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Abstract 

Carsharing is a transportation option with great potential, allowing people to use a 

private vehicle without having to own it. Nowadays carsharing systems are 

implemented almost all over the world, being the round-trip system the most 

predominant. However, the implementation of one-way systems has been expanded 

considerably since 2008. Despite the proliferation of carsharing, there are few analytical 

studies addressing its management. One-way systems offer users more flexibility. 

Contrarily to the typical round-trip systems, one-way systems allow users to pick up the 

vehicles at one station and deliver them to a different station from the one where they 

were picked up. This flexibility poses added management complexities which have 

never been solved completely. Most of the existing studies cannot accurately represent 

the reality of these systems, due to algorithmic, structural, and functional complexities. 

Therefore, carsharing is an interesting topic to be addressed under an operations 

research perspective.  

This thesis has two main objectives. The first objective consists in assisting one-way 

carsharing companies to plan and manage their systems in a more profitable way while 

at the same time offering users a good quality of service. The second objective targets 

helping round-trip carsharing companies to start offering one-way trips, taking full 

advantage of idle fleets and offering users a transportation option for other trips than 
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just shopping or leisure. Three optimization models as well as a simulation model have 

been developed to reach the previously defined objectives.  

In this thesis, we consider the perspectives of two main stakeholders: the carsharing 

provider and the carsharing user. It is our belief that the improvement of carsharing 

systems from these two perspectives is also relevant to transportation authorities and to 

local and central governments, since it provides a complement to existing private and 

public transportation modes. 

The greatest problem of one-way carsharing companies is associated with the imbalance 

of vehicles across stations. This is due to the imbalance inherent to trip patterns in most 

of the cities worldwide. In this work, the two approaches proposed to mitigate this 

problem are: vehicle relocation between stations through a staff of drivers, and changing 

the price of the trips according to its effect on system balance. With respect to 

relocation operations, both an optimization model and a simulation model are 

developed. For the second approach, only an optimization model is proposed. Given the 

complexity inherent to this optimization model, we resorted to an iterated local search 

meta-heuristic algorithm. All of the developed models aim at maximizing the profit of 

the carsharing companies taking into consideration the revenue obtained through the 

trips paid by carsharing users, and the costs involved, namely fleet, stations and 

relocation operations costs. For the trip price changing approach, costs associated with 

relocation operations are not considered since vehicle relocation is not considered.  

As one-way carsharing systems present greater flexibility in terms of trip purposes (for 

example, commute, shopping, and leisure), round-trip companies have started to 

consider providing one-way trips. For instance, in 2014, Zipcar began accepting some 
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one-way trips. Notwithstanding, as it was previously said, one-way trips are more 

difficult to manage than the round-trip ones. Thus, there is the need to study the 

integration of both carsharing types, which is another objective of this thesis. For this 

purpose, an optimization model is developed with the same goal as the previous, the 

maximization of carsharing companies‟ profit.  

All the models are applied to realistic case studies. For the approaches studied to 

balance the vehicle stocks in one-way carsharing systems, the municipality of Lisbon, in 

Portugal, is used. For the integration of both round-trip and one-way carsharing, the 

Zipcar round-trip carsharing service in Boston, Massachusetts, USA, is considered. The 

developed methodological approaches are able to deal with the size and complexity of 

the case studies considered, as all the applications reached satisfactory results and some 

of them achieved optimal results. Results show the usefulness of these methodologies as 

viable tools to help carsharing companies plan and manage their systems, improving the 

level of service offered to the users. 
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Resumo 

O carsharing é um modo de transporte com grande potencial, permitindo o uso de um 

carro sem os custos inerentes à sua aquisição e manutenção. Atualmente, os sistemas de 

carsharing existem em praticamente todo o Mundo, sendo o sistema de round-trip o 

mais predominante. No entanto, a implementação de sistemas de one-way carsharing 

tem-se expandido consideravelmente desde 2008. Apesar da proliferação do carsharing, 

ainda existe um número reduzido de estudos analíticos que tentem resolver os 

problemas relacionados com a sua gestão. Contrariamente aos sistemas tradicionais de 

round-trip carsharing, os sistemas de one-way carsharing oferecem aos utilizadores 

uma maior flexibilidade, permitindo aos utilizadores recolherem os veículos numa 

estação e devolverem-nos em outra diferente da inicial. Esta flexibilidade implica 

problemas adicionais para as empresas na gestão da sua frota, os quais nunca foram 

totalmente solucionados. A maioria dos estudos existentes não consegue representar 

fielmente a realidade destes sistemas, devido à sua complexidade algorítmica, estrutural 

e funcional. Deste modo, o carsharing torna-se um tópico interessante de estudo sob 

uma perspetiva de investigação operacional. 

Esta tese tem dois objetivos principais. O primeiro objetivo consiste em auxiliar as 

empresas de one-way carsharing a planear e gerir os seus sistemas de uma forma mais 

lucrativa, oferecendo, ao mesmo tempo, uma boa qualidade de serviço aos seus 

utilizadores. O segundo objetivo visa ajudar as empresas de round-trip carsharing a 
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oferecer viagens one-way, tirando completo proveito da sua frota enquanto oferecem 

aos seus clientes uma alternativa de transporte para outras viagens que não as de 

compras ou lazer. Três modelos de otimização e um modelo de simulação foram 

desenvolvidos para alcançar os objetivos referidos. Nesta tese, as perspetivas de dois 

intervenientes principais nestes sistemas são considerados: a das empresas, e a dos 

utilizadores. A melhoria dos sistemas de carsharing consoante estas duas perspetivas é 

relevante para as entidades locais e centrais que gerem os transportes, já que estes 

sistemas constituem um complemento ao transporte privado e ao transporte público 

existentes. 

O maior problema que as empresas de one-way carsharing enfrentam prende-se com o 

desequilíbrio de stocks de veículos nas estações. Este surge devido ao desequilíbrio no 

padrão de viagens existente na maioria das cidades. Nesta tese, as duas abordagens 

propostas para combater este problema são: operações de relocalização de veículos 

entre estações através de um conjunto de condutores contratados pela empresa de 

carsharing, e variação dos preços das viagens de acordo com o seu efeito no equilíbrio 

do sistema. No que se refere à primeira abordagem, um modelo de otimização assim 

como um modelo de simulação são desenvolvidos. Para a segunda abordagem, um 

modelo de otimização é desenvolvido. Dada a complexidade inerente a este modelo, 

recorremos a uma meta-heurística de procura local com iterações para a sua resolução. 

Todos os modelos propostos têm como objetivo a maximização do lucro obtido pela 

empresa, considerando a receita obtida através das viagens pagas pelos clientes, e todos 

os custos envolvidos, nomeadamente os custos relativos à frota de veículos, às estações 

e às operações de relocalização. Para a abordagem correspondente à variação dos preços 
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das viagens, os custos das operações de relocalização não se consideram, visto que estas 

não são efectuadas em simultâneo com a política de preços.  

Devido ao facto do one-way carsharing apresentar uma maior flexibilidade relativa aos 

motivos de viagem (por exemplo, pendulares, compras e lazer), as empresas de round-

trip carsharing começaram a pensar oferecer viagens one-way. Em 2014, a Zipcar 

começou a providenciar este tipo de viagem. Não obstante, como já foi referido 

anteriormente, estas viagens são mais difíceis de gerir do que as viagens de round-trip. 

Desta forma, existe a necessidade de estudar a integração de ambos os tipos de 

carsharing, o que constitui outro objetivo desta tese. Com esta finalidade, um modelo 

de otimização é desenvolvido com o mesmo objetivo dos anteriores, a maximização do 

lucro da empresa.  

Todos os modelos desenvolvidos foram aplicados a estudos de caso realistas. Para as 

abordagens propostas para equilibrar os stocks de veículos nos sistemas de one-way 

carsharing, é utilizado o município de Lisboa, em Portugal. Para o estudo da integração 

de ambos os tipos de carsharing é considerado o serviço de round-trip carsharing da 

Zipcar existente em Boston MA, EUA. As metodologias desenvolvidas são capazes de 

lidar com a dimensão e complexidade dos estudos de caso considerados, já que todas as 

aplicações alcançaram resultados satisfatórios, sendo mesmo possível atingir resultados 

ótimos em algumas delas. Os resultados mostram a utilidade destas metodologias como 

ferramentas viáveis para ajudar as empresas de carsharing a planear e gerir os seus 

sistemas.
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Chapter 1  

Introduction 

1.1 Background 

In the last decades, the way urban transportation is seen has changed. In the beginning, 

private transportation provided greater accessibility and flexibility to its users. 

However, in the long-run, several negative externalities have been noticed, namely 

pollution, and excessive consumption of energy and persons‟ time due to traffic 

congestion (Schrank et al., 2010). Moreover, vehicle ownership costs are not 

recoverable, for example insurance, even if the vehicle is no longer used (Mitchell et al., 

2010). With respect to parking, private vehicles‟ utilization rates are very low, for 

example, in the US, automobiles spend around 90% of their time parked (Hu and 

Reuscher, 2001). This creates opportunity costs associated with using urban land for 

parking spaces instead of other more productive activities. Thus, public transportation 

could constitute a good alternative. Nevertheless this also suffers from several 

shortcomings, for instance: poor service coverage, schedule inflexibility, lack of 
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personalization, and inefficiency due to the need of providing enough vehicles for the 

peak hour demand, which will then be idle during the remaining periods of the day. 

Taking into consideration the advantages and disadvantages of private and public 

transportation exposed above, there is the need to find compatible and alternative 

transportation modes that aim at minimizing the negative aspects of the traditional ones 

and that at the same time provide the travelers the mobility they need when necessary. 

One of these alternatives is carsharing which may be classified somewhere between 

private and public transportation. Carsharing systems involve a small to medium fleet of 

vehicles available at several stations or parking spaces spread across a city to be used by 

a relatively large group of members. Through these systems, a person can access a fleet 

of shared-used vehicles and benefit from almost all the advantages of private 

transportation, without the costs of owning a car (Shaheen et al., 1999).  

These systems have a positive impact on urban mobility. Mainly through a more 

efficient use of automobiles (Litman, 2000; Schuster et al., 2005) since they have much 

higher utilization rates than private vehicles. That is, in the medium to the long-run they 

can dilute the sunk costs and decrease the land needed for parking. Typically the use of 

carsharing systems corresponds to a decrease on car ownership rates and as a 

consequence a reduction on car use as the main transportation mode (Celsor and 

Millard-Ball, 2007; Schure et al., 2012; Sioui et al., 2013). This illustrates the potential 

of carsharing systems as a strong transport demand management measure available to 

transportation and municipality authorities. Moreover, some recent studies concluded 

that carsharing systems would have positive environmental effects, allowing the 
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reduction of greenhouse gas emissions (Martin and Shaheen, 2011; Firnkorn and 

Müller, 2011). 

With respect to the operating model, there are two main types of carsharing systems: 

round-trip (or two-way) and one-way. Round-trip carsharing systems require users to 

return cars to the same station where they were picked up; while one-way carsharing 

systems offer users the flexibility of picking up a car at a station and return it to a 

different one. Thus, round-trip services may not be attractive if a trip requires spending 

a long time parked at a location other than the vehicle‟s home location, being mostly 

used for short trips in which vehicles are parked for a short duration, typically for 

leisure, shopping and sporadic trips (Barth and Shaheen, 2002; Costain et al., 2012; 

Balac and Ciari, 2014). On the contrary, one-way carsharing may be used for all trip 

purposes, even commuting (Balac and Ciari, 2014; Ciari et al., 2014; Schmoller et al., 

2014). Although Balac and Ciari (2014) concluded that the demand for round-trip 

carsharing did not decrease significantly with the introduction of one-way carsharing, 

showing that both services are complementary. Recently, a particular case of one-way 

carsharing appeared, in which the vehicles are scattered in parking spaces within a city, 

the so-called free-floating carsharing (Ciari et al., 2014; Schmoller et al., 2014), which 

can be called a generalization of the one-way carsharing.  

Despite being an advantage for the user, one-way carsharing systems bring the complex 

question of how to manage fleet imbalances, since demand for vehicles and free parking 

spaces fluctuates throughout the day. Therefore, clients may not find vehicles or parking 

spaces available at the time they need them. Several approaches have been proposed in 
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the literature to address the imbalance problem, such as: operator-based relocations 

(Kek et al., 2009); price incentive policies for the users to accept choosing another drop-

off station (Febbraro et al., 2012); price incentives for grouping and ungrouping parties 

of people (Barth et al., 2004); accepting or refusing each trip (Fan et al., 2008); station 

location (Correia and Antunes, 2012); and changing the trip prices considering both 

origin and destination stations simultaneously (Zhou, 2012). These approaches have 

mainly been studied using optimization and/or simulation methods. 

However, all of the approaches previously studied present problems related to the 

approach itself or to the methodology followed. With respect to the approaches: 

operator-based relocations present additional costs to the operator, while user-based 

relocations are limited to the value that users give to affordability versus convenience. 

The same happens with the price incentives for grouping and ungrouping people. 

Moreover, refusing trips can damage the image that users have about this type of 

system, and just locating carsharing stations is not by itself able to increase the 

profitability of the system. Finally, changing the price of each trip according to its 

potential to balance the vehicle stocks has not yet proved to be able to solve this 

problem. Regarding the methods used: optimization algorithms usually entail great 

computational complexity, which makes it difficult to perform a complete analysis, 

integrating several planning and/or operational decisions; and simulation does not lead 

to optimal solutions. 
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1.2  Short history of shared vehicle systems 

Shared-use vehicle systems were originated in 1948, in Zurich, Switzerland with a 

cooperative known as Sefage, and expanded to other European countries, namely France 

and The Netherlands in the 1970‟s (Shaheen et al., 1999). However, all of these systems 

failed and only in the 1980‟s successful programs were implemented, which benefited 

from the knowledge acquired from previous experiments and the advancement of 

communication technology. In the United States these systems appeared much later, in 

1983, with the Mobility Enterprise program. This concept of shared vehicles began 

gaining popularity in the US only in the 1990s. More recently, these systems were also 

implemented in Asia, for instance in Japan and Singapore (Kek et al., 2006), and in 

Australia (Flexicar, 2014) and New Zealand (Cityhop, 2014). Moreover, start-ups are 

being explored in several African countries, such as Kenya and South Africa (Shaheen 

and Cohen, 2007). 

Nowadays, carsharing is implemented in approximately 1100 cities in 27 countries 

worldwide and has an estimated 1,788,000 members sharing over 43,550 vehicles 

(Shaheen and Cohen, 2013). Currently, the world‟s largest carsharing company is 

Zipcar, which was founded in 2000 and purchased by Avis Budget Group, in 2013. It 

has a fleet of 10,000 vehicles shared by 850,000 members in the United States, the 

United Kingdom, Canada, Spain, and Austria (Zipcar(a), 2014), and operates mainly as 

a round-trip carsharing company. Considering the Portuguese case, there are currently 

two round-trip carsharing providers: Mob Carsharing that operates in Lisbon since 

September 2008, and Citizenn Carsharing, which appeared later in Oporto. Mob 
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Carsharing has 9 vehicles scattered around 8 stations (mobcarsharing, 2014), while 

Citizenn Carsharing has 8 stations and a total fleet of 10 vehicles (citizenn, 2014). 

Moreover, it is important to note that these two companies have a partnership, allowing 

the clients of each of them to use both services.  

Despite round-trip systems being the predominant type of carsharing (Barth et al., 2006; 

Enoch and Taylor, 2006; Shaheen et al., 1999; Shaheen and Cohen, 2007), one-way 

systems have been expanded considerably since 2008. Currently, as far as we know, 

there are six one-way carsharing systems operating worldwide. One created by the 

Daimler carmaker group, car2go, started in October, 2008, in Ulm, Germany. Now 

car2go operates in other German cities, the US, Canada, the Netherlands and Italy 

(car2go, 2014). Another created by BMW, which is called DriveNow, was started in 

April, 2011, in Munich, Germany (AutoExpress, 2011). DriveNow is also operating in 

other German cities, as well as in San Francisco, the US (DriveNow, 2014). Moreover, 

one-way carsharing is being offered by Communauto (Auto-mobile vehicles) in 

Montrèal, Canada (Communauto, 2014), and by Autolib’ in Paris, France (Autolib‟, 

2014). Zipcar, the biggest round-trip carsharing company, is also offering one-way trips 

in Boston, the US (ZipcarOneWay, 2014). This service started in March 2014 

(autobloggreen, 2014). With respect to Portugal, very recently in June 2014, Mobiag 

(Mobiag, 2014) appeared in the city of Lisbon. The objective was to manage the fleets 

of the different carsharing operators in an integrated way, providing them the necessary 

technological tools. Currently, Mobiag manages, for example, CityDrive (CityDrive, 
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2014), a free-floating carsharing service, and a total fleet of 40 vehicles 

(Exameinformática, 2014). 

Furthermore, other vehicle shared systems growing fast are bikesharing systems, which 

grew from about 60 programs in 2007 to about 500 programs in 2012 all over the world 

(USnews, 2013). These systems started in Europe and then spread to other continents, 

namely America, Asia, and Oceania (Larsen, 2013). A bikesharing system is planned 

for South Africa (GoogleMaps(a), 2014). In January 2014, there were over 700 cities 

worldwide offering bikesharing services (The Bikesharing Blog, 2014). The world‟s 

largest bikesharing program was launched in Wuhan, China, with 9 million clients 

sharing about 90,000 bicycles (Larsen, 2013). In Europe, the largest bikesharing 

program is Vélib, implemented in 2007, in Paris, France. It started with 10,000 bicycles 

scattered around 750 stations, doubling the size quickly (Larsen, 2013). Both round-trip 

and one-way bikesharing systems exist. However, it is important to refer that one-way 

bikesharing systems are easier to manage, because bicycles‟ relocations may be simply 

done by loading them onto trucks (Mitchell et al., 2010). 

The growth in the implementation of these systems worldwide demonstrates their great 

potential. Moreover, there are few analytical studies in this field, as referred in the 

previous section. And these few do not allow solving the existing problems completely, 

predominantly the ones related to providing more flexible systems without losing a 

profit. These two aspects combined make this an interesting topic to be addressed under 

an operations research perspective. 
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1.3  Research objectives 

The general objective of this thesis is to provide new tools, namely optimization and 

simulation models, to help manage one-way carsharing systems. In this thesis, models 

are developed taking into consideration the carsharing operators‟ perspective in their 

planning and operational decisions with the goal of achieving the highest possible 

profit, but always considering that their major purpose should be providing their clients 

(carsharing users) the highest possible level of service.  

Considering this, the first objective of this thesis is to set out a comprehensive review of 

the research that has been conducted on this alternative transportation mode, mainly in 

the last few years. This review focuses on the models that address carsharing demand 

modeling and ways of balancing vehicle stocks across stations with the objective of 

identifying the existing research gaps and to decide paths for future development in this 

field. This review laid the path for the other research objectives which try to bridge 

some of the identified gaps. 

Through the previous, it was concluded that one of the main existing gaps in the 

literature is the lack of methods to define operating principles for managing one-way 

carsharing systems. Therefore, the second objective of this thesis is to develop 

methodological approaches that aim at balancing vehicle stocks across one-way 

carsharing stations. These should be easy to apply to real systems in order to increase 

the profitability of the company and the quality of service to the users.  
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The third objective of this work is to address the process of integrating both types of 

carsharing (round-trip and one-way). This is relevant given that round-trip systems are 

more frequently found in cities and they are easier to manage, but clients are demanding 

more flexible systems with no mandatory return to the original station and even without 

stations. 

The objectives will be pursued by developing and applying optimization and simulation 

methods to realistic carsharing networks. These networks were mainly chosen taking 

into consideration data availability, but also its appropriateness to study the specific 

problem at hand. It is important to note that, despite the effort made in having access to 

real-world information to represent the problems as realistically as possible, there was 

the need in some cases to resort to hypothetical data.  

1.4  Outline 

This thesis is divided into 6 chapters, Chapters 1 and 6 are the thesis introduction and 

conclusion, respectively. The four main chapters, Chapters 2 to 5, are all written in the 

format of a scientific paper. Some have already been accepted for publication, and 

others have been submitted recently, where editorial decisions are expected in the next 

few months. This means that all chapters can be read in succession or independently. 

For this reason, there are some repetitions in respect to the concepts as well as the 

background information throughout the document that cannot be avoided. Despite the 

independence between chapters, this thesis is not merely a collection of papers, since 

they form a logical evolution that is related. In Figure 1.1 the thesis flowchart is shown. 
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Figure 1.1 - Schematic figure of the thesis outline 

 

Chapter 2 is the result of a comprehensive literature review of research articles and 

scientific reports that have been done on carsharing, mainly during the last years and 

until the publication date of the paper (Jorge and Correia, 2013). This chapter focuses 

specifically on: carsharing history and trends, carsharing demand modeling, and one-

way carsharing systems modeling in terms of explaining the vehicle imbalance problem, 

its performance, and the ways of solving the vehicle imbalance problem. A primary 

focus is on the mathematical models developed so far with the objective of identifying 
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the existing research gaps and finding possible paths to devise better operational 

principles for carsharing operators to manage these systems. It should be noted that 

since 2013, the publication date of the paper presented in this chapter, some new studies 

have appeared about carsharing that can help bridge the gaps previously identified. The 

new studies are referred to in chapters 3, 4, and 5. 

Chapters 3 and 4 present ways of managing imbalance of vehicle stocks in one-way 

carsharing systems. The methodological approaches to address these issues are 

optimization (mathematical programming models) and simulation. 

Chapter 3 introduces relocation operations of vehicles between stations using a staff of 

drivers as a way to solve vehicle imbalance issues. With this objective, two tools are 

developed: a mathematical programming model to optimize relocation operations that 

maximizes the profitability of the company; and a simulation model that allows testing 

different real-time relocation policies. The profitability combines the trips paid by 

customers, and the costs of running the system, such as: relocation, vehicle 

maintenance, vehicle depreciation, and station parking maintenance. In these models, all 

demand between existing stations must be satisfied. The real time relocation policies are 

based on historical data and some of them also use some of the results achieved with the 

optimization model as basis for obtaining better solutions. Both mathematical and 

simulation approach results are compared using trip data from the city of Lisbon 

(Portugal). The optimization results are the best ones possibly obtained, but simulated 

relocation policies are much more applicable in reality, because in the existing 

carsharing systems the travelers do not have to reserve their vehicles in advance.  
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Chapter 4 presents the use of trip pricing to balance one-way carsharing systems. We 

formulate a mathematical programming model with the decision being to increase or 

decrease the price of travelling from an origin zone to a destination zone according to 

the vehicle stocks in the origin and destination zones. We consider that there is a 

negative price elasticity of demand, which allows changing demand for balancing 

vehicle stocks. In this model, the goal is again to maximize the profitability of a 

carsharing company considering the revenues obtained through the trips paid by clients, 

and the costs of vehicle maintenance, vehicle depreciation, and station maintenance. 

Given the dependence between demand and price, the model is non-linear, which leads 

to the need of creating a solution algorithm to solve it. Therefore, a meta-heuristic is 

developed for solving the problem. As in Chapter 3, the model was applied to the case-

study of Lisbon (Portugal). 

To the best of our knowledge, Chapter 5 introduces, for the first time, the integration of 

both round-trip and one-way carsharing. The objective of this chapter is to study if a 

round-trip carsharing system is able to be profitable by allowing one-way trips for 

specific origin-destination pairs, considering that the round-trip service already exists 

and for this reason should be served in priority. An integer programming model is 

developed to decide which one-way trips to/from a major trip generator should be 

allowed in a round-trip service in order to maximize the profit of the company. This 

profit is computed taking into consideration the revenues that are obtained through the 

trips paid by the clients, and the costs that correspond to maintenance of the vehicles 

used for the one-way service, high demand generator station parking, and vehicle 
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relocation when these are being considered. Two assumptions are considered for this 

model: the number of parking spaces in each existing round-trip station is not increased; 

and the fleet of vehicles is limited to the number of vehicles currently existing in the 

round-trip service. This model was applied to the case study of the Logan Airport in 

Boston, United States of America, considering that one-way trips are allowed from the 

existing Zipcar stations in the city (Zipcar(b), 2014) to the Airport and vice-versa. 

Finally, Chapter 6 summarizes the work developed throughout this thesis and presents 

the main conclusions withdrawn from it. 

1.5  Publications 

As mentioned, this thesis is organized as a collection of papers. Therefore, we refer here 

the research papers that have resulted from the thesis, and where they have been 

published or where they have been submitted in the case of the last two. 

All papers have been submitted to international peer-reviewed journals. They have not 

been altered in any aspect, with the exception of some layout-specific issues. Hence, 

some notation may differ from chapter to chapter of the thesis. The references for these 

chapters are as presented in Table 1.1.  
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Table 1.1 - Publications 

Title Authors Journal Status 

Chapter 2 

Carsharing systems 

demand estimation and 

defined operations: a 

literature review 

Diana Jorge 

Gonçalo Correia 

European Journal of 

Transport and 

Infrastructure 

Research 

Published  

(2013, Volume 

13, Issue 3, pp. 

201-220)  
 

Chapter 3 

Comparing optimal 

relocation operations 

with simulated 

relocation policies in 

one-way carsharing 

systems 

Diana Jorge 

Gonçalo Correia 

Cynthia Barnhart 

IEEE Transactions 

on Intelligent 

Transportation 

Systems 

Published  

(2014, Volume 

15, Issue 4, pp. 

