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Abstract: Drug addiction is a public health and social burden. Presently, the most abused illicit substance is cannabis, fol-

lowed by amphetamines, cocaine and opioids, with different prevalence in different countries. Several evidences support a 

role for oxidative stress in the toxicity induced by many drugs of abuse in different organs, such as the brain, heart, liver 

or kidneys. This leads to oxidation of important cellular macromolecules, and may culminate in cell dysfunction and 

death. In this review we describe the evidences for oxidative damage and depletion of antioxidants upon exposure to drugs 

of abuse, especially amphetamines, cocaine and opiates. We also discuss the sources of oxidative stress induced by drugs 

of abuse, including oxidative metabolism of drugs, oxidative metabolism of monoamines by monoamine oxidases or by 

auto-oxidation, mitochondrial dysfunction, excitotoxicity, microglial activation, inflammation, hyperthermia and the ef-

fects of drug interactions. These consolidate oxidative stress as a relevant mechanism contributing for the cytotoxicity of 

drugs of abuse and for behavioral changes associated with drug addiction. 
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INTRODUCTION 

Presently, drug addiction has a serious public health and 
social impact [1]. Illicit drugs include cannabis, which is the 
most abused worldwide, followed by amphetamines, cocaine 
and opioids [2]. Abuse of these drugs leads to toxic effects in 
different organs, depending on the administration pathway 
chosen by the users [3]. Several evidences support a role for 
oxidative stress in the toxicity induced by many drugs of 
abuse in different organs, such as the brain, heart, liver or 
kidneys [4, 5]. However, the effects of drugs of abuse on the 
central nervous system (CNS) are crucial for the develop-
ment of drug addiction, which can be considered a brain dis-
ease [6].  

Oxidative stress caused by exposure to drugs of abuse 
may derive from direct or indirect effects, and may occur 
after drug exposure or during the withdrawal from the drug 
[3]. Increase in the levels of oxidants compared to antioxi-
dant defense systems leads to oxidation of proteins, phos-
pholipids or DNA, leading to cell dysfunction and, eventu-
ally, to cell death [1]. 

EVIDENCES FOR OXIDATIVE DAMAGE 

Oxidative Damage Induced by Amphetamines 

Exposure to amphetamine or amphetamine derivatives 
has been shown to induce oxidative stress in the nervous 
system [7, 8]. Increased levels of reactive oxygen species 
(ROS) in the CNS were found upon in vitro [9-11] or in vivo 
[12, 13] exposure to methamphetamine or D-amphetamine.  
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Evidences of lipid and protein oxidation were also induced 
by amphetamines, leading to an increase in 4-
hydroxynonenal (4-HNE) and malondialdehyde (MDA) in 
the brains of methamphetamine abusers [14], higher levels of 
HNE-protein adducts in rat frontal cortex [15], increased 
thiobarbituric acid reactive substances (TBARS) in the pre-
frontal cortex and hippocampus of rats exposed to a single 
dose of methamphetamine [16] and elevated MDA, 4-HNE 
and protein carbonyl levels in the striatum of mice, upon 
multiple administrations of methamphetamine [17]. Interest-
ingly, methamphetamine induced a greater increase in lipid 
and protein oxidation in rat brains, compared to D-
amphetamine [18], and the high levels of protein and lipid 
oxidation observed in the prefrontal cortex, amygdala, hip-
pocampus and striatum of rats exposed to methamphetamine 
were associated with behavioral alterations, namely in-
creased locomotor activity [19].  

Methamphetamine cardiotoxicity is also associated with 
oxidative damage. Repeated, binge administration of meth-
amphetamine in rats significantly increased the ROS levels 
in the left ventricle, resulting in tyrosine nitration of myo-
filament (desmin, myosin light chain) and mitochondrial 
(ATP synthase, NADH dehydrogenase, cytochrome c oxi-
dase, prohibitin) proteins [20]. Lipid peroxidation induced 
by methamphetamine was also observed in liver and kidneys 
of rats, as shown by increased MDA levels [21], and D-
amphetamine also induced an increase in the levels of 
TBARS in isolated rat hepatocytes [22]. 

