.

4.4.1 Weighted least squares

The high relative standard deviations issue can be partially mitigated by em-
ploying weighted least squares (WLS) techniques to normalize the error. It
is common to do a joint-by-joint weighting of the regression data using the
inverse of the standard deviation of the OLSOLS error of each joint (Gautier 19971997;
Gautier and Poignet 20012001). The regressor matrix W and the regressand vector
ω are split by joints into N regression matrices W(k) and N regressand vectors
ω(k):

W(k) = W[i+k,j] for i = 0, N, 2N, . . . , (S− 1)N

j = 1, . . . , nb ,
(4.30)

ω(k) = ω[i+k] for i = 0, N, 2N, . . . , (S− 1)N , (4.31)

which are obtained from the original data by picking the rows correspond-
ing to the respective joint only. The variance of the regression error is then
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computed independently for each joint k by

σ̂2
εOLS(k) =

‖ω(k) −W(k)β̂OLS‖2

S− nb
. (4.32)

The weights to be applied to each joint data are given by the inverse of the
standard deviations,

w =
[

1
σ̂εOLS (1)

1
σ̂εOLS (2)

. . . 1
σ̂εOLS (N)

]
. (4.33)

The final weight matrix G is given by repeating the weights w in its diagonal
diagonal S times:

G =


Diag(w) 0

Diag(w)
. . .

0 Diag(w)

 . (4.34)

The WLSWLS estimation for the base parameters is then given by

β̂WLS = arg min
β

‖Gω−GW β‖2 . (4.35)

Similarly to (2.552.55), the WLSWLS analytic solution is computed as

β̂WLS = (GW TGW)−1GW TGω . (4.36)

The values of β̂WLS and their relative standard deviations, %σ̂β̂WLS
, are given in

the last two columns of table 4.64.6. There are still some high relative standard
deviations, some of which may be explained by the fact that the respective
real base parameters (thus estimated ones too) are very close to zero.

For regression quality assessment, it is common to measure the predic-
tion relative error εr(W , ω, β̂) which, for a given data set W , ω and a given
solution β̂, is defined as the ratio between the norm of the prediction error
and the norm of the torque data itself:

εr(W , ω, β̂) =
‖ε‖
‖ω‖ =

‖ω− ω̂‖
‖ω‖ =

‖ω−W β̂‖
‖ω‖ . (4.37)

The prediction relative error in percentage for both OLSOLS and WLSWLS techniques
is presented in table 4.74.7 in a per-joint basis. While the relative errors are high
on wrist joints, there is a significant decrease on their values when the WLSWLS

solution is used.
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Table 4.7: Comparison of relative error percentage of predicted torque in each
joint for OLSOLS and WLSWLS techniques. (Note: weight factors have no influence on
WLSWLS relative error when it is computed on a per-joint basis.)

Joint k
‖ω(k) −W(k)β̂OLS‖

‖ω(k)‖
%
‖ω(k) −W(k)β̂WLS‖

‖ω(k)‖
%

1 15.79 16.24
2 2.06 2.11
3 11.85 11.70
4 11.50 12.16
5 51.17 22.43
6 45.47 26.29
7 74.11 57.92

4.5 Dynamic parameter identification with LMI–SDP
methods

The LMILMI–SDPSDP methods devised in chapter 3chapter 3 are implemented in Python and
applied to the WAM regression data set. The LMIsLMIs are defined with symbolic
matrices using the SymPy package, thus allowing easy mapping from the
standard parameters space to the base–dependent parameters space. Refer-
ring to the PyLMI-SDP package developed within this work (Sousa 2014a2014a),
the coefficient matrices are extracted from the symbolic LMILMI and saved in
SDPA file format. The SDPA format describe SDPSDP problems and is accepted
by a large number of SDPSDP solvers which directly exploit the sparsity of LMILMI

matrices. The SDPSDP optimization is performed by the DSDP5 solver (Benson
and Ye 20082008), which is based on the interior-point method, a common SDPSDP

solving technique. The DSDP5 solver has a tolerance parameter to define the
solution accuracy which is set to 10−6. Similarly, the LMILMI strictness is enforced
with a safe margin of ε = 10−6 (see (3.293.29)), hence accounting for the highest
possible solver error.

4.5.1 Feasibility test

Both the solutions β̂OLS and β̂WLS obtained above are checked for physical
feasibility referring to method devised in section §3.33.3. The “find” problem
of (3.353.35) is implemented by setting an objective function equal to zero. In
both cases, the solver issues a certificate of infeasibility, which proves that
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β̂OLS and β̂WLS are not physically feasible. Furthermore, when evaluating the
inertia matrix M(q) at several random q values using these solutions, there
are some q points where the matrix is not positive definite, thus corroborating
the physical infeasibility result given by the LMILMI–SDPSDP method.

Henceforth, in the other LMILMI–SDPSDP methods, the weighted data is used as
regression data set and β̂WLS as the classical identification solution.

4.5.2 Infeasible parameter correction

The feasible base parameter vector closest to β̂WLS is found through the method
of section §3.43.4. Such solution, denoted by β′WLS, is shown in table 4.64.6. The
method finds a (u′, β′WLS , δ′d) solution, whose u′ value is 0.0077 > 0, once
again showing β̂WLS to be not physically feasible. The numerical matrix D̄β

evaluated on (β′WLS , δ′d) is then computed and its positive definiteness is dou-
ble checked by verifying that all its eigenvalues are positive.

4.5.3 Feasible LS parameter identification

The feasible identification method proposed in section §3.53.5 is applied to the
weighted regression data used above. The procedure is the same with the
exception that GW and Gω are used in place of W and ω. For this data, the
SDPSDP solver finds the feasible solution β?

WLS, presented in table 4.94.9. The matrix
D̄β(β?

WLS , δ?
d) shows to be positive definite, thus corroborating that β?

WLS is
physically feasible.

4.5.4 Considering additional constrains on dynamic parameters

The proposed methods can be used to find solutions that not only verify the
basic feasibility conditions, but which also fit additional knowledge about a
given robot. For the WAM robot, its datasheet supplies information about
the link shapes and total mass that can be exploited to further constrain the
space of the expected solution. For each WAM link there is information about
its bounding box, i.e., the smallest cuboid aligned with the link frame which
contains the whole link body. Hence, each center of mass is constrained by:{

lk −mkrk,l ≥ 0

−lk + mkrk,u ≥ 0
for k = 1, . . . , N , (4.38)
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Table 4.8: Additional constraints: spatial limits of center of masses relative to
link frames.

Link k rk,l rk,u

1 (−0.14,−0.174,−0.084) (0.14, 0.174, 0.346)
2 (−0.084,−0.174,−0.084) (0.084, 0.174, 0.17)
3 (−0.09,−0.55,−0.045) (0.04, 0.04, 0.045)
4 (−0.045,−0.045,−0.05) (0.095, 0.045, 0.83)
5 (−0.045,−0.02,−0.045) (0.045, 0.1, 0.045)
6 (−0.045,−0.06,−0.02) (0.045, 0.045, 0.06)
7 (−0.045,−0.045,−0.018) (0.045, 0.045, 0.001)

where rk,l and rk,u are thee-dimensional lower and upper bounds, respec-
tively. The bounding boxes limits, relatively to the respective link frames,
are shown in table 4.84.8. Since the total robot mass is known to be around
27 Kg, the sum of link masses is also constrained this maximum,

27−
N

∑
k=1

mk > 0 . (4.39)

Introducing these constrains in the problem is as simple as appending them
to the main LMILMI matrix D(δ) formulation (see (3.253.25)), hence obtaining an ex-
tended LMILMI matrix D̄β(β, δd) to be used in the SDPSDP methods. When taking
into account these extra constraints in the feasibility test, the solution β?

WLS

does not pass, i.e., although that solution is physically feasibility, it does not
meet the additional criterion. The feasible identification method including
the extra constraints is then applied, leading to a new solution β?e

WLS shown
in Table table 4.94.9.

Table 4.9: Classical and LMILMI–SDPSDP estimated base parameters
for the WAM robot.

