
�������� ��	
���
��

Plasmid DNA Hydrogels for biomedical applications

Diana Costa, Artur J.M. Valente, M. Graça Miguel, João Queiroz

PII: S0001-8686(13)00091-2
DOI: doi: 10.1016/j.cis.2013.08.002
Reference: CIS 1299

To appear in: Advances in Colloid and Interface Science

Please cite this article as: Costa Diana, Valente Artur J.M., Miguel M. Graça, Queiroz
João, Plasmid DNA Hydrogels for biomedical applications, Advances in Colloid and Inter-
face Science (2013), doi: 10.1016/j.cis.2013.08.002

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.cis.2013.08.002
http://dx.doi.org/10.1016/j.cis.2013.08.002


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

 

Plasmid DNA Hydrogels for biomedical applications 

Diana Costa,
1 

Artur J. M. Valente,
2 

 M. Graça Miguel
2 

and João Queiroz
1  

1
 CICS - Centro de Investigação em Ciências da Saúde, Universidade da Beira 

Interior, 6201-001 Covilhã, Portugal 

2
 Department of Chemistry, University of Coimbra, Coimbra, Portugal   

 

Corresponding author:  

Diana Rita Barata Costa   

Universidade da Beira Interior  

 

6201-001 Covilhã 

Portugal 

E-mail address: dcosta@fcsaude.ubi.pt 

Key Words: plasmid DNA microgels; biocompatibility; pDNA delivery; drug delivery; 

co-delivery; in-vitro transfection.  

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 
 

 

Abstract    

In the last few years, our research group has focused on the design and development of 

plasmid DNA (pDNA) based systems as devices to be used therapeutically in the 

biomedical field. Biocompatible macro and micro plasmid DNA gels were prepared by 

a cross-linking reaction. For the first time, the pDNA gels have been investigated with 

respect to their swelling in aqueous solution containing different additives. Furthermore, 

we clarified the fundamental and basic aspects of the solute release mechanism from 

pDNA hydrogels and the significance of this information is enormous as a basic tool for 

the formulation of pDNA carriers for drug/gene delivery applications. The co-delivery 

of a specific gene and anticancer drugs, combining chemical and gene therapies in the 

treatment of cancer was the main challenge of our research. Significant progresses have 

been made with a new p53 encoding pDNA microgel that is suitable for the loading and 

release of pDNA and doxorubicin. This represents a strong valuable finding in the 

strategic development of systems to improve cancer cure through the synergetic effect 

of chemical and gene therapy. 
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Introduction   

The evolution in the design and preparation of hydrogels, namely at the micro and 

nanoscale, has a great deal of interest in biomaterials science because of their tunable 

chemical and physical three-dimensional structure, good mechanical properties, high 

water content and biocompatibility to tissue and blood.
1-6

 These characteristics give 

potential value for the use of hydrogels in biomedical implants, tissue engineering, 

bionanotechnology and drug/gene delivery.
7-11 

Concerning this last issue, a major 

research thrust in the biochemical/pharmaceutical technology is still the development of 

efficient and safe controlled release systems for the sustained delivery of drugs and 

bioactive agents. To be used therapeutically, these systems should be able to deliver the 

drug and/or gene at a specified rate and time period ensuring that the concentration of 

the biopharmaceutical in the body would be kept in the desirable range for a prolonged 

time. Additionally, the carrier can be targeted to a particular cell type or an organ;
12-14

 

not only protein drugs would benefit from a targeted delivery to their site of action, but 

also highly toxic ones such as anticancer drugs.
15-19

 The creation of polymer networks 

tailoring intrinsic properties, such as, ionization of the gel, the extent of swelling and its 

reversibility, and specific mesh size appears as a valuable tool in engineering 

appropriate release devices. Development of temperature-responsive hydrogels,
20,21

 pH-

responsive networks
22

 and glucose-responsive hydrogels
23,24 

were conceived to improve 

the field of sustained/controlled drug delivery. In order to enhance their practical 

efficacy in the biomedical area, mathematical models can be applied to correlate 

material properties, interaction parameters, kinetic events, and transport behaviour 

within complex hydrogel systems.
25-27 

Among the several physical/chemical properties 

of hydrogels that can be manipulated to ensure greater delivery performance, both the 