Methylenedioxymethamphetamine (MDMA)-induced 
oxidative stress was also reported. Hydroxyl radical (

•
OH) 

formation was found in the hippocampus and striatum of rats 
upon peripheral injection of MDMA [23]. In vivo exposure 
to MDMA was also reported to induce an increase in lipop-
eroxides [24, 25] and protein carbonyls, accompanied by 
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mitochondrial DNA deletions, in isolated mitochondria from 
rat brains [26].  

Single administration of MDMA may also trigger oxida-
tive stress in rat cardiomyocytes, involving lipid peroxida-
tion and intracellular Ca

2+
 overload, ultimately resulting in 

cell death [27]. In the liver, MDMA induces oxidative stress 
and apoptosis, involving oxidative-modification of many 
cytosolic proteins, including antioxidant defensive enzymes, 
a Ca

2+
-binding protein, and proteins involved in the metabo-

lism of lipids, nitrogen, and carbohydrates (glycolysis) [28]. 

Oxidative Damage Induced by Cocaine 

Cocaine exposure has been reported to increase hydrogen 
peroxide (H2O2) in the prefrontal cortex and in the striatum 
of rats [29]. Furthermore, cocaine exposure also results in 
oxidative damage in the brain, as indicated by high levels of 
lipid peroxidation in the hippocampus of rats exposed in 
utero to cocaine [30] and by the oxidation of proteins in co-
caine-exposed human neuronal progenitor cells [31]. Acute 
cocaine was shown to elevate MDA and nitrite levels in the 
prefrontal cortex and nucleus accumbens in rat brain slices 
[32]. In contrast, rats exposed to cocaine self-administration 

exhibited decreased MDA brain levels, but high MDA levels 
in liver, kidneys and heart, whereas withdrawal from the 
drug increased MDA in the hippocampus [33]. Indeed, in-
creased oxidative stress seems to be an early event in co-
caine-induced cardiomyopathy [34]. Evidences of oxidative 
damage, such as lipid peroxidation, have been found in the 
myocardium of human cocaine addicts [35, 36], and in ani-
mals chronically exposed to cocaine [37], and may lead to 
myocardial hypertrophy and heart failure [38]. Chronic co-
caine administration directly causes severe myocardial oxi-
dative stress through the activation of mitogen-activated pro-
tein kinase (MAPK) and Nox2 (an isoform of reduced 
nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase), in a mouse model [39].  

Oxidative Damage Induced by Opioid Drugs 

The effects of morphine and heroin exposures in the 
brain and spinal tissues may also involve oxidative stress. 
Morphine induced an increase in lipid peroxidation in these 
tissues [40] and heroin led to oxidative DNA damage, pro-
tein oxidation and lipid peroxidation in mouse brain [41, 42]. 
In brains of heroin-administered mice, a significant increase 

 

Fig. (1). Sources and consequences of oxidative stress induced by drugs of abuse. Drugs of abuse may induce an imbalance between oxidants 

and antioxidants due to an increase in oxidative species, associated with oxidative drug metabolism, monoamine oxidation, mitochondrial 

dysfunction, or excitotoxicity. In addition, drugs may also impair cellular antioxidant systems. A) In the central nervous system, most drugs 

induce an increase in extracellular (1) and/or intracellular (2) dopamine (DA). DA may be oxidized by mitochondrial-associated monoamine 

oxidase (MAO) (3), forming hydrogen peroxide (H2O2), or by auto-oxidation (4), forming H2O2, superoxide (O2
.-
) and reactive dopamine 

quinones (DAQ). Some of these mechanisms may also occur for other monoamines in the central nervous system or in peripheral tissues. 

Some drugs also induce mitochondrial dysfunction, leading to an increase in O2
.- 

formation by the mitochondrial respiratory chain complexes 

I and III (5). In some cases, overstimulation of N-methyl-D-aspartate (NMDA) glutamate receptors after drug exposure may also induce oxi-

dative stress (6), and may be due to an increase in extracellular glutamate (GLU) levels, or to direct interactions of drugs with NMDA recep-

tors. An impairment of energy metabolism, resulting from mitochondrial dysfunction, may affect the maintenance of the resting potential and 

increase glutamate release. Activation of NMDA receptors may lead to formation of nitric oxide (
.
NO) by neuronal 

