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Abstract 

Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly. 

Alterations capable of causing brain circuitry dysfunctions in AD may take several 

years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the 

molecular events that lead to progressive loss of function and eventually to 

neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate 

(NMDA) receptors (NMDARs) activation has been recently implicated in AD-related 

synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission 

impairment and the changes in NMDAR regulation in AD, following the description on 

the role and location of NMDARs at pre- and post-synaptic sites under physiological 

conditions. In addition, considering that there is currently no effective ways to cure AD 

or stop its progression, we further discuss the relevance of NMDARs antagonists to 

prevent AD symptomatology. This review posits additional information on the role 

played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse 

in early asymptomatic and possible reversible stages of the disease through preventive 

and/or disease-modifying therapeutic strategies. 

 

 

Keywords: Alzheimer’s disease; amyloid-beta peptide; synaptic dysfunction; NMDA 

receptors; GluN2A and GluN2B subunits; tripartite synapse 
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1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia and the most 

prevalent neurodegenerative disease in the elderly population, affecting almost 40 

million people worldwide. AD progression has been associated with a gradual damage 

in function and structure in the hippocampus and neocortex, the vulnerable brain areas 

used for memory and cognition. AD is characterized by synaptic loss, abnormal 

amyloid-beta peptide (Aβ) processing of Aβ precursor protein (APP) and 

hyperphosphorylation of tau, a microtubule associated protein. High levels of 

intracellular Aβ and the accumulation of the secreted form are believed to be central 

causative factors for AD (reviewed by Ferreira et al., 2010). Tau was shown to interact 

with APP both in vitro and in vivo (Barbato et al., 2005) and Aβ1-42 aggregates promote 

in vitro tau aggregation in a dose-dependent manner (Rank et al., 2002), suggesting a 

direct link between senile plaques and neurofibrillary tangles in AD. 

AD has been associated with an impairment of cholinergic terminals, which appear 

largely vulnerable, followed by glutamatergic terminal dysfunction and finally by the 

lesion of the somewhat more resilient GABAergic terminals (Bell and Claudio, 2006). 

The fact that glutamate is the principal excitatory neurotransmitter in the brain areas 

mainly affected in AD is in accordance with the impairment in glutamate 

neurotransmission that occurs in this disease. Thus, the ionotropic glutamate receptor 

subtype N-methyl-D-aspartate (NMDA) (described in section 3) has been implicated in 

memory function and is believed to be involved in AD progression. In fact, recent 

findings posit that Aβ induces an increase in cytosolic calcium levels that may underlie 

mitochondrial calcium dyshomeostasis and ultimately damage the neurons, namely by 

activating NMDA receptors (NMDARs) (reviewed by Ferreira et al., 2010). 
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2. Synaptic dysfunction in AD  

In its most incipient clinical form, early symptoms of AD like confusion and loss of 

episodic and working memory can be postulated to be due to network disconnections 

produced by oligomeric forms of Aβ (reviewed by Selkoe, 2002). Concordantly, 

synaptic dysfunction was observed in Tg2576 mice presenting early increased Aβ 

levels (Calkins et al., 2011;Tamagnini et al., 2012).  

Synapses are the fundamental units of information transfer and storage in the brain, 

composed of pre- and postsynaptic compartments. Synapse transmission, or 

neurotransmission, consists in the release of neurotransmitters, which in turn bind and 

activate receptors located at postsynaptic or presynaptic sites. The role of glial cells 

has been also recognized, giving rise to the concept of a tripartite synapse organization 

(Figure 1). In fact, astrocytes may respond to neuronal activity through an elevation of 

internal Ca2+ concentration, which further leads to the release of neurotransmitters able 

to cause feedback regulation of neuronal activity and synaptic efficacy (Araque et al., 

1999). Thus, neurotransmission implicates functional pre- and post-synaptic sites, as 

well as operational astrocytes.  

Functional synapses require active mitochondria, which are mainly involved in the 

generation of energy (ATP and NAD+), regulation of cell signaling and calcium 

homeostasis. It was reported that synaptic mitochondria are more susceptible to Ca2+ 

overload than nonsynaptic mitochondria (Brown et al., 2006). Accordingly, Du and 

colleagues (2010) identified differences in synaptic versus nonsynaptic mitochondrial 

properties and function of mitochondrial populations isolated from AD transgenic mice 

brain overexpressing the human mutant form of APP and Aβ (Du et al., 2010). In this 

study, synaptic mitochondria from young transgenic mice showed an increase in Aβ 

accumulation, increased mitochondrial permeability transition, a decline in both 

respiratory function and activity of cytochrome c oxidase, as well as increased 
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mitochondrial oxidative stress. In AD patients, oxidative stress markers were 

demonstrated to correlate with Mini-Mental Status Examination scores; importantly, 

oxidative stress was more localized to the synapses, with levels increasing in a 

disease-dependent manner (Ansari and Scheff, 2010). However, recent findings 

showed that intrinsic bioenergetic capacities, including respiration, calcium handling, 

and transmembrane potentials were maintained in presynaptic nerve terminals isolated 

from different symptomatic AD mouse models (J20, Tg2576, and APP/PS), when 

compared with age-matched controls (Choi et al., 2012). 

 

2.1. Aβ at presynaptic level and glial cells 

Recent studies link the defects in function of presynaptic boutons associated with 

presynaptic protein dysfunction to the etiology of several neurodevelopment and 

neurodegenerative diseases, including AD (reviewed by Waites and Garner, 2011). On 

the other hand, Aβ may exert a physiological function at the presynaptic terminal, as 

the peptide may be essential for neurotransmitter release (Puzzo et al., 2011). 

Nevertheless, a brief exposure to a very low concentration of Aβ resulted in impairment 

of long term potentiation (LTP) produced by pre-synaptic defects (Russell et al., 2012). 

Morphological and biochemical synaptic changes associated with aging may contribute 

to exacerbate the damaging effects of Aβ, particularly at presynaptic level (Quiroz-Baez 

et al., 2013), suggesting that Aβ oligomers can cause presynaptic dysfunction. 

According to these authors, synaptic terminals obtained from aged rats were shown to 

be more sensitive to Aβ toxicity, evidencing an age-related decline in mitochondrial 

activity, reduced antioxidant contents and increased oxidative stress markers in both 

resting and depolarized conditions. In addition, ultrastructural changes including 

increased mitochondrial size and a significant reduction of synaptic vesicles contents 
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were also observed in presynaptic nerve endings from rat hippocampus exposed to Aβ 

at different ages (Quiroz-Baez et al., 2013).  