β̂CAD β̂WLS β′WLS β?
WLS β?e

WLS

Lyy1 + . . . 0.1328 0.3712 0.3712 0.3380 0.3404
Fvj1 + . . . — 1.6481 1.6481 1.6312 1.6209
Fcj1 + . . . — 1.8033 1.8033 1.8076 1.8116
Foj1 + . . . — −0.0610 −0.0610 −0.0603 −0.0598
Lxx2 + . . . 1.1810 1.0195 1.0195 1.0705 1.0679
Lxy2 0.0000 −0.0150 −0.0149 −0.0034 0.0018
Lxz2 0.0001 0.0135 0.0135 0.0028 −0.0003
Lyy2 + . . . 1.1890 1.1703 1.1712 1.2719 1.2805

continues
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Table 4.9 continued

β̂CAD β̂WLS β′WLS β?
WLS β?e

WLS

Lyz2 −0.0000 0.0011 0.0011 0.0067 0.0074
lx2 −0.0092 0.0315 0.0315 0.0258 0.0258
lz2 + . . . 2.3328 2.3913 2.3913 2.3910 2.3914
Fvj2 + . . . — 1.5774 1.5774 1.4507 1.4463
Fcj2 — −0.0703 0.0000 0.0000 0.0000
Foj2 + . . . — 0.6776 0.6776 0.6379 0.6487
Fvm2 + . . . — −0.0523 −0.0523 −0.0140 −0.0130
Fcm2 — 0.7613 0.7613 0.7552 0.7536
Fom2 + . . . — −0.1035 −0.1035 −0.1042 −0.1036
Iam2 — 0.0500 0.0500 0.0065 0.0000
Lxx3 + . . . 0.0039 0.0527 0.0531 0.0467 0.0446
Lxy3 + . . . −0.0000 0.0130 0.0096 0.0070 0.0063
Lxz3 −0.0000 −0.0565 −0.0559 −0.0499 −0.0518
Lyy3 + . . . −0.0070 −0.0239 −0.0098 0.0061 0.0093
Lyz3 0.0000 −0.0426 −0.0433 −0.0279 −0.0122
lx3 + . . . 0.1476 0.1693 0.1687 0.1698 0.1711
lz3 + . . . −0.0005 0.0271 0.0267 0.0244 0.0220
Fvj3 + . . . — 0.6417 0.6417 0.6245 0.6256
Fcj3 — 0.3491 0.3491 0.3601 0.3655
Fcm3 — 0.6895 0.6895 0.6997 0.6971
Iam3 — 0.1255 0.1255 0.0638 0.0619
Lxx4 + . . . 0.1149 0.0830 0.0899 0.0874 0.0855
Lxy4 + . . . −0.0000 0.0343 0.0271 0.0204 0.0162
Lxz4 −0.0001 −0.0281 −0.0136 −0.0241 −0.0237
Lyy4 + . . . 0.1057 0.0983 0.1002 0.0870 0.0862
Lyz4 0.0001 0.0070 −0.0006 −0.0003 −0.0030
lx4 + . . . −0.1235 −0.1133 −0.1116 −0.1130 −0.1127
lz4 + . . . 0.5010 0.4898 0.4878 0.4918 0.4919
Fvj4 + . . . — 0.5813 0.5813 0.5764 0.5774
Fcj4 + . . . — 0.5446 0.5446 0.5548 0.5568
Foj4 + . . . — −0.1257 −0.1257 −0.1192 −0.1174
Iam4 — −0.0458 0.0000 0.0000 0.0000
Lxx5 + . . . 0.0006 −0.0019 0.0011 −0.0007 −0.0004
Lxy5 −0.0000 −0.0047 −0.0017 −0.0016 −0.0013
Lxz5 0.0000 −0.0020 0.0003 −0.0022 −0.0023
Lyy5 + . . . 0.0007 0.0028 0.0038 0.0049 0.0049
Lyz5 0.0000 −0.0038 −0.0002 −0.0013 −0.0011
lx5 0.0000 0.0017 0.0022 0.0026 0.0024

continues
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Table 4.9 continued

β̂CAD β̂WLS β′WLS β?
WLS β?e

WLS

lz5 + . . . −0.0066 −0.0038 −0.0031 −0.0039 −0.0039
Fvj5 + . . . — 0.0509 0.0509 0.0446 0.0444
Fcj5 — −0.0020 0.0000 0.0000 0.0000
Foj5 + . . . — −0.0082 −0.0082 −0.0079 −0.0085
Fvm5 + . . . — 0.0148 0.0148 0.0153 0.0153
Fcm5 — 0.0574 0.0574 0.0567 0.0566
Fom5 + . . . — 0.0081 0.0081 0.0065 0.0067
Iam5 — 0.0041 0.0041 0.0025 0.0026
Lxx6 + . . . 0.0006 −0.0029 0.0009 −0.0004 −0.0006
Lxy6 −0.0000 −0.0021 −0.0000 −0.0003 −0.0003
Lxz6 0.0000 0.0016 0.0001 0.0012 0.0013
Lyy6 + . . . 0.0008 −0.0031 0.0017 0.0025 0.0024
Lyz6 0.0002 −0.0013 −0.0000 −0.0005 −0.0006
lx6 −0.0001 0.0018 0.0008 0.0003 0.0004
lz6 + . . . 0.0142 0.0112 0.0081 0.0112 0.0112
Fvj6 + . . . — 0.0551 0.0551 0.0583 0.0576
Fcj6 — 0.0394 0.0394 0.0370 0.0374
Fcm6 — 0.0608 0.0608 0.0606 0.0605
Iam6 — 0.0008 0.0008 0.0001 0.0000
Lxx7 + . . . −0.0000 −0.0004 0.0001 0.0001 0.0002
Lxy7 0.0000 0.0020 −0.0000 0.0013 0.0013
Lxz7 −0.0000 −0.0006 −0.0000 −0.0004 −0.0004
Lyz7 0.0000 0.0010 0.0000 0.0001 0.0001
Lzz7 0.0001 0.0003 0.0005 0.0006 0.0006
lx7 −0.0000 −0.0034 −0.0022 −0.0032 −0.0032
ly7 0.0000 −0.0004 −0.0004 −0.0006 −0.0006
Fvj7 + . . . — 0.0269 0.0269 0.0274 0.0274
Fcj7 + . . . — 0.0188 0.0188 0.0183 0.0183
Foj7 + . . . — −0.0118 −0.0118 −0.0115 −0.0115
Iam7 — 0.0007 0.0007 0.0004 0.0004

4.6 Analysis and validation of dynamic parameter
estimations

In order to assess the validity of the base parameter solutions presented above,
trajectories B, C and D are used as validation trajectories. Hence, compar-
isons between torque prediction and measured torque are made for these
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Table 4.10: Percentage of relative error (100% · ‖ω− ω̂‖/‖ω‖) of predicted
torque for identification and validation trajectories.

β̂WLS β′WLS β?
WLS β?e

WLS

(weighted data) regression traj. A 4.57 4.73 4.62 4.63
regression traj. A 4.53 4.61 4.57 4.58

validation traj. B 7.90 7.81 7.80 7.79
validation traj. C 6.33 6.25 6.20 6.19
validation traj. D 7.05 6.99 6.85 6.87

trajectories. The analysis is also made on the trajectory used for regression,
trajectory A. Predicted torque, ω̂T,β, is computed for all data sets T and solu-
tions β:

ω̂T,β = WT β for T = A, B, C, D

for β = β̂WLS , β′WLS , β?
WLS .

(4.40)

The respective relative error of each prediction, as given by (4.374.37), is also
computed:

εr(WT , ωT , β) =
‖ωT − ω̂T,β‖
‖ωT‖

. (4.41)

The values of the relative error in percentage are shown in table 4.104.10.
We starting by looking only to the regression trajectory results, i.e., the

two first rows of table 4.104.10. It can be seen that the relative error of the
weighted data (GWA and GωA) is below 5% for all solutions indicating good
parameter estimation. As expected, physically feasible constrained estima-
tions show higher regression errors than the classical unconstrained one β̂WLS.
Also, as expected, β?

WLS has less error than β′WLS and less error than β?e
WLS.

The errors computed on the non-weighted regression data follow the same
pattern. The differences between the errors across the several estimations are
very low, as well as the differences between the estimations themselves as
seen in table 4.94.9. This indicates that the classical solution β̂WLS, while not be-
ing physically feasible, is very close to feasibility region. Figure 4.64.6 shows
plots of measured torque, predicted torque by β?e

WLS and respective error for
regression trajectory. Figure 4.74.7 compares the prediction error of that solu-
tion with the one from the classical solution β̂WLS. It can be seen in the plots
that the differences between solution predictions is small.
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Figure 4.6: Measured torque and torque predicted by β?e
WLS for the regression

trajectory (traj. A).
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Figure 4.7: Classical solution versus feasible solution prediction error for the
regression trajectory.
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Table 4.11: Percentage of relative error (100% · ‖ω(k) − ω̂(k)‖/‖ω(k)‖) of pre-
dicted torque per joint. Arrows indicate an increase (↗) or a decrease (↘) of
the error from the classical solution to the feasible solution.

regression traj. validation traj.