1667-1675) 

Chapter 4 

Trip pricing of one-way 

station-based carsharing 

networks with zone and 

time of day price 

variations 

Diana Jorge 

Goran Molnar 

Gonçalo Correia 

Transportation 

Research Part B: 

Methodological 

Submitted 

Chapter 5 

Assessing the viability 

of enabling a round-trip 

carsharing system to 

accept one-way trips: 

application to Logan 

Airport in Boston 

Diana Jorge 

Cynthia Barnhart 

Gonçalo Correia 

Transportation 

Research Part C: 

Emerging 

Technologies 

Submitted  
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Beside the journal papers, most of the research developed in these last 4 years has been 

presented and discussed in several international and national conferences between 2012 

and 2014. These are listed below:  

 9º Encontro do Grupo de Estudos em Transportes (9º GET), January 5-6, 2012, 

Tomar, Portugal – Chapter 3;  

 25th European Conference on Operational Research (XXV EURO), July 8-11, 

2012, Vilnius, Lithuania – Chapter 3; 

 15th Edition of the Euro Working Group on Transportation (15th EWGT), 

September 10-13 , 2012, Paris, France – Chapter 3; 

 1st European Symposium on Quantitative Methods in Transportation Systems 

(1st LATSIS), September 4-8, 2012, Lausanne, Switzerland – Chapter 3; 

 Institute for Operations Research and the Management Sciences Annual 

Meeting 2012 (INFORMS 2012), October 14-17, 2012, Phoenix, USA – 

Chapter 3; 

 Transportation Research Board 92nd Annual Meeting (92nd TRB), January 13-

17, 2013, Washington DC, USA – Chapter 3; 

 13th World Conference of Transport Research (13th WCTR), July 15-18, 2013, 

Rio de Janeiro, Brazil – Chapter 3; 

 11º Encontro do Grupo de Estudos em Transportes (11º GET), January 6-7, 

2014, Covilhã, Portugal – Chapter 5; 

 17th Edition of the Euro Working Group on Transportation (17th EWGT), July 

2-4, 2014 Seville, Spain – Chapter 5.  
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Chapter 2  

Carsharing Systems Demand 

Estimation and Defined Operations: 

a Literature Review 

2.1  Introduction 

In recent decades there have been some changes in how the use of urban transportation 

is viewed. At first, the increasing use of private transportation in industrialized countries 

provided greater accessibility. In the long-term, however, it has resulted in serious 

negative externalities, such as pollution, and excessive consumption of energy and time 

due to congestion problems. This has happened mainly in urban areas where demand is 

concentrated in peak hours (Schrank et al., 2010). Moreover, land prices and vehicle 

ownership costs such as fuel, parking and the cost of purchasing and insuring the 

vehicle itself are increasing. „These last costs are sunk costs even before a mile is 

driven‟ (Mitchell et al., 2010), which means that they are unrecoverable, even if the 

vehicle is no longer used. In addition each vehicle use is very low. In America, for 
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example, automobiles spend around 90% of their time parked (Hu and Reuscher, 2001). 

Public transportation could be a good alternative, but it has several shortcomings. For 

instance, coverage does not allow a door-to-door service even in those European cities 

that have an outstanding public transportation network. Moreover, schedules are not 

flexible and services lack personalization. Providing public transportation for the peak 

hour demand also means that vehicles are idle for the rest of the day, which decreases 

its efficiency. 

Since all these issues matter to society they have been handed over to policymakers, 

who should act in the public interest. It is now generally agreed that strategies are 

needed that will minimize these impacts while simultaneously allowing people to 

participate in the same activities as before. One strategy that has been indicated to 

manage demand is providing a transportation alternative in the form of carsharing 

which is a system that is somewhere between private and public transportation. The 

classical definition of carsharing states that it is a system that involves a small to 

medium fleet of vehicles, available at several stations, to be used by a relatively large 

group of members (Shaheen et al., 1999). 

2.1.1 Round-trip versus one-way carsharing 

Traditional carsharing system operators require users to return cars to the station where 

they were picked up. These are round-trip carsharing systems, which simplify the task 

of the operators because they can plan stocks based on the demand for each station. But 

it is less convenient for the users. Better suited to personal needs are one-way carsharing 
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systems. In one-way carsharing, users can pick up a car from one station and leave it at 

a different one. If they need a vehicle later on, they can pick up another one. Therefore, 

in theory, one-way carsharing systems allow more trips to be captured than the 

alternative round-trip system, which can only be used by a small market share for 

leisure, shopping and sporadic trips (Barth and Shaheen, 2002). Firnkorn and Müller 

(2011) concluded exactly this through a survey that shows that market penetration of 

car2go, a German one-way carsharing company is about 0.37%, which is 25 times 

higher than the market penetration of round-trip carsharing in Germany. However, it is 

relevant to note that this figure depends on their computation process, which was based 

on member subscriptions and not on the number of active members. 

A study based on a stated-preference survey performed in Greece (Efthymiou, 2012) 

(respondents were aged between 18 and 35) also concluded that the flexibility to return 

the vehicle to a station different from the one where it was picked up is a critical factor 

to joining a carsharing scheme. Although stated-preference only shows how things 

could be and not what would really happen if they were implemented. Costain et al. 

(2012) studied the behavior of a round-trip carsharing company in Toronto, Canada, and 

concluded that most trips are made for grocery or other household shopping purposes, 

which supports the idea that reasons for making trips are limited. 

Despite the apparent advantages of one-way systems they do present the operational 

problem of creating unbalanced vehicle stocks in the stations due to the uneven nature 

of the trip pattern in a city. Nevertheless, a great effort has been made to provide these 
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flexible systems for users in recent years. One notable example is the car2go company 

(car2go, 2012), implemented first in Germany by the Daimler carmaker and recently 

extended to some other European and North American cities. 

2.1.2 Motivation 

The complexity of managing carsharing systems, especially one-way trips, is directly 

linked to the interplay effect of supply and demand. One must be able to accurately 

model the demand and supply of these systems to better operate carsharing and estimate 

its effect on mobility management and the accessibility that it provides in urban areas. 

Carsharing has gained great momentum in the European Union as a measure to manage 

transportation demand, resulting in the implementation of a very significant number of 

private and public carsharing initiatives. For instance the Covenant of Mayors‟ initiative 

was created to get European municipalities to work to reduce vehicle emissions by 20% 

by 2020, and one of the measures that repeatedly appears in the plans presented by 

cities is the promotion of carsharing systems. However, despite the interest shown in 

carsharing, there are not yet many instruments to measure the impact of carsharing 

systems on the sustainability of urban mobility. Moreover, it is often difficult to define 

their operational principles, especially in the fastest growing market of one-way 

carsharing systems. 

This chapter sets out to give a comprehensive overview of the research that has been 

conducted on this alternative transportation system, mainly in the last few years. The 
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focus is on the mathematical models developed so far, especially those that address 

demand modeling and ways of balancing vehicle stocks across stations in one-way 

carsharing systems. The objective is to create a milestone, identifying the existing 

research gaps and proposing possible paths for future development in this field. Our 

strategy consisted of reviewing all the research articles and scientific reports on 

carsharing, especially those that use mathematical modeling to understand the behavior 

of these systems and devise better operational principles for managing carsharing. 

The chapter is structured as follows. The next section gives the background to 

carsharing systems. This is followed by a review of the research that has produced 

models to characterize carsharing demand. Then the models that have been developed to 

study one-way carsharing systems are reviewed, but specifically focused on creating 

ways to solve the vehicle imbalance problem, which is one of the major issues with 

running these systems. After that we have a tabular summary of the studies that have 

been carried out so far. The chapter ends with a section where we point possible ways to 

plug the gaps in the literature, thus identifying potential paths of future research in this 

field.  

2.2 Carsharing: history and trends 

The origins of shared-use vehicles can be traced back to 1948, when a cooperative 

known as Sefage set up services in Zurich, Switzerland (Shaheen et al., 1999). These 

first experiments were mainly motivated by economic reasons. Elsewhere, a series of 
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„public car‟ experiments were attempted, but failed. Among the failures were a 

carsharing initiative known as Procotip, which began in Montpellier, France, in 1971 

and another, called Witkar, which was deployed in Amsterdam in 1973 (Shaheen et al., 

1999). However, failure breeds experience, which, coupled with the advances in 

communication technology, enabled several successful programs to be launched in the 

1980s. In these programs we may include Mobility Carsharing in Switzerland, and 

Stattauto in Germany. 

At first it was predicted that carsharing would not work in the US because „American 

cities have, with almost no exception, become motor cities – adapted to the owner-

driver form of transport‟ (Fishman and Wabe, 1969). So carsharing programs only 

appeared later in the 1980s, under the Mobility Enterprise program. In contrast to early 

users in Europe those in the US were motivated more by convenience than by 

affordability, possibly because driving is very cheap in the US (Lane, 2005). The 

concept of shared vehicles only started to become popular in the US in the 1990s. 

Several pilot projects were carried out to achieve a better understanding of how to 

implement and operate this kind of system. These include UCR Intellishare at the 

University of California at Riverside (Barth and Todd, 2001), ZEV.NET at the 

University of California at Irvine, and Carlink I and II at the Bay Area Rapid Transit 

station in Dublin-Pleasanton (Shaheen et al., 2000; Shaheen and Wright, 2001). The 

projects provided insights on user responses to shared-use vehicles and allowed the 

assessment of the possibility that these systems could be operated as a business. Hence, 

a natural progression to the commercialization of the concept in many countries such as 
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the United States, Japan, and Singapore, was expected (Kek et al., 2006). Currently, the 

largest carsharing company in the World is Zipcar, which was founded in 2000. In May 

2012, this company had a fleet of 9,000 vehicles and 700,000 members (Wikipedia: 

Zipcar, 2012). 

Carsharing has been observed to have a positive impact on urban mobility, mainly 

because each car is used more efficiently (Litman, 2000; Schuster et al., 2005). Shared 

vehicles can have much higher utilization rates than single-user private vehicles because 

each vehicle spends more time on the road and less time parked, thereby diluting the 

sunk costs. When cars are being used they are not occupying parking places, so in the 

medium- to long-run higher vehicle utilization rates should also mean less land needed 

for parking (Mitchell et al., 2010). The use of carsharing systems has sometimes led to a 

fall in car ownership rates and thus to lower car use, according to Celsor and Millard-

Ball (2007). Martin et al. (2010) conducted a stated-preference survey in North America 

and concluded also that carsharing members reduced their vehicle holdings 

significantly, from an average of 0.47 vehicles per household to 0.24 vehicles per 

household. More recently, Schure et al. (2012) based on a survey conducted in 2010 on 

13 buildings in San Francisco concluded that the average vehicle ownership for 

households that use carsharing systems is 0.47 vehicles/household compared to 1.22 

vehicles/household for those that do not. Moreover, a recent study by Sioui et al. (2013) 

surveyed the users of Communauto inc., a Montreal carsharing company, and concluded 

that a person who does not own a vehicle and makes a high use of the carsharing 

systems (more than 1.5 times per week) never reaches the car-use level of a person who 
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owns a vehicle: there was a 30% difference between them. This idea is reinforced by 

Martin and Shaheen (2011) who found through a survey in US and Canada that the 

average observed vehicle-kilometers travelled (VKT) by respondents before joining 

carsharing was 6468 km/year, while the average observed VKT after joining carsharing 

was 4729 km/year, which is a decrease of 27% (1749 km/year). Furthermore, results of 

recent survey studies seem to indicate that carsharing systems can have positive 

environmental effects: for instance, Martin and Shaheen (2011) noted from the VKT 

estimations presented above that the greenhouse gas (GHG) emissions of the major 

carsharing organizations in the US and Canada can be statistically significantly reduced 

by -0.84 t GHG/year/household. While most members increase their emissions; there 

are compensatingly larger reductions for other members who decrease their emissions. 

Moreover, Firnkorn and Müller (2011) conducted a survey of a German carsharing 

company and concluded that the CO2 emissions have decreased by between 312 to 146 

kg CO2/year per average user. 

In the meantime several studies have been conducted to find out who the users of these 

systems are. Most of the studies were done through user surveys and have repeatedly 

demonstrated important tendencies: for instance, it has been shown that many 

carsharing members are frequent public transportation users and tend to live in medium 

to high density areas (Cervero, 2003; Shaheen and Rodier, 2005; Burkhardt and 

Millard-Ball, 2006). The users tend to be in their mid 30s to mid 40s, be highly 

educated (Brook, 2004; Lane, 2005), belong to a household of less than average size 

(Brook, 2004; Millard-Ball et al., 2005) and be environmentally aware people (Costain 
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et al., 2012; Efthymiou et al., 2012). Moreover, the accessibility to the stations, in terms 

of the distance between home/work and the nearest station, is a critical factor to joining 

carsharing (Zheng et al., 2009; Costain et al., 2012; Efthymiou et al., 2012). 

2.3 Demand modeling 

One of the most productive streams of research on carsharing has been the study of the 

characteristics of its users. Most works report on the mean value of population 

characteristics using a sample of carsharing users. But other studies have used more 

sophisticated models to better support their conclusions. 

Stillwater et al. (2008) compared the use of carsharing vehicles over a period of 16 

months with the built environment and demographic factors for an urban US carsharing 

operator. They used regression analysis to explain the average monthly hours of 

carsharing use and concluded that the most significant variables were: street width, the 

provision of a railway service, the percentage of drive-alone commuters, the percentage 

of households with one vehicle, and the average age of the stations. The percentage of 

drive-alone commuters, street width, and heavy rail availability were negatively related 

to carsharing, that is, the higher these factors the lower the demand. The percentage of 

households with one vehicle, the average age of the stations, and light rail only 

availability were positively related to carsharing use, meaning that the higher these 

factors the higher the demand. 
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In the same year a study by Catalano et al. (2008) was published reporting on a stated-

preference survey in Palermo, Italy, with the objective of forecasting the modal split of 

the urban transportation demand in that city. The respondents could choose from 

different transportation alternatives, which were private car, public transportation, 

carsharing, and carpooling. A random utility model was estimated using the survey data. 

The authors concluded that in a future scenario characterized by active policies to limit 

private transportation use, the carsharing market could increase up to 10%. 

Zheng et al. (2009) studied the potential carsharing market at the University of 

Wisconsin-Madison performing a stated-preference survey about transportation habits 

and carsharing preferences, namely travel habits (primary mode of travel and trip 

purpose), attitudes on transportation and the environment, and familiarity with 

carsharing, in the university community. With the data obtained from the survey, 

logistic regression models were developed to predict the willingness to join a carsharing 

program. This study led to the conclusion that the status in the university (student, staff, 

etc.) and people‟s attitudes have a great impact on the acceptance of carsharing: 

students are more willing to use carsharing than other faculty members; the same 

happens with people who are concerned about the environment and the cost of owning 

and driving a vehicle. 

More recently Lorimier and El-Geneidy (2013) studied the factors affecting vehicle 

usage and availability in the carsharing stations from Communauto inc., a Montreal 

carsharing company. With this data, they developed a linear regression model to explain 
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vehicle usage, and a logistic regression model to explain vehicle availability (binary 

response variable). The authors concluded from the results provided by the two models 

that the size of a carsharing station has a large impact on both variables. Larger stations 

offered more vehicle options and had a larger catchment basin than smaller stations. 

Moreover, the seasonal impact on both availability and usage was clear: fewer vehicles 

were available in the summer, which required an increase in both the number of stations 

and the number of vehicles in each station. Vehicle age was also considered as a key 

factor. It increased availability and decreased usage, since members tend to prefer newer 

vehicles. Having child seats was another factor that corresponded to higher availability 

and lower usage, probably because of the demographic characteristics of carsharing 

users in the study region (Lorimier and El-Geneidy, 2013). 

A study by Morency et al. (2011) analyzed the carsharing transaction dataset of the 

same company, Communauto inc., with a view to establishing a typology of carsharing 

users. This transaction dataset included all trips of all the clients, even those that were 

cancelled, modified, or not concluded. The main focus of the authors was frequency of 

use and distribution of distance travelled. With respect to the weekly distance travelled, 

a cluster-based classification process resulted in two distinctive behaviors with respect 

to the distance travelled and trip frequency: either urban distances throughout the week, 

or long distances on just one day of the week. 

Motivated by the increasing use of carsharing systems in Europe and the need to 

understand their effect on urban mobility, Ciari et al. (2013) have developed an activity-
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based micro-simulation model to estimate travel demand for carsharing, considering 

that users have different transportation modes available, such as public transportation, 

car, bicycle, walking and carsharing. The authors opted for this disaggregated model 

because of the specificity of carsharing with respect to the users‟ characteristics, which 

makes it difficult to estimate travel demand using an aggregated model, such as the 

classical four steps method. The authors followed the round-trip carsharing systems‟ 

organization, and so the main features of the modeled system were: carsharing is 

available to everybody with a driving license (membership was not modeled); agents 

can pick up, park and drop off cars only at predefined locations (stations); agents have 

to drop off the car at the same station where it is picked up (round-trip); it was assumed 

that agents walk to the pick-up point and from the drop-off point; and an unlimited 

number of cars are available at the stations (no reservation, every agent trying to use the 

service will find a car) (Ciari et al., 2013). Hence the model did not focused on the 

carsharing operations themselves but on what the demand would be if a high level of 

this service was provided for the clients. The model was applied to part of Zurich city 

center, Switzerland. The aggregate results matched what is happening in reality, given 

the specifications and the level of detail that was considered. However, the authors 

stated that the model should be improved to represent the characteristics and the way 

real carsharing services work, i.e. by imposing constraints on vehicle stocks. 

Recently, Morency et al. (2012) took a two-stage approach to study the behavior of 

carsharing users. In the first stage, the probability of each member being active in a 

given month was studied using a binary probit model. In the second stage, the 
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probability of an active member using the service multiple times per month (monthly 

frequency of use) was determined by a random utility-based model. These models were 

estimated using data from 40 months of Communauto inc. operations. The authors 

concluded that the activity of members in the previous 4 months influences their 

behavior in the current month, that is, the number of times that users avail themselves of 

the service in the previous 4 months is directly proportional to the amount of times they 

use it in the current month. Moreover, some attributes of the users, such as gender and 

age, have an impact on their behavior: males and people aged between 35 and 44 are 

more inclined to favor carsharing. 

In general, almost all the studies presented, except the one performed by Ciari et al. 

(2013), are context specific, and local and regional characteristics make standardization 

more complex. Nevertheless, they do reveal user preferences and provide new models 

that can be used by other carsharing operators to guide their system‟s growth. The study 

by Ciari et al. (2013) is innovative in using simulation to predict demand. However it 

does not include a representation of the supply side. Furthermore, all the studies are 

related to the round-trip carsharing. As far as we know, demand estimation has not so 

far been addressed in the literature for one-way carsharing systems, and it is 

increasingly important to study it since these systems might be able to capture a higher 

share of the demand and they are certainly a tendency in recent years.  
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2.4 Modeling one-way carsharing systems 

Recent research has been examining one-way carsharing systems. The key issue in them 

is the dynamically disproportionate distribution of vehicles across the stations, so 

researchers are currently developing methods to analyze and mitigate the effects of this 

problem. Comprehensive approaches have aimed at modeling the one-way system as a 

whole, while other specific techniques have been proposed for balancing the systems. 

2.4.1 A comprehensive approach to the vehicle imbalance 

problem 

The problems of one-way carsharing systems are mainly the effect that demand has on 

the supply characteristics and the effect of supply on demand. To depict this important 

aspect of one-way carsharing systems we have created the following simplified causal 

loop diagram (Figure 2.1). 
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(a) Two station system 

 

(b) More than two stations 

Figure 2.1 - Feedback in one-way carsharing systems 

 

In Figure 2.1-a) we can see that when the number of vehicles in station 1 is higher more 

demand is satisfied and transferred to station 2 with a delay corresponding to the travel 

time between the stations. If the trips that request a vehicle at station 2 have station 1 as 

destination a reinforcing loop is formed, where the most important behavior parameters 

are the demand pattern that controls the vehicle flows, the delay that controls when 

vehicles will be available at a station, and the capacity of each station. 

But hardly any system has just 2 stations and a balanced number of trips between them, 

thus in Figure 2.1-b) we can see that the loop may be cut open by trips from station 2 to 
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other stations, which will stop feeding station 1 with vehicles, thereby limiting the 

demand satisfied in station 1. 

Papanikolaou (2011) addressed this problem in a recent paper, reporting a system 

dynamics model to describe the complexity behavior of one-way carsharing systems 

under non-homogeneous demand patterns. This aggregated simulation model consisted 

of three stock-flow sub-models: stations, users, and vehicles, and about 120 equations. 

Papanikolaou‟s objective was to develop a study tool to understand how these systems 

evolve over time and to explore organizational solutions to mitigate the feedback loop 

effect. 

After running the model using a synthetic case study area, Papanikolaou concluded that 

the framework could model delays and capture the essential dynamic behavior of the 

system, but the model still needs to be validated with data from real systems. 

Furthermore, the aggregate nature of system dynamics models does not take into 

account the strong spatial and temporal characteristics of complex urban networks. 

Another limitation inherent to all continuous forecasting models for system dynamics 

„is the simplification of behavior due to the mixing that occurs when aggregating 

resources in the stocks, that tends to drift the results as simulation time advances 

sometimes overestimates performance‟ (Papanikolaou, 2011). The testing of different 

relocation techniques and the study of random events such as vehicle breakdowns or 

different reservation schedules are highly compromised by this approach. Besides, it is 

harder to integrate the effect of other transportation modes in this type of model. The 
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authors are planning to compare this aggregate model to a micro agent-based model 

where the emergence of the system behavior comes from the decisions of the individual 

travelers.  

2.4.2 The performance of one-way systems 

Some authors have been trying to study the performance of these systems by 

considering different scenarios and using micro models. 

Li (2011) developed a discrete-event simulation model to study the performance of one-

way carsharing systems under different configurations and customer behaviors. They 

used different performance measures such as average vehicle utilization, reservation 

acceptance rate, full parking time, and profit. Configurations include fleet size, number 

of stations, number of parking spaces, and the distribution of vehicles and parking 

spaces across stations, while customer behaviors included the time when a customer 

reserves a vehicle, whether or not they will cancel the reservation, when they will pick 

up/return the vehicle, what the requirement for parking at pickup/return location is, etc. 

A reservation is accepted if there is a vehicle available in the origin station for the time 

the user needs to make the trip and a parking space available in the destination station at 

the end of the trip. Round trip carsharing was also simulated to compare the behavior of 

the two systems. The author concluded that concentricity, that is high population 

density in big cities where origin and destination stations are concentrated at few 

locations, helps one-way carsharing to perform better, while round trip carsharing 

performs better for a more dispersed population. Moreover, increasing the number of 
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parking spaces for a one-way system can help improve the reservation acceptance rate 

and vehicle utilization. The allocation of parking spaces among stations should 

correspond to the customer demand distribution among stations, so as to achieve the 

best performance. More recently, Barrios (2012) developed an agent-based simulation 

model to measure and predict the level of service offered to users of car2go, a one-way 

carsharing system, in Austin, Texas, and San Diego, California. In this simulation 

model, cars are initially evenly distributed throughout a schematic square city. Users 

come into the system at a given demand density and have random origins and 

destinations, searching for the nearest car. If a user is „created‟ in a place where there 

are no cars within walking distance, they cannot travel. Then the simulation model was 

used to simulate the two cities. Simulation results were compared with the reality of 

these systems in the two urban areas in terms of accessibility, that is, the proportion of 

the operating area with an available car within walking distance (0.33 miles). The 

author concluded that the model reasonably estimates the level of service of a one-way 

carsharing system. Hence it can be used to make planning level decisions. 

These methods could be very useful, since they present advanced simulation tools to 

evaluate the performance of one-way carsharing systems prior to their implementation, 

which can help carsharing companies to plan the service. However, they do not include 

any relocation feature which, as shown in the next section, should be an important 

leverage for the profitability of one-way carsharing. 
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2.4.3 Solving the vehicle imbalance through relocation 

operations 

One of the ways that has been suggested to balance vehicle stocks is the operator-based 

approach that corresponds to the periodic relocation of vehicles among stations by staff 

members. 

In 1999, Barth and Todd developed a queuing based discrete event simulation model 

that included relocations and a number of input parameters that allowed different 

scenarios to be evaluated, such as the vehicle-to-trip ratio and payment scheme. Some 

of the events were customer arrival at a station, vehicle departure from a station, vehicle 

arrival at a station, relocation start and relocation end. Three ways of deciding when 

relocations should be performed were presented: „Static relocation‟ based on immediate 

needs in a station; „Historical predictive relocation‟, which uses knowledge of expected 

future demand, looking 20 minutes into the future, and „Exact predictive relocation‟ that 

can be used if perfect knowledge of future demand is available, which is impossible in 

the real world. The model was applied to a community in Southern California and some 

measures of effectiveness were calculated, showing that the system is most sensitive to 

vehicle-to-trip ratio, relocation method used, and charging scheme employed. The 

authors also concluded that this system can be very competitive with other 

transportation modes, particularly taxis. 

Later, the operator-based approach was tested in the Honda ICVS system, which started 

in March 2002. This system allowed one-way trips, with no reservation required and no 
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return time needing to be specified (Kek et al., 2006). Periodic communication with the 

backend computer system meant that information from these vehicles prompted the 

system manager to relocate vehicles between stations when needed. In May 2005 the 

experimental phase ended and the program started running as a commercial enterprise 

(Barth et al., 2006). The system was cancelled in 2008 (The Business Times, 2011) 

because the operator could not keep up the initial service quality as membership grew. 

All users expected cars to be available but this did not happen, so dissatisfaction and 

complaints from members increased (The Straits Times, 2008). It still not known if the 

operator based approach alleviated the company‟s losses, but its ending is an indication 

that this system was not profitable. 

Kek et al. (2006) developed a discrete event simulation model to help multiple-station 

carsharing vehicle operators implement an efficient relocation system that could 

minimize the allocation of resources to vehicles, staff, and parking places, while 

maintaining certain levels of service. Based on the available resources (vehicles and 

staff members) and the relocation policy adopted, the model decided which relocation 

operations the system should implement at each time step. The two possible relocation 

policies were the shortest time, i.e. moving vehicles to or from a neighboring station in 

the shortest possible time (including staff movement, if necessary), and inventory 

balancing, i.e. supplying a station which has a shortage of vehicles with a vehicle from 

another station which has too many. 
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The proposed model was tested and validated using real data from the commercial one-

way carsharing company mentioned above. The results showed that if the company 

adopted an inventory-balancing relocation technique, the system could afford a 10% 

reduction in car park spaces and 25% reduction in staff strength, generating cost savings 

of approximately 12.8% without lowering the level of service for users. However, this 

approach required an impractical number of simulation runs to test all the combinations 

of different parameters. Thus in 2009, Kek et al. introduced an optimization module to 

the previous simulation tool to overcome this limitation. 