Aβ was also shown to inhibit presynaptic P/Q Ca2+ channels, suppressing spontaneous 

synaptic activity (Mezler et al., 2012;Nimmrich et al., 2008), along with the activation of 

presynaptic α7-nicotinic acetylcholine (ACh) receptors (Dougherty et al., 2003). More 

recently, Aβ was reported to directly modulate recombinant P/Q-type and also N-type 

Ca2+ channels in HEK293 cells and blockade of presynaptic Ca2+ channels reversed 

Aβ-induced functional deficits in synaptic transmission (Hermann et al., 2013). 

Moreover, synthetic Aβ peptide species were also shown to potentiate K+-induced 

glutamate release from normal rodent hippocampus (Kabogo et al., 2010). 

Deleterious effects of Aβ oligomers were shown to be present on multiple steps of 

synaptic vesicle trafficking (Park et al., 2013). Synaptic vesicle pool is composed by 

recycling and resting pools, the former including a readily-releasable pool and reserve 

pool; indeed, the size of the recycling pool and its regeneration kinetics are important 

factors for the efficacy of synaptic function. Endogenous Aβ peptides appear to have a 

crucial role in activity-dependent regulation of synaptic vesicle release, pointing out for 

the primary pathological events that lead to compensatory synapse loss in AD 

(Abramov et al., 2009). Accordingly, acute treatment of cultured rat hippocampal 

neurons with Aβ oligomers was very recently shown to reduce the recycling pool, 

increase the resting pool of synaptic vesicles, decrease vesicle endocytosis and 

regeneration, and to increase the release probability of the readily-releasable pool, 

while its recovery was shown to be delayed, leading to a weaken synaptic transmission 

(Park et al., 2013). Interestingly, these effects were dependent on Aβ, since they were 

prevented by an antibody against Aβ. Moreover, reduction of the pool size was 

prevented by calpain or CDK5 inhibitors, while the defects in endocytosis were averted 

following overexpression of phosphatidylinositol-4-phosphate-5-kinase type I-γ, 

indicating that these two downstream pathways are involved in Aβ oligomers-induced 
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presynaptic dysfunction (Park et al., 2013). In addition, it was also demonstrated that 

Aβ reduced the magnitude of exocytosis and that the remaining synaptic vesicles 

displayed a much slower speed of endocytosis, thus inhibiting presynaptic function 

(Parodi et al., 2010). By using electron microscopy, these authors also reported that 

Aβ-treated neurons displayed reduced number of synaptic vesicles, especially those 

near the presynaptic active zones and a reduction in several presynaptic proteins 

(Parodi et al., 2010). Accordingly, presynaptic proteins such as SNAP-25, 

synaptophysin, and synaptotagmin were reduced in brains of patients with AD (Reddy 

et al., 2005) and in the hippocampus of Tg2576 mice 1 month after injection of Aβ into 

the third ventricle (Chauhan and Siegel, 2002). Recent findings by Russel and co-

authors (2012) evidenced a time-dependent interaction of Aβ with synaptophysin in 

presynaptic terminals of hippocampal neurons. Furthermore, Aβ disrupted the complex 

formed by synaptophysin and another vesicle associated protein, VAMP2, increasing 

the amount of primed vesicles and exocytosis; electrophysiology recordings in 

hippocampal brain slices confirmed that Aβ affects baseline neurotransmission (Russell 

et al., 2012). Additionally, Aβ oligomers can alter dynamin-1, a neuron-specific GTPase 

that pinches off synaptic vesicles, allowing them to re-enter the synaptic vesicle pool 

(Kelly et al., 2005;Kelly and Ferreira, 2006). 

In the synaptic cleft, clearance of glutamate occurs by glutamate transporters localized 

in both pre-synaptic terminals and also in astrocytes (Figure 1), precluding in this way 

the deleterious effects exerted by glutamate, namely excitotoxicity. Aβ can disrupt 

astrocytic calcium signaling and gliotransmitter release, which are vital processes for 

astrocyte-neuron communication (reviewed by Vincent et al., 2010). The sporadic form 

of AD seems also to be due to dysfunctional glutamate clearance. In this context Aβ1-42 

can downregulate the astrocytic glutamate uptake capacity (Matos et al., 2008), 

promoting glutamate receptor activation (Figure 1). More recently, these authors 

demonstrated that Aβ decreased GLAST and GLT-I expression in astrocytes from wild 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

type, but not from A(2A)R (adenosine 2A receptor) knockout mice, known to modulate 

astrocytic glutamate uptake. This impact of Aβ on glutamate transporters and uptake 

was also confirmed in an ex vivo astrocyte preparation (gliosomes) from rats 

intracerebroventricularly injected with Aβ1-42 (Matos et al., 2012).  

Upon exposure to Aβ, astrocytes and microglia become activated, extending their 

hypertrophic processes to physically separate the neurons from Aβ fibrils, thus playing 

a neuroprotective role. Despite some controversy, there are also evidences that 

astrocytes can bind and take up Aβ in processes involving different internalization 

pathways, including scavenger receptors (reviewed by Mohamed and Posse de, 2011), 

suggesting a role in Aβ accumulation and clearance. Accordingly, it was previously 

shown that microglia facilitates the conversion of soluble and oligomeric Aβ to the 

fibrillar form within invaginations in the surface of the plasma membrane; this highlights 

the potential benefit of blocking the initial intracellular accumulation of Aβ in neurons 

and astrocytes, and of inhibiting microglia-mediated assembly of fibrillar Aβ, which is 

particularly resistant to degradation in AD brain (Nagele et al., 2004). In a very recent 

study, temporal cortex of AD patients showed a high number of GFAP+ astrocytes and 

MHC2+ microglia, compared with non-demented subjects; however, similar numbers of 

total astrocytes and microglia were observed and remained constant over the clinical 

course of the disease, suggesting that phenotypic change of existing glial cells, rather 

than a marked proliferation of glial precursors, accounts for by the majority of glial 

responses observed in the AD brain (Serrano-Pozo et al., 2013).  

 

3. NMDA receptors 

3.1. GluN2A and GluN2B expression and regulation 

NMDARs are cationic channels gated by the neurotransmitter glutamate, having critical 

roles in excitatory synaptic transmission, plasticity as well as in excitotoxicity in the 

central nervous system (CNS). NMDAR subunits are encoded by three families of 
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genes coding for GluN1, GluN2 and GluN3 subunits (Cull-Candy et al., 2001). 