A B C D

k β̂WLS β?e
WLS β̂WLS β?e

WLS β̂WLS β?e
WLS β̂WLS β?e

WLS

1 16.2 ↗ 16.3 30.3 → 30.3 24.1 ↘ 23.9 24.8 ↘ 24.5
2 2.1 → 2.1 3.4 ↘ 3.2 3.4 ↘ 3.3 3.9 ↘ 3.7
3 11.7 ↗ 12.2 16.3 ↘ 15.6 10.9 ↘ 10.4 16.5 ↘ 15.8
4 12.2 → 12.2 11.2 ↘ 10.5 9.5 ↘ 9.3 10.0 ↘ 9.3
5 22.4 ↗ 22.8 33.5 ↘ 29.0 39.1 ↘ 34.4 46.3 ↘ 41.7
6 26.3 ↗ 27.3 34.4 ↘ 31.8 31.1 ↘ 28.6 35.1 ↘ 31.6
7 57.9 ↗ 58.2 67.4 ↘ 65.9 73.3 ↘ 72.6 78.6 ↘ 77.8

4.6.1 Validation trajectories

The relative prediction errors of validation trajectories (bottom three rows of
table 4.104.10) are below 8%, indicating also good torque prediction for this trajec-
tories. Moreover, there is a tendency in feasible solutions to show less error
than the classical solution, showing better performance outside the identifi-
cation set.

Additionally to the total relative error, the relative error of predictions
split by joints is also computed. Table 4.114.11 shows these errors for the classical
estimation β̂WLS and the feasible estimation β?e

WLS. The proposed feasible
solution shows lower errors on all joints outside the regression set (green
arrows), which seems to indicate that this solution gives a generally better
model of the robot. Plots of measured torque, torque predicted by β?e

WLS,
and respective error for the validation trajectory B are shown in figure 4.84.8.
In figure 4.94.9, prediction errors for this trajectory, from both the classical and
the feasible solutions, are compared. Again, the differences between solution
predictions is small.
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5
E X P E R I M E N TA L A P P L I C AT I O N S

5.1 Robot dynamic simulation

Robot behavior simulation is one of the major applications for the dynamic
model. Dynamics simulation is very useful even for testing non model-based
controllers. While it is expected that physically infeasible dynamic param-
eters entail unstable simulations (Yoshida and Khalil 20002000), there is no ex-
ample in the literature showing to what extent that happens. This section
presents results for the simulation of the WAM robot using the dynamic
model and the identified parameters of chapter 4chapter 4.

5.1.1 Direct dynamic model

Equation (2.92.9) is in the form of the so-called inverse dynamic model, as it
encodes the forces at the joints as function of the joint motion. To simulate
the robot, the direct dynamic equation, which presents motion as function of
force, is needed:

q̈ = M(q)−1 (τc(t) + τe(t)− c(q, q̇)− g(q)− h(q, q̇)) . (5.1)

This equation is a second order ordinary differential equation (ODE) in time.
With an extension of the states, it can be written as a first order equation as

ẏ = φ(t, y) , (5.2)

where

y =

[
q
q̇

]
, (5.3)

and

φ(t, y) =

[
q̇

M(q)−1 (τc(t) + τe(t)− c(q, q̇)− g(q)− h(q, q̇))

]
. (5.4)

Having initial values for q and q̇, and having τc and τe as functions of time
and motion, a numerical integration method can be used to compute the evo-
lution of the system over time, which is in fact the simulation of the robot
dynamic.

79
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5.1.2 Comparison of simulation using infeasible and feasible
parameters

In order to test the dynamic parameters, the same model used to perform
the identification is used for the simulation, including joint frictions and ro-
tor inertias as described in section §4.24.2. The only difference is that the sign
function of (4.104.10) and (4.114.11) is approximated by a tight sigmoid function, for
the sake of numerical stability in the numerical integration method. Since the
additional dynamic term considered in (4.94.9) includes the rotor inertia, which
is function of q̈, such term is split in the direct dynamic equation:

q̈ =
(

M(q) + Iaj
)−1 (

τc(t) + τe(t)− c(q, q̇)− g(q)− h f (q, q̇)
)

, (5.5)

for
Iaj = T IamTT , (5.6)

and
h f (q, q̇) = fj(q̇) + T fm(TT q̇) . (5.7)

Having implemented the direct dynamic equation, four simulation tests are
performed, one for the WLSWLS classical solution β̂WLS, and the others for the
feasible solutions β′WLS, β?

WLS and β?e
WLS (see table 4.94.9). Each simulation starts

with the joints at the zero position, qinit = 0, as depicted in figure 4.24.2, and
null velocities, q̇init = 0. The motors are simulated to be always off, τc(t) =
0, thus entailing a passive system. The contact forces are also set to zero,
τc(t) = 0, entailing not only no environment contact but also no simulation
of joint limits or robot inter-link collisions — the robot is free to “enter into
itself”. Hence, the test consist on the simulation of the the free fall of the
robot, where the joint torques are only due to gravity force, frictions, and
Coriolis and centripetal effects. While this may seem to have little utility for
real simulation applications, it is enough for the sake of dynamic parameter
validation.

The simulation is performed referring to the Dormand–Prince 4(5) numer-
ical integration method from the well-known family of Runge–Kutta ODEODE

solvers. For the WLSWLS classical solution β̂WLS, the integration method is un-
able to proceed past 0.041 s of simulated time due to the lack of numerical
accuracy and stability. The trajectory performed by the joints within the sim-
ulation time is shown in figure 5.15.1, where an exponential divergent behavior
is clearly seen. The total energy of the system (Ek + Ep, see section §2.22.2) over
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Figure 5.1: Joint trajectory of free fall robot simulation using classical regres-
sion parameters β̂WLS.
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Figure 5.2: Total energy of free fall robot simulation using classical regression
parameters β̂WLS.
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Figure 5.3: Joint trajectory of free fall robot simulation using feasible parame-
ters β?e

WLS.

the time is then computed from the simulated data entailing the values plot-
ted in figure 5.25.2. Since the simulated system is passive, it is expected that the
energy over time is non-increasing. Moreover, due to the dissipative nature
of the friction it is expected that the energy decreases over time. The energy
of the simulation using the classical WLSWLS not only is not non-increasing but
it also shows a high instability at the last milliseconds, as it can be see in fig-
ure 5.25.2. Therefor, as expected, the physically infeasible solution β̂WLS cannot
be used for simulation purposes.

On the other hand, when testing any of the feasible solutions, the inte-
gration method is perfectly capable of performing the simulation as long as
desired. The robot trajectory for the first 6 s of simulation using the parame-
ters β?e

WLS is presented in figure 5.35.3 (for the other feasible solutions, the tra-
jectory is similar). The trajectory is stable and shows a very realistic behavior
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Figure 5.4: Total energy of free fall robot simulation using the three feasible
parameter solutions.

when played by a 3D model of the WAM robot. Plots of the total energy for
the three feasible solutions are presented in figure 5.45.4, showing a decreasing
evolution over time until the minimal energy steady-state is reached.

5.2 Robot dynamic model-based controller

Both the classical and the LMILMI–SDPSDP parameter estimations have been tested
in the WAM robot in a model-based control application. A PDPD controller is
designed to make the robot track the validation trajectory B, given in sec-
tion §4.3.24.3.2. Although there are some similarities with the regression excita-
tion trajectory tracking, some major differences distinguish this controller:

• the input reference for the controller is just the actual desired joint posi-
tion, and no velocity or acceleration reference is provided;

• the linearization by non-linear feedback technique, presented in sec-
tion §2.4.12.4.1, is used.

Using instantaneous position reference alone helps to better mimic the use
cases where the reference cannot be known beforehand, like cases where
the robot is being directly commanded by a human operator. The computed
torque is given by

τc = ĉ(q, ˆ̇q) + ĝ(q) + M̂(q) ac , (5.8)
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Figure 5.5: Control scheme for the WAM robot dynamic identification assess-
ment.

which differs from (2.232.23) in the fact that no environment forces (τ̂e) and no
drive chain forces (ĥ) are compensated. The reference trajectory maintains
the robot in free space, thus no robot–environment contact forces arise. Al-
though the drive chain friction and rotor inertia parameters are estimated,
the respective terms are not used in this controller due to their numerical
instability near the zero velocity, being accounted as system disturbances in-
stead. Nevertheless, their inclusion in the identification model is still crucial
to reduce the error in the other parameters. Neglecting the disturbances, the
PDPD controller sees a double integrator decoupled plant, as shown in figure 5.55.5.
The proportional and derivative gains, Kpk and Kdk given in table 5.15.1, respec-
tively, are tuned for critically damped response but slow response time. Al-
though the slow response times increase the tracking error, they entail more
fair comparisons between different dynamic parameter estimations, as more
importance is put on the model compensation than on the controller itself.
In the experiment, the the control is turned on in three stages. First, at time
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Table 5.1: PDPD control gains for the WAM robot dynamic identification assess-
ment.