gel swelling and biodegradability are remarkable strategies. The swelling is restricted by 

the cross-linking density in the network and the deswelling by the volume occupied by 

the polymer network. There are several studies in the literature reporting the controlled 

release of drugs from biodegradable hydrogels,
28,29

 such as the release of recombinant 

human interleukin-2 from dextran-based hydrogels;
30 

similar dextran hydrogels were 

investigated as drug delivery devices for the posterior part of the eye.
31 

Moreover, the 

polymer hyaluronic acid (HA) was used to create a combination tissue engineering 

scaffold and protein delivery vehicle.
32 Recently, in situ forming biodegradable 

poly(ethylene glycol) based hydrogels were created for the time-controlled release of 
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tethered peptides or proteins
33

 and injectable biodegradable hydrogels were studied as 

vehicles for the release of anticancer drugs.
34 

Biodegradable hydrogels appears to be 

quite suitable for DNA release, once one can readily control the release rate by 

modulating the network structure with adjusting cross-linking density.
35,36 

  

The field of gene therapy, with either viral or synthetic vectors, attracts great and 

widespread interest, due to its technological challenging characteristics and for 

providing great opportunities for treating diseases due to genetic disorders, infections 

and cancer.
37 

The use of synthetic vectors is an incredible improvement and has many 

assets, such as, ease and variability of preparation; lack of immune response and 

unlimited DNA-carrying capacity.
38,39

 Controlled gene release ensures the increase of 

the extent and duration of transgene expression, reduced need for multiple interventions 

and lower toxicity to non-target cells.
40-47 

Applied to cancer treatment, gene therapy 

purposes using hydrogel devices bring impressive progresses feeding the hope of cancer 

cure.
48-52

 Several interesting studies reporting the efficiency of p53 gene cancer therapy 

are available in the literature.
53-58  

In line with this, and in an attempt to evolve in the 

cancer cure, a new strategy seems to be the combination of chemical and gene therapy 

improving the treatment efficacy due to their synergistic effect. Simultaneously with 

anticancer drugs, specific genes can be delivered to the same cancer cells to enhance 

sensitivity of targeted cells to drug, during all the treatment. Over the past decade, a few 

studies reporting the delivery of nucleic acids and drugs have been presented,
59-63

 

illustrating the advantage of its combined effect in medical care. This bifunctionality 

may represent an enormous advance in comparison to individual chemotherapy 

treatments and will, certainly, serve as a basis to improve cancer therapies. Recently, a 

new p53 encoding plasmid DNA (pDNA) microgel that is porous, biocompatible, and 

photodegradable, thus suitable for the loading and release of pDNA and, e.g., 

doxorubicin, an intrinsically fluorescent anticancer drug widely used in cancer 

treatment, has been developed.
64 

  

This review represents our contribution to the field of biomaterials design, and concerns 

the synthesis of new plasmid DNA vehicles with potential biomedical application. The 

interesting features found in the proposed systems ranged from responsive swelling 

properties, light triggered release profile and promising drug/gene co-delivery approach 

in cancer therapeutics.  
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Plasmid DNA gels formation and characterization  

In the last decade, we assisted to a growing knowledge in the scientific area dealing 

with delivery systems of nucleic acids. In an attempt to better understand DNA 

trafficking and expression, new strategies based on liposomal
65-73

 and polymeric
74-85 

formulations emerged for the efficient delivery of theses vectors toward cells. Our 

group focused on the synthesis of chemical pDNA based hydrogels by cross-linking 

reaction with ethylene glycol diglycidyl ether (EGDE). The reaction mechanism of gel 

formation seems to involve the guanine nitrogen atom at position seven (N-7), which 

attacks the more substituted carbon of the epoxide or the least hindered end of the 

epoxide. The reaction is of nucleophilic substitution type (SN2 reaction). All pDNA gels 

are clear and transparent (Figure 1). The knowledge of the equilibrium degree of 

swelling allows for the calculation of matrix structural parameters such as the distance 

between cross-links and the mesh size of the gel. Gels with different cross-linker 

