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ABSTRACT 

Cardiovascular diseases (CVDs) are currently the leading cause of death in the world and are 

responsible for over 17 million deaths per year. The mortality of CVDs is increasing, mainly driven by 

the increase of the population in low and middle income countries, which house about 85% of the 

world’s population. In high-income countries, the access to better diagnostic and therapeutic 

technologies, as well as healthier life stiles, reverses this tendency and CVD mortality is decreasing. In 

combination with the increase in the populations’ life expectancy, people are affected or die as a result 

of CVD at older ages, contributing to the rise in the health care expenditures all over the world. A 

condition largely contributing to this matter is syncope, which has an economic impact equivalent to 

conditions such as asthma, HIV, and chronic obstructive pulmonary disease. More commonly known as 

fainting, syncope is associated with high rate of falls and hospitalization and is responsible for reducing 

lifestyle quality, especially in the elderly.  

To face this socioeconomic burden caused by CVDs, the health care paradigm is shifting from a 

reactive hospital-centered to a preventive individual-centered care, with special emphasis in earlier 

diagnosis and better prevention and management strategies. Therefore, the development of new 

methodologies for monitoring the cardiovascular function, capable of being applied in low-cost, non-

invasive and portable systems, are essential to prevent and control the evolving epidemic of CVDs. 

Despite the recent technological advances, the current standard techniques for the assessment of 

cardiovascular function, such as the cardiac magnetic resonance and echocardiography, still exhibit 

several limitations in what concerns to their application in personal health environments. Therefore, the 

use of widely available and cost-effective modalities such as the electrocardiogram and 

photoplethysmogram, for the non-invasive, continuous and long-term assessment of the cardiovascular 

function may be the key to provide a better prevention and management strategies of CVDs. More 

specifically, the extraction of cardiovascular parameters from these modalities may be crucial in the 

prediction of syncope events and prevention of falls. 

The key contribution of the present thesis is the development of new algorithms for the continuous, 

non-invasive and robust assessment of cardiovascular function, based on the analysis of the 

electrocardiogram and photoplethysmogram. Since the photoplethysmogram is easily influenced by 

noise and motion artifacts, which can be a serious obstacle in the extraction of cardiovascular 

parameters, it is essential to detect which sections of the photoplethysmogram are liable for further 

analysis. Therefore, we propose a new method for the detection of motion artifacts, based on the 

extraction and analysis of time and period domain features. Consequently, we propose a new algorithm 

for the assessment of the left ventricular ejection time, which is associated with the cardiac function, 

among other parameters related with blood pressure and vascular tone changes. Finally, we propose a 

new algorithm for the prediction of syncope events (more specifically, neurally mediated syncope), 

based on the evaluation of changes in the previously extracted cardiovascular parameters. 
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The proposed methods were validated in three databases collected in the Department of Informatics 

Engineering of the University of Coimbra, in the Hospital Center of University of Coimbra and in the 

Department of Electrophysiology of the University Heart Center, University Hospital Eppendorf, 

Hamburg, Germany.   
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RESUMO 

As doenças cardiovasculares (CVDs) são atualmente a principal causa de morte no mundo e são 

responsáveis por mais de 7 milhões de mortes todos os anos. A mortalidade decorrente das CVDs tem 

vindo aumentar, principalmente devido ao crescimento da população nos países de baixo e médio 

rendimento, que alojam cerca de 85% da população mundial. Nos países de elevado rendimento, o 

acesso a melhores tecnologias de diagnostico e melhores terapêuticas, bem como estilos de vida mais 

saudáveis, inverteram esta tendência e a mortalidade resultante das CVDs está a decrescer. Este facto, 

aliado ao aumento da esperança média de vida das populações, leva a que as pessoas sejam afectadas 

ou morram devido a CVDs em idades mais avançadas, contribuindo para o aumento dos gastos com a 

saúde em todo o mundo. Uma condição que contribui largamente para este problema é a síncope, que 

têm um impacto económico equivalente a doenças como a asma, HIV e doença pulmonar obstrutiva 

crónica. Mais conhecida como “desmaio”, a síncope está associada a uma frequência elevada de quedas 

e de hospitalizações, e é responsável por uma menor a qualidade de vida, especialmente em populações 

mais idosas. 

Para enfrentar os encargos socioeconómicos derivados das CVDs, o paradigma da saúde tem vindo a 

mudar de reativo e centralizado nos hospitais para preventivo e centrado em cada individuo, com um 

foco especial no diagnostico precoce e em melhores estratégias de prevenção e gestão das CVDs. 

Assim, o desenvolvimento de novas metodologias para monitorização da função cardiovascular, 

capazes de serem aplicadas em sistemas de baixo custo, não invasivos e portáteis, são essenciais para a 

prevenção e controlo desta crescente epidemia que são as CVDs. 

Apesar dos recentes avanços tecnológicos, as técnicas padrão atuais para a avaliação da função 

cardiovascular, como a ressonância magnética cardíaca e ecocardiografia, ainda apresentam várias 

limitações no que diz respeito à sua aplicação em ambientes de saúde personalizada. Assim, a 

utilização de modalidades amplamente disponíveis e de baixo custo, como o eletrocardiograma e o 

fotopletismograma, para a avaliação não-invasiva, contínua e de longo prazo da função cardiovascular 

pode ser a chave para melhores estratégias de prevenção e gestão de doenças cardiovasculares. Mais 

concretamente, a extração de parâmetros cardiovasculares a partir destas modalidades pode ser crucial 

na predição de síncopes e prevenção de quedas. 

A principal contribuição da presente tese consiste no desenvolvimento de novos algoritmos para a 

avaliação continua, não invasiva e robusta da função cardiovascular, com base na análise do 

eletrocardiograma e do fotopletismograma. Visto que o fotopletismograma é facilmente afectado por 

ruído e artefactos de movimento, o que representa um obstáculo para a extração de parâmetros 

cardiovasculares, é fundamental detectar quais as secções do fotopletismograma passiveis de serem 

posteriormente analisadas. Assim, propomos um novo método para detecção de artefactos de 

movimento baseado na extração e análise de características do domínio temporal e de período. 

Consequentemente, propomos um novo algoritmo para a estimação do tempo de ejecção do ventrículo 
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esquerdo, o qual está associado com a função cardíaca, bem como outros parâmetros relacionados com 

alterações de pressão sanguínea e de tónus vascular. Finalmente, propomos um novo algoritmo para a 

predição de síncopes (mais especificamente, síncope neuromediada) baseada na avaliação dos 

parâmetros previamente extraídos. 

Os métodos propostos foram validados em três bases de dados, coligidas no Departamento de 

Engenharia Informática da Universidade de Coimbra, no Centro Hospitalar da Universidade de 

Coimbra e no departamento de Eletrofisiologia do Centro Universitário do Coração, Hospital 

Universitário de Eppendorf, Hamburgo, Alemanha. 
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Chapter 1.  
INTRODUCTION 

This thesis addresses the problem of the evaluation of the cardiovascular function using non-invasive 

modalities capable of being applied in personal-Health (p-Health1) applications for the use in 

ambulatory and home care scenarios. From the analysis of the electrocardiogram (ECG) and 

photoplethysmogram (PPG) it is proposed the extraction of surrogates capable of describing the 

changes in the cardiovascular system function and ultimately in the prediction of neurally mediated 

syncope. In this chapter we present the thesis motivation (section 1.1), followed by section 1.2 where 

the main contributions and their relevance are addressed. Finally the thesis organization is presented in 

section 1.3. 

 MOTIVATION  1.1.

CVD is today the largest single contributor to global mortality and will 
continue to dominate mortality trends in the future (WHO, 2009e). 
 

Cardiovascular diseases (CVDs) are currently the leading cause of death in the world accounting for 

over 17 million deaths per year, being coronary heart disease (CHD) and stroke the main cause of CVD 

related deaths [1, 2]. In Europe, over 4 million deaths result from CVDs, representing almost half of all 

deaths (47%) [3]. By 2030, it is projected that the total number of deaths resultant from CVDs will 

increase to 23-24 million [1, 4], representing about 33% of all deaths within an expected population of 

8.2 billion people [4]. This tendency is mainly driven by the increasing rates of CVD mortality in low 

and middle-income countries, which house 85% of the world’s population. In low-income countries, it 

is projected that deaths caused by CVDs will surpass those caused by infectious diseases such as 

HIV/AIDS. In high-income countries the CVD mortality is decreasing, as a result of the access to better 

diagnostic and therapeutic technologies and healthier life styles [3, 4]. 

In the United States, approximately 80% of all persons aged above 65 years have at least one chronic 

condition, and 50% have at least two [4]. Furthermore, CVD is the most frequent diagnosed condition 

and the major cause of death in people older than 65 years of age. According to [4], it is expected that 

the worldwide population above 65 years old to almost double fold during 2000-2030 (6.9% to 12% of 

worldwide population). This shift in world’s population age is thus expected to contribute to steadily 

rising in the age at which people are affected or die due to a CVD event, maintaining CVD as the 

predominant cause of morbidity and mortality. Furthermore, demographic aging will contribute to an 

increase in CVDs prevalence and consequently to an increase in health expenditures related to its 

treatment.  
                                                             

1 Personal health (p-health) refers to personalized monitoring of an individual’s health, using, for 
example, wearable and portable medical monitoring systems. 

2 Systemic vascular resistance (SVR) refers to the resistance to blood flow offered by the systemic 
vasculature. SVR is sometimes referred as total peripheral resistance (TPR). 

3 Total vascular resistance (TVR) refers to the resistance to blood flow offered by the whole (systemic and 
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The actual conjuncture of the health care system is struggling with major economic costs and 

CVDs contribute largely for this matter. Only in the European Union (E.U.), it is estimated that the 

overall CVDs cost is almost €196 billion a year. In 2009, the cost of CVD to the E.U. heath care 

systems was just over €106 billion, which represents around 9% of the total health care expenditure [3]. 

From these, 49% represent inpatient hospital care costs and 29% represent the total drug costs 

corresponding to patients with CVDs [3]. In the United States, the costs related to CVDs alone rise up 

to $315.4 billion (in 2010) [5], representing about 12% of the total health care expenditures (about $2.6 

trillion [6]).  

To face the high economic and health burden resulting from CVDs and chronic diseases it is essential 

to provide better prevention strategies as well as earlier diagnosis and better management of CVDs. 

Thus, it is fundamental to provide better solutions that meet the economic and social needs of patients 

and health care systems. This transformation has already began with a shift from hospital-centered to 

individual-centered health care systems and from reactive care to preventive care [7]. Special concerns 

are placed on the early detection of risk factors, early diagnosis and early treatment. Moreover, the 

research focusing on low-cost, non-invasive and portable diagnosis systems, capable of continuously 

monitoring the cardiovascular function is essential to prevent and control the evolving epidemic of 

CVDs.  

The current standard techniques for assistance in the diagnosis of CVDs demand high human and 

economic costs for the health care system. These techniques, such as cardiovascular magnetic 

resonance (CMR) or the invasive cardiac catheterization lack portability, since they can only be 

performed in the medical facilities, are expensive and require trained personal. Echocardiography 

(ECHO), the former gold standard in the evaluation of cardiac function, is becoming gradually popular 

in ambulatory professional care due to the development of increasingly inexpensive and portable 

devices. However, its application in p-Health environments still bares obstacles such as the inability to 

continuously record long-term (beat-to-beat) measurements and the requirement of trained personal. 

Although the traditional sphygmomanometry is low-cost and readily available, it causes discomfort to 

the patient and does not permit continuous, long-term recordings. Other p-Health systems such as the 

Portapres and Niccomo have been proposed as an alternative to the traditional hospital-centered 

approach, reinforcing the importance of continuously monitoring patient’s health. However, these 

proprietary systems are expensive (e.g., Portapres: US $40,000) which make them unavailable for the 

general practitioners and medical facilities, where low cost and easy-to-use devices are essential [8]. As 

an alternative, the photoplethysmogram as a mean for the assessment of the cardiovascular and 

autonomic function is becoming increasingly popular among the scientific community. However, its 

translation to the ambulatory and p-Health solutions still lacks reliable and accurate methods for the 

extraction of hemodynamic variables, beyond the determination of heart rate and blood oxygenation 

(SpO2) trends (e.g., iSpO2 device [9]). 
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Several studies have been proposed in the literature concerning the importance of haemodynamic 

parameters in the prevention and management of CVDs. Baroreflex sensitivity (BRS) was considered a 

good indicator of arrhythmic cardiac events and sudden cardiac death and is an important index for risk 

stratification (e.g., post-myocardial infarction) [10]. Cardiac output (CO) together with other 

haemodynamic parameters is important to assess the deterioration of cardiac function, as well as the 

evaluation of therapeutic interventions in the treatment of CVDs (e.g., acute heart failure)[11, 12]. Left 

ventricular function surrogates, such as left ventricular ejection fraction (LVEF) have also been shown 

to be important predictors of survival to myocardial infarction, chronic heart failure (HF) and among 

people free of overt cardiovascular disease [11]. Furthermore, arterial stiffening is associated with 

several cardiovascular risk factors, such as hypertension, left ventricular failure [13], severity of 

coronary artery disease [14] and increased target organ damage [15]. It is commonly associated with 

aging, hypercholesterolemia, obesity, it is commonly observed in smokers and has been shown to 

predict future morbidity and mortality [14]. 

A practical application of these cardiovascular function surrogates is the prediction of syncope and, 

more specifically, neurally mediated syncope (NMS). More commonly known as fainting or passing 

out, syncope is a transient loss of consciousness caused by a reduction of blood flow to the brain. 

Affecting mostly elderly populations (30.6 incidents per 1000 person-years [16]), syncope is associated 

with a high rate of falls and hospitalizations, and accounts for 1-3% of all emergency department (ED) 

visits and 1-6% of all hospital admissions in general [16, 17]. Syncope is responsible for reducing the 

lifestyle quality and is commonly responsible for mental decline and the appearance of medical 

complications. The socioeconomic and medical impact on our society is translated into an annual cost 

of $1.7-2.4 billion resulting from the hospitalizations related to syncope. This expenditure is equivalent 

to conditions such as asthma, HIV and chronic obstructive pulmonary disease [18]. 

It is evident that the development of algorithms for syncope prediction, capable of anticipating 

syncope events, is of extreme importance. These algorithms would enable the development of warning 

systems capable of advising patients to take the appropriate measures such as performing physical 

counterpressure maneuvers (PCMs) or simply siting or lying down and, therefore, avoiding a fall.  

In fact, falls in the elderly people are a great individual and social burden. It is estimated that 32% of 

the elderly fall every year and half of these people experience recurrent falls [19]. Falls in elderly cost 

the UK government about £1 billion per year from which a huge contribution comes from 

institutionalization (41%) and hospitalization costs (50%) [19]. Since the main causes of falls are 

cardiovascular disorders and syncope, the methods presented in this thesis can give a significant 

contribution in this subject. 

 CONTRIBUTIONS AND RELEVANCE 1.2.

This thesis focuses on the study and implementation of algorithms for the reliable extraction of 

cardiovascular function surrogates for p-Health applications. The proposed algorithms are based on the 
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analysis of non-invasive signals that can be easily affordable, are commonly used in hospital and 

primary care facilities or can be integrated into wearable systems for personal health applications, such 

as the ECG and the PPG. The extraction of cardiovascular parameters in a continuous basis (beat-by-

beat) is a fundamental requisite of the present thesis, as well as the robustness of the proposed 

algorithms in uncontrolled environments (e.g., home care settings).  

The proneness of the PPG signal to be easily influenced by external factors, such as motion artifacts, 

can be a serious limitation to the reliable and long-term extraction of cardiovascular parameters, 

especially in continuous monitoring applications. Therefore, it is essential to develop robust 

methodologies capable of distinguishing the sections of the PPG signal that have good quality and 

consequently can be fed to the upstream PPG analysis methodologies. In this thesis we present a new 

algorithm for detecting the PPG sections corrupted by motion artifacts based on the analysis of changes 

in the PPG time and period characteristics. The best features were selected using normalized mutual 

information features selection  (NMIFS) method, which were fed into a support vector machine (SVM) 

classification model. The proposed methodology was tested in a database consisting of fifteen healthy 

and cardiovascular diseased subjects, and eleven motion sources. The accuracy achieved by the 

proposed methodology (88.5%) reflects its capacity in detecting PPG sections corrupted by a wide 

range of motion artifacts, in both subject groups.  

A preliminary version of this work was initially presented in the 34th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society and published in the 

proceedings of the conference [20]. After further developments including the cardiovascular diseased 

patients in the database, a presentation was made in the IFMBE International Conference on Health 

Informatics, and published in the respective conference proceedings [21]. Finally, a more complete 

version of this work was accepted for publication in the Physiological Measurement journal.  

For the extraction of cardiovascular function surrogates we propose a method based on the 

decomposition of the PPG pulse into multiple waves using a Multi-Gaussian model formulation. From 

the analysis of the systolic phase PPG components several left ventricular ejection time estimates were 

assessed and compared. The proposed method was tested in a database consisting of 68 healthy and 

cardiovascular diseased subjects, and the results show a better overall performance when compared 

with the state of the art. Moreover, the parameters associated with vascular tone, such as reflection 

index (RI) and stiffness index (SI), were also extracted from the analysis of the proposed Multi-

Gaussian model and compared with the reference values of blood pressure and total peripheral 

resistance. The correlation between the extracted and reference parameters was investigated in 21 

volunteers exhibiting hemodynamic instability and a high agreement was found between the SI and 

mean blood pressure (MBP). 

The work regarding the assessment of LVET was initially presented in the 34th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society and published in the 
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proceedings of the conference [22]. After further improvements this work was submitted for 

publication in the Physiological Measurement journal. 

Finally, we propose a solution for prediction of neurally mediated syncope (NMS) based on the 

analysis of the ECG and PPG signals alone. The cardiovascular parameters known to characterize the 

chronotropic (heart rate - HR), inotropic (left ventricular ejection time - LVET), vascular tone and 

blood pressure (pulse arrival time - PAT, stiffness index – SI – and reflection index - SI, respectively) 

changes were assessed and normalized. A threshold-based approach was adopted to generate alarms 

when the distance of the selected features to the orthostatic reference exceeds a predefined optimal 

value. The proposed solution was tested in a database composed of 43 patients suspected to be at risk 

of hemodynamic instability and showed high ability to predict syncope episodes (above 85%) with a 

low false positive rate per hour (bellow 0.18 h-1) and good prediction time (above 65 seconds). 

A preliminary investigation was firstly presented in the 35th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society [23]. The work regarding the proposed syncope 

prediction algorithm was presented in the 36th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society [24]. Finally, a more detailed description of this work 

was accepted for publication in the IEEE Journal of Biomedical and Health Informatics (J-BHI). 

 THESIS ORGANIZATION 1.3.

The reminder of this thesis is outlined as follows: 

CHAPTER 2 – PHYSIOLOGICAL BACKGROUND 

This chapter describes the physiological context that underlies the proposed methodologies outlined 

throughout the present thesis. In this chapter, we start by addressing the physiological aspects of the 

circulation and the various subsystems that support the functioning of the cardiovascular system the 

autonomic system and corresponding interactions. Finally, we outline the information that can be 

extracted from the cardiovascular system and its importance in the prognosis and diagnosis of CVDs 

and ultimately the prediction of neurally mediated syncope. 

CHAPTER 3 – NON-INVASIVE ASSESSMENT OF CARDIOVASCULAR FUNCTION: REVIEW.  

This chapter outlines the current state of the art methodologies in three main areas: evaluation of 

cardiovascular function, assessment of baroreflex sensitivity and prediction of neurally mediated 

syncope. In these sections, we focus on the methodologies for the assessment of cardiac function, based 

on non-invasive signals such as the electrocardiogram and the photoplethysmogram, the parameter-

based approaches for the estimation of blood pressure and other vascular function surrogates and, 

finally, the algorithms present in the literature used to predict of neurally mediated syncope.  
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CHAPTER 4 – DETECTION OF MOTION ARTIFACT PATTERNS IN PHOTOPLETHYSMOGRAPHIC SIGNALS 

BASED ON TIME AND PERIOD DOMAIN ANALYSIS.  

This chapter presents a new algorithm for the detection of motion artifacts on the finger 

photoplethysmogram based on the analysis of the signal time and period domain characteristics. 

CHAPTER 5 – ASSESSMENT OF CARDIOVASCULAR FUNCTION FROM MULTI-GAUSSIAN FITTING OF 

FINGER PHOTOPLETHYSMOGRAM.  

A novel approach to assess the left ventricular ejection time is proposed in this chapter, which is 

based on the analysis of a Multi-Gaussian model fitted to the PPG pulses. Additionally, from the 

analysis of the proposed model, parameters associated with vascular tone and blood pressure changes 

are also investigated.  

CHAPTER 6 – REAL TIME PREDICTION OF NEURALLY MEDIATED SYNCOPE.  

In this chapter we present a novel approach for prediction of syncope based on the evaluation of 

hemodynamic changes assessed from the analysis of the ECG and PPG signals alone.  

CHAPTER 7 – CONCLUSIONS AND FUTURE WORK.  

Chapter 7 finalizes this thesis by summarizing the main findings and outlining further research 

directions.  
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Chapter 2.  
PHYSIOLOGICAL BACKGROUND 

In this chapter we address the fundamental aspects concerning the physiological background of the 

research work presented in this thesis. We start by describing the anatomy and physiology of the 

cardiovascular and autonomic systems. Afterward, we outline the interactions between those systems 

and corresponding regulation mechanisms. Finally, we outline the importance of the assessment of 

cardiovascular function surrogates and their value in the diagnosis and prognosis of CVDs and, more 

specifically, syncope. 

 THE CARDIOVASCULAR SYSTEM 2.1.

The cardiovascular system is a highly complex system consisting of two primary components for 

blood distribution, the heart and the blood vessels, and a third component that does not contain blood 

but lymph, the lymphatic system. The heart can be viewed functionally as two separate pumps that 

throw blood into the systemic and pulmonary circulation. The pulmonary circulation is primarily 

concerned with delivering deoxygenated blood (venous blood) to the lungs, where the gas exchanges 

between the blood and alveoli takes place, and returning the oxygenated blood (arterial blood) to the 

heart. The role of the systemic circulation is to supply the oxygenated blood to all tissues of the body 

(except the lungs). This process is illustrated in Figure 1. 

The venous blood returning from the systemic circulation enters the right side of the heart through the 

superior and inferior vena cava to the right atrium and the right ventricle pumps it to the pulmonary 

circulation through the pulmonary artery. After the gas exchanges, the arterial blood leaving the lungs   

enters the left atrium through the pulmonary veins and flows to the left ventricle. The left ventricle 

ejects the arterial blood into the aorta, which then distributes it to all tissues via the arterial system [1]. 

 

Figure 1 – Schematic representation of the cardiovascular system. The white arrows represent the venous (blue) and arterial (red) 

blood flow within the pulmonary and systemic circulations. Adapted from [2]. 
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 THE HEART 2.1.1.

The heart is a hollow, four-chambered, muscular organ composed by the atria (the two upper 

chambers) and the ventricles (the two lower chambers). The atria receive blood returning to the heart 

and pump it to the ventricles, which consequently pump the blood into the systemic and pulmonary 

circulation. One-way valves located at the entrance and exit of both ventricles conduct the blood 

circulation within the heart (illustrated in Figure 2).  

The atrioventricular (AV) valves are located at the entrance of the right and left ventricles (tricuspid 

and mitral valves, respectively) and are primarily concerned with allowing the blood to flow from the 

atria to the ventricles.  

The semilunar valves are located at the exit of the right and left ventricles (pulmonic and aortic 

valves, respectively) and the beginning of the great vessels (entrance of the pulmonary artery and 

ascending aorta) and let the blood flow to the outside of the heart.  

The atrioventricular and semilunar valves act (open or close) in response to pressure changes inside 

and outside the ventricles (atria and great vessels) and play a crucial role in preventing blood 

regurgitation to the atria and ventricles, respectively. 

 

Figure 2 – Illustration of the heart and valves. The white arrows represent the venous (blue) and arterial (red) blood flow inside 

the heart. Adapted from [3]. 
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relaxation of the cardiac muscle and allow the filling and emptying of the atria and ventricles - this 

process is called cardiac cycle. 

Specialized pacemaker fibers concentrated in the sinoatrial (SA) and atrioventricular (AV) nodes, and 

the His-Purkinje system play a crucial role in controlling and synchronizing the cardiac activity. The 

impulses generated in the SA node (normally responsible for controlling heart rate) propagate through 

the atria causing their simultaneous contraction and consequent blood flow to both ventricles. When 

reaching the AV node, the impulses are delayed and then relayed to the AV bundle (bundle of His). 

Travelling down through the right/left bundle branches and the Purkinje fibers, the electrical impulses 

cause both ventricles to contract almost simultaneously [3, 4]. 

THE ELECTROCARDIOGRAM 

The electrical activity of the heart can be detected at the skin surface and measured as an electrical 

potential using electrocardiography. The electrocardiogram (ECG – illustrated in Figure 3) represents 

the different phases of the cardiac muscle electrical activity. The P-wave and QRS complex can be seen 

as depolarization waves, while the T-wave is know as a repolarization wave. The P-wave represents the 

depolarization of the atria and occurs before the atrial contraction begins and the QRS complex results 

from the depolarization of the ventricles, combined with repolarization of the atria. The T-wave is 

caused by the potentials generated from the recovery of the ventricles from the state of depolarization 

[4]. 

 

Figure 3 – Representation of the electrocardiogram (ECG) components and the corresponding phases of the cardiac electrical 

activity. 

THE CARDIAC MECHANICAL SYSTEM 

The cardiac cycle involves two main stages that are the systole (contraction and ejection) and the 

diastole (relaxation and filling). The contraction and relaxation of the heart is followed by changes of 

pressure inside the heart chambers, which cause the heart valves to open and the blood to flow from 

high to low-pressure areas.  

P

R

Q

S

T



 

 

 

12 

Pressure and volume fluctuations inside the heart are well known and can be described by the 

Pressure-Volume (PV) loop diagram (presented in Figure 4), which shows the pressure and volume 

changes inside the left side of the heart. The key concepts of the Pressure-Volume (PV) loop diagram 

for the left side of the heart are described as follows: 

• Point A – After ventricular systole, the left ventricle relaxes and the intra-ventricular pressure 

drops until it gets lower than the atrial pressure. At this point the AV valves open and the blood 

flows very rapidly to the ventricle (rapid filling phase). 

• Point B – The filling of the ventricles and their rapid contraction result in the raise of the intra-

ventricular pressure, which culminates at the closure of the mitral valve. At this point, the 

pressure exerted in the ventricular walls is called preload and the volume of blood is maximal 

(end-diastolic volume, EDV). 

• Point C – The intra-ventricular pressure continues to rise without changes in ventricular volume 

(isovolumetric contraction) until it exceeds the pressure within the aorta. At this point, the aortic 

valve opens and the blood is ejected out of the ventricle (rapid ejection). The ventricular pressure 

required to open the aortic valve is called afterload. 

• Point D – When the intra-ventricular pressure becomes lower than the aortic pressure the aortic 

valve closes again. At this point, the volume of blood that remains in the ventricle is called end-

systolic volume (ESV). The decrease of the intra-ventricular pressure without changes of volume 

(isovolumetric relaxation) completes the loop and marks the beginning of a new cardiac cycle. 

 

Figure 4 - Pressure-volume loop of the left ventricle (the key concepts are similar for the right side). Adapted from [4]. 
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The Wiggers diagram (Figure 5) illustrates the blood flows and pressures in the left side of the 

heart, and their temporal correlation with the electrical (ECG) and mechanical (PCG) events, over one 

cardiac cycle.   

 

Figure 5 – Wiggers diagram describing the relationship between blood pressures and flows inside the left ventricle and 

corresponding events in the cardiac electrical and mechanical systems. Adapted from [4]. 

 BLOOD VESSLES 2.1.2.

The blood vessels are an integrant part of the circulatory system, whose main goal is to serve the 

body tissues with blood in order to maintain an appropriate environment for the survival and function 

of the cells. This is accomplished by transporting blood within a complex and sophisticated network of 

vessels that carries nutrients and oxygen to the body tissues, retrieves metabolic waste products and 

conducts hormones between various parts of the body [5].  

The vascular network comprises two structurally similar networks that serve distinct purposes. The 

systemic vascular network starts at the exit of the left ventricle (beginning of the aorta) and branches 

into smaller and smaller arteries (large arteries, small arteries and arterioles). Small arteries and 

arterioles are called the resistance vessels and are responsible for the regulation of blood pressure. 

These are highly innervated by autonomic nerves, which determinate their constriction or dilation.  

The arterioles branch into the capillaries, which are responsible for slowing down the blood velocity 

and enabling the exchange of substances between blood and body tissues (drop off of oxygen and 

nutrients and take away of wastes and carbon dioxide). When capillaries join together they form post-

capillary venules, which converge into increasingly larger veins until the final venous vessels are 
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reached, the superior and inferior vena cava. Together, venules and veins are the site where most of 

the blood volume is concentrated and, therefore, are considered as the primary capacitance vessels. 

In the pulmonary vascular network, the deoxygenated blood that leaves the right ventricle, passes 

through the pulmonary arteries and travels along the vascular network until it reaches the capillaries 

where the exchange of oxygen (received) and carbon dioxide (delivered) occurs. The blood then travels 

back to the heart and enters the left atria through the pulmonary vein. 

The achievement of the primary functions of the circulatory system is guaranteed by anatomical 

arrangement of the vasculature and by control mechanisms that act directly in the vessels. These 

mechanisms are capable of constricting and dilating blood vessels, regulating the blood pressure and 

establishing the amount of blood that reaches specific organs and regions within organs.  

THE ARTERIAL BLOOD PRESSURE WAVEFORM 

The ejection of blood from the left ventricle into the aorta results in a pulse pressure wave (PPW) that 

is transmitted to the arterial network and reflects the pressure exerted by the blood in the arterial wall. 

As the main pressure wave (P1 - illustrated in Figure 6) passes the aortic arch, it travels down and 

reaches two major reflection sites in the arterial pathway that exhibit significant changes in arterial 

resistance and compliance. The first site, at the juncture between thoracic and abdominal aorta, causes 

the pressure wave to be reflected upwards leading to the appearance of the first reflection wave (P2 - 

illustrated in Figure 6), which is commonly known as second or late systolic wave. At the second site, 

located between the abdominal aorta and common iliac arteries, the main wave is reflected once again, 

and appears as a second wave reflection (P3 - illustrated in Figure 6) [6]. Between the first and second 

reflection waves (P2 and P3, respectively), it is commonly seen a small dip called the dicrotic notch. 