Joint k Kpk Kdk

1 156.3 25.0
2 156.3 25.0
3 156.3 25.0
4 156.3 25.0
5 123.5 22.2
6 123.5 22.2
7 123.5 22.2

t = 0 s, the robot is let at the first trajectory point with only gravity and Cori-
olis force compensation (ĉ(q, ˆ̇q) + ĝ(q)) turned on. Then, at t = 2 s the PDPD

control (M̂(q) ac) is turned on while the reference position qr is kept at the
initial point. Finally, at t = 4 s, trajectory B positions start to be feed to con-
trol reference. Both the classical infeasible parameters β̂WLS, and the feasible
parameters β?

WLS are tested in the linearization stack.
The recorded joint positions for the experiment with infeasible solution

(β̂WLS) are plotted in figure 5.65.6. This estimation shows good gravity estima-
tion (showing good gravity compensation), and the robot remains stopped
when the controller is turned on with the static reference. However, the robot
enters a divergent trajectory as soon as the controller starts to play the trajec-
tory, leading to a high velocity motion which is stopped by the robot safety
module. It is experimentally verified that such behavior occurs even if the
control gains are decreased to near-zero values. On the other hand, the feasi-
ble parameters β?

WLS show good model estimation through good initial grav-
ity compensation and stable trajectory tracking, see figure 5.75.7. As an addi-
tional experiment, the optimal feasible parameters are tested with the higher
control gains presented in table 5.25.2. With such gains, the system shows bet-
ter trajectory tracking, as seen in figure 5.85.8. The feasible parameters show
to model the robot very well, even without taking the drive chain dynamics
into account in the controller. The experiment has also been conducted with
the other feasible solutions (β′WLS and β?e

WLS), showing little difference to the
β?

WLS solution.
No quantitative comparisons are made against the infeasible parameters,

since those parameters are not stable enough to allow the record of useful
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Figure 5.6: WAM robot joint trajectory for the assessment of classical infea-
sible parameters. Dashed lines are joint position reference; plain ones are
recorded joint positions.

Table 5.2: Tighter PDPD control gains for assessment of the WAM robot optimal
feasible parameters.

Joint k Kpk Kdk

1 2500.0 100.0
2 2500.0 100.0
3 2500.0 100.0
4 2500.0 100.0
5 625.0 50.0
6 625.0 50.0
7 625.0 50.0
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Figure 5.7: WAM robot joint trajectory for the assessment of optimal feasible
parameters. Dashed lines are reference joint positions (one period of trajec-
tory B); plain ones are recorded joint positions.

data. Once again, this shows that even being numerically close, these two
estimations present very different outcomes. On a qualitative level, the dif-
ference between the classical infeasible solution and the feasible one is just
abysmal, since, just as it happens to the simulation application, the classical
parameter estimation is simply useless.
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Figure 5.8: WAM robot joint trajectory using optimal feasible parameters and
tight PDPD control gains. Dashed lines are reference joint positions; plain ones
are recorded joint positions.
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D I S C U S S I O N A N D C O M PA R I S O N

6.1 Physically feasible vs. infeasible solutions

Although it is a fact that the regression error of a feasible solution is higher
than the error of the classical infeasible solution, it does not necessarily mean
that feasible estimations entail worse models.

The question of whether estimations constrained to the feasible set are
worse or better than physically infeasible ones can be related to the kind of
desired model. If one needs a prediction model (Hollerbach et al. 20082008), which
seeks for the lowest prediction error, not mattering whether the identified pa-
rameters are feasible or not, then an unconstrained least squares (LS) solution
can be used. However, if a structural model is needed (Hollerbach et al. 20082008),
where a meaningful physical system description is mandatory, then a strictly
physically feasible identification has to be used. As seen in previous sections,
simulation and model-based control shall use structural models. The higher
regression error of regressions constrained to the feasible set is a minor effect,
perfectly acceptable for the sake of having a structural model. Moreover, al-
though it cannot be taken for guaranteed, it seems that feasible solution entail
better models when tested outside the regression data set (see section §4.6.14.6.1).

Another important aspect is the fact that the difference between an infea-
sible estimation and a feasible one, as well as the difference between their
regression errors, can be really low while the outcome of their application is
completely different. This is observed in chapter 5chapter 5, where a marginally in-
feasible parameter estimation has a completely unstable behavior whereas
the marginally feasible solution works nicely. We can say that the feasible
solution is marginally feasible since it is pulled against the feasible region
boundary by the regression minimization. That is true for any constrained
solution whose respective unconstrained solution is infeasible. We can also
say the classical infeasible solution used in chapter 5chapter 5 is marginally infeasible
since the distance to the feasible set is very low (see section §4.5.24.5.2).

The more a infeasible parameter estimation is close to the feasible set,
the more probable is that its instability effects appear in less robot postures.
Hence, a marginally infeasible solution can be used without showing unsta-
ble behavior except for a little set of robot postures, thus being potentially
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Figure 6.1: Ratio of positive definite (PD) inertia matrices, computed at ran-
dom joint positions, as function of the “degree of infeasibility” of a parameter
solution βt given by βt(λ) = (1− λ)β̂WLS + λβ?

WLS.

dangerous. Prior to starting this work, we have observed such behavior in
a four-link version of the WAM, when a controller based on an infeasible
parameter estimation showed instability just near a certain joint configura-
tion. To illustrate this issue, a simple experience is performed in the sequel.
Given some base dynamic parameter estimation, it is possible to compute
the inertia matrix at large number of random joint positions and count the
percentage of positions where the matrix is positive definite. If the parame-
ters are feasible, then the inertia matrix will be always positive definite. If
the matrix is not positive definite at least for a single joint posture, then the
parameter estimation is physically infeasible. Hence, the ratio can be taken
as a rough measure of infeasibility. Such measurement was applied to the dy-
namic model, regression data and solutions of chapter 4chapter 4. Figure 6.16.1 plots the
ratio of positive definite inertia matrices, computed on a set of 10000 random
joint position, as function of a testing base parameter solution βt given by

βt(λ) = (1− λ)β̂WLS + λβ?
WLS , (6.1)

which equates a line in the base parameter space passing through both β̂WLS

and β?
WLS. For λ = 0, βt equals β̂WLS, and for λ = 1 the line crosses the feasi-

bility region boundary at βt = β?
WLS. As it can be seen, for this example, there

is a zone close to the feasibility boundary where the inertia matrix is posi-
tive definite for a high number of joint positions while the parameters are
still infeasible. Estimations in this zone can be dangerously misused as valid
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Table 6.1: Base parameter estimations of the 3-link robot example provided
by Yoshida and Khalil (20002000)

β β̂t1 β̂t2 β′t2

L1yy + L2yy + L3yy + m3 6.4 6.2 6.200951
L2xx − L2yy −m3 −5.48 −5.48 −5.479049
L2xy 0.072 0.072 0.071966
L2xz − l3z −0.087 −0.087 −0.086967
L2yz 0.051 0.051 0.050999
L2zz + m3 5.6 5.6 5.600000
l2x + m3 6.5 6.5 6.500000
l2y −0.00075 −0.00075 −0.000750
L3xx − L3yy −0.72 −0.72 −0.719049
L3xy −0.0098 −0.0098 −0.009819
L3xz −0.0098 −0.0098 −0.009817
L3yz −0.00045 −0.00045 −0.000450
L3zz 0.72 0.72 0.720000
l3x 0.95 0.95 0.949999
l3y 0.015 0.015 0.014966

solution for model-based control or for simulation. Furthermore, it must be
taken into account that non-positive definite inertia matrices are not the only
effect of infeasible estimation. For instance, negative masses can lead to un-
stable gravity compensation, however, the effects of infeasible estimations in
the model have not yet been fully studied.

The importance of not disregarding the physically feasibility aspect is
clear. The propose LMILMI–SDPSDP methods make a major contribution to deal with
these issues. In the sequel, the advantages of the LMILMI–SDPSDP approach over
previous ones is presented.