Functional NMDARs are heterotetramers composed of two glycine or D-serine-binding 

GluN1 subunits and two glutamate-binding GluN2 (GluN2A-D) subunits or, in some 

cases, glycine-binding GluN3 (GluN3A/B) subunits (Kohr, 2006). Activation of NMDARs 

leads to cytosolic free intracellular calcium (Ca2+
i) increase (MacDermott et al., 1986) 

required for LTP and long-term depression (LTD) (Muller et al., 2009;Fetterolf and 

Foster, 2011) and, more generally, for synaptic plasticity (MacDonald et al., 2006;Lau 

et al., 2009). The most widely expressed NMDARs contain the obligatory subunit 

GluN1 plus either GluN2B or GluN2A or a mixture of the two; therefore, in next sections 

we will focus on these two subunits.  

All NMDARs subunits share a common membrane topology, consisting of three 

transmembrane segments and a re-entrant pore-loop. Despite structural similarities, 

there are pharmacological differences between NMDAR subunits. Endogenous Mg2+ 

and MK-801 are channel blockers and D-APV is a competitive antagonist that inhibits 

NMDARs non-selectively, whereas the GluN2A subunit is antagonized by the 

competitive antagonist NVP-AAM077, which was further demonstrated to have a better 

selectivity for the GluN2D subunit; the GluN2B subunit is also selectively blocked by 

the non-competitive antagonists ifenprodil and Ro 25-6981, among others (reviewed by 

Ogden and Traynelis, 2011). Recently, TCN201 was described as a potent GluN2A 

antagonist but dependent on the GluN1 co-agonist concentration (Edman et al., 2012). 

Expression of different NMDAR subunits differs along different brain areas and during 

development. GluN1 mRNA expression represents 67-88% of the total subunit gene 

expression in the brain (Goebel and Poosch, 1999). In the rat fetal brain, GluN1 as well 

as GluN2A subunits are mildly expressed in restricted areas such as the temporal 

region of the cerebral cortex and the hippocampus, and become widely expressed 

throughout the whole brain in neonates (Takai et al., 2003). On the other hand, GluN2B 

subunit, which is mildly expressed in hippocampus and temporal cortex in fetal brain, 
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becomes hardly expressed in the neonatal brain after 7 days of life, being absent from 

the brain stem (Takai et al., 2003). In humans, GluN1 levels are low in embryonic 

prefrontal cortex and increases after birth (Henson et al., 2008), remaining constant 

with age in whole brain (Law et al., 2003). Moreover, expression of GluN2B mRNA is 

higher in the neonate than in older brains, whereas GluN2A mRNA remains constant 

after birth, leading to an age-related increase in GluN2A/2B transcript ratio (Law et al., 

2003). It is believed that the pre- and postnatal progressive changes in subunit 

expression could contribute to the variation in NMDARs-mediated synaptic plasticity 

during development. Interestingly, GluN2B subunit levels are reduced in old mouse 

frontal cortex, suggesting alterations in memory processes during aging (Kuehl-Kovarik 

et al., 2000). 

Regulation of NMDARs function is a complex process involving numerous proteins in 

the cell, particularly a variety of protein kinases. Phosphorylation of GluN2B Tyr1472 

enhances NMDARs activity by increasing its number at the synaptic membrane 

(Goebel et al., 2005;Goebel-Goody et al., 2009). Tyrosine kinase Src, as well as Fyn 

kinase, are involved in the upregulation of GluN2B-containing NMDARs at the surface 

of the plasma membrane by phosphorylation of Tyr1472 (Sinai et al., 2010;Xu et al., 

2006) (Figure 2). On the contrary, the tyrosine phosphatase striatal enriched protein 

(STEP61) leads to decrease of GluN1/GluN2B receptor complexes from the neuronal 

surface by dephosphorylating the Tyr1472 residue (Kurup et al., 2010). In the same 

way, GluN2B phosphorylation of Ser1480 by casein kinase 2 (CK2) disrupts the 

interaction of GluN2B with the scaffold protein post-synaptic density 95 (PSD-95) and 

synaptic-associated protein 102 (SAP102), two proteins involved in the anchorage of 

NMDAR to the synaptic membrane, and decreases its surface expression in neurons 

(Chung et al., 2004). On the other hand, decreased synaptic GluN2B leads to an 

increase in synaptic GluN2A expression (Sanz-Clemente et al., 2010). Moreover, other 

post-translational modifications have been implicated in synaptic NMDAR activity 
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regulation; e.g. S-nitrosylation of NMDARs leads to a decrease in channel opening, 

modulating NMDARs activity (Lipton et al., 1998;Kim et al., 1999). 

Importantly, there are other types of NMDAR regulation not involving post-translational 

modifications. The calcium-dependent protease calpain downregulates NMDARs 

function through degradation of GluN2A and GluN2B subunits (Wu et al., 2005). The 

Wnt pathway can also be involved in the regulation of NMDARs function in later stages 

of development; in fact, Wnt ligands are necessary to maintain basal levels of NMDARs 

synaptic transmission and Wnt5 specifically up-regulates synaptic NMDAR currents in 

rat hippocampal slices (Cerpa et al., 2011). More recently, it has been demonstrated 

that the glutamate metabotropic receptor mGluR7 reduces the association of NMDARs 

with PSD-95, and the consequent surface level of NMDARs, in an actin-dependent 

manner (Gu et al., 2012). Evidences for cytoskeletal and plasma membrane 

involvement in NMDARs regulation are numerous and affect NMDAR presence at the 

synapse. The membrane phospholipid phosphatidylinositol bisphosphate (PIP2) is 

important for the maintenance of NMDARs at the cell surface (Mandal and Yan, 2009). 

Blocking PIP2 reduces NMDAR-mediated currents, whereas application of PIP2 

enhances these currents (Mandal and Yan, 2009). Moreover, cofilin, an actin 

depolymerizing factor which links actin and PIP2 is required for NMDARs regulation, 

suggesting that a decrease in PIP2 leads to cofilin release and actin depolymerization, 

which in turn promotes NMDARs internalization (Mandal and Yan, 2009). Active 

myosin light chain kinase enhances NMDARs-mediated whole-cell and synaptic 

currents, increasing actin-myosin contractility, which leads to increased membrane 

tension on NMDARs or to altered physical relationships between NMDAR anchored 

proteins, such as PSD-95 (Kornau et al., 1995) and cytoskeleton (Lei et al., 2001). 