Lower amplitude reflection waves are also usually observed as a result of the reflections and re-

reflections in the systemic vascular structure. 

The lowest pressure in the aorta, just before the ejection of blood from the left ventricle, is called 

diastolic blood pressure (DBP), while the highest pressure exerted by blood in the aorta is called 

systolic blood pressure (SBP). The difference between SBP and DBP in the aorta is the aortic pulse 

pressure (PP) [1]. In young healthy adults the DBP and SBP are about 80 and 120 mmHg, respectively 

[5].  

The velocity, morphology and amplitude of the pulse pressure wave change along the arterial 

pathway as a result of changes in resistance and compliance. As the pulse pressure wave travels along 

the aorta to the peripheral sites, there is a decrease in the compliance, resulting in an increase in the 

pulse wave velocity (PWV). The typical values of PWV along arterial path are: aorta - 3 to 5 m/s; large 

arteries - 7 to 10 m/s; small arteries - 15 to 35 m/s [5]. Moreover, it is also observed an increase in PP, 

which is believed to be also a consequence of the decrease in compliance and the summation of 

reflection waves with the waves travelling towards the peripheral sites. The mean aortic (or arterial) 
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pressure (MAP) also drops when travelling down distributing arteries owing to their relative low 

resistance [1]. The morphology of the pulse pressure wave recorded at the radial artery is illustrated in 

Figure 6. 

 

Figure 6 – Morphology of the pulse pressure wave at the radial artery. On the left, a sketch of the arterial system from the 

aorta/arm to the iliac arteries. On the right, a pulse pressure wave decomposed in the corresponding forward pulse (P1) and 

pulses reflected at the first (P2) and second (P3) reflection sites [6]. 

 At a normal resting heart rate (HR), the MAP is less then arithmetic average of SBP and DBP and 

can be assessed by: 

MAP = DBP + 1 3 (SBP!DBP) ( 1 ) 

At higher rates, the shape of the pulse pressure wave changes as the period of diastole shortens more 

than the systolic one, causing an approximation of the MAP to the arithmetic average of the SBP and 

the DBP. The MAP is also determined by other factors, such as the cardiac output (CO), the systemic 

vascular resistance (SVR2) and central venous pressure (CVP). The relationship between flow, pressure 

and resistance is described by equation ( 2 ). 

MAP = CO ∙ SVR + CVP ( 2 ) 

The CO is determined by the HR and stroke volume (SV), which is the volume of blood that leaves the 

heart in each beat, and is defined by: 

CO! = !HR ∙ SV ( 3 ) 

Therefore, the changes in the SV accompanied by changes in CO alter the MAP and the PP. However, 

if HR decreases and the value of CO remains unaltered, only changes in pulse pressure are observed 

[1]. 
                                                             

2 Systemic vascular resistance (SVR) refers to the resistance to blood flow offered by the systemic 
vasculature. SVR is sometimes referred as total peripheral resistance (TPR). 
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THE PHOTOPLETHYSMOGRAM 

The changes of blood volume in the microvascular bed of tissues can be detected using a non-

invasive optical measurement technique called photoplethysmography. In its most common form 

(transmission mode), a light source (with red or a near infrared wavelength) is used to illuminate the 

finger (or ear lobe) and a photo-detector is used to measure the light intensity on the other side. The 

blood flowing across the tissue increases the optical density and path length across the tissue, which 

decreases the light intensity captured at the photo-detector. By convention, the photoplethysmogram is 

inverted in order to correlate positively with blood volume changes [7]. 

The photoplethysmogram (presented in Figure 7) has two main components, which are often called 

the alternating current (AC) and direct current (DC) components. The AC component is related to the 

pulsatile nature of the heart and therefore its fundamental frequency is dependent on the HR. This 

component is superimposed onto a slow changing DC component exhibiting low-frequency 

oscillations, which are related to changes in capillary density and venous blood volume changes. These 

fluctuations are induced by several factors, such as respiration, thermoregulation, local auto-regulation 

and episodic sympathetic outflow [7, 8].  

Photoplethysmography is commonly seen in the clinical settings of the anesthesia, critical care and 

emergency medicine, where pulse oximeters are widely used to infer arterial oxygen saturation (SaO2) 

[7, 8]. 

 

Figure 7 – Representation of the photoplethysmogram and main AC and DC components. 

 THE AUTONOMIC NERVOUS SYSTEM 2.2.

The autonomic nervous system (ANS) plays an important role in controlling internal organs and acts 

in many involuntary human body actions. In the cardiovascular system, the ANS regulates the heart 

rate, the contractility of the muscle, constriction/dilatation of blood vessels and total blood volume. All 

these control mechanisms serve to control the arterial pressure, i.e., to steer the pressure toward some 

“normal” set point. 
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The major participant in the autonomic regulation of the cardiovascular function is the Central 

Nervous System (CNS), which transmits impulses to the peripheral organs and vice-versa. The central 

nervous system receives afferent input from peripheral and brain sensors. Afferent fibbers enter the 

medulla oblongata at the nucleus tractus solitaries (NTS), which inhibits and excites sympathetic and 

vagal neurons, respectively. The sensory information from NTS is also redirected to the hypothalamus. 

Additionally the medulla receives input from the hypothalamus and higher brain centers [1]. 

Efferent nerve fibers are connected to the heart and blood vessels. Sympathetic activation of blood 

vessels and heart causes the constriction of blood vessels, the increase of heart rate and conduction 

velocity within the heart, and the increase of contractility. Parasympathetic activation, transmitted 

through the vagus nerve has the opposite effect (decrease) in the heart rate and velocity of conduction, 

and contractility. Although the parasympathetic activation has little or no direct effect on blood vessels, 

the inhibitory effects of the vagal nerves in the sympathetic neurons indirectly causes vasodilatation in 

peripheral vessels [1].  

 

Figure 8 – Representation of the baroreflex feedback system. Adapted from [9]. 

The baroreceptors are tension-sensitive nerve fiber endings that monitor changes in blood pressure 

and transmit the corresponding autonomic information to the CNS. The sensors are strategically located 

in various places in the circulatory system and it is believed that those located in the aortic arch and in 

the carotid sinus are the most important ones [1]. Changes in blood pressure produce a correspondent 

change in the frequency of nerve activity, which is transmitted to the CNS.  The CNS interprets this 
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information and generates a response that acts over the cardiovascular function through the efferent 

pathways to adjust arterial blood pressure [1]. 

The baroreflex (or baroreceptor reflex) is a negative feedback mechanism responsible for controlling 

mainly the short-term blood pressure [10]. Changes in blood pressure are sensed by baroreceptors that 

transmit these changes to the CNS through the afferent nerves, leading to the activation/inhibition of 

the sympathetic and parasympathetic CNS efferents. These efferent nerves are directly connected to the 

SA node and, therefore, the heart rate is the result of these antagonistic actions of parasympathetic and 

sympathetic regulation [10]. The sympathetic nerves are also responsible for controlling the heart 

muscle contractility, vasoconstriction/vasodilatation and venous blood volume (see Figure 8). 

The assessment of the baroreflex function (baroreflex sensitivity - BRS) can be performed from the 

relationship between the variations in the blood pressure (e.g., SBP or MAP) and RR interval series. In 

the steady state, the baroreflex is characterized by a sigmoid function and is composed by a linear part 

and two plateaus (illustrated in Figure 9 - top and bottom). The linear part is characterized by the 

pronounced effect of the blood pressure changes over the RR, while in the plateaus the RR response is 

diminished. In these plateaus, the blood pressure changes are a response for changes in the peripheral 

vasculature resistance and contractility [10]. 

The BRS can be evaluated as the slope of line tangent to the linear part of the sigmoid, at the 

operating point, that is, the mean baseline MAP and RR values [10]. As shown in Figure 9, both 

operating point (big circle) and slope of the linear part of the sigmoidal curve vary with the condition of 

the analyzed subject. In subjects with depressed BRS, such as the severely hypertensive individuals, it 

is observed a decrease in the RR intervals range and in the slope of the sigmoid linear portion, when 

compared to normotensive subjects.  

 

Figure 9 - Representation of the steady-state relationship between R-R interval and mean arterial pressure (MAP) in 

normotensive, moderately and severely hypertensive subjects. The big circle located at the linear part of the sigmoidal curve 

represents the operating point. Adapted from [10]. 
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 MULTI-SYSTEM INTERACTIONS AND REGULATION MECHANISMS 2.3.

The main function of the cardiovascular system is to maintain the arterial blood pressure required for 

the transport and exchange of blood to body tissues. Blood pressure is directly determined by the 

arterial blood volume and the arterial compliance, which are in turn primarily affected by the cardiac 

output (CO) and systemic vascular resistance (SVR) [4]. Cardiac output (CO) is, by definition, the 

volume of blood ejected by the heart over a certain period of time (commonly per minute), which is 

therefore affected by the heart rate (HR) and the stroke volume (SV). 

The electrical system is responsible for controlling the heart rate as well as synchronizing the cardiac 

mechanical system. The mechanical system is regulated by three factors controlling the stroke volume: 

preload, afterload and myocardial contractility. Since the preload and the afterload are dependent on 

both cardiac and vascular factors, they are functionally interacting with both vascular and cardiac 

systems. They also determine and are determined by CO. On the other hand, HR and myocardial 

contractility are strictly cardiac factors. 

The respiratory system is responsible for variations in the venous blood flow, central venous pressure 

and venous return, caused by the periodic changes in the intra-thoracic pressure due to breathing cycle 

[1, 5]. 

 

Figure 10 – Schematic representation of interactions between the subsystems involved in cardiac activity. ECG 

(electrocardiography), PCG (phonocardiography), ECHO (echocardiography), CMR (cardiac magnetic resonance), ICG 

(impedance cardiography), PPG (photoplethysmography) and PPW (pulse pressure wave). 



 

 

 

20 

The ANS regulates the chronotropy (HR), inotropy (myocardial contractility), and dromotropy 

(velocity of conduction within the heart) through the release of norepinephrine and produces 

vasodilatation in specific organs through the release of acetylcholine [1]. 

The hormonal system primary function is to control respiratory activity through the peripheral and 

central chemoreceptors. These sensors respond to changes in O2/CO2 concentrations and pH in blood. 

The activation of chemoreceptors generally leads to the activation of the sympathetic nervous system to 

the vasculature causing an increase of arterial pressure [1]. 

In Figure 10 we illustrate the interactions between the various sub-systems of the cardiovascular 

system, as well as their interactions with the regulatory mechanisms. Additionally, the non-invasive 

techniques that can be used to extract knowledge from the cardiovascular system interactions are also 

presented.  

 THE IMPORTANCE OF CARDIOVASCULAR FUNCTION SURROGATES AND NEURALLY 2.4.
MEDIATED SYNCOPE 

Several studies have been presented in the literature concerning the importance of hemodynamic and 

haemodymic parameters, being the evaluation of the cardiac function one of the most important in the 

prognosis and diagnosis of CVDs. Furthermore, the evaluation of the vascular function is also of major 

importance, since it is associated with many blood pressure related cardiovascular complications. 

Indeed, blood pressure variability has also been reported as an important parameter in the prognosis 

and diagnosis of many CVDs. Additionally, autonomic nervous markers such as heart rate variability 

and baroreflex sensitivity were also pointed as important in CVD risk assessment [11-13]. 

The most commonly used method for the evaluation of cardiac function is echocardiography, from 

which many parameters can be extracted. Good examples, are the baseline of the left ventricle 

dimensions and the ejection fraction (EF) which has been shown to be one of the most powerful 

predictors of survival after acute MI, in chronic HF and among people free of overt CVDs [14]. 

Alternatively to EF, the systolic time intervals (STIs: PEP – Pre-ejection period and LVET – Left 

ventricular ejection time) became very important in the later years, since they can be more easily 

assessed in a non-invasive and continuous (beat-to-beat) basis, in contexts where mobility is required 

(p-health systems). The first area where STIs have been clinically evaluated was suspended chronic 

myocardial disease [15]. Using the systolic time intervals, Weissler [16] proposed a contractility index 

defined by PEP/LVET, which was shown to be highly correlated with angiographic EF in several 

conditions, such as myocarditis, cardiomyopathy and coronary artery disease with angina pectoris [15]. 

Furthermore, STIs have been also proven to be important in the evaluation of cardiac function of 

individuals with myocardial infarction (acute and chronic), pulmonary disease, aortic valve disease and 

chronic coronary artery disease. However, in the later case, the correlation of the contractility index 

with angiographic EF was shown to be lower [15], with PEP/LVET suggesting better cardiac 

performance than EF in this situations [17]. LVET alone is commonly associated with stroke volume 
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and has been indicated as a valuable prognostic parameter related to hypovolemia [18], an 

important predictor of mortality in patients with cardiac amyloidosis [19] and robust and independent 

predictor of light chain amyloidosis mortality [20]. 

Complementary to contractility indexes, cardiac output (and consequently SV) is also a fundamental 

measure of cardiac function. This measure reflects the capacity of the cardiac muscle to supply 

sufficient blood volume in order to maintain an “adequate” organ perfusion through the body [21, 22]. 

Although there are no normal values for CO [22], the evaluation of CO trends along with other 

hemodynamic parameters were proven to be of great importance in the diagnosis and management of 

CVDs. For example, the decrease in CO over time may be associated with the deterioration of the 

cardiac function and the onset or progression of heart failure [21]. Furthermore, CO is the primary 

standard in the evaluation of the need for therapeutic interventions and cardiovascular responsiveness 

to those interventions [23] (e.g., vasoactive and intravenous drugs) in the treatment of CVDs such as 

acute HF [14].  

In what concerns to evaluation of the vascular function, arterial stiffness assumes a major role in the 

development of many CVDs. Arterial stiffening is associated with the increase in afterload, which 

consequently rises cardiac workload and reduces coronary perfusion. Arterial stiffening is commonly 

associated with elderly population and with atherosclerosis [24], and is responsible for the rise in 

systolic blood pressure, isolated systolic hypertension and the majority of cardiovascular events in 

elderly, with special emphasis to left ventricular failure [25]. Furthermore, arterial stiffness is 

associated with severity of coronary artery disease and carotid artery disease and is considered to be 

important in risk assessment in older people [24, 26]. Examples of surrogates that can be extracted 

from the PPG and PPW for the evaluation the vascular function are the augmentation index (AI), 

stiffness index (SI) and reflection index (RI). These parameters have been associated with arterial 

stiffening, PWV in large arteries and PP [6, 8, 27-31].  

Another important parameter for the assessment of cardiovascular risk is blood pressure variability 

(BPV). Increased blood pressure variability has been shown to be related with the risk of fatal 

cardiovascular events, as well as the risk of all-cause death [32]. 

In what concerns to the evaluation of the autonomic nervous system modulation, HRV and BRS have 

been reported to have major importance in the prognosis and management of cardiovascular diseases. 

HRV was shown to have an important prognostic value in the development of cardiovascular 

complications, sudden cardiac death and all-cause death [33]. Additionally, the low baroreflex 

sensitivity has been associated with an increased risk for arrhythmic events [11] and high risk of death 

[12], and particularly sudden death [13] in post-myocardial infarction individuals. Although BRS is not 

correlated with EF, depressed values of both measures have been associated with higher risk of 

mortality [11, 12].  
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 NEURALLY MEDIATED SYNCOPE 2.4.1.

Syncope is a sudden transient loss of consciousness and postural tone resulting from the cessation of 

cerebral blood flow and is characterized by a rapid onset, short duration (10 seconds) and spontaneous 

complete recovery [24, 34]. It can be classified in four main types depending on its causes: vascular, 

cardiac, neurologic/cerebrovascular and metabolic/miscellaneous [24]. The vascular causes of syncope 

can be further categorized into anatomical, orthostatic and reflex-mediated [24]. Syncope resulting 

from vascular causes, and particularly orthostatic and reflex-mediated causes, is the most common 

form of syncope, accounting for at least one third of all causes [24], where reflex-mediated syncope (or 

reflex syncope) alone is responsible for 21% of all syncope episodes [34].  

Reflex syncope includes neurally mediated syncope (NMS), situational and carotid sinus syncope. 

Although there are many syndromes of reflex syncope, they all share the same mechanism, composed 

by a trigger (the afferent pathway) and a response (the efferent pathway), which consists of an 

increased vagal tone and sympathetic withdrawal, leading to bradycardia, vasodilation, and 

consequently hypotension and syncope. The main differences between the causes of reflex syncope rely 

on the their specific triggers [24]. 

 

Figure 11 – Reflex mechanisms underlying the development of neurally mediated syncope (NMS).  

Neurally mediated syncope (NMS), also known as neurocardiogenic, vasodepressor and vasovagal 

syncope, belongs to the reflex-mediated syncope group and can be characterized as an abrupt drop in 

blood pressure (with or without bradycardia) resulting from the abnormal functioning of the blood 

pressure regulation mechanisms [24]. Investigators believe that NMS is a result of a paradoxical reflex 

triggered by a decrease of venous return (reduction in preload) caused by an abrupt and excessive 
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amount of venous blood pooling. The reduction in the CO and blood pressure is sensed by the 

arterial baroreceptors, which activate the afferent pathway and in combination with a reduced preload 

leads to more vigorously contractions of the volume-depleted ventricle and to an excessive stimulation 

of the ventricular mechanoreceptors. The result is a “paradoxical” withdrawal in sympathetic tone and 

an increase in vagal tone, which leads to a blood pressure decrease and finally syncope [24, 35]. The 

reflex mechanisms underlying the manifestation of syncope are illustrated in Figure 11. 

The effects of the deregulation of the blood pressure regulation mechanisms on the cardiovascular 

system make evident the importance of monitoring the hemodynamic and haemodynamic changes 

undergoing in the cardiovascular system. Thus, the extraction of surrogates that characterize these 

reflex mechanisms, such as changes in heart rate, contractility, vascular tone and blood pressure, are 

determinant in the diagnosis and prediction of NMS. 

 CONCLUDING REMARKS 2.5.

In the current chapter we outlined the main physiological aspects that govern the research work 

presented in the current thesis. First, we described the anatomy and physiology of the cardiovascular 

system, by describing the cardiac and vascular systems and the primary modalities used to assess 

hemodynamic parameters. Additionally, we introduced the autonomic nervous system and the 

mechanisms used to regulate blood pressure. Finally, we presented how the various systems interact 

with each other to regulate blood pressure and how the extraction of parameters from the analysis of 

non-invasive modalities can be useful in the diagnosis and prognosis of cardiovascular diseases and, 

specially, on the prediction of neurally mediated syncope.  
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Chapter 3.  
NON-INVASIVE ASSESSMENT OF CARDIOVASCULAR FUNCTION: REVIEW 

In this chapter we will review the state of the art on three main research areas: 1) Evaluation of the 

cardiovascular function; 2) Assessment of baroreflex sensitivity and; 3) Prediction of neurally mediated 

syncope. We start by discussing the available methodologies for the evaluation of the cardiovascular 

function, from the assessment of blood pressure and vascular function surrogates to the evaluation of 

the cardiac performance. We then outline the principal methods in the quantification of the baroreflex 

sensitivity. This chapter closes with the presentation of algorithms proposed for the prediction of 

neurally mediated syncope and the main conclusions.  

 EVALUATION OF THE CARDIOVASCULAR FUNCTION 3.1.

In the next sections, we will focus on methods present in the literature that allow the assessment of 

the cardiac function, which we will designate as cardiac function surrogates, and parameters that focus 

on the assessment of blood pressure and vascular function surrogates. 

 CARDIAC FUNCTION SURROGATES 3.1.1.

The current gold standard on the assessment of cardiac function is cardiac magnetic resonance 

(CMR), which provides the evaluation of functional and morphological characteristics with high spatial 

and temporal resolution along with high contrast between blood and tissues [1]. However, its 

expensiveness and the need for a stable clinical environment and trained personal make it inadequate in 

p-health contexts.  

Encouraged by the technological advances and the development of inexpensive and portable 

handheld devices, echocardiography (ECHO - the former gold standard) has become increasingly 

popular in primary, home care and ambulatory scenarios. ECHO can provide valuable information 

about the function and structure of the heart, allowing the estimation of measurements such as the 

velocity of pressure rise, the velocity of ejection, the extent of ejection and the ejection fraction. 

However, the requirement of trained personal and the inability to record long-term measurements are 

still major disadvantages in its translation into p-health scenarios. Alternatively, the assessment of 

systolic time intervals using non-invasive and portable devices gained much importance in this kind of 

clinical contexts.  

Another important measurement of cardiac function that can be extracted using ECHO is stroke 

volume (SV) and consequently cardiac output (CO = HR×SV), since it provides information about the 

capability of the heart to eject blood into the system circulation. The SV is determined by the preload, 

contractility and afterload. The former is in turn determined by the systemic vascular resistance (SVR), 

i.e., the resistance to the blood flow in the arterial system.  
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The myocardial contractility, which can be estimated by the ejection fraction using ECHO, refers 

to the amount of work exerted by the heart muscle to eject blood to the circulatory system, at given 

levels of preload and afterload and is defined by the amount of pressure variation that the ventricle can 

generate over time [2].  

Several techniques for monitoring CO are currently available, ranging from invasive (e.g., pulmonary 

artery catheterization and the direct Fick method) to minimally-invasive approaches (e.g., 

transpulmonary thermodilution, oesophageal doppler monitoring), and non-invasive approaches (e.g., 

pulse waveform analysis,  echocardiography, impedance cardiography and photoplethysmography).  

One of the most recognized techniques (pulse wave analysis - PWA) for the non/minimally-invasive 

assessment of the SV/CO is based on the analysis of the arterial blood pressure waveform (ABPW) 

obtained at a peripheral artery (invasively or non-invasively) or finger (non-invasively). Based on this 

technique several methods have been proposed (e.g., pulse counter analyses, model flow method and 

pulse power analysis), sharing the principle that SV/CO can be estimated from the analysis of the 

relationship between blood pressure (BP), arterial compliance and systemic vascular resistance (SVR) 

[3].  

Wesseling et al. [4] proposed a systolic pulse contour analysis method where SV is assessed using a 

Windkessel model, which relates SV to the systolic portion of the arterial blood pressure waveform and 

the aortic impedance (Z!). Since no simple direct methods exist to establish the appropriate value for 

Z!, many approaches have been followed to estimate Z!, using a linear combination of HR, MAP and 

age multiplied by an individual calibration factor in [4], multiple linear regression including pulse 

pressure (PP), HR and MAP in [5], or a pressure wave profile index multiplied by a dimensional factor 

in [6]. Other approaches such as the model flow method [7], pulse power analysis [8] or long time 

interval analysis of the peripheral pressure waveform [9] have also been proposed for SV assessment. 

Commercially available systems using the aforementioned methods differ on the need for external 

calibration (e.g., LiDCOTM and PiCCO systems), the requirement of demographic/biometric 

characteristics (Flo Trac/VigileoTM system) or not requiring external data at all (Nextfin and MostCare 

systems) [3]. A disadvantage of these methods is the dependence of the CO estimates on the accuracy 

of the measured ABPW, which can be influenced by factors such as intense vasoconstriction and the 

measuring site [3, 10].  

Another model for the evaluation of SV was proposed by Finkelstein et al. [11] where a linear 

combination of left ventricular ejection time (LVET), body surface area (BSA), heart rate and age is 

used to estimate SV. Since SV is also determined by other factors such as contractility, preload and 

afterload, we proposed on [12] a non-linear extension of the Finkelstein model including surrogates of 

these parameters. In the proposed non-linear models, the pre-ejection period (PEP) and the contractility 

index (CI = PEP/LVET), assessed from the analysis of the phonocardiogram (PCG), were included as 

surrogates for MAP, afterload and myocardial contractility. It was concluded that the non-linear models 
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and especially the inclusion of PEP in the models improved significantly the estimation of SV. 

Moreover, the inclusion of the CI assessed from the PCG resulted in the degradation of the SV 

measurement as a result of the merged uncertainty in the estimation of PEP and LVET.  

Methods based on the analysis of the PPG waveform have also been proposed by Wang et al. [13, 14] 

to assess CO. By selecting different models of the cardiovascular system (Windkessel model [13], tube 

model [14]) both authors used surrogate measures of MAP and total vascular resistance (TVR3) in their 

models.  The ratio between systolic and diastolic components of the curve over the cardiac cycle (IPA) 

was used as a TVR surrogate in both methods while a parameter derived from frequency domain 

analysis of the PPG waveform (NHA) in [13] and pulse arrival time (PAT) in [14] were used as 

surrogates for MAP. Additionally, two calibration procedures are needed to assess absolute values of 

CO in [14]. More recently, Lee at al. [15] proposed a multivariate regression model using frequency 

and morphological parameters (among others) derived from PPG for the assessment of CO/SV (and 

SVR). 

Another modality commonly used for assessing SV is the impedance cardiography (ICG), which 

continuously measures changes in impedance associated with variations in continuous blood flow and 

volume in the ascending aorta. Using the ICG, many equations relating SV to maximal impedance 

change (dZ(t)!"#/dt) and LVET have been presented in the literature [16-19]. More recently Qiu-Jin 

et al. [20] deducted a novel impedance change equation, which is based on a parallel impedance model 

and the Ohm’s law. 

SYSTOLIC TIME INTERVALS 

An alternative non-invasive approach for assessing global cardiac function is the use of systolic time 

intervals (STIs – PEP and LVET). The pre-ejection period (PEP) is defined as the time interval from 

the beginning of the ventricular electrical depolarization (Q-wave4) to the opening of the aortic valve, 

whereas left ventricular ejection time (LVET) refers to the time interval from opening to the closure of 

the aortic valve, and is defined as the time interval in which the blood is ejected from the left ventricle 

(see Figure 1). While subjects with a healthy heart reveal a short PEP and a long LVET [21], in cardiac 

dysfunctions it is observed a prolongation in the PEP and shortening in LVET. Based on this 

knowledge, Weissler [22] proposed the PEP/LVET ratio index as a measure of LV function, which is 

less heart rate dependent than its individual components. 

                                                             

3 Total vascular resistance (TVR) refers to the resistance to blood flow offered by the whole (systemic and 
pulmonary) vasculature. 

4 Alternatively to the Q-wave, the onset of PEP is often defined by the R-wave, avoiding the uncertainty inherent 
to the identification of the Q-wave.  
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Figure 1 - Annotations of aortic valve timings using Doppler mode echocardiography. 

In an attempt to expand the use of STIs, Mancini et al. [23] and Tei et al. [24] proposed another 

measure for the assessment of the left ventricular function, the myocardial performance index (MPI). 

This measure is defined as the sum of isovolumic contraction time (IVCT) and isovolumic relaxation 

time (IVRT) divided by ejection time, i.e., (IVCT+IVRT)/LVET, and allows the characterization of 

both systolic and diastolic function in a single index. However, as pointed out in [25] and [26], the MPI 

index must be used with great caution when evaluating severe diastolic dysfunctions, since it can be 

masked by complex systolic/diastolic interrelationships and bidirectional changes of the IVRT. 

STIs can be determined using invasive, as well, as non-invasive techniques in in-hospital settings. For 

example, the gold standard is echocardiography, which is non-invasive and allows a reliable 

determination of STIs using Doppler or M-mode analysis. However, the use of echocardiography in p-

health settings, where mobility is fundamental, is not viable, which motivated several authors to 

propose alternative methods for STI measurement. Thus, methods based on the ICG waveform [16, 27-

35] and more recently on the PPG [36, 37] and PCG [38-40] waveform have been proposed to assess 

these parameters.  

Although the ICG waveform analysis is the reference for portable devices in the determination of 

STIs, there is still some controversy on how to determine the ICG characteristic points that capture the 

opening (B-point) and closure of the aortic valve (X-point) [31, 32].  Kubicek et al. [16] proposed a 

method where LVET is defined from the zero-crossing preceding the maximum peak of dZ dt to the 

negative peak of dZ dt in the region of the second heart sound. In a later revision [27], the B-point was 

defined from the zero crossing point to the 15% response point of dZ!"# dt, in [30] Ono et al. defined 

the B-point (BONO) as the intersection of the zero-line and the regression line calculated from the 

portion (40% to 80%) of the curve preceding dZ!"# dt. The X-point is defined as the nadir of the 

dZ dt downward deflection in [30-32] (X0) (see Figure 2). In [33, 34] the characteristic points B, C 

and X are detected as local extremes and zero-crossings in different scales of the signal, which is 

decomposed using wavelet transform. More recently, Carvalho et al. [35] defined the B and X points as 

local minima in the ICG 3rd derivative, using BONO and X0 as references.  
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Figure 2 – Schematic representation of the main approaches for the determination of the B and X points in the ICG. 

Chan et al. [36] proposed a method for the determination of LVET based on the analysis of 

successive derivatives (up to fourth) of the PPG. In this study, several characteristic points are 

extracted in each derivative based on well-defined waveform features (e.g., amplitude, slope and 

curvature). Using these characteristic points, three estimations of LVET are extracted which are then 

used to assess a final LVET estimation based on a rule-based decision logic approach.  More recently 

[37], we proposed a new method  for the estimation of LVET based on the analysis of the systolic 

model of the decomposed PPG pulse. The PPG pulse is decomposed into multiple Gaussian functions 

corresponding to the systolic and diastolic phases of the PPG pulse, and the LVET is assessed from the 

3rd derivative of the functions corresponding to the systolic phase. The analysis of the systolic model 

rather than the whole PPG pulse was motivated by the need of reducing the influence of noise and 

pulse wave reflections in the estimation of LVET. 

Carvalho et al. [38] and Paiva et al. [39, 40] proposed a method based on the analysis of the PCG for 

the assessment of the PEP and the LVET. Carvalho et al. [38] assumed that the heart sound S1 is 

characterized by two well-defined high frequency components, corresponding to the closing of the 

atrio-ventricular valves, and to the opening of the aortic valve. Based on this assumption, the author 

proposed a method based on the analysis of the instantaneous frequency and energy of S1 to assess the 

aortic valve opening time instant. Paiva et al. [39, 40] followed a Bayesian approach for PEP 

estimation based on the analysis of the instantaneous amplitude (IA) of the S1. Assuming that the 

closure  of the atrioventricular valves (AVVC) are well defined by a peak in IA, the opening of the 

aortic valve (AOVO) is detected in the IA signal resorting to typical time intervals between AVVC and 

AOVO. The closure of the aortic valve was defined as the onset of the second heart sound (S2), 

captured by a high-frequency signature [41]. 