6.2 Comparison to Yoshida methods

Yoshida and Khalil (20002000) introduced a base parameter combination for a 3-
link robot and presented two examples of base parameter vector values, β̂t1

and β̂t2 shown in table 6.16.1, which differ only in the value of the first base
parameter. Using their method they have shown that β̂t1 is feasible whereas
β̂t2 is not. To compare, our LMILMI–SDPSDP method for feasibility checking (see
section §3.33.3) is applied to this estimations. For β̂t1, a δd solution is found
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implying physical feasibility. In the case of β̂t2 a certificate of infeasibility
is issued by the SDPSDP solver. Hence, our methods corroborate the results of
Yoshida and Khalil. Furthermore, we applied the correction method of sec-
tion §3.43.4 to β̂t2 for which the closest feasible parameter vector β′t2 presented
in table 6.16.1 is found. The distance from β′t2 to β̂t2, measured in β space, is
given by

√
u′ = 1.65× 10−3. As expected, β′t2 passes our feasibility test. For

this example no regression data is available, thereby the feasible identifica-
tion method could not be tested.

Compared to the methods for feasibility check presented in Yoshida and
Khalil (20002000), which include trial and error and visual graph steps, the LMILMI–
SDPSDP approach is more feasible in terms of practical implementation. For the
LMILMI–SDPSDP methods, there is a well established set of mathematical tools in
several programming languages which enable implementations providing
almost fully automatic execution. The application of a SDPSDP solver to the LMILMI

formulation of physical feasibility is, in a certain sense, a way to automate
the rules described in Yoshida and Khalil (20002000). Thereby, the complexity of
the implementation and execution of our methods is not dependent on the
size (DOFDOF number) of the problem. That is probably the major issue with
Yoshida et al. method, which is to some extent confirmed by the fact that no
other work has resorted to those methods since then. Notwithstanding, the
work of Yoshida et al. is the cornerstone in the physical feasibility problem
definition.

6.3 Comparison to constrained regression methods

The idea of identifying the dynamic parameters through a regression con-
strained to feasible solutions, as presented in section §3.53.5, has its roots in
the idea proposed by Mata et al. (20052005), which was also explored by Farhat
et al. (20082008) and Ting et al. (20112011). Comparing to the previous approaches,
the proposed LMILMI–SDPSDP solution takes a step forward in the mathematical for-
mulation of the constrained regression problem. First, with little manipula-
tion, the feasibility problem naturally fits the LMILMI representation. Second, our
methods benefit from SDPSDP advantages, noticeably the effective and efficient
convergence to the global optimum, since SDPSDP is the optimization technique
which better exploits positive semidefinite constraints.

A series of comparison points show the advantages of the LMILMI–SDPSDP ap-



6.3. COMPARISON TO CONSTRAINED REGRESSION METHODS 93

proach:

Convexity Neither Mata et al. (20052005), Ting et al. (20112011) or related works,
make the discussion, let alone the proof, on whether the constrained
regression problem is convex or non-convex. In the LMILMI–SDPSDP approach
the proof of convexity naturally arises from the fact that all problems
which are writable as LMIsLMIs are convex. It is important to know that a
given optimum is for sure the global and unique optimum.

Constraints definition In all previous works, there is some mapping from
the inertia tensors to another representation in order to define the posi-
tive definiteness constraints. Those mappings are based either in eigen-
values decomposition (Mata et al. 20052005), Sylvester’s criterion (Farhat et
al. 20082008) or Cholesky decomposition (Ting et al. 20112011). In the LMILMI–SDPSDP

approach, there is a simple transformation using the Schur complement
conditions to allow LMILMI representation, however, the final constraint is
still a positive definite constraint. Such constraint is directly input to the
solver, thus requiring no formulation of custom constraint equations or
constraint penalty functions like in the other methods.

Effectiveness and efficiency The use of general non-linear programming to
tackle positive definite constraints, although perfectly possible, is sub-
optimal in the sense that the particular properties of the problem are
not properly explored. That leads to both reduced effectiveness and re-
duced efficiency, i.e., worst approximations to the optimal solution and
higher consumption of computational resources, respectively. These
are the same reasons why one wouldn’t usually solve a linear program-
ming problem with a quadratic programming solver.

Method application scope The previous works present methods to perform
regression constrained to the feasible region. On the other hand, the
LMILMI–SDPSDP framework we propose provides not only a constrained re-
gression method, but also formulates a feasibility verification method,
and correction method for infeasible prior estimations. It takes special
advantage of SDPSDP capabilities for checking the feasibility of given re-
gions.

Extensibility The methods we propose can be easily extended to include ad-
ditional parameters and respective constraints, as seen in section §3.2.13.2.1,
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as well as to include additional constraints in the inertial parameters,
as seen in section §4.5.44.5.4. Indeed, a large range of simple and complex
conditions can be easily cast into the LMILMI formulation (Boyd et al. 19941994).
This can be an issue with the formulation of Ting et al. (20112011). On the
other hand, the formulation of Mata et al. (20052005) is the most extensible
one since it requires no special structure in the constraints, allowing, for
example, the nonlinear friction model of Farhat et al. (20082008).

Prior solution Mata et al. (20052005) and Ting et al. (20112011) methods use a prior
solution, be it the unconstrained regression one, be it a CADCAD estimation.
Our approach needs no prior solution.

Numerical stability Regression in the standard dynamic parameters entails
non-unique solutions which can be a problem for the optimization solver.
The use of a prior solution for which the regression solution distance is
minimized can turn out to be fundamental to add numerical stability
to the methods (Ayusawa and Nakamura 20102010). Our methods have
shown good numerical stability in all the experiments.

Parameter space Although the proposed LMILMI–SDPSDP framework is mainly for-
mulated in the base–dependent (β, δd) parameter space, it is straight-
forwardly formulated on the standard parameter space δ as seen in sec-
tion §3.63.6. This allows a greater freedom for choosing the space which
better suits each application.

6.3.1 Point-mass method

Ayusawa and Nakamura (20102010) presented a clever approach to simplify the
physical feasibility problem at the expense of obtaining solutions which are
only limited approximations to the optimal ones. They identified the feasi-
ble region as being a convex cone, and the simplifications approximate its
interior with by convex polyhedron. The regression can then be performed
very effectively and efficiently with quadratic programming (QP) which can
be seen as a particular case of SDPSDP. Compared to the LMILMI–SDPSDP methods, this
approach has some drawbacks:

Solution approximation The more obvious one is the fact that parameter es-
timations will be only approximations to the real optimum. This factor
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can, however, be controlled by choosing different number and position
of mass points.

Application as a feasibility test Although it is possible to map any given dy-
namic parameter solution δ̂ into the point mass parameterization p̂ (as-
suming that R of (2.742.74) is full rank), it is not straightforward to assess
the feasibility of δ̂ from the mass point parameters positiveness, since
the map is not unique. Even if it was possible to guarantee that no posi-
tive p̂ corresponds to the given δ̂, the infeasibility could not be inferred
since the δ̂ could lie in a point within the feasibility regionDwhich was
not covered by the approximation polyhedron.

Method tuning The mass point method present many variables which have
to be chosen and tuned. They include the number of mass points, their
position, and the weighting factors, which can lead to very different
results and requires additional tuning efforts. On the other hand, our
LMILMI–SDPSDP approaches require no method parameters to be tuned.

Other Drawbacks As well as the other constrained regression methods men-
tioned above, the mass point method also present drawbacks relatively
to numerical stability, parameters space and application scope.

For experimental comparison, the point-mass method was implemented
and applied to the identification data of the 7-link WAM robot presented in
chapter 4chapter 4. For the sake of easier implementation, only the inertial parameters
(see (2.182.18)) are modeled. The data used for regression is weighted using the
same technique of section §4.4.14.4.1. The implementation takes link spatial limits
(see table 4.84.8) and the LSLS solution into account, as presented in the original
article. The final solution, δ̂Ayusawa, is obtained by a QPQP solver, being its phys-
ical feasibility double-checked by our method. The prediction relative error
(see (4.374.37)) of the solution is presented in table 6.26.2 along with the infeasible
WLSWLS and the feasible LMILMI–SDPSDP solutions for the same model and regression
data. The increase from the classical solution to the point-mass error is low,
however it is noticeably and relatively higher when compared to the small
increase of the error of the best feasible solution (given by LMILMI–SDPSDP), 0.61
(= 20.25− 19.64) against 0.04 (= 19.68− 19.64), respectively.
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Table 6.2: Comparison of relative error percentage of predicted torque given
by WLSWLS, LMILMI–SDPSDP, and point-mass method (Ayusawa and Nakamura 20102010).