The optimizer used the current demand and station configuration with the objective of 

minimizing the overall cost of the relocation operations. The obtained optimized 

parameters were the number of people needed to perform the relocations (staff 

strength), the necessary relocations, and the resulting station status (number of vehicles 

at the stations at each time step). In phase two these optimized parameters were filtered 

through a series of heuristics to obtain a set of recommended parameters. On entering 

the set of operating parameters into the vehicle relocation simulator developed by Kek 

et al. (2006), phase three evaluated the effectiveness of each combination using three 

performance indicators: zero-vehicle time (no vehicles are available); full-station time 

(no parking places available), and number of relocations. 

This decision support system was once again tested using operational data provided by 

Honda ICVS. The performance surpassed the results of the previous simulations 

conducted by Kek et al. (2006). This new three-phase decision support system indicated 
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a 50% reduction in staff costs and an improvement of the performance indicators. 

However, there is no documented effect on the real application of the model to Honda‟s 

system and, as mentioned, the system was cancelled. 

Although mathematical programming is an interesting approach to achieving good 

system configurations for running these systems, it needs a great many variables and 

constraints in the mathematical programming formulation. Several simplifications were 

required to reduce the problem size, such as increasing the size of the discrete time steps 

of the optimization period, and this entailed further limitations to representing 

accurately what happens in reality. 

In 2010, Wang et al. proposed a method to forecast and relocate vehicles in carsharing 

systems that consisted of three main components: microscopic traffic simulation, 

forecasting model, and inventory replenishing. The model used to forecast customer 

demand was an aggregated model at the station level, that is, it forecast the total number 

of vehicles rented out and returned over time at each station and not the trips for each 

origin-destination pair. The forecast demand was then fed into the inventory 

replenishing model to prepare relocations. 

With respect to the inventory replenishing model, the stations with more vehicles 

available than necessary (including safety stock) were defined as overstocked stations 

thus candidate suppliers, while stations with fewer vehicles available than necessary 

were defined as understocked stations thus candidate demanders. Once the relocation 

decision was made (stations and number of vehicles involved, and when to relocate), the 
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understocked stations were replenished from the nearest overstocked stations in terms of 

the lowest trip cost at that moment of relocation, which was determined by the 

microscopic traffic simulation model. 

The performance of the proposed approach was tested using as case study four possible 

station locations in Singapore with 12 vehicles each. Experimental results showed that 

the system improved its efficiency. So the authors concluded that this approach had the 

potential to improve a carsharing service. The case study was novel in that it improved 

the realism of travel times and evolved from the computation of a mathematical static 

optimum pattern of relocation operations planned for the whole day to a policy proposal 

for real time operation in face of the predicted demand. Even so, it is important to note 

that it is very small scale in terms of the number of stations, which is smaller than most 

existing carsharing systems. 

Cucu et al. (2010) have studied a forecasting model of one-way carsharing demand in 

greater detail. The main principle was to understand and exploit customers‟ preferences 

so as to anticipate their needs and relocate the vehicles accordingly. To solve the 

problems of car unavailability at peak periods and medium- and long-term management, 

and to test new station locations, the authors considered customer preferences related to: 

the time of departure; the day of the week; the weather conditions, and the traffic 

conditions associated with their addresses. With this, the maximum vehicle needs for a 

given period of the day were computed for all stations to distinguish priorities in terms 

of balancing order, other maintenance operations and to test the implementation of new 
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stations. This method was applied to a small city and the authors concluded that 

anticipating demand would improve the vehicle availability by balancing vehicle stocks. 

Nair and Miller-Hooks (2011) continued exploring optimization methods and proposed 

a stochastic mixed-integer programming (MIP) model with the objective of generating 

least-cost vehicle redistribution plans such that a proportion of all near-term demand 

scenarios is satisfied, recognizing the strong effect of uncertainty on carsharing 

planning. The model was set up for a fixed short-term planning horizon for which 

demand is known probabilistically. Relocation operations were performed throughout 

the day and assumed to be completed before the beginning of the planning period 

considered. For relocations the operator takes into consideration both vehicles and free 

parking spaces, that is, if both resources are adequate to satisfy a p-proportion of all 

possible demand scenarios, no corrective actions are triggered; if not enough vehicles 

are available this can be remedied by relocating from adjacent stations; and if not 

enough parking spaces are available, vehicles can be relocated to free up parking spaces 

in other stations. The model was also applied to Honda ICVS. Using computational 

experiments and simulation, authors showed that when these relocation strategies are 

used, the system operates at a reliability level that could not be achieved otherwise. 

Very recently, Smith et al. (2013) studied how to minimize the number of rebalancing 

vehicles travelling within a network and the number of rebalancing drivers needed to 

rebalance vehicle stocks in one-way carsharing systems, considering that the number of 

waiting customers remains bounded. The authors state that the „two objectives are 
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aligned‟ (Smith et al., 2013), so the optimal rebalancing strategy can be found by 

solving two different linear programs in a fluid model of the system. In this system, 

users arrive at one of the stations (origin) and are transported to another station 

(destination) by driving themselves or by being driven by an employed driver (similar to 

a taxi) if the system needs to move a driver to the destination station of the particular 

user. This happens because drivers can also become unbalanced among stations and 

then they have to be moved to other stations without driving a rebalancing vehicle. The 

results suggested that in Euclidean network topologies, the number of drivers needed is 

between 1/4 and 1/3 of the number of vehicles. 

2.4.4 Using the users for system balancing 

The user-based approach is a system-balancing technique that uses the clients to 

relocate the vehicles through various incentive mechanisms. This is very intuitive and 

previous studies have addressed this possibility by modeling its operation. 

Uesugi et al. (2007) have proposed grouping or ungrouping parties of people to balance 

the system. They developed a method for optimizing vehicle assignment to people 

according to the distribution of parked vehicles, trying to avoid vehicle imbalance. The 

authors proposed three ways to assign the number of in/out vehicles between pick-

up/drop-off stations, depending on the number of vehicles in the stations. In a normal 

assignment a group of people ride in one vehicle and so they subtract one vehicle from 

the pick-up station and add it to the return station. In the divided assignment, people 

from the group ride in vehicles and so the user subtracts vehicles from the pick-up 
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station and adds vehicles to the return station. In the combined assignment groups with 

the same drop-off station carpool in one vehicle with the combined group, and so the 

users subtract only one vehicle from the pick-up station and add only one vehicle to the 

return station. The assignment is limited to the capacity of the vehicles. 

In theory, a station that has excess vehicles could decrease their number by assigning a 

divided ride. Equally, in a station which has few vehicles it would be possible to keep 

the number of vehicles by assigning a combined trip. The effectiveness of this method 

was tested through computer simulation. The authors claimed the results showed that it 

was effective in minimizing the imbalance problem of one-way carsharing systems. But 

they also stated that incentives would have to be considered to make users behave 

according to the proposed model. 

It should also be noted that the Intellishare research team at the University of California 

at Riverside had already proposed and tried these two user-based relocation methods in 

2004. They called them trip splitting and trip joining, and they managed to reduce the 

number of relocations required (Barth et al., 2004). This method was very similar to the 

previous one, with the advantage of having a price incentive mechanism to encourage 

users to sign up to trip splitting and trip joining. When users wanted to travel from a 

station with a shortage of vehicles to one with an excess they were encouraged to share 

a ride in a single vehicle (trip joining), thereby minimizing the number of cars moved. 

Conversely, when they wanted to travel from a station with too many vehicles to one 



Chapter 2 Carsharing Systems Demand Estimation and Defined Operations:  

a Literature Review 

 

 

43 

with a shortage they were encouraged to drive separate vehicles (trip splitting), thereby 

balancing the number of vehicles in the stations. 

If these user-based relocation techniques were successful when applied to commercial 

one-way carsharing companies it would be possible to shift the burden of relocating 

vehicles to the users. But this strategy has its pitfalls. It may not be a viable option in 

cities where most travelers value privacy and convenience over minor transportation 

cost savings. Moreover, trip-joining policies make carsharing similar to carpooling, 

which has severe sociological barriers associated with riding with strangers, mainly for 

safety and security reasons (Chan and Shaheen, 2011; Correia and Viegas, 2011). With 

respect to trip splitting, users may not be willing to be divided and this method can only 

work in a market where a significant number of trips are made by groups of people 

rather than by a single driver. 

Mitchell et al. (2010) proposed another intuitive principle of dynamic pricing combined 

with intelligent vehicles that would enable drivers to respond appropriately to pricing. 

Their idea involved a pricing scheme that could be applied to several urban mobility 

systems, including carsharing, to make them more efficient for users and companies 

alike. 

This method would take advantage of trip-origin-and-destination choice elasticity 

combined with price incentives for each specific trip. They considered that people 

would have the flexibility to walk a block or two to find a vehicle if one is not available 

right outside their door. Similarly, it might not be a problem for people to park a bit 
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further away from their destination. And if slightly less convenient origins and 

destinations result in lower-priced trips this could be an incentive to use them, even if 

more convenient pick-up and return points are available (Mitchell et al., 2010). 

Febbraro et al. (2012) proposed a similar method but only taking into consideration the 

trip destinations. In their system there were no stations, the city was divided into zones 

and the users could park the vehicle at any parking space inside these zones. A discrete 

event simulation model was developed to implement this method in which the vehicles 

are relocated by the users that can opt to end their trips in proposed zones that have a 

shortage of vehicles or in their desired zones. The zones were determined through a 

linear integer programming model aiming at minimizing the rejected reservations. If the 

user is happy to leave the vehicle in the proposed zone they will have a fare discount. 

The events used in the simulation were: vehicle bookings, booking modifications, 

booking cancellations, vehicle pick-ups, and vehicle drop-offs. Reservations were made 

throughout the day using a Poisson distribution and each had a given probability of 

being modified or cancelled by users. In this model, users were required to establish the 

departure time, declare their trip origin and destination, and the time at which they will 

deliver the vehicle. When a vehicle is booked it is guaranteed that it will be available at 

the beginning of the trip. The authors tested the model for the Restricted Traffic Zone of 

Turin (Italy), using fifteen scenarios that differ according the probability of accepting 

the relocation proposed by the system and with different numbers of vehicles available 

in the system. They concluded that significantly fewer vehicles would be needed for the 

system to run efficiently using this approach. 
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Despite the apparent advantages of this option, the authors also recognized that not all 

trip origins and destinations are elastic to price: for instance, a commuting trip may be 

more constrained since it is a mandatory trip, usually with very rigid schedules. Other 

limitations are related to its practical application, since it relies on a very efficient real-

time use of information and communication technology that enables people to be aware 

of price changes. In addition, there must be a willingness to access this information 

allied to a significant trip-and-station choice elasticity to price. This is yet to be fully 

tested in real carsharing companies operating on a one-way basis. The price instability 

may also be a disincentive to using carsharing, which would have a contrary effect. 

2.4.5 Full control over where and how to supply vehicles 

Other ways of balancing one-way carsharing systems through controlling the supply 

have been devised. Several authors have proposed trip selection for vehicle allocation in 

order to achieve a more favorable balance of vehicle stocks, that is, only the trips that 

help to balance the system should be served. Fan et al. (2008) formulated a 

mathematical programming model for vehicle fleet management to maximize the profits 

of one-way carsharing operators. In their model the carsharing operator decides which 

vehicle reservations should be accepted or refused and how many vehicles should be 

relocated or held to maximize profit. Thus, if any request was regarded as unprofitable 

or the system could not accommodate it, it would be declined. 

A multistage stochastic linear integer model was formulated that could account for 

demand variations. A five-day sample network with four carsharing locations was used 
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to test the model and some results were obtained which indicated profit improvement. 

Limitations of computation time and solver capability, however, meant that the model 

was not applied to a real network and several unreal conditions were assumed. 

A more recent study has addressed the effect of the location of carsharing stations on 

capturing a trip pattern more favorable to a balanced distribution of the vehicles in the 

network, thus transferring the system imbalance to the clients by decreasing their 

possibility of accessing this system. Correia and Antunes (2012) developed three 

mathematical programming models to balance vehicle stocks through a convenient 

choice of the location, number and size of stations. The objective was to maximize the 

profit from operating a one-way carsharing system, considering all the revenues (price 

paid by clients) and costs involved (vehicle depreciation, vehicle maintenance and 

parking space maintenance). 

The first scheme (model), which was similar to that tested by Fan et al. (2008), assumed 

that the carsharing organization has total control over trip selection, based on a list of 

requests made by the clients. The second assumed that all trips requested by the clients 

would be accepted when they occurred between any pair of stations in the solution. And 

the third was a hybrid scheme in which there was no obligation to satisfy all trips 

between stations, but trips could only be rejected if there were no vehicles available at 

the pick-up station. Each model was applied to the case study city of Lisbon, Portugal, 

and results showed that the scheme yielding the highest profits was the one where the 

carsharing operator had full control over trip selection. This was expected since it is the 
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scheme offering the most freedom to maximize profit. The authors concluded that the 

imbalance situation would lead to severe financial loss in a scenario where all demand 

should be satisfied, even if the client is charged a very high price. They also found that 

financial losses could be reduced by making appropriate choices of the stations‟ 

configuration (number, location, and size), but profits could only be achieved with full 

control over trip selection. 

The problem with these approaches is once again the limitations of computation time 

and solver capability, which could not accurately represent the reality of carsharing 

systems because some simplifications were necessary, such as 10-minute time steps. It 

was not possible to consider the choice of station location, trip selection schemes and 

vehicle relocation operations all in the same formulation, which hindered an integrated 

view of these systems planning. For instance the planning of station locations is 

intuitively dependent on the existence or non-existence of relocation operations which 

could mitigate the effects of an uneven trip pattern and so allow the supply to expand, as 

some of the previous research shows.  

2.5 Summary 

In Table 2.1 we present a summary of the studies where carsharing has been modeled. 

For each study we indicate the topic addressed, the modeling approach used and the 

type of carsharing. The references are in chronological order. 
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Table 2.1 - Summary of the studies presented 

Authors Year Topic addressed Modeling Approach 
Type of 

carsharing 

Bonsall and 

Kirby 
1979 

Testing different scenarios, 

strategies, locations, scales 

and prices 

Microsimulation Round-trip 

Bonsall 1982 

Modeling organized 

carsharing systems and 

comparing model predictions 

with actual performance 

Microsimulation Round-trip 

Arnaldi, Cozot, 

Donikian and 

Parent 

1996 
Simulation of carsharing 

systems 
Simulation Round-trip 

Barth and Todd 1999 
Operator-based relocation 

operations 

Queuing-based discrete-

event simulation 
One-way 

Barth and Todd 2001 
User-based relocation 

operations 
Trip joining One-way 

Barth, Todd and 

Xue 
2004 

User-based relocation 

operations 
Simulation One-way 

Kek, Cheu and 

Chor 
2006 

Operator-based relocation 

operations 

Discrete-event 

simulation 
One-way 

Uesugi, Mukai  

and Watanabe 
2007 

User-based relocation  

operations 
Simulation One-way 

Stillwater, 

Mokhtarian and 

Shaheen 

2008 

Environmental and 

demographic factors that 

affect the usage of carsharing 

Regression analysis Round-trip  

Catalano, Lo 

Casto and 

Migliore 

2008 
Estimation of carsharing 

demand for carsharing 
Random utility model Not -defined 

Fan, 

Machemehl and 

Lownes 

2008 Trip selection Optimization  One-way 

Zheng et al. 2009 Carsharing market Regression analysis Not defined 

Kek, Cheu, 

Meng and Fung 
2009 

Operator-based relocation 

operations 
Optimization and 

Discrete-event 
One-way 
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simulation 

Wang, Chang 

and Lee 
2010 

Operator-based relocation 

operations 

Microsimulation and 

inventory replenishing 

model 

One-way 

Cucu, Ion, Ducq 

and Boussier 
2010 

Operator-based relocation 

operations 
Optimization One-way 

Febbraro, Sacco 

and Saeednia 
2010 
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From Table 2.1 we can see that most of studies related to carsharing modeling were 

done after 2000. Moreover, despite the considerable number of studies related to 

demand modeling for round-trip carsharing, there is a clear predominance of studies 

about balancing vehicle stocks across stations in one-way carsharing, mainly through 

relocation operations performed by the company or the users. With respect to the 

modeling approaches used for studying demand, regression analysis is the most popular 

technique, while issues related to one-way systems tend to be studied by means of 

optimization and different types of simulation. 

2.6 Suggestions for bridging the gaps found 

Carsharing has gained great momentum in the last two decades as an alternative to 

private vehicle ownership, especially for urban trips. Despite this growth, there are still 

many questions about its true position among the other modes of transporation and the 

markets that it should serve. Moreover, these systems operation standards are hard to 

define. Modeling is increasingly being used to address these issues. Previous research 

has emphasized demand estimation using techniques ranging from regression analysis 

to more complex tools such as agent-based simulation models. In general, the statistical 

methods have helped to improve our understanding of the systems and they have found 

structural relationships between service characteristics and demand patterns. However, 

most of them were too context specific and therefore difficult to apply to other realities 

(Stillwater et al., 2008; Lorimier and El-Geneidy, 2013; Morency et al., 2011; Morency 
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et al., 2012). Moreover, they tend to neglect the supply side and the organizational 

configurations needed to offer the service, which is directly connected to its economic 

viability. This is a key aspect for any possible candidate operator of a carsharing 

service. Advanced demand studies were carried out, like the one by Ciari et al. (2013), 

who have set up an agent-based model to represent in detail the type of users who are 

likely to have carsharing as part of their mode choice set, recognizing the fact that 

carsharing is not likely to be used for commuter trips or by certain traveler groups. 

However, this study did not consider the supply side, so it is not possible to understand 

the equilibrium between supply and demand in this system. 

The articles reviewed on demand estimation have generally ignored the one-way option, 

which is understandable if we take into account its youth when compared to the round-

trip mode. But more importantly, they tended to disregard the integration of carsharing 

with traditional transportation modes. Hence it is our belief that a significant effort must 

be made to develop more general and realistic models to estimate demand, that is, 

models that can accurately represent the characteristics of carsharing, be valid for 

different contexts, and apply to one-way carsharing. One of the important questions that 

still remain to be answered is if carsharing has a greater effect on reducing the use of 

private vehicles or if, on the contrary, it reduces the number of public transportation 

users. This is a paramount question for policymakers who may be deciding whether or 

not to endorse carsharing. Currently there are generous funds available for energy and 

emissions reduction associated with the transportation sector, particularly in the 
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European Union, and carsharing systems have been considered candidate recipients for 

those funds. 

We have concluded that most of the literature on the modeling of carsharing systems is 

concerned specifically with one-way carsharing systems. Operations researchers are 

devoting increasing attention to its particular problems which we have seen to be mostly 

linked to the natural imbalance of vehicle stocks caused by the uneven pattern of trips 

during the course of the day. We have concluded that this is a complex problem with a 

feedback loop that results from the interaction of demand and supply. In classic 

transportation systems, such as bus and underground services, the directional capacity is 

offered to clients irrespective of the existing demand; however, in one-way carsharing, 

demand can completely change the system‟s supply in ways that are hard to predict. 

Researchers have used complex system modeling tools to address this problem, such as 

system dynamics to try to translate their behavior and extract better operating principles 

(Papanikolaou, 2011). However, these tools bring many limitations especially in what 

concerns to their adherence to reality due to their aggregate nature. 

Realizing the need to have a micro-scale approach to the problems of one-way 

carsharing systems, several researchers have been developing simulation models to 

study their performance (Li, 2011; Barrios, 2012) and achieve higher profits, but these 

have not been able to handle the balancing of vehicle stocks. Other researchers have 

focused on individual techniques to balance those stocks. The objective has been to 

accomplish an optimum configuration of the systems towards some objective that has 
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varied from the general profit maximization of the operator and the specific 

minimization of relocation costs. Researchers have mostly used simulation and 

mathematical programming optimization for this. 

Despite the positive results of demonstrating that there are operating principles that can 

be used to improve these systems‟ performance, there have been limitations. While 

simulation requires an impractical number of runs to test all the combinations of the 

different operational parameters (Kek et al., 2006), optimization requires a large number 

of variables to integrate several decisions into the same problem in a real case study 

context (Correia and Antunes, 2012). Several authors tackled this by simplifying the 

formulations to a level where they start to be unrealistic and the efficiency 

improvements gained from them may be hard to transfer to real carsharing ventures. 

Most of these models have worked with station-based systems, but stationless systems 

are currently emerging, where the vehicle may be dropped off at any parking space. If 

this trend develops most of the models devised for studying one-way carsharing systems 

will be overtaken by a reality that is not compatible with a fixed set of concentrated 

demand points. Researchers should test the techniques on real case scenarios and use 

more advanced simulation models to address different aspects of the business, from the 

most strategic to the operational. We believe that it will be difficult to find optimum 

solutions for the operational configuration of these systems, so research should head 

towards developing more detailed simulation models that integrate other modes of 

transportation and also consider operational issues. This will be at the cost of model size 
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and limited control over the experiments, but the lack of a realistic functioning of the 

systems is restricting the view of the big picture on how to run carsharing schemes and 

find their true effect on mobility. A detailed and accurate computation of the effect of 

carsharing systems should make it possible to bridge a major gap in the literature: there 

is no measure of the balance of cost and benefits of these systems, largely because of 

the uncertainty about the effect that they have on users of public and private 

transportation. A new trend of peer-to-peer systems has appeared in recent years. It has 

changed the cost of the systems for the operator, who now does not need to buy a whole 

vehicle fleet. This could greatly change the cost/benefit balance and reduce the risk of 

managing the systems. 

Researchers must continue to closely watch the big commercial round-trip carsharing 

ventures such as Zipcar and Cambio Car to observe the management of their operations 

and the behavior of their clients, and see how any new services provided evolve. The 

idea is to keep research abreast of the latest tendencies in this market, which may 

become more relevant in a context of financial crisis where falling household budgets 

could boost the use of cheaper transportation alternatives. It will be especially 

interesting to watch the first companies that are adopting one-way trips as their core 

business, such as car2go.  
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Chapter 3  

Comparing Optimal Relocation 

Operations with Simulated 

Relocation Policies in One-way 

Carsharing Systems 

3.1 Introduction 

Through the last decades, changes have occurred in urban transportation. Despite 

greater accessibility provided by private transportation, the result has been increases in 

levels of congestion, pollution, and non-productive time for travelers, particularly in 

peak hours (Schrank et al., 2010). There are also opportunity costs associated with using 

urban land for parking spaces instead of other more productive activities. In America, 

for example, automobiles spend around 90% of their time parked (Hu and Reuscher, 

2001). These issues are mitigated by public transportation, but it has other 

disadvantages, for example, poor service coverage, schedule inflexibility and lack of 
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personalization. In addition, providing public transportation for peak hour demand can 

result in idle vehicles for much of the day, resulting in inefficiencies and high cost of 

service. 

Strategies are needed to address these issues and simultaneously provide people the 

mobility they need and desire. One strategy considered is that of carsharing. Carsharing 

systems involve a small to medium fleet of vehicles, available at several stations, to be 

used by a relatively large group of members (Shaheen et al., 1999).  

The origins of carsharing can be traced back to 1948, when a cooperative known as 

Sefage initiated services in Zurich, Switzerland. In the US, carsharing programs only 

appeared later in the 1980s, within the Mobility Enterprise program (Shaheen et al., 

1999). In Asian countries, such as Japan and Singapore, these systems appeared more 

recently. 

Carsharing has been observed to have a positive impact on urban mobility, mainly by 

using each car more efficiently (Litman, 2000; Schuster et al., 2005). The use of 

carsharing systems generally leads to a fall in car ownership rates and thus to lower car 

use, according to Celsor and Millard-Ball (2007). More recently, Schure et al. (2012) 

conducted a survey in 13 buildings in downtown San Francisco and concluded that the 

average vehicle ownership for households that use carsharing systems is 0.47 

vehicles/household compared to 1.22 vehicles/household for households that do not use 

carsharing systems. Moreover, a study by Sioui et al. (2013) surveyed the users of 

Communauto, a Montreal carsharing company, and concluded that a person who does 
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not own a vehicle and uses carsharing systems frequently (more than 1.5 times per 

week) never reaches the car-use level of a person who owns a vehicle: there was a 30% 

difference between them. This idea is reinforced by Martin and Shaheen (2011) who 

concluded through a survey in US and Canada that the average observed vehicle-

kilometers traveled (VKT) of respondents before joining carsharing was 6468 km/year, 

while the average observed VKT after joining carsharing was 4729 km/year, which 

constitutes a decrease of 27% (1749 km/year).  

Furthermore, some recent studies concluded that carsharing systems also have positive 

environmental effects. For instance, Martin and Shaheen (2011) noted from the VKT 

estimations presented before that greenhouse gas (GHG) emissions of the major 

carsharing organizations in the US and Canada can be reduced by -0.84 t 

GHG/year/household. While most members increase their emissions; there are 

compensatingly larger reductions for other members who decrease their emissions. 

Moreover, Firnkorn and Müller (2011), through a survey of a German carsharing 

company, concluded that the CO2 emissions are decreased between 312 to 146 Kg 

CO2/year per average carsharing system user. 

With respect to trip configuration, carsharing systems are divided into round-trip (two-

way) systems and one-way systems. Round-trip carsharing systems require users to 

return the cars to the same station from where they departed. This simplifies the task of 

the operators because they can plan vehicle inventories based on the demand for each 

station. It is, however, less convenient for the users because they have to pay for the 



Chapter 3 Comparing Optimal Relocation Operations with Simulated  

Relocation Policies in One-way Carsharing Systems 

 

 

58 

time that vehicles are parked. In one-way carsharing systems, users can pick up a car in 

a station and leave it at a different one (Shaheen et al., 2006). In theory, therefore, one-

way carsharing systems are better suited for more trip purposes than round-trip services 

that typically are used for leisure, shopping and sporadic trips - short trips in which 

vehicles are parked a short duration (Barth and Shaheen, 2002). This statement is 

supported by various studies, including that by Costain et al. (2012), who studied the 

behavior of a round-trip carsharing company in Toronto, Canada and concluded that 

trips are mostly related to grocery or other household shopping purposes. A study 

performed in Greece by Efthymiou et al. (2012) also concluded that the flexibility to 

return the vehicle to a different station from the one where it was picked up is a critical 

factor in the decision to join a carsharing service. However, one-way carsharing systems 

present an operational problem of imbalances in vehicle inventories, or stocks, across 

the network of stations due to non-uniformity of trip demand between stations. Despite 

this, a great effort has been made to provide these flexible systems to users in the last 

years. 