PSD-95 is linked indirectly to cortactin, a protein that promotes actin polymerization, by 

a succession of linker proteins (Figure 2). Thus, NMDARs are indirectly linked to actin 

cytoskeleton indicating that cytoskeleton alterations may affect NMDARs surface 

availability. Indeed, binding of reelin, a secreted glycoprotein involved in synaptic 
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plasticity, to its receptors ApoER2 (apolipoprotein E receptor 2) or VLDLR (very low 

density lipoprotein receptor) triggers Dab1 phosphorylation and activation, which 

further leads to actin polymerization (Suetsugu et al., 2004) (Figure 2). Moreover, 

Dab1 activation induces Src phosphorylation (Ballif et al., 2003;Bock and Herz, 2003) 

and increases NMDARs activity (Chen et al., 2005) (Figure 2). Therefore, reelin 

inhibition was shown to decrease GluN2B subunit availability at the synapse (Groc et 

al., 2007). 

 

3.2. Synaptic and extrasynaptic localization and activation of NMDARs 

NMDARs subunits differ not only in temporal expression, as described above, but also 

in cellular localization. In fact, NMDARs can be synaptic or extrasynaptic (Figure 1). 

Synaptic NMDARs composition changes quickly after synapse formation. Thus, 

synapses containing predominantly GluN1/GluN2B represent immature sites, whereas 

mature sites are more predominantly composed by NMDARs composed of 

GluN1/GluN2A subunits (Tovar and Westbrook, 1999;Lopez de and Sah, 2003). 

Moreover, extrasynaptic NMDARs are usually concentrated at points of contact 

containing adhesion factors with adjacent processes such as axons, axon terminals or 

glia (Petralia et al., 2010) and are largely composed by GluN1/GluN2B heteromers 

(Tovar and Westbrook, 1999;Petralia, 2012) (Figure 1). Functionally, synaptic and 

extrasynaptic NMDARs are gated by different co-agonists (Papouin et al., 2012), 

respectively, D-serine released by astrocytes (Kang et al., 2013) and glycine released 

by both astrocytes and neurons (Holopainen and Kontro, 1989), as observed in both 

the hippocampus and in cerebellar granule cell cultures (Figure 1). Papouin and 

colleagues demonstrated that the availability of the co-agonists matches the 

preferential affinity of each subunit for its own co-agonist and that glycine and D-serine 

inhibit NMDAR surface trafficking in a subunit-dependent manner, influencing also 
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NMDARs subcellular localization in the hippocampus (Papouin et al., 2012). Moreover, 

as described before in this review, phosphorylation of GluN2B at Tyr1472 enhances 

NMDARs activity, increasing its number at the synaptic membrane (Goebel et al., 

2005;Goebel-Goody et al., 2009), whereas phosphorylation of Tyr1336 is associated 

with enrichment of extrasynaptic NMDARs (Goebel-Goody et al., 2009). 

It was initially believed that only synaptic NMDARs were implicated in the synaptic 

transmission process; however, there is growing evidence regarding the involvement of 

extrasynaptic NMDARs in the transmission of information from the presynaptic 

terminal. Harris and colleagues demonstrated that short stimulations with low 

frequencies on CA1 hippocampal slice pyramidal neurons engaged extrasynaptic 

NMDARs, while higher frequencies engaged both synaptic and extrasynaptic NMDARs 

receptors, suggesting that extrasynaptic receptors participate in physiological synaptic 

transmission (Harris and Pettit, 2008). On the other hand, it seems that LTP is 

mediated only by synaptic NMDARs, whereas LTD requires both synaptic and 

extrasynaptic receptors (Papouin et al., 2012). 

Importantly, NMDARs location influences its coupling to pro-death or pro-survival. The 

extracellular signal-regulated kinases (ERK), which promote a signaling cascade 

important for neuronal plasticity and survival, are regulated, in part, through NMDARs 

activation. Thus, the synaptic pool of NMDARs activates ERK, promoting cell survival 

(Ivanov et al., 2006;Leveille et al., 2008), whereas the extrasynaptic pool of NMDARs 

triggers mitochondrial membrane potential breakdown, as well as cell body and 

dendritic damage (Leveille et al., 2008), inducing a signaling pathway that inactivates 

ERK (Ivanov et al., 2006). Interestingly, the simultaneous activation of synaptic and 

extrasynaptic NMDARs induces ERK activation, weaker than those mediated by 

synaptic NMDARs alone (Ivanov et al., 2006). Moreover, activation of synaptic 

NMDARs also leads to activation of the cAMP response element binding protein 

(CREB), a transcription factor also related to cell survival pathways (Kaufman et al., 

2012;Zhou and Sheng, 2013) and brain-derived neurotrophic factor (BDNF) gene 
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expression (Hardingham et al., 2002), whereas activation of extrasynaptic NMDARs 

activated a general and dominant CREB shut-off pathway (Kaufman et al., 

2012;Hardingham et al., 2002); this effect could be prevented by the use of memantine 

(Kaufman et al., 2012), commonly used as AD treatment, and which preferentially 

blocks extrasynaptic NMDARs at therapeutic concentration (Leveille et al., 2008;Xia et 

al., 2010). These data suggest that extrasynaptic NMDARs activation contributes to 

excitotoxicity. Conversely, other authors showed that activation of extrasynaptic 

NMDARs alone did not trigger cell death, but activation of both extrasynaptic and 

synaptic NMDARs induced cell death program, being this excitotoxic effect dependent 

on the magnitude and duration of co-activation (reviewed by Zhou and Sheng, 2013). A 

a recent study further suggested that NMDA-induced neurotoxicity is mediated only by 

synaptic NMDARs (Papouin et al., 2012). However, since NMDA is not an endogenous 

NMDAR agonist, this result can be discussed regarding to its relevance for similar in 

vivo conditions. By implicating synaptic NMDARs in excitotoxicity and evidencing the 

involvement of extrasynaptic NMDARs in synaptic transmission, this study calls into 

question whether cell survival or cell death depend on the activation of synaptic or 

extrasynaptic receptors or may rather depend upon NMDARs composition at the 

membrane surface and the interaction with selective proteins.  

 

4. NMDA receptors in AD 

4.1. NMDARs-related post-synaptic dysfunction in AD: influence of A β peptide 

Overactivation of NMDARs was initially hypothesized to occur at early stages of AD; 

indeed, recent reports indicate that activation of NMDARs by Aβ accumulation may 

occur at early stages of the disease (reviewed by Parameshwaran et al., 2008), and 

that Aβ oligomeric species evoke an immediately Ca2+
i rise through activation of 

GluN2B-containing NMDARs in cultured cortical neurons (Ferreira et al., 2012), 

although the mechanisms by which Aβ causes synaptic deficits involving NMDARs 
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remains to be clarified. Despite this, memantine, an uncompetitive open channel 

blocker of NMDARs, has been mostly prescribed as a memory-preserving drug for 

moderate- to late-stage AD patients (Reisberg et al., 2003) (see detailed effects of 

memantine in section 5). 