% relative error

β̂ 19.64
β? 19.68
δ̂Ayusawa 20.25

6.3.2 Effectiveness, efficiency and scalability comparison

To compare effectiveness, efficiency and scalability of our SDPSDP–LMILMI approach,
the method of Mata et al. (20052005) was also implemented in addition to the
implementation of the Ayusawa and Nakamura (20102010) method. The method
of Mata et al. (20052005) is implemented using a SQPSQP solver and uses the gradient
functions from both the objective least squares equation and the nonlinear
inequality constraints given by the Sylvester’s criterion (Farhat et al. 20082008).
The method of Ting et al. (20112011) is not implemented, however, since it uses
generic nonlinear optimization it is expected to be comparable to the method
of Mata et al. (20052005) in terms of effectiveness and efficiency.

In order to test the methods at different scales, simulated data is gener-
ated for N = 1 up to N = 40 number of links. The regressor matrix data is gen-
erated randomly considering 10 parameters per link and 1000 measurement
points, thus leading to a matrix of size 1000·10× 10N. The regressand vec-
tor data is generated from the regressor matrix using a randomly generated
parameter vector, and adding a normally distributed noise. With exception
for the N = 1 case, the classical OLSOLS solutions show to always be physically
infeasible when tested with our methods. In figure 6.26.2, the regression error
of the different constrained regression methods are compared relatively to
the OLSOLS solution error. The time took by the solver of each method is plotted
in figure 6.36.3. These times and errors must be taken only as a rough indica-
tion of the relation between the methods. As it can be seen, the LMILMI–SDPSDP

approach always gives the lowest possible error as it always finds the opti-
mal solution (up to a 10−6 error), and its performance follows a predicable
curve as the number of links grow. The error curve of ours method is indeed
the lower bound for any possible feasibility method. The point-mass method
of Ayusawa and Nakamura (20102010) is as fast as the classical OLSOLS method while
providing always feasible solutions. However, its approximate nature entails
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non-optimal solutions in what concerns to regression error, leading to a grow
in the error from the classical infeasible solution around two times the one
from our method. The general non-linear optimization of Mata et al. (20052005)
shows a non-predicable behavior, entailing solutions which sometimes are
close to the optimal and other times are really far from it. Moreover, the
times are always higher the the other methods. Such times are dependent on
a parameter to limit the number of iterations which shows to give no visible
advantage for higher number as the solution errors are the same. The exper-
iments for the number of iteration limit equaling 300 are stopped at 12 links
as the times were too high after that.

Our LMILMI–SDPSDP method shows to be adequate for high number of link robots,
like humanoids, being capable to find the best solution in very short time. It
may even be possible that with proper modifications it can be used in real-
time, similarly to Ayusawa et al. (20112011).

6.4 Comparison to model reduction methods

The works of Díaz-Rodríguez et al. (20102010) and Gautier et al. (2013a2013a) follow the
idea that infeasibility of a given regression is due to a set of parameters not
well identifiable. Hence, instead of reducing the regression solution space
to the physical feasibility region, they reduce the number of parameters by
discarding the less identifiable ones. It is then expected that the classical
regression solution for the reduced model is feasible.

This approach has two major issues when compared to the LMILMI–SDPSDP meth-
ods. The first one is that it does not solve the problem of testing the feasibility
in the base parameter space. To overcome that, Gautier et al. (2013a2013a) do the
optimization in the standard parameter space, minimizing the distance to a
prior estimation in this space, while Díaz-Rodríguez et al. (20102010) uses a brute-
force search in the base space. The second major drawback is that the model
reduction process does not guarantee that a feasible solution will ever be
found, or, at least, that such solution is found in a model not overly reduced
and without too high regression errors.

The iterative reduction method of Díaz-Rodríguez et al. (20102010) has been
implemented by us and is tested with the WAM weighted regression data
set (see section §4.4.14.4.1). The feasibility check step, however, is performed
by our LMILMI–SDPSDP approach instead of the original solution proposed by Díaz-
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Figure 6.4: Application of the model reduction method of Díaz-Rodríguez
et al. (20102010) to the WAM data set. (Distance measured in the base parameter
space.)

Rodríguez et al. Figure 6.46.4 plots the regression error and the solution distance
to feasible region as function of the number of parameters excluded from the
model, from a total of 76 base parameters (see section §4.24.2). The distance
to feasible region is computed by the method of section §3.43.4, which finds the
feasible solution closer to the given one, hence entailing the minimal distance
to the feasible region. When the classical solution is feasible, that distance is
zero. As in can be seen in the plots, it is possible, with a reduction of 36 base
parameters, to the classical LSLS solution to become feasible. While the number
of discarded parameters is almost a half of the original number, the regres-
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sion error does not grows too much. The final regression relative error of
the reduced model is 4.66%, just slightly higher when compared to the non-
reduced model LSLS solution, 4.57%, and, as expected, higher than the optimal
value given by our LMILMI–SDPSDP method, 4.62% (see table 4.104.10). Therefore, reduc-
tion model techniques are effective in this data set, however, it must not be
forgotten that such techniques are by nature not guaranteed to always work,
unlike the LMILMI–SDPSDP approach. Moreover, as we have shown, LMILMI–SDPSDP meth-
ods can also be used to improve these model reduction methods and clearly
present advantages over the techniques they propose for the feasibility check-
ing of each solution.





7
P R A C T I C A L I M P L E M E N TAT I O N

In order to numerically evaluate the dynamic model, it is common to use
the recursive Newton–Euler (RNE) approach, which is simple and compu-
tationally more efficient than closed-form equations. Starting in the eight-
ies, there had been the development of software packages which perform
symbolic optimizations on the equations, customizing them for given robots.
Examples are ARM (Murray and Neuman 19881988), EMDEG (Burdick 19861986),
and SYM (Timcenko et al. 19911991) software. Those programs generate closed-
form expressions with intermediate variables, seeking for a lower number of
arithmetic operations. With the raise of general computer algebra systems
(CAS), many have been used as a base to symbolic robot modeling pack-
ages. Examples are Spong’s Robotica (Nethery and Spong 19941994), and IRC-
CyN’s SYMORO+ (Khalil and Creusot 19971997), both based on Mathematica. Fur-
thermore, there are also more general robotics software which also include
symbolic expression generation, e.g., SYMOFROS from SoftSim Technologies
(Piedboef et al. 19991999) based on Maple, and Corke’s MATLAB Symbolic Toolbox
(Corke 20112011). With exception to SYMORO+, all of those packages are free and
open source. Still, all of them work on top of proprietary/payed software.
With respect to open source based software, there are several robotic pack-
ages which, however, only provide generic/numerical, thus slower, model
implementations. Nowadays computer power is relatively high, and generic
methods can numerically compute robot models very quickly. Even so, sym-
bolically generated custom models always represent a great decrease in com-
putation times, which is desirable or even a requirement in high frequency
controllers and real-time simulations. Additionally, the symbolic expressions
are useful for research and education.

This chapter presents the software developed to support the theoretical
and experimental work of this thesis. Notwithstanding, the software has
been developed not only for this work but also, and mainly, as an open tool
available to future projects and to other researchers and developers.

103
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7.1 SymPyBotics: robot symbolic modeling in Python

For the robot modeling used in the presented work, the SymPyBotics soft-
ware (Sousa 2014b2014b), a toolbox which generates symbolic custom equations of
robot models for identification, control and simulation, has been developed.
SymPyBotics is the evolution of the author’s SageRobotics framework (Sousa
and Cortesão 20122012) which worked on top of Sage Mathematics software which
by its turn is based on Python. Besides the change in the name, SymPyBotics is
pure Python, using SymPy and NumPy libraries to do symbolical and numer-
ical computations, respectively. Not only this framework is free and open
source, it is also the first one to rely only upon free and open source software.
The cost to use SymPyBotics in any kind of research, industry or education
is minimal. Moreover, Python is a full-fledged programming language, cross-
platform, very popular in engineering fields and with a really wide set of
available libraries.

SymPyBotics key features are: custom symbolic model generation, code
generation, and dynamic parameter identification. As input, SymPyBotics
need the standard or modified DHDH parameters of a robot. Then SymPyBotics
generates symbolic equations for geometric and kinematic direct models, and
inverse dynamic model. It also generates dynamic terms, i.e., the inertia ma-
trix, the Coriolis and centripetal forces term and the gravity forces term. The
software includes dynamic parameter identification tools too. It generates
the regressor of the linear to parameters model form, and computes the base
parameter combination. Models can be obtained as single expressions or as
expressions with intermediate variables. SymPyBotics is able to generate C,
Julia and Python code from the expressions. With intermediate variables, com-
mon sub-expressions appear only once, thus reducing the number of opera-
tions in the generated code. SymPyBotics code is openly available in GitHub
at https://github.com/cdsousa/sympyboticshttps://github.com/cdsousa/sympybotics.