 CARDIOVASCULAR SYSTEM MODELS AND NON-INVASIVE BLOOD PRESSURE ASSESSMENT 3.1.2.

The estimation of blood pressures and flows has been widely investigated since the first 

cardiovascular model was formally developed and published by the German physiologist Otto Frank in 

1899. Since then, many models of the cardiovascular system have been presented in the literature, 

ranging from lumped parameter models (e.g., [42-46]), to distributed networks where the blood flow in 

a distributed compliant network is governed by fluid dynamic equations (e.g., [47]), or to finite element 
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techniques that consider the spatial orientations, structures and mechanical properties of muscle 

fibers (e.g., [48]). The objectives of the proposed models also varied significantly, ranging from the 

simulation of the dynamics of the heart (e.g., [49, 50]) to the whole cardiovascular system (e.g., [42, 

46, 51]). Nevertheless, a common goal is shared by most of the proposed studies, that is the qualitative 

simulation of the cardiovascular dynamics. In the presented simulations, blood pressures and flows are 

evaluated based on well-founded physiological knowledge, rather than a quantitative analysis of the 

estimated trends and values against the measured ones.  

Recent methods for the assessment of non-invasive and cuff-less BP focus on the analysis of the 

pulse wave travelling from the heart to peripheral sites and on the electromechanical timings of the 

heart. In what concerns to the analysis of the pulse wave, the main approaches rely on the estimation of 

pulse wave velocity (PWV) or, inversely, pulse transit time (PTT), that is, the time taken by the pulse 

wave to travel between two distinct arterial sites. However, these approaches do not account for 

changes in the vascular structure properties, which result in a constant need of external calibration 

procedures. This issue gains emphasis when considering the BP estimation during transient events 

(e.g., physical exercise, administration of vaso-active drugs and posture changes). Other approaches 

focus on the estimation of the amplitude of arterial volume pulse wave either as an independent 

surrogate or combined with PTT, on the electromechanical5 systole interval (RS2) as a surrogate for BP 

and on the evaluation of the arrival time and amplitude of the pulse wave components. 

BLOOD PRESSURE AND VASCULAR FUNCTION SURROGATES 

The problem of non-invasive and cuffless blood pressure (BP) measurement has been the focus of 

numerous studies and publications in the past decades. Firstly proposed by Penaz in 1970 [52], the 

volume clamp method is certainly the most recognized in this field, which is based on keeping the 

finger vessels in a constant “vascular unloading” state using a inflatable finger cuff and in the signal 

acquisition using a built-in PPG sensor. However, the original apparatus carried several disadvantages 

and its translation to a commercial device only happened in 1980 with the presentation of the 

FinapresTM by Wesseling and colleagues [53, 54]. Since then several alternatives systems have been 

presented (e.g., the Task Force Monitor). Despite the technological advances, these systems are still 

bulky and expensive, their usage is in some cases complex and can cause discomfort, and also require 

frequent calibrations [55]. 

An alternative to the volume clamp method for the non-invasive BP assessment is the use of 

surrogates extracted from the analysis of the pulse wave traveling from the heart to a peripheral site. In 

this field, one of the most recognized and promising surrogates is the pulse wave velocity (PWV) or, 
                                                             

5 The exact definition of the electromechanical systole is the time span between the ECG’s Q-wave and the onset 
of the S2 sound (closing of the aortic valve). However, from a practical engineering viewpoint, the RS2 is usually 
simpler and more accurate to compute, since the uncertainty in identifying the Q-wave is much higher compared to 
the uncertainty in determining the R-wave. 
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inversely, the pulse transit time (PTT) [56-76]. Moreover, the amplitude of the arterial volume 

pulse wave has been also considered as a surrogate for BP, and is often combined with PTT [69, 77-

79]. Other methods focus on the assessment of the time from the R-peak to the 2nd Heart Sound (S2) 

[80-82].  Recently, in [83, 84] the relationship between the characteristics of the pulse components has 

also been proposed as a surrogate for BP. 

The “true” PTT is defined as the time interval taken by the pulse wave to travel a certain distance 

along a homogeneous arterial segment. Thus, to measure PTT, the pulse wave has to be recorded 

accurately in two locations of the analyzed arterial segment [58, 72]. However, the placement of two 

sensors at a small distance apart is often difficult and uncomfortable, leading to alternative approaches. 

The most common approach to assess PTT is based on the simultaneous detection of the ECG R-peak 

and the beginning of the pulse wave inflection measured at a peripheral site (see Figure 3). However, 

the measured time difference results in an approximation of PTT, often called as PAT (Pulse Arrival 

Time) and its relation to the (true) PTT measure is described by:  

PAT = PEP + PTT ( 4 ) 

where PEP6 (Pre-Ejection Period) is the time from the Q-peak wave to the opening of the aortic valve, 

and is not related to the pulse propagation.  

Alternatively to the PAT measurement [56, 58-73, 75], other approaches have been followed to 

extract BP surrogates. In [73, 74, 76, 85], the PTT is estimated by subtracting the extracted PEP (e.g., 

using ICG-based methods) from the PAT measurement, while in [86] the influence of PEP is avoided 

by normalizing PAT with the pulse rate. Other approaches resort on the subtraction of two PAT 

measures (DPTT – differential pulse transit time) from distinct arterial pathways [57, 76] (see Figure 3) 

or in the same arterial pathway [87-89]. Furthermore, some authors also suggested PAT and PTT 

measures considering different characteristic points in the pulse wave  (e.g., the systolic biggest 

inflection of the ascending curve or the peak of the pulse wave) [58, 62-65, 68, 69, 74, 90] and different 

methods for their identification (e.g., Hilbert–Huang transform [91] and time delay methods [92]). 

                                                             

6 The exact definition of Pre-Ejection Period is the time span from the onset of the ventricular electrical 
depolarization (Q-wave) to the onset of the aortic valve opening. However, from a practical engineering viewpoint, 
the R-wave is often assumed as the beginning of the systolic electrical activity since the uncertainty in its 
identification is much lower compared to the determination of the Q-wave. 
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Figure 3 – Representation of PEP, PAT, PTT and DPTT. The PPG1 and PPG2 representations refer to different arterial segments. 

Empirically, the changes in PWV or, inversely, PTT, are usually followed by changes in BP, which 

are translated into an inverse correlation between BP and PTT/PAT measurements. However, the PTT 

and PAT only reflect part of a complex system integration that induces BP changes. Therefore, 

assuming a linear relationship between PTT and BP can lead to contrasting results, ranging from very 

low (ρ=-0.1) to very strong (ρ=-0.99) correlations, depending on the measuring conditions, 

physiological context and adopted approaches [93].  

To account for the non-linear relationship between PTT and BP, Isebree Moens and Korteweg 

proposed the Moens-Korteweg equation, which relates the velocity of the pulse wave and the elastic 

and geometric properties of a short elastic vessel. This equation is often employed to BP surrogates, 

such as PTT, and is given by: 

PWV = distance
PTT = Eh

ρ2r ( 5 ) 

where E is the Young elasticity modulus of the wall, ρ is the blood density, h is the wall thickness and r 

is the vessel radius. Indeed, it is assumed that ρ, r and h undergo small or insignificant changes, and the 

main variations are expected to come from the elasticity modulus. Hughes [94] provided the link 

between PWV and BP by presenting the following equation: 

E = E!e!! ( 6 ) 

where α≈0.017mmHg-1 and P is the mean arterial pressure (MAP). By combining equation ( 5 ) and the 

linearization of equation ( 6 ) (E~E!(1 + αP)) one gets the quadratic dependency that relates PTT with 

MAP: 

P = A(1 PTT)! + B ( 7 ) 
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From the Moens-Korteweg equation, Bramwell and Hill [95] derived another expression, the 

Bramwell-Hill equation, which relates the velocity of the pulse wave to the vessel 

compliance/distensibility and is given by: 

PWV = A
ρC!

= V.ΔP
ρ.ΔV ( 8 ) 

with A the lumen area, C! = ΔA ΔP the compliance area and ρ the blood density. Modeling the 

pressure-volume relationship with a sigmoidal curve (e.g., [96, 97]) yields the link between BP and 

PWV. Shaltis et al. [96] proposed the following equation for the aforementioned relationship: 

V = a
1 + e!!" ( 9 ) 

where a and b are fitting parameters. Substituting equation ( 9 ) into  ( 8 ) and rearranging the equation 

with Taylor expansions, Yan and Zhang [98] obtained: 

PWV = ! e!" + 1
ρb ≈ 1

ρb
2

(1! bP4 )
≡ 1
cP!c/4 ↔ PTT = L(cP!c/4) ( 10 ) 

where L is the distance the pulse travels and c is a constant determined by experimental data fitting.   

From the Moens-Korteweg and Bramwell-Hill equations, several authors derived calibration 

functions to relate BP and PWV (or PTT), differing on the number of unknown parameters, number 

and non-linearity of the terms and additional parameters. Chen et al. [60] proposes a two term 

calibration function considering the initial (during calibration) BP and PTT measurements, along with 

an unknown parameter and the PTT change, while Poon et al. [67] presented two dependent functions 

for the calibration of SBP and DBP, considering SBP, DBP and PTT initial measurements along with a 

patient specific coefficient and a weighted PTT. Gesche et al. [99] proposed a calibration function with 

two non-linear terms and a correction factor to model the relation between PWV and BP. The dynamics 

of the cardiovascular and regulation systems is also taken into account, by including PTT and two 

compensation terms (PTTV and VPTT) in [100], and a zero-crossing factor in [101]. From these 

equations, it is possible to derive the unknown parameters by fitting PTT to BP (measured with another 

device) through a calibration step. However, the continuous changes in the vascular properties, such as 

the diameter of blood vessels, are not hold in these models, which implies an intermittent re-calibration 

of the model parameters in long term measurements [75, 102]. An alternative calibration procedure, 

which doesn’t rely on the use of external devices, was proposed by Poon et al. [103] and McCombie et 

al. [104], which is based on the mapping of PTT changes related to changes in hydrostatic pressure 

provoked by the lifting of the hand above the level of the heart. 

Although several approaches have been proposed in the literature using Moens-Korteweg equation 

[56, 59, 60, 67, 105] or Bramwell and Hill equation [96, 98, 106, 107] there is still some controversy on 
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which parameter (PTT, PAT, DPTT) best describes variations in BP. This issue has been addressed 

in several studies considering the influence of PEP and PTT during transient events such as physical 

exercise [72, 76, 105, 108], posture change [73, 109] and administration of vaso-active drugs [85].  

Muehlsteff et al. [105] showed that during intermittent short-term physical exercises the variations in 

PEP were almost identical to the variations in PAT and were consistent to the variations in BP. This 

conclusion was later confirmed by Deb et al. [72] and more recently by Wong et al. [108], who 

evaluated the changes of PEP, PTT and PAT in pre/post exercise conditions, and Proença et al. [76], 

who studied the ability of DPTT [72, 76], PTT (subtracting PEP)[76] and PAT to reflect changes in BP, 

under various contexts of physical exercise. Both authors concluded that BP is most consistently 

correlated to PAT, than DPTT and finally PTT. Moreover, Proença et al. [76] showed that to capture 

the small variations in BP (ΔBP≈10 mmHg) using the Moens-Korteweg equation, it is necessary to 

accuratly estimate PTT (8-16ms), which is not possible due to the contribution of PEP measurement 

accuracy (9.8 ± 21.37 ms).   

Contrarily to the aforementioned conclusions, Muehlsteff et al. [73] showed that calibration functions 

(e.g., Moens-Korteweg equation) based on PAT measures are not suited for inferring BP changes in 

contexts of posture change. The author demonstrated that the PAT measurement is strongly affected by 

posture changes at almost constant values of systolic blood pressure (SBP) and diastolic blood pressure 

(DBP). Changes in PAT are believed to be primarily caused by the sensitivity of PEP and LVET due to 

fluid shifts inside the body, which in turn affect cardiac preload and filling.  

Payne et al. [85] studied the effect of vaso-active drugs in the determination of BP through PAT and 

PTT measurements. In the proposed study, the author showed that PAT is significantly better correlated 

with SBP than it is with either DBP and MAP and its relation with SBP is relatively unaffected by 

different drugs in the overall studied population. Contrarily, PTT was more strongly correlated with 

DBP and MAP. Although the correlation PTT-DBP and PTT-MAP appeared to be poorly influenced 

by drug administration, the PTT-SBP correlation was differently affected depending on the 

administrated drug. In conclusion, the author suggested that the use of PAT as a purely vascular 

function surrogate should be avoided, not rejecting the potential of PAT in the assessment of BP 

variability and rapid pressure change. In a study using anesthetized dogs, Zhang et al. [110] concluded 

that PAT is not a reliable substitute for PTT even at the adopted ideal circumstances.   

Other approaches presented in the literature investigate how photoplethysmogram (PPG) 

components, i.e., baseline and amplitude (PA) can be combined with PTT [69] or even used separately 

to estimate BP (e.g., [77, 78, 111]). It is believed that the PPG AC component reflects changes in the 

blood resistance and compliance in the vasculature, while the DC component is an indicator of changes 

in blood volume [77]. Chua et al. [69] proposed a method where SBP and DBP are defined by linear 

functions depending on current and past PAT and PA estimations, while Shaltis et al. [78] proposed a 

method for estimating of MAP based on a non-linear function of the current PA estimations. Nitzan et 
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al. [111] studied the very low fluctuations in blood volume pulse peak, pulse amplitude and pulse 

period to assess SBP and DBP. Jeong et al. [77] estimated SBP and DBP based on the amplitude, foot 

and peak of the pulse wave extracted from AC and DC components of the PPG. 

Additionally to the PTT-based approaches, another potentially relevant measure, the RS2, has also 

been reported in the literature for BP estimation [80-82]. The RS2 is defined by the time interval 

between the R-peak wave of the ECG and the peak of the 2nd heart sound S2 in the PCG. Zhang et al. 

[80] proposed a method for the estimation of BP based on RS2 during dynamical physical exercise. The 

proposed surrogate presented a close inverse correlation with SBP, which is believed to be related with 

the change in the rate of ejection. Zhang et al. [81] proposed a modified mathematical model of the 

cardiovascular system to simulate the relationship between SBP and RS2. In this study, it was 

demonstrated that RS2 is inversely correlated with systolic blood pressure under the effects of changing 

peripheral resistance, heart rate and contractility. Following the approach presented in [80], Wong et al. 

[82] used the parameter RS2 to estimate SBP and DBP in normal and abnormal subjects during resting 

condition.  

Recently, Baruch at al. [83] proposed a novel (pulse decomposion analysis - PDA) model based on 

the analysis of the arterial blood pressure waveform. Using the equation proposed by Moens-Korteweg, 

the authors relate the aortic DBP, SBP and PP with the pressures at each arterial path, which are in turn 

described by the time of arrival and amplitude of the pulse componentes at the peripheral site. Using 

this model, the author proposed two indices for the assessment of PP and SBP, that are P2P1 (the 

amplitude ratio of the first reflection wave and the main pulse) and T13 (the time span between the 

main pulse and the 2nd reflection wave). These indices were proven to be strongly correlated with aortic 

SBP and PP (measured by cardiac cathetherization), respectively [83, 84]. 

VASCULAR FUNCTION SURROGATES 

In addition to BP, the pulse wave has also been intensively studied in order to extract valuable 

information describing the elastic properties of the arteries. Commonly used terms to describe these 

properties include arterial stiffness, compliance, elasticity (or elastic modulus), distensibility and 

vascular impedance. Studies employing these surrogates indicate that increased arterial stiffness is 

associated with increased cardiovascular risk, including hypertension and severity of coronary artery 

disease [112] and increased target organ damage [113]. Increased arterial stiffness is also associated 

with aging, hypercholesterolemia, obesity, and it is commonly observed in smokers. Other diseases 

such as diabetes mellitus and kidney disease were also related with increased arterial stiffness [113]. 

Additionally, arterial stiffness has been shown to predict future morbidity and mortality [112].  

One of the simplest surrogates of arterial stiffness is PP, but depending on the measuring site and 

techniques, this surrogate alone was shown to lack in accuracy [114]. Additionally, the pulse wave 

velocity measured from the carotid to the femoral artery has also been proposed as a risk predictor for 

cardiovascular events [114].   
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From the analysis of the photoplethysmogram, three main indices have been proposed in 

literature, which are the augmentation index (AI), the stiffness index (SI) and the reflection index (RI), 

illustrated in Figure 4. In [115], the SI is defined as the time delay between the direct and reflection 

waves (SI! = !T!"#$!T!"#), while in [115, 116] the RI is determined by the ratio between the height of 

the diastolic wave to the maximum pulse height (RI! = !P!"#$/P!"#). Millesseau et al. [117] proposed 

the correction of SI with relation to the subject height h (SI!"# != h/(T!"#$!T!"#)), and suggested that 

this index increases with age. The SI is associated with the velocity of a pulse wave in large arteries 

[118], large artery stiffness [119] and also has been shown to correlate with PP [83]. The RI has been 

associated with small artery stiffness [118] and changes in vascular tone [115, 120]. 

The augmentation index was defined by Takazawa et al. [121] as the ratio between the late and early 

systolic components (AI!!"# != !P!/P!) derived from the PPG second derivative, while Rubins et al. 

[122] proposed two definitions of AI depending on the PPG morphology (type A: AI!!"# = !1!P!/P!"# 

and type C: AI!!"# = !1!P!/P!"#). The augmentation index (AI) is commonly associated with aging 

and arterial stiffening [54, 83, 123].  

 

Figure 4 –Representation of the characteristic points of the PPG pulse. Left: PPG pulse and respective components (P1, P2, P3 

and P4). Right: PPG pulse and characteristic points extracted from DDA. 

From the analysis of the PPG 2nd derivative (DDA – double differentiation analysis), Takazawa et al. 

[121] proposed the identification of five consecutive waves, located at the systolic (a, b, c and d waves) 

and at the diastolic (e wave) phases of the PPG pulse and demonstrated that their relationship with the a 

wave provides valuable information about the cardiovascular system. Examples of these relationships 

are the b/a ratio, which was associated with increased arterial stiffness and aging, the c/a, d/a and e/a 

ratio, which is related with decreased arterial stiffness, and the (b-c-d-e)/a ratio, which was shown to 

increase with age.  

Another important property of the peripheral vascular network is the ability to reduce or increase the 

radius of the vessels, known as vasoconstriction and vasodilation. This property affects the resistance 

of the blood flow in the peripheral circulation and is defined as systemic vascular resistance (SVR). 

Methods proposed in literature for the assessment of SVR consist in the determination of the pulse 
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width (length of the PPG pulse at half height) [124], the inflection point area ratio (IPA =
A!"#! A!"!), which is the ratio between the area of the diastolic and systolic phases [13], the area 

difference ratio (ADR) and the decay constant time (VRC) calculated using a piecewise linear 

interpolation criterion [125]. The ADR parameter (illustrated in Figure 5), was calculated as the 

difference between the area of the triangle formed by Pdias-Poff-Tdias (At) and the area under the curve of 

the pulse Y(t), but above the horizontal line Tdias-Poff (Ap) divided by At, and was defined as: 

ADR = A!!A!
A!

 ( 11 ) 

Recently, Jeong et al. [126] evaluated the relationship between the aforementioned parameters (DDA-

derived, PAT-derived and others) and BP, during exercise in senior populations. The authors were able 

to find a strong association between the PATPEAK (R-wave to PPG peak) and PATR-A (measured from 

the R-wave to the a wave of the 2nd PPG derivative), and SBP. Moreover, a strong negative correlation 

was also found between PATMACC (R-wave to the peak of the PPG 1st derivative) and PATR-A, and PP. 

 

Figure 5 – Illustration of the characteristic points and areas used in the extraction of SVR surrogates. Left: Pulse width and 

systolic/diastolic areas used in the assessment of IPA. Right: Characteristic points used in the determination of ADR. 

 ASSESSMENT OF BAROREFLEX SENSITIVITY 3.2.

The evaluation of Baroreflex sensitivity (BRS) has been studied since 1969, when the first concept  

was presented by Smyth et al. [127]. Since then, several methods have been proposed in the literature 

for BRS quantification resorting to the analysis of the relationship between RR and BP, among other 

variables (e.g., RESP), using either time [127-132], frequency [133, 134] and model-based [135-145] 

approaches. However, all these methods resort to the acquisition of a continuous (beat-to-beat) arterial 

blood pressure waveform, which is often inaccessible in the generality of the clinical and hospital 

settings. An approach that could be used to improve the applicability of BRS to a wider range of 

clinical scenarios is based on surrogate measurements of BP (e.g., Pulse Transit Time and Pulse Arrival 

Time) as an alternative to the inconvenient continuous and direct measurement of BP. However, as far 

as we know, these kind of approaches have been poorly tackled in the literature [146, 147].  

In the time domain based analysis, the sequences technique proposed by Di Rienzo et al. [128, 129] 

in 1985 and enhanced in 2001, was the first structured method aiming to the quantification of BRS. 

This technique is based on the regression analysis of short segments called baroreflex segments 
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(“BSs”), consisting in synchronous variations in SBP and RR values and characterized by 

simultaneous amplitude variations. From 2002 to 2009, improvements in the time domain BRS 

assessment were presented by Malberg et al. [130] with the dual sequence method, Westerhof et al. 

[131] with the cross-correlation baroreflex sensitivity (“xBRS”) estimate, Gouveia et al. [132] with the 

events technique and recently Bauer et al. [148] with the bivariate phase-rectified signal averaging. 

Because the time domain techniques rely on the analysis of short segments of data, it is believed that 

these methods mainly reflect the parasympathetic modulation of the ANS. 

The frequency domain techniques, in contrast with the time domain based techniques, are capable of 

distinguishing baroreflex activity of different frequencies: low frequencies (LFr: 0.04-0.15 Hz) are 

associated with sympathetic ANS effects, while high frequencies (HFr: 0.15-0.4 Hz) are associated 

with vagal/ parasympathetic and respiratory activity. The main techniques in this field were presented 

by Robbe et al. [133], with the Transfer function method, and by Pagani et al. [134] with the Alpha 

technique.  

Additionally, several studies also focused on the analysis of the HR variability, being the main 

approaches based on time and frequency domain analysis. Techniques such as the Fourier transform, 

high order spectra analysis are commonly used to detect the low and high frequency components 

related with the sympathetic/parasympathetic and ventilatory modulations. Additionally, nonlinear and 

nonstationary techniques (e.g Lyapunov exponents and wavelet transform) were also used to elucidate 

the complex short and long term nature of the HR variability [149]. 

The inability of the frequency and time domain techniques to distinguish between negative and 

positive feedback, causality between effects, and to account for other external influences, motivated 

several authors to extend these techniques by assuming a closed loop system, where it is considered a 

feedforward pathway (where cardiac and arterial effects result in changes of BP) and a feedback 

pathway (the arterial baroreflex). Some studies contemplate the analysis of the variability of a single 

measurement (e.g., HR - [135, 136]), while other authors use of several parameters (e.g., HR, BP, 

RESP - [137-141]) in the characterization of one or both parts (feedback/feedforward) of the CNS 

regulation.  

 PREDICTION OF NEURALLY MEDIATED SYNCOPE 3.3.

The prediction of neurally mediated syncope (NMS) is a problem that has been the focus of intense 

research in the later decades and therefore several methods have been proposed in the literature, 

differing the objectives, methods and used modalities. The most common approach to this problematic 

is the early prediction of the head-up tilt table test (HUTT) outcome (e.g., [150-155] [156-163]) based 

on a analysis of HR, BP parameters before and after tilt, i.e., during the supine position and early 

passive standing position. Another approach is the real time prediction of NMS syncope events (e.g., 

[164-169]), which focus on the real-time analysis of cardiovascular parameters for the prediction of 

impending syncope.  
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Methods for the early prediction of the HUTT outcome are mainly focused on the analysis of the 

HR and/or SBP variability using either time [150-154, 160, 161] and frequency domain techniques 

[155, 156] or both [157-159]. The time domain methods focus on the evaluation of temporal changes of 

HR during the supine and upright positions, using statistical features, such as mean, standard deviation 

[150, 152, 157, 158], variance and kurtosis [154], or even doing simple comparisons between the HR in 

both phases [151, 153]. In addition to the analysis of the HR variability, Naschitz et al. [154] also 

included in the proposed model features based on the PTT parameters. Other methods focused on the 

analysis of the BP variation alone, with the quantification of the number of SBP reductions during the 

early up-right position [161], and on a combined analysis of HR and BP changes regarding to the 

baseline values [160]. The frequency domain methods are mainly based on the evaluation of the 

characteristics of the low (LFr: 0.04-0.15Hz) and high (HFr: 0.15-0.40Hz) frequency components (e.g., 

power and area) and on the relationship between the characteristics of those components (the LFr/HFr 

ratio) as measures of sympathovagal balance [155-159]. Common methods used to identify and analyze 

these components are the Fourier transform [155] and auto-regressive models [159]. Additionally, 

methods using indices of myocardial contractility assessed from endocardial acceleration (PEA) [162] 

and from transthoracic impedance cardiography [163] have also been proposed in the literature. In 

[170] we also studied the importance of contractility and vascular tone surrogates, in the 

characterization of the mechanisms underlying the development of NMS. In a thorough evaluation of 

the early syncope prediction methods, Blanes et al. [171], concluded that the problem of early syncope 

prediction is far from being solved, and should be handled with caution.  

In contrast with the early prediction of syncope, the real-time prediction problem has only been talked 

in the later years, where the analysis of the HR and BP changes have also been considered [164, 165]. 

Virag et al [164] proposed a method for real time prediction of impending syncope based on the time 

and frequency analysis of the HR and SBP signals. The proposed method is based on the evaluation of 

a cumulative risk function using normalized HR and SBP trends, as well as the HR and SBP LFr 

powers. Mereu et al. [165] evaluated the prediction ability of HR and BP (SBP, MBP, DBP and PP) 

trends and the ratio between the dRR (1st derivative of RR) with those trends. Nevertheless, these 

methods require the continuous monitoring of BP using systems, which still carry several 

disadvantages (e.g., expensiveness, hard management and recurrent calibration). Motivated by the need 

of solutions that do not rely on these systems, several authors focused on the analysis of non-invasive 

and widely available modalities, such as the ECG and PPG. The proposed methods focus on the 

evaluation of changes of the pulse arrival time (PAT) alone [168], as a surrogate for SBP changes, or 

along with HR changes [166, 167], inotropic and vascular tones changes [172, 173] and, consequently, 

prediction of syncope. In Table 1 we present a summary of the results achieved by the methods 

proposed in the literature for real time prediction of NMS. 
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Table 1 – Results achieved by the real time prediction methods proposed in literature. 

Method 
SE  

(%) 

SP  

(%) 

PPV  

(%) 

FPRh 

(h-1) 

Pre-Time 

avg±std 

(s) 

Modalities # volunteers 

Virag et al. [164] 95 93 - - 128±216 ECG/ABPW 1155 

Mereu et al. [165] 86.2 89.1 - - 44.1±6.6 ECG/ABPW 145 

Eickolt et al. [166] 81 85 - - 203±227s ECG/PPG 44 

Meyer et al. [167] 100 100 100 - 99±108 ECG/PPG 14 

Muhlsteff et al. [168]! 90.48! 83.33! 82.61! - 77.71±71.78! ECG/PPG! 44!

Couceiro et al. [172] 100 92.3 85.7 0.146 217.6±197.4s ECG/PPG 44 

Couceiro et al. [173] 100 84.6  75 0.29  341.75±286.33 ECG/PPG 44 

From Table 1 one observes that the method presenting the best results was proposed by Meyer et al. 

[167], achieving a sensitivity (SE), specificity (SP) and positive predict value (PPV) of 100%. Despite 

the great results presented by the authors, the use of a small number of patients (14) in the validation of 

the proposed method suggests that these values should be analyzed with great caution. The second 

method achieving the highest SE, SP and PPV values was presented by Couceiro et al. [172], which 

introduces parameters that characterize changes in inotropy (LVET) and vascular tone (SI and RI) in 

addition to HR and PAT changes. This method was validated in a larger population composed of 44 

patients and achieved a SE of 100%, and SP o 92.3% and a PPV of 85.7%. Moreover, the low number 

of false positives per hour (FPRh: 0.146h-1) and the high prediction time (217.6s) is a good indicator 

when considering its translation to p-health applications. More recently, the features proposed in [172] 

were used  to train and test an SVM classification model combined with a “Firing power” 

regularization method [173]. The proposed model presented a lower performance, which is reflected by 

the decrease of the SP (84.6%), PPV (75%) and by the increase of the FPRh (0.29h-1). Contrarily, its 

prediction time was the highest among all the methods presented in Table 1. The third method 

presenting the best performance was proposed by Virag et al. [164]. This method resorts on the analysis 

of the HR and SBP trends and achieved an SE of 95% and a SP of 93%. Although no values were 

provided regarding the PPV and FPRh, the validation of the proposed method on a much larger 

population, composed of 1155 patients, suggests that the presented results are founded on strong 

statistics, which represents a great advantage when compared to the aforementioned methods. The 

remaining algorithms proposed by Mereu et al. [165], Eickolt et al. [166] and Muhlsteff et al. [168] 

presented similar performances regarding the SE and SP metrics (above 80%) but distinct prediction 

times, ranging from 44.1s (Mereu et al. [165]) to 203s (Eickolt et al. [166]). In sum, these results show 

that the surrogates associated with contractility and vascular tone changes can provide major 

enhancements in the prediction of syncope events, which were reflected in the reduction of the number 

of false alarms and in the increase of the time at which syncope is predicted. 
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 CONCLUDING REMARKS 3.4.

In this chapter we introduced the main methods for the evaluation of the cardiovascular function, 

estimation of baroreflex sensitivity and prediction of neurally mediated syncope, based on the analysis 

of non-invasive signals such as the electrocardiogram, photoplethysmogram and arterial blood pressure 

waveform. In the evaluation of the cardiac function, we focused on the methods for the assessment of 

stroke volume, cardiac output and systolic time intervals. Additionally, the methods currently used for 

the continuous non-invasive assessment of blood pressure were outlined along with other relevant 

parameters of vascular function. The main methods used to assess the function of the baroreceptor 

reflex mechanisms were also tackled in the present chapter. Finally, we outlined the main contributions 

presented in the literature, focusing on the early and real time prediction of neurally mediated syncope. 