Previous research has proposed several approaches to solve this problem, such as: 

vehicle relocations in order to replenish vehicle stocks where they are needed (Barth 

and Todd, 1999; Barth et al., 2001; Kek et al., 2006; Kek et al., 2009; Nair and Miller-

Hooks, 2011; Jorge et al., 2012); pricing incentive policies for the users to relocate the 

vehicles themselves (Mitchell et al., 2010; Febbraro et al., 2012); operating strategies 

designed around accepting or refusing a trip based on its impact on vehicle stock 

balance (Fan et al., 2008; Correia and Antunes, 2012); and station location selection to 
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achieve a more favorable distribution of vehicles (Correia and Antunes, 2012). Correia 

and Antunes (2012) proposed a mixed integer programming model to locate one-way 

carsharing stations to maximize the profit of a carsharing company, considering the 

revenues (price paid by the clients) and costs (vehicle maintenance, vehicle 

depreciation, and maintenance of parking spaces), and assuming that all demand 

between existing stations must be satisfied. In applying their model to a case study in 

Lisbon, Portugal, tractability issues resulted and the model was only solvable with time 

discretization of 10-minute steps. The model did not allow integrating relocation 

operations due to the complexity already reached with the location problem. 

In this chapter, the same case study as the one in (Correia and Antunes, 2012) is 

considered and station location outputs are generated using their model, but now with 

time discretization of 1-minute. When a 10 minute based model is used, all of the travel 

times between stations are rounded to the next multiple of 10. So, users are paying for 

minutes that they are not really using vehicles. Moreover, the vehicles are also 

considered available only in each multiple of 10 minutes, while the reality is that they 

could be available earlier. Therefore, a 1 minute based model is always more realistic 

than a 10 minute based model or a model that considers larger time steps. 

A new model is presented to optimize relocation operations on a minute-by-minute 

basis, given those outputs for station locations brought from the previously referred 

model. Thus, the two problems, station locations and relocation operations, will not be 

considered at the same time. The objective function is the same, profit maximization, 
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but in the relocations model, a cost for the relocation operations is also added. The 

vehicle relocation solutions generated with this approach, optimal solutions, are later 

compared to those obtained with a simulation model built to evaluate different real-time 

vehicle relocation policies, realistic solutions. With this comparison, the impacts of 

relocation operations on the profitability of one-way carsharing systems are then 

analyzed, and insights into how to design and implement real-time rebalancing systems 

are gained.  

The chapter is structured as follows. In the next section, a new mathematical model is 

presented to optimize relocation operations, given an existing network of one-way 

carsharing stations. Then, a simulation model and a specification of several real-time 

relocation policies are presented. In the following section the case study used for testing 

the relocation methodologies is described, as well as the data needed and the main 

results reached. The chapter ends with the main conclusions extracted from the chapter. 

3.2 Mathematical model 

The objective of the mathematical programming model presented in this section is to 

optimize vehicle relocation operations between a given network of stations (using a 

staff of drivers) in order to maximize the profit of a one-way carsharing company. In 

this model, all demand between existing stations is assumed to be satisfied. The notation 

used to formulate the model (sets, decision variables, auxiliary variable, and 

parameters) is the following: 
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Sets 

   *       +  set of stations; 

   *       +  set of minutes in the operation period; 

   *                      +  set of the nodes of a time-space network 

combining the   stations with the   minutes, where    represents station 

  at minute  ; 

    {  .         
 /   }        set of arcs over which vehicles move 

between stations   and             , between minute   and      
 , 

where    
  is the travel time (in number of minutes) between stations   and 

  when the trip starts at minute  ; 

    *  (       )  +       set of arcs that represent vehicles stocked 

in station       , from minute   to minute    . 

 

Decision variables 

          
 
  number of vehicles relocated from   to   from minute   to 

     
   .         

 /    ; 

     size of station       , where size refers to the number of parking 

spaces; 
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      number of available vehicles at station   at the start of minute 

       .  

 

Auxiliary variables 

        
: number of vehicles stocked at each station   from minute   to 

     (       )    , this is a dependent variable only used for 

performance analysis. 

 

Parameters 

          
 
  number of customer trips (not including vehicle relocation trips) 

from station   to station   from   to      
   .         

 /    ; 

    carsharing fee per minute driven; 

      cost of maintenance per vehicle per minute driven; 

    
   travel time, in minutes, between stations   and   when departure time 

is            ; 

      cost of maintaining one parking space per day; 

     cost of depreciation per vehicle per day; 

     cost of relocation and maintenance per vehicle per minute driven. 
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Using the notation above, the mathematical model can be formulated as follows: 
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           (3.3) 

                (3.4) 

         
 

        .         
 /     (3.5) 

       
        (       )     (3.6) 

                (3.7) 

              (3.8) 

 

The objective function (3.1) is to maximize total daily profit ( ) of the one-way 

carsharing service, taking into consideration the revenues obtained through the trips 
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paid by customers, relocation costs, vehicle maintenance costs, vehicle depreciation 

costs, and station maintenance costs. Constraints (3.2) ensure the conservation of 

vehicle flows at each node of the time-space network, and Constraints (3.3) compute the 

number of vehicles at each station   at the start of time  , assuming that vehicles 

destined to   at time   arrive before vehicles originating from   at time   depart. 

Constraints (3.4) guarantee that the size of the station at location   is greater than the 

number of vehicles present there at each minute  . In practice, size will not be greater 

than the largest value of      during the period of operation otherwise the objective 

function would not be optimized. Expressions (3.5)-(3.8) set that the variables must be 

integer and positive.  

3.3 Simulation model 

In order to test real-time relocation policies, a discrete-event time-driven simulation 

model has been built using AnyLogic (xj technologies), which is a simulation 

environment based on the Java programming language. It is assumed that a trip will be 

performed only if there is simultaneously a station near the origin of the trip and a 

station near the trip‟s destination. The effects of congestion on the road network are 

captured with different link travel times throughout the day. 

In each minute, trips and relocation operations are triggered and the model updates a 

number of system attributes, including: number of completed minutes driven by 

customers and by vehicle relocation staff; vehicle availability at each station; total 
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number of vehicles needed; and maximum vehicle stock (that is, number of parked 

vehicles) at each station, which is used to compute the needed capacity of each station. 

These updated values are used to compute the objective function. It includes all 

revenues (price rate paid by customers) and costs (vehicle maintenance, vehicle 

depreciation, parking space maintenance, and relocation operations). To satisfy all 

demand, a vehicle is created (the fleet size is correspondingly increased) each time a 

vehicle is needed in a given station for a trip and there are no vehicles available. Thus 

the fleet size is an output of the simulation. The period of simulation is between 6 a.m. 

and midnight which is the same period used in (Correia and Antunes, 2012). At the end 

of the simulation run, it is possible to obtain the total profit and the total number of 

parking spaces needed in each station.  

3.3.1 Relocation Policies 

Two real-time relocation policies (1.0 and 2.0) were tested in the simulation. For each 

one, it is determined for each minute of the day at each station   if the status of   is that 

of supplier (with an excess number of vehicles) or demander (with a shortage of 

vehicles). For policy 1.0, a station   at time   is classified as a supplier if, on a previous 

day of operations, the number of customer trips destined for that station at instant     

exceeds or equals the number of customer trips that depart that station at the same 

period. Note that only customer trips, and not repositioning trips, are included in this 

calculation. Each station that is not designated as a supplier is classified as a demander. 

In this policy,   is varied between 5 and 20 minutes in 5 minutes increments to 
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determine the supplier and the demander stations. If   is classified as a supplier, its 

supply is equal to the number of extra vehicles (those not needed for serving customer 

demand) at   at time  , multiplied by a relocation percentage that is a parameter. If   is 

classified as a demander, its demand for vehicles is set equal to the number of additional 

vehicles needed to serve demand at time    . For relocation policy 2.0, the process is 

the same, but   is set equal to 1 minute to determine the set of supplier stations and the 

associated supplies are determined as described for policy 1.0. The demander stations 

and their demand are determined as in relocation policy 1.0.  

A schematic representation of these policies is shown in Figure 3.1. 

 

Figure 3.1 - Policies 1.0 and 2.0 schematic representation 

 

For each time  , given these calculated values of vehicle supply or demand at each 

station, the relocation of vehicles between stations is determined by solving a classic 
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transportation problem. The objective is to find the minimum cost distribution of 

vehicles from   origin nodes (representing supplier stations) to   destination nodes 

(representing demander stations), with costs equal to total travel time. An artificial 

supply node and an artificial demand node are added to the network, with all supply and 

demand concentrated at the respective artificial nodes. The artificial supply node is 

connected to the supply nodes, which are linked to the demand nodes, and finally the 

demand nodes are linked to the artificial demand node (as shown Figure 3.2). For each 

arc, the following three parameters are defined: cost of the arc (travel time); lower 

bound on arc flow (minimum number of vehicles); and upper bound on arc flow 

(maximum number of vehicles). On each arc from the artificial supply node to a supply 

node  , the lower and upper bounds on flow equal the supply at   and travel time on the 

arc is 0. For each arc between a supply node at station   and a demand node  , the lower 

bound on flow is zero and the upper bound is the minimum of the supply of vehicles at   

and the number of vehicles demanded at  . On each arc between a demand node   and 

the artificial demand node, the lower and upper flow bounds equal the demand at   and 

travel time on the arc is 0. When there is imbalance between total supply and total 

demand either, one extra supply node or one extra demand node is created. 

In the simulation, an optimal relocation is determined using a minimum cost network 

flow algorithm that is available in the simulation programming language Java (Lau, 

2007). 
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Figure 3.2 - Minimum cost flow algorithm scheme 

 

As it is referred above, for each simulation run, two tuning parameters, the relocation 

percentage and  , are defined. The relocation percentage multiplied by the supply (of 

vehicles) at a supplier station represents the value of the supply input to the 

transportation algorithm.   represents the time period used for the minute-by-minute 

calculation for each station to determine its status as either a supplier or demander of 

vehicles. 

Using relocation policies 1.0 and 2.0 as a starting point, three variants of these two 

policies were developed for each of them. The first is that each supplier station is 

required to keep at least one vehicle at that station at all time steps, that is, its supply is 

equal to the number of extra vehicles minus 1 at time  , multiplied by the relocation 

percentage (policies 1.A and 2.A). The second is that the distribution of vehicles at each 

station at the start of the day is set to that generated by the mathematical model defined 

in the previous section (policies 1.B and 2.B). And the third is the same as the second 

with priority given to stations with the greatest demand for vehicles (policies 1.C and 

2.C). In practice this is done through reducing artificially the travel time to those 
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stations that need a higher number of vehicles, thus making them more attractive as a 

destination for the vehicles according to the assignment method explained before. 

Travel times to a demander station are reduced as a function of the relative magnitude 

of demand at that station. For example, if demand at station   equals or exceeds 10% of 

the total demand for vehicles at all demander stations, travel times between supplier 

stations and station   are decreased by 10% (which is done by multiplying travel times 

by 0.9).  

 A schematic representation of the methodology that is used in this chapter is 

presented in Figure 3.3. 

 

Figure 3.3 - Schematic representation of the methodology used 

 



Chapter 3 Comparing Optimal Relocation Operations with Simulated  

Relocation Policies in One-way Carsharing Systems 

 

 

70 

3.4 Lisbon case study 

The case study used in this chapter is the same as in (Correia and Antunes, 2012). It is 

the municipality of Lisbon, the capital city of Portugal. Lisbon has been facing several 

mobility problems, such as traffic congestion and parking shortages due to the increase 

in car ownership and the proliferation of urban expansion areas in the periphery not 

served by public transportation. Moreover, public transportation, even with the 

improvements that have been achieved, was not able to restrain the growth in the use of 

private transportation for commuter trips. For these reasons, the municipality of Lisbon 

is a good example where different alternative transportation modes, such as carsharing, 

may be implemented.  

3.4.1 Data 

The data needed are the following: a carsharing trip matrix, a set of candidate sites for 

locating stations, driving travel times, and costs of operating the system. The trip matrix 

was obtained through a geo-coded survey conducted in the mid-1990s and updated in 

2004 in the Lisbon Metropolitan Area (LMA). The survey data contains very detailed 

information on the mobility patterns of LMA, including origins and destinations, time 

of the day and transportation mode used for each trip. This survey was filtered through 

some criteria, such as age of the travelers, trip time, trip distance, time of the day in 

which the trip is performed, and transportation mode used, in order to consider only the 

trips that can be served by this system, resulting in 1777 trips. The candidate station 
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locations were defined by considering a grid of squared cells (with sides of length 

1000m) over Lisbon, and associating one location with the center of each cell. The 

result was a total of 75 possible station locations. This is obviously a simplification. To 

implement a carsharing system in a city, a detailed study of appropriate locations would 

be necessary. Travel times were computed using the transportation modeling software 

VISUM (PTV), considering the Lisbon network and the mobility survey referred above, 

and were expressed in minutes. The carsharing system is available 18 hours per day, 

between 6:00 a.m. and 12:00 a.m. The morning and afternoon peaks correspond to the 

periods between 8:00 a.m. and 10 a.m. and 6:00 p.m. and 8 p.m., respectively. To 

compute the costs related to the vehicles, it is considered an „average‟ car, whose initial 

cost is 20,000 €, and that this car is mainly driven in a city. The costs of running the 

system were calculated as realistic as possible: 

     (cost of maintaining a vehicle): 0.007 euros per minute. This cost 

was calculated using a tool available on the internet that was developed 

by a German company, INTERFILE (2012), and includes insurance, fees 

and taxes, fuel, maintenance and wear of the vehicle; 

    (cost of depreciation per vehicle): 17 euros per day, calculated using 

the same tool referred above (INTERFILE, 2012) and considering that 

the vehicles are used during 3 years. It was also considered that the 

company needed fully financing for the purchase of the vehicles with an 

interest rate of 12% and vehicles‟ residual value equal to 5000 €; 
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    (cost of relocating a vehicle): 0.2 euros per minute, since the average 

hourly wage in Portugal is 12 euros per hour; 

     (cost of maintaining a parking space): 2 euros per day, this cost is 

smaller than the parking fee in a low price area in Lisbon, considering 

that the city authorities would be able to give support to these types of 

initiatives. 

The carsharing price per minute,  , was considered to be 0.3 euros per minute, which is 

based on the rates of car2go (2012). 

The station location model (Correia and Antunes, 2012) was run for three scenarios, 

with a minute-by-minute discretization of time (note that this model does not include 

vehicle relocations). The three networks used in this work are the three found in 

(Correia and Antunes, 2012), as well as the trip matrix used. In the first, the number of 

stations was constrained to be just 10 (considered a small network). In the second 

scenario, the stations were freely located to maximize profit (any number, any location). 

In the third scenario, stations were located to satisfy all demand in the city (where there 

is demand, there is a station). The results, including station locations, number of 

stations, and associated profits, are presented in Figure 3.4. 
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Figure 3.4 - Location model solutions   

 

3.4.2 Results 

The optimum relocation operations were determined using model (3.1)-(3.8), and all 

relocation policies were simulated with all possible parameters‟ combinations, for each 

of the three station location solutions (scenarios) generated with the approach of 

(Correia and Antunes, 2012). The value of x was varied between 5 and 20 minutes in 5 

minutes increments, as it is referred in Section 3.3. This range was selected because 

most travel times are between these two values. The relocation percentage was varied 

between 0% (no relocations) and 100% (all available vehicles in the supplier stations 

can be relocated) in 10% increments. For policies 1.C and 2.C, simulation results were 
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generated for the following combinations of parameters: 0.1/0.9 (more that 10% of 

demand in a station, 10% decreasing of travel time), 0.3/0.7, 0.5/0.5, 0.7/0.3, and 

0.9/0.1. In the end, the number of simulation runs was 1920. 

For all the scenarios, the mathematical model was run in an i7 processor @ 3.40 GHz, 

16 Gb RAM computer under a Windows 7 64 bit operation system using Xpress, an 

optimization tool that uses branch-and-cut algorithms for solving MIP problems (FICO, 

2008). The solutions found were always optimal. Xpress took about 206min to reach the 

optimal solution for scenario 1, 5min for scenario 2, and 8.3s for scenario 3. The time 

that the model took to run is reasonable even for the bigger scenario with 69 stations 

located. The factor that influences how quickly the solutions are achieved is the number 

of stations doubtless. 

With respect to the simulation model, there was the need to run it many more times than 

the optimization routine, but each time the model took only few seconds to run. 

In Table 3.1, the best simulation results for each relocation policy are shown.  
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Table 3.1 - Results for the different relocation policies 

Station 
network 

(scenarios) 

Indicators 
Optimization of 

the station 

locations 

Best results for each policy 

1.0 2.0 1.A 1.B 1.C 2.A 2.B 2.C 

69 (full 

demand 

attended) 

  (min) -- 5 10 15 5 10 10 10 10 

Best relocation % -- 50 90 100 60 80 100 40 90 

Vehicles 390 264 273 262 264 257 267 318 222 

Parking spaces 739 533 490 550 412 409 480 415 334 

Time driven 
(min) 

23711 23711 23711 23711 23711 23711 23711 23711 23711 

Time of 

relocations (min) 
0 4008 2921 4800 4346 5169 2967 2661 9051 

Demand 
proportion/Travel 

time decreasing 

-- -- -- -- -- 
0.7/0.3 - 

0.9/0.1 
-- -- 0.1/0.9 

Profit (€/day) -1160.7 591.7 742.1 433.3 766.1 726.5 854.9 179.1 695.1 

34 (free 

optimum) 

  (min) -- 5 5 5 5 15 5 5 5 

Best relocation % -- 0 0 10 0 10 0 0 0 

Vehicles 121 121 121 121 126 125 121 126 126 

Parking spaces 241 241 241 240 195 195 241 195 195 

Time driven 

(min) 
10392 10392 10392 10392 10392 10392 10392 10392 10392 

Time of 

relocations (min) 
0 0 0 4 0 54 0 0 0 

Demand 

proportion/Travel 

time decreasing 

-- -- -- -- -- 
0.1/0.9 - 
0.3/0.7 

-- -- all equal  

Profit (€/day) 505.9 505.9 505.9 507.1 512.9(*) 519.1(**) 505.9 512.9(*) 512.9(*) 

10 (small 

network) 

  (min) -- 5 5 5 5 5 5 5 5 

Best relocation % -- 0 0 0 0 0 0 0 0 

Vehicles 22 22 22 22 22 22 22 22 22 

Parking spaces 42 42 42 42 29 29 42 29 29 

Time driven 

(min) 
2125 2125 2125 2125 2125 2125 2125 2125 2125 

Time of 
relocations (min) 

0 0 0 0 0 0 0 0 0 

Demand 

proportion/Travel 
time decreasing 

-- -- -- -- -- all equal -- -- all equal  

Objective (€/day) 164.6 164.6 164.6 164.6 190.6(*) 190.6(*) 164.6 190.6(*) 190.6(*) 

(*) no relocations occur, profit achieved only by bringing the initial availability from optimization 

(**) this profit is achieved using relocations and bringing the initial availability from optimization 

 

Analyzing Table 3.1 and comparing to the solution with no relocations, policy 1.0, 

achieves better results only for the 69 station scenario, increasing from -1160.7€/day 

(losses) to 591.7€/day (profit). This profit is achieved by setting the   parameter equal 

to 5 minutes and the relocation percentage equal to 50%. Similar results to policy 1.0 
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are evident for policy 2.0, but policy 2.0 achieves a greater profit (742.1€/day), with the 

relocation percentage set to 90%, and   equal to 10 minutes.  

Policy 1.A achieves better results (a profit of 433.3€/day) when compared to the 

solution with no relocations only for the 69 station scenario, using a relocation 

percentage equal to 100% and   equal to 15 minutes. This profit, however, is lower than 

the profits reached by using policies 1.0 and 2.0.  

For policy 1.B, it is possible to improve profits for all scenarios compared to the model 

with no relocations; however, for the 34 station and 10 station scenarios, profit increases 

are achieved by using the initial availability of vehicles at each station brought from 

model (3.1)-(3.8). Profit is 766.1€/day for the 69 station scenario, using a relocation 

percentage equal to 60% and an   equal to 5 minutes. For the scenarios with 34 stations 

and 10 stations, however, the increase in profit is very low. 

With respect to policy 1.C, results are better than the no relocation solution for the 69 

station scenario. The best result, 726.5€/day, is achieved for two fraction-of-demand, 

fraction-of travel time scenarios, (0.7/0.3) and (0.9/0.1), a relocation percentage equal to 

80%, and   equal to 10 minutes. For the 34 station scenario, the profit is 519.1€/day, 

which is similar to that obtained with no relocations (512.9€/day). 

For policy 2.A, results are similar to those for policy 1.A, but with greater profit 

(854.9€/day), using a relocation percentage equal to 100% and   equal to 10 minutes. 

The results for policies 2.B and 2.C are similar to those obtained for 1.B and 1.C. 
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Policy 2.0 is better than policy 1.0 for the 69 station scenario; policy 1.A is worse than 

policy 2.A; and policies 1.B and 1.C are better than policies 2.B and 2.C. For the 

network with the optimum number of stations located (34 stations), policy 1.C is better 

than policy 2.C, while policies 1.A and 1.B are similar in effectiveness to policies 2.A 

and 2.B. Finally, for the 10 station scenario, the best profit is reached when no 

relocations occur and the initial availability of vehicles at each station is brought from 

model (3.1)-(3.8). The small network tailored to the demand data makes it difficult to 

improve profit with relocations. 

Although only the best results are presented in Table 3.1, it is important to note that 

with variations in the relocation percentage and   parameters, the objective function 

values fluctuate greatly. This can be seen in Figure 3.5 for the 69 station scenario and 

policy 2.A. With   equal to 10 minutes, variations in the relocation percentage result in 

variations in the objective function value from -1037.1€/day to 854.9€/day. These 

parameters must be appropriately calibrated for each city and travel pattern scenario to 

produce the best results. 
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Figure 3.5 - Evolution of profit for the best relocation policy found with 69 stations located and 

parameter   equal to 10 min 

 

As a general conclusion, with relocations, improvements in profit are achieved through 

a combination of a reduction in the number of vehicles and/or in the number of parking 

spaces. These reductions offset the corresponding increases in staff costs and vehicle 

maintenance costs resulting from the relocations. For the 69 station scenario, the 

greatest profit is reached with policy 2.A, which allows a reduction of 31.5% in the 

number of vehicles and a reduction of 35.0% in the number of parking spaces relative to 

the scenario with no relocations. The time spent with vehicle relocations in this case is 

2967 minutes/day (about 50 hours/day). However, policy 2.C allows the greatest 

reduction in the number of vehicles (43.1%) and in the number of parking spaces 

(54.8%), but requires about a 3-fold increase in relocation time (9051 minutes/day). 

This illustrates that minimizing vehicles and parking spaces does not necessarily 

maximize profit. 
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In Table 3.2, for each of the three network scenarios, results are compared for the 

solutions to the station location model without relocations (Correia and Antunes, 2012), 

the solutions applying the relocation optimization model (3.1)-(3.8), and the best 

performing simulated relocation policy. 

Table 3.2 - Results for the different problems 

Models 

69 stations 34 stations 10 stations 

Profit 

(€/day) 

Improvements 

(€/day) 

Profit 

(€/day) 

Improvements 

 (€/day) 

Profit 

(€/day) 

Improvements 

(€/day)  

Optimization of station 

locations 
-1160.7 -- 505.9 -- 164.6 -- 

Optimization of relocation 

operations 
3865.7 5026.4 1768.1 1262.2 322.0 157.4 

Simulation with the best 

relocation policy 
854.9 2015.6 519.1 13.2 190.6 26 

 

Results for the simulated relocation policies are far from the optimal relocation 

solutions, showing that it is difficult to design effective real-time strategies based on 

fixed rules. A case in point is the 34 station scenario in which the optimized relocations 

contribute to an improvement in profit of about 1262€/day, while the real-time 

relocation policies improve profit only to about 13€/day. 

Nevertheless, it is important to observe that the policies evaluated in this work were 

able to make profitable the 69 station scenario that serves all demand in the city. 

Relocation policies, then, can help carsharing companies to provide sustainable services 

to greater numbers of people in expanded geographic areas. 
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3.5 Conclusions 

The most convenient carsharing systems for users are one-way systems; however as 

detailed in the literature, these systems require vehicle repositioning to ensure that 

vehicles are located where they are needed (Mitchell et al., 2010; Nair and Miller-

Hooks, 2011; Febbraro et al., 2012). Several approaches have been proposed to try to 

solve this problem, such as an operator-based approach (Kek et al., 2006; Kek et al., 

2009) and a station-location approach (Correia and Antunes, 2012). With the operator-

based approach, the stock of vehicles at stations is adjusted by relocating vehicles to 

locations where they are needed. 

In this chapter we present two independent tools that can be combined: a mathematical 

model for optimal vehicle relocation, and a discrete-event time-driven simulation model 

with several real-time relocation policies integrated. Kek et al. (2006) and Kek et al. 

(2009) developed also an optimization model and a simulation model, but in their work 

only the optimization model allows determining the relocation operations. The 

simulation model is just used to evaluate the performance of the systems when the 

relocation operations determined by the optimization model are performed. Nair and 

Miller-Hooks (2011) developed a stochastic mixed-integer programming model to 

optimize vehicle relocations, which has the advantage of considering demand 

uncertainty. However, they did not develop a simulation model and a way of 

determining relocation operations in real time. Barth and Todd (1999) presented a 

queuing based discrete event simulation model and three ways of deciding when 



Chapter 3 Comparing Optimal Relocation Operations with Simulated  

Relocation Policies in One-way Carsharing Systems 

 

 

81 

relocations should be performed, one of which, called „Historical predictive relocation‟, 

is similar to what is proposed in the relocation policies presented here. Although, there 

is a higher number of policies and combination of parameters tested in this work than in 

(Barth and Todd, 1999). Moreover, Barth and Todd (1999) did not develop an 

optimization model and ways of combining both optimization and simulation. With 

respect to Barth et al. (2001), an aggregated approach was developed. They only studied 

a measure to determine if the whole system needs relocations or not, while in this 

chapter, each station is treated individually. 