densities were prepared.
86

 Following the method of determination described by Canal 

and Peppas,
87

 the mesh size has been determined.
88

 Information about the integrity of 

double helix of the DNA molecules in the gels was obtained by fluorescence 

microscopy using acridine orange (AO), as a dye.
89,90

 AO intercalates into double 

stranded DNA as a monomer, whereas it binds to the single stranded DNA 

conformational state as an aggregate. Upon excitation at 470 nm to 490 nm, the acridine 

orange monomeric form binds to ds-DNA and fluoresces green. The aggregated acridine 

orange on ss-DNA fluoresces red.
91 

Through the observation of green or red 

fluorescence, DNA fluorescence microscopy studies with AO have revealed the DNA 

conformational state in the gels. Figure 2 shows fluorescence micrograph (A) and 

scanning electron micrograph (B) of a plasmid DNA gel, respectively. Both images 

demonstrated that the gels show a porous and smooth surface. Fluorescence microscopy 

studies have also revealed that the formation of the gels was carried out with the 

conservation of plasmid DNA double helix integrity. Complementary, scanning electron 

micrographs allow to conclude that those gels show a three-dimensional coral-like 

spongy structure with small cavities confined by perforated membranes. Moreover, cell 

viability assays suggested that the pDNA gels are non-toxic to cells and this step 

contributes to the possibility of using them as carriers in real biological systems. As 

expected, toxicity increases with cross-linking density.
86 
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Swelling behaviour of Plasmid DNA gels  

In pure water, charged networks swell due to the osmotic pressure from the counterions, 

which originates from their translational entropy. The driving force of the swelling 

process is the presence of mobile osmotically active counterions. The volume changes 

of gels are associated with osmotic effects and not dehydration.
92-95

 The extent of the 

collapse is affected by molecular parameters of the network such as the cross-linking 

density, the hydrophobic/hydrophilic balance of the polymer network, its content of 

charged groups, its flexibility and its ability to interact with added solutes. In neat water, 

the degree of swelling for 0.2% EGDE plasmid DNA gels is considerably larger than 

that of corresponding 0.5% EGDE gels. A lower cross-linker density leads, as expected, 

to an increased swelling. An increase in the level of cross-linking agent leads to a larger 

resistance to the osmotic swelling force and thus to a reduced equilibrium swelling.
86  

Furthermore, the swelling behaviour of covalently cross-linked pDNA on addition of 

different cosolutes, which include inorganic salts with different cation valency, 

polyamines such as spermine and spermidine, cationic macromolecules such as 

lysozyme and chitosan, and different classes of surfactants was studied.
86  

On addition 

of a monovalent electrolyte, there is a progressive contraction of the gels. When gels, 

preswollen in the 1 mM NaOH, are placed into salt solutions at different concentrations, 

they shrink due to the screening effect of the salt and mainly due to the concentration 

difference of mobile ions inside the gel and the external solution governed by the 

Donnan equilibrium. In the presence of salt, the difference between ion concentrations 

inside and outside the gel is reduced. Consequently, the driving force of swelling 

decreases gradually with increasing salt concentration. In addition, Pourjavadi et al. 

recognized the lower absorbent capability of hydrogels in the presence of salts and 

proposed a parameter to measure the salt effect on the water absorbency capacity by 

correlating the hydrogel swelling in pure water and that in a salt aqueous solution.
96   

The nature of the monovalent counterion has only a moderate effect on the deswelling 

of plasmid DNA gels. The degree of collapse follows the order Na
+
 > K

+
 > Rb

+
 > Cs

+
, 

with the sodium ion showing the highest ability in collapsing pDNA gels.
86

 The order 

observed suggests that monovalent cations with a smaller ionic radius are more efficient 

in the collapse of pDNA gels. It is known that monovalent alkali cations are involved in 

the regulation of important biological processes and also influence the DNA compaction 
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in living cells. Compaction of DNA by monovalent cations alone does not occur but can 

be promoted by an increase in the concentration of monovalent salts.
97

 Studies of the 

influence of the cation nature on the ability to induce DNA compaction in solution have 

been performed.
98 

The deswelling on addition of the divalent salts CaCl2, MgCl2 and 

SrCl2 occurs at considerably lower salt concentrations and the deswelling appears to be 

more pronounced, as compared with the monovalent metal ions. The collapse ratios for 

these gels show a trend in the order CaCl2 > MgCl2 > SrCl2, with calcium being the 