.
NO synthase (nNOS), 

which may react with O2
.- 

and generate peroxinitrite (ONOO
-
). Other sources of oxidative stress are xanthine oxidase (7) or nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase (8), the latter also leading to NADPH depletion. B) Reactive species are detoxified by 

cellular antioxidant systems. O2
.-
 may be converted into H2O2 by superoxide dismutase (SOD) (1). H2O2 may be detoxified and converted 

into H2O by catalase (2) or by glutathione peroxidase (GPx) (3), with consumption of reduced glutathione (GSH), which may be regenerated 

by glutathione reductase (GRed) (4), at the expense of NADPH. In the presence of transition metal ions, such as Fe
2+

, H2O2 may be con-

verted into the highly toxic hydroxyl radical (
.
OH) (5). ONOO

-
, generated by the reaction of NO with O2

.-
 (6), and 

.
OH, may directly oxidize 

important cellular macromolecules, such as lipids, proteins and DNA (7). Imbalance between oxidant production and antioxidant activity 

may culminate in cell dysfunction and death (8). Abbreviations: L-DOPA: L-3,4-dihydroxyphenylalanine; VMAT: vesicular monoamine 

transporter; DAT: dopamine transporter; TH: tyrosine hydroxylase; GSSG: oxidized glutathione. 
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was observed in the indices of oxidative damage, such as 8-
hydroxy-2'-deoxyguanosine (8-OHdG), protein carbonyls 
and MDA, when compared to controls [41]. After heroin 
administration, mice showed a high ROS production in white 
blood cells, and oxidative damage of proteins and lipids in 
the brain and liver, but not in the heart [43]. Moreover, im-
pairment of prooxidative/antioxidative homeostasis was 
found in plasma of human heroin addicts [44]. Interestingly, 
heroin withdrawal may also induce oxidative stress, since 
naloxone-precipitated withdrawal increased the levels of 
MDA in the blood of heroin-addicted rats [45]. 

IMPAIRMENT OF CELLULAR ANTIOXIDANT SYS-
TEMS 

Drugs may also induce oxidative stress due to depletion 
of antioxidant systems, which protect the cells against free 
radicals and other reactive species, such as superoxide anion 
(O2

.-
) and H2O2 (Fig. 1). Superoxide dismutase (SOD) is an 

antioxidant enzyme that detoxifies O2
.-
, but may also con-

tribute to increase H2O2 levels [1]. The main antioxidant 
enzymes involved in H2O2 inactivation are glutathione per-
oxidase (GPx) and catalase (Fig. 1B), the latter mainly pre-
sent in peroxisomes. The protein levels and the activity of 
these enzymes are regulated by the cells, allowing the main-
tenance of cellular homeostasis, and leading to a contrast in 
the cellular effects of chronic and acute oxidant exposures 
[46].  

Impairment of Antioxidant Systems by Amphetamines 

The activity of antioxidant enzymes was modified in the 
brains of methamphetamine human abusers [47] and animals 
exposed to methamphetamine [16] and D-amphetamine [48, 
49]. Amphetamines also induce impairment of hepatic anti-
oxidant defenses, as illustrated by the depletion of reduced 
glutathione (GSH) in the mouse liver [50] and in isolated rat 
hepatocytes [22, 51, 52]. When comparing the oxidative ef-
fects of methamphetamine in different tissues, decreased 
GSH [53] and GPx levels, and increased levels of catalase 
and protein carbonyls were found in the brain, liver, and kid-
neys of rodents [21]. The decrement in GSH induced by 
methamphetamine exposure in brain, liver and kidneys, was 
recovered in animals exposed to the antioxidant N-
acetylcysteine amide [53]. Moreover, treatment of metham-
phetamine-exposed rats with the membrane-permeable SOD 
mimetic, tempol, significantly reduced ROS levels in the left 
ventricle, suggesting a significant role for oxidative stress in 
mediating methamphetamine-induced cardiac dysfunction 
[20].  