 The non-invasive evaluation of the cardiovascular function is a vast research area whose complexity 

greatly depends on the adopted modalities and assessment contexts. The most commonly used modality 

for the assessment of relevant cardiovascular parameters is the arterial blood pressure waveform, 

measured by volume-clamp based systems. Despite the technological advances observed in the later 

years, these proprietary systems still carry disadvantages that limit their usage in p-health and 

ambulatory environments. Their expensiveness, hard management, the need for recurrent calibrations 

and the induced discomfort are some of the commonly observed drawbacks. Therefore, the assessment 

of cardiovascular parameters from widely available bio-signals such as the electrocardiogram and 

photoplethysmogram can bring a huge step forward in the non-invasive assessment of the 

cardiovascular function. The systolic time intervals, such as the left ventricular ejection time, were 

suggested as valuable indices for the non-invasive assessment of the myocardial contractility. 

Additionally, pulse transit time and pulse arrival time have also been indicated as valuable surrogates 

for blood pressure. However, these parameters are still covered in deep controversy, and their 

applicability largely depends on the used methods and modalities, as well as the physiological 

conditions. Furthermore, the methods employing these parameters still require frequent calibrations for 

the long-term assessment of non-invasive BP. Other parameters that have been recently unveiled, based 

on the decomposition of the ABP/PPG showed to be highly associated with systolic and diastolic blood 

pressure, which can represent a great improvement in the assessment of non-invasive and cuff-less 

blood pressure monitoring. Additionally, due to the intrinsic nature of the mechanisms that trigger 

neurally mediated syncope, the application of these cardiovascular parameters to real time prediction 

systems might contribute to the improvement of the results already proposed in literature. 
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Abstract
The presence of motion artifacts in photoplethysmographic (PPG) signals 
is one of the major obstacles in the extraction of reliable cardiovascular 
parameters in continuous monitoring applications. In the current paper we 
present an algorithm for motion artifact detection based on the analysis of the 
variations in the time and the period domain characteristics of the PPG signal. 
The extracted features are ranked using a Normalized Mutual Information 
Feature Selection algorithm and the best features are used in a Support Vector 
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1. Introduction

Photoplethysmography (PPG) is a non-invasive, low cost tool to continuously monitor blood 
volume changes in tissue as a function of time. One of the major advances of the PPG-based 
technology in clinical environments is the pulse oximeter, which has been accepted by the 
International Standards Organization (ISO) and the European Committee for Standardization 
as the standard non-invasive measure of oxygen saturation level since 1987 (Shang et al 2007). 
Motivated by unmet needs in low cost, unobtrusive and portable techniques in personal-Health 
(p-Health), the PPG technique has been object of extensive research in the later decades. Due 

signal processing, the PPG technique achieved a broader spectrum of potential applications, 

autonomic function evaluation (Allen 2007). Moreover, this technique has been widely applied 
in many clinical areas such as anesthesia, surgical recovery and critical care (Allen 2007).

emitting diode and photodetector, as well as the pressure exerted on the PPG probe, which may 
affect the morphology of the PPG waveform (Reisner et al 2008). Moreover, the ambient light 
at the photodetector, poor blood perfusion of the peripheral tissues and motion artifacts (Sukor 
et al 2011) are also common sources of errors. In uncontrolled environments such as home care 
settings, these potential error sources are more frequent and can become a serious obstacle to 
the reliable use of PPG derived parameters, especially in continuous monitoring applications. 
Therefore, it is important to provide signal quality or trust metric that provides the subsequent 
analysis algorithms with a level of trust in the derived parameters, which reduces the false 

Although the recent technological advances allowed the minimization of some of these 
limitations, motion artifact detection and suppression is still a major challenge (Allen 2007, 
Sukor et al 2011
artifact and noise suppression has been subject of intensive research in the last decade. Various 
approaches have been investigated, where the clean PPG signal is recovered or reconstructed 
fro
(Graybeal and Petterson 2004, Lee et al 2004, Foo and Wilson 2006, Kunchon et al 2009) to 
reduc

-
facts and consequently retrieve a clean PPG signal. However, some studies indicate that these 
techniques introduce phase shifts in the PPG signal, which may compromise its subsequent 
interpretation (Foo 2006
transformation techniques.

Another common approach is to use accelerometers as a reference noise signal to cancel 
out motion artifacts in PPG signals (Gibbs and Asada 2005, Han et al 2007, Kim et al 2007, 
Wood and Asada 2007). However, these methods present major drawbacks. Here, an accel-
erometer needs to be coupled to the PPG sensor in order to retrieve the noise reference and 
synchronisation of both signals, which makes this approach hardly suitable for current equip-
ment in clinical settings. Additionally, there is not a direct correlation between movements 

et al 2012).
Other authors opted to use time-frequency analysis (Lee and Zhang 2003, Yan et al 2005, 

Reddy et al 2008, Raghuram et al 2012) and source separation techniques (Kim and Yoo 
2006) to recover the clean PPG signal. Reddy et al (Reddy and Kumar 2007) proposed a 
motion artifact reduction method based on Singular Value Decomposition. Later in (Reddy 
et al 2008), the same author applied a beat-by-beat Fourier series analysis to reconstruct a 



 

 

 

61 
 

R Couceiro et al

3

Physiol. Meas. 00 (2014) 1

clean PPG signal. Yan et al (2005) applied Smoothed Pseudo Wigner-Ville Distribution for 
motion artifacts reduction. Raghuram et al (2012) proposed the use of an Empirical Mode 
Decomposition technique combined with the Hilbert-Huang transform to reconstruct clean 
PPG section from the corrupted PPG signal. Kim et al (Kim and Yoo 2006) proposed the com-
bination of a block interleaving and low pass filtering technique approach with an Independent 
Component Analysis technique to separate the PPG from motion artifacts. These techniques 
assume that underlying a corrupted PPG signal there is a clean/uncorrupted reference capable 
of being retrieved, which is not often possible. Additionally, the distortion induced by the 
reconstruction of a clean PPG signal can significantly bias the extracted measurements (e.g. 
Left Ventricular Ejection Time—LVET) and induce subsequent wrong diagnosis.

In many applications (hospital as well as home monitoring), an alternative to noise reduc-
tion is the robust detection of PPG signal sections corrupted by noise and motion artifacts 
and exclude them from the subsequent analysis. Techniques such as morphological analysis 
(Sukor et al 2011) and higher-order statistical analysis (Krishnan et al 2008) have been pro-
posed in this research field. Sukor et al (2011) proposed an algorithm based on the analysis of 
several morphological characteristics of the PPG pulses to distinguish bad quality pulses from 
good ones. The author reports that the proposed methodology is able to identify motion arti-
facts with an accuracy of 83%. Krishnan et al (2008) used a sensor fusion approach combining 
high order statistical features from the time and frequency domain to discriminate corrupted 
PPG sections. The proposed methodology was able to detect motion artifacts with a probabil-
ity of 91% and a false alarm probability of 0.06%.

Despite the good results presented in (Sukor et al 2011), we believe that motion artifact 
detection performance can still be increased. It is our goal not only to evaluate the changes in 
the morphological characteristics of the PPG signal, but also to utilize the idea that clean and 
corrupted PPG sections have different period characteristics. It is still unknown which time/
period characteristics best distinguish clean and corrupted PPG sections and it is expected 
that these characteristics depend on the target population in clinical practice. Therefore, a 
study regarding the evaluation of the best features in the time and period domain for artifact 
discrimination and their application in both healthy and cardiovascular diseased (CVD) popu-
lations has yet to be developed.

In this paper, we present a motion artifact detection methodology, which is based only on 
the analysis of the time and period domain characteristics of the PPG signal from 8 healthy 
volunteers and 7 CVD patients. In the time domain analysis we evaluate the changes in the 
main morphological characteristics of the PPG beats. In the period domain analysis, the 
period characteristics of the PPG signal are assessed and compared using a sliding window 
approach. Several features are extracted, and the Normalized Mutual Information Feature 
Selection (NMIFS) algorithm (Estevez et al 2009) is used to select the most relevant and 
least redundant ones. The most discriminative features are used as inputs to a Support Vector 
Machine (SVM) classification model.

The paper is organized as follows: the proposed methodology is introduced in section 2. 
The results and respective discussion are presented in section 3. Finally, the conclusions are 
summarized in section 4.

2. Methods

The proposed methodology for the detection of motion artifacts consists of the following 
stages (see figure 1): (a) Pre-processing and baseline removal; (b) Segmentation; (c) Feature 
extraction; (d) Feature selection and (e) Classification.
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2.1. Pre-processing

The goal of the pre-processing stage is to remove the frequency components that do not rep-
resent the fundamental features of the PPG signal. Based on the algorithm proposed in (Chan 
et al 2007), the high frequency components which are not physiologically related to the PPG 
waveform were removed using a low-pass Butterworth filter with a 18 Hz cut-off frequency 
and a 2 s window moving average filter is applied to derive an approximation of the PPG sig-
nal baseline, which is subtracted from the original PPG signal.

2.2. Segmentation

The morphology of the PPG pulse is a result of a complex interaction between the left ventricle 
and the systemic circulation. It is composed of an early main pulse created by the ventricular 
contraction and various additional pulses caused by pressure pulse reflections in the cen-
tral arterial tree to the peripheral vasculature. As the main pulse (P1—illustrated in figure 2) 
arrives at the first reflection site, which is, the junction between the thoracic and abdominal 
aorta, there is a significant decrease in the artery diameter along with the change in its elastic-
ity causing the main pulse to be reflected. The main pulse continues to travel downwards and 
reaches the second reflection site, which arises from the juncture between abdominal aorta 
and common iliac arteries (Baruch et al 2011). These reflection sites are commonly known as 
the renal and iliac reflections sites and give rise to the second (commonly known as second 
systolic peak) and third reflection waves (P2 and P3, respectively—illustrated in figure 2). 
Additionally, there are also other minor reflections and re-reflections in the systemic structure 
that give rise to smaller reflection waves.

Commonly, in healthy individuals, these reflection waves occur during early diastole and 
a dicrotic notch can be observed between the first and second PPG peaks. Contrarily, in elder 
individuals and/or individuals with cardiovascular diseases, the vascular properties may lead 
to a significant increase of the pulse wave velocity up to a factor of three (e.g. due to arterial 
stiffening), leading to the occurrence of the reflected waves during late systole and preventing 
the distinction between direct and reflected waves.

The main objective of the segmentation step is to detect the characteristic points corre-
spondent to the onset and offset of the PPG pulses and allowing the posterior extraction of 

Figure 1. Scheme of the proposed motion artifacts detection methodology.
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their morphological characteristics. We determine the characteristic points by analyzing the 

(Cook 2001, Wisely and Cook 2001) where L.B. Cook observed the similarity between the 

can be determined as a maximum in the PPG third derivative.

point digital differentiator (Abramowitz and Stegun 2012) (equations (1)–(3)), resulting in 

 
= ′ = − − − + + − +
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f t h f t h f t h f t h
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1 ( )
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12 2 (1)
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where f is the PPG time series, t is the time index and h is the sampling time.
The 1st derivative local maxima (d1_ppg_lmax) with absolute amplitude greater than a 

threshold ThR are detected, where ThR is selected based on an adaptive thresholding of the 
d1_ppg data cumulative histogram (using a 10 s window) (Sun et al 2005
the greater value bellow which 90% of the observations are found. Consequently, the d3_ppg 

3

the d3_ppg_lmax (Chan et al 2007).

Figure 2. Morphology and origin of the PPG pulse. On the left, a PPG pulse and cor-

arterial system from the aorta/arm to the iliac arteries (Baruch et al 2011).
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2.3. Feature extraction

In order to detect PPG motion artifacts it is essential to extract a set of features capable of 
discriminating clean from corrupted PPG sections. These features were extracted resorting on 
the analysis of the time and period domain analysis of the PPG. In the time domain analysis, 
the main goal is to capture the changes in the morphological features of the PPG pulses. In the 
period domain, the characteristics of principal components of the period spectrum and their 
relationships are evaluated.

2.3.1. Time domain analysis. In clean PPG signals, the changes on the PPG pulse morphology 
are mainly caused by cardiovascular changes. Contrarily, PPG signals corrupted by motion 
artifacts present abnormal, erratic and ‘random’ characteristics which can be detected from 
the analysis of each pulse. To assess these changes, the morphology of the PPG pulses and 
their relationships with the neighboring pulses are analyzed, leading to the definition of the 
following characteristics: (1) pulse amplitude; (2) pulse length; (3) peak distance; (4) trough 
depth difference; (5) peak height difference; (6) pulse skewness; and (7) pulse kurtosis. Along 
with the morphological characteristics proposed by Sukor et al (2011) (pulse amplitude, pulse 
length and trough depth difference), four other characteristics are introduced in the present 
time domain analysis of PPG signal.

As illustrated in figure 4 the pulse amplitude is defined as the difference between the pulse 
peak height and its preceding trough depth (pulse onset), the pulse length is the time interval 
between the onset of two consecutive pulses and the peak distance is the time interval between 
maxima of two consecutive pulses. The difference between the peak height and peak depth of 
two consecutive pulses was also considered. As can be observed, these characteristics change 
drastically in the presence of motion artifacts, showing an erratic pattern. Contrarily, clean PPG 

Figure 3. Plot of PPG signal derivatives (order 1–3) and representation of the detected 
characteristic point for the detection of the onset of each individual PPG pulse.
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sections exhibit slow variations in the aforementioned characteristics, which are a result of a 
variety of cardiovascular and respiratory factors (e.g. vasomotion/compliance effects, changes 
in venous pooling related to heart rate/cardiac output variations, blood pressure changes and 
respiratory modulations) (Addison et al 2012). For example, the PPG pulse amplitude, which 
is related to changes in the intrathoracic pressure during respiration (Addison et al 2012), 
exhibits slow variations in the clean PPG sections when compared to the corrupted PPG sec-
tions, where it exhibits strong and inconsistent changes between pulses.

Since the shape of the PPG pulse is highly affected by motion artifacts it is expected to 
see random changes in the corrupted PPG pulses symmetry and ‘peakedness’, which were 
assessed using skewness (equation (4)) and kurtosis (equation (5)).

 
σ=
−( )

Ch
E f x f x( ) ( )P P

6

3

3
(4)

 
σ=
−( )

Ch
E f x f x( ) ( )P P

7

4

4
(5)

where f x( )P  is the PPG pulse, f x( )P  is the mean of f x( ) ,P  σ is the standard deviation of
f x( ) ,P  and E(t) represents the expected value of the quantity t.

From the analysis of various types of PPG pulses, one observed that when motion 
artifacts are present, the aforementioned characteristics vary . Contrarily, in 
clean PPG signals the PPG pulses are similar and therefore there is almost no variation in its 
characteristics, since PPG height and regularity are related to blood volume and heart rate, 
respectively. These physiological properties are not expected to change abruptly 
between consecutive pulses. Hence, rather then evaluating the values of the proposed 
characteristics, as suggested 

Figure 4. Plot of a PPG signal with clean and motion artifact corrupted sections. Rep-
resentation of the PPG pulses morphological characteristics extracted during time do-
main analysis step.
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in (Sukor et al 2011), we aim to to capture their variations. The changes in the pulse charac-
teristics were evaluated using equation (6), resulting in the features F1 to F .7

 Δ= = − −F Ch Ch j Ch j( ) ( ) ( 1)i i i i (6)

where, Chi is the ith characteristic and j is the pulse (section) index.

2.3.2. Period domain analysis. To assess the period characteristics of the PPG signal, the 
Discrete-time Short Time Fourier Transform (STFT) was applied in the period domain. Let 
the + −x x[ , ..., ]n n N 1  be the sequence defining the section of the PPG signal under analysis. For 
a sampling frequency SF, the frequency ‘bin’ k of the N-point STFT corresponds to the fre-
quency =f k SF N. / Hz,k  that is, = = =s f N k SF N k1 / /( . ) s / samples .k k  The STFT in the
period domain, i.e. PD-STFT, defined as

 ∑=
=

−

+ −X n s x w( ,   )   e
m

L

n m m
π

0

1

(7)

is the expression for the DFT of the windowed sequence +x wn m m of the kth period bin. 
= … −s N1, 2, ,  1 samples is the range of possible periods in the aforementioned sequence.

To choose the size of the sequences (L) and the forward step (∆n), that is related to the 
section overlapping (L − ∆n) one must take into account: (i) the stationary of the analyzed 
signal section; (ii) the tradeoff between the PD-STFT period and temporal resolution; (iii) the 
temporal resolution needed for the subsequent analysis.

Considering the aforementioned issues, the PD-STFT was applied using a rectangular-
shaped sliding window with approximately 3 times the fundamental period of the PPG signal 
(i.e. periods from 0 to approximately one and a half beat). The fundamental period was defined 
as the maximum of the period domain spectrum calculated from the first 5 s of each PPG sig-
nal. The overlap between consecutive windows was set to be approximately 85%. Thus, we 
assume the stationarity of the signal in the analyzed section and guarantee an appropriate 
trade-off frequency resolution of the computed PD-STFT. Furthermore, by choosing 85% 
window overlap size we ensure that the analysis output has the reasonable temporal resolution 
(i.e. half of a beat) necessary for further analysis and motion artifact detection. Moreover, a 
good tradeoff between the computational complexity of the algorithm and the acquired tem-
poral resolution is also achieved. The fundamental period was extracted and updated based on 
the period analysis of small sections (5 s) of the PPG signal.

From the obtained period domain spectra characteristic features are extracted. This pro-
cedure resorts on the principle that, similarly to the morphology of the PPG signal, the 
PD-STFT also exhibits a regular shape representing the main features of the signal. From 
an analysis of the PD-STFT of various PPG classes (Dawber et al 1973) one observed 
that the PD-STFT of a clean PPG signal consists of three major spikes (P1, P2 and P3)  
positioned at different locations and with different widths, heights and areas (figure 5). The 
most relevant spike corresponds to the fundamental period of the PPG signal, i.e., the length 
of the cardiac cycle (beat). The remaining spikes are thought to be associated with the loca-
tion and amplitude of the waves reflected from the periphery towards the aorta. Based on 
these assumptions, the power spectra of several uncorrupted and motion corrupted PPG 
sections were analyzed.

We observed that the power spectra of PPG sections corrupted with motion artifacts pre-
sented several random components that do not represent the fundamental characteristics of 
the underlying uncorrupted signal, resulting in random and significant changes in the period 
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domain characteristics. In figure 6 it is possible to observe significant changes in the power, 
location and length of the main components of the spectra between 20 s and 42 s, where the 
PPG signal is corrupted by motion artifacts.

To capture these variations, the PD-STFT of each PPG section was analyzed and the fol-
lowing characteristics were defined (see figure 5): (1) height (H); (2) location (L); (3) width 
(W); and (4) area (A). These characteristics are defined as …pCh H L W A: { , , , } ,1, ,4  while the 
three most relevant spikes and the remaining spectrum are defined as P1, P2, P3 and RS. The 
variations of P1,2,3 characteristics were evaluated by equation  (8), resulting in the features 

…F ,8, ,19  which are presented in figure 7.
 Δ= = − − = … =… ( )F pCh pCh j pCh j i k( ) ( 1) ,  for  1, , 4 and  1, 2, 3i

P
i
P

i
P

8, ,19
k k k (8)

where, pChi is the ith period characteristic, k is the spike index and j is the pulse (section) 
index.

Additionally, the relationship between characteristics of the two most relevant spikes (P1 
and P2) was also assessed and was defined as follows:

 Δ= − = …… ( )F pCh pCh i,   1, , 4i
P

i
P

20, ,23
1 2 (9)

An example of the rate of changes of the relationship between the two most relevant peaks 
characteristics, i.e. …F20, ,23 are presented in figure 8.

The area ( )pCh4  of the RS and its relationship with the sum of the three most relevant peaks 
area was also considered:

 Δ= + +
⎛
⎝⎜

⎞
⎠⎟F

pCh

pCh pCh pCh

RS

P P P25
4

4 4 4
1 2 3

(10)

An example of the rate of change of the aforementioned characteristics, i.e., Δ= ( )F Ch RS
24 4  

and F ,25  is presented in figure 9.
Assuming that the main period characteristics of the PPG signal are represented by the 

most relevant components in the distribution and that the remaining components are the result 

Figure 5. Representation of the PPG signal period domain spectrum, its major compo-
nents (P1, P2 and P3) and the remaining spectrum (RS) for: (a) clean and (b) corrupted 
PPG sections.

(a) (b)
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Figure 6. Period domain spectrogram of the PPG signal showing clear changes in the 
spectra fundamental characteristics in the presence of motion artifacts.

Figure 7. Rate of changes of the three most relevant spikes characteristics (Height,  Location, 
Width and Area).
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of noise and motion artifacts, a model of the original distribution was created based on the 3 
most relevant spikes, using Gaussian functions. The parameters of each Gaussian are deter-
mined based on the height ( )Ch P

1
i  and location ( )Ch P

2
i  of the detected spikes = …i( 1, , 3) . The 

spectrum model (X )m  was defined as:

 ∑= =
=

−
−( )

s pCh a
FWHM

X ( ) e , 
2 2ln2

m

i

Pi
s pCh

a Pi
Pi

1

3

1
2

Pi

Pi

2
2

2 (11)

where s is the period and FMHMPi is the full width at half maximum of the spike Pi and ln is 
the natural logarithm.

The comparison between the computed spectrum model X( )m  and the original spectrum 
X( )o  was then evaluated using Kullback–Leibler divergence measure (equation (12)).

 ∑= =
⎛
⎝⎜

⎞
⎠⎟F D X X X s

X s
X s

( ; ) ( ) ln
( )
( )

KL
m o

s

m
m

o26 (12)

where s is the period.
The rationale behind this comparison is that the increase in the spectrum’s complexity, as a 

result of the inclusion of random components, can be detected by an increase in the Kullback–
Leibler divergence between the original spectrum and the computed spectrum model (see 
figure 9—bottom).

2.4. Feature selection

In the feature selection step, the objective is to select a subset that contains the most relevant 
and least redundant features for the discrimination of motion artifacts. This enables the inter-
pretability of the classification model to be built upstream, and improves the efficiency clas-
sification model and its generalization capability.

Figure 8. Rate of change of the relationship between the characteristics of the two most 
relevant peaks (P1 and P2).
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In this paper the feature selection process was performed using the Normalized Mutual 
Information Feature Selection (NMIFS) method, proposed by Estevez at al. (2009), which is 
an enhancement to its predecessor methods, the Battiti’s MIFS (Battiti 1994), MIFS-U (Kwak 
and Chong-Ho 2002) and mRMR (Peng et al 2005). The main enhancement of the NMIFS 
method over its predecessors is the introduction of the Normalized Mutual Information (nMI) 
(equation (13)) as a measure of redundancy and the fact that there is no need for user defined 
parameters. The selection criterion used in the NMIFS method is presented in equation (14).

 =nMI F F
MI F F
H F H F

( ; )
( ; )

min { ( ) , ( ) }
i s

i se

i se
(13)

Fi and Fj are the features i and j of a set of features F, MI F F( , )i j  is the Mutual Information 

(MI) between features i and j and ∑=
∈

H F P F P F( ) ( ) log ( )
f

se

SE

se se

se

 is the entropy.

 ∑≗ −
∈

G I F nMI F FM (CL; )
1

SE
( ; )i

F

i

SE

se

se

(14)

Where G is the NMIFS score, = FSE { } ,se  for = …se  1,  , SE  is the subset of selected 
features and CL is the classes variable.

2.5. Classification

A Support Vector Machine (SVM) model has been adopted for the discrimination between 
motion artifacts and clean PPG. The classification process was performed using the algorithm 
C-Support Vector Classification (C-SVC) algorithm (Chang and Lin 2011), with a radial basis 
function kernel.

Given the training vector ∈ = …Tv R i l, 1, , ,i n  and the correspondent classes label 
∈ −Cl { 1, 1} ,i  the C-SVC optimization problem requires the solution for:

Figure 9. Rate of change of characteristics 24 and 25, and feature 26.
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 ∑ ξ+
ξ

=
w w Cmin

1
2w b

T

i

l

i
, ,

1

(15)

 ϕ ξ ξ+ ≥ − ≥Cl w Tv bsubject to ( ( ) ) 1   ,   1i T i
i i (16)

Here, the function ϕ maps the training vectors Tvi into a higher dimensional space, and
the cost, >C 0, is the penalty parameter for the error term. The radial basis function kernel,

ϕ ϕ=K Tv Tv Tv Tv( , )   ( ) ( )i j i T j  is defined by:

 K (Tv , Tv γǁTvi-Tvjǁ2) (17)

where the parameter gamma γ( ) is a RBF kernel specific parameter.

3. Results and discussion

3.1. Experimental protocol

To evaluate the performance of the proposed algorithm, a data collection study was conducted 
aiming at the collection of photoplethysmograpic (PPG) signals from 15 volunteers: 8 healthy 
volunteers were enrolled at the Faculty of Sciences and Technology of the Coimbra University 
and 7 patients with cardiovascular diseases (CVD) were enrolled at the cardiovascular depart-
ment infirmary of the Hospital Center of Coimbra University. The biometric characteristics of 
the 15 subjects involved in the present study are summarized in table 1.

The PPG waveform was recorded from the tip of the index finger using an infrared transmis-
sion finger probe with a HP-CMS monitor and was digitized at a sampling frequency of 125 Hz.

In order to conduct a wide variety of motion artifact patterns, the subjects were asked 
to execute two runs of eleven different types of hand and body movements (see figure 10), 
resulting in 22 records of 60 s for each subject. In order to correctly and timely execute the 
movements, each volunteer was guided by a slideshow, which showed the expected movement 
pattern, the next movement and the time to the next movement. Additionally, a trained techni-
cian also assisted the volunteers during the whole process.

The volunteers were asked to perform each movement in the 20–40 s. time interval of each 
run. A technician annotated each record in order to identify the exact time interval where the 
motion artifacts occurred.

The study was authorized by the ethical committee of the Centro Hospitalar de Coimbra in 
2010 under the protocol ‘Assessment of cardiac function using heart sounds, ICG and PPG’.

3.2. Feature selection

The NMIFS algorithm was applied to the whole database containing the records of both 
healthy and CVD volunteers. From the analysis of the computed NMIFS scores, the 8 most 

Table 1. Volunteers characteristics (average ± standard deviation).

Healthy CVD

Age 27.4  ±  3.7 62  ±  13.5
Weight 72.5  ±  8 87.9  ±  21.4
BMI 24.4  ±  2.9 31.5  ±  6.9
Male/female 8/0 5/2
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Figure 10. Movements performed by the volunteers. (0) No movement; (1) Distur-
bance of the PPG probe, causing variations in the contact point between fingertip and 
probe; (2) Gently bending of the index finger; (3) Repeated movement of the wrist left 
and right; (4) Shaking the wrist; (5) Repeated movement of the epsilateral arm in the 
horizontal plane; (6) Repeated movement of the epsilateral arm in the vertical plane; (7) 
Lifting and lowering a book with both hands; (8) Repeated tapping of the table with the 
index finger; 9) Repeated raising and lowering of the arm; (10) Repeated sitting down 
and standing up; (11) Slow walking in a straight line.

Figure 11. NMIFS and relevance scores for the 26 features extracted from the time 
…( )F1, ,7  and period …( )F8, ,26  domain analysis.
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relevant features were selected, corresponding to 4 features from the time domain and 4 fea-
tures from the period domain. From the time domain, the selected features are pulse amplitude 
(F1) ,  trough depth difference (F4) ,  pulse skewness (F6) and pulse kurtosis (F7) .  In the period 
domain, the location of the 2nd and 3rd major spikes (F12 and F13), the length of the 3rd major 
spike (F16) and relationship of the major spikes area with the remaining spectrum (F25) 
were selected. The most relevant selected feature derive from the period domain 
analysis, showing its importance in the proposed methodology.

In figure 11 we present the scores achieved by the NMIFS algorithm as well as the rel-
evance scores ( I CL FM ( ; ) ,i  equation (14)).

3.3. Classification

The 176 recorded signals were analyzed and each section was classified using the proposed 
methodology and compared to the manually annotated classification. The performance of the 
algorithm was evaluated for the global, healthy and CVD dataset, as well as to each of the 11 
motion sources.

In order to generate a classification model that can accurately predict the testing data 
and to avoid the over fitting problem, it is essential to find the parameters gamma γ( ) and
cost C( ) that best suit the present classification problem. Therefore, a grid-search method 
using 10-fold cross-validation was used for this proposal. The global dataset was randomly 
partitioned into 10 equal size subsets. From the 10 subsets, 9 subsets were used for training 
and the remaining subset was used for testing. The cross-validation process was repeated 
10 times with each of the k subsets used exactly once as the validation data and its accuracy 
is the average accuracy in each testing step. The cross-validation process was repeated sev-
eral times with groups of exponentially growing gamma/cost pairs ( = …− −C 2 , 2 , , 25 3 15 and
γ = …− −2 , 2 , , 215 13 9). The parameters that best fit the current classification problem were
defined as: =C    25.33 and γ = 2 .6.35

The validation of the proposed methodology was performed using a 10-fold cross-vali-
dation scheme. In this process, the global dataset was randomly partitioned into 10 equally 
sized subsets with the same percentage of samples from each patient and each motion artifact 
source. Nine subsets were used for training the classification model, while the remaining sub-
set was used for validation. The data of the validation subset corresponding to each context 
was used to validate the classification model regarding each subject group and motion artifacts 
source. This process was repeated for each of the 10 subsets. The 10-fold cross validation pro-
cedure was conducted 20 times. The performance of the proposed methodology was defined 
by the average ± standard deviation (over the 20 repetitions) of the following metrics: sensitiv-
ity (SE) and specificity (SP), and accuracy (ACC).

Table 2 summaries our results. The proposed methodology achieved a good performance 
in the classification of both corrupted and clean PPG sections, with an overall accuracy 
of 88.5%, which corresponds to a sensitivity of 84.3% and a specificity of 91.5% during 

Table 2. Results achieved by the proposed methodology in Global, healthy and CVD 
subsets.