The developed optimization model was applied to the case study first introduced by 

Correia and Antunes (2012). Using the alternative networks of stations that were 

obtained for the city of Lisbon, the relocation approaches developed in this research 

were evaluated and compared.  

The optimized relocation decisions for these networks indicated significant potential 

improvements in system profit. For instance, the solution covering all demand for the 

entire city (containing 69 stations) has an estimated daily loss of 1160 €, but when 

operations are expanded to include optimal relocation decisions, this estimated daily 

loss is transformed into an estimated daily profit of about 3800 €. There are also 

significant economic improvements in the other networks (containing 34 and 10 

stations).  

Optimal solutions to the relocation model provide upper bounds on the economic gains 

achievable with relocations, because inputs to the optimization model require a priori 
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knowledge of the full pattern of daily trip demands. To evaluate the impacts of real-time 

relocation operations in this research, relocation policies were devised and executed in a 

simulation model. For the largest network of stations these simulated, real-time 

relocation strategies, are estimated to improve profitability significantly, reaching a 

profit of about 855 €/day with the best relocation policy. This is far from the optimum; 

however it is implemented real-time making it more likely to be achieved in the real 

operation when vehicles are not reserved one day in advance. For the smaller networks, 

the correspondingly smaller improvement is explained by the fact that the station 

locations in these networks were specifically chosen to reduce the need for 

repositioning by using the model in (Correia and Antunes, 2012). By integrating results 

of the relocation optimization model with the relocation policies (for example, using in 

the simulation the optimization‟s initial vehicle availability at each station), improved 

results are achieved for the relocation policies. 

The main conclusion that is drawn from this work is that relocation operations should 

be considered when setting up station-based one-way carsharing systems. An important 

effort must be made into studying more deeply what was defined in this chapter as real-

time relocation policies to be implemented in the day-to-day operation of these systems, 

thus allowing the sustainability of full network coverage of this service in a city. The 

fact that by introducing relocation policies it was possible to transform the worst 

profitable network (69 stations) into the most profitable encourages research into 

expanding the methods to estimate when and how many vehicles should be relocated 

between stations (Jorge and Correia, 2013). 
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In regard to the transferability of both models (mathematical model and simulation 

model) to another city, it is important to refer that mathematical models always have a 

computation time that is dependent on the problem dimension. Thus, as the city size 

increases, that is, the number of carsharing stations‟, the computation time should also 

increases due to the increasing number of decision variables. Regarding the simulation 

model, this problem is non-existent. Therefore, it can be applied to any city 

independently of its dimension.   

Moreover, the results presented in this chapter are very sensitive to changes in travel 

demand. So, the simulation model that was built in this work should be improved in 

future projects to increase the realism of the day-to-day operation of such transportation 

system, including stochastic trip variability and travel time. 
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Chapter 4  

Trip Pricing of One-way Station-

based Carsharing Networks with 

Zone and Time of Day Price 

Variations 

4.1 Introduction 

Carsharing systems involve a small to medium fleet of vehicles available at several 

stations or parking places spread across a city, which can be used by a relatively large 

group of members (Shaheen et al., 1999). These systems appeared in 1948, in Europe 

(Shaheen et al., 1999), as an alternative to private vehicle and public transportation. 

They allow users to have access to a fleet of vehicles, with the flexibility and 

accessibility associated to owning a private vehicle, without the costs of owning one. 

Vehicles in these systems also have a higher utilization rate when compared to those 

privately owned (Litman, 2000; Schuster et al., 2005; U.S. Department of 
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Transportation, 2001). At the same time, they can contribute to mitigating negative 

externalities associated with cars, such as reducing the amount of pollutant emissions, 

especially when using an eco-fleet of vehicles. When compared to traditional public 

transportation systems, such as bus and metro, carsharing systems can contribute to 

expanding service coverage, and have more schedule flexibility, among other 

advantages.  

In the 1980‟s, successful programs were launched in Europe and carsharing was 

expanded to the United States, gaining popularity in this country only in the 1990‟s 

(Shaheen et al., 1999). Currently, carsharing is implemented all over the world, which 

motivated several studies based on its performance and contribution to the accessibility 

of urban activities (Celsor and Millard Ball, 2007; Firnkorn and Müller, 2011; Martin 

and Shaheen, 2011; Schure et al., 2012; Sioui et al., 2013). 

Regarding the operating model, carsharing systems can be classified into round-trip 

systems, in which users have to return the vehicles to the same station where they were 

picked up, and one-way systems that give users the flexibility to return the vehicles to a 

different station from the one where they picked up the vehicle (Shaheen et al., 2006). 

Moreover, a particular type of one-way carsharing has appeared recently, the so-called 

free-floating carsharing, in which vehicles may be picked up and left in parking spaces 

spread across a city (Ciari et al., 2014; Schmoller et al., 2014).  

Round-trip carsharing is generally used for short trips, for example shopping, leisure 

and sporadic trips (Barth and Shaheen, 2002; Costain et al., 2012); while one-way 

carsharing can be used for wider trip purposes, even for commuting (Balac and Ciari, 
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2014; Ciari et al., 2014). However there is a major drawback to one-way carsharing: the 

vehicle stocks often become imbalanced in stations, constituting a problem for the 

service operator (Jorge and Correia, 2013). This happens because the demand for 

vehicles varies throughout the day and per origin-destination pair of stations, creating a 

tendency for more vehicles to accumulate at stations where they are not needed, and 

therefore lack in other demanding stations. This situation can even lead to a parking 

shortage for users wanting to park their vehicle at a saturated station. The management 

of parking space reservation policies to cope with this problem has been addressed in a 

previous study by Kaspi et al. (2014). Several approaches have been proposed in the 

literature to address the imbalance problem. The most extensively studied method is to 

relocate vehicles (Barth and Todd, 1999; Barth and Todd, 2001; Kek et al., 2006; Kek et 

al., 2009; Nair and Miller-Hooks, 2011; Krumke et al., 2013; Jorge et al., 2014; 

Nourinejad and Roorda, 2014; Repoux et al., 2014). There are also other alternatives: 

accepting or refusing a trip based on its impact on vehicle stock balance (Fan et al., 

2008; Correia and Antunes, 2012); station location selection to achieve a more 

favorable distribution of vehicles (Correia and Antunes, 2012); price incentives for 

grouping parties of people if they are travelling from a station with a shortage of 

vehicles, and ungrouping parties of people otherwise (Barth et al., 2004; Uesugi et al., 

2007); price incentive policies for the users to accept choosing another drop-off station 

(Febbraro et al., 2012; Weikl and Bogenberger, 2012; Pfrommer et al., 2014); and trip 

pricing, that is, changing the price of the trips charged to the clients taking into account 

their contribution in stock balancing (Mitchell et al., 2010; Zhou, 2012). 
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The focus of this work is this last approach: trip pricing. Pricing has been used to solve 

several problems related to transportation, namely congestion (Wie and Tobin, 1998; 

Wang et al., 2011; Chung et al., 2012), high occupancy/toll lanes management (Lou et 

al., 2011), and airline seat management (You, 1999; Atasoy et al., 2012). With respect 

to carsharing, trip pricing has been referred in many scientific publications as a way to 

solve vehicle imbalances (Mitchell et al., 2010; Febbraro et al., 2012; Weikl and 

Bogenberger, 2012; Pfrommer et al., 2014; Zhou, 2012). To the best of our knowledge, 

no one has ever proposed a method for setting these prices and proven its usefulness for 

profit maximization and reducing vehicle imbalance. Hence, the main objective of this 

chapter is to create such a method and investigate if it is possible to increase the profit 

of a one-way carsharing company by varying the price charged to clients. A 

methodological approach is developed to reach this objective, which is mainly 

constituted by two components: (i) a mixed-integer non-linear programming (MINLP) 

model that, having the trips made throughout an entire day and the price elasticity of 

demand, determines which prices to charge at a given period of time for profit 

maximization; and (ii) an iterated local search (ILS) meta-heuristic to solve the 

problem. Furthermore, for simplification purposes the stations are grouped into zones, 

which are determined through clustering analysis on a theoretical relocation vector 

obtained for profit maximization. This methodological approach is tested for the case 

study of the city of Lisbon, in Portugal.  

The main contributions of this chapter are:  
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 developing a method to implement variable trip pricing in one-way 

carsharing; 

 testing the method with a real case study; and 

 drawing conclusions on the usefulness of applying trip pricing as a way 

to balance this type of system and obtain a higher profit. 

The chapter is structured as follows. In the next section, we present the notation and 

method used to address this problem. In section 4.3, the solution algorithm is presented. 

This is followed by the case study to which the method is applied. Afterward, the 

computational experiments on the case-study are presented, followed by the main 

results in Section 4.6. Finally, the chapter finishes with the main conclusions withdrawn 

from this study and some possibilities of future developments. Acronyms used in this 

chapter are summarized in Table 4.1. 

Table 4.1 - Acronyms used in the chapter 

Abbreviation Complete form 

CBD Central business district 

ILP Integer linear programming 

ILS Iterated local search 

LSO Local search operator 

MINLP Mixed-integer non-linear programming 

MIP Mixed integer programming 

OD Origin-destination 

PO Perturbation operator 

TI Time interval 

TPPOCS Trip pricing problem for one-way carsharing systems 

VRPOCS Vehicles relocation problem for one-way carsharing 

systems 
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4.2 Notation and method 

In this section, as a basis for the method of setting the trip prices, we first introduce the 

model proposed and applied by Jorge et al. (2014) in which optimal relocation 

operations are found for a set of stations in a one-way carsharing system. This model 

provides a desired vector of relocated vehicles between each pair of stations, which 

constitutes the perfect solution for the vehicle imbalance problem, providing a reference 

to the mitigation of the vehicle imbalance problem through trip pricing. A new model is 

adapted from the previous one incorporating price variations per pair of zones and 

period of the day, substituting the reference static price by a new set of decision 

variables and introducing price elasticity of demand. Relocation operations are naturally 

excluded from the new model. Given the dependence of demand with respect to price, 

this new model becomes non-linear. Consequently, there is the need to resort to a 

solution method to determine the prices charged for each OD pair of zones per time 

interval (TI). Notations used in the chapter are summarized in Table 4.2. 

Table 4.2 - A summary of the notation used 

Notations Explanations 

  Daily profit of the one-way carsharing company when 

relocation operations are used 

  Daily profit of the one-way carsharing company when 

trip pricing is used 

   
  Travel time, in time instants, between stations   and   

when departure time is              

  Price elasticity of demand 

   The current carsharing price for all OD pairs of stations 

at any time instant per time step driven 

    The maintenance cost of each vehicle per time step 

driven 
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    The cost of maintaining one parking space per day 

   The cost of depreciation of one vehicle per day 

   The cost of relocation per vehicle per time step driven 

  Number of observations in the cluster analysis 

  Number of clusters desired 

    
  The current carsharing price per time step driven 

between zones   and   when departure time interval is 

               (all prices set to P0) 

          
 

 Number of customer trips from station   to station   

from instant   to instant      
   .         

 /     for 

the reference price 

     Minimum price charged allowed per time step driven 

     Maximum price charged allowed per time step driven 

     Longest allowed processing time for the heuristic 

algorithm and the local search operator (LSO)  

     The smallest price change than can be performed 

during the local search 

(   
 )     Potential new lower price considered by the LSO and 

calculated by lowering the initial price    
   

(   
 )   Potential new higher price considered by the LSO and 

calculated by increasing the initial price    
  

  The size of the set of prices in the trip pricing table that 

may be changed using the perturbation operator (PO) 

  The maximum allowed value of price change 

   The price change during the perturbation, which 

belongs to the interval ,    - 

   *       + The set of stations 

   *       + The set of time instants in the operation period 

   *       + The set of zones 

   *       + The set of time intervals in the operation period 

    The beginning instant of time interval          

    The end instant of time interval          

  *                      + The set of the nodes of a time-space network 

combining the   stations with the   time instants, 

where    represents station   at time instant   

   {  .         
 /   }       The set of arcs over which vehicles move between 

stations   and              , between time instant 

  and      
  

   *  (       )  +      The set of arcs that represent vehicles stocked in station 

       , from time instant   to time instant     

    The changing candidate set of prices for the LSO 
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   The changing candidate set of prices for the PO 

         
 

 Decision variables on the number of vehicles relocated 

from   to   from time instant   to 

     
   .         

 /     

         
 

  Number of vehicles relocated from   to   from time 

instant   to      
   .         

 /     when the cost 

of relocations is 0. 

   

  Number of vehicles relocated to station   at time 

instant   when relocation costs are 0,        

   

  Number of vehicles relocated from station   at time 

instant   when relocation costs are 0,        

   

  Difference of the number of relocated vehicles to/from 

station   at time instant   when relocation costs are 0, 

      

   

  Difference of the number of relocated vehicles to/from 

station   during time interval   when relocation costs 

are 0,      ,       

   Decision variables on the size of station        , 

where size refers to the number of parking spaces 

   
 Decision variables on the number of available vehicles 

at station   at time instant         

         
 

 Decision variables on the number of customer trips 

from station   to station   from time instant   to 

     
   .         

 /     after the price is varied 

   
  Decision variables on the carsharing price per time step 

driven between zones   and   when departure time 

period is                

 ̅ The best (optimal) trip pricing table 

       
 Auxiliary variable on the number of vehicles stocked at 

each station   from time instant   to 

     (       )     

 (         ) Trip pricing table with all elements greater than 

     and lesser than       

 (         ) Set of all feasible pricing tables for price interval 

,         - 

         The initial trip pricing table 

   The current best known trip pricing table found during 

the ILS algorithm run 

   The perturbed trip pricing table obtained from the 

application of the PO during the ILS algorithm run 
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    The local optimum in the environment of the perturbed 

pricing table    during the ILS algorithm run 

      Best pricing table found in this work 

 

4.2.1 The Vehicles Relocation Problem for One-way 

Carsharing Systems (VRPOCS) 

Jorge et al. (2014) proposed an integer linear programming (ILP) model for the optimal 

relocation movements between a set of stations in a city in order to maximize the daily 

profit of a one-way carsharing company. We denote this as the Vehicle Relocation 

Problem for One-way Carsharing Systems (VRPOCS). These movements are 

considered to be performed by a staff of drivers and all demand between existing 

stations has to be satisfied.  

Using the notation in Table 4.2, the model is formulated as follows: 

      (      )  ∑           
 

    
 

        
    

    ∑   

    

   ∑    

    

   ∑          
 

    
 

        
    

 

(4.1) 

subject to,  

       
 ∑           

 

    

 ∑          
 

    

 ∑    
  
  

             
 

 ∑   
  

  

             
 

        

          

(4.2) 
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 ∑           

 

    

  ∑          
 

    

         
           (4.3) 

      
          (4.4) 

         
 

        .         
 /     (4.5) 

       
        (       )     (4.6) 

   
             (4.7) 

               (4.8) 

 

The objective function (4.1) is to maximize the total daily profit ( ) of the one-way 

carsharing service, taking into consideration the revenues obtained through the trips 

paid by clients, vehicle maintenance costs, vehicle depreciation costs, station 

maintenance costs, and relocation costs. Constraints (4.2) ensure the conservation of 

vehicle flows at each node of the time-space network. Constraints (4.3) compute the 

number of vehicles at each station   at the start of time instant  , assuming that vehicles 

destined to arrive at station   at time instant   arrive before vehicles leave from the 

same station at time instant  . Constraints (4.4) guarantee that the size of the station at 

location   is greater than the number of vehicles located there at each time instant  . In 

practice, size will not be greater than the largest value of      during the period of 

operation because this would penalize the objective function. Expressions (4.5)-(4.8) set 

that the variables must be integer and positive.  
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4.2.2 Grouping stations through k-means clustering 

Running the VRPOCS model for null relocation operations costs (    ) yields an 

ideal vector of relocation flows, which we will call          
 

 . With this vector it is 

possible to compute the ideal number of relocated vehicle entries and exits at each 

station. 

The vehicle entries are given by: 

   

  ∑   
  

  
       

             
 

 (     )    
(4.9) 

The vehicle exits are given by: 

   

  ∑          
 

    

 .         
 /     (4.10) 

The difference between both vectors    

     

  yields a new vector    

  that will be 

positive or negative whether station   is a supplier (   

 >0) or a demander of vehicles 

(   

 <0). 

The values of the vector    

  can be aggregated for each time interval. We call the set of 

time intervals in which the day is divided the    *       + set. Hence it is possible 

to compute the vector for the relocation balance at each time interval   as: 

   

  ∑    

    
     

               (4.11) 
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In order to obtain zones of stations that are similar in their vehicle needs or in their 

ability to provide vehicles at a given interval, the K-means clustering algorithm is 

applied. K-means partitions   observations into   clusters. Considering   observations, 

it consists of firstly choosing   centroids, where   is the number of clusters desired. 

Each observation   will then be assigned to the closest centroid, and each group of 

observations assigned to a centroid will be a cluster. The centroid of each cluster is then 

updated based on the observations assigned to the cluster. We use vector    

  as a 

measure of similarity between the stations in each time interval  , hence the number of 

  centroids is the number of desired zones (set   ) for which prices will vary, and the 

number of observations   is the number of stations (set   ). It is well known that this 

clustering process does not lead to a global optimum, since the process is dependent on 

the choice of the   first observations (Ji and Geroliminis, 2012); nevertheless, this is not 

the major concern of the method developed herein.  

The clustering process described is meant to produce the same number of zones for any 

of the time intervals and does not require continuity, that is, stations in each zone do not 

need to be contiguous. A station may belong to a cluster and later to another, which 

permits any station having different prices from its neighbor along the day. 

4.2.3 The trip pricing problem for one-way carsharing systems 

(TPPOCS) 

The mixed-integer non-linear programming (MINLP) model proposed in this section 

derives from the VRPOCS. This problem is defined as follows: „given a set of 
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carsharing stations operating in one-way mode for which an OD matrix is known for a 

given price, the TPPOCS aims at finding new prices between groups of stations such 

that the profit of running the system is maximized while satisfying all demand for the 

new prices‟. 

Demand, in this model, varies according to a simple elastic behavior. The new demand 

(         
 
) results from applying the price elasticity   to a reference demand 

(          
 
) that exists for price   . The expression is the following: 

  

         
 

           
 

          
 

   
      

 

    
 

 
(4.12) 

We are assuming the elasticity to be the same for any interval of price variation which 

may be unrealistic for great variations of price. However, one does not expect to change 

prices beyond a realistic interval around the current price P0. 

Using the notation presented in Table 4.2 and the elasticity defined in equation (4.12), 

the MINLP model is formulated as follows: 

      ∑ (   
     )           

 
    

 

        
    

      

    

    ∑   
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(4.13) 

subject to,  
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(4.17) 
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            (4.18) 

      
           (4.19) 

         
 

         .         
 /     (4.20) 

   
                   (4.21) 

       
         (       )     (4.22) 

   
              (4.23) 

                (4.24) 

The objective function (4.13) maximizes the total daily profit ( ) of the one-way 
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carsharing service, taking into consideration the revenues obtained through the trips 

paid by the clients, vehicle maintenance costs, vehicle depreciation costs, and station 

maintenance costs. Notice that in this model no relocations are considered. Constraints 

(4.14) and (4.15) compute the demand that resulted from considering the change of 

price. Given that this demand is a continuous function of price, we use two inequalities 

to ensure that   will be integer. Constraints (4.16) ensure that the demand resulting 

from the application of the price elasticity to the reference demand is positive. 

Constraints (4.17), and (4.18) are the same as constraints (4.2), and (4.3) from the 

VRPOCS model but excluding the variables related to the vehicle relocation operations. 

Constraints (4.19) are the same as constraints (4.4). Expressions (4.20)-(4.24) set the 

variables domain.  

The decision variables of the model are: the number of vehicles in each station at the 

beginning of the day, the demand for each OD pair of stations at each time step, and the 

prices charged for each OD pair of zones per time interval. As it is possible to observe, 

the objective function (4.13) is non-linear because demand multiplies by the price, and 

is non-concave, which makes this a MINLP problem not easily solvable by traditional 

branch and cut algorithms. To solve this type of problems for both concave and non-

concave formulations, some MINLP solver software solutions are available but these 

typically have difficulties managing real size problem instances (Bussieck and 

Vigerske, 2014). The size of the search space of our problem is much greater than the 

size of the problems these software solutions are able to solve. For only 5 zones and 6 

time periods, if prices vary from 0 to 0.70 €/min, with 0.01 increments, the number of 
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possible solutions for this problem would be | |                     . Therefore, 

in the next section we present a solution algorithm for reaching a good solution to this 

problem. 

4.3 Solution algorithm 

4.3.1 Iterated local search (ILS) 

The goal of the solution algorithm presented in this section is finding the prices    
  for 

which the daily profit   of the TPPOCS will be as high as possible. A solution of this 

problem is a set of trip pricing tables denoted   ,| |-,| |-,| |- (         ), or in short 

  (         ), where | | is the number of time intervals, | | is the number of zones 

and      and      are the minimum and maximum allowed prices, respectively. 

Pricing table   (         ) contains (| |  | |  | |) individual elements and each 

element    
  corresponds to the price charged per time step driven for trips from any 

station in zone   to any station in zone   starting during time interval  . The set of 

feasible solutions   (         ) is defined as the set of all possible trip pricing tables 

of appropriate dimensions (| |  | |  | |) and whose elements are at a given price 

interval.  

The optimal pricing table  ̅ is such a trip pricing table for which the daily profit ( ) of a 

carsharing company is optimal. More formally, the goal of the optimization algorithm is 

to find  ̅ for which the following equation is satisfied:  
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     ( ̅)         ( )    (         )    (         )  (4.25) 

For each trip pricing table  (         ) generated by the solution algorithm, the 

TPPOCS mathematical model is executed as a classical mixed integer programming 

(MIP) problem where prices are given. In that manner, the TPPOCS model finds the 

best possible profit that can be achieved using a fixed trip pricing table suggested by the 

solution algorithm. The best possible profit value is then provided back to the algorithm, 

in essence rendering the model as an evaluator for the solutions suggested by the 

algorithm.  

During the previous decades, various meta-heuristic techniques have accomplished 

great success solving this type of problems. They are general problem-independent 

algorithmic frameworks that can be applied to various optimization problems. While 

they give no guarantee on optimality, if implemented properly, they can provide 

solutions that are good enough for practical use. For many problems, they are yielding 

state-of-the-art results (Lourenço et al., 2003; Luke, 2013).  

In this work, we applied the iterated local search (ILS) (Stützle and Hoos, 1999; 

Lourenço et al., 2001; Lourenço et al., 2003; Luke, 2013) to solve the mixed-integer 

non-linear TPPOCS. It is a simple, but effective meta-heuristic that successively applies 

local search (LSO) and perturbation operators (PO) in an attempt to focus on exploring 

proximities of known good solutions while avoiding being stuck in local optima. It was 

successfully implemented for classical combinatorial optimization problems, such as 

travelling salesman problem (Stützle and Hoos, 1999; Katayama and Narihisa, 1999) or 
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the quadratic assignment problem (Stützle, 2006), as well as more specific types of 

problems, such as scheduling and graph partitioning (Lourenço et. al., 2003; Carlier, 

1982; Martin and Otto, 1995).  

The following sections contain the implementation details of the ILS meta-heuristic for 

solving the TPPOCS. First, the general structure of the meta-heuristic is presented. 

Secondly, the algorithm to generate initial solutions is elaborated. Finally, the 

implementation details of the LSO and PO are given.  

4.3.2 Algorithm Structure 

The ILS algorithm is based on two operators (Lourenço et al., 2001; Lourenço et al., 

2003; Luke, 2013): 

1. local search operator (LSO); and 

2. perturbation operator (PO).  

The pseudo-code of the algorithm we use is given in Table 4.3.  

The local search looks for the best solution in a restricted neighborhood of the initial 

solution. Given an initial solution         , it enumerates all of the solutions from its 

neighborhood and returns the best as the result, called local optimum and denoted   
. 

The quality of the local optima depends on the way the neighborhood structure is 

defined as well as the initial solution choice.  

While local optima are as good as, or better than the initial solution, in general, there is 

no warranty on their quality in the context of all possible solutions. Local search results 

are often globally suboptimal (Lourenço et al., 2003; Luke, 2013), and to extend the 
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search beyond the initial neighborhood, ILS uses the PO. The PO takes the current local 

optimum and modifies it into a perturbed solution, denoted   . The intensity of the 

modification should be low enough to prevent the algorithm from losing focus and 

degrading to random restart local search, but at the same time high enough to ensure 

local search does not converge to the same solution during the next iteration (Lourenço 

et al., 2003).  

Table 4.3 - Pseudo-code of the implemented iterated local search (ITS) meta-heuristic algorithm 

Procedure Iterated Local Search (time) 

Generate initial solution          

   = local search(        ) 

repeat until time expired 

   = perturb(  ) 

    = localSearch(  ) 

if the profit for     is greater than the profit for    then 

       

 

Various options are available while deciding on the end condition for the algorithm and 

the LSO. In the numerical experiments, we decided to use the time limit as the end 

condition, which can be set as a parameter. Furthermore, different solution acceptance 

criteria can be chosen for the PO: starting each perturbation from the best so far, from 

the current local search result or some other solution found during the algorithm run 

history. Algorithm runtimes for our problem numerical experiments, as described in 

Section 4.5, are very long, therefore, we decided to focus the search as much as 

possible, always using the best known solution as the perturbation starting point. In the 
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ILS literature, such acceptance criterion is usually called the best acceptance criterion 

(Lourenço et al., 2003).  

4.3.3 Initial solutions  

Initial solutions          are randomly generated trip pricing tables with each element 

   
           in the given interval ,         - . They are obtained using a random 

number generator that generates numbers with approximately uniform distribution in 

the specified interval. Preliminary tests have shown that the quality of initial solutions 

significantly varies depending on the choice of the price interval ,         -. Further 

analysis of the influence of these parameters is given in Section 4.5. 

4.3.4 Local search  

The LSO used in our approach is explained in the pseudo-code in Table 4.4. It is a 

simple method that iteratively increases and then decreases trip pricing table elements 

as long as these changes improve profit. The procedure has two parameters: step and 

time. The step parameter defines the smallest change in price that can be performed 

during the search and the time parameter defines the longest allowed duration of the 

search. The interval in which the local search can modify the solutions is      and 

    . The price interval should be selected as a reasonable interval for the problem in 

hands.  