7.1.1 SymPyBotics internal structure

SymPyBotics toolbox can be used both as a library and as a end-user program.
At its core there are the symbolical algorithms and the physic quantities
symbolic representation. On a higher level there are routines which receive
DHDH robot parameters as input and output generated code, ready to be used.
Figure figure 7.17.1 presents a rough overview of SymPyBotics main packages

https://github.com/cdsousa/sympybotics
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Figure 7.1: SymPyBotics UML package/class overview diagram.

and classes. The base of the framework is the RobotDef class, contained on
the robotdef module. A RobotDef object is used to hold a given robot geom-
etry definition, through DHDH parameters, and the related symbolic variables.
The geometry module defines the Geometry class which generates and holds
the direct geometric model for a given RobotDef object. The Kinematics

class, contained on the kinematics module, receives one RobotDef object
and one Geometry object and generates the respective direct kinematic model,
i.e., the Jacobian matrices. Dynamics related code is in the dynamics module
which, like the others, includes a Dynamics class to hold that model. This
module also includes several standalone RNERNE functions which are used by
the Dynamics class. On a higher level, there are the robotmodel and the
robotcodegen modules. The robotmodel module includes the RobotDynCode

class which generates the models and code for a given robot. It is dependent
on the modules presented before and on the robotcodegen module for code
generation. The robotcodegen module has tools to generate computer code
from robot model equations.
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7.1.2 SymPyBotics example

For demonstration purposes, an example of a possible use of SymPyBotics is
shown next. The creation of a RobotDef instance just needs the α, a, d and θ

DHDH parameters per link, and optionally a list of desired friction terms which
can include “Coulomb”, “viscous” and “offset”. For a 2-DOFDOF example robot,
one can initialize an instance of RobotDef as follows:

>>> from sympybotics import q, RobotDef , RobotDynCode
>>> from sympy import pi
>>> rbtdef = RobotDef (" Example Robot", # name
... [(-pi/2, 0, 0, q+pi/2), # DH parameters
... ( pi/2, 0, 0, q-pi /2)] ,
... dh_convention =" standard ")
>>> rbtdef . frictionmodel = {" Coulomb ", " viscous "}

After this, the rbtdef object will contain symbols representing several quan-
tities, as for example the joint positions, accessible through rbtdef.q, or the
standard dynamic parameters, accessible through rbtdef.dynparms():

>>> rbtdef . dynparms ()
[L_1xx , L_1xy , L_1xz , L_1yy , L_1yz , L_1zz , l_1x , l_1y , l_1z ,

m_1 , fv_1 , fc_1 , L_2xx , L_2xy , L_2xz , L_2yy , L_2yz , L_2zz ,
l_2x , l_2y , l_2z , m_2 , fv_2 , fc_2]

To generate the symbolic equations of geometric, kinematic and dynamic
models, one can then use the high-level interface RobotDynCode:

>>> rbt = RobotDynCode (rbtdef , verbose =True)
generating geometric model
generating kinematic model
generating inverse dynamics code
generating gravity term code
generating coriolis term code
generating coriolis matrix code
generating inertia matrix code
generating regressor matrix code
generating friction term code
done

The returned RobotDynCode object contains sub-objects holding symbolic ge-
ometry model, for instance the end-effector to base transformation,

>>> rbt.geo.T[-1]
Matrix ([
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[-sin(q1)* sin(q2), -cos(q1), sin(q1)* cos(q2), 0],
[ sin(q2)* cos(q1), -sin(q1), -cos(q1)* cos(q2), 0],
[ cos(q2), 0, sin(q2), 0],
[ 0, 0, 0, 1]])

the kinematic model Jacobians, for example

>>> rbt.kin.J[-1]
Matrix ([
[0, 0],
[0, 0],
[0, 0],
[0, -cos(q1)],
[0, -sin(q1)],
[1, 0]])

and dynamic model terms in the rbt.dyn sub-object. The base dynamic pa-
rameters, computed through a numerical process, can be obtained by doing

>>> rbt. calc_base_parms ()
>>> rbt.dyn. baseparms
Matrix ([
[L_1yy + L_2zz],
[ fv_1],
[ fc_1],
[L_2xx - L_2zz],
[ L_2xy],
[ L_2xz],
[ L_2yy],
[ L_2yz],
[ l_2x],
[ l_2z],
[ fv_2],
[ fc_2 ]])

The matrices Pb, Pd and Kd, introduced in section §2.5.12.5.1, become accessible
through the attributes dyn.Pb, dyn.Pd and dyn.Kd, respectively.

7.1.3 Code generation

Although SymPy provides some functions to generate (and run) code from
symbolic expressions, SymPyBotics supplies a set of tools to generate Python,
Julia and C/C++ source code specific for dynamic related expressions. For
common robots, with several DOFDOF, dynamic equations are usually complex
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with a great number of operations and repeated sub-expressions. The com-
plexity can be reduced by breaking down such expressions into smaller ones
assigned to intermediate variables, in a sequential computer code form. This
can be performed by a common sub-expression elimination algorithm like the
cse function provided by SymPy. However, SymPyBotics implements a spe-
cial common sub-expression elimination technique (implemented by the class
Subexprs) which iteratively collects sub-expressions and substitute them by
intermediate variables, thus taking advantage of the recursive nature of the
RNERNE algorithm. Each symbolic term can be turned into code through the func-
tion robot_code_to_func from the robotcodegen module. For example, to
generate C/C++ code for the inverse dynamic function (2.212.21) of the example
robot given above, one can do

>>> from sympybotics import robotcodegen
>>> robotcodegen . robot_code_to_func ("C", rbt. invdyn_code ,

" tau_out ", " invdyn ",
rbtdef )

which will output the following C code:

void invdyn ( double * tau_out , const double * parms ,
const double * q, const double * dq , const double * ddq )

{
double x0 = cos(q[1]);
double x1 = sin(q[1]);
double x2 = 9.81* x1;
double x3 = dq [0];
double x4 = x1*x3;
double x5 = x0*x3;
double x6 = dq [1]* parms [15] + parms [13]* x5 + parms [16]* x4;
double x7 = -x4;
double x8 = -ddq [0];
double x9 = -x8;
double x10 = dq [1]* x5 + x1*x9;
double x11 = dq [1]* x7 + x0*x9;
double x12 = dq [1]* parms [16] + parms [14]* x5 + parms [17]* x4;
double x13 = dq [1]* parms [13] + parms [12]* x5 + parms [14]* x4;
double x14 = 9.81* x0;

//
tau_out [0] = dq [0]* parms [10] + parms [11]* sign(dq [0]) -

parms [3]* x8 + x0*( ddq [1]* parms [13] + dq [1]* x12 +
parms [12]* x11 + parms [14]* x10 + parms [19]* x2 +
x6*x7) - x1*(- ddq [1]* parms [16] + dq [1]* x13 -
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parms [14]* x11 - parms [17]* x10 + parms [19]* x14 -
x5*x6);

tau_out [1] = ddq [1]* parms [15] + dq [1]* parms [22] +
parms [13]* x11 + parms [16]* x10 - parms [18]* x2 +
parms [20]* x14 + parms [23]* sign(dq [1]) - x12*x5 +
x13*x4;

//
return ;

}

Here, tau_out is the τc output argument, parms is an input argument which
must contain the numerical standard dynamic parameters ordered according
to rbtdef.dynparms(), and q, dq and ddq are input arguments which must
contain q, q̇ and q̈ respectively.

7.1.4 Performance measurements

To assess performance of generated code, experiments with code generation
have been carried out for three robot models: the 6-DOF Stanford manipu-
lator, the 6-DOF Puma 560, and the 7-DOF WAM robot. Table 7.17.1 resumes
the measurements done for the inverse dynamics generated code. The ta-
ble shows the time to generate the function code, the number of arithmetic
operations (additions and multiplications) of the generated code, and the ex-
ecution time of such code both for C and Python languages. The computer
used in the experiments has a processor Intel i3-380M at 2.53 GHz. The num-
ber of additions and multiplications are in the same order of magnitude of
the code obtained by ARM and SYMORO software (Murray and Neuman
19881988; Khalil and Kleinfinger 19871987). Moreover, the obtained performance is
very high when compared to generic numerical routines which can be up to
one hundred times slower. The generated code enabled the dynamic model-
based controllers presented in previous sections to run with sampling times
as low as 1 ms. It also enabled the WAM robot simulator to run in real-time.