Context

Performance metric (avg ± std)

SE SP ACC

Global 84.3  ±  0.8 91.5  ±  0.5 88.5  ±  0.4
Healthy 78.4  ±  1.2 94.4  ±  0.6 87.5  ±  0.6
CVD 91  ±  0.8 88.4  ±  0.9 89.5  ±  0.6
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accuracy decreased to 87.5%, whereas for the CVD patients an increase can be observed to 
89.5%. However, while in the CVD dataset the proposed methodology is able to discriminate 

results show that the proposed methodology is able to detect motion artifacts more accu-
rately in CVD volunteers when compared to healthy volunteers. One possible reason for this 
difference in the presented results relies on the different characteristics of the PPG signal 
within healthy and CVD subjects. Due to ageing and the appearance of cardiovascular com-
plications, the compliance of the systemic vascular wall decreases (i.e. arterial stiffening), 
leading to the disappearance of the dicrotic notch and therefore changing the morphologi-
cal complexity of the PPG waveform in the CVD volunteers. Additionally, the appearance 
of abnormal cardiovascular events (e.g. arrhythmias) in CVD volunteers also affects the 

extracted features discrimination capability and therefore different optimal feature space for 
healthy and CVD subsets. The presented results suggest that the discrimination capability 
of the selected features is dependent on the analyzed context, i.e. the analyzed volunteer 
subset, affecting the proposed methodology performance within healthy and CVD subjects, 

2.
It is not possible to perform a fair comparison between the proposed algorithm and 

state of the art, since different datasets were adopted, resorting on dissimilar populations 
and protocols. However, a comparison of algorithms performance within the Healthy 

Table 3. Comparison of the results achieved by the proposed method 

healthy volunteers.

Healthy SE SP ACC

Proposed method 78.4  1.2 94.4  0.6 87.5  0.6
Sukor et al (2011) 89  10 77  19 83  11
Krishnan et al (2008) 91/97 94/80 n.d.

Table 4. Results achieved by the proposed methodology for each of the 11 motion 
artifacts sources.

Context SE SP ACC

Movement 1 84.7  3 92.6  1.6 89.7  1.5
Movement 2 90  1.9 91.7  1.8 91  1.3
Movement 3 72.7  3 93.5  1.4 85.1  1.3
Movement 4 83.9  2.6 92.7  1.7 89.3  1.5
Movement 5 81.6  2.9 91.9  1.7 87.9  1.6
Movement 6 85.5  2.6 91.5  1.5 89  1.5
Movement 7 88.1  2.4 90.6  1.9 89.4  1.5
Movement 8 77.5  2.7 89.8  1.9 84.6  1.6
Movement 9 89.6  2 92.2  1.7 91  1.2
Movement 10 87.6  2.1 89.3  1.8 88.5  1.4
Movement 11 83.9  2.4 90.9  2.1 88  1.5

and the
methods proposed in literature (Sukor et al 2011, Krishnan et al 2008) in 
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population can still be done. From table 3 we present a comparison of the results achieved 
by the current algorithm with the methods presented in literature. On the one hand, it is 
possible to observe that the specificity and accuracy of the current algorithm are greater 
(SP: +17.4% and ACC: +4.5%) compared to the algorithm presented by Sukor et al (2011). 
Contrarily, the sensitivity of the current algorithm remains lower than the later method 
(SE: −10.6%). Nonetheless, the algorithm proposed in (Sukor et al 2011) exhibits a exces-
sive uncertainty in the results, revealed by the high standard deviation (from 10% to 19%) 
of the used metrics. On the other hand, one can observe that the current algorithm was not 
able to outperform the one proposed by Krishnan et al (2008), with a much lower sensitiv-
ity (SE: −12.6%) and a marginally higher specificity (SP: +0.4). The author did not report 
the accuracy of the proposed algorithm and therefore we were not able to compare both 
algorithms using this metric.

From table 4 it can be observed that the majority of the movement artifacts are identified 
with accuracy over 88%. However, there are two exceptions for the 3rd and 8th movement 
artifacts where a decrease in the detection accuracy has been observed (85.1% and 84.6%, 
respectively). This is a result of an evident increase of the algorithm’s inability to detect prop-
erly the corrupted PPG sections, shown by the decrease in sensitivity to 72.7 and 77.5%, 
respectively. On the other hand, the algorithm’s specificity, that is, the ability to detect non-
corrupted PPG sections is still high.

The performance decrease for the 3rd and 8th movement artifacts is possibly associated 
with how the volunteers perform the requested movements. Two possible reasons are the: i) 
Low corruption of PPG data resultant from the incorrect execution of the performed move-
ment and; ii) Increase in the periodicity of the performed movements.

During the execution of the 3rd movement, (see figure 10) several volunteers gently lifted 
the wrist/probe, causing no friction between the PPG probe and wrist with the table, and there-
fore resulting in low corruption of PPG data. Additionally, during the execution of movement 
8, it was observed that several volunteers performed this task in a periodic fashion (contrarily 
to what is expected in real scenarios), leading to contamination of the PPG data with peri-
odic artifacts. Since the present methodology is based on the analysis of the changes in the 
period components of the PPG data, artifacts with an intrinsic periodicity typically cannot be 

Figure 12. Examples of PPG signals when a performance decrease in the proposed 
methodology was observed. (a) Volunteer 4/Record 5/Movement 3. (b) Volunteer 3/
Run 15/Movement 8.

(a) (b)
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detected. In figure 12, we present two examples where the aforementioned problems occurred 
and consequently a decrease the proposed algorithm performance has been observed.

4. Conclusion

In the current paper a novel methodology for the detection of motion artifacts in photople-
thysmographic signals has been proposed. Our approach is based on the analysis of the time 
and period domain analysis of the PPG leading to the extraction of a total of 26 features. 
Contrarily to clean PPG signals, were changes on the PPG pulse morphology are mainly 
caused by cardiovascular changes, corrupted PPG signals show abnormal, erratic and ‘ran-
dom’ pulse characteristics. To assess these, the morphology of the PPG pulses and their 
relationships with neighboring pulses was analyzed contributing to the extraction of eight 
time domain 8 features. Features extracted from the period domain resorts on the principle 
that, the PD-STFT also exhibits a regular shape representing the main features of the signal 
similar to the morphology of the PPG signal. From the period spectra analysis, it was found 
that a clean PPG signal consists of three major spikes with different locations, lengths and 
amplitudes, being the most relevant spike a result of the fundamental period of the PPG 
signal, and the remaining spikes associated to location and amplitude of the waves reflected 
from the periphery towards the aorta. Moreover one observed that in corrupted sections of 
the PPG signal, several random components that do not represent the fundamental charac-
teristics of the underlying uncorrupted signal in the presence of motion artifacts are present, 
leading to random and significant changes in the period domain characteristics. To capture 
these changes, 18 features were extracted from the analysis of the main characteristics of the 
period domain spectra of the PPG signal.

In order increase the classification model generalization capability and interpretability, the 
extracted features were ranked using the NMIFS algorithm and the 8 most relevant features 
were selected, corresponding to 4 features from the time domain (pulse amplitude, trough 
depth difference, pulse skewness and pulse kurtosis) and 4 features from the period domain 
(2nd and 3rd major spikes, the length of the 3rd major spike and relationship of the major 
spikes area with the area remaining spectrum).

The discrimination between motion artifacts and clean PPG sections was performed using 
C-Support Vector Classification algorithm (Chang and Lin 2011), with a radial basis function 
kernel. The identification of the most suitable gamma γ( ) and cost C( ) parameters was per-
formed using a 10-fold cross-validation grid-search method.

The proposed methodology for motion artifacts detection was validated on 8 healthy volun-
teers enrolled a the Faculty of Sciences and Technology of the Coimbra University and 7 CVD 
patients enrolled at the cardiovascular department infirmary of the Hospital Center of Coimbra 
University. A 10-fold cross-validation scheme was repeated 20 times with the following per-
formance metrics: sensitivity (SE), specificity (SP), and accuracy (ACC).

The results achieved by the current algorithm in the global dataset (SE: 84.3% and SP: 
91.5%) suggest that the characteristics of period components of the PPG signal can be used 
as discriminative features for motion artifact detection. Additionally, the results achieve for 
each of the volunteers subsets, show that the proposed methodology is able to detect motion 
artifacts more accurately in CVD volunteers (SE: 91% and SP: 88.4%) when compared to 
healthy volunteers (SE: 78.4% SP: 94.4%), suggesting a different discrimination capability of 
both time and period domain features for each of the volunteers subsets. Finally, the results 
achieved for each of the motion artifact sources show that the proposed methodology is able 
to detect motion artifacts with high accuracy regardless the performed movement.
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Chapter 5.  
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Abstract 
Monitoring of cardiovascular function on a beat-to-beat basis is fundamental to protect 
patients in different settings including emergency medicine and interventional cardiology 
but still bears technical challenges and several limitations. In the present study we 
propose a new method for the extraction of cardiovascular performance surrogates from 
the analysis of the Photoplethysmographic (PPG) signal alone.  
In the current study we propose the use of a Multi-Gaussian (MG) model consisting of 
five Gaussian functions to decompose the PPG pulses into its main physiological 
components. From the analysis of these components, we aim to extract estimators of the 
left ventricular ejection time, blood pressure and vascular tone changes. Using a multi-
derivative analysis of the components related with the systolic ejection, we investigate 
which are the characteristic points that best define the left ventricular ejection time 
(LVET). Six LVET estimates were compared with the echocardiographic LVET in a 
database consisting of 68 healthy and cardiovascular diseased volunteers. The best LVET 
estimate achieved a low absolute error (15.41±13.66 ms), and a high correlation (ρ=0.78) 
with the echocardiographic reference. 
To assess the potential use of the temporal and morphological characteristics of the 
proposed MG model components as surrogates for blood pressure and vascular tone, six 
parameters have been investigated. The stiffness index (SI), the T1_d and T1_2 were 
defined as the time span between the MG model forward and reflected waves, while the 
reflection index (RI), the R1_d and the R1_2 were defined as their amplitude ratio. Their 
association to reference values of blood pressure and total peripheral resistance was 
investigated in 43 volunteers exhibiting hemodynamic instability. A good correlation was 
found between the majority of the extracted and reference parameters, with an exception 
to R1_2 (amplitude ratio between the main forward wave and the first reflection wave), 
which correlated low with all the reference parameters. The highest correlation (ρ!!= 
0.45) was found between T1_2 and the total peripheral resistance index (TPRI), while in 
the patients that experienced syncope, the highest agreement (ρ!!= 0.57) was found 
between SI and systolic blood pressure (SBP) and mean blood pressure (MBP).  
In conclusion, the presented method for the extraction of surrogates of cardiovascular 
performance might improve patient monitoring and warrants further investigation. 
 
Keywords: Photoplethysmography, digital volume pulse, Multi-Gaussian model, 
left ventricular ejection time, blood pressure, vascular tone.  
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1. Introduction 
Photoplethysmography (PPG) is an optical measurement technique used to monitor non-invasively and 
continuously changes in blood volume of microvascular bed of tissues [1]. The waveform, i.e., the 
photoplethysmogram, has a widespread range of clinical applications and is commonly acquired in clinical 
settings to infer arterial oxygen saturation [2]. Since the signal morphology is similar to the arterial blood 
pressure waveform, the study of the PPG became popular within the scientific community as a potential non-
invasive tool, especially in the assessment of the cardiovascular and autonomic function [1]. Anesthesia care, 
critical care and emergency medicine are the main clinical areas where the PPG is already widely applied [1]. 
Furthermore, it is already being used in interventional cardiology and in ambulatory and recreational settings, 
e.g. for pulse measurement in sport watches. 

The analysis of the PPG waveform dates back to early 1930s, when manual measurement and feature 
extraction techniques were often used [1]. More recently, several approaches have been proposed to extracted 
relevant information about the cardiovascular function. One of the most recognized approaches is Double 
Differentiation Analysis (DDA), which is based on the analysis of PPG second derivative. Since the signal 
processing is simple and can be easily implemented in real-time applications it became very popular in 
contemporary research. Relationships between these identified waves within a pulse have been associated with 
several demographic and physiological parameters such as aging, large artery stiffness and blood pressure [3]. 
However, DDA lacks robustness in the presence of seriously damped and noisy signals, which can complicate 
the correct identification and characterization of the PPG pulse components. Thus, an alternative approach 
consisting in the decomposition of PPG pulse into individual waves was proposed, which is called Pulse 
Decomposition Analysis (PDA).  

The ejection of blood from the left ventricle creates a pressure wave called arterial pulse pressure wave. As 
the main pressure wave (P1 - illustrated in Fig. 1) travels down the systemic vascular network it reaches 
several sites causing reflection due to significant changes in arterial resistance and compliance. The first one is 
the juncture between thoracic and abdominal aorta, which causes the first wave reflection (P2 - illustrated in 
Fig. 1) and commonly known as second or late systolic wave. At the second reflection site, the juncture 
between the abdominal aorta and common iliac arteries, the main wave is reflected once again, and appears as 
a second wave reflection (P3 - illustrated in Fig. 1) [4]. A small dip, called dicrotic notch, is commonly 
observed between the first and second wave reflections (P2 and P3, respectively). There are additionally minor 
reflections and re-reflections in the systemic vascular structure with lower amplitudes of the reflection waves. 
These pulse reflections are also observed in a similar, but smoother fashion, in the photoplethysmogram 
morphology [5, 6]. 

 
Fig. 1 – Morphology and origin of the PPG pulse. On the left, a sketch of the arterial system from the aorta/arm to the iliac 
arteries. On the right, a PPG pulse decomposed in the correspondent forward pulse (P1) and pulses reflected at the first 
(P2) and second (P3) reflection sites. 
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Several variations of the PDA methodology have been proposed in literature e.g. inference of a different 
number of components (2 to 5) and use of different kernels (Gaussian, Rayleight and Logarithmic normal 
function) in order to model the PPG pulse. In [6] a two-pulse synthesis model is proposed to decompose the 
PPG pulse as a sum of two Rayleight functions, while in [7] a sum of five logarithmic normal functions have 
been used. Moreover, a sum of up to three [4], four [8, 9] and five [10] Gaussian functions have also been used 
to model the PPG pulse. While in [9] it was suggested that the PPG pulse can be accurately modeled using 
only three Gaussian functions, in [10] the author highlights the need of using five Gaussian functions to reach 
an acceptable fitting error. Obviously, there is a controversy on the ideal number of the model components. 

Pulse reflections carry important information about the cardiovascular system. One example is the 
augmentation index (AI) usually associated with aging and arterial stiffening [1, 4, 11]. The stiffness index 
(SI) and reflection index (RI) were associated with large artery stiffness [12], the velocity of a pulse wave in 
large arteries [13], pulse pressure [4], small artery stiffness [13] and vascular tone [14, 15]. 

In the assessment of cardiac function, the current non-invasive gold standard is cardiovascular magnetic 
resonance (CMR) [16]. However, its expensiveness, the requirement of trained personal and the lack of 
portability make it unsuitable for primary, home care and ambulatory scenarios. Thus, Echocardiography 
(ECHO) is becoming increasingly popular ambulatory professional care, driven by the development of 
inexpensive and portable handheld devices. As the former gold standard in the evaluation of cardiac function, 
it is widely available and provides a straightforward determination of indexes such as the velocity of pressure 
rise, the velocity of ejection, the extension of ejection and the ejection fraction [17]. Nevertheless, it also 
requires trained personal and does not support the recording of long-term measurements, which are still major 
disadvantages for its application in p-health scenarios. 

The healthy of the myocardial cells is intrinsically related with the timings of the myocardial relaxation and 
contraction events, which are coordinated by the recycling of the intracellular calcium ions. From these events, 
the timings of the left ventricle systole and diastole are of major importance, since it is the left ventricle role to 
supply blood into the systemic circulation. The two main functions of the left ventricle are the systolic ejection 
(preceded by the pre-ejection period – PEP) and the diastolic filling. The PEP is the time span from the start of 
ventricular depolarization and the opening of the aortic valve and is composed electro-mechanical delay and 
by the isovolumetric contraction time (IVCT). The left ventricular ejection time (LVET) is defined by the time 
span between the opening and closure of the aortic valve. The diastolic filling is preceded by the isovolumetric 
relaxation time (IVRT). The assessment of systolic time intervals (STIs) has been widely investigated as a 
measure of myocardial performance since the 1960s. A widely recognized index of left ventricular function is 
the ratio between the PEP and LVET, which was proposed by Weissler et al. [18].  

LVET is commonly associated with stroke volume and has been indicated as a valuable prognostic 
parameter related to hypovolemia [19], an important predictor of mortality in patients with cardiac amyloidosis 
[20] and a robust and independent predictor of light chain amyloidosis mortality [21]. Moreover, a shortened 
LVET was associated with poor prognosis in patients with precapillary pulmonary hypertension hospitalized 
in the ICU because of heart failure [22]. It can been assessed using several modalities, such as impedance 
cardiography (ICG) [23], phonocardiography (PCG) [24-26], and PPG [27, 28]. Using the PPG waveform, 
LVET inference was firstly introduced in a study on the analysis of the ear densitogram [29], were it was 
suggested that the onset and offset of the systolic ejection could be recognized in the morphology of the first 
derivative. Based on this study, Chan et al. [27] proposed an algorithm for the assessment of LVET based on a 
rule-based combination of three LVET measures extracted from a multi-derivative analysis of the finger 
photoplethysmogram. However, similar problems to those encountered on the DDA can be found on this high-
order derivatives based analysis, where noise can be a critical factor [27]. 

In this paper, we propose a method for the assessment of cardiovascular surrogates based on the 
decomposition of the PPG pulse into its forward and reflection waves, using a Multi-Gaussian (MG) model 
formulation. The proposed methodology resorts on the segmentation of the PPG pulse into systolic and 
diastolic phases and consequent modeling of the segmented phases into a sum of three and two Gaussian 
functions motivated by the underlying physiology of the PPG pulse. We identified three main parameters 
related with cardiovascular function derived from the pulse decomposition. The LVET was assessed from the 
systolic phase of the fitted model a multi-derivative analysis approach. In order to investigate which are the 
characteristic points that best define the LVET, six LVET estimates were calculated and compared with the 
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reference echocardiographic LVET. Aiming the evaluation the performance of the LVET detection algorithm 
in a wide range of PPG pulse morphologies hemodynamic characteristics, the algorithm was tested in healthy 
and cardiovascular diseased populations. Additionally, from the analysis of the location and amplitudes of the 
PPG pulse components (forward wave, late systolic wave and reflection waves), 6 parameters were extracted. 
The stiffness index (SI), the T1_d and the T1_2 were defined as the time span between the main forward and 
reflected waves, while the reflection index (RI), the R1_d and the R1_2 were defined as the ratio of their 
amplitudes. The association of these indexes with blood pressure and vascular tone changes was assessed by 
their correlation with reference values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure, 
pulse pressure (PP) and total peripheral resistance index (TPRI), in both healthy and hemodynamic unstable 
patients. 

The remainder of the paper is organized as follows. The proposed methodology for PPG modeling and 
assessment of cardiovascular surrogates is presented in section 2. In 3 the experimental protocol used in the 
present study is described. The main results are presented and discussed in section 4 and finally, we present 
our main conclusions in section 5.  

2. Methods 
The proposed methodology consists of the followings steps: 1) Pre-processing and baseline removal; 2) 

Segmentation; 3) Multi-Gaussian modeling of the PPG pulses; 4a) Estimation of LVET and 4b) Estimation of 
blood pressure and vascular tone surrogates. 

2.1. Pre-processing 
The susceptibility of the PPG signal to ambient light at the photo-detector, poor blood perfusion of the 

peripheral tissues and motion artifacts [30] is well known. In order to minimize the influence of these factors 
in the subsequent phases of the PPG analysis, a pre-processing stage is required. At this stage, high frequency 
components in the acquired signal, such as the interference of the power sources, are removed using a low-
pass Butterworth filter with a 18Hz cut-off frequency [27], ensuring the preservation of the physiological 
relevant information (usually bellow 15 Hz [31]). Additionally, low frequency components, commonly 
associated with changes in capillary density and venous blood volume [2], temperature variations, acquisition 
instruments or subject movements [32],  were suppressed by subtracting a 2 second window moving average 
filtered version to the original PPG signal [27]. 

2.2. Segmentation 
The main objective in this step is to segment a PPG signal stream into individual PPG pulses per heart beat. 

From each detected PPG pulse, the morphological characteristics are inferred afterwards.  
To detect the PPG pulses, an approach similar to [33] was applied. Firstly, the PPG signal is differentiated 

using a five-point digital differentiator [34] (from (1) to (4)), resulting in first to fourth order derivatives (d1ppg, 
d2ppg, d3ppg and d4ppg). 

!1!!" = !! ! = ! ! − 2ℎ − 8! ! − ℎ + 8! ! + ℎ − ! ! + 2ℎ
12ℎ!  (1) 

!2!!" = !!! ! = −! ! − 2ℎ + 16! ! − ℎ − 30!(!) + 16! ! + ℎ − !(! + 2ℎ)
12ℎ!  (2) 

!3!!" = !!!! ! = −! ! − 2ℎ + 2! ! − ℎ − 2! ! + ℎ + !(! + 2ℎ)
2ℎ!  (3) 

!4!!" = !!!!! ! = ! ! − 2ℎ − 4! ! − ℎ + 6! ! − 4!(! + ℎ) + ! ! + 2ℎ
2ℎ!  (4) 

where f is the PPG time series, t is the time index and h is the sampling time.  
From the analysis of the d1ppg, the local maxima (d1_ppg_lmax) with absolute amplitude greater than a 

threshold ThR are detected. Here, the ThR is selected based on an adaptive thresholding of the d1ppg data 
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cumulative histogram (calculated within 10 seconds time windows), and was defined as the greater value 
bellow which 90% of the observations are found. 

Following the work proposed by Chan et al. [27], the PPG pulse onset was considered to be the point d1ppg 
presenting a rapid inflection (just before d1_ppg_lmax), which corresponds to a maximum in the d3ppg 
(d3_ppg_lmax). The motivation behind this approach was firstly reported by L.B. Cook [35, 36], who 
observed a significant resemblance between the PPG signal’s first derivative and the arterial flow waveform. 

The detection of the d3_ppg_lmax characteristic point was accomplished in two phases: 1) detection of the 
d3ppg local minima (d3_ppg_lmin) corresponding to the d1ppg local maxima (see Fig. 2) and 2) identification of 
the peak with greater amplitude (d3_ppg_lmax) prior to the previously identified most relevant valley. 

2.3. Multi-Gaussian modeling of PPG pulse 
The first step of the modeling process is an additional preprocessing of the PPG pulses, which may still 

exhibit minor baseline and amplitude fluctuations and can negatively affect the subsequent modeling phases. 
Therefore, the linear trend is removed and the amplitude of each PPG pulse is normalized to the unit.  

In the second step, the PPG pulse is separated into systolic and diastolic phases. The systolic phase, 
primarily associated with the ventricular ejection, was defined as the portion between the onset of the PPG 
pulse and the dicrotic notch. The diastolic phase, resulting from the reflections and re-reflections of the main 
PPG pulse in the systemic vascular network, was defined as the portion of the PPG pulse between the dicrotic 
notch and the pulse offset. The two phases of the PPG pulse are illustrated in Fig. 3. 

The detection of the reference point correspondent to the dicrotic notch was defined as local maxima of the 
d2ppg (d2_ppg_lmax) within a [0.2-0.4]s interval and its boundaries as the negative-to-positive/positive-to-
negative zero crossings of the d2ppg [8]. Although this strategy can be effective in PPG pulse morphologies 
where the dicrotic notch is highly prominent, in cases where the pulse is severely damped this task can be 
deeply compromised due to the existence of multiple d2_ppg_lmax and the absence of zero crossings in an 
acceptable temporal window (i.e., very far from d2_ppg_lmax – an example in shown in Fig. 4). In such cases, 
the identification of the dicrotic notch boundaries relies on the identification of the points in d2ppg with the 
steepest slope, i.e., the negative-to-positive/positive-to-negative in the d4ppg closer to the reference point. The 
selection of the dicrotic notch among multiple candidates is performed based on a joint analysis of the 
candidate characteristics, i.e., their amplitude, area and length.  

In our previous work [28], we modeled the PPG pulse as a mixture of four Gaussian functions, related with 
the main pulse and corresponding reflections in the arterial path. However, depending on the morphology of 
the PPG pulse, this model may lead to inaccurate approximations, especially in rapid inflections close to the 
PPG pulse onset during the systolic rise. Based on these observations and aiming the reduction of the error 
between the proposed PPG model and the data, the main forward pulse is modeled as a mixture of two 
Gaussian functions instead of just one. Thus, by increasing the number of degrees of freedom of the proposed 
model, we expect to decrease the error between the model and the data and to determine the PPG pulse 
components more accurately. The formulation of the proposed 5-Gaussian model is presented as follows: 

 
Fig. 2 – Plot of PPG signal derivatives (order 1 and 3) and representation of the detected characteristic points for the 
detection of the onset of each individual PPG pulse. 
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!! !,!! = !! !,!!
!

!!!
, !"#!!! = !, !, ! ! !

!! !,!! = !! !!
! !!!!

!

!!!!  

(5) 

where the parameters aj, bj and cj correspond to the amplitude, location and width of the Gaussian function j. 
Here, the first two Gaussian functions (!!_! = !! + !!) correspond to the ventricular ejection and the third 
Gaussian function (g3) is related to the first pulse reflection at the junction between the thoracic and abdominal 
aorta, presented in Fig. 5. The fourth (!!) and fifth (!!) Gaussian functions derive from the reflection at the 
juncture between abdominal aorta and common iliac arteries [4] and minor reflections and re-reflections in the 
systemic structure, respectively (see Fig. 5). 

According to [10], the positions of the a, b, c, d and e waves (here called Wa, Wb, Wc, Wd and We waves and 
illustrated in Fig. 6) defined by DDA [37] can provide an insight about the locations of the individual 
components of the PPG pulse. Additionally, from the inspection of the PPG pulse morphology and the 
corresponding 2nd derivative, we observed that the negative peak after We (i.e., Wf) can provide information 
about the location of the 2nd reflection wave and, therefore, it was included in the present work. Based on the 
waves identified Fig. 6, the initial parameters and corresponding boundaries of the Multi-Gaussian model were 
determined using a Heuristic approach similar to the one proposed in [10]. The initial parameters and 
boundaries of the proposed model are presented in TABLE 1. 

 
Fig. 3 – Representation of the systolic and diastolic phases of the PPG pulse based on the detection of the notch 
(inflection) onset and offset. 

 
Fig. 4 – Example of a damped PPG pulse with no positive-to-negative zero crossings after the local maxima of the d2ppg 
(d2_ppg_lmax). 
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To adjust the model parameters a least squares method combined with the interior point algorithm [38] has 
been adopted. Let ! ! , ! ∈ [1,!]!be the normalized PPG pulse, where N is the total number of samples 

 
Fig. 5 – Representation of the Multi-Gaussian model of a PPG pulse and individual Gaussian functions correspondent to 
the main forward wave and consequent reflections at the arterial pathway. !!_! represents the main forward wave, 
consisting on the sum of !! and !!.  

 
Fig. 6 – Characteristic waves proposed by Takazawa et al. [37] using DDA and an additional Wf wave used in the 
definition of the initial parameters and boundaries. 

TABLE 1 - INITIAL PARAMETERS AND CORRESPONDING LOWER AND UPPER BOUNDARIES (LB AND UB, RESPECTIVELY) OF THE 
PROPOSED MULTI-GAUSSIAN MODEL. 

Parameter ai bi ci 

 Initial value Boundaries  
[lb,ub] Initial value Boundaries 

[lb,ub] Initial value Boundaries 
[lb,ub] 

i=1 0.7*Awa [0.5*Awa,Awb] Bwa [Bwa,Bwb] Bwa /3 [0, Bwb /3] 

i=2 0.9*Asys
† [0.5*Asys

†,Asys
†] Bwb [Bwa,Bwc] Bwb /3 [Bwa /3, Bwd /3] 

i=3 0.5* Asys
† [0.2*Asys

†,0.8*Asys
†] Bwd [Bwb,Bdn] Bwd /3 [Bwb /3, Bdn /3] 

i=4 0.8*Adias
‡ [0,Adias

‡] Bwf [Bdf,T] min(Bwf,(T- Bwf))/3 [0, Bdf] 

i=5 0.3*Adias
‡ [0,Adias

‡] Bdias [Bwf,T] T-avg(T- Bwf) [0, Bdf] 
†A!"! = max!([!!,!!,!!]) 

‡A!"#$ = max!(!!"(!!" ,… ,!)) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time (s)

Am
pli

tu
de

 (n
.u

.)

fm

g1

g3

g4

g5

g2

g1_2

Pwb

Pwa

Pwc
Pwd

Pwe

Pdf
Pwf

Bwa Bwb Bwc Bwd

Bdn

Pdn

Bwe

Bdf

Bwf

Awd

Awe

Awf

Awa

Awc

Awb

T

2nd deriva!ve

PPG pulse

Wa

Wb

Wc

Wd

We

Wf

0



 

 

 

88 
 

composing !(!). Using the least squares method, the goal is to find the solution, that minimize the sum of the 
squared residuals as presented bellow: 

!!"#(!) =
1
! ! ! − !! !,! !

!

!!!
 (6) 

where !! !,!  is the MG model with the set of parameters !! = !, !, ! ! , ! = 1,… ,5. Using the interior point 
algorithm [38], we aim to solve following nonlinear constrained optimization problem 

!"#    

!"#$%&'!!" 

 !!"#(!) 
! ! ≤ 0 

!" ≤ ! ≤ !" 

(7) 

where ! ! ≤ 0 and !" ≤ ! ≤ !" are the inequality constrains and the boundaries to which the parameters are 
subject. By constraining the parameters to pre-specified boundaries and relationships between them, we aim to 
assure the physiological foundations on the model, as well as to increase its robustness. Based on the study 
proposed by Baruch et al. [4],  the inequality constraints are summarized bellow: 

• a! − a! ≤ 0! ∧ !a! − a! ≤ 0: the main objective of !! is to increase the fitness of the proposed model 

in the first portion of the systolic rise. Since it belongs to the main forward wave, we confine the 

amplitude of !! must be smaller than the following two (!! and !!).  

• a! − a! ≤ 0! ∧ !a! − a! ≤ 0: the forward pulse has the highest amplitude [4] and therefore the 

amplitude of !! must be greater than !!, !! and !!.  

• a! − a! ≤ 0: since !! is a result of reflections and re-reflections in the arterial pathway, this wave is 

expected to have very low amplitude, i.e. the smallest within the diastolic phase. Therefore we restrict 

the amplitude of the last reflected wave (!!) smaller than the second reflected pulse (!!). 

• b! ≤ b! < b! ≤ b! ≤ b!: in order to guarantee that the aforementioned relationships prevail, the 

location of the Gaussian functions must be increasingly larger. 