The order in which table elements are being modified is randomized to promote 

discovery of features for which the order of price changes matters, thus the operator is 
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non-deterministic. For each considered element of the table, the operator first tries to 

increase the price by adding      to the initial price. If the modification caused a better 

profit, further increases will be performed until      is reached or price increases are 

no longer improving the profit (or the time expires). The analogous procedure is done 

for price decreases. After benefits of both increasing and decreasing the price have been 

examined, the algorithm updates the trip pricing table accordingly so that the new value 

gives the highest profit gain or retains the old value if price changes caused a profit 

drop. After all of the trip pricing table elements have been considered for modification, 

the operator will start again, but visiting the elements in a new randomly generated 

sequence. 

The aforementioned procedure runs until on entire pass through the table has been done 

without making any improvements or until the allowed time has elapsed. By 

systematically exploring the effect of price variations and combining contributions of 

many small price changes, the LSO can yield significant solution improvements, as it 

will be shown in the numerical application. 
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Table 4.4 - Pseudo-code of the local search operator (LSO) algorithm 

Procedure local search (step, time) 

Repeat until time expires 

Initialize random list of table elements     

For each    
      

(   
 )    =    

 ,  

(   
 )  =    

  

Repeat while profit is increased,(   
 )          and time is not expired 

(   
 )     = (   

 )          

Repeat while profit is increased and (   
 )   <     and time is not expired 

(   
 )   = (   

 )        

Update    
 to the element of  *   

 , (   
 )  , (   

 )    + for which the profit is maximal 

 

4.3.5 Perturbation  

The PO, presented in Table 4.5, introduces random price changes in a small subset of 

the price table elements. The operator has two parameters: maximum number of 

elements to change ( ) and the maximum allowed change ( ). First,   elements from a 

price table   (         ) are randomly selected into the perturbation modification 

candidate set       (         ). Then, for each element     
    , the new price is 

calculated by adding a random value    ,    - to the previous value. The interval, 

in which the perturbation can change the prices, varies between     , and     . If the 

price after adding    is lower than     , it is updated to     , and likewise, if it is 

greater than     , it is updated to     .  

The set    is called the modification candidate set, since there is no guarantee that all of 

its members will be changed. Due to the definition of the interval from which    values 
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are selected, it is possible that for some elements    will be equal to zero, keeping table 

elements unchanged. This behavior is intentional to ensure greater variability of the 

perturbation effects on a candidate solution.  

It should be noted that local search (LSO) and perturbation (PO) operators are 

structurally related in such a way that it is unlikely for the local search to cancel the 

effects of perturbation. If step is greater than 0.01 €/min, the local search can return 

back to the previous local optimum only if all of the changes caused by the perturbation 

are multiples of search step value. Probability for such event to occur drops very 

quickly as d grows in comparison to step and    . Nevertheless, finding a balanced 

perturbation intensity is still very important to ensure that it is not too strong, as shown 

in the numerical application.  

Table 4.5 - Pseudo-code of the perturbation operator (PO) algorithm 

Procedure perturb (n, d) 

Initialize set Pc containing n random table elements 

For each table element     
     

Set    to a random value in interval ,    - 

Modify table element:     
      

      

 

4.4 The case study of Lisbon (Portugal) 

The case study used in this work is the municipality of Lisbon, in Portugal. This 

municipality has been dealing with several mobility problems, such as traffic congestion 

and parking shortage associated to the increase in car ownership and the consequent 
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high use of private transportation. Public transportation has been upgraded; however, it 

has not been able to reduce the use of private transportation for commuter trips. There is 

the need to manage mobility in a smart way by, for instance, transportation alternatives 

such as carsharing. 

The data needed to study the trip pricing methodology is: a set of stations, a carsharing 

trip matrix, a reference price, the price elasticity of carsharing demand, driving travel 

times between the set of stations, and costs of operating the system. The possible station 

locations were defined by considering a grid of squared cells (with sides of length 

1000m) over Lisbon, and associating one location with the center of each cell, which 

resulted in a set of      possible station locations. This is obviously a simplification, 

but it serves the purpose of the application. The trip matrix was based on a geo-coded 

survey updated in 2004 in the Lisbon Metropolitan Area. Several data are available in 

the survey, namely trip origins and destinations, time of departure, and transportation 

mode used for each trip. Thus, it had to be filtered through some criteria, such as: age of 

the travelers, trip time, trip distance, time of the day, and transportation mode used, in 

order to consider only the trips that are potentially served by carsharing, resulting in 

1777 trips.  

As far as we know, there are no studies in the literature specifically addressing the 

calculation of carsharing price elasticity of demand. Therefore, we decided to use a 

value of       , which is the price elasticity of vanpooling demand found by (York 

and Fabricatore, 2001), because it is the most similar transportation mode to carsharing 

for which there is available information. Travel times were computed using the 
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transportation modeling software VISUM (PTV), considering the Lisbon network and 

the car trip matrix for the entire region, being expressed in minutes. We consider that 

the carsharing system is available 18 hours per day, between 6:00 a.m. and 12:00 a.m. 

To compute the costs related to the vehicles, we take as reference an „average‟ car 

mainly driven in the city that costs 20,000€ initially, thus yielding the following 

parameter values: 

     (cost of maintaining a vehicle): 0.007 euros per minute. This cost was 

calculated using INTERFILE (INTERFILE, 2012), a tool available on the 

internet that was developed by a German company, and includes insurance, 

fees, taxes, fuel, maintenance and wear of the vehicle; 

    (cost of depreciation per vehicle): 17 euros per day, calculated using the 

same tool referred above (INTERFILE, 2012) and expecting 3 years of use in 

the system. It was also considered that the company needed fully financing 

for the purchase of the vehicles with an interest rate of 12% and vehicles‟ 

residual value equal to 5000€; 

     (cost of maintaining a parking space): 2 euros per day, this cost is 

smaller than the parking fee in a low price area in Lisbon, considering that the 

city authorities would be able to give support to these types of initiatives. 

The base carsharing price per minute,   , was considered to be 0.3 euros per minute, 

which is based on the rates of car2go (car2go, 2014). Note that there is no linkage 

between this price and the demand that is going to be used for the computational 

experiments since carsharing is not being offered in this city at the moment. 
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With these data the VRPOCS was implemented with a time step of one minute and 

solved using Xpress 7.7, an optimization tool that uses branch-and-cut algorithms for 

solving MIP problems (FICO, 2014). The model was first run with no relocations 

operations resulting in a daily deficit of 1160.7 €, which proves the need for balancing 

strategies. Secondly the VRPOCS was run with null costs of vehicle relocation. This 

solution produced the relocations balance vector    

 . Time was then divided into 6 

intervals for computing the time interval relocation balance (   

 ): 6:00a.m. to 8:59a.m., 

9:00a.m. to 11:59a.m., 12.00p.m. to 2:59p.m., 3:00p.m to 5:59p.m., 6:00p.m. to 

8:59p.m, and finally from 9:00p.m. to 00:00a.m. 

Stations were grouped into 5 zones using the clustering algorithm described previously 

(   ) applied with vector    

 . Five seems to be a reasonable number to capture the 

different trip patterns between the stations and maintain computation tractability. 

Results of the clustering algorithm application are presented in Figure 4.1, where, for 

analysis purposes, we numbered each cluster in each interval according to its typical 

behavior along the day. It is possible to see that the belonging of each station to each of 

the 5 zones varies with the 6 time interval relocation patterns, that is, a station may 

belong to a zone in the first time interval and to another zone in the following one. We 

also present in Figure 4.1 the number of trips entering (upper right side of the station) 

and exiting (lower right side of the station) each station according to the demand vector 

          
 

 (no relocated vehicles are considered in these numbers). 
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Stations included in zones 1 and 4 are mostly located in the central business district 

(CBD); however, zone 4 also includes several stations located in the periphery at lunch 

time. Therefore, these have a higher number of trip destinations in the morning against 

more trip origins in the afternoon but zone 4 seems to be including lunch time 

commuters too. These zones contain in general only a few stations along the day. Zone 

2 includes stations located in the CBD and in the periphery, their number varying 

greatly along the day. Despite that variation the trip pattern remains the same with more 

trip arrivals than trip departures throughout the day. It makes sense, for this reason, that 

zone 2 is providing more vehicles than the ones that it requests. Zone 3 contains the 

highest number of stations for most of the time intervals, with special emphasis to the 

beginning and the end of the day. The stations included in this zone are mainly located 

in the periphery, but there are also some of them located in the CBD. This mixed 

behavior makes the difference between relocated vehicle arrivals and relocated vehicle 

departures to be not significant. Finally, zone 5 is mostly a mixed zone.  
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TI 1 (6:00a.m.-8:59a.m.)                                    TI 2 (9:00a.m.-11:59a.m.)  

  

TI 3 (12.00p.m.-2:59p.m.)                                     TI 4 (3:00p.m.-5:59p.m.)  
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TI 5 (6:00p.m.-8:59p.m.)                                    TI 6 (9:00p.m.-00:00a.m.) 

 

Figure 4.1 - Stations grouped in zones and number of trip entries and exits at each station in each 

time interval 

 

4.5 Computational experiments 

The TPPOCS mathematical model was also implemented using Xpress 7.7 with the 

same data that was used in the VRPOCS model. The ILS meta-heuristic was 

implemented in Java 1.8 programming language and Xpress Java Application 

Programming Interface to gain access to the model. All experiments were performed on 

two identical computers equipped with a 2.4 GHz Intel Core i7-4700HQ processor and 

16 GB of RAM and using Java 1.8.0_11-b12 runtime environment under Windows 8.1 

operating system.  



Chapter 4 Trip Pricing of One-way Station-based Carsharing Networks  

with Zone and Time of Day Price Variations 

 

114 

A single run of the TPPOCS model takes around 30 seconds and approximately one 

minute when 8 instances of the model are running simultaneously. Most of the 

algorithm runtime is therefore spent evaluating the candidate solutions – our 

benchmarks have shown that, in the best case, only around 430 evaluations could be 

performed during one hour, using all of the eight logical processor cores in parallel. 

This fact strongly influenced the tuning process of the algorithm as well as the 

algorithm design itself. As hinted in Section 4.3, to obtain good solutions as quickly as 

possible, strong intensification is performed through detailed local search and the use of 

the best perturbation acceptance policy (Lourenço et al., 2003). The strong 

intensification is introduced to facilitate the discovery of profit increasing features as 

soon as possible. In the remainder of this section, an overview of the tuning process is 

given and the best results the algorithm has found are presented in the next Section. 

4.5.1 Parameter tuning 

Meta-heuristic methods usually come with a set of parameters that need to be set up to 

some values. They can significantly influence the heuristic performance and, while 

quick setup based on implementer‟s intuition might work, experimental evaluation of 

the influence of the parameters is usually performed to ensure the parameters are 

adapted to the problem instances to be solved and improve the algorithm results 

(Birattari, 2005).  

The parameter tuning applied to this problem was done in three stages: 

1. Initial solution generator tuning,  
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2. Local search tuning,  

3. Perturbation tuning.  

Initial solution generator tuning consisted of determining price bounds      and      

for the initial solutions. Initial solution tuning rationale is based on the assumption that 

good initial solutions will enable the local search to find better results more quickly. In 

total, 105 different intervals were explored: each interval with      and      being a 

multiple of 0.05 €/min in the range [0.00 ; 0.70] €/min, with 50 solutions generated in 

each of these intervals. The results proved that the average daily profit for the initial 

solutions varied greatly depending on the price interval.  

The worst discovered profit was measured for the interval [0 ; 0.05] €/min, (average 

deficit of 16,714.2 €/day) and the best profit, zero, was achieved for any interval 

with      and       above 0.5 €/min. While at first this might seem like a good result, 

it should be pointed out that the simulated carsharing demand adapts to price. In cases 

when unreasonably high prices are applied, the demand drops to zero by force of the 

elasticity. Zero demand causes the model to shut down the service, interpreted as a zero 

profit result.  

To take this into account, both profit and demand were considered for the initial trip 

pricing tables. The scatter plot of a subset of explored initial intervals can be seen on 

Figure 4.2, with average profit on x-axis and average demand on y-axis. The Pareto 

non-dominated set of (profit, demand) pairs displayed by grey dots on the chart was 

selected as a set of candidate intervals (Powell, 1964; Powell, 1977). The highlighted 

interval [0.35 ; 0.40] €/min has the lowest average deficit (deficit of 32.48 €/day) while 
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also retaining high average demand (1579 trips that corresponds to 89 % of the demand 

with the reference price). Configurations with higher profit do exist, but for them, the 

demand drops to near zero, as can be seen in the example of the interval [0.45; 0.65] 

€/min, indistinguishable from the zero demand interval [0.5 ; 0.7] €/min. Having near-

zero demand in the system is clearly not the desired result. Therefore, the values of 

                and                 are selected for initial randomly 

generated solutions. 

 

Figure 4.2 - Initial solution generator configurations  

 

The local search tuning consisted of determining the best search      parameter. Five 

initial solutions with price intervals set up according to the values given above were 
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randomly selected and for each of them, local search with      equal to 0.01€, 0.02€, 

0.05€ and 0.10€ was applied. The experiment was repeated five times, resulting in 100 

test runs with each local search being limited to run for 4 hours. It is assumed that a 

better functioning local search will provide good results faster in the environment of the 

ILS. The results of the experiments are displayed in Table 4.6, showing average, 

median, minimum, maximum and sample standard deviation of the profits obtained with 

local search results. As can be seen in this table, the best results were in general 

achieved using a      of 0.02 €. 

Table 4.6 - Local search parameter exploration 

     (€) 

Profit (€/day) 

Average Median Min Max 
Sample standard 

deviation 

0.01 1164.8 1224.5 732.7 1561.0 206.7 

0.02 1307.7 1338.0 763.2 1727.1 245.4 

0.05 1262.0 1302.7 940.4 1455.8 140.1 

0.10 1164.2 1118.1 830.8 1589.4 193.7 

 

Perturbation tuning consisted of trying to identify which pair of changed set size and 

intensity (n, d) works best with the LSO configured as in previous stage. A total of 8 

different configurations were run 5 times to determine which perturbation parameters 

best fit the balance of diversification and intensification as described in Section 4.3. The 

results of the experiments are shown in Table 4.7 with average, median, minimum, 

maximum and sample standard deviation of the profits obtained with different 

perturbation settings. As preliminary tests have shown, the model is very sensitive to 
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price changes. Best average profits are achieved with low perturbation intensities 

(          ) and (          ), which have almost equal average profit. If 

perturbation is more pronounced, average profits get lower. This can be explained by 

the fact that the local search is unable to find good solutions before another intensive 

round of perturbation reduces the profit of the current local optimum. 

Table 4.7 - Perturbation parameter exploration 

 

It is interesting to note that higher perturbation settings can yield very good results. In 

fact, the best result found during our experiments was found with a rather high 

perturbation setting (           ). As standard deviation values indicate, while 

good average profits are obtained using low perturbation settings, they also lead to 

results of approximately equal quality. Conversely, higher perturbation means more 

variability of the output solutions quality.  

    (€) 

Profit (€/day) 

Average Median Min Max 
Sample standard 

deviation 

2 0.02 1782.7 1827.1 1624.7 1846.7 91.4 

2 0.05 1660.5 1730.1 1190.1 1905.5 273.5 

5 0.02 1767.3 1796.8 1554.6 1954.5 172.6 

5 0.05 1628.8 1720.1 1349.8 1790.8 185.3 

10 0.02 1674.2 1783.4 1187.9 2068.1 357.7 

10 0.05 1560.5 1561.6 1427.3 1721.4 110.1 

20 0.02 1696.5 1761.2 1456.3 1885.8 172.2 

20 0.05 1618.3 1646.4 1469.6 1743.3 124.7 
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Choosing appropriate perturbation settings can be done based on the planned algorithm 

run duration. For short runs, it is important to keep both   and   low to ensure search 

intensification. For longer runs, however, setting the perturbation to higher levels might 

be beneficial. With long algorithm runs (in our preliminary experiments, 12 hours or 

longer) the search progress tends to become stuck in a very good solution local search 

can no longer further improve. Higher perturbation rates might help the algorithm to 

change the high profit solutions sufficiently to diversify the search around very high 

profit solutions and in that manner, preventing stagnation.  

To conclude the algorithm parameter analysis, in Table 4.8, we provide recommended 

heuristic parameters for solving the TPPOCS using Lisbon as case study. The time 

limits in the table are valid for equipment with similar performance to our experimental 

setup (around 1440 model evaluations available in 12 hours). While these parameters 

could work well for similar trip patterns, travel times and price elasticity, they are 

problem instance specific and may differ for other cities, clustering methods and zone 

dimensions. 

Table 4.8 - Recommended meta-heuristic parameters 

 

 
Initial solution 

     (€)     
      (€)      (€) 

Short runs (< 12h) 0.35 0.40 0.02 0.02 2 

Long runs (>12h) 0.35 0.40 0.02 0.02 10 
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4.6 Results 

The best trip pricing table found in our experiments, denoted      , is presented in Table 

4.9. Using this pricing table, the system is able to achieve a profit of 2068.1 €/day. 

Compared to the deficit of 1160.7 €/day that results from not having any balancing 

strategy implemented and having to satisfy all reference demand (1777 trips) it is clear 

that variable pricing can lead to significant profit increases. For the best trip pricing 

table found, demand satisfied is equal to 1471 trips per day, which represents a loss of 

306 trips in relation to the reference demand (17.7 % demand reduction). We should, 

however, note that this demand is not rejected per se, it is the case that some travelers 

will find the price too high to use the carsharing service. The average price charged is 

0.39€/min, with all the prices in the interval [0.35 ; 0.46] €/min, that is, all prices 

charged are higher than the reference carsharing price (  ), which is 0.30€/min. 

Table 4.9 - Best found trip prices for each origin-destination pair of zones and time interval 

TI 1 (6:00a.m.-8:59a.m.) 

 

TI 2 (9:00a.m.-11:59a.m.) 

 

TI 3 (12.00p.m.-2:59p.m.) 

Zones 1 2 3 4 5 

 

Zones 1 2 3 4 5 

 

Zones 1 2 3 4 5 

1 0.36 0.44 0.38 0.40 0.38 

 

1 0.35 0.43 0.38 0.41 0.40 

 

1 0.40 0.39 0.39 0.40 0.41 

2 0.38 0.39 0.39 0.38 0.39 

 

2 0.39 0.39 0.39 0.39 0.39 

 

2 0.38 0.39 0.38 0.39 0.39 

3 0.46 0.37 0.38 0.44 0.38 
 

3 0.38 0.38 0.39 0.38 0.39 
 

3 0.39 0.39 0.39 0.39 0.39 
4 0.35 0.41 0.36 0.38 0.39 

 

4 0.39 0.40 0.39 0.41 0.40 

 

4 0.38 0.40 0.38 0.39 0.39 

5 0.39 0.45 0.35 0.41 0.39 

 

5 0.38 0.39 0.38 0.36 0.38 

 

5 0.39 0.39 0.39 0.39 0.39 

                    
TI 4 (3:00p.m.-5:59p.m.) 

 
TI 5 (6:00p.m.-8:59p.m.) 

 
TI 6 (9:00p.m.-00:00a.m.) 

Zones 1 2 3 4 5 

 

Zones 1 2 3 4 5 

 

Zones 1 2 3 4 5 

1 0.39 0.43 0.39 0.39 0.38 

 

1 0.39 0.38 0.39 0.38 0.45 

 

1 0.39 0.36 0.38 0.38 0.36 

2 0.38 0.38 0.38 0.38 0.39 

 

2 0.39 0.38 0.38 0.38 0.39 

 

2 0.40 0.39 0.40 0.35 0.40 

3 0.39 0.39 0.38 0.38 0.39 
 

3 0.36 0.39 0.40 0.38 0.38 
 

3 0.38 0.36 0.39 0.38 0.39 
4 0.39 0.39 0.39 0.37 0.46 

 

4 0.38 0.40 0.39 0.39 0.38 

 

4 0.35 0.35 0.38 0.36 0.36 

5 0.39 0.39 0.38 0.38 0.35 

 

5 0.39 0.38 0.41 0.38 0.39 

 

5 0.39 0.38 0.40 0.38 0.38 

In grey we indicate the OD pairs of zones in which there is a decrease in the demand due to the increase of price 
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Figure 4.3 - Difference between trip entries and exits for each zone and time interval (TI), before 

and after applying trip pricing 

 

Figure 4.3 presents: the difference between the vehicles entering and exiting in each 

station before applying trip pricing and having no relocations; and the difference 

between entries and exists with the trip pricing. Before applying trip pricing, time 

intervals 1 and 5 have great entry-exit imbalance, since they correspond mostly to the 

morning and afternoon rush hours. Analyzing Figure 4.3, it can be seen that in these 

periods of the day, the effect of trip pricing is more notorious for all zones balance, 

whilst in time intervals 2, 3 and 4, this effect is not so obvious. Furthermore, in these 

three intervals, zone 3 seems unchanged. This may happen because this zone 

encompasses more stations and therefore, more variability in trip patterns.  

Most of the OD pairs of zones that present a significant demand decrease correspond to 

a price charged equal or higher than 0.40 €/min. Noting that we decided to round the 

demand vector          
 

 to   instead of 1 when the result of applying the elasticity leads 
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to a value of 0.5. We should also refer that the elasticity is being applied to the unit 

price per trip and not to the total price of a trip, thus, we are not considering that longer 

trips may present different results from shorter ones. 

With the results of the model and the algorithm, it is possible to do a more detailed 

analysis on what happens in each time interval for each zone and trip direction (entering 

or exiting the zone). For the case of the early morning (6:00a.m. to 8:59a.m.), there are 

mainly demand reductions through price increases for: the trips that depart from zones 3 

and 5, which are located in the periphery and thereby present many more trip origins 

than destinations in this period; and the trips that arrive at zone 2, which is located in 

the center and therefore, it has many more trips arriving to it (about 70% of the trips) 

than those beginning there. This occurs because people tend to travel from residential 

areas to the CBD in the morning. Moreover, this is the interval that presents the higher 

prices for all OD pairs of zones, which confirms that it is the most imbalanced one. 

The following periods, 2 and 3 (9:00a.m. to 11:59a.m. and 12:00p.m. to 14:59p.m., 

respectively), are mostly intermediate periods of the day in which most of the prices 

charged are below or equal to the average price charged for the entire day (0.39 €/min). 

However, despite there not being a great difference between number of departures and 

arrivals, when this happens, the prices charged act to reduce the demand in the most 

imbalanced directions.  

Time interval 4 (15:00p.m. to 17:59p.m.) is also an intermediate more balanced time 

interval. It is noticeable its proximity to the afternoon peak hour, having already some 

return home trips. The prices charged in this time interval also reflect this fact, being 
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higher than the average for some OD pairs of zones. The model acts in decreasing the 

demand that departs from zones 1 and 4 located in the center, since these outbound trips 

are more than 50% of the total trips for these two zones, and decreases the demand that 

arrives at zone 5 located at the periphery. Zone 5 presents more trip destinations than 

origins (about 68%/32%). For the OD pair 4-5, the price charged is equal to 0.46 €/min, 

which is the highest price charged in the pricing table. 

The afternoon peak period (18:00p.m. to 20:59p.m.) shows a greater imbalance of 

vehicles across all the stations. Therefore, the demand reductions, due to the price 

increase, are more pronounced in this period. As an example, they exist for both 

directions in zone 4. In this period, zone 4, located in the city center, shows a higher 

number of trip origins than trip destinations due to work-home trips. Thus, a decrease in 

the demand with this zone as destination was not expected. However, trip arrivals are 

also decreased as expected and the effect of reductions in both ways results in a more 

balanced zone at a scale that is manageable by the whole network. This time interval 

sets a price of 0.45 €/min for OD pair 1-5 (the second highest price), which was 

expected, since it is a very imbalanced movement at this time of the day with trips from 

the center to the periphery.  

Finally, the end of the day, which corresponds to time interval 6 (21:00p.m. to 

12:00p.m.) has few trips (only 11). For this reason, there is no need to reduce the 

demand significantly, and at the same time, price reductions for demand increase are 

apparently not beneficial either.  
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The improvement in the profitability of the company is not only due to the decrease of 

the demand for some OD pairs of zones and time intervals, but it is also due to the price 

increase itself in many OD pairs where the increase is not enough to produce an 

expected demand reduction, but sufficient to have an impact on increasing the profits. 

This occurs even though we have considered in the case study that demand is elastic to 

price variations, elasticity is greater than 1 in module, which should point for a 

reduction in profit from price increase in a linear model. The special complex nature of 

interdependence of supply and demand in carsharing systems is leading to a benefit of 

running the system for a lower number of trips, yet one that is more balanced. 

The zoning that was determined by computing a theoretical desired relocation vector is 

able to divide the stations in sets for which the price variations yield a higher profit. 

Despite the fact that by using the meta-heuristic we are not guaranteed to find the 

optimal solution, we are however, able to demonstrate through its application to the case 

study that an increase in prices can actually lead to a higher profit, one that not only 

avoids losses (system closure will generate 0 profit) but that is able to generate positive 

and significant profits. We may conclude through the global results presented in Table 

4.10 that vehicles‟ balance and profit are directly related, because having a more 

balanced system, despite resulting in less revenues, allows having fewer vehicles in the 

fleet and less parking spaces at the stations which means less operating costs. 
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Table 4.10 - Global results with and without trip pricing 

  

Profit 

related to 

the trips 

(€/day) 

Costs of 

vehicle 

maintenance 

(€/day)  

Costs of 

vehicle 

depreciation 

(€/day) 

Fleet of 

vehicles  

Costs of 

parking spaces 

maintenance 

(€/day)  

Number of 

parking spaces  

No balancing 

strategy 
7113.3 166.0 6630 390 1478 739 

Trip pricing 7576.4 138.3 4352 256 1018 509 

 

4.7 Conclusions 

There are two main types of carsharing operating models: the round-trip carsharing, in 

which the users have to pick up and return the car to the same station, and the one-way 

carsharing that allows users to pick up a vehicle in a station and drop it off at another. 