most effective ion in collapsing plasmid DNA gels.
86 

Concerning the poly-cationic 

species chitosan, spermine (Spm), spermidine (Spd) and lysozyme, it was found that 

chitosan is the most efficient co-solute in promoting the gel collapse, followed by the 

polyamines and finally lysozyme. The different charges carried by these cationic species 

confer them characteristic swelling behaviour. The higher charge of spermine compared 

to spermidine evidently makes spermine bind more strongly to pDNA with a 

concomitant higher gel collapse potential. A considerably larger concentration of 

lysozyme was needed to reach a corresponding collapse of the gel, than for the other 

polycationic species. Lysozyme has a rather low density of surface charges, since the 

cationic groups are located among uncharged and anionic amino-acid residues on the 

protein surface. A contribution to the difference can also comes out from steric effects, 

i.e., a linear polymer penetrates more easily into the network than a globular one.   

In the bulk phase and at low concentrations, the surfactant molecules are dissolved as 

unimers, whereas at higher surfactant concentrations a self-assembly into aggregates 

occurs. For the single-chain surfactants, the aggregates formed in this self-assembly are 

commonly spherical micelles with micelle formation starting at a well-defined 

concentration, the critical micelle concentration (cmc).
99

 In the presence of an 

oppositely charged polyelectrolyte, the micelle formation of an ionic surfactant is 

strongly facilitated leading to a major lowering of the cmc.
100

 The stabilisation of 

micelles due to an oppositely charged polyelectrolyte is mainly an entropic effect, due 

to a release of counterions.
101-105

 As expected, the cationic surfactant binding is 

particularly strong for anionic polyelectrolytes of high charge density.
101 

The plasmid 

DNA gels are highly swollen due to the osmotic pressure arising from the counterions, 

which are confined to the gel. After the immersion of the swollen pDNA gels in the 

solutions of the oppositely charged surfactants, the surfactant ions migrate into the 

network and replace the network counterions, which are released. Adsorption of a 
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considerable amount of CnTA
+
 ions leads to a transition of the swollen network to the 

collapsed state. The main reason for this transition is thus the aggregation of surfactant 

ions within the pDNA gel due to hydrophobic interactions between their hydrocarbon 

chains.
 
As a consequence of this, the mobile counterion concentration in the network 

decreases, leading to a significant decrease in the internal osmotic pressure in the gel. 

Furthermore, the surfactant aggregates will act as multivalent counterions and by ion 

correlation effects contribute to the contraction of the gel. Figure 3 shows swelling 

isotherms for plasmid DNA gels on addition of a number of cationic surfactants. The 

surfactants have no effect at lower concentrations but there is a marked deswelling at 

higher concentrations, which becomes more important the longer the surfactant alkyl 

chain. The concentration of onset of deswelling varies by orders of magnitude between 

different surfactants; additionally, the plateau value obtained at high surfactant 

concentrations is lower by increasing the alkyl chain length.
86 

The pronounced chain 

length dependences directly suggest a dominant role of surfactant self-assembly. These 

results for the different alkyl chain lengths confirm that the deswelling occurs below the 

normal critical micelle concentration of the surfactant. The cmc values for C16TAB, 

C14TAB, C12TAB and C8TAB are 0.9 mM, 0.23 mM, 15 mM and 144 mM, 

respectively. We found that the surfactants induce the volume transition starting at a 

certain rather well-defined concentration, critical association concentration, cac ~ 0.015 

mM for C16TAB, cac ~ 0.045 mM for C14TAB, cac ~ 0.08 mM for C12TAB and cac ~ 1 

mM for C8TAB.
120 

Furthermore, the swelling of the gels appears to be reversible, as 

exemplified by the deswelling/swelling process induced by consecutive addition of 

cationic and anionic surfactant. The relative V/V0 returned to between 90 and 100% of 

the initial state. The interaction between the two surfactants is stronger than that 

between a cationic surfactant and plasmid DNA. The dynamic deswelling-swelling 

process could be useful in the control of the release rate of solutes from gels via “on-

off” switching.  