2.4. Assessment of left ventricular ejection time 
As the main pressure wave, created by the ejection of blood from the left ventricle, travels in the arterial 

pathway, it suffers from dampening, which affects both the rise and decay of the pulse. Additionally, the 
reflection of the main pulse in the two major reflection sites also causes drastic changes on the diastolic phase 
of the measured PPG pulse [27]. In order to avoid these potential sources of error, one implemented a data 
driven approach that resorts on the analysis of the components corresponding to the systolic phase of the PPG 
pulse, herein called as the systolic model (!!"!). !!"! was defined as the sum of the Gaussian functions 
corresponding to the main forward wave (!! and !!) and late systolic peak (!!). Since the morphological 
characteristics of the pulse wave (at the beginning of the aorta) change as the pulse travels the pathway, it is 
expectable that the time span between the onset and offset of the !!"! model do not exactly match the time 
span between the onset and offset of the left ventricular ejection. Therefore, we aim to investigate which are 
the characteristic points at the beginning and end of the !!"! model that better represent the LVET. For that 
purpose, a data driven approach based on a multi-derivative analysis of the !!"! model has been implemented. 
!!"! was differentiated using (1) to (3), resulting in the derivatives up to the 3rd order and six LVET estimates 
(LVETci) from the analysis of the systolic model derivatives: 
• LVETc1 – Time span between systolic (D3sp) and diastolic (D3dp) peaks of the systolic model 3rd 

derivative. 

• LVETc2 – Time span between systolic peak of the systolic model 3rd derivative (D3sp) and the notch in 

the systolic model 1st derivative  (D1nt). 
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• LVETc3 – Time span between systolic (D2sp) and diastolic (D2dp) peaks of the systolic model 2nd 

derivative.  

• LVETc4 – Time span between systolic peak of the systolic model 2nd derivative (D2sp) and diastolic peak 

of the systolic model 3rd derivative (D3dp). 

• LVETc5 – Time span between systolic peak of the systolic model 3nd derivative (D3sp) and diastolic peak 

of the systolic model 2nd derivative (D2dp). 

• LVETc6 – Time span between systolic peak of the systolic model 2nd derivative (D2sp) and the notch in the 

systolic model 1st derivative  (D1nt). 

The characteristic points and respective LVET estimates are illustrated in Fig. 7. 

2.5. Assessment of blood pressure and vascular tone surrogates 
Several parameters have been suggested in the literature as potential surrogates of blood pressure and 

vascular tone changes [1, 4, 11, 12, 39-41]. In the current paper, we investigate two major parameters called 
stiffness index (SI) and reflection index (RI). The SI is associated with the velocity of a pulse wave in large 
arteries [13] and large artery stiffness [12]. It also correlates with pulse pressure [4] and is defined by the time 
span between the forward (Ps) and reflected waves (Pd), as illustrated in Fig. 8, that is: 

!" = !! − !! (8) 

Additionally, the RI, associated with small artery stiffness [13] and changes in vascular tone [14, 15], is 
defined by the ratio between the amplitudes of both waves the forward (Ps) and reflected waves (Pd), described 
as follows: 

!" = !!
!!

 (9) 

Additionally, we also aim to investigate the temporal and amplitude relationship between the main forward 
wave (P1) with the late systolic wave (P2) and the reflected waves (Pd) described by the 4 additional indexes 
(T1_2, T1_d, R1_2, R1_d), presented from (10) to (13).  

!!_! = !! − !! (10) 

 
Fig. 7 – Representation of the systolic model derivatives and respective characteristic points and LVET estimates.  
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!!_! = !! − !! (11) 

!!_! =
!!
!!

 (12) 

!!_! =
!!
!!

 (13) 

While the indexes T1_d, and R1_d, are closely related with the SI and RI, the indexes R1_2 have been 
associated to changes the impedance mismatch of the aortic artery and is closely related with augmentation 
index, which has been associated aging and arterial stiffening [1, 4, 11]. 

3. Data collection 

3.1. Experimental setup 
Two databases were used in the current work. The evaluation of the LVET detection algorithm was 

performed on a database collected at the “Centro Hospitalar de Coimbra” (CHC), while for the investigation of 
the SI, T1_d, T1_2, RI, R1_d and R1_2, a database provided by the Heinrich-Heine University Hospital Düsseldorf 
was used. The protocols used for the collection of these databases are outlined bellow. 
3.1.1. Protocol for the assessment of cardiac function surrogates 

The data considered in the present paper for the assessment of cardiac function was collected in a study 
conducted in “Centro Hospitalar de Coimbra” (CHC) aiming at the simultaneous acquisition of PPG and 
Echocardiography.  

In this study, patients of two distinct groups were enrolled: 1) 33 healthy subjects and 2) 35 subjects 
suffering from various cardiovascular diseases (CVDs) including coronary artery disease, heart failure, and 
comorbidities such as hypertension. All volunteers gave written informed consent to participate in this study, 
which was authorized by the CHC’s ethical committee in 2010 under the protocol “Assessment of cardiac 
function using heart sounds, ICG and PPG”. The characteristics of the population considered in the present 
study are summarized in TABLE 2. 

The ECG and PPG signals were recorded with a HP-CMS monitor and stored on a laptop at a sampling 
frequency of 500 Hz and 125 Hz, respectively. Echocardiography (in Doppler mode, with ECG) was 
conducted using a Vivid 7 system from General Electric, which produces images with a temporal resolution of 
500 Hz (Fig. 9). The ECG signals acquired simultaneously by the two systems described above were used to 
synchronize the signals streams.   

The measurement protocol was supervised and conducted by an authorized medical specialist. It consisted 
of several acquisitions of ECHO in doppler mode and PPG collected at the right hand index finger using an 
infrared transmission finger probe.  

 
Fig. 8 - Representation of the PPG beat morphology and the defined characteristic points used to extract stiffness and 

reflection indexes (SI and RI, respectively).  
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A clinical expert annotated the ECHO-doppler images.  The time instant corresponding to the opening of the 
aortic valve was defined as onset of the left ventricular outflow lobe, while the closure of the aortic valve was 
defined immediately before the closing click onset, produced by the residual reflux after the closure of the 
aortic valve cusps. An example is shown in Fig. 9. 

In this study a total of 2081 heartbeats have been annotated, of which 1109 beats correspond to healthy 
volunteers and 972 beats correspond to CVD subjects. 
3.1.2. Protocol for the assessment of blood pressure and vascular tone surrogates  

The data screened in this paper for the assessment of blood pressure and vascular tone surrogates was 
acquired in a study at the Heinrich-Heine University Hospital Düsseldorf, Division of Cardiology, 
Pneumology and Angiology aiming at the collection of bio-signals for the development of algorithms capable 
of detecting and predicting hemodynamic instability in patients suspected to be at risk for a sudden loss of 
consciousness.  

In this study, 55 patients with unexplained syncope were scheduled for diagnostic head-up tilt table tests 
(HUTT), following the recommendations of the European Society of Cardiology (ESC). The study was 
approved by the local ethics committee and complied with international standards (ClinicalTrials.gov 
identifier: NCT01262508). All volunteers gave written informed consent to participate.  

The HUTT protocol consisted of four phases: 1) the patient was at rest in supine position for at least 15 min; 
2) the patient did a passive standing exercise (70º) for 20 min; 3) in the absence of syncope, the phase (2) was 
extended by 15 min with sublingual administration of min 400 µg of glycerol trinitrate (GTN); 4) the patient 
was tilted back to supine position. At any time, if a syncope episode occurred, the patient was brought back to 
supine position immediately for recovery and the HUTT protocol was stopped. The nurse accompanying the 
study documented any prodromal symptoms (e.g. dizziness, sweat, tremor, etc.) during the procedure. 

Data of 12 patients had to be removed due to the presence of heart rhythm other than sinus rhythm or poor 
data quality in BP and PPG signals. The characteristics of the resulting study population consisting of 43 
patients are summarized in TABLE 3. 

The ECG and PPG signals were acquired with a Philips MP50 patient monitor and stored on a laptop. Blood 
pressure was continuously measured (beat-to-beat) using a “Taskforce Monitor” [12]. Data coming from both 
systems were aligned in time via the synchronously detected ECG signals.  Details of the acquisition system 
can be found in [42]. 

 
Fig. 9 - Annotation of aortic valve timings using Doppler mode ECHO. 

TABLE 2 – CHARACTERISTICS OF THE VOLUNTEERS ENROLLED IN THE STUDY FOR THE ASSESSMENT OF CARDIAC FUNCTION. 

 Healthy (#33) CVD (#35) 
Age 29± 8 58± 17 
Weight 74.3 ± 11.1 70.6 ± 12.6 
BMI 24± 2 25± 3 
Male/female 32/1 20/15 
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3.2. Data synchronization 
The synchronization of the data obtained during the before mentioned studies was performed using an 

algorithm based on the minimization of the error between the RR intervals time series assessed from the 
ECG’s of both systems, using the minimum least squares error criterion. Let RR1(k), k=1,…,K, and RR 
RR2(m), m=1,…,M (K<M) be the RR intervals time series of the ECGs to be synchronized. The time instant t 
at which both time series are synchronized is: 

! = argmin
!!!,…,!!!

!!"#$(!) (14) 

!!"#$ ! = 1
! ! !!1! ! + ! – !!!2! ! !

!

!!!
 (15) 

where !!"#$ is the synchronization time series. 

4. Results and discussion 

4.1. Estimation of Left Ventricular Ejection Time 
The algorithms’ performance for LVET inference was analyzed for the whole dataset described in section 

3.1.1, referred to as global dataset in the following, and in the two subsets that compose it. These are the subset 
of healthy volunteers, called the healthy subset and the subset of volunteers with cardiovascular diseases, 
called the CVD subset.  

To evaluate the performance achieved by the proposed algorithm, four performance metrics have been 
adopted. Let LVETMEAS:{LVETc1,…, LVETc6, LVETCHAN} be the measured beat-to-beat LVET values, 
corresponding to estimate 1 to 6 and the LVET obtained using the algorithm proposed by Chan et al. [27], 
respectively, and LVETECHO be the reference beat-to-beat LVET values assessed using ECHO-doppler. The 
abbreviation “Error” stands for the error between measured and reference values (!"#$!"#$ − !"#$!"#$), 
while “Abs. Error” concerns to the absolute estimation error ( !"#$!"#$ − !"#$!"#$ ). The “Abs. Error 
Perc.” stands for the percentage of absolute estimation error ( !"#$!"#$ − !"#$!"#$ !"#$!"#$). The 
agreement between measured LVET and LVETECHO was analyzed by assessing the correlation coefficients 
between the two variables in each dataset (Global, healthy and CVD). Additionally, the correlation coefficients 
were also calculated for each volunteer and the average and standard deviation over each dataset was 
calculated. The Pearson correlation coefficient was calculated if the variables were normally distributed, while 
the Spearman’s correlation coefficients were used otherwise. The p-values corresponding to the coefficients 
shown in TABLE 4 were low (p<0.05), enabling the rejection of the hypothesis of no correlation. 

The agreement between!!"#$!"#$ and !"#$!"#$ was also analyzed using the Regression plots (Fig. 10) 
and the Bland-Altman plot (Fig. 11). Error distributions were tested for gaussianity using the Kolmogorov–
Smirnov test. Accordingly, statistical analysis was performed using the paired Student test and the two-sided 
Wilcoxon signed rank test and the values shown in TABLE 4 have been found to be statistically relevant 
(p<0.001). 

In TABLE 4 we present the results achieved by our algorithm approach for all extracted LVET estimates. 
One observes that the best estimation performance was achieved by the LVETc6 estimate (measured between 
D2sp and D1nt), with an absolute estimation error of 15.41±13.66 ms, corresponding to a percentage of error of 

TABLE 3 – CHARACTERISTICS OF THE VOLUNTEERS ENROLLED IN THE STUDY FOR THE ASSESSMENT OF BLOOD PRESSURE 
AND VASCULAR TONE SURROGATES.  

 Tilt positive (#21) Tilt negative (#22) 
Age [y] 57±18 63±17 
Weight [kg] 86±15 74±13 
BMI [kg/m2] 27.1±4.6 26±5 
Male/female 13/8 10/12 
GTN‡ (yes/no) 15/6 15/7 

‡ Glycerol trinitrate 
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5.53±4.9%. The performance of the remaining estimates in the global dataset, are much less good ranging 
from 26.13±14.76 to 75.96±23.78 ms. An exception is observed for the LVETc4 estimate (measure between 
D2sp and D3dp) that obtained an absolute estimation error of 18.72±16.51 ms, representing an increase in the 
estimation error percentage of about 1% (3 ms). The correlation between the measured LVET estimates and 
the echocardiographic LVET reference was high and ranged from 0.68 (LVETc5) to 0.78 (LVETc6). 

The results regarding the evaluation of the proposed LVET estimates in both Healthy and CVD subsets are 
also presented in TABLE 4. In the Healthy subset, we observed a decrease in the absolute estimation error of 
about 5ms for both LVETc4 and LVETc6, representing a reduction of about 1-2%. Contrarily, a decrease in the 
performance of the remaining estimates was observed for this subset, with an increase in the estimation error 
ranging from 3 to 5%. The agreement between both measure and reference LVET’s increased for all the LVET 
estimates, with an exception to LVETc6, where a decrease of about 6% was observed. Contrarily to the results 
observed in the Healthy subset, in the CVD subset we observed a decrease in the performance achieved by 
LVETc4 (23.99±17.67 ms) and LVETc6 (20.63±15.75 ms) and a decrease in the absolute estimation error of 
the remaining LVET estimates. Moreover, an increase in the agreement between measured and reference 
LVET values was also observed in this study group, being LVETc6 the estimate with highest correlation 
coefficient (ρ=0.85). 

The correlation coefficients calculated in a patient-by-patient basis presented results similar (but lower, ≈ 
0.15 less) to those calculated in each dataset, showing a lower agreement between the measured LVET values 
and the LVETECHO, which is mainly explained by the absence of marked trend within each volunteer measured 
values. 

TABLE 4 - SUMMARY OF THE RESULTS ACHIEVED BY THE PROPOSED LVET ESTIMATION ALGORITHM AND THE ALGORITHM 
PROPOSED BY CHAN ET AL. [27]. ALL THE PRESENTED VALUES ARE STATISTICALLY SIGNIFICANT. 

C
on

te
xt

 

Measu
red 

LVET 

Error  
(msec.) 

Avg ± std 

Abs. Error 
(msec.) 

Avg ± std 

Abs. Error 
(%) 

Avg ± std 
! 

! 
Avg ± 

std 

R
ange 

G
lo

ba
l 

LVETCHAN 18.75±19.78 23.01±14.60 8.19±5.20 0.75* 0,58±0,19 
[186.2;388.9] 

LVETc1 22.35±23.91 28.43±16.21 10.19±5.81 0.70* 0,56±0,16 

LVETc2 22.66±19.68 26.13±14.76 9.37±5.29 0.77* 0,56±0,17 

LVETc3 47.02±23.93 47.74±22.46 17.12±8.05 0.75 0,55±0,16 

LVETc4 -6.57±24.09 18.72±16.51 6.71±5.92 0.70* 0,59±0,18 

LVETc5 75.9±23.99 75.96±23.78 27.24±8.53 0.68* 0,54±0,15 

LVETc6 -6.22±19.63 15.41±13.66 5.53±4.9 0.78* 0,58±0,17 

H
ea

lth
y 

LVETCHAN 31.19±12.26 31.03±12.66 11.7±4.61 0.71* 0,48±0,11 

[186.2;318.6] 

LVETc1 36.15±14.84 36.7±13.43 13.85±5.07 0.84 0,45±0,1 

LVETc2 31.69±13.92 31.99±13.21 12.07±4.99 0.86 0,5±0,14 

LVETc3 57.09±18.51 57.12±18.43 21.56±6.96 0.76 0,52±0,14 

LVETc4 7.63±14.38 12.91±9.91 4.87±3.74 0.73* 0,49±0,14 

LVETc5 85.76±18.91 85.76±18.91 32.37±7.14 0.74 0,48±0,11 

LVETc6 3.03±13.66 10.88±8.79 4.11±3.32 0.72* 0,52±0,15 

C
V

D
 

LVETCHAN 6.49±15.93 13.48±10.68 4.52±3.58 0.88* 0,66±0,2 

[213.5;388.9] 

LVETc1 7.19±20.16 17.75±11.95 5.99±4.04 0.84* 0,67±0,14 

LVETc2 11.59±19.39 18.72±12.63 6.32±4.27 0.84* 0,61±0,19 

LVETc3 34.69±23.38 36.07±21.2 12.18±7.16 0.81* 0,59±0,18 

LVETc4 -21.94±20.16 23.99±17.67 8.1±5.97 0.84* 0,69±0,15 

LVETc5 63.82±23.37 63.9±23.16 21.58±7.82 0.80* 0,61±0,17 

LVETc6 -17.65±19.04 20.63±15.75 6.97±5.32 0.85* 0,63±0,18 
*Estimated values using Spearman’s correlation. 
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Comparing the best LVET estimate (LVETc6) with the LVET obtained using the algorithm proposed by 
Chan et al. [27], one observes that the best estimation performance was achieved by our method, which 
obtained better estimation performance (15.41±13.66 msec. vs 23.01 ± 14.60 msec.) and higher correlation 
(0.78 vs 0.75). In the healthy context, a significant improvement as been achieved by LVETc6 (Abs. Error: 
10.88±8.79 msec. and ρ=0.72) compared to the algorithm by Chan et al. [27] (Abs. Error: 31.03 ± 12.66 msec. 
and ρ=0.71). In contrast, Chan’s method performs better for CVD patients compared to our implementation 
(13.48 ± 10.68 msec. vs 20.63±15.75 msec). Finally, Chan’s algorithm achieved a better correlation coefficient 
for CVD patients (ρ=0.88 vs ρ=0.85). 

In Fig. 10 we present the regression plots corresponding to the best LVET estimate (LVETc6) in both 
Healthy and CVD subsets. For the healthy subset (Fig. 10 (a)), the best linear fit corresponds to a 0.94 slope, 
which is very close to unity. This agrees with the low estimation error achieved by LVETc6 and the high 
correlation value presented in TABLE 4. For the CVD subset Fig. 10 (b)), a similar slope of 0.94 was achieved, 
but with a greater dispersion of the reference/measure LVET pairs. 

The agreement between the LVETc6 and LVETECHO was also assessed via Bland-Altman plot, presented in 
Fig. 11 for the Global dataset. The horizontal solid line represents the mean error while the dashed lines denote 
the level of agreement between LVETc6 and LVETECHO, i.e. mean ± standard deviation and mean ± 2 standard 
deviation. One can observe that the average error is close to zero and the estimation error is not evenly 
distributed around the whole range of LVET values, particularly in the higher range where a greater dispersion 
is shown. 

The presented results show that the characteristic points that better define the onset and end of the 
ventricular ejection on the PPG pulse are the systolic peak defined in the second derivative and the notch 
defined the 1st derivative. Not surprisingly, these two points do not match exactly the onset and offset of the 
PPG main forward wave resultant from the ventricular ejection. This can be explained by the temporal and 

(a) (b)   

Fig. 10 – Regression plots of LVETc6. (a) Healthy subset (ρ = 0.72): best linear fit y = 12.05 + 0.94x. (b) CVD subset (ρ = 
0.85): best linear fit y = 34.27 + 0.94x. 

 
Fig. 11 - The Bland-Altman plot of the measured (LVETc6) and reference LVET using the proposed algorithm in the 
Global dataset. 
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morphological changes experienced by the main pulse as it travels from the left ventricle to the peripheral 
sites. The reduction of arterial compliance [5] and the increase peripheral resistance [1], due to the changes in 
the arterial wall composition and the tapering of the arteries, dampens the main pulse, and therefore a temporal 
shift is observed in the onset and offset of the PPG pulse. Instead, the characteristic points corresponding to the 
boundaries of the ejection in the PPG systolic model are determined by the characteristic points corresponding 
to the maximum acceleration at the systolic rise of the systolic model and by the minimum velocity during its 
decay. Contrarily, the remaining LVET estimates calculated form the characteristic points closer to the 
onset/offset of the systolic model present a higher error, resulting from an overestimation.  

Our results also indicate a discrepancy in the estimation of LVET within Healthy and CVD patients. In the 
Healthy dataset, the absolute estimation error achieved by LVETc6 was very low (ap. 10.9 ms), while in the 
CVD the absolute error almost doubled (ap. 20.6ms) accentuated by the underestimation of the LVET (error: -
17.65±19.04ms). One possible reason for the underestimation of LVET in the CVD population is the 
dependence of the pulse transmission on the PWV. One common characteristic observed in aging and in 
populations with cardiovascular diseases, is the increase of the pulse wave velocity, mainly due to the increase 
of the vascular resistance and stiffness, which leads to a faster transmission of reflected waves along the 
arterial pathway and early appearance in the PPG pulse [1, 11]. With the aging of the arteries (and the presence 
of atherosclerosis), there is a progressively return of the reflected waves, which can arrive so early during 
systole that it becomes difficult to distinguish the two phases [12]. This phenomenon is believed to negatively 
affect the proposed algorithm in two aspects. The first is the increase in the uncertainty in the identification of 
the systolic and diastolic phase boundaries, which consequently affects the remaining modeling process. The 
second is the overestimation of the Gaussian parameters related with the reflected waves in the diastolic phase, 
due to the attempt of the model to fit the increased (in amplitude and length) falling edge of the diastolic 
phase. As a consequence of this overestimation, the amplitude and length systolic model is diminished leading 
to an underestimation of the LVETc6. Another characteristic that is believed to accentuate the problematic is 
the elongation of the systolic rising edge, commonly associated with aging. As a result of this elongation, the 
characteristic points corresponding to the maximum acceleration of the systolic model appear at a later instant 
and therefore a decrease in the LVET estimate is observed.  

4.2. Assessment of blood pressure and vascular tone surrogates 
In this section we analyze the relationship between the extracted blood pressure and vascular tone surrogates 

with the reference blood pressure and total peripheral resistance values. The relationship was evaluated in the 
dataset composed by all volunteers (Global dataset) and in the subset composed by volunteers where greater 
blood pressure changes are observed, i.e., the tilt positive group (Tilt positive dataset). The relationship 
between variables was evaluated for the upright position phase of the HUTT protocol. The extracted reference 
values used in the present analysis are: systolic (SBP), diastolic (DBP) and mean blood pressure (MBP), pulse 
pressure (PP) and total peripheral resistance index (TPRI). These parameters were compared with the extracted 
surrogates, i.e., SI, T1_d, T1_2, RI, R1_d and R1_2, in order to identify the parameters that better characterize 
blood pressure and vascular tone changes, and their level of agreement with those parameters.  

Let m=1,…,M with M=43 be the volunteers, xmeas={SI, T1_2, T1_d, RI, R1_2, R1_d} the measured parameters 
and xref={SBP,DBP,MBP,PP,TPRI} the reference parameters, assessed in a beat-to-beat basis. The agreement 
(!!) between the measured and reference parameters for each volunteer using the Pearson correlation 
coefficient was defined as: 

!! !!"#$, !!"# = 1
! ! !!"#$, !!"#

!

!!!
 (16) 

In TABLE 5 and TABLE 6 we present the Pearson correlation coefficients ρp achieved by each extracted 
features and the reference parameters, for the global and tilt positive datasets. The p-values corresponding to 
the coefficients shown in TABLE 5 and TABLE 6 were low (p<0.05), enabling the rejection of the hypothesis of 
no correlation. 

From TABLE 5 and TABLE 6, one can observe that the parameter achieving the best correlation coefficient in 
the global dataset is the T1_2, which presented a correlation with TPRI, SBP of 0.45 and 0.43, respectively. 
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Additionally, the parameter SI and T1_d were also moderately correlated with the reference blood pressure 
measurements and with the TPRI, with values ranging from 0.37 (between T1_d and TPRI) to 0.42 (between SI 
and DBP). Similarly, the parameters RI and R1_d also showed a good agreement with the reference parameters 
(excluding PP) being the highest correlation with TPRI (ρp = 0.43 and ρp = 0.42, respectively). The parameter 
R1_2 showed to be weakly associated with each of the reference parameters, with ρp ranging from 0.21 to 0.26. 

Regarding the results in the tilt positive group, one can observe a marked increase in the agreement between 
the majority of the measured and reference parameters. In this group of patients, the highest agreement was 
found between the SI and MBP (ρp = 0.57), SBP (ρp = 0.57) and DBP (ρp = 0.54). Not surprisingly, the 
parameter T1_d also presented a high agreement with MBP and SBP (ρp = 0.53). The parameter most closely 
associated with TPRI in the tilt positive volunteers was the SI (ρp = 0.51). The parameter T1_2 showed to be 
more closely associated with the SBP, PP and TPRI, with a level of agreement of 0.49, 0.47 and 0.46, 
respectively.  From TABLE 6, one can observe a similar (but lower) agreement between the parameters RI, R1_d 
and R1_2 and the reference parameters, with the highest level of agreement being found between RI and SBP 
(ρp = 0.52) and between RI and TPRI (ρp  = 0.50). The parameter R1_2 presented low correlation 
(ρ!! 0.23; 0.27 ) with all the reference parameters. 

The level of agreement between the surrogate that presented the best results (i.e., SI) and the SBP are 
illustrated by the regression plots present in Fig. 12 a) and b), for two volunteers. A linear model SBP = 
A*SI+B was applied on the data extracted from volunteer 7 (Fig. 12 a)) and volunteer 36 (Fig. 12 b)). For 
volunteer 7, the best linear fit corresponds to a negative slope A=-1.8, which is very far from the unit. For 
volunteer 36, the best linear fit corresponds to similar slope A=-2.28. From Fig. 12 it is possible to observe a 
strong linear and negative correlation between SI and SBP, especially for lower values of SBP (high values of 
SI). The higher dispersion SI/SBP points for high SBPs, particularly above 130 mmHg, suggest a higher 
uncertainty in the SI measurement, resulting from the increasingly overlapping of the forward and reflected 
waves. 

 TABLE 5 – CORRELATION BETWEEN THE EXTRACTED (SI, T1_D AND T1_2) AND REFERENCE PARAMETERS (SBP, DBP, MBP, 
PP, TPRI). 

 
Absolute Correlation coefficient (ρp) 

Range  SI  
(Global/Tilt 

positive) 

T1_d 

(Global/Tilt 
positive) 

T1_2 

(Global/Tilt 
positive) Parameters 

SBP 0.41 / 0.57 0.39 / 0.53 0.43 / 0.49 [22.3;247.1] mmHg 

DBP 0.42 / 0.54 0.41 / 0.51 0.40 / 0.41 [1.7;141.5] mmHg 

MBP 0.41 / 0.57 0.38 / 0.53 0.40 / 0.43 [8.3;168.5] mmHg 

PP 0.33 / 0.41 0.34 / 0.39 0.41 / 0.47 [0; 147.7] mmHg 

TPRI 0.41 / 0.51 0.37 / 0.46 0.45/ 0.46 [215.7;7427.2] dyne*s*m2/cm5 

 
TABLE 6 – CORRELATION BETWEEN THE EXTRACTED (RI, R1_D AND T1_2) AND REFERENCE PARAMETERS (SBP, DBP, MBP, 

PP, TPRI) 

 
Absolute Correlation coefficient (ρp) 

Range  RI  
(Global/Tilt 

positive) 

R1_d 

(Global/Tilt 
positive) 

R1_2 

(Global/Tilt 
positive) Parameters 

SBP 0.40 / 0.52 0.36 / 0.49 0.21 / 0.23 [22.3;247.1] mmHg 

DBP 0.38 / 0.46 0.37 / 0.43 0.23 / 0.25 [1.7;141.5] mmHg 

MBP 0.40 / 0.52 0.37 / 0.44 0.22 / 0.24 [8.3;168.5] mmHg 

PP 0.37 / 0.44 0.33 / 0.40 0.25 / 0.26 [0; 147.7] mmHg 

TPRI 0.43 / 0.5 0.42 / 0.45 0.26 / 0.27 [215.7;7427.2] dyne*s*m2/cm5 
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The results presented in this section suggest that the extracted parameters can be associated with changes in 
blood pressure and vascular resistance. The presented results regarding the SI and T1_d parameters for SBP, 
DBP and MBP are consistent with those found by Millasseau et al. [43] (ρp =0.48/0.68/0.51 for 
SBP/DBP/MDP), by Padilla et al. [44] (ρp =0.41/0.40/0.44 for SBP/DBP/MDP) and by Brillante et al. [45] (ρp 
=0.42/0.52/0.51 for SBP/DBP/MDP). Contrarily, the low agreement between RI and blood pressure 
measurements reported by in [43-45] (ρ!<0.18 for SBP, ρ!< 0.28 for DBP and ρ!<0.24 for MBP) was not 
found in our analysis, where the correlation found with SBP, DBP and MBP was above 0.38 for the global 
dataset and above 0.46 for the tilt positive dataset. The low correlation found between the R1_2 and SBP was 
not consistent with the association between reported by Baruch et al. [4]. This discrepancy is mainly explained 
by the normalization of the PPG pulse performed in the present study, and by the modalities used in the study 
reported in [4]. While Baruch et. al [4] used the absolutes amplitudes of the main forward and first reflection 
waves (assessed from the arterial blood pressure waveform) to estimate R1_2, in the present study the R1_2 
parameter was assessed from the normalized pulse (assessed from the photoplethysmogram). The lower 
correlation between SI, T1_d and PP (ρ! ≈ 0.33) found in the present study is in agreement with that found by 
Padilla et al. [44] (ρ! = 0.24), but not with the association outlined in [4]. 

The increase in the agreement between the SI, RI and the reference parameters, from the global dataset to 
the tilt positive dataset, show the importance of these parameters in the assessment of blood pressure and 
vascular tone changes, specially in cases where acute vasodilatation is present, which is the case of the patients 
suffering from syncope (tilt positive group). 

5. Conclusions and Outlook 
The PPG is a promising tool to deploy solutions for ambulatory and personal health applications. Its 

successful utilization still lacks convincing signal processing methods that are reliable and accurate enough for 
the extraction and sophisticated interpretation of PPG waveform characteristics, beyond simple heart rate 
determination.  