7.2 Implementation of LMI–SDP methods

The practical implementation of the LMILMI–SDPSDP methods has been done in a
very high-level way from within a Python environment. The SymPy library,
the PyLMI-SDP package (Sousa 2014a2014a), and the DSDP5 solver (Benson and
Ye 20082008) have been the base tools used to deploy those methods. The PyLMI-
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Table 7.1: Performance measurements of inverse dynamics generated code.

Stanford Puma 560 WAM 7-DOF

code generation
time (s)

10 14 15

adds. / muls. 393 / 477 454 / 576 493 / 626

Python function
execution time (µs)

350 480 570

C function
execution time (µs)

0.6 0.7 0.9

SDP package has been developed within this work, is open source and is
openly available in GitHub at https://github.com/cdsousa/PyLMI-SDPhttps://github.com/cdsousa/PyLMI-SDP. An
overview of the LMILMI–SDPSDP method implementation is given in the sequel. All
presented methods share a standard set of steps that can be summarized as
follows:

1st Each block of the LMILMI matrix diagonal is written using SymPy symbolic
objects to represent each standard dynamic parameter (and the mini-
mization slack variable if appropriate).

• Blocks for the physical feasibility of all links are similar, hence they
can be initialized in a loop, following a template which is applied
to the dynamic parameters corresponding to each link.

• Matrices from least squares minimizations (matrices U) are cre-
ated by mixing the numerical matrices and vectors with the vector
of symbolic parameters. This can be done straightforwardly with
SymPy.

2nd If the method is to be implemented in the base–dependent space, then,
using SymPy symbol substitution routines, a substitution of symbol
variables corresponding to the map mt of (3.103.10) and (3.113.11) is performed.

• In a practical way, that is implemented by the substitution of the
symbols of independent standard parameters (δb) by linear combi-
nations of symbols of both base and dependent parameters (β and

https://github.com/cdsousa/PyLMI-SDP
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δd), as given by

δb −−−−→
subs. by

β− Kdδd .

Note that here, β refers to a vector of symbols rather than to a
vector of linear expressions.

3rd Referring to the PyLMI-SDP package, the symbolic LMILMI diagonal blocks
are converted to a set of numerical coefficient matrices, one for each
block and for each variable. In pseudo-code that can be described by
the following steps:

• For each symbolic variable a, create a numerical matrix for it;

• Create a numerical matrix for the constant terms;

• For each element (expression) in the input symbolic matrix:

– Extract the constant term from the expression;

– Write the constant term to the respective place in the matrix of
constant terms;

– For each symbolic variable a:

∗ Extract the numerical coefficient of the variable a from the
expression;

∗ Write the coefficient to the respective place in the matrix
of variable a;

4th An SDPA file is constructed from the numerical matrices and from the
objective function coefficients, referring to a proper PyLMI-SDP rou-
tine.

5th The DSDP5 solver is called with the created SDPA file as input, and its
output is parsed back to the Python environment.

The use of SDPA files has the advantage of allowing a large number of SDPSDP

solvers to be used. Besides the DSDP5 solver, the CSDP (Borchers 19991999) and
the SDPA (Yamashita et al. 20032003) solvers have also been successful used by
the LMILMI–SDPSDP feasibility methods.





8
C O N C L U S I O N S

The scientific relevance of dynamic parameter estimation has been shown, be-
ing strongly correlated to model-based control and robot simulation. Good
parameter identification is a key to allow advanced applications such as the
robot-assisted medical tasks which were the primary motivation for this work.

It has been shown that although many regression techniques are available
in the literature, there was an open problem about the physical feasibility of
identified parameters. The problem poses particular challenges due to the
non-identifiability of some dynamic parameters. In this context, a completely
new approach to the problem has been proposed and analyzed. Firstly, the
problem structure has been identified and has been formulated in the LMILMI

framework. Then, new approaches using advanced SDPSDP techniques have
been proposed to solve the physical feasibility issue. Three LMILMI–SDPSDP-based
methods have been proposed to address three main applications:

• a method to test if a given parameter estimation is physically feasible
or not;

• a method to compute the closest physically feasible solution for a given
(infeasible) solution;

• and a method to perform optimal identification of base parameters (for
a given data set) through least squares regression constrained to feasi-
ble solutions.

The methods have been implemented with open source software and have
originated the packages SymPyBotics and PyLMI-SDP, which are free and
open source. The proposed approach has been applied to the real case of the
WAM robot identification, which presents physical feasibility issues when
performed by classical techniques. The LMILMI–SDPSDP methods have shown effec-
tive and efficient results. The optimal WAM parameter identification found
through our methods has shown good behavior when applied to simulation
and to experimental model-base control. The higher quality of this identifica-
tion is not even measurable against the classical solution, since the latter has
shown to be unusable in both simulation and control. The major importance
of taking physical feasibility into account has been discussed and clarified
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with further data. Finally, our methods have been compared with previous
works, showing clear advantages in almost all aspects.

The LMILMI–SDPSDP formulation of the physical feasibility issue opens new pos-
sibilities in the dynamic parameter identification research field. In the sequel,
some possible future research directions are presented.

8.1 Future work

Study and model the impact of infeasible parameters in the dynamic terms
While non-positive definite inertia matrices have been pointed as the prob-
lem of physically infeasible parameters, the effects are not limited to the in-
ertia matrix (see section §6.16.1). It may be important to study all the impact
of infeasible parameters in the dynamic model and in model-based applica-
tions.

Study and relate each base parameter and standard parameter to the infea-
sibility of the whole estimation The infeasibility issue has been addressed
as a whole, but a formulation to understand the contribution of each stan-
dard or base parameter is yet not known. By the works of Díaz-Rodríguez
et al. (20102010) and Gautier et al. (2013a2013a), and the results of section §6.46.4 it seems
that there is a relation between poorly identified parameters and physical
infeasibility, however, this relation has not yet been formulated nor even
proved. Such study may be important to devise excitation techniques and
excitation measures which entail regression data less prone to give infeasible
solutions. On the other hand, the individual degree of infeasibility of each
parameter can be used as a measurement for the low confidence of each pa-
rameter, along with the established standard deviation measure.

Integrate LMILMI–SDPSDP techniques into other advanced regression methods An
important aspect of the LMILMI–SDPSDP formulation it that it is orthogonal to the ma-
jority of other identification techniques, as it was shown, for instance, with
the reformulation from OLSOLS to WLSWLS in section §4.5.34.5.3. Another given exam-
ple is the use of LMILMI–SDPSDP techniques as a complement to the model reduc-
tion methods in section §6.46.4. Hence, the LMILMI–SDPSDP formulation enables fur-
ther research on its own but also has the possibility to be merged into es-
tablished techniques. Among others, techniques making a more statistically
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meaningful treatment of the regression data may possibly benefit from the
physically meaningful approach of LMILMI–SDPSDP formulation. Such techniques
include the maximum-likelihood approach of Olsen and Petersen (20012001) or
even the Bayesian approach of Ting et al. (20112011).

Study a real-time implementation of feasible identification SDPSDP solvers
use iterative techniques, hence, it may be possible to implement a real-time
and iterative regression method constrained to feasible solutions as the one
proposed by Ayusawa et al. (20112011). Such method, although computationally
more expensive, would provide optimal feasible solutions in real-time.

Extend the formulation to different kind of robots or systems Although
the presented methods have been applied to the serial manipulator robot
concept, no fundamental problem keeps them from being applied to other
robotic devices. That includes tree robots, closed loop robots, parallel robots,
and humanoids. As physical feasibility issues extend to the identification of
other kind of systems of rigid bodies, the same happens to the LMILMI–SDPSDP solu-
tion. Moreover, while we do not considered flexible structures, the developed
methods can be extended to these cases too.

Research and develop an on-the-fly identification method Complete iden-
tification can only be done in base parameter space since only these parame-
ters affect robot dynamics. Taking this idea a little further, we can say that for
a given limited set of motions, the only identifiable parameters are the ones
that in fact affect the dynamics in that region. Having these considerations,
it may be possible to devise a controller that identifies the parameters on-
the-fly. As the joints move, motion and torque data would be collected, and
the parameters implied in the dynamics of such motion could be identified.
The identification confidence would increase as more motion space is cov-
ered, and the controller gains would be adapted taking individual parameter
confidence into account. The confidence could then be feed back to a trajec-
tory reference generator which would try to excite the parameters with lower
confidence. Classical regression approaches require all base parameters to be
minimally well excited or else the solution cannot be found or may be physi-
cally infeasible. LMILMI-SDPSDP regression techniques would guarantee feasible and
stable solutions, hence allowing the initial lack of parameter knowledge.
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