The latter has been associated with more trip purposes when compared to round-trip 

carsharing – for example, one way carsharing could also be used for commuting (Balac 

and Ciari, 2014). However, it also brings up a problem of the vehicle stock imbalance 

and a need to find efficient ways to balance vehicle stocks across stations. Several ways 

for increasing this balance have been proposed in the literature, and some empirical 

studies have suggested the use of variable trip pricing (Mitchell et al., 2010). This 

method consists of varying the price charged to the clients based on the stock of 

vehicles located at the origin and destination stations. Though never proven, the 

conjecture is that by changing demand through pricing, carsharing systems could 

provide higher levels of profit.  

In this chapter, we have proposed a model that considers demand as a function of price 

and searches for the prices that maximize the profit of the daily operation of a 
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carsharing company. Because this model is non-linear and the objective function is non-

concave, we use ILS as a meta-heuristic to solve the problem (Stutzle and Hoos, 1999; 

Lourenço et al., 2001; Lourenço et al., 2003; Luke, 2013). For setting the prices, 

stations were grouped into zones and time was divided into time intervals. In this 

manner, trip prices varied between each OD pair of zones according to the time interval 

in which the trip begins. This methodological approach was numerically tested for the 

case study of the municipality of Lisbon, in Portugal.  

The case study application shows that the use of price variation as a strategy to balance 

vehicle stocks across one-way carsharing stations works in a satisfactory way. When no 

vehicle balancing mechanism is applied, the carsharing company has a deficit of 1160.7 

€/day. Using the trip pricing approach, the profit for the best price combination found 

through the use of the ILS is 2068.1 €/day, which corresponds to an increase of 3228.8 

€/day in a system that has 75 stations and serves 1471 trips. It is important to note that 

the prices charged to the clients for every OD pair of zones increased in comparison to 

the reference price, which leads to a demand reduction. However, the increase in price 

happens through a generalized reduction in the imbalanced demand served by 

carsharing. 

Through the analysis of the results we concluded that, in most cases, the OD pairs of 

zones that have the higher increases in price, therefore a decrease in demand, are the 

ones with a greater difference between trip origins and trip destinations. This shows that 

the solution algorithm (meta-heuristic), despite not being an exact method, is able to 
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capture the essential behavior of the system related to the trip imbalance across zones 

and time intervals, improving its performance.  

The main conclusion that is drawn from this study is that trip pricing can be considered 

as an option to balance vehicle stocks in one-way carsharing systems. Concerning the 

generalizability of the method, it should be possible to apply it to different regions, 

however it must be stated that the solution algorithm computation time is dependent on 

the problem dimension. 

The developed meta-heuristic is an approximate method, providing solutions that are 

not guaranteed to be optimal. However, this is not necessarily the goal of this work. Our 

objective was to provide a method that could compute good solutions for the problem 

and, at the same time, assess if the trip pricing approach is able to mitigate vehicle 

imbalances in one-way carsharing systems.  

Regarding further developments, we suggest to enhance the solution method proposed 

in this chapter. Studying different principles to determine the zones could also be 

relevant for profit maximization. Moreover, the computation of the demand variation 

with price, which was performed in a very simple way in this study, should also be 

improved, because it is a key aspect to the realism of the results.  
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Chapter 5  

Assessing the Viability of Enabling a 

Round-trip Carsharing System to 

Accept One-way Trips: Application to 

Logan Airport in Boston 

5.1 Introduction 

Two main urban transportation modes have been used in the past few decades: private 

vehicle and public transportation. When the use of private vehicles started to become 

common, greater accessibility and flexibility in industrialized countries was achieved; 

however, several externalities resulted, including loss of time, pollution, congestion, and 

unrecoverable costs associated with the vehicle itself (Mitchell et al., 2010). Traditional 

public transportation modes like bus and rail may help solve these issues. However, 

public transportation has drawbacks, such as poor service coverage, schedule 

inflexibility and lack of personalization due to high investment costs. 
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Therefore, there is the need to find alternatives that are both sustainable and also 

guarantee that people have transport that enables them to carry out their activities. One 

of those alternatives is carsharing services. Carsharing systems involve a small to 

medium fleet of vehicles available at several stations to be used by a relatively large 

group of members (Shaheen et al., 1999). It appeared in 1948, in Europe, with a 

cooperative known as Sefage, which initiated services in Zurich, Switzerland. Later, in 

the 1980s, it came to the US within the Mobility Enterprise program (Shaheen et al., 

1999). Currently, one of the world‟s largest carsharing companies is Zipcar, which was 

founded in January 2000. It has more than 850,000 members and about 10,000 vehicles 

spread across the USA, Canada, UK, Spain, and Austria (Zipcar(a), 2014). In March 

2014, Zipcar started to offer one-way trips in Boston, USA (ZipcarOneWay, 2014).  

Some studies (Litman, 2000; Schuster et al., 2005) have shown that carsharing has a 

positive impact on urban mobility, through a more efficient use of automobiles, mainly 

by reducing the time that each car is waiting to be used. The use of carsharing systems 

has also quite often allowed car ownership rates to decline (Schure et al., 2012; 

Klincevicius et al., 2014) and thus lowered car usage (Celsor and Millard-Ball, 2007; 

Martin and Shaheen, 2011; Sioui et al., 2013). Furthermore, some recent studies 

concluded that carsharing systems should have positive environmental effects by 

allowing the reduction of greenhouse gas emissions (Martin and Shaheen, 2011, 

Firnkorn and Müller, 2011). 



Chapter 5 Assessing the Viability of Enabling a Round-trip Carsharing System  

to Accept One-way Trips: Application to Logan Airport in Boston 

 

 

131 

Considering the operating model, carsharing systems can be classified into: round-trip 

systems, in which users have to return a car to the station where it was picked up; one-

way systems, in which users may pick up a car from one station and return it to another 

(Shaheen et al., 2006). Recently, a particular case of one-way carsharing appeared in 

which the vehicles are scattered around parking spots within a city, the so-called free-

floating carsharing (Ciari et al., 2014; Schmoller et al., 2014). From the user 

perspective, round-trip services may not be attractive if a trip requires spending a long 

time parked at a location other than the vehicle‟s home location. Hence, this type of 

carsharing is mostly used for short trips when vehicles are parked for a short duration 

(Balac and Ciari, 2014; Barth and Shaheen, 2002; Costain et al., 2012), typically for 

leisure, shopping and sporadic trips; whereas one-way carsharing can be used for all 

other trip purposes, even commuting (Balac and Ciari, 2014; Ciari et al., 2014). 

Therefore, one-way carsharing systems are suitable for more trip purposes than round-

trip services. Schmoller et al. (2014) concluded this through a study on two German 

cities, Munich and Berlin. In the one-way systems that are implemented in these cities, 

the highest number of bookings occurs on Fridays and Saturdays, which indicates that 

the system is used for shopping and social-recreational activities. However, during the 

week, peaks of demand correspond to the typical rush hours, that is, commuter traffic. 

This was also concluded by (Balac and Ciari, 2014), who found that peaks of demand 

for one-way carsharing occur in the morning rush hour, around noon, and in the 

afternoon rush hour, while for round-trip carsharing peaks of demand happen outside 

rush hours. Balac and Ciari (Balac and Ciari, 2014) did, however, conclude that the 
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introduction of one-way carsharing does not cause a significant decline in round-trip 

carsharing demand, showing that the services are complementary.  

Despite being an advantage for users, one-way carsharing operators often face the 

complexity of managing fleet imbalances since incoming and outgoing trips are rarely 

balanced at each station at any given time and clients may not find vehicles or parking 

spots available when they need them. Moreover, one-way carsharing may compete with 

public transportation, walking and cycling as well as with the car, as concluded by Ciari 

et al. (2014); this might be less beneficial than round-trip carsharing in terms of 

transportation sustainability. Balac and Ciari (2014) showed that car and walking are the 

modes more likely to be replaced by one-way carsharing. With respect to the car, this 

replacement is good and more sustainable. But the replacement of walking is harmful 

because it might lead to more car usage.  

We can therefore conclude that a combination of round-trip and one-way carsharing 

could be better for the operator and the clients, considering that the decision to offer 

one-way trips is limited to special services, at least for a transition period. A carsharing 

system that operates as a one-way system can easily be used for round-trips; however, 

the opposite is rarely possible because the daily management of the system would have 

to be changed. The hypothesis discussed in this chapter is that one-way carsharing 

services can sometimes be beneficial for both the users, who do not need to pay for the 

time the vehicle is parked, and the operator, which will be able to expand its market. 

When carsharing is operated only as a round-trip service, clients will choose other 
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transportation modes for long-stay durations at the destination. One such mode is the 

taxi, which has door-to-door capability and only charges for the effective distance of the 

trip. Therefore, allowing a one-way service for some trips could be particularly 

interesting in cities where carsharing prices are significantly lower than the cost of a 

taxi or a private vehicle (if parking charges are included). Alfian et al. (2014) studied 

this possibility using a simulation tool to test several types of carsharing services, 

specifically those that offer both round-trip and one-way. They concluded that those 

services need to be cheaper than the taxi price for intermediate length trips. The goal of 

our work is to develop a methodology for testing if a round-trip carsharing system can 

provide a one-way service for very specific OD pairs, for which the round-trip service is 

usually not appropriate because it involves vehicles being parked for a long time. 

A mathematical programming model is proposed that maximizes the expected daily 

profit from accepting or rejecting one-way trips between a specific high demand 

generator site in a city and the existing round-trip stations. 

The model is applied to the case study of trips between the round-trip carsharing 

stations in Boston‟s Zipcar network and Logan International Airport. It is relevant to 

note that Boston is a city where carsharing costs significantly less than other 

transportation modes, such as private cars and taxis, especially for longer trips. 

Therefore, the main contributions of this chapter are: 
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 assessing the possibility of combining both round-trip and one-way 

carsharing services in a network that was created originally for a round-

trip service; 

 developing an integer programming model that provides such assessment 

by selecting trips for a specific high demand generator site to help 

maximize the daily profit of the company; 

 applying the model to a case study, the United States city of Boston, in 

MA, using realistic data obtained from a survey performed in 2010 

(Logan Airport Air Passenger Ground-Access Survey, 2010);  

 performing a sensitivity analysis of the model‟s performance by varying 

several parameters and by introducing relocation operations between the 

existing network and the high demand generator site, which have been 

used in one-way services around the world; and 

 providing insights on how this transition between one-way and round-trip 

should be put into practice. 

The chapter is structured as follows. Section 5.2 presents the mathematical model. The 

model is then applied to the Boston case study. The main results of the model are 

presented in Section 5.4. The chapter finishes with the main conclusions drawn from 

this study and some possibilities of future work. 
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5.2 Mathematical model 

A mathematical programming model is proposed whose objective is to select the one-

way trips that should maximize the expected daily profit of a carsharing company 

currently operating in a round-trip mode. 

Two assumptions were considered for this model: the capacity, that is, the number of 

parking spots in each round-trip station is not increased, and the fleet of vehicles is 

limited to the number of vehicles currently operating in the round-trip service. 

It is important to note that there may be a different number of vehicles available in each 

station at the end of each day. Moreover, we performed a sensitivity analysis of the 

model‟s performance, including the repositioning of vehicles between the existing 

round-trip stations and the station that it is created in the high demand generator site. 

The formulation presented below includes relocations. Even though they are only 

included for sensitivity analysis purposes, it is easier to explain the original model for 

this situation.  

The notation used to formulate the model (sets, data and decision variables) is as 

follows: 

Sets 

   *       +  set of stations, where   is the number of stations 

including the high demand generator site. 

    *       +  set of time steps in the operation period, where   is 
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the last optimization time step. 

 

Data 

    
 : Travel time, in time steps, between stations   and   when departure 

time is             . 

  : Total number of vehicles in the fleet. 

      The longest travel time between any pair of stations during the 

whole day. 

          
 

: One-way carsharing demand from   to   from time   to time 

     
 ,                     

         

      Number of unavailable vehicles at station   at the beginning of the 

optimization period ( =1),     , given that the round-trip service 

already exists and when the one-way service starts its operation,vehicles 

may be being used for the round-trip service, and therefore out of the 

stations. 

      Number of vehicles that arrive at   at time  ,     * +      for the 

round-trip service. 

      Number of vehicles that depart from   at time  ,     * +      for 

the round-trip service. 

      Taxi fare per trip from station   to  . 
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    Percentage of the taxi price charged to the clients of the one-way 

carsharing system. 

      Daily cost of a parking spot in the high demand generator site. 

     Cost of vehicle maintenance per time step driven in the one-way 

trips. 

     Cost of fuel per time step driven. 

     Cost of relocating a vehicle per time step driven. 

       Capacity of station       * + in number of parking spots.  

 

Decision Variables 

          
 
  Number of trips accepted from   to   from time   to time      

 , 

                    
       . 

          
 
  Number of vehicles relocated from   to   from time   to time 

     
 ,                      

         

      Number of vehicles available at station   at time           * + . 

      Number of vehicles available at site   at the beginning of the 

operation period ( =1). 

     Capacity of the station at the high demand generator,  , in number of 

parking spots. 
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Using the notation above, the mathematical model can be formulated as follows: 

       ∑ ∑          
 

    

     
 ≤  𝐻  
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∑          
 

   
 ≠ 

     
 ≤  𝐻  

 ∑          
 

   
 ≠ 

     
 ≤  𝐻  

                                 
        

(5.6) 

              * +       (5.7) 

             (5.8) 

         
 

                     
         (5.9) 

         
 

                     
          (5.10) 

                 (5.11) 

      (5.12) 

 

The objective function (5.1) of the mathematical model maximizes the total daily profit 

( ) of the one-way trips, taking into consideration the revenue from the trips paid by the 

clients (assuming that the price of each trip is      ), the cost of maintaining the 

vehicles used for the one-way service, the parking costs of the station at site  , and the 

vehicle relocation costs, when applicable. Constraint (5.2) guarantees that the total 

number of vehicles in the system is not greater than the current fleet at     and 

computes the initial availability of vehicles (   ) at the station at site  . Constraints (5.3) 

compute the initial availability of vehicles in each existing station, given that their 

capacities and the number of unavailable vehicles are inputs. Constraints (5.4) ensure 
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the conservation of vehicle flows at each node (  ) of the time-space network for 

     . Constraints (5.5) guarantee that the number of trips between stations   and   

at time   will not exceed the existing demand. Constraints (5.6) ensure that the number 

of vehicles leaving each station   at each time   does not exceed the availability of 

vehicles in each station   at each time  . Constraints (5.7) guarantee that the capacity of 

station   will not be greater than the current capacity of   in the case of the existing 

round-trip carsharing stations. Constraints (5.8) ensure that the capacity of the station in 

the high demand generator at site   is greater than the number of vehicles present there 

at any time  . In practice, capacity will not be greater than the highest value of     for 

the operation period, because this would penalize the objective function. Expressions 

(5.9)-(5.12) set the domain of the decision variables. The parameter     is used to 

allow all the trips to be performed, even those that leave the station at the end of the 

operating period ( ), because the system is open 24 hours and therefore clients can pick 

up the vehicles on one day and return them on subsequent days. Despite the fact that we 

are only optimizing one typical day of operations, due to computational limitations, the 

model can be used for any day of operation. It assumes that, at the start of each day, 

which corresponds to the end of the previous day, there are a number of unavailable 

vehicles at each station that are already being used by the round-trip or the one-way 

services.  



Chapter 5 Assessing the Viability of Enabling a Round-trip Carsharing System  

to Accept One-way Trips: Application to Logan Airport in Boston 

 

 

141 

When no relocation operations are included in the model, the variable          
 is taken 

out from the constraints and the relocation costs are eliminated from the objective 

function (5.1). 

5.3 Applying the model to the Logan Airport case study 

The model is applied to the trips between existing round-trip carsharing stations in 

Boston and Logan International Airport, which is close to the city center. Currently, 

there are 391 stations spread across the city with a fleet of about 1200 vehicles for use 

by clients (Zipcar(b), 2014). Most of the stations are within the city center; however, 

some of the suburbs are also served by Zipcar (Figure 5.1). 

 

Figure 5.1 - Visualization of the Boston Zipcar network (Zipcar(b), 2014) 
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Considering the round-trip service already offered in this city, i.e. the stations‟ location 

and their capacity (number of parking spots) obtained from the Zipcar website 

(Zipcar(b), 2014), the data needed to apply the model are: the number of available 

vehicles in each station at each time, due to running the round-trip service, for three 

different days in May and June 2014 (information that was also collected from 

(Zipcar(b), 2014)); the potential trip demand matrix for the one-way carsharing service; 

the driving travel times from the existing stations to Logan Airport and vice-versa; the 

cost of running the one-way system. 

The potential trip demand matrix uses data from a survey performed in 2010 by Logan 

Airport (Logan Airport Air Passenger Ground-Access Survey, 2010), and flight data 

(Flightstats, 2013). In spring 2013, an average of 39,424 passengers enplaned daily at 

Logan Airport according to information provided by the airport authorities. Taking this 

into account, together with the number of passengers enplaning and arriving at Logan 

Airport in 2012, taken from the DB1B database (Bureau of Transportation, 2013), it 

was possible to estimate the average number of passengers arriving each day at that 

airport in spring 2013, which resulted in 39,699 trips. Data from the Logan Airport 

Survey (Logan Airport Air Passenger Ground-Access Survey, 2010) were used to 

assign enplaning passengers to the origin station and arriving passengers to the 

destination station. This survey provides data about the number of passengers by origin 

(zip code), the transportation mode used to travel to the airport (private vehicle, taxi, 

rental vehicle, and public transportation), and the type of passenger: resident business; 

resident leisure; non-resident business, and non-resident leisure.  
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First, considering the current stations in the Boston Zipcar service (Zipcar(b), 2014), 

only 36% of the total number of passengers surveyed can be captured by the one-way 

carsharing service; the others come from or are going to zip code areas with no Zipcar 

stations. These passengers correspond to a total of 14,193 enplaning passengers and 

14,292 arriving passengers. Of these, it was assumed that only trips that currently use 

private vehicles, taxis or rental vehicles can be captured by carsharing. Moreover, 

demand may differ for the two trip purposes (business or leisure). While it can be 

expected that only a small percentage of business trips would transfer to carsharing, 

because companies usually pay for these trips, higher adoption rates can be expected 

with respect to leisure trips, since the main objective of these travelers is to choose the 

cheapest travel option. Therefore, we considered that only 15% of business passengers 

would be willing to choose carsharing while probably 100% of the non-business 

passengers would not mind taking this option. Moreover, vehicle occupation rates were 

considered diferentely, depending on the type of trip: for business trips we considered 

1.0 person per vehicle, since business passengers usually travel alone, and for non-

business trips we considered the vehicle occupation rate of 2.0. Given this, 2 non-

business passengers correspond to one trip. The application of these criteria resulted in a 

potential trip demand matrix with a total of 5,474 trips. This is the upper bound for the 

demand scenarios that were tested. 

The 5,474 trips were distributed by each zip code area according to the survey data. 

Knowing that there is more than one station in each zip code area, we decided to assign 

the trips to each station in each zip code according to the capacity (number of parking 
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spots) that each station has at present for the round-trip service, that is, the more parking 

spots currently assigned to that station, the more trips starting from or ending at it. 

Flight data (Flightstats, 2013) were used to assign a departure time to each trip from a 

station or from the airport. Flight schedule data (departures and arrivals to Logan 

Airport) were considered for one week in April 2013, with respect to their departure and 

arrival time and type of airplane used for each flight. The type of airplane provides 

information on the number of seats on each flight and the Consulting Bureau of 

Transportation (2013) provides details of airplane load factors for domestic and 

international flight departures and arrivals for the year 2012, which were: 0.8493, 

0.7346, 0.8723 and 0.7491, respectively. This information was combined to give an 

estimation of the number of passengers on each flight at each time of the day. Hence, 

the probabilities of enplaning trips happening at a given time of the day are estimated by 

dividing the number of enplaning trips occurring at each time by the total number of 

enplaning trips in the whole day. Equally, with respect to the arriving trips, the process 

is the same.  

The process explained above provided aggregated information, such as: the number of 

trips departing from each station in a whole day; the number of trips arriving at each 

station in a whole day; the probability of enplaning trips occurring at each time in the 24 

hours, and the probability of arriving trips happening at each time in the 24 hours. 

However, we needed to distribute the trips by pair of stations and time of the day at 

which each occurs. The Monte Carlo simulation method was used for this, computing 
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the cumulative probabilities and randomly generating a time when each enplaning and 

arriving trip will occur. Therefore, the Monte Carlo simulation is only used to generate 

the potential demand matrix, which is an input to the optimization model. We note, 

however, that this process may have a significant influence on the optimization results 

due to its randomness, hence this will be tested. 

With the process described above we obtained the distribution of the trips according the 

flight departure and arrival times, however, it is necessary to note that people need to 

arrive to the airport some time before the flight departure and are only able to leave the 

airport some time after the flight arrival. Thus, to match the airplane trips with the 

carsharing trips and lacking better information, we considered that passengers going on 

a domestic flight begin their trip 2 hours before boarding, and for international flights, 

they begin 3 hours before boarding. With respect to the arrivals, it is assumed that 

passengers are able to pick a car from the airport one hour after the airplane‟s arrival, 

for domestic and international flights alike. 

The day was divided into time steps of 20 minutes, which allows the necessary 

precision for the most frequent travel times in the city. The proposed model takes the 

effects of congestion into account, although data limitation issues meant that we used 

the same driving travel times for the whole day, which were computed using the Google 

Maps application (GoogleMaps, 2014) and expressed in time steps of 20 minutes. 

The Honda Civic Ex Sedan 1.6 that is currently in use in the Zipcar fleet was the 

reference for computing vehicle costs. It has an initial cost of USD 20,815.0 (autos, 
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2013). The cost of running the system was calculated as realistically as possible 

according to: 

    (cost of fuel): USD 0.442 per time step driven (20 min), taking an average 

speed of 10 miles/hour, a price per gallon of USD 3.668 (BostonGasPrices, 

2014), which is according to today‟s cost, and assuming that the cars are 

mainly driven in the city (consumption of 28 miles per gallon according to 

autos (2013)); 

 Cr (cost of relocating a vehicle): USD 4.323 per time step driven (20 min), 

since the average hourly wage of a taxi driver in Boston, MA, is USD 12.97 

(Bureau of Labor Statistics, 2013); 

     (cost of maintaining a parking space): USD 29 per day, which is the fee 

for parking in the terminal area of Logan International Airport (Massport, 

2014); 

    (cost of one vehicle, which includes maintenance and repairs): USD 0.034 

per time step driven, calculated for a city car (autos, 2013). 

The price charged to clients of the one-way carsharing service varies according to the 

location of the origin and destination stations and is given by multiplying an 

experimental parameter (  percentage) by the taxi price charged to each pair of OD 

stations (   ), which includes the initial fare, Massport fee, tolls and distance travelled 

fare (Taxifarefinder, 2013; Itoataxi, 2013). The   percentage is always lower than 1 

(100%). 
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5.4 Results 

Considering that the matrix produced in the previous section is the upper bound of the 

demand (potential demand) that can be reached by the one-way service, 6 demand 

scenarios were tested based on different percentages of potential demand that may be 

captured by carsharing (demand scenario): 1%, 5%, 10%, 30%, 50%, and 100%. These 

scenarios were considered in order to observe the effects of the captured demand on the 

profit of the company, even when it is very low, as happens with the 1% and 5% 

scenarios. The following parameters were varied for each of the demand scenarios in 

order to perform a sensitivity analysis: percentage of the taxi price ( ), airport parking 

cost (   ), and allowing or preventing vehicle relocations between existing stations 

and Logan Airport (vector              
 ).  

The tests were performed using round-trip data for May 27 (Tuesday), June 10 

(Tuesday) and 11 (Wednesday), 2014. We used more than one day so as to test the 

sensitivity of the model to different days and thus different availabilities of vehicles in 

each station. The initial availability ( (   )) of vehicles at each existing station varies 

for each day. Moreover, the model was also run assuming only the one-way service in 

order to see how the round-trip service (the priority one) constrains the new service.  

The model was run 5 times for each demand scenario and combination of parameters, 

and the average results were computed to account for the randomness inherent to the 
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use of the Monte Carlo simulation in the determination of the potential trip demand 

matrix. 

A summary of the testing methodology is shown in Figure 5.2. 

 

Figure 5.2 - Methodology used to obtain the results 

 

The mathematical model (5.1)-(5.12) was run for all the possible combinations of these 

experimental factors (a total of 360 runs) in an i5 processor @ 2.50 GHz, 4 Gb RAM 

computer under a Windows 7 64 bit operating system. The model was built using 

Xpress 7.7, an optimization tool that uses branch-and-cut algorithms for solving MIP 

problems (FICO, 2014). The model always reached optimum solutions for every run, 



Chapter 5 Assessing the Viability of Enabling a Round-trip Carsharing System  

to Accept One-way Trips: Application to Logan Airport in Boston 

 

 

149 

taking a minimum of 0.5s and a maximum of 308.8s as running time. 

5.4.1 Sensitivity analysis 

The following variables were used as performance indicators for the experiments: the 

percentage of trips effectively served by the one-way carsharing system for the demand 

scenario considered; the total number of trips performed; the total number of time steps 

driven by the clients (time steps of 20 minutes); the number of parking spots that were 

needed at the airport (airport station capacity); the daily profit obtained by the company; 

the percentage of relocations related to the demand effectively satisfied for each demand 

scenario; the total number of relocated vehicles; the total number of time steps of 

vehicle relocation.  

It is important at this point to explain that in this chapter we define three levels of 

demand: the potential demand that corresponds to a total upper bound demand (5,474 

trips); the demand scenario that is basically a percentage of the upper bound; the 

demand effectively satisfied by carsharing that will result from applying the model (it 

will of course be a percentage of the previous one). 

The following is the base combination of parameters considered for sensitivity analysis 

purposes: 

 60% of the taxi price (     ) charged to the clients, since it seems to 

be the most reasonable one in terms of profit for carsharing, 

competitiveness with the private vehicle and the taxi, and sufficiently 
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greater than the public transportation price in order to not capture that 

demand;  

 the cost of maintaining a parking space in the airport is taken to be USD 

29 per day, which is the price currently charged to private drivers 

(Massport, 2014);  

 no relocations are considered, since they present additional operational 

complexity to the operator, who may not be willing to use them. 