In the present study an algorithm for the extraction of cardiovascular performance surrogates from the 
photoplethysmographic (PPG) waveform is introduced. The proposed methodology is based on the 
segmentation of the PPG signal, and consequently modeling each PPG pulse as a sum of 5 Gaussian functions. 
Using the reference echocardiographic LVET values extracted using Echocardiography from 68 Healthy and 
Cardiovascular diseased volunteers, we were able to evaluate the performance of six LVET estimates. The best 
LVET estimate (LVETc6) achieved a low estimation error (ap. 15 ms) and a high correlation (ρ=0.78) on a 
dataset composed by 2081 annotated heartbeats. Although LVETc6 did not present the best estimation error for 
the population with cardiovascular diseases, a high correlation (ρ=0.85) with the reference LVET was still 
achieved, supporting the use of the PPG for the assessment of LVET changes.  

(a) (b)  
Fig. 12 – Regression plots of SI-SBP. (a) Volunteer #07 (ρ = 0.-0.64): best linear fit SBPe = −1.8*SI + 491. (b) Volunteer 
#36 (ρ = -0.84): best linear fit SBPe = −2.28*SI + 565.6. 
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The relationship between the amplitude and location of the Multi-Gaussian model waves was also 
investigated in the current paper, leading to the definition of 6 parameters related to stiffness and reflection 
indexes. Their relationship with reference values of blood pressure and total peripheral resistance extracted 
from a Taskforce Monitor was evaluated in the tilt positive group. We were able to conclude that the extracted 
surrogates are associated with both changes in blood pressure and total peripheral resistance. T1_2 index was 
found to have the highest correlation within the overall dataset, presenting a moderate agreement with the total 
peripheral resistance  (ρ! = !0.45) and with SBP (ρ! = !0.43). Moreover, a similar agreement was found 
between SI and the reference parameters (excepting PP), with the coefficients ranging from 0.41 to 0.42.  In 
the tilt positive group, the stiffness index presented the highest agreement with mean blood pressure and 
systolic blood pressure (ρ! = !0.57). Although this surrogate exhibits a good level of agreement with the 
majority of the remaining reference parameters (ρ! =!0.51 to ρ! =!0.57), a lower correlation was found with 
the pulse pressure (ρ! =!0.41). Moreover, an exception was also observed for the parameter R1_2, 
corresponding to the amplitude ratio between the main forward pulse and the first reflection at the renal 
reflection site, which exhibit a low correlation with all the reference parameters (ρ! =!0.22). The results 
obtained during the current analysis suggest that the stiffness and the reflection indexes can be robustly 
estimated from the analysis of the systolic and diastolic components of the proposed model. Moreover, the 
good correlation with the reference parameters suggest that these indexes can provide valuable information 
about blood pressure and vascular tone changes and especially in patients presenting hemodynamic instability. 
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Abstract— Neurally mediated syncope (NMS) patients suffer 
from sudden loss of consciousness, which is associated with a high 
rate of falls and hospitalization. NMS negatively impacts a 
subject’s quality of life and is a growing cost issue in our aging 
society, as its incidence increases with age.  

In the present paper we present a solution for prediction of 
NMS, which is based on the analysis of the electrocardiogram 
(ECG) and photoplethysmogram (PPG) alone. Several 
parameters extracted from ECG and PPG, associated with 
reflectory mechanisms underlying NMS in previous publications, 
were combined in a single algorithm to detect impending 
syncope. The proposed algorithm was evaluated in a population 
of 43 subjects. The feature selection, distance metric selection and 
optimal threshold were performed in a subset of 30 patients, 
while the remaining data from 13 patients was used to test the 
final solution. Additionally, a leave-one-out cross validation 
scheme was also used to evaluate the performance of the 
proposed algorithm yielding the following results: sensitivity (SE) 
– 95.2%; specificity (SP) – 95.4%; positive predictive value (PPV)
– 90.9%; false positive rate per hour (FPRh) - 0.14 h-1 and
prediction time (aPTime) - 116.4s. 

Index Terms— Neurally Mediated Syncope; 
Electrocardiogram; Photoplethysmogram; Blood pressure 
regulation and variability; Autonomic nervous system. 

I. INTRODUCTION 
YNCOPE is a transient and self-limiting loss of 
consciousness, resulting from a transient global cerebral 

hypoperfusion and is characterized by a rapid onset, short 
duration and spontaneous complete recovery [1]. Also referred 
to as vasovagal and neurocardiogenic syncope, NMS belongs 
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to a broader group of syncope known as reflex syncope, which 
is responsible for 21% of syncope episodes [1]. 

In the latest Framingham Study [2] involving 7814 
participants between 20 and 96 years old it was reported an 
incidence rate of 6.2 per 1000 person-years. Moreover, the 
incidence of syncope was shown to increase with age, ranging 
from 2.6 to 5.4 per 1000 person-years between 20 and 69 
years old. The same study shows a sharp rise to 11.1 and 19.5 
per 1000 person-years within the 70-79 and above 80 years 
old populations [2, 3]. 

The main causes of syncope are generally benign. However, 
it is associated with frequent hospitalizations and accounts for 
1-3% of all emergency department (ED) visits, as well as 1-
6% of all hospital admissions in general [2, 4]. Moreover, in 
the U.S. approximately 4% of syncope patients discharged 
from the ED experience severe adverse events (e.g. 
readmission or death) within 72 hours [4].   

The recurrence of syncope episodes gains special emphasis 
in elderly populations, where morbidity is particularly high. 
Fear of falling often leads to reduced physical and social 
activity, which is associated with increased mental decline and 
incidence of medical conditions. Subsequent 
institutionalization is a common consequence of syncope in 
this age group [1].  

The main advances in syncope treatment and prevention 
focus on lifestyle modifications, which include the education 
of patients regarding the awareness and avoidance of triggers, 
the early recognition of prodromal symptoms, and 
performance of counter measures to abort the syncope episode 
[1]. Thus, the development of a non-invasive and non-
intrusive, as well as cost-efficient personal p-health system to 
alert patients in case of an impending syncope might: 1) 
provide an opportunity for the patient to perform early 
counter-maneuvers (e.g. physical counterpressure maneuvers - 
PCMs) and avoid or delay syncope, as well as 2) help in 
diagnostics of underlying pathophysiological mechanisms 
with better personalized treatment options. 

A. Background and state of the art 
Orthostatic intolerance is thought to be one of the most 

common triggers of reflex syncope [5]. Investigators believe 
that the abrupt and excessive amount of venous blood pooling 
during standing posture is responsible for a decrease in the 
venous blood return to the heart resulting in more vigorously 
ventricle contractions and excessive stimulation of the 
ventricular mechanoreceptors. As a result, a “paradoxical” 
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withdrawal in sympathetic tone can occur i.e. cardioinhibition 
and vasodepression. This process is associated with a decrease 
in blood pressure and finally syncope [6]. Although the 
increase in parasympathetic activity (cardioinhibition) is 
commonly observed during NMS, hypotension due to 
vasodepression is considered as the primary mechanism 
leading to the loss of consciousness [7].  

Several studies have been proposed in the literature for 
NMS prediction, differing on the objectives, methods and used 
modalities. The most common approach is the early prediction 
of the head-up tilt table test (HUTT) outcome based on an 
analysis of HR and BP parameters before and after tilt, i.e., 
during the supine position and early passive standing position. 
These methods are mainly focused on the analysis of the HR 
and/or SBP variability using either time or frequency domain 
techniques, or both. The time domain methods focus on the 
evaluation of temporal changes of HR during the supine and 
upright positions, using statistical features, such as mean, 
standard deviation [8-11], variance and kurtosis [12], or even 
doing simple comparisons between the HR in both phases [13, 
14]. The frequency domain methods are mainly based on the 
evaluation of the characteristics of the low (LFr: 0.04-0.15Hz) 
and high (HFr: 0.15-0.40Hz) frequency components (e.g., 
power and area) and on the relationship between the 
characteristics of those components (the LFr/HFr ratio) as 
measures of sympathovagal balance [10, 11, 15-17]. 
Additionally, methods using indices of myocardial 
contractility assessed from peak endocardial acceleration [18], 
from transthoracic impedance cardiography [19, 20] and from 
the arterial blood pressure waveform [21] have also been 
proposed in the literature.  

 In contrast with the early prediction approach, the real time 
prediction problem has only been addressed in the later years, 
where hemodynamic changes are continuously monitored 
during the whole HUTT protocol. Rather than focusing on the 
hemodynamic responses resulting from the change of posture, 
the real-time approaches continuously assess the risk of an 
impending syncope episode from the monitored hemodynamic 
parameters. Since the mechanisms underlying the occurrence 
of syncope are characterized by fast dynamics and are not 
limited to changes of posture, these approaches are believed to 
have a wider scope concerning the real-life scenarios. Here, 
the changes in heart rate (HR) and continuously measured 
systolic blood pressure (SBP) have also been considered [22, 
23]. Virag et al [22] proposed a method for real time 
prediction of impending syncope based on the time and 
frequency analysis of the HR and SBP signals, while Mereu et 
al. [23] evaluated the prediction ability of HR and BP (SBP, 
MBP, DBP and PP) trends and the ratio between the dRR (1st 
derivative of RR) with those trends. However, current non-
invasive blood pressure monitoring systems have several 
disadvantages. Most obviously their application is 
cumbersome due to bulky and expensive hardware, as well as 
complicated handling with the need for frequent calibrations 
[24]. These limitations become critical in unsupervised 
environments such as at home or in ambulatory scenarios, 
where low cost and easy-to-use devices are essential. More 

recently, several authors focused on the evaluation of changes 
of the pulse arrival time (PAT) alone [25], as a surrogate for 
SBP changes, or combined with HR changes [26, 27] and, 
finally, prediction of syncope. In our previous works [25, 28] 
we established and validated a method for syncope prediction 
using PAT and evaluated the possible mechanisms underlying 
the development of NMS.  

B. Main contributions and paper organization 
In the present paper, we propose a complete framework 

with tailored algorithms for prediction of NMS by analyzing 
changes of several cardiovascular parameters that characterize 
the chronotropic (HR), inotropic (left ventricular ejection time 
- LVET), vascular tone and blood pressure (PAT, stiffness 
index – SI – and reflection index - RI, respectively). These 
parameters were extracted from the joint analysis of the 
electrocardiogram (ECG) and photoplethysmogram (PPG), 
which can be acquired easily and non-obtrusively with state-
of-the-art equipment. The parameters were normalized and led 
to the definition of ten features. The best seven features were 
selected and the distance to the orthostatic reference was 
calculated using the Minkowski distance metric. A threshold-
based approach was adopted to detect impending syncope. 

The remainder of the paper is organized as follows. The 
proposed solution for syncope prediction is presented in 
section II. The experimental protocol used in the present study 
is described in section III. The main results and respective 
discussion are presented in IV. Finally, we present our main 
conclusions in section V. 

II. METHODS

The main steps of the proposed solution are illustrated in 
Fig. 1, which are: 1) Detection of motion artifacts; 2) 
Parameter extraction and post-processing; 3) Feature 
evaluation and; 4) Syncope prediction.  

A. Detection of motion artifacts 
It is well known that the PPG signal is prone to several 

sources of error (e.g. motion artifacts), which can be a serious 
obstacle in the reliable extraction of the derived parameters, 
especially in uncontrolled environments such as home care 

Fig. 1 - Schematic representation of the proposed algorithm structure.  Heart 
rate (HR), pulse arrival time (PAT), left ventricular ejection (LVET), stiffness 
index (SI) and reflection index (RI) are extracted from the analysis 
electrocardiogram (ECG) and photoplethysmogram (PPG), which are post-
processed and evaluated in order to extract seven features. Syncope prediction 
is performed using a threshold-based approach applied to the distance of the 
extracted features to an orthostatic stable reference. A notification is generated 
if the distance measure surpasses a predefined optimal threshold (THo). 
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and ambulatory scenarios. Therefore, it is important to detect 
the sections of the PPG signal that are corrupted and 
consequently shall not be included in the subsequent steps of 
the analysis. In the proposed framework we adopted a motion 
artifact detection algorithm using features from the time and 
period domain of the PPG signal [29]. The classification of the 
corrupted/clean PPG sections is performed using a C-Support 
Vector Classification (C-SVC) algorithm [30], with a radial 
basis function kernel. The classification model was fed with 8 
inputs calculated from the rate of change of the time and 
period domain characteristics of the PPG signal. The time 
domain features were extracted from the morphological 
characteristics of the PPG signal:  

1) Pulse amplitude - difference between the pulse peak 
height and its preceding trough depth (pulse onset);  

2) Trough depth difference – Difference between the foot 
height of consecutive pulses;  

3) Pulse skewness – Evaluation of the pulse symmetry;  
4) Pulse kurtosis – Evaluation of the pulse “peakedness”. 
To extract the period domain features, the Discrete-time 

Short Time Fourier Transform (STFT) was applied, and the 
most relevant characteristics of the spectra were evaluated: 1) 
Location of the spectrum 2nd major spike; 2) Location of the 
spectrum 3rd major spike; 3) Length of the spectrum 3rd major 
spike and; 4) Ratio between the area of the three major spikes 
and the area of the remaining spectrum. 

B. Parameter extraction 
Chronotropic and inotropic changes were assessed via HR 

and LVET.   
The HR was derived from the analysis of the ECG signal 

and was defined as the time span between consecutive R-
peaks, detected by a Pan-Tompkins algorithm [31]. 

The LVET was assessed from the PPG analysis using an 
extension of the algorithm proposed in [32]. First, the PPG 
signal is band-pass filtered in a 0.23-18 Hz frequency band to 
remove high frequency noise and the baseline fluctuations. 
Second, the onset of each PPG pulse is detected using a 
multiple-order derivative analysis approach. Derivatives from 
order 1 to 3 (!!!"!  to !!!"!!! , respectively) are calculated using a 
five-point digital differentiator [22] and the onset of each PPG 
pulse is defined as the local maxima (D3lmax) on the !!!"!!!  
preceding the local minima (D3lmin) that corresponds to the 
!!!"!  local maxima (D1lmax), as presented in Fig. 2. To detect 
the Dlmax, a cumulative histogram of the !!!"!  data is 

calculated and the threshold ThRPPG is defined as the greater 
value bellow which 90% of the observations are found. The 
!!!"!  local maxima with absolute amplitudes greater than 
ThRPPG are defined as D1lmax [33].  

Each extracted PPG pulse was normalized to the unit, the 
linear trend was removed and the systolic and diastolic phases 
were identified. The systolic phase associated with the 
ventricular ejection was defined between the onset of the PPG 
pulse and the onset of the dicrotic notch (or inflection). The 
diastolic phase, resulting from pulse reflections in the arterial 
path, was defined as the portion of the PPG pulse between the 
offset of the dicrotic notch and the offset of the PPG pulse, as 
presented in Fig. 3 (top). The onset/offset of the dicrotic notch 
were defined as the negative-to-positive/positive-to-negative 
zero crossings between 0.2 and 0.4 seconds [34].  

The systolic and diastolic phases were modeled by a sum of 
three and two Gaussian function, respectively, and PPG pulse 
model was defined as: 

!! !,!! = !! !!
! !!!!

!

!!!!
!

!!!
, !! = !, !, ! ! (1) 

where the parameters aj, bj and cj correspond to the amplitude, 
location and length of the Gaussian function j. The sum of the 
first and second Gaussians (!! + !!) correspond to the wave 
driven by the systolic ejection. The third Gaussian (!!) is 
related to the first pulse reflection at the junction between the 
thoracic and abdominal aorta, presented in Fig. 3 (middle). 
The fourth and fifth Gaussians (!! and !!) derive from 
forward pulse reflection at the juncture between abdominal 
aorta and common iliac arteries [35] and minor reflections and 
re-reflections in the systemic structure, respectively. The 
adjustment of the model parameters was achieved minimizing 
the sum of the squared residuals, using the least squares 
minimization method, as presented bellow: 

!!"#(!) =
1
! ! ! − !! !,! !

!

!!!
 (2) 

where !! !,!  is the MG model with the set of parameters 
!! = !, !, ! ! , ! = 1,… ,5. Using the interior point algorithm 
[36], the goal is to solve nonlinear constrained optimization 
problem presented in (3).  

!"#!!!!!!
!"#$%&'!!"!!

!

!
!

!

!!"#(!)!
! ! ≤ 0!
!" ≤ ! ≤ !"!

(3)!

where ! ! ≤ 0 and !" ≤ ! ≤ !" are the physiologically 
driven inequality constrains and the boundaries to which the 
parameters are subject. 

The LVET was defined by the time span between systolic 
peak of the systolic model 2nd derivative (D2sp) and the notch 
in the systolic model 1st derivative  (D1nt), as presented in Fig. 
3 (bottom). 

To assess vascular and blood pressure changes, three highly 
pressure dependent parameters were also extracted [25, 35, 37, 

 
Fig. 2 - Segmentation of the photoplethysmogram (PPG) using a multiple-
order derivative analysis approach.  
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38]. The Stiffness Index (SI) is associated with the velocity of 
a pulse wave in large arteries [39] and correlates with pulse 
pressure [35] was defined as the time span between the 
forward wave (g1+g2+g3) and the reflected wave (g4) and is 
described by: 

!"! = !!2 − !1 (4) 
where the T1 is the time index corresponding to the maximum 
of the forward wave (g1+g2+g3) and the T2 is the time index 
corresponding to the peak of the reflected wave (g4), as 
indicated in Fig. 3 (middle). 

The Reflection index (RI), associated with small artery 
stiffness [39], was defined as the ratio between the amplitudes 
of the forward wave (g1+g2+g3) and the reflected wave (g4) 
and is described by:  

!"! = !!2/!1 (5) 
where P is the is the amplitude of the forward wave (g1+g2+g3) 
and P2 is the amplitude of the reflected wave (g4), as indicated 
in Fig. 3 (middle). 

Finally, PAT80% was defined as the time span between the 
ECG R-peak and the moment in time corresponding to 80% of 
the PPG pulse amplitude after its onset, which is known to 
correlate well with a decreasing BP in NMS [11]. 

C. Parameter post-processing 
The presence of motion artifacts in the ECG signal and the 

inappropriate behavior of the parameter extraction algorithms 
can lead to the appearance of spurious values that do not 
reflect the undergoing physiological processes and 
consequently in inaccurate interpretation of data. This issue 
can be particularly observed in unsupervised monitoring with 
ill-defined measurement conditions. Therefore, a post-
processing step is needed to detect and remove these spurious 

values. In the current framework a sliding window boxplot 
analysis [40] was adopted to remove outliers from the 
extracted parameters. First, a smoothed version (!"#!) of each 
parameter !"! was calculated using a moving median average 
filter (121 beats length – presented in Fig. 4 for the LVET 
parameter as a red thick line). The extracted !"#! was 
subtracted to the parameter time series !"! according to: 

!"!(!) = !"#!(!) − !"!(!) (6) 
where !"!(!) is the resulting time series without the main 
trend (presented in Fig. 4 for the LVET parameter – bottom), 
herein called as parameter difference. 

Let !"!!(!) = !"!(! − !,… , ! + !  be a temporal sliding 
window over the derived time series !"! with length 
! ∗ 2 + 1!and centered in the instant t, for the ith parameter. 
For each window, the lower quartile (Q1: 25th percentile), the 
upper quartile (Q3: 75th percentile) and the interquartile range 
(!"#! = !!3 − !1) are identified. The !"! sample at the 
instant t is considered an outlier if the corresponding !"! 
sample (see Fig. 4 - bottom) satisfies the following criterion: 

!"! ! < !1 − 3 ∗ !"#! ∨ !"! ! > !3 + 3 ∗ !"# (7) 
Finally, all the identified outliers are excluded from the 

extracted parameters time series !"!. 
The rationale behind this approach is that the sporadic 

parameter values resulting from artifacts and noise can be 
detected as outliers, which greatly differ from the parameter 
main trend. 

Finally, the parameter time series were linearly interpolated 
at a 2Hz frequency, which according to [25] is well above the 
required minimal sample frequency and a Butterworth low-
pass filter with a 0.05Hz cutoff frequency was used to reduce 
high frequency noise. 

D. Feature evaluation and selection 
To develop a robust prediction algorithm, independent from 

the patient’s specific characteristics, the extracted parameters 
were normalized according to (8) and (9), resulting in a set of 
ten features in total (summarized in Table I). The first five 
features were defined as: 

!"! ! = !"!(!) =
!"!(!)
!"#$%!

, ! = 1,… ,5 (8) 

where !"! is the ith feature, !"! is the ith parameter, !"#$%! is 

 
Fig. 3 - Schematic representation of the approach used to determine LVET, SI 
and RI. Top: 2nd derivative of the PPG pulse for determination of the systolic 
and diastolic phases. Middle: Gaussian model of the PPG pulse and the 
characteristic points used to assess stiffness and reflection indexes (SI and RI, 
respectively). Bottom: 1st and 2nd derivatives of the systolic model used to 
determine LVET. 

 

 
Fig. 4 - Example of the adopted outlier detection approach based on a 121 
beat sliding window box plot analysis. Top: Extracted LVET parameter (!"!) 
smoothed LVET (!"#!) and detected outliers. Bottom: LVET parameter 
difference (!"!), and outlier detection criterion limits (!1 − 3 ∗ !"# and 
!3 + 3 ∗ !"#). 
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the average of each parameter during the second minute  
(reference window) after the patient was tilted to the upright 
position and t is the time instant. The selection of the second 
minute as the reference window ensures that the patient 
achieves orthostatic stabilization, which typically occurs 
within less than 1 minute [6].  

Additionally, the normalized changes of the extracted 
parameters during the last 1.5 minutes (the minimum response 
time according to [25]) were also taken into account as: 

!"!!! ! = ∆!"! ! = !"! ! − !"!(! − 1.5!"#)
!"#$%!

,
! = 1,… ,5 

(9) 

The selection of the most appropriate features for syncope 
prediction was performed using the approach proposed in [41], 
where the features are selected based on a score metric (!"") 
combining their relevance and redundancy, presented in (10). 
The relevance of each feature was assessed by the area under 
the curve (!"#) of the receiver operating characteristic (!"#) 
curve, while its redundancy was assessed by the spearman’s 
rank correlation coefficient (!"").  

!""! = !"# !"! −
!""(!"! ,!"!)!"!∈!
!

(10) 

where !"# !"!  is the AUC obtained by the ith feature, 
!"" !"! ,!"!  is the spearman’s rank correlation coefficient  
between the ith and jth feature, ! is the subset of selected 
features at each iteration and !  its cardinality. In sum, seven 
features were selected corresponding to the highest features 
selection scores. The feature scores and their ability to predict 
the onset of syncope are summarized in Table III. 
1) Syncope onset detection algorithm

From the analysis of the extracted features immediately 
before the onset of syncope, we observed significant changes 
in the majority of the tilt positive patients (Fig. 5). The 
chronotropic and inotropic variations were reflected in a 
substantial decrease of ∆!"! and increase in ∆!"!. Moreover, 

a significant drop in blood pressure was reflected in a 
substantial increase of !!!, !"!, ∆!"!, ∆!"! and decrease of 
!"!.  

To illustrate how the features vary during a head-up tilt 
testing (HUTT), principal component analysis (PCA) was 
applied to the selected features in two patients (with/without 
NMS), and a representation of the first three principal 
components is shown in Fig. 6. In general, for HUTT positive 
(po) patient, the trajectory evolves away from the orthostatic 
stable reference point, just before the onset of syncope. An 
example of this behavior is presented in Fig. 6 (top) for a 69-
year-old patient with manifested syncope and GTN 
provocation. Contrarily, on HUTT negative (ne) patients the 
trajectory remains closer to the orthostatic stable state as 
shown in Fig. 6 (bottom) for a 78-year-old patient with no 
syncope after GTN administration.  

These findings suggest that distance metrics might be used 
to differentiate the stable state from the risk of an impending 
event, i.e., to capture changes relative to a stable orthostatic 
reference at the beginning of the standing period (FTref). In 
order to choose the distance metric that better suits syncope 
prediction, several metrics were evaluated using ROC analysis 
combined with a 5-fold cross validation scheme. The highest 

TABLE I. CORRESPONDENCE BETWEEN PARAMETERS/FEATURES INDEXES 
AND NAMES 

Parameter 
name 

Parameter 
index 

Feature name 
(1st set) 

Feature name 
(2nd set) 

HR !"! !"! ∆!"! 
LVET !"! !"! ∆!"! 

SI !"! !"! ∆!"! 
RI !"! !"! ∆!"! 

PAT !"! !"! ∆!"! 

Fig. 5 - HUTT of a 50-year-old patient with syncope onset during GTN 
provocation. Representation of the seven most discriminant features assessed 
from the extracted parameters, SBP and HUTT sequence.

 

Fig. 6 - Illustration of the trajectory of the three principal components 
extracted from the most discriminative features, during HUTT procedure. 
Top: 69-year-old patient with manifested syncope and GTN provocation. 
Bottom: 78-year-old patient with no syncope and GTN provocation. 
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F-measure was adopted as the selection criterion leading to the 
selection of the Minkowski distance metric (! = 2!!.!), which 
was calculated according to (11). Since the proposed measure 
does not account for the direction of the evolving trajectory, it 
is necessary to eliminate feature variations that are not 
associated with the physiological mechanisms underlying 
NMS, and might negatively affect FD measure. Therefore, the 
∆!"! and ∆!"! values above unit and !"! values below unit 
were set to one. Additionally, ∆!"! values below zero, and 
∆!"!, ∆!"! and ∆!"! values above zero were set to zero. 

!" ! = ! !"! ! − !"#$%! !
!

!!!

!/!

, ! = 2!!.! (11) 

where !" !  is the Minkowski distance at the time instant t. 
Impending NMS was detected when FD crosses a 

predefined optimal threshold. The SBP, FD and HUTT 
sequence are presented in Fig. 7 for an example case of 69-
year-old patient. 

III. DATA COLLECTION 

A. Study design and HUTT protocol 
Data were acquired during scheduled diagnostic head-up tilt 

table tests (HUTT) from 55 patients with unexplained 
syncope. All patients gave written informed consent to 
participate in this study (ClinicalTrials.gov identifier: 
NCT01262508).  

The HUTT protocol followed the recommendation of the 
European Society of Cardiology (ESC) and consisted of four 
phases: 1) the patient was lying at rest of at least 15 min; 2) 
the patient did a passive standing exercise of 20 min at a 
position of 70º; 3) phase (2) was extended by 15 min, if no 
syncope occurred, with sublingual administration of 400 µg of 
glycerol trinitrate (GTN); 4) the patient was tilted back to 
supine position. The HUTT stopped at any moment in time, if 
syncope occurred and at the patient was brought back to 
supine position immediately for recovery. The nurse 
accompanying the study documented any prodromal 
symptoms such as dizziness, sweat, tremor, etc. during the 
procedure. 

According to the guideline of European Society of 
Cardiology (ESC) the test outcome was classified as positive 
(po) or negative (ne) [2]. A positive result is characterized by 
occurrence of syncope or pre-syncope with the presence of 
bradycardia, hypotension, or both.  

Data of 12 patients had to be removed due to BP regulation 
failures not caused by syncope, presence of arrhythmias or 
poor data quality in BP and PPG signals. The characteristics of 
the reaming study population consisting of 43 patients are 
summarized in Table II. 

B. Experimental setup 
The patients were monitored using two independent 

acquisition systems during the whole HUTT protocol.  
The ECG-II lead and PPG signal (with sampling 

frequencies of 500 Hz and 126 Hz, respectively) were 
acquired using a Philips MP50 patient monitor [42] extended 
with a data logger functionality. To collect the PPG signal a 
standard SpO2 sensor was attached to the index finger. 

Continuous non-invasive blood pressure (@50Hz) was 
collected using a “Taskforce Monitor” [43]. Additionally, two 
ECG leads (@1000 Hz) and an Impedance Cardiography 
(ICG) signal (@50 Hz) were also acquired. Based on these 
signals several hemodynamic parameters are provided, such as 
continuous (beat-to-beat) systolic blood pressure (SBP), total 
peripheral resistance index (TPRI) and stroke volume (SV). 

The synchronization of the data coming from both systems 
was performed by temporally aligning the RR intervals time 
series extracted from ECG signals of both acquisition systems.   

IV. RESULTS AND DISCUSSION 
To evaluate the performance of the proposed algorithm two 

validation schemes have been adopted: 1) Three-way data split 
validation (shown in Fig. 8); 2) Leave-one-out cross-
validation LOO CV). 

In the three-way data split validation scheme, the dataset 
was randomly partitioned into a train/validation and test 
subsets. The train/validation subset was constructed in order to 
have approximately 70% of the study population, 
corresponding to 15 po patients and 15 ne patients. The 
remaining 13 patients (ap. 30%), i.e., 6 po patients and 7 ne 
patients, were included in the test subset.  

The train/validation subset was used to select the best 
features, evaluate the performance of the proposed algorithm 
and select the optimal threshold for syncope prediction. The 
algorithm performance and optimal threshold were evaluated 
using a 5-fold cross validation (5f-CV) approach (repeated 20 
times). In this process, the training set (4 subsets) is used to 
find the optimal threshold based on ROC analysis, while 
remaining subset is used for validation. This process was 

 
Fig. 7 - HUTT of a 69-year-old patient with manifested syncope and GTN 
provocation. Top diagram: SBP (blue) and FD (black) time series during 
HUTT. Bottom diagram: Phases of HUTT. Reference window represent as a 
black bar, corresponding to the second minute of phase 2. BPf window 
corresponds time between the start of BP fall and the syncope episode. 
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repeated for each of the 5 subsets (folds). The test subset was 
used to validate the final solution, and test the real algorithms’ 
performance. 

In the leave-one-out cross validation scheme, the dataset 
was partitioned into 43 subsets, corresponding to each patient. 
From the 43 subsets, 42 subsets were used for training and the 
remaining subset was used for testing. The cross-validation 
process was repeated 43 times with each of the 43 subsets 
being used exactly once as the validation data. 

The proposed methodology was evaluated using the 
following metrics: F-measure (F-m), sensitivity (SE) and 
specificity (SP), positive predictive value (PPV), false positive 
rate per hour (FPRh), prediction time average (aPTime) and 
standard deviation (sPTime).  

The detection result was considered a true positive (TP) if 
an alarm is generated within the time window corresponding 
to the time between the start of BP fall and the syncope 
episode (BPf window). Otherwise, the detection result was 
considered a false positive (FP). A true negative (TN) was 
assigned if no alarm is generated outside the BPf window, 
whereas a false negative (FN) is considered if alarms are 
generated in this period. The FPRh was defined as the number 
of false positives divided by the sum of all non-BPf windows 
(in hours) of all patients, while the PTime was defined as the 
time span between the first alarm and the syncope episode. 