Depletion of GSH was also found in rat cortical neurons, 
upon in vitro MDMA exposure [54], and in mouse hippo-
campus, upon in vivo MDMA exposure, along with a de-
crease in Cu/Zn SOD activity [55]. Moreover, transgenic 
mice overexpressing Cu/Zn SOD were resistant to MDMA 
toxicity [56], strongly suggesting the involvement of oxida-
tive stress in the toxic effects of MDMA. Depletion of he-
patic GSH seems to be an initial step for the hepatotoxic 
action of different amphetamines, and disruption in thiol 
redox homeostasis may result in loss of protein function and 
initiation of a cascade of events leading to oxidative damage 
[4]. In the liver, MDMA may impair GSH homeostasis, de-
crease antioxidant enzyme activities, and induce lipoperoxi-

dation, leading to apoptosis in liver cells [57]. In cardiomyo-
cytes, a single administration of MDMA decreased the activ-
ity of GPx, SOD and glutathione reductase, and reduced the 
levels of ascorbic acid and GSH [27].  

Impairment of Antioxidant Systems by Cocaine 

Cocaine also impairs cellular antioxidant systems, induc-
ing a lower catalase activity in the prefrontal cortex and in 
the striatum in mice [58], but higher SOD and GPx activities 
in the same brain structures in rats [29]. The levels of non-
enzymatic antioxidants, such as reduced GSH or vitamin E, 
were also shown to be decreased upon cocaine exposure [31, 
59]. GSH concentration and GPx activity were also found to 
be reduced in the hippocampus of cocaine-treated animals 
[60]. High levels of oxidative damage markers in prefrontal 
cortex and nucleus accumbens of rats exposed to cocaine 
were accompanied by a decrease in total antioxidant content, 
and both were prevented by the antioxidant tempol [32]. 
Tempol also attenuated cocaine-induced cell death in PC12 
cells [61].  

Repeated cocaine exposure decreased GSH concentration 
and GPx activity in the hippocampus of rats, which also pre-
sented learning and memory impairments, associated with a 
lower NFkappaB activity in the frontal cortex [60]. NFkap-
paB is a sensor of oxidative stress that also participates in 
memory formation, and may be involved in drug toxicity and 
addiction mechanisms. These animals also presented a high 
neuronal nitric oxide synthase (nNOS) activity in the hippo-
campus, which was associated with impaired memory re-
trieval of experiences acquired prior to cocaine administra-
tion. In contrast, learning of new tasks was enhanced and 
correlated with the increase of nNOS activity and the de-
crease of GPx [60].  

Chronic cocaine administration in rats resulted in signifi-
cant GSH depletion in the heart [37], whereas oxidized glu-
tathione (GSSG), SOD, glutathione reductase and GPx were 
all increased, resulting in cardiac oxidative stress and altered 
morphology [62]. Furthermore, in vivo cocaine exposure also 
decreased GSH content in hepatic mitochondria [63], in-
creased the activity of Mn-SOD, the mitochondrial isoform 
of SOD, and decreased the activities of GPx and catalase 
[64]. Treatment with antioxidants could prevent cocaine-
induced cardiac dysfunction [65, 66], suggesting that ROS 
play a central role in the development and progression of 
cardiomyopathy after cocaine abuse [67]. 

Cocaine also induces oxidative stress in the liver, as evi-
denced by low GSH levels in hepatic mitochondria of rats 
exposed to cocaine [63]. In cultures of hepatocytes from 
phenobarbital-pretreated rats, which induces the expression 
of the cytochrome P-450 (CYP) microsomal monooxygenase 
isozymes responsible for cocaine oxidative metabolism, co-
caine induced an increase in ROS levels and sharp decreases 
in the enzyme activities and mRNAs of catalase and Mn-
SOD [68], whereas N-acetylcysteine and deferoxamine ex-
erted a protective effect by increasing the mRNA levels of 
antioxidant enzymes [69]. The role of oxidative cocaine me-
tabolites in cocaine toxicity will be the subject of further 
discussion below. 

Cocaine cytotoxicity in kidney cells was also found to 
involve intracellular GSH depletion, at low drug concentra-
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tions, and mitochondrial damage, at higher concentrations, 
also involving activation of apoptotic cell death [70]. 