The price charged to the clients is then varied, decreasing to 40% of the taxi price per 

trip and increasing to 80%, while the other parameters remain the same. The cost of 

maintaining a parking space in the airport is also varied, decreasing to USD 20 per day 

and then increasing to USD 40 per day, keeping the other parameters the same as the 

base combination. Finally, relocation operations are added to the base combination of 

parameters. 

Table 5.1 presents all the experimental configurations, as well as the average results for 

5 replications of demand estimation, applied to the data of May 27, 2014. 

Table 5.1 - Average results for 5 demand estimation replications 

Experimental configuration Results 

Potential 

demand 
that can 

be 

captured 
(% of 

total 

demand) 

m Cmp Relocations 

Demand 
effectively 

captured 

(% of the 
potential 

demand)  

Total n. of trips 

done using one-
way 

carsharing service 

per day  

Total 

n. of 

time 
steps 

driven 

per 
day 

N. of 
parking 

spaces 

needed 
at the 

airport 

Profit 
per day 

(USD) 

Relocations 

(%) 

Total n. of 

relocations 

Total 

n. of 

reloc. 
time 

steps 

per 
day 

1 
0.6 29 no 0.36 20 24 4 315.6 -- -- -- 

0.4 29 no 0.34 19 23 3 174.0 - -- -- 
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0.8 29 no 0.60 33 37 10 492.9 - -- -- 

0.6 20 no 0.60 33 37 10 383.2 - -- -- 

0.6 40 no 0.35 19 23 3 278.4 - -- -- 

0.6 29 yes 0.97 53 60 3 653.3 64.48 34 37 

5 

0.6 29 no 2.43 133 141 11 1890.5 -- -- -- 

0.4 29 no 2.37 130 139 10 1134.1 - -- -- 

0.8 29 no 3.24 177 187 28 3058.1 - -- -- 

0.6 20 no 2.94 161 170 26 2053.3 - -- -- 

0.6 40 no 2.39 131 139 10 1770.5 - -- -- 

0.6 29 yes 4.60 249 268 8 3210.8 43.93 110 119 

10 

0.6 29 no 4.68 256 281 21 3826.3 -- -- -- 

0.4 29 no 4.55 249 274 19 2316.0 - -- -- 

0.8 29 no 5.07 278 302 32 5402.9 - -- -- 

0.6 20 no 5.09 278 303 32 4072.2 - -- -- 

0.6 40 no 4.60 252 276 19 3605.3 - -- -- 

0.6 29 yes 8.90 487 534 12 6708.9 44.87 218 239 

30 

0.6 29 no 13.91 762 838 49 11524.5 -- -- -- 

0.4 29 no 13.56 742 818 44 7095.1 - -- -- 

0.8 29 no 14.34 785 861 61 16037.3 - -- -- 

0.6 20 no 14.30 785 861 61 12032.2 - -- -- 

0.6 40 no 13.77 754 830 46 10997.8 - -- -- 

0.6 29 yes 27.99 1532 1674 34 21158.3 46.34 710 775 

50 

0.6 29 no 24.30 1330 1454 74 20334.1 -- -- -- 

0.4 29 no 23.82 1304 1428 67 12648.9 - -- -- 

0.8 29 no 24.58 1346 1469 81 28088.8 - -- -- 

0.6 20 no 24.61 1347 1471 82 21034.6 - -- -- 

0.6 40 no 23.97 1312 1436 69 19549.6 - -- -- 

0.6 29 yes 47.26 2585 2830 51 36018.5 45.52 1177 1293 

100 

0.6 29 no 46.20 2529 2767 88 40166.1 -- -- -- 

0.4 29 no 45.51 2491 2730 78 25523.2 - -- -- 

0.8 29 no 46.55 2548 2787 96 54860.1 - -- -- 

0.6 20 no 46.68 2555 2794 100 40984.3 - -- -- 

0.6 40 no 45.80 2507 2746 82 39220.4 - -- -- 

0.6 29 yes 93.50 5118 5593 96 69972.6 49.76 2547 2779 

The base combination of parameters is shown in bold. 

 

Besides the average of the results for the 5 replications, the standard deviation and the 
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coefficient of variation were also computed (not shown in the table). The coefficient of 

variation was mostly lower than 0.2 for scenarios with 10% or less of potential demand 

captured by carsharing and 0.0 for scenarios with more than 10% of demand captured 

by carsharing. The maximum value of the coefficient of variation was 0.2 for the first 3 

scenarios and 0.1 for the rest. The number of parking spots needed at the airport had the 

highest coefficient of variation, which means that this output has the highest sensitivity 

to the demand variations. 

Analyzing Table 5.1, the most important aspect to notice is that all demand scenarios 

and combinations of parameters resulted in a profit for the one-way trips to and from 

Logan Airport. This happens even for 1% demand scenario. With the base combination 

of parameters, the profit obtained varies between USD 315.6 and USD 40,166.1 per 

day. However, it should be noted that scenarios with more than 10% of demand are 

probably not that realistic and have only been studied for sensitivity purposes.  

As the price charged to the client increases, the profit, as expected, also increases 

(Figure 5.3). For example, for the 1% demand scenario, it varies from USD 174.0/day 

(when 40% of the taxi price was charged) to USD 492.9/day (when 80% of the taxi 

price was charged). The profit is inversely proportional to the cost of parking at the 

airport, so as the cost decreases, the profit increases (Figure 5.3). Considering the 10% 

demand scenario, the profit obtained varies from USD 3605.3/day for a parking cost of 

USD 40/spot×day to USD 4072.2/day for a parking cost of USD 20/spot×day. 
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Figure 5.3 - Profit obtained for each demand scenario 

 

It can also be concluded from Table 5.1 that if the price charged to the clients or the cost 

of maintaining a parking space in the airport is varied, the changes in the demand that is 

effectively satisfied by the one-way carsharing for each demand scenario are not as 

great as using relocation operations. Moreover, for the variations considered in this 

study, changing parking costs for the company at the airport produces effects on the 

demand effectively captured by carsharing similar to changes in the price charged to the 

clients, taking into consideration their inverse proportionality.  

The primary axis in Figure 5.4 represents the percentage of demand effectively satisfied 

for the 6 demand scenarios considered and each of the 6 parameter configurations. It is 

possible to see that the effect of relocation operations on the one-way system is very 
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significant, since they allow at least 90% of all the demand to be satisfied for each of 

the 6 demand scenarios. This occurs because relocating vehicles repositions them where 

they are needed and the whole system has enough vehicles for all the one-way trips if 

they are positioned in the desired stations at each time step, something that does not 

happen naturally without relocation operations. Although, as shown in the secondary 

axis through the number of potential trips in each demand scenario, this is much more 

relevant for the 100% demand where the maximum potential demand (5,474 trips) can 

almost be satisfied. 

 

Figure 5.4 - Demand effectively satisfied for each demand scenario 

 

With respect to the number of parking spots needed at the airport, this increases as the 

price charged increases, because there are more trips being served. It is important to 
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note that we are not considering demand elasticity relative to price and that generally as 

price increases, demand decreases. However, we always considered lower prices for 

carsharing than the taxi and private vehicle prices. Therefore, we think that it is 

reasonable to consider that even if the price rises, the number of trips could still increase 

because some of the previously unprofitable trips would be more attractive to the 

system. When the cost of parking at the airport falls, there are more trips being served 

as happens when the price charged to the clients increases, and the capacity of the 

airport station also increases. Furthermore, as already mentioned, the results of 

changing parking costs at the airport or changing the price charged to the clients are 

similar for the combinations of parameters considered in this chapter. As an example, 

Figure 5.5 shows a great parallelism between the lines related to the combination of 

parameters with the highest price charged to the clients and the lowest cost of parking at 

the Airport. When relocations are added, it is possible to have a smaller station at the 

airport for all the demand scenarios considered except the 100% scenario, varying 

between 3 spots for the 1% scenario and 96 spots for the 100% scenario. 
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Figure 5.5 - Number of parking spots needed at the airport for each demand scenario 

 

Analyzing the scenario that involves relocation operations, we find that this has the best 

results in terms of profit, demand effectively captured by carsharing, and capacity of the 

airport station - except for the 100% scenario - as noted previously. Nonetheless, the 

number of relocations is nearly half the one-way trips satisfied and even more for the 

1% scenario, as shown in Table 5.1. This could be difficult for the company to manage. 

The complexity of managing relocation operations is not discussed in detail in this 

chapter. For a better insight on this problem, see Chapter 3. This is the reason why 

relocation operations are only an add-on to the base combination of parameters and are 

not included in all the other tests performed. 

Analyzing the departures and arrivals of trips over a whole day for each station in the 
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city, it is possible to assess which stations should be open to the one-way carsharing 

service. If no relocations are considered, these are the stations that have a potential 

demand (departures plus arrivals) higher than the average potential demand for all the 

stations (14 trips), and that at the same time have more than one vehicle assigned to 

them. When there is only one vehicle available, this is mostly used for the round-trip 

service, which leaves no vehicle available for the one-way service. Note that this model 

does not consider trip rejection for the round-trips. Moreover, it is concluded that the 

price charged to the clients has no influence on the location of the stations that should 

be open to the one-way carsharing service towards the airport. This is because the 

bigger stations are closer to the airport (for instance, in Boston, Cambridge, Somerville, 

Dorchester, Jamaica Plain, and Brookline). Thus, the trips from/to these stations are 

cheaper, but they are the ones most likely to be performed because they are from/to 

stations with more available vehicles. 

Looking at the stations located in the Boston suburbs, revenue from the trips where they 

are the origin or destination would be higher, but at the moment they have few vehicles 

for the round-trip service, and not enough for one-way trips. This effect can be seen by 

running the model without considering the round-trips. The number of trips performed 

using the one-way carsharing service in that case increases, as well as the number of 

time steps driven, as expected. For instance, for the base combination of parameters and 

the 5% demand scenario, there are 25 more trips satisfied and 32 time steps driven when 

no round-trips are considered. The increase in the number of time steps driven is much 

greater than the increase in the number of trips, showing that the model is choosing trips 
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from/to stations further away from the airport, since all the vehicles present in the 

suburbs‟ stations are available for use by the one-way service. 

5.4.2 Effect of daily demand variations 

In addition to the round-trip demand data from May 27, 2014, data for two more days 

were obtained (June 10 and 11, 2014). This was used to investigate the effect that 

round-trip demand variations may have on the results. These three days had different 

vehicle availabilities in most of the stations; however, by running the model for each of 

them we found that results are similar for all parameters considered.  

For the base combination of parameters, the changes in profit for 10% or less demand 

scenarios are always lower than 9.5% (USD 382.4/day). In the worst case, with respect 

to the number of parking spots needed at the airport station, the changes correspond to 

less than 12.5% (3 parking spots). From these results it can be concluded that the 

variations in profit and the capacity of the airport station are significant across the days. 

However, considering different days, and thus different vehicle availabilities in each 

station at each time, the model always finds a solution for the one-way carsharing 

service that allows the company to make a profit. This is because it adjusts the trips 

selected to be satisfied according to the availability of vehicles in each station after the 

round-trip demand is wholly satisfied. However, it may not occur when the utilization 

rates of the round-trip service are so high that there are no available vehicles left to be 

used by the one-way carsharing service. Therefore, the company should work out if 

these one-way trips are profitable enough to make it worthwhile adding more vehicles 
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to the integrated system or if it should stop offering the one-way service. We concluded 

that for 10% or less demand scenarios, the profit from the one-way carsharing service 

falls as the number of round-trip entries and exits increases. Summing the number of 

entries and exits for the round-trip system for each of the three days (May 27, June 10, 

and June 11, 2014), the following figures are obtained: 2440, 2357, and 2417, 

respectively. For instance, taking the 1% demand scenario and the base combination of 

parameters, the profits of the one-way carsharing service on those days are USD 315.6, 

USD 423.6, and USD 385.1, respectively. 

To study the effect that different one-way trip patterns, and therefore different vehicle 

availabilities at each station, may have on the results, we ran the model for the first day 

of one-way carsharing service operation, considering: our assumption that the 

availability at site   at     is 0 (since we are not increasing the existing vehicle fleet 

and the vehicles in it are at the existing stations or being used by clients); that the model 

can increase the vehicle fleet by adding vehicles to the airport station at    , given 

that this is done with a cost of the depreciation of these vehicles to the company, which 

is USD 14.781 per vehicle per day, according to autos (2013). Both hypotheses result in 

significantly different trip patterns (availability of vehicles at each station during this 

day). However, in terms of the profit obtained, these differences are not that significant 

as they amount only to a maximum of about 4% for the most realistic scenarios (1, 5, 

and 10%). Once again, this demonstrates that the model is able to adapt the demand 
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satisfied to the number of available vehicles at each station at each time step, thereby 

maximizing the profitability of the carsharing company. 

5.5 Conclusions 

From the user‟s point of view, one-way carsharing systems are a better option for more 

trip purposes than round-trip services. While round-trip carsharing is used for short 

duration activities, such as leisure and shopping (Balac and Ciari, 2014; Barth and 

Shaheen, 2002), one-way carsharing may be used to other purposes, including 

commuting (Balac and Ciari, 2014; Ciari et al., 2014; Shaheen et al., 2006). 

Nevertheless, this type of system is more complex in terms of management, mostly 

arising from the imbalance of vehicle stocks. 

In this chapter, it was assumed that both types of trip should be covered by a carsharing 

system, depending on the clients‟ needs. Hence, we studied the adaptation of a system 

that is operating for round-trips so that it can handle one-way trips for a specific high 

demand generator in a city. The round-trip service was deemed the priority one, that is, 

it should be served first, since it is the core business of the company. A mathematical 

model was developed to decide which one-way trips to accept and reject towards the 

carsharing station located in the high demand generator. 

The application of the model to the case study of Boston, with the high demand 

generator station located at Logan International Airport, led to the conclusion that the 

one-way carsharing service is profitable for all the scenarios considered, even when the 
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percentage of trips effectively satisfied by carsharing is very low (0.34%). This is 

reinforced by the fact that Zipcar started to integrate both round-trip and one-way 

carsharing in Boston during this year (ZipcarOneWay, 2014). However, this study was 

completed before this change in operations. 

Implementing a relocation policy between the round-trip stations and the high demand 

generator station at the airport and vice-versa had a great impact on increasing profits. 

For example, for the 5% demand scenario, the profit achieved when relocations are 

performed is 70% higher than when no relocations are performed, and about 27% fewer 

parking spots are needed at the airport than when there are no relocations. This airport 

station capacity corresponds to 8 parking spots, which is a realistic capacity for the 

airport parking lot. Without relocations, this number grows significantly. 

As a general conclusion, it can be said that there is a potential market for integrating 

two-way and one-way carsharing services - at least for particular high demand generator 

sites. This is the case of an airport, where the carsharing company may find extra profit 

while also benefiting travelers by offering them another transportation option that is 

cheaper than other modes. Even if the carsharing company does not want to resort to a 

relocation system, providing a one-way service for a selected destination would seem to 

take advantage of idle vehicle stocks in many stations of a city. It is important to note 

that the cost to the clients should be lower than the cost of using other more comfortable 

transportation modes, such as taxi and private vehicles (Alfian et al., 2014), in order to 

make this service competitive. Nonetheless, they should also be high enough for the 



Chapter 5 Assessing the Viability of Enabling a Round-trip Carsharing System  

to Accept One-way Trips: Application to Logan Airport in Boston 

 

 

162 

company to make profit. Our model also indicates which stations should be open to one-

way trips. It was concluded that these stations should be those that have a potential 

demand (entries plus exists) that is higher than the average potential demand for all the 

stations, and those with a fleet of 2 or more vehicles.  

A significant limitation of this study must be acknowledged, which is the fact that there 

is no model to relate demand to the price charged; hence, no elasticity of demand to 

price is incorporated. This is one of the improvements that can be added in the future. 

Moreover, future work should look at the possibility of increasing the capacity of 

existing stations in favorable locations to cope with the one-way carsharing service, as 

well as increasing the vehicle fleet. The interaction between several high demand 

generators in the city is also an interesting challenge. 

 

Disclaimer: This chapter is the result of an analysis conducted on an existing carsharing 

service in the city of Boston, called Zipcar, however, the chapter does not purport to 

represent the views of this company nor did this organization contribute to fund any 

component of this research. Moreover, this study was finished before Zipcar started to 

integrate both types of carsharing in Boston. 
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Chapter 6  

Conclusion 

Carsharing can contribute to mitigate the problems caused by private transportation on 

the environment and can be complementary to and enhance public transportation that is 

often limited in its ability to serve dynamic mobility demands. Despite this, it also 

presents some shortcomings, mainly related to vehicle stock imbalances in one-way 

carsharing systems. In this thesis, we present optimization and simulation approaches to 

find ways of balancing vehicle stocks‟ across one-way carsharing systems and 

providing insights on how one-way carsharing should be integrated in existing round-

trip systems, with the objective of maximizing the profit of the carsharing companies. 

Therefore, these approaches are useful to the companies, but also to the users, since 

throughout the thesis there was always the concern of developing strategies that better 

serve users‟ interests, looking for improving the quality of the service offered. This is 

also relevant to transportation authorities and local governments that have another 

alternative transportation mode to be implemented and satisfy the ever changing and 

more diverse urban mobility needs.  
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This thesis pursued three global objectives. The first one was related to set out a 

literature review on carsharing aiming at identifying the existing gaps with a focus on 

operational problems and the approaches that have been used to solve them. The other 

two objectives derive from the literature review and consisted of creating models to 

bridge some of the gaps found. Hence, we developed new methodological approaches to 

balance vehicle stocks‟ in one-way carsharing systems, and a method to understand if 

and how a traditional round-trip system should allow one-way trips in a profitable way. 

These objectives were fully accomplished through the research developed.  

In the review chapter, we were able to access most of the research that has been 

developed on carsharing in the last few years and until the publication of the 

corresponding paper (Jorge and Correia, 2013). The objective of this review was to 

determine the existing gaps in the literature and point out possible paths for researchers 

to follow in order to bridge those gaps, which constitutes the main contribution of this 

chapter. This type of research chapter is important for researchers that have in the same 

document most of the existing literature about this topic compiled and analyzed as well 

as the indication of possible research directions useful for the field. This review showed 

that there was a lack of studies to: (1) estimate the demand of these systems, mainly in 

respect to one-way carsharing, representing also the supply side and its important 

relationship with the demand side; (2) find ways of balancing one-way carsharing 

vehicle stocks using approaches and models able to be applied in real size systems; (3) 

model free-floating carsharing systems, which are the last trend in the implementation 

of these systems. Moreover and despite not being stated in Chapter 2, we have not 
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found studies addressing the integration of both round-trip and one-way carsharing 

systems. It is important to note that since the publication of this chapter in 2013, some 

new studies have appeared on this topic, which address some of the gaps previously 

found. These new studies were cited throughout the chapters that follow Chapter 2. 

In Chapter 3, we propose relocation operations as a way of balancing vehicle stocks in 

one-way carsharing. The developed approach is based on: a mathematical model that 

optimizes the vehicle relocation operations, maximizing the profit of the carsharing 

service and considering that all the trips are known in advance; and a discrete-event 

time-driven simulation model to test several real-time relocation policies. Previously, 

other authors developed mathematical and simulation models to address this issue, but 

always in an incomplete way. For example, Barth et al. (2001) developed an aggregated 

approach that does not treat each station individually. Kek et al. (2006) and Kek et al. 

(2009) proposed simulation as a way to evaluate the performance of the system for a 

solution obtained from an optimization model. And some authors developed 

optimization models, but not simulation (Nair and Miller-Hooks, 2011) or vice-versa 

(Barth and Todd, 1999), which does not allow combining both optimization and 

simulation results that we show to be important. Optimization provides the best possible 

results to be achieved, while simulation allows testing real time policies, which are 

easier to apply in reality and can actually take some of the optimization results insights 

to improve the stocks balance. Both models were applied to a network of hypothetical 

stations in Lisbon, Portugal, indicating that relocating vehicles contributes to increasing 

operational profitability. Considering this hypothetical network that covers the whole 
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city without relocations, there are a deficit of 1160.7 €/day. This deficit is due to the fact 

that by not having relocations, the company has to provide a larger fleet of vehicles to 

satisfy all demand. When the real-time relocation policies are added, simulation results 

show profits of 854.9 €/day, even with the added cost of relocating the vehicles, because 

there is no need for a larger fleet. Using the mathematical model for the same network 

(assuming that all demand is known at the outset), results are even better, with a profit 

of 3865.7 €/day. This clearly demonstrates the value of having vehicle reservations to 

act beforehand, nevertheless requesting 24 hours reservation period would certainly 

decrease the flexibility of the system.  

Still motivated to continue studying the problem of vehicle imbalance in one-way 

systems, in Chapter 4, we present the work that was done to study trip pricing as a way 

to reach that balance. The main objective of this study is to research the possibility of 

increasing the profit of one-way carsharing companies by controlling demand through 

the price. For this purpose, a mathematical model is presented to define the prices that 

maximize the profit of a carsharing company, considering that there is a negative price 

elasticity of demand. Due to the non-linearity of the model, given that demand depends 

on the price, a meta-heuristic (iterated local search) is also provided to solve it. As far as 

we know, there is only one other study addressing the trip pricing approach, although 

contrary to ours, it is based on a simulation model (Zhou, 2012). Therefore, the main 

contributions of this chapter to the existing literature are the development of an 

optimization model to implement trip pricing in one-way carsharing systems as well as 

a solution method to solve it (meta-heuristic), and the proof on the utility of this 
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approach with this purpose. This model may constitute a tool to be used by one-way 

carsharing operators to manage their vehicle fleets imbalances, improving the quality of 

service for the users. The algorithm was applied to the same case-study as in Chapter 3 

(the municipality of Lisbon, in Portugal), demonstrating that trip pricing is able to 

significantly increase the profit of the carsharing company by decreasing some of the 

demand that imbalances it. As previously stated, when no balancing strategy is used, the 

cost of operating this service corresponds to a deficit of 1160.7 €/day, while applying 

trip pricing, profits of 2068.1 €/day could be achieved. This profit is lower than the one 

obtained by using the optimum relocation operations. However, this is still a remarkable 

result, since we are charging prices per origin-destination pair of zones and not per 

origin-destination pair of station and per time interval and not per each minute in the 

operation period. We are also using a meta-heuristic as solution algorithm to determine 

those prices, which does not provide the optimum price solutions.  

In Chapter 5, we introduce a method to understand if a round-trip carsharing system is 

able to be profitable by allowing one-way trips for specific origin-destination pairs. The 

idea is to use vehicles and parking spaces that are not being used by the traditional 

round-trip system. This is the first time, to our knowledge, that the integration of both 

operating models (round-trip and one-way) is studied through a mathematical approach. 

An integer programming model was developed to select one-way trips towards a 

specific high demand generator site, with the objective of maximizing the profit reached 

with the added one-way service. The main contributions of this chapter are the 

assessment of the possibility of increasing profit by combining both round-trip and one-
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way carsharing in a network that was created originally for round-trip carsharing, and 

the provision of insights on how this integration should be put into action. This model 

was applied to the case study of Boston, USA, considering that one-way trips are 

allowed connecting the existing Zipcar stations in the city (Zipcar(b), 2014) and the 

Logan Airport. Results show that this one-way service could be profitable even when 

the percentage of trips satisfied by one-way carsharing is very low (0.34%). Moreover, 

the model shows that one-way trips should be offered from/to the stations that present 

higher demand than the average across the city to/from the Airport, and the ones whose 

capacity is of at least two vehicles. 

Globally the models presented in the thesis are able, at least in theoretical scenarios, to 

improve the profit of a carsharing company and or improving the level of service 

provided. In this thesis, most of the research effort has been put into balancing one-way 

carsharing vehicle stocks. From these studies, we have concluded that: (1) the use of 

relocation operations may be realistically applied to one-way carsharing systems, 

benefiting carsharing companies in terms of profit obtained and offering at the same 

time better quality of service to the users in terms of vehicle and parking spot 

availability in the desired stations; (2) trip pricing constitutes another possibility for 

carsharing companies to increase their profits, balancing efficiently the vehicle stocks. It 

is important to note that when prices are increased, the demand that contributes to 

imbalance the system is rejected, which is not convenient for the clients of the system 

that want to perform these trips. Notwithstanding, the overall result presents benefits for 

carsharing system users‟ in general.  
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From the study of the integration of both one-way and round-trip carsharing, it appears 

that this integration should be beneficial for the company by increasing its profit. The 

one-way trips can take advantage of idle stocks and serve clients for whom the round-

trip carsharing is not suitable.  

There was a great effort to build real-world case studies. However, it should be 

emphasized that the case studies are hypothetical. Some assumptions were made due to 

lack of data or to restrain the analysis to the thesis objectives. Nevertheless, all the 

models described in this thesis should be useful in improving results of carsharing 

operation and should be easily applied in practice as they are, or with minor 

adjustments.  

In Chapters 3 to 5, several improvements and future research developments are 

mentioned to improve the models and the approaches developed. Regarding the vehicle 

relocation operations approach, the most important future development should be 

introducing stochastic trip variability and travel time in both optimization and 

simulation models to improve their realism. The trip pricing approach, which has the 

same purpose as the relocation operations, may benefit from improving the solution 

algorithm (meta-heuristic) in order to try achieving better solutions. Furthermore, other 

principles to determine the zones should be tested, and the way demand varies towards 

price should also be more detailed. With respect to the integration of round-trip and 

one-way carsharing simultaneously, a possible enhancement in terms of the model 

should be to incorporate price elasticity of demand. While the approach may be 

enhanced by adding more parking spaces and vehicles to the existing stations at 
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favorable locations for the one-way carsharing service. And a higher number of high 

demand generator sites should also be considered to offer one-way trips or even all the 

current round-trip stations.  

Despite this, we believe that the methodological approaches introduced and applied in 

this thesis represent a notable contribution for the existing literature about planning and 

managing carsharing systems, especially the ones that operate as one-way. The case 

studies, mostly based on real data, clearly show this contribution for carsharing 

companies in their service planning and management process, but also for carsharing 

users. 
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