The mRNA and protein levels of NMDAR subunits have been largely studied in 

different models of AD and in AD brains. A first study in transgenic mice expressing the 

C-terminal of APP demonstrated that NMDAR protein levels were unchanged 

compared to control mice (Sandhu et al., 1993). Conversely, recent studies showed 

that presenilins knock-out leads to an early increase in GluN2A subunit expression at 

post-synaptic densities with a concomitant reduction at non-synaptic sites before 

synaptic loss (Aoki et al., 2009). In in vitro studies, the effect of Aβ on NMDARs has 

been also demonstrated. Ronicke and colleagues (2011) demonstrated that early 

neuronal dysfunction induced by Aβ is mediated by an activation of GluN2B subunits in 

primary neuronal cultures and hippocampal slices from rat and mouse. Moreover, 

treatment of rat organotypic slices containing pyramidal neurons with Aβ oligomers 

decreased dendritic spine density and reduced NMDAR-mediated Ca2+ influx (Shankar 

et al., 2007). In humans, Jacob and colleagues reported a downregulation of GluN1 

subunit in brains of AD patients in various stages of the disease (Jacob et al., 2007). 

GluN1 mRNA levels were significantly lower in AD, compared with control brains (Hynd 

et al., 2001) and the GluN1 isoform containing an N-terminal splice cassette appeared 

drastically decreased in the disease, suggesting that this isoform may increase cell 

vulnerability in AD (Hynd et al., 2004b). Moreover, levels of GluN2B mRNA and protein, 

as well as GluN2A levels were decreased in susceptible regions of postmortem human 

AD brain, such as the hippocampus and the cortex (Hynd et al., 2004a;Bi and Sze, 

2002;Mishizen-Eberz et al., 2004). In comparison to AD susceptible brain areas, there 

were no alterations in NMDARs subunit expression in cerebellum of AD patients (Bi 

and Sze, 2002). Conversely, other studies evidenced that mRNA levels of GluN1 (Bi 
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and Sze, 2002) and GluN2A subunits (Mishizen-Eberz et al., 2004) were unchanged in 

AD patient’s brains.  

Additionally to a decrease in mRNA levels, the decrease in GluN2B and GluN2A 

subunits could be due also to a decrease in reelin levels, a protein that mediates 

NMDAR activity, and which is depleted in AD brains (Herring et al., 2012). On the other 

hand, the decrease in NMDAR subunits may also be due to an increase in STEP61, 

which contributes to the endocytosis of GluN1/GluN2B and GluN1/GluN2A receptors 

(Snyder et al., 2005;Kurup et al., 2010). Reducing STEP61 activity by genetic 

manipulations in different AD mice models reversed cognitive and cellular impairment 

(Zhang et al., 2010), supporting a fundamental role for NMDARs activation in AD. 

Importantly, co-expression of mutated APP and NMDAR subunits in embryonic kidney 

cells decreased receptor internalization and thus increased surface levels of 

GluN1/GluN2B and GluN1/GluN2A, linked to enhanced NMDARs currents (Cousins et 

al., 2009). NMDARs, more particularly those containing GluN2B subunits, appear in 

numerous studies as mediators of Aβ-induced neurotoxicity. Indeed, Aβ oligomers 

induce Ca2+
i dysregulation and neuronal death through activation of NMDARs (Alberdi 

et al., 2010) and inhibit LTP (Chen et al., 2000;reviewed by Rowan et al., 2003;Li et al., 

2011). Also, we previously demonstrated that GluN2B subunit activation is involved in 

Aβ-induced Ca2+
i homeostasis deregulation (Ferreira et al., 2012). In this work we also 

showed that GluN2A-NMDARs antagonism potentiates Ca2+
i rise induced by a high 

concentration of Aβ, suggesting that GluN2A and GluN2B subunits have opposite roles 

in regulating Ca2+
i homeostasis. Moreover, Aβ modulated NMDA-induced responses 

and vice versa; indeed, pre-exposure to Aβ decreased NMDA-evoked Ca2+
I rise and 

pre-exposure to NMDA decreased Aβ response. In addition, simultaneous exposure to 

Aβ plus NMDA synergistically increased Ca2+
i levels, an effect mediated by GluN2B-

containing NMDARs (Ferreira et al., 2012). Previously, we also demonstrated that Aβ 

induced ER stress and NADPH oxidase-mediated superoxide production, which was 

prevented by ifenprodil, suggesting an important role of NMDAR GluN2B subunits 
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(Costa et al., 2012). Moreover, we showed that Aβ induced DNA fragmentation and 

microtubule depolymerization, as well as neurite retraction in a NMDAR-dependent 

manner, particularly through GluN2B-containing NMDARs (Mota et al., 2012). 

Interestingly, in primary neuronal cultures, overexpression of human tau caused cell 

death, which was prevented by treatment with ifenprodil, a GluN2B selective 

antagonist, suggesting that GluN2B subunit also mediates tau-induced neurotoxicity 

(Amadoro et al., 2006). Importantly, using antibodies against the N-terminal component 

of GluN1 or GluN2B subunits, our data supports that Aβ oligomers are able to bind 

NMDARs extracellularly (Costa et al., 2012). On the other hand, NMDARs activation 

(Lesne et al., 2005), and more particularly extrasynaptic activation (Bordji et al., 2010), 

triggers increased production and secretion of Aβ, which is preceded by a shift from 

APP695 to Kunitz protease inhibitory domain (KPI) containing APPs, isoforms 

exhibiting a high amyloidogenic potential, followed by a shift from α-secretase to β-

secretase-mediated APP processing, largely suggesting a circuit in which Aβ facilitates 

NMDARs activation, which in turn promotes Aβ production. 