Impairment of Antioxidant Systems by Opioid Drugs 

Opioid drugs also impair the activity of antioxidant sys-
tems, as demonstrated by the decrease in total antioxidant 
capacity found in blood of human heroin addicts, when com-
pared to detoxification and control groups [44]. Decreased 
activities of SOD, catalase and GPx and in the ratio of GSH 
to GSSG were found in the brains of heroin-exposed mice 
[41, 42], and in C6 cells after morphine treatment [71]. 
Moreover, morphine induced a decrease in GSH levels in the 
brains of rats [72] and rabbits [40], and also decreased the 
levels of unsaturated fatty acids in the rabbit nervous system 
[40]. Administration of heroin to mice induced a decrease in 
total antioxidant capacity in serum [43] and in antioxidant 
enzymes, such as SOD, catalase, and GPx in the brain, and 
elevated markers of oxidative damage of DNA, proteins and 
lipids [42]. Naloxone-precipitated heroin withdrawal in rats 
depressed blood antioxidant systems, which could be pre-
vented by administration of melatonin or vitamin E plus se-
lenium, the latter being an essential cofactor of GPx [45]. 

Adaptation to Oxidative Stress 

Cells continuously exposed to oxidants may adapt by in-
creasing the levels of antioxidant systems, which may ex-
plain why acute exposure to H2O2 can induce apoptotic cell 
death in PC12 cells [73, 74], whereas cells chronically ex-
posed to low concentrations of H2O2 become resistant to the 
acute toxicity of this compound [75, 76].  

In catecholaminergic cell cultures, we have previously 
shown that chronic exposure to low (non-toxic) concentra-
tions of D-amphetamine induces a partial protection against 
H2O2-induced toxicity, which was suggested to be associated 
with adaptation to oxidative stress [46]. Other authors also 
showed that a short-term exposure to subtoxic concentrations 
of methamphetamine can protect dopaminergic cells against 
a larger oxidative stress injury, through upregulation of Bcl-
2 [77]. Increase in the activity of antioxidant enzymes was 
found in the brains of human methamphetamine abusers [47] 
and animals exposed to methamphetamine [16] and D-
amphetamine [48, 49], suggesting a compensatory response 
to oxidative stress. 

PC12 cells chronically exposed to low (non-toxic) con-

centrations of cocaine also seem to adapt to oxidative stress, 

being significantly resistant to H2O2 toxicity [46], which 

suggests the involvement of oxidative stress in the chronic 

effects of cocaine. In dopaminergic rat brain structures, 
repeated cocaine administration induced an increase in anti-

oxidant enzyme activity [29], and repeated self-

administration of cocaine in rats caused an increase in SOD 

activity in the hippocampus, frontal cortex and dorsal stria-

tum, associated with decreased MDA levels [33], which may 

represent a compensatory mechanism against cocaine medi-

ated ROS increase. Induction of antioxidant defenses in 

models of repeated cocaine exposure could also explain the 
resistance to oxidative agents in these models. Moreover, 

cocaine-induced adaptations in cellular redox balance were 

suggested to contribute to enduring behavioral plasticity 

[78].  

Chronic exposure to street heroin also induced a partial 
protection against H2O2 toxicity in PC12 cells, indicating 
some degree of adaptation to oxidative stress [79].  

SOURCES OF OXIDATIVE STRESS 

Oxidative Metabolism of Drugs  

One of the sources of oxidative stress induced by some 
drugs of abuse is their oxidative metabolism, which gener-
ates ROS and reactive metabolites. This metabolism occurs 
mainly in the liver, but the metabolites may reach other tis-
sues through the circulatory system. 

Amphetamine Metabolites and Oxidative Stress 

Reactive MDMA metabolites can account for most of the 
toxicity of this drug [4]. The metabolism of MDMA to 
catechol or quinone compounds, which are capable of form-
ing free radicals, may be responsible for the oxidative dam-
age induced by MDMA [80]. MDMA metabolites possessing 
a catechol group, such as alpha-methyl dopamine ( -MeDA), 
N-methyl- -MeDA (N-Me- -MeDA) and 6-hydroxy- -
MeDA, were shown to be more toxic to PC12 cells than the 
parent compound, or the metabolites with at least one pro-
tected phenolic group; and redox studies further revealed that 
an oxidative mechanism seems to play an important role in 
the cytotoxicity of MDMA metabolites [81]. 