 

Light triggered release from Plasmid DNA gels  

Our expertise on the gel swelling behaviour, compaction of DNA by cationic entities, as 

lipids and surfactants as well as on the assembly structures of these complexes allow us 

for the development of novel systems to be used in a variety of biomedical 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

10 
 

 

applications.
36,86,106-113 

Once the physicochemical characterization of pDNA hydrogels 

has been established,
86

 we evolved to the challenge of using pDNA-based carriers in the 

biological area. During the research of pDNA gel as delivery system it was found that 

the pDNA network is photodegradable.
88

 The first evidence of gel degradation comes 

from the pDNA release after gels being irradiated with light. After irradiation, both gels 

with different degrees of crosslinking (0.2 % and 0.5 % ethylene glycol diglycidyl ether 

(EGDE)) suffered disruption leading to the release of plasmid DNA with time (Figure 

4). The release is characterized by a narrow time lag in the first 24 hours, after which 

the release gradually increases until a plateau is reached around 400 hours of 

photodegradation. The initial time lag, 18 and 23 hours for 0.2 % and 0.5 % EGDE gels 

respectively, may be related to the number of cross-links that have to be degraded to 

permit the release of plasmid DNA. After irradiation, and at maximum release, pDNA 

gels cross-linked with 0.2 % EGDE released 87.8 % of plasmid DNA while gels 

prepared from 0.5 % EGDE released 74.7 % of pDNA, in approximately 18 days. In the 

absence of ultraviolet light irradiation, and for both gel types, minimal amounts of 

pDNA, less than 8 %, are released. The degradation on ultraviolet light exposure 

(photo-oxidation) leads to the removal of the chemical cross-links and can allow the 

release of the constituent network polymer inducing changes in gel weight, mechanical 

properties, mesh size, porosity, and in the degree of swelling.
88 

 

In degradable gels, if the release of solutes is governed by polymer degradation, the 

degradation rate of the hydrogel must be matched to the size of the solute species. 

Moreover, control of variations with mesh size in time is crucial to design appropriate 

solute release devices. During hydrogel degradation, the water content tends to increase, 

increasing both the network mesh size and the volume swelling ratio and, consequently, 

the release of gel entrapped solutes is facilitated. To evaluate the dependence of the 

release rate on the size of an entrapped solute, lysozyme, BSA and FITC-dextran with 

molecular weights ranging from 14 100 to 77 000 Da, and the hydrodynamic radius 

being 16, 34.8 and 55 Å, respectively, were incorporated into 0.2 % and 0.5 % EGDE 

cross-linked pDNA gels.
88 

The effect of radiation, on the release profiles of these 

molecules is presented in Figure 5. From the release curves it is possible to infer that 

approximately 98.6 % of lysozyme, 94.9 % of BSA and 96.6 % of FITC-dextran are 

released in 48, 192 and 274 hours, respectively, from 0.2 % EGDE pDNA gels. 

Similarly, approximately 94.9 % of lysozyme, 93.1 % of BSA and 94.1 % of FITC-
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dextran are released in 72, 240 and 300 hours, respectively, from 0.5 % EGDE pDNA 

gels. In order to have a deep assessment on the release mechanism, the release kinetics 

has been fitted to Equations (1) and (2). Equation (1) is the simple power law 

Korsemeyer-Peppas equation
114

  

Ct/C∞ = kt
n
   (1) 

where Ct and C∞ are cumulative concentrations of the material released at time t and at 

infinite time, respectively, and k and n are fitting parameters, giving the later useful 

information on the release mechanism; for the release from cylinders (spheres/thin 

films), values of n near 0.45 (0.43/0.5) indicate a diffusion-controlled release (so-called 

Fickian). Non-Fickian behaviour is observed for 0.45 < n < 0.89 (0.43 < n < 0.85 / 0.5 < 

n < 1.0), with a limit of Case II (zero-order release) transports for n = 0.89. Non-Fickian 

and Case II transport are indicative of coupling of diffusional and relaxational 

mechanisms. Occasionally, values of n > 0.89 (0.85/1.0) has been observed and 

considered to be Super Case II kinetics.
114 

An empirical approach, which allows 

describing the entire set of the release data, is based on the Weibull function 

[1 exp( ' ) ]d

tC C k t      (2) 

where k’ and d are constants. Papadopoulou et al.
115

 have demonstrated that eq. (2) 