It has been suggested that enhancement of GluN2A activity and/or the reduction of 

GluN2B activity may be used in order to halt the early Aβ-mediated synaptic 

dysfunction (Liu et al., 2010). Taking into account the importance of ERK for cell 

survival (described previously in this review), a negative regulation by extrasynaptic 

NMDARs, mainly composed of GluN2B subunits (Tovar and Westbrook, 1999;Petralia, 

2012), may be one of the early signaling events determining brain injury in AD (Ivanov 

et al., 2006). Moreover, in a recent work oligomeric Aβ caused selective loss of 

synaptic GluN2B responses, promoting a switch in subunit composition from GluN2B to 

GluN2A, a process normally observed during development (Kessels et al., 2013). Since 

GluN2A subunits have been implicated in protective pathways, whereas GluN2B 

subunits appear to increase neuronal vulnerability (Liu et al., 2007), the early increase 

in GluN2A and decrease in GluN2B subunit-composed NMDARs activity may be an 

attempt to reduce Aβ-induced neuronal dysfunction. 
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4.2. NMDARs in the presynapse and astrocytes – influence in AD?  

NMDARs are mainly located at postsynaptic densities of excitatory synapses; however, 

their localization on presynaptic axon terminals and astrocytes has been evaluated in 

the past two decades. Thus, we may hypothesize that changes in receptor composition 

and/or activation also take place in synaptic sites during AD progression, although 

there is scarce information regarding this topic.  

Several evidences suggest a role for presynaptic NMDAR localization in reshaping 

synaptic transmission by regulating presynaptic glutamate release (for review see 

Corlew et al., 2008;Huang et al., 2011). Very recently, the presence of GluN1, -2B, -3B 

and -2D, but not GluN-2A or -2C, was established at presynaptic sites in nerve terminal 

membranes and in mossy fiber axons by using postembedding electron microscopy 

immunogold cytochemistry (Berg et al., 2013). The presynaptic localization of NMDARs 

is in accordance with the idea that these receptors can act as autoreceptors (reviewed 

by Duguid, 2013). The first suggestion for the autoreceptor role of NMDARs appeared 

in 1991, when Martin and colleagues showed that NMDAR antagonists reduced K+-

evoked glutamate release form CA1 hippocampal neurons (Martin et al., 1991). 

Moreover, in rat striatum, it has been suggested that activation of NMDAR by 

endogenous glutamate enhances glutamate release, evidencing that this regulation is, 

in part, linked to presynaptic NMDARs activation (Bustos et al., 1992). In addition, 

blockade of NMDARs in rat entorhinal cortex reduced the frequency but not the 

amplitude of glutamate-mediated spontaneous excitatory postsynaptic currents, which 

persisted even when postsynaptic NMDARs were blocked (Berretta and Jones, 1996), 

once again suggesting that presynaptic NMDARs may act as autoreceptors. 

Presynaptic NMDARs can be involved in synaptic plasticity such as certain types of 

LTP (Berg et al., 2013) and also in timing-dependent LTD in the visual cortex (Sjostrom 

et al., 2003). In the rat spinal cord, presynaptic NMDARs inhibited glutamate release 
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from primary sensory neurons (Bardoni et al., 2004), suggesting a positive or a 

negative control of presynaptic glutamate release exerted by presynaptic NMDARs 

activation. Importantly, during cortical development, the loss of presynaptic NMDARs 

function was shown to correlate with depletion of presynaptic receptors, contributing to 

a switch between pre- and postsynaptic NMDARs (Corlew et al., 2007). Accordingly to 

these authors, presynaptic receptors are involved in LTD induction during 

development, whereas in older mice LTD induction requires the activation of 

postsynaptic receptors (Corlew et al., 2007), pointing out for a dynamic localization of 

NMDARs at the synapse during development. Despite the general limited information 

on presynaptic NMDARs, data suggest that autoreceptor regulation of synaptic 

transmission is one of the key factors determining information processing in the CNS. 

In a study performed by Bell and colleagues (2007), the density of glutamatergic 

presynaptic boutons and the abundance of dystrophic neurites were quantified in 

midfrontal gyrus brain tissue from subjects with no cognitive impairment, mild cognitive 

impairment, or mild- to severe-stage AD. These authors concluded that subjects with 

mild cognitive impairment displayed a paradoxical elevation in glutamatergic 

presynaptic bouton density, similar to that observed in the cholinergic system, which 

then depletes and drops with disease progression (Bell et al., 2007). These results 

pointed out that dystrophic neurite generation and reduced presynaptic bouton 

densities detrimentally influence neurotransmission and cognitive function in later 

stages of AD.  

Astroglial NMDARs, shown to be present in the cortex and the spinal cord, are 

characterized by weak Mg2+ block and moderate Ca2+ permeability (reviewed by 

Parpura et al., 2012)). Moreover, there are evidences for Ca2+-dependent glutamate 

release from astrocytes in response to the Ca2+ ionophore used as a secretagogue. In 

addition, Ca2+ ionophore-stimulated astrocytes can also release D-serine, a co-agonist 

of the glycine-binding site of the NMDAR (reviewed by Parpura et al., 2012). Evidence 
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for the existence of functional NMDAR expression in human primary astrocytes was 

also described by Lee and colleagues (2010). These authors showed that all seven 

currently known NMDAR subunits (Glu-N1, -2A, -2B, -2C, -2D, -3A and -3B) are 

expressed in astrocytes, although at different levels; notably, astrocytic glutamatergic 

system has been also implicated in several neuropathological conditions, including in 

AD (Lee et al., 2010).  

 

 

5. NMDARs as targets for therapeutic intervention in AD 

The several studies reviewed above demonstrate the importance of NMDARs in AD 

progression. Furthermore, NMDARs activation, particularly extrasynaptic NMDARs 

(Bordji et al., 2010), promote neuronal Aβ secretion (Lesne et al., 2005). Thus, the use 

of treatments targeting NMDARs seem to be a promising therapeutic option to 

counteract AD progression.  

NMDARs are fundamental for normal synaptic function, which implicates that a full 

inhibition of these receptors triggers important secondary effects; thus, to reduce the 

possibility of side effects, the maximum dose tolerated may be not therapeutically 

effective (reviewed by Hardingham and Bading, 2010). Many compounds can target 

and block NMDARs, namely MK-801 (reviewed by Woodruff et al., 1987), 1-benzyl-

1,2,3,4-tetrahydro-β-carboline, which acts inside the ion channel as the MK-801 

(Espinoza-Moraga et al., 2012), and huperzine A, which acts as a non-competitive 

inhibitor interacting at the polyamine binding site (Zhang and Hu, 2001). However, as 

referred before, considering the involvement of NMDARs in synaptic function, a 

complete blockade of NMDARs is associated with important secondary effects, such as 

severe memory impairment. Selective antagonism of NMDARs subunits involved in 

excitotoxic events, using low concentrations of a pharmacological compound, appears 

to be a good strategy in order to avoid secondary effects; moreover, the refinement of a 
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drug able to selectively inhibit pathologically activated NMDARs, without interfering with 

normal receptor activation, represents an important challenge for AD therapy (reviewed 

by Lipton, 2004;Lipton, 2007).  