In contrast with the parent compound, MDMA metabo-
lites increased the formation of quinoproteins and signifi-
cantly increased GSSG levels and decreased intra-
synaptosomal GSH levels [82]. In particular, thioether 
MDMA metabolites, consisting in GSH or N-acetyl-cysteine 
adducts, were shown to be strong neurotoxins, significantly 
more than their correspondent parent catechols, by inducing 
production of reactive species, depleting intracellular GSH, 
increasing protein bound quinones, and inducing neuronal 
death, which could be prevented by N-acetyl cysteine, an 
antioxidant and GSH precursor [83].  

Incubation of isolated adult rat cardiomyocytes with 
MDMA metabolites, -MeDA and N-Me- -MeDA, induced 
a loss of GSH, a sustained increase in intracellular calcium 
levels, ATP depletion, and a decrease in antioxidant enzyme 
activities, resulting in the loss of normal cell morphology, 
which was not observed with the parent compound, indicat-
ing that MDMA metabolism is required for the expression of 
ecstasy-induced cardiotoxicity in vitro [84]. In addition, in 
contrast with MDMA effects, adult rat left ventricular myo-
cytes treated with -MeDA, N-Me- -MeDA, and 2,5-
bis(GSH-S-yl)- -MeDA, exhibited increased levels of ROS, 
which were prevented by the antioxidant N-acetylcysteine 
[85]. 

In rodent hepatocytes, GSH depletion was clearly en-
hanced upon exposure to the demethylenated metabolites N-
Me- -MeDA [86] and -MeDA [87], compared to MDMA 
exposure, and accompanied by decreases in antioxidant en-
zyme activities and loss in cell viability.  

Moreover, the involvement of amphetamine metabolites 
in D-amphetamine-induced oxidative stress in freshly iso-
lated rat hepatocytes was suggested by the prevention of D-
amphetamine-induced GSH depletion, in the presence of the 
CYP inhibitor metyrapone [51]. 
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Cocaine Metabolites and Oxidative Stress 

The occurrence of oxidative stress in neurons upon co-
caine exposure may also be explained, at least in part, by the 
presence of oxidized metabolites of cocaine [66]. Moreover, 
cocaine bioactivation through liver CYP and flavin adenine 
dinucleotide containing monooxygenases also generates 
ROS [88]. About 90% of cocaine is metabolized by hepatic 
and serum esterases, producing pharmacologically inactive 
metabolites, and the remaining 10% is metabolized by 
CYP3A4, producing the reactive pro-oxidant compound nor-
cocaine and further oxidative metabolites, namely N-
hydroxy-norcocaine and norcocaine nitroxide [5]. In fact, 
norcocaine nitroxide was shown to contribute to cocaine-
induced hepatotoxicity [89]. Inhibition of liver mitochondrial 
respiration by the N-oxidative metabolites of cocaine may be 
the underlying cause for ATP depletion and subsequent cell 
death, since the metabolites were shown to be more effective 
affecting bioenergetics in mitochondria isolated from mouse 
liver, compared to cocaine itself [65]. Moreover, cocaine-
induced kidney cell death was partially reversed in the pres-
ence of ketoconazole, a potent CYP3A inhibitor, supporting 
the hypothesis that norcocaine may also play a role in co-
caine-induced nephrotoxicity [70]. 

OXIDATIVE METABOLISM OF MONOAMINES  

All drugs of abuse induce the increase of extracellular 
monoamines in the brain and/or in peripheral tissues, al-
though through different mechanisms. Importantly, the in-
crease in synaptic dopamine in the brain reward circuit is in 
the basis of the addictive effects of drugs of abuse [1]. 

Amphetamines and cocaine cause direct effects on 
monoaminergic cells. Amphetamines increase the levels of 
intracellular and extracellular dopamine and other mono-
amines, through a non-exocytotic mechanism, by directly 
interacting with monoaminergic cells [1, 4, 90]. Due to its 
structural similarity with dopamine, amphetamine is a sub-
strate for the dopamine transporter (DAT) [91], being trans-
ported into the cytoplasm, and resulting in the exchange of 
extracellular amphetamine by intracellular dopamine, which 
leads to an increase in extracellular dopamine [92]. Am-
phetamine also induces the release of vesicular dopamine to 
the cytosol and impairs the storage of dopamine in the vesi-
cles, further increasing intracellular levels of free dopamine 
[1]. Cocaine causes an increase in extracellular dopamine 
levels by blocking dopamine reuptake by the DAT [1]. In 
contrast with the stimulant drugs, opiates induce reward 
through an increase in dopamine in the reward pathway by 
an indirect mechanism, by binding to opioid receptors and 
inhibiting gamma aminobutyric acid (GABA)ergic interneu-
rons, removing the refraining of dopamine release by down-
stream dopaminergic neurons of the ventral tegmental area 
[93]. 