gives an insight into the diffusional mechanism, since the d and k’ are closely related to 

the mechanism and rate constant of release, respectively. For BSA and FITC-Dextran n 

values are higher than 0.89 indicating a Super Case II release phenomena. This is also 

confirmed by d (Eq. 2) values higher than 1.
88

 This mechanism emerges as the polymer 

resistance becomes more significant relative to the diffusion resistance; consequently, 

the release is linear at early times in the process, but at long time the release rate 

increases markedly. For the release of lysozyme, the analysis of the exponent d, 

suggests a Fickian release process. From the analysis of the release rate (k’) of 

lysozyme, BSA and FITC-dextran from pDNA gels with different degrees of cross-

linker we found that: a) k’ decrease by increasing the degree of cross-linker and, b) for 

both gels, k’ decreases from lysozyme to FITC-dextran by changing ca. two orders of 

magnitude.
88 

Additionaly, for both cross-linker densities pDNA gels there is a 

correlation between the gel mesh size and the solute size. Not only drug size is 
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important but also the mobility of polymer chains and the extent of swelling are factors 

that should be taken into account.
88  

 

To further demonstrate the sustained release characteristics of the pDNA gel system, 

release studies were evaluated in vitro using selected anti-inflammatory drugs 

(hydrocortisone, cortisone, prednisolone, dexamethasone and prednisone). Modelling of 

the in vitro release profile is consistent with a Super Case II release mechanism, related 

with increases in the gel swelling degree. Furthermore, the release of the anti-

inflammatory drugs depends on the balance between hydrodynamic volume and 

hydrophobicity and there is a correlation between drug release rate constant (k’) and the 

hydrophobicity as quantified by the octanol-water partition coefficient; a slow release 

rate was found for the more hydrophobic drugs.
88 

This shows that this biomaterial can 

be quite useful as a controlled release device for several therapeutic agents at wound 

sites.                                                    

Other authors took advantage of the photodegradable property to develop drug 

controlled release systems as valuable technology to be applied in the biomedical field. 

Han´s group designed photodegradable block copolymer micelles as nanocarrier for 

light-triggered release of guest molecules, which offers the remote-control possibility 

and enhances selectivity.
116

 Other strategy with diblock copolymers has been used to 

promote in vitro photo-controlled drug delivery.
117

 Fairbanks et al. synthesized 

hydrogels for the delivery of therapeutic agents as well as the study and manipulation of 

biological processes and tissue development. These gels are photodegradable and 

photoadaptable.
118

 In a study using polyurethane based nanoparticles, it was 

demonstrated the promising way to trigger drug release in cells.
119

 Considering that a 

deep penetration of nanosystems in tumors is required to increase its therapeutic value 

Tong and co-workers reported a novel photoswitchable carrier that provides 

spatiotemporal control of drug release and enhanced tissue penetration.
120 

 In the same 

issue, photodegradable macromers and hydrogels allow for live cell encapsulation and 

release.
121 

Furtehrmore, for the first time the synthesis of photoresponsive polypeptide-

based block copolymers has been established adding new possibilities in 

nanomedicine.
122
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A therapeutical strategy based on drug/gene co-delivery  

Innovative strategies in cancer treatments can combine conventional approaches, as 

radiotherapy and chemotherapy, with the emerging gene therapy modality improving 

clinical achievements.
123,124

 Following this concept, we created a pDNA based system 

for the sustainable delivery of anticancer drugs and genes to cancer cells. The tumor 

suppressor gene p53 was efficiently encapsulated into biocompatible microgels by an 

inverse microemulsion polymerization method using ethylene glycol diglycidyl ether 

(EGDE) as cross-linker.
64

 (Figure 6) For 0.1% EGDE microgels, the diameter of 

spheres range from 0.5 to 2 μm; by increasing the cross-linker concentration, the size of 

spheres range from 1 to 5 μm, showing a higher heterogenous size distribution.
64

 High 

p53 encapsulation efficiencies were obtained. Moreover, it was demonstrated that the 

microgel structure protect the encapsulated pDNA against serum nucleases, which is an 

important issue affecting both pDNA stability and transfection efficiency.   