Memantine is an open channel blocker with low affinity, which preferentially 

antagonizes NMDARs excessively activated; moreover, due to its relatively fast off-rate 

memantine does not substantially accumulate in the channel to interfere with synaptic 

transmission (reviewed by Lipton, 2004). Several in vitro and in vivo studies evidenced 

the neuroprotective effect of memantine on Aβ toxic actions (reviewed in Danysz and 

Parsons, 2012). Thus, inter alia, in mature hippocampal neurons memantine was 

shown to prevent oligomeric Aβ-induced oxidative stress (De Felice et al., 2007) as 

well as the disruption of axonal transport trafficking (Decker et al., 2010), DNA 

fragmentation, microtubule deregulation and neurite retraction (Mota et al., 2012) . 

Interestingly, memantine leads to a significant decrease in secreted APP and Aβ 

peptide levels in human neuroblastoma cells (Ray et al., 2010) and in cortical levels of 

Aβ1-42 in APP/PS1 transgenic mice after 8 days of treatment (Alley et al., 2010), 

suggesting a role for memantine in the regulation of APP processing. In vivo, 

memantine protects against neuronal degeneration induced by Aβ1-40 intracranial 

injections (Miguel-Hidalgo et al., 2002) and prevents cognitive impairment in the same 

animals (Miguel-Hidalgo et al., 2012). Moreover, in 3xTg-AD mice, memantine 

improved cognition and reduced levels of both insoluble Aβ and hyperphosphorylated 

tau (Martinez-Coria et al., 2010).  

Memantine has been widely prescribed to provide symptomatic relief and enhance life 

quality in AD. In clinical trials, memantine has shown significant general benefits such 

as in aspects of language, memory, praxis, functional communication and in activities 

of daily living for AD patients (Wilkinson, 2012;Hellweg et al., 2012), even if studies 

revealed that it did not improve excessive agitation (Fox et al., 2012) or total brain or 

hippocampal atrophy after one year treatment (Wilkinson et al., 2012). Importantly, 
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memantine has shown to be well tolerated and the mechanism of action allows it to be 

safer than other non-selective NMDAR antagonists (Farlow et al., 2008). Interestingly, 

extrasynaptic NMDARs have been largely associated with NMDARs excitotoxicity in 

AD (Hardingham and Bading, 2010). In this respect, memantine was associated to a 

preferential blockade of extrasynaptic currents mediated by NMDARs, rather than 

synaptic currents in the same neuron (Xia et al., 2010), preferentially antagonizing 

overactivated receptores, which may explain the fact that memantine is well tolerated. 

Very recently, it was demonstrated that the use of a high dose of memantine (28 

mg/day, almost three times the normal dose) is efficacious and still well tolerated and 

safe (Grossberg et al., 2013). However, memantine seems to increase the risk for 

somnolence, weight gain, confusion, hypertension, nervous system disorders and 

falling (reviewed by (Yang et al., 2013). Interestingly, Kotermanski and colleagues 

(2009) reported that Mg2+, an endogenous blocker that binds near to the memantine 

binding site at physiological concentrations, decreases memantine inhibition of 

GluN2A- and GluN2B-containing receptors, while it has no effect on memantine 

inhibition of GluN2C- and GluN2D-containing receptors (Kotermanski and Johnson, 

2009), suggesting that the hypothesized mechanism of action for memantine should be 

reviewed in order to reconsider the role of GluN2C/D subunits. However, taking into 

account that in the brain areas mainly affected in AD NMDARs are mainly composed 

by GluN2A and GluN2B subunits, this last observation may not be so relevant for the 

action of this compound in AD. Neramexane, an uncompetitive antagonist of NMDARs, 

has shown to be as efficient as memantine in enhancing long-term spatial memory in 

adult rats, but at lower doses (Zoladz et al., 2006), suggesting that this antagonist may 

represent an interesting alternative to memantine. Furthermore, taking into account the 

fact that extrasynaptic NMDARs have been associated with excitotoxicity in AD 

(Hardingham and Bading, 2010) and that extrasynaptic NMDARs are mainly composed 

by GluN2B-containing NMDARs (Tovar and Westbrook, 1999;Petralia, 2012), the use 

of a selective GluN2B subunit antagonists might be an interesting strategy to prevent 
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synaptic dysfunction in AD. We previously demonstrated that ifenprodil, a GluN2B 

antagonist, prevented Aβ-induced ER stress and hippocampal dysfunction (Costa et 

al., 2012) and Aβ-induced microtubule deregulation (Mota et al., 2012), as well as Aβ-

induced Ca2+ rise (Ferreira et al., 2012) in vitro. Furthermore, in primary neuronal cell 

culture and hippocampal slices from rat and mouse, ifenprodil and Ro 25-6981, another 

GluN2B antagonist, prevented LTP impairment, baseline synaptic transmission 

reduction, neuronal spontaneous network activity decrease and retraction of synaptic 

contacts induced by Aβ oligomers (Ronicke et al., 2011). Moreover, in rats co-injected 

with Aβ and ifenprodil prevented Aβ-mediated inhibition of plasticity (Hu et al., 2009). 

Selective GluN2B antagonists were also demonstrated to be efficient at low doses by 

restoring Aβ oligomers-induced LTP impairment (Li et al., 2011;Rammes et al., 2011). 

These results suggest that preferentially targeting GluN2B subunit of NMDARs may be 

another way to prevent AD progression. However, there is a lack of clinical 

confirmation concerning the selective inhibition of GluN2B as a pharmacological 

therapy in AD. Interestingly, Rammes and colleagues (2011) also demonstrated that 

antagonism of metabotropic glutamate receptor 5 (mGluR5), which are mechanistically 

coupled to postsynaptic NMDARs, with low concentration of allosteric antagonist 

(MPEP, 2-methyl-6-(phenylethynyl)-pyridine) prevent Aβ oligomers-induced LTP 

impairment (Rammes et al., 2011), evidencing that the glutamatergic system may be 

considered as a target for the development of AD drugs. Figure 3 shows the influence 

of NMDAR antagonists, namely selective GluN2B subunit antagonists and memantine, 

on rescuing Aβ-mediated pathophysiology by targeting the glutamatergic synapse and 

ultimately ameliorating AD cognitive deterioration. 