Dopamine has been shown to be neurotoxic in vitro [94, 
95] and in vivo [96]. Dopamine metabolism produces reac-
tive metabolites by enzymatic and non-enzymatic mecha-
nisms (Fig. 1A) and may induce oxidative stress in dopa-
minergic and neighboring cells, which may contribute to the 
neurotoxicity of many drugs of abuse, and particularly am-
phetamines and cocaine, due to their direct effect in increas-
ing synaptic dopamine concentration. Dopamine may be 

metabolized intracellularly by monoamine oxidase (MAO)A 

[97], and in a lower extent by MAOB [98], two isoforms of a 
mitochondrial enzyme that is present in the cytoplasmic side 
of the outer mitochondrial membrane in neurons and astro-
cytes. Whereas MAOA preferentially deaminates serotonin, 
adrenaline, and noradrenaline, MAOB acts preferentially on 
phenylethylamine and trace amines [99]. Oxidative deamina-
tion of dopamine by MAO generates 3,4-dihydroxyphenyl-
acetaldehyde (DOPAL), which is highly toxic and rapidly 
metabolized by aldehyde dehydrogenase, producing 3,4-
dihydroxyphenylacetic acid (DOPAC) and H2O2 [100].  

In contrast with enzymatic dopamine oxidation, dopa-
mine auto-oxidation may also occur extracellularly, which is 
more relevant for explaining cocaine-induced oxidative 
stress. Auto-oxidation of the catechol ring of dopamine gen-
erates dopamine quinones, together with O2

.-
 and H2O2 (Fig. 

1A), which may react with transition metal ions, such as iron, 
via the Haber-Weiss/Fenton reactions, creating the highly 
toxic 

•
OH [101]. O2

.- 
may also lead to the formation of the 

highly toxic peroxynitrite (ONOO
-
), by reaction with nitric 

oxide (NO) (Fig. 1). Dopamine quinones are electron-
deficient molecules that readily react with cellular nucleo-
philes, such as reduced sulfhydryl groups on protein cyste-
inyl residues, resulting in covalent modification of protein 
structure. These cysteinyl residues are often localized at the 
active site of proteins, and, thus, their covalent modification 
by dopamine quinones often leads to inactivation of protein 
function, affecting cell survival [101]. In this regard, dopa-
mine may be considered both a neurotransmitter and a neuro-
toxin, and increased dopamine metabolism may induce oxi-
dative stress and cell death in dopaminergic or surrounding 
cells [102], if the antioxidant systems are not able counteract 
these effects.  

The neurotoxicity of amphetamines is mainly observed in 
monoaminergic brain areas, particularly in dopaminergic 
nerve terminals in the striatum [103]. Peripherally, am-
phetamine-mediated release of noradrenaline is more rele-
vant than dopamine [104]. D-amphetamine is a potent inhibi-
tor of noradrenaline reuptake [105], increasing extracellular 
noradrenaline through reuptake blockade, which predomi-
nates at lower doses, or through the release of noradrenaline, 
which becomes more prevalent at higher doses [4].  

Treatment of mice with methamphetamine enhanced do-
pamine turnover rate and decreased tyrosine hydroxylase 
(TH) activity and expression, and the expression of DAT and 
vesicular monoamine transporter 2 (VMAT2) in striatal syn-
aptosomes [17]. These changes in the dopaminergic system 
were not observed in mice treated with the protein kinase C 
delta (PKC ) inhibitor, rottlerin, or in PKC

(-/-)
 mice, sug-

gesting that PKC  gene expression is a key mediator of oxi-
dative stress and dopaminergic damage induced by metham-
phetamine [17].  