In the 5-fold CV the performance of the algorithm was 
assessed in each iteration and the average was computed. 
After repeating this process 20 times, the average and standard 
deviation (avg ± std) of the aforementioned metrics was 
evaluated. In the LOO CV, the performance of the algorithm 
was computed based on the countings of each iteration 
detection result, at the end of the CV process.  

A. Motion artifacts detection and parameter post-processing 
The percentage of the detected motion artifacts and outliers 

was assessed for each patient and the results were evaluated 
using a box plot analysis, which is presented in Fig. 9. It is 
possible to observe that the percentage of detected motion 
artifacts is far greater (Median: 21.64%; Mean: 26.68%) than 
the percentage of detected outliers (Median: 3.94%; Mean: 
4.56%). Moreover, the percentage of motion artifacts detected 
in 3 of the 43 patients was greater than 70%. These results 
suggest that even in a controlled environment such as the 

HUTT, the PPG signal is prone to be corrupted with motion 
artifacts. The results also show a discrepancy between the 
percentage of detected motion artifacts and outliers, which can 
be explained by the percentage of false detections of the 
motion artifacts detection algorithm (approximately 10%). 
Another possible reason relies on the outlier detection 
algorithm itself. Since it is based on a boxplot analysis, it is 
expectable that sections corrupted with motion artifacts result 
in a high variance in the extracted parameters, which prevents 
the correct identification of outliers. These results emphasize 
the importance of combining both motion artifacts and outliers 
detection algorithms in order to increase the robustness of the 
syncope prediction method.  

Regarding the segmentation of the PPG signal, the adopted 
algorithm was able to identify the PPG pulses with a 
sensitivity of 96.27% and a positive predictive value of 
97.23% in the current dataset. 

B. Feature selection 
The feature selection results are presented in Table III. One 

observes that the feature presenting the highest FSS refers to 
PAT parameter (!"!), followed by !"!, related to SI. The 
remaining selected features correspond to the normalized 
changes of HR (∆!"!) over a 1.5 minutes window and to the 
change of RI relatively to the reference window (!"!). It is 
also evident that between the 7th and 8th features (separated by 
a thick red line in Table III) there is a huge gap in the FSS 
score (≈11.4%). The low performance of the last three 
features, as indicated by the FSS decrease, resulted in the 
exclusion these features. In summary, seven features were 
selected from a total of ten extracted features. Although the 
best feature (!"!) extracted from the analysis of the PAT 
parameter present the highest FSS, it is worth noting that it 
presents lower SP (90%) and PPV (83.3%), when compared to 
!"! (SP: 96.7% and PPV: 92.3%). Additionally, this feature 
presents a high FPRh (1.7 h-1) when compared to the selected 
features, and particularly !"! (0.8h-1). 

Fig. 8 - Diagram of the adopted three-way data split validation scheme.  
Train/Validation: Feature selection, distance metric selection and optimal 
threshold definition. Test: Evaluation of the proposed algorithm prediction 
capability.  

Fig. 9 – Box plot of the percentage of pulses classified as motion artifacts 
(top) and parameter samples detected as outliers (bottom). 

TABLE III. PERFORMANCE OF THE EXTRACTED FEATURES (FT1,…,10 ) 
Feature 

acronym 
Score 
(%) 

SE 
(%) 

SP 
(%) 

PPV 
(%) 

FPRh 
(h-1)

aPTime 
(s) 

sPTime 
(s) 

!"! 94.6* 100.0 90.0 83.3 1.7 101.0 85.4 
!"! 89.6* 80.0 96.7 92.3 0.8 125.2 121.3 
∆!"! 75.8* 80.0 86.7 75.0 2.4 60.8 72.3 
!"! 71.0* 86.7 83.3 72.2 2.0 113.2 94.2 
∆!"! 70.7* 80.0 93.3 85.7 0.8 76.4 143.0 
∆!"! 68.3* 80.0 93.3 85.7 0.3 84.5 84.3 
∆!"! 67.4* 80.0 73.3 60.0 4.1 90.2 80.6 

!"! 56.0* 93.3 60.0 53.8 5.2 201.6 130.2 
!"! 49.0* 73.3 90.0 78.6 1.2 77.0 142.7 
∆!"! 35.9* 100.0 10.0 35.7 11.3 206.7 141.8 

Feature
selection

Distance metric
selection

Optimal
threshold
definition

Minkowski
distance / p=0.707

7 features

Final
model

th≈3.26

Train/Validation
subset (30 patients)

Test subset 
(13 patients)

Syncope
prediction

Train/Validation Test

Dataset (43 patients)
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The selected features with the highest prediction time 
(aPTime) also derive from the analysis of SI (!"!: 125.2s), 
followed by !"! (113.2s) and !"! (101.0). The aPTime of the 
remaining features range from 60.8s (∆!"!) to 90.2s (∆!"!). 

C. Distance metric selection 
The selection of the most appropriate distance metric was 

achieved using a 5-fold cross validation scheme (repeated 20 
times) and the distance metric obtaining the best F-measure 
score was chosen. The scores obtained by each distance metric 
and corresponding parameters are presented in Fig. 10. As 
shown in Fig. 10, the distance metric presenting the best score 
is the Minkowski distance with parameter ! = 2!!.! and 
therefore it used in the assessment of the distance between the 
evolving trajectory and the stable orthostatic reference.  

D. Syncope detection 
The performance of the proposed algorithm was evaluated 

in two separate phases. First, the algorithm performance 
(presented in Table IV – 3W-DS validation) and the optimal 
threshold were evaluated using a 5f-CV scheme (repeated 20 
times) in train/validation phase. Second, the real prediction 
capability of the proposed solution (presented in Table IV - 
3W-DS test) was tested on the test subset using the optimal 
threshold (!"!). 

The optimal threshold (!"!) was evaluated based on the 
following criterion: 

!"! = 1 ! 1 ! !"(!, !)
!

!!!

!

!!!
(12) 

where TH is the threshold calculated at the iteration k on the 
5-f CV nth repetition, N=20 is the number of repetitions of the 
5-f CV, K=5 is the number of 5-f CV iterations/folds. Using 
(12), the optimal threshold was defined as !"! = 3.458. 

Additionally, the proposed algorithm performance was also 
evaluated using a leave-one-out cross-validation approach 
using the whole dataset composed of 43 patients, herein called 
LOO validation phase (presented in Table IV - LOO 
validation). 
1) Influence of motion artifacts and outliers

In order to evaluate the influence of the artifacts detection 
and outlier removal steps on the overall performance of the 

proposed algorithm, each of the before mentioned 
train/validation and test phases were performed using 4 sets of 
features, which are: 

• Raw data – Features extracted without removing the
motion artifacts and outliers 

• Data w/o outliers – Features extracted after removing the
outliers 

• Data w/o artifacts - Features extracted after removing the
motion artifacts 

• Data w/o artifacts and outliers - Features extracted after
removing the motion artifacts and outliers 

From Table IV it is possible to observe that in each phase, 
the performance of the proposed method strongly benefits 
from the removal of artifacts, outliers and both. It is shown a 
F-measure increase, during the 3W-DS validation, of 13% 
with the removal of outliers, approximately 8% with the 
removal of artifacts and approximately 15% with the removal 
of both. In the 3W-DS test phase and LOO validation, similar 
results have been achieved with the exception to the increase 
in performance from the data w/o outliers to the data w/o 
artifacts and outliers, where no performance increase has been 
observed (F-measure: 3W-DS Test - 92.3%; LOO validation – 
93%). 

The removal of outliers and artifacts has also a significant 
impact on the reduction of false alarms, which can be 
confirmed by the decrease of the FPRh in each of the 
validation phases. The number of false alarms was reduced to 
nearly one quarter by removing the outliers (3W-DS 
Validation: 0.68 to 0.18 h-1) and to nearly one fifth by 
removing both artifacts and outliers (3W-DS Validation: 0.68 
to 0.15 h-1). These results are even more expressive in LOO 
validation, where a decrease in the FPRh from 0.75 to 0.14 has 
been observed. 

The removal of outliers and artifacts also affected the 
prediction time of the proposed algorithm. However, while in 
the 3W-DS validation (aPTime: 67.9 to 61.0 s) and in the 
LOO validation (aPTime: 138.8 to 116.4 s) is observed a 
decrease in the prediction time, in the 3W-DS test phase, the 
result was the opposite (aPTime: 207.1 to 243.3 s).  

These results show the importance to remove artifacts 
before parameters are extraced. Additionally, they emphasize 
the importance of combining the artifacts removal with an 
outlier removal step, focused on the detection of spurious 
values provided by the parameter extraction algorithm. Since 
the post-processing step targets the extracted parameters rather 
than the characteristics of the analyzed signal, it is capable of 
detecting unreasonable behaviors caused by the parameter 
extraction algorithms. Therefore, the combination of both 
algorithms in the present framework results in a great 
enhancement of the proposed methods’ performance. 
2) Prediction capability

In the 3W-DS validation phase, the proposed algorithm 
achieved a SE of 93.3%, associated with high specificity (SP: 
96.7%) and positive predictive value (PPV: 94.8%). 
Moreover, the number of false positives per hour is low 
(FPRh: 0.15h-1) and a good prediction time was achieved 
(aPTime: 61s). The variance of the achieved prediction times 

Fig. 10 - Bar plot representing the scores of the evaluated distance metrics. 
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(sPTime) was 38.6s. 
In the LOO validation, the proposed algorithm also 

achieved high performance (SE: 95.2%; SP: 95.4%; PPV: 
90.9%), followed by a low FPRh (0.14h-1) and a good 
prediction time (116.4 ± 155.5 s). 

In the 3W-DS testing phase, the proposed syncope 
prediction solution achieved a high SE of 100%, without 
compromising both specificity (SP: 92.3%) and positive 
predictive value (PPV: 85.7%). Moreover, the number of false 
positives per hour is low (FPRh: 0.15 h-1) and a good 
prediction time was achieved (aPTime: 243.3s). The onset of 
impending syncope was detected in a range of 62 to 629.5s 
(presented in Table V) and presented a high variance (sPTime: 
242.5s). 

Our results obtained in each validation phase show a minor 
decrease in the proposed algorithm score, from the 3W-DS 
validation to the LOO validation phase (93.2% against 93%), 
and from the  3W-DS validation to 3W-DS test phase (93.2% 
against 92.3%), as presented in Table IV. However, there was 
a substantial increase in SE (93.3% to 100%) and decrease in 
PPV (94.8% to 85.7%), from the 3W-DS validation to the 3W-
DS test phases. Similarly, there was an increase in SE (93.3% 
to 95.2%) and decrease in PPV (94.8% to 90.9%), from the 
3W-DS validation to the LOO validation. The FPRh was 
similar in both phases (≈ 0.15 h-1). Contrarily, there was a 
substantial increase in the prediction time average and 
standard deviation (65.37±40.6s to 217±197.45s), from the 
3W-DS validation to the test phase. This discrepancy between 
the validation and testing performances reflect the differences 
in the syncope development timings between patients, 
suggested by the distinct prodomi times presented in Table V.  

In order to evaluate the stability of the proposed method, we 
evaluated its performance in terms of sensitivity and 
specificity as a function of the adopted threshold. From Fig. 
11 it is possible to observe that the optimal threshold 
identified during the 3W-DS validation phase is within a large 
range of possible values (from 3.391 to 4.461) yielding the 
best performance (SE: 100% and SP: 92.3%), presented in 
Table IV. Moreover, a reduction in Th0 of at least 0.28 is 
needed to decrease the specificity below 84% and a rise of at 
least 1 to set the sensitivity below 70%. These results indicate 

that the extracted features provide robust discrimination within 
a large range of optimal thresholds. 

The individual results achieved for each of the 43 patients 
included in the LOO validation (presented in Table V) show 
that the proposed solution predicted majority of the syncope 
events with an acceptable prediction time (over 60 seconds). 
This time span is enough to inform the patient for the need to 
start physical counterpressure maneuvers (PCMs) or simply to 
sit/lay down to avoid falling.  Moreover, there was a 
misdetection in patient #10 (FP=1), which led to the decrease 
in the SP, PPV and increase in FPRh metrics. It is noteworthy 
to mention that although it was considered as a FP (as a result 
of an alarm triggered outside the BPf window), this patient 
suffered a syncope episode subsequently and therefore should 
not be considered a false positive. Fig. 12 shows that the 
optimal threshold is surpassed due to a substantial drop in SBP 
(>40mmHg) around 57 minutes, which continues to decrease 
until the moment of syncope. From Table V one observes that 
onset of prodromal symptoms in the majority of the patients 
preceded syncope detection (range: 3 to 213 sec.; 90.2 ± 67.2 
sec.). Yet, prodromal symptoms in the context of the 
standardized, clinical HUTT procedure tend to be more 
pronounced than during “real-life” onset of syncope. 
Moreover, in the current study even the slight symptoms were 

TABLE IV. PERFORMANCE OF THE PROPOSED ALGORITHM DURING THE VALIDATION AND TESTING PHASES 

Phase Dataset 
Score 
avg±std 
(%) 

SE 
avg±std 
(%) 

SP 
 avg±std 
(%) 

PPV 
avg±std 
(%) 

FPRh 
avg±std 
(h-1)

aPTime 
avg±std 
(s) 

sPTime 
avg±std 
(s) 

3W-DS Validation 

Raw data 78.8 ± 3.0† 84.0 ± 3.4 86.7 ± 1.6E-14 77.9 ± 2.2 0.68 ± 0.018 67.9 ± 2.4 34.5 ± 7.3 
Data w/o outliers 91.8 ± 2† 89.0 ± 3.3 96.7 ± 0 94.4 ± 0.82 0.18 ± 0.05 65.4 ± 2.6 40.6 ± 5.1 
Data w/o artifacts 86.5 ± 1.9† 85.3 ± 4.2 93.0 ± 2.5 88.7 ± 4.1 0.16 ± 0.236 70.0 ± 9.4 48.7 ± 10.8 
Data w/o  artifacts  and outliers 93.2 ± 0.06† 93.3 ± 9.1E-15 96.7 ± 1.0E-14 94.8 ± 0.5 0.15 ± 0.007 61.0 ± 1.0 38.6 ± 5.9 

3W-DS Test 

Raw data 75.0† 100 69.2 60.0 0.88 207.1 217.8 
Data w/o outliers 92.3† 100 92.3 85.7 0.15 217.6 197.5 
Data w/o artifacts 83.3† 83.3 92.3 83.3 0.15 197.1 243.2 
Data w/o  artifacts  and outliers 92.3† 100 92.3 85.7 0.15 243.3 242.5 

LOO validation 

Raw data 69.6† 76.2 79.1 64.0 0.75 138.8 147.0 
Data w/o outliers 93.0† 95.2 95.4 90.9 0.18 107.9 141.6 
Data w/o artifacts 87.8† 85.7 95.4 90.0 0.16 100.9 140.8 
Data w/o  artifacts  and outliers 93.0† 95.2 95.4 90.9 0.14 116.4 155.5 

† F-measure (F-m) 

Fig. 11 – Representation of the evolution of the sensitivity and specificity 
performance metrics as a function of the adopted threshold for the 3W-DS test 
set (data w/o  artifacts  and outliers) 
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recorded as prodromal sensations (e.g. mild dizziness or 
nausea), which in an ambulatory setting might be ignored by 
the patients. 

An important characteristic of our method is the 
compromise between a high performance, supported by the 
high values of SE, SP and PPV (above 85%), and the low false 
positive rate per hour, in both validation and testing phases. 
This is essential in the ambulatory p-health setting, since it 
helps to avoid mistrust and compromised patient compliance 
due to false positive syncope detections. Moreover, the 

observed prediction times can give patients the ability to act 
appropriately, e.g. by performing PCMs or simply to sit/lay 
down avoiding a fall. PCMs act via the increase of 
sympathetic activity and vascular resistance to raise BP in 
order to avoid or to delay NMS. According to [44], the effects 
of PCMs such as the  hand grip maneuver were evident after 
the first 10s and showed significant BP increases after 2 min. 
Our results of prediction times ranging from 1 to 9 minutes 
might be helpful in an early execution of PCMs and therefore 
could facilitate the timely administration of effective 
interventions to prevent or delay NMS.  
3) Comparison with the state of the art

Performing a fair comparison between our method and the 
other state of the art methods is a challenging task, considering 
the heterogeneity of the experimental and test protocols, as 
well as differences in the populations’ demographics. 
However, keeping these topics in our consideration, the 
comparison and discussion of the methods prediction 
performance can still be accomplished. 

In Table VI we compare results achieved by our method 
and methods discussed in literature for real time prediction of 
NMS. Visibly, our method outperform the others in terms of 
SE, SP and PPV metrics, excluding the method proposed by 
Meyer et al. [27] (SE/SP/PPV: 100%), however this study was 
intended to show basic feasibility under ideal conditions using 
PAT with a small enrolled number of 14 patients only. 

Next to our method is the approach proposed by Virag et al. 
[22], which focused on the analysis of the HR and SBP trends. 
The results in this study present a similar performance (SE: 
95% and SP: 93%). Although no values were provided 
regarding the PPV and FPRh, the validation of the proposed 
method on a much larger population (1155 patients), suggests 
that the presented results are founded on strong statistics, 

Fig. 12 - HUTT of a 17-year-old patient with syncope after GTN 
administration. 

TABLE V. PERFORMANCE OF THE PROPOSED ALGORITHM USING THE LOO 
VALIDATION SCHEME FOR THE 43 PATIENTS 

Syncope Patient TP FP TN FN Prediction time (s) Prodomi (s)
No #05 0 0 1 0 - - 
Yes #07 1 0 1 0 82 218.1 
Yes #08 1 0 1 0 8 150.1 
Yes #09 1 0 1 0 62.5 98.2 
Yes #10 1 1 0 0 627.5 759.9 
No #11 0 0 1 0 - - 
Yes #12 1 0 1 0 36 92.7 
Yes #13 1 0 1 0 86 211.4 
No #14 0 0 1 0 - - 
Yes #15 1 0 1 0 65 92 
No #16 0 1 0 0 - - 
No #17 0 0 1 0 - - 
Yes #18 1 0 1 0 24 167 
No #20 0 0 1 0 - - 
No #21 0 0 1 0 - - 
Yes #24 1 0 1 0 71 48 
No #25 0 0 1 0 - - 
Yes #26 1 0 1 0 145 192 
No #27 0 0 1 0 - - 
No #28 0 0 1 0 - - 
No #29 0 0 1 0 - - 
No #30 0 0 1 0 - - 
No #31 0 0 1 0 - - 
No #32 0 0 1 0 - - 
Yes #33 0 0 1 1 - 368 
Yes #34 1 0 1 0 29.5 26 
Yes #36 1 0 1 0 61.5 50 
Yes #37 1 0 1 0 59,5 43 
No #38 0 0 1 0 - - 
Yes #39 1 0 1 0 66 43 
Yes #40 1 0 1 0 33 195 
No #41 0 0 1 0 - - 
Yes #42 1 0 1 0 50 53 
No #43 0 0 1 0 - - 
No #45 0 0 1 0 - - 
Yes #46 1 0 1 0 155 368 
No #48 0 0 1 0 - - 
No #49 1 0 1 0 24 30 
Yes #50 1 0 1 0 181 178 
Yes #53 0 0 1 0 - - 
No #54 0 0 1 0 - - 
No #55 0 0 1 0 - - 
Yes #56 1 0 1 0 461.5 495 

TABLE VI. PERFORMANCE OF THE ALGORITHMS PROPOSED IN LITERATURE FOR REAL TIME SYNCOPE PREDICTION 

Dataset 
SE 
AVG±STD 
(%) 

SP 
 avg±std 
(%) 

PPV 
avg±std 
(%) 

FPRh 
avg±std 
(h-1) 

PTime 
avg±std 
(s)

Modalities Number of
volunteers 

Virag et al. [22] 95 93 - - 128 ± 216 ECG/ABPW 1155 
Mereu et al. [23] 86.2 89.1 - - 44.1 ± 6.6 ECG/ABPW 145 
Eickolt et al. [26] 81 85 - - 203 ± 227s ECG/PPG 44 
Meyer et al. [27] 100 100 100 - 99 ± 108 ECG/PPG 14 
Muhlsteff et al. [25] 90.48 83.33 82.61 - 77.71 ± 71.78 ECG/PPG 43 
Proposed method* 95.2 95.4 90.9 0.14 116.4 ± 155.5 ECG/PPG 43 

* LOO validation; Data w/o  artifacts  and outliers
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which represents a great advantage compared to the other 
methods discussed before. Nonetheless, the dependence on the 
analysis of the arterial blood pressure waveform to assess the 
SBP trends is still a major disadvantage, since the current 
available sensors still present limitations regarding their long-
term applicability. The remaining algorithms proposed by 
Mereu et al. [23], Eickolt et al. [26] and Muehlsteff et al. [25] 
presented similar performances regarding the SE and SP 
metrics (above 80%). 

Considering the prediction time, Eickolt et al. [26] reported 
the best with 203±227s,  followed by Virag et al. [22] 
(128±216s) and than by our approach (116.4±155.5s). The 
lowest prediction time was achieved by Mereu et al. [23] with 
44.1 ± 6.6 s in advance of a syncope. 

E. Wearable sensors and real-life scenarios 
Our NMS prediction algorithm requires the ECG and PPG 

signals only, which can be easily acquired in real life. For that 
purpose, within the EU-funded “HeartCycle” project, a 
wearable monitoring system called “SENSATRON” has been 
developed. The “SENSATRON” is a multi-sensor device with 
a modular design, which can be easily adapted to home and 
clinical monitoring scenarios. The system can be easily 
integrated functional textiles [45], as shown in Fig. 13. Data 
are stored on an on-board memory card and/or can be 
wirelessly transmitted via Bluetooth to an external hub.  

This device features extended functionalities and acquires 
an ECG, an impedance cardiogram (ICG), near-infrared PPG, 
infrared PPG, thoracic inductive plethysmogram, skin 
temperature as well as sound signals from two thorax locations 
[46]. Additionally, up-to three 3-axis acceleration sensors at 
the thorax, arms or legs provide information on posture and 
movements. In fact, context information provided by the 
acceleration sensors will play a fundamental role in the 
translation of the proposed algorithm in real life setting, e.g. 
the detection of motion near the ECG electrodes and PPG 
sensor. This information can be used in the assistance of the 
proposed method to improve handling of PPG and ECG 
motion artifacts and increase the algorithm performance. 
Additionally, the detection of posture changes provide the 
temporal windows where orthostatic stabilization is achieved 
and which time windows shall be used for the normalization 
of the extracted features. Based on this context information, 
our algorithm is able to self-calibrate periodically without any 
human interventions. 

V. CONCLUSIONS AND FUTURE WORK 
In this work a real time algorithm for syncope prediction 

based on the evaluation of chronotropic (HR), inotropic 
(LVET) and vascular tone (SI, RI and PAT) parameters are 
presented. Features are derived by analysis of ECG and PPG 
signals only and were combined into a single distance 
measure. NMS was detected by an appropriately and robust 
threshold-based approach.  

The algorithm was trained and tested on a population of 43 
patients using a three-way data split validation scheme. A 
train/validation subset (30 patients) was used to select the 
most relevant and least redundant features, the most suitable 
distance metric and to define the optimal threshold for 
syncope prediction. The threshold was found using a 5-fold 
cross validation approach, repeated 20 times. The prediction 
capability of was evaluated in the test subset of 13 patients 
(SE: 100%; SP: 92.3%; PPV: 85.7%; FPRh: 0.15 h-1; aPTime: 
243.3s) and in all 43 patients using a leave one out cross 
validation scheme (SE: 95.2%; SP: 95.4%; PPV: 90.9%; 
FPRh: 0.14 h-1; aPTime: 116.4s). 

Our results highlight the potential importance of a 
combined analysis of the extracted parameters in the 
prediction of impending NMS. Additionally, we demonstrate 
the robustness of the algorithm approach against artifacts, 
which will be key feature to transfer our method into to 
ambulatory and p-health settings.  

Future work will focus on the adaptation and deployment of 
the proposed framework into a continuous monitoring (24/7) 
wearable system. Moreover, the validation of the algorithm in 
real life scenarios such as home care and ambulatory will be 
also under our concern. Finally, the improvement of the 
usability of the system and respective sensors will also be one 
of our primary interests.  
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Chapter 7.  
CONCLUSIONS AND FUTURE WORK 

To face the high human and social costs in the current health care systems, the paradigm of health 

care is undergoing profound changes, with an increased emphasis in personalized health monitoring 

and preventive care. However, the current standard techniques for assessment of the cardiovascular 

function and assistance in diagnosis of cardiovascular diseases, either lack in portability, are expensive 

and/or require the presence of a trained technician. This problematic is particularly important in elderly 

populations, where the personal health systems can bring a huge step forward in the diagnosis and 

management of cardiovascular diseases and, consequently, prevent further complications. Therefore, it 

is essential to provide new methodologies for the evaluation of the cardiovascular health, in a non-

invasive and continuous basis, capable of being applied to low cost and portable devices.  

Several cardiovascular parameters have been presented in the literature to monitor the cardiovascular 

health of an individual based on the analysis of the electrocardiogram (ECG) and photoplethysmogram 

(PPG). However, the robust and accurate assessment of these parameters greatly depends on the used 

modalities, methods, and physiological and surrounding contexts. One good example is the 

photoplethysmogram, which is highly susceptible to noise and motion artifacts contaminations. 

Therefore, the initial concern of the present thesis was the extraction of a reliable metric capable of 

discriminating the uncorrupted sections of the photoplethysmogram. Consequently, we focused on the 

assessment of cardiac function surrogates and in the extraction of blood pressure and vascular tone 

surrogates. Finally, the extracted cardiovascular function surrogates were applied to the prediction of 

syncope events (and more specifically neurally mediated syncope), which is on of the main causes of 

unwanted falls in the elderly. 

The first contribution of the present thesis was the development of an algorithm for the detection of 

motion artifacts in the photoplethysmogram. Although it is nearly ubiquitous in hospital settings and is 

widely used in anesthesia, surgical recovery and critical care, the photoplethysmogram can be highly 

prone to noise and motion artifacts, which represents a major obstacle in the assessment of valuable 

information. Despite the good results presented in the literature, none of the proposed motion artifacts 

detection methods was validated in patients with cardiovascular diseases. Moreover, it was still unclear 

what features best distinguish clean and corrupted PPG sections. Therefore, we proposed a new motion 

artifact detection method, which is based on the analysis of the time and period domain characteristics 

of the PPG. Several time and period domain features were assessed from the analysis of the PPG 

morphology and PPG period spectra. The best features were selected and used as inputs to a support 

vector machine (SVM) classification model. The results achieved by the proposed method show that 

the characteristics of period components of the PPG signal might be used as discriminative features for 

motion artifact detection. Moreover, the different performances of the proposed methods in the healthy 

and cardiovascular diseased patients suggest that the discrimination ability of the time and period 
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domain features depends on the physiological context, i.e., healthy or cardiovascular diseased. 

Finally, the proposed method is able to achieve a high accuracy regardless of the motion artifact source. 

The second contribution of the present thesis was the development of a method for the assessment of 

cardiovascular surrogates based on the decomposition of the PPG pulse into its forward and reflection 

waves, using a Multi-Gaussian (MG) model formulation. The main methods for the extraction of 

cardiovascular surrogates proposed in the literature are based on a multi-derivative analysis of the PPG 

pulse, which is known to lack robustness in the presence of seriously damped signals. Consequently, 

the correct identification of the PPG components can be compromised. Therefore, we proposed the 

extraction of the left ventricular ejection time based on the analysis of the systolic components rather 

than the whole PPG pulse. Additionally, we were also able to extract surrogates of blood pressure and 

vascular tone from the analysis of the morphology of the systolic and diastolic PPG pulse components. 

The extracted parameters were compared with the reference values LVET, blood pressure and total 

peripheral resistance, in healthy and cardiovascular diseased patients. The proposed method for LVET 

assessment was able to achieve better results than the methods presented in the literature, despite not 

presenting the best results in the cardiovascular diseased population. Moreover, the good correlation 

between the extracted surrogates and the reference parameters suggests that these indexes can provide 

valuable information about blood pressure and vascular tone changes, especially in patients presenting 

hemodynamic instability. 

The final contribution of the present thesis was the development of a novel algorithm for the 

prediction of neurally mediated syncope (NMS), employing cardiovascular parameters that characterize 

the chronotropic (HR), inotropic (left ventricular ejection time - LVET), vascular tone and blood 

pressure (PAT, stiffness index – SI – and reflection index - RI, respectively) changes underlying the 

mechanisms that trigger NMS. In order to get patient unspecific features, the extracted parameters were 

normalized regarding the patient orthostatic stable state. The best features were selected and used as 

inputs to a model that measures the distance to the stable state and a threshold-based approach was 

adopted to detect impending syncope. The results achieved by the proposed method evidences the 

importance of the combined analysis of multiple cardiovascular parameters in the prediction of NMS. 

Additionally, the good prediction time and the low false positive rate achieved by the proposed method 

are good indicators of the method robustness, which is a key aspect in its translation to ambulatory and 

p-health settings. 

In the future, the proposed NMS prediction method will be validated in a larger dataset also including 

signals collected by a wearable multi-sensor device developed within the HeartCycle project, called 

Sensatron.  

Furthermore, we will focus on the extraction of features that characterize the deregulation of the 

autonomic nervous system mechanisms during the development of NMS. Although it has been the 

focus of intensive research, we believe that the inclusion of features related to the autonomic 
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modulation will bring further improvments in the prediction capability of the proposed method. 

Therefore, we will start by applying frequency domain techniques to the analysis of the heart rate 

variability, such as the short time Fourier transform. Secondly, we will evaluate the ability of the 

extracted blood pressure surrogates to assess the baroreflex sensitivity (BRS). Despite the good results 

presented in the present thesis, the extracted blood pressure surrogates still exhibit some uncertainty 

(specially in seriously damped pulses), which may limit their application in the BRS assessment using 

time domain methods. Therefore, the use of frequency domain techniques might be the solution in the 

application of these surrogates to the assessment of BRS.  

Moreover, it would also be interesting to apply the developed methods to the arterial blood pressure 

waveform, since this waveform is less prone to artifacts and is much richer in what concerns to the 

morphological features. Thus, it would be expected to reduce the uncertainty of the extracted 

parameters and, therefore, achieve better results. Moreover, the use of this waveform could enable the 

extraction of a wider range of cardiovascular trends such as cardiac output changes. 

 