In clinic, the concomitant use of memantine or their analogues together with drugs 

inhibiting ACh-esterases is frequent and seems to present positive results (reviewed in 

(Parsons et al., 2013). Thus, when patients receiving only ACh-esterase inhibitors are 

compared with patients receiving the same treatment plus memantine, the ability for 
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independence, a factor that reflects cognitive capacity, is increased (Lopez et al., 

2009). Regarding the effect of donepezil, one of the ACh-esterase inhibitors commonly 

used in the treatment of AD patients, Howard and colleagues have recently 

demonstrated that there are no evidences that the treatment of AD patients with both 

donepezil and memantine is beneficial compared with one of the drugs alone in late AD 

stages (Howard et al., 2012). However, this observation contrasts with the study by 

Tariot and colleagues (2004) and with a more recent one by Atri and colleagues 

(2013). Indeed, in moderate and severe AD patients the co-treatment significantly 

increased cognition, function and global status when compared to donepezil-treated 

patients and reduced rates of marked clinical worsening (Atri et al., 2013), and also 

improved measures of activities of daily living and behavior (Tariot et al., 2004). 

Moreover, the concomitant use of memantine plus donepezil is most efficient to reduce 

agitation than donepezil alone (Kano et al., 2013). Interestingly, galantamine, an ACh-

esterase inhibitor used for AD treatment, not only potentiated nicotinic ACh receptors 

activity, but also improved NMDARs activity (Zhao et al., 2006); thus, concomitant use 

of memantine and galantamine prevented galantamine activation of extrasynaptic 

NMDARs (Zhao et al., 2006). A recent study has also demonstrated that memantine 

protects not only glutamatergic but also cholinergic septal neurons from Aβ-induced 

toxicity (Colom et al., 2013) which may explain, in part, the potentiation of the effect of 

ACh-esterase inhibitor by memantine, when used concomitantly in AD treatment. 

Importantly, co-administration of ACh-esterase inhibitors and memantine did not 

improve patient’s life expectancy (Lopez et al., 2009).  

 

6. Concluding remarks 

Modified activity and regulation of postsynaptic NMDARs linked to Ca2+ 

dyshomeostasis have been assuming a great importance in AD pathogenesis. Indeed, 

changes in NMDARs appear to be involved in synaptic dysfunction in early stages of 
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AD. In this perspective, and taking into account the tripartite synapse, both presynaptic 

and astrocytic NMDARs may also play a relevant role in some synapses, although they 

have been much less studied in the disease-context, compared to postsynaptic 

receptors. Moreover, differential regulation of synaptic and extrasynaptic NMDARs 

(namely by the co-agonists D-serine and glycine) and their differential composition 

(particularly in GluN2A and GluN2B subunits) seem to underlie distinct neuronal fates, 

either inducing cell survival or cell death. In this regard, interaction of oligomeric Aβ 

with extracellular NMDAR subunits (GluN1 and GluN2B) and the influence of the 

peptide on intracellular signaling pathways (e.g. reelin pathway linking Src-mediated 

activation of NMDAR) and/or with selective scaffold proteins seem to have a 

fundamental role in altering the integrity and function of the synapse in AD. Thus, 

selective inhibition of NMDARs-mediated excitotoxicity alone (with memantine or one of 

its analogues) or concomitantly with improvement of ACh receptor-mediated 

transmission may help to slow down the progression of synaptic disruption in AD. 

Unfortunately, these therapeutics do not trigger a complete cure or an improvement in 

life expectancy when applied in late stage AD and thus implementation of earlier 

therapeutic strategies targeting NMDARs and/or the intricate signaling pathways is 

needed. 
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Figure legends: 

 

Figure 1: Tripartite glutamatergic synapse – a target for Aβ. Upon presynaptic neuron 

stimulation achieved by Ca2+ entry through voltage-sensitive calcium channels or by 

presynaptic or perisynaptic receptor-operated calcium channels (e.g. namely 

NMDARs), released glutamate can activate NMDARs localized in the postsynaptic 

membrane (synaptic stimulation) leading to Ca2+ entry through the NMDARs and the 

propagation of the action potential. Glutamate can then be taken up by surrounding 

astrocytes through EAAT1/2 or by the presynaptic terminal through EAAT2/5, and then 

stored into vesicles (reviewed by (Corlew et al., 2008)), precluding excitotoxicity. In 

conditions of excessive glutamate release or impairment of clearance, namely due to 

the presence of Aβ, bulk extracellular glutamate concentration increases, leading to 

extrasynaptic NMDARs activation. The differential activation (synaptic versus 

extrasynaptic) can also be modulated by glycine released from neurons and/or 

astrocytes (Muller et al., 2013) or D-serine released by astrocytes (Kang et al., 2013). 

Note that both glycine and D-serine can also be taken up by the presynaptic terminal or 

astrocytes by their respective transporters. The figure shows potential intracellular and 

extracellular targets for Aβ.  

 

Figure2: NMDARs anchorage to the synaptic membrane. NMDARs are indirectly 

linked to actin cytoskeleton through PSD-95, guanylate kinase-associated protein 

(GKAP), Shank and cortactin proteins. Reelin, involved in synaptic plasticity, links to its 

receptors ApoER2 or VLDLR and activates Dab1. ApoER2 associates with PSD- 95, 

thus coupling the reelin signaling complex to the NMDAR. Activation of Dab1 leads not 

only to Src activation, but also to glomerular-actin (G-actin) polymerization into 

filamentous-actin (F-actin). 
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Figure 3: Aβ-mediated targets acting at the glutamatergic synapse in AD – influence of 

NMDAR antagonists. Aβ directly interacts with NMDARs, increasing intracellular Ca2+, 

which underlies ER and oxidative stress; NMDARs are also linked to microtubule 

depolymerization, contributing for decreased axonal transport and neurite retraction 

and eventually DNA fragmentation, a feature of apoptosis. Moreover, Aβ appears to 

mediate NMDAR subunit endocytosis, and evokes dynamin degradation through 

NMDAR activation. These processes lead to impairment in synaptic transmission and 

decreased LTP, which contribute to cognitive deterioration. Importantly, selective 

GluN2B subunit antagonists (e.g. ifenprodil and Ro 25-6981) and memantine have 

been shown to ameliorate AD-related cognitive deficits. 
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Highlights 

 

1. Aβ acts at the presynapse influencing synaptic vesicles and presynaptic proteins. 

2. Postsynaptic dysfunction in AD is related with changes in NMDA receptor regulation. 

3. AD may affect NMDA receptors located at the presynapse and in astrocytes. 

4. NMDA receptors are relevant targets for therapeutic intervention in AD. 

 