Doxorubicin (DOX) has been incorporated into pDNA gels by imbibition and, along 

with p53 gene, can be loaded and release from microgels; quite relevant is also the less 

toxic effect of the incorporated drug, as compared with naked DOX. Photodisruption of 

microgels can be used as a strategy to enhance release. Through a quantitative analysis 

using appropriate release models we found that the pDNA release follows a Super-Case 

II transport mechanism, while the doxorubicin is Fickian when the microgels were light 

irradiated.
64 

Furthermore it is worth noticing that the mean dissolution time
125

 of DOX, 

from irradiated pDNA microgels, is around 50 hours. Before being used in transfection 

studies, the pDNA microgels were irradiated with light (400 nm), in order to promote 

the microgel photodisruption and consequent release of pDNA. The p53 protein content 

has been determined by using the p53 pan-Elisa kit. This assay for the quantification of 

wild-type and mutant p53 is based on a quantitative sandwich Elisa principle. Figure 7 

presents the relative quantification of p53 protein expression in cancer HeLa cells 

transfected with 0.1% and 0.2% EGDE pDNA microgels, as a function of initial pDNA 

loading amount. We stated that 0.1% EGDE microgels are able to surpass the cellular 

barrier and release bioactive pDNA into the cytosol. The barrier of the nucleus is 

permeable to foreign pDNA only during cell division; the high rate of tumour cell 

division, probably, enhances transfection and gene expression. Contrary, for the most 

cross-linked pDNA vector the success of transfection is very limited since the 
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quantified p53 density is not significant. For this situation, contributes the mean 

diameter of 0.2% pDNA microgels which is too large for efficient intracellular uptake 

and internalization.
64

 It becomes clear the relevance of vector properties such as, size, 

cross-linker density and pDNA loading in the success of transfection process, of which, 

size seems to be the most important of all. Thus, the less cross-linked microgel carrier is 

more suitable for gene delivery applications since it demonstrates a good biological 

functionality for pDNA loading and in vitro gene expression. Additionally, a study 

using YOYO labelled p53 microgels illustrates the advantage of p53 encapsulation, as 

well as, the cell uptake/transfection efficiency of this pDNA carrier.
126

 

Cancer cells are usually quite resistant to apoptosis and the mechanisms underlying this 

resistance still remain, in most of the cases, unclear. The mitochondrial activity assay, 

MTT, is one of the few tools used to monitor apoptosis that provides quantitative rather 

than qualitative results. To evaluate the inhibition of cell viability and induced cell 

apoptosis by the pDNA studied systems, MTT assay was applied to Hela cells treated 

with naked pDNA, 0.1% EGDE pDNA-lipofectamine microgel or 0.1% EGDE 

pDNA/DOX-lipofectamine microgel (Figure 8).
126

 It is quite evident, from our studies, 

that the application of naked pDNA is not successful in grow inhibition or death of Hela 

cells. When cancer cells are exposed to p53 encoding plasmid DNA microgels a cell 

viability inhibition effect is observed; viable cells gradually decrease with transfection 

time, with a major lowering of 23% from day 4 to 6. This clearly indicates the 

expression of the p53 gene and its regulatory role associated with damaged DNA; the 

introduction of p53 into tumor cells leads to cell apoptosis. Compared with the 

treatments of p53 microgel and free drug separately, the simultaneous treatment by p53 

and DOX with the pDNA/drug microgel has a stronger effect in reducing cell viability. 

Co-delivery of gene and drug to the same cells results in efficient cell inhibition and 

larger apoptosis, and thus p53/DOX microgels are able to effectively mediate gene 

transfection and drug release enhancing curing effect. The dual delivery vehicle exhibits 

lower percentage of viable Hela cells, illustrating the achievement of clear synergistic 

effect in suppressing the proliferation of tumor cells when compared to individual 

treatments of encapsulated p53 and pure DOX.
126

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

15 
 

 

Conclusions and future trends   

In this review, we have summarized the progresses achieved by our research team in the 

biomedical field by using plasmid DNA based systems. This is our contribution to the 

advance in engineering cross-linked networks with suitable intrinsic properties for 

studying plasmid DNA/co-solutes interaction, in general, and for the dual delivery of 

genes and drugs. These pDNA gel carriers can found interesting applications as 

biomedical devices in a variety of clinical purposes. Although there has been a lot of 

significant work developed, in the last decades, aiming the targeted and controlled 

release of plasmid DNA there are still many issues to address, namely target the 

delivery of these vehicles to specific organs, tissues and cells. The future of colloidal 

research holds for the development of novel innovative matrices with controlling 

mechanical viscoelastic properties, versatile swelling performance, size and internal 

organization, triggered degradation behaviour, as well as for enhancing their biological 

interactions with body components to design and tailor appropriate devices to be used 

therapeutically. Furthermore, a continuous search for understanding the role of 

amphiphilic compounds, salts, proteins and polyelectrolytes in gel swelling behaviour is 

imperative to enhance network functionality, in order to design hydrogel delivery 

systems with control/targeted release profiles. This will, certainly, increase the efficacy 

within current gene therapy trials and it may also be extended to other areas such as 

drug delivery, scaffolds production and tissue engineering. Additionally, the efforts in 

molecular-scale design and in theoretical modelling will, certainly, make the use of 

hydrogels in the biomedical field more feasible and promising. 
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Figure Captions   
 

Figure 1. Picture of plasmid DNA gels cross-linked with 0.2% EGDE.   

Figure 2. Fluorescence micrograph of a plasmid DNA gel (0.2% cross-linker), 

exhibiting a double stranded conformation (A) and scanning electron micrograph of a 

freeze-dried plasmid DNA gel (0.2% cross-linker) (B).     

Figure 3. Swelling isotherms (V/V0) for plasmid DNA gels (0.2% cross-linker) 

immersed in solutions of the cationic surfactants C16TAB, C14TAB, C12TAB and 

C8TAB. Temperature 25ºC, pH 8.5. Adapted from Reference 86.  

Figure 4. Cumulative release of pDNA from cross-linked pDNA gels with 0.2 % () 

and 0.5 % (▲) (w/v) EGDE, as a function of time. Studies were performed after the 

irradiation of gels with light (400 nm) (A) and in the dark conditions (B). Adapted from 

Reference 88.   

Figure 5. Cumulative release of lysozyme, BSA and FITC-dextran from 0.2 % EGDE 

and 0.5 % EGDE plasmid DNA gels as a function of time, and as a function of 0.2 % 

EGDE gel mesh size when gels were irradiated with light (400 nm). Solid lines 

correspond to the best fits of experimental data to equation (2). Adapted from Reference 

88.    

Figure 6. Scanning electron micrograph of plasmid DNA microgels cross-linked with 

0.1% (w/v) EGDE (A) and 0.2% (w/v) EGDE (B). Adapted from Reference 64.    

Figure 7. Quantification of p53 protein expression in cancer HeLa cells using a pan-p53 

Elisa kit, for 0.1 % and 0.2 % (w/v) EGDE cross-linked pDNA microgels (4 or 6 μg/ml 

pDNA loading). The data were obtained by calculating the average of 3 independent 

experiments. The respective errors were determined and were below 0.05 %. Adapted 

from Reference 126.  

Figure 8. Viability of Hela cells after transfection with naked pDNA (6.0 μg/ml) (A), 

0.1% (w/v) EGDE pDNA-lipofectamine microgel (B) or 0.1% (w/v) EGDE 

pDNA/DOX-lipofectamine microgel (C) after 1, 2, 4, 6 and 8 days measured by MTT 

assay. Percent viability is expressed relative to control cells. The data were obtained by 

calculating the average of 3 experiments. The respective errors were determined and 

were below 0.05%.  Adapted from Reference 126. 
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Highlights  

 

∙ Biocompatible macro and micro plasmid DNA gels were prepared by a cross-linking reaction 

for biomedical use.  

 

∙ For the first time, the pDNA gels have been investigated with respect to their swelling 

behaviour in the present of additives; from this, the nature of the interactions can be inferred.     

 

∙ The pDNA based carriers can simultaneously load and release genes and anticancer drugs, 

upon photodegradation, in a controlled and sustained manner.    

 

∙ The combination of chemical and gene therapies has a strong effect in cancer cell apoptosis 

and tumour suppression.  

 

∙ Our cancer therapy approach will inspire researchers to design and develop efficient systems 

for drug/gene co-delivery aiming the challenging cancer cure. 

 

 

 

 

 