MDMA also induces dopamine release in rats [106], and, 
thus, dopamine metabolism may also explain MDMA-
induced oxidative stress. In addition, hydroxyl radical forma-
tion was reported in the hippocampus and striatum of rats 
upon peripheral injection of MDMA [23], and was depend-
ent on serotonin transporter (SERT) activity [107]. MDMA, 
like other amphetamines, also increases the release of pe-
ripheral monoamines, mainly serotonin and noradrenaline, 
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and to a lesser extent of dopamine, by an exchange diffusion 
process involving the respective transporters [108], which 
could play a role in MDMA-induced oxidative stress in pe-
ripheral tissues.  

Cocaine stimulates the sympathetic nervous system by 
inhibiting catecholamine reuptake at sympathetic nerve ter-
minals [109, 110]. Cocaine use was suggested to be associ-
ated with increased levels of catecholamines in the circula-
tion and the chronic exposure to high levels of adrenaline 
and noradrenaline can damage the heart [36]. Cocaine-
induced cardiac oxidative stress has been thought to be an 
indirect effect of cocaine on cardiomyocytes via its sym-
pathomimetic action on adrenoreceptors [36]. Indeed, 
adrenoreceptors are G-protein-coupled receptors which can 
participate in the activation of NADPH oxidase [111], a ma-
jor source of induced ROS production in cardiovascular sys-
tem. Moreover, NADPH oxidase-generated ROS may play 
an important role in modulating ROS production by other 
enzymatic sources, such as endothelial NOS or xanthine oxi-
doreductase[112]. However, the interference of cocaine with 
monoamine reuptake systems also leads to the accumulation 
of auto-oxidized catecholamines in the myocardium [113], 
suggesting that the oxidative metabolism of these catecho-
lamines may also have damaging effects, due to the genera-
tion of ROS and the formation of oxidation products [62].  

MITOCHONDRIA 

Mitochondrial dysfunction may be another source of oxi-
dative stress and many drugs of abuse have been shown to 
affect mitochondrial functions [1]. 

Mitochondrial Dysfunction Induced by Amphetamines 

Amphetamine toxicity to dopaminergic systems is well 
known, and oxidative stress is a key player in this cytotoxic-
ity [114, 115]. In dopaminergic neurons, amphetamine de-
rivatives may especially affect the function of mitochondrial 
complex IV [116]. However, repeated amphetamine admini-
stration may also decrease the activities of mitochondrial 
complexes I and III in rat frontal cortex [15]. In addition, 
high-dose methamphetamine administration led to selective 
inhibition of complex II in rat striatum, through glutamate 
receptor activation and peroxynitrite generation [117]. A 
single administration of methamphetamine induced dopa-
minergic nerve activation, ATP consumption and increased 
mitochondrial respiratory chain function in both the striatum 
and cortex of rats, and the antioxidant tempol prevented the 
increase in mitochondrial oxidative damage and metham-
phetamine-induced sensitization [118]. This suggests that 
energy-supplying reactions after dopaminergic nerve activa-
tion are associated with oxidative stress in both the striatum 
and cortex, leading to abnormal behavior [118]. However, in 
the NT2 neuronal cell line, amphetamine toxicity was not 
directly mediated through effects on the electron transport 
chain, since amphetamine toxicity was not reduced (and was 
actually increased) in NT2 rho-zero cells, which lack func-
tional mitochondria [119]. These data suggested that am-
phetamine-induced electron transport chain alterations most 
likely represent a compensatory response, due to dissipation 
of m caused by the accumulation of positively charged 
amphetamine molecules within negatively charged mito-

chondrial matrices [120, 121]. In fact, amphetamine induced 
mitochondrial dysfunction and mitochondrial-dependent 
apoptosis in rat cortical neurons, involving loss of m, de-
crease of mitochondrial cytochrome c content and activation 
of caspase-9 [119]. Generation of ROS upon amphetamine 
exposure may play a role in amphetamine-induced mito-
chondrial dysfunction [114], including the deregulation of 
the mitochondrial fission protein dynamin-related protein 1 
(Drp1) in rat hippocampal neuronal progenitor cells, which 
resulted in mitochondrial fragmentation and subsequent 
apoptosis [122]. Bioenergetic failure and oxidative stress in 
the rostral ventrolateral medulla of the brain stem, which is 
responsible for the maintenance of stable blood pressure, 
may be responsible for the cardiovascular collapse associated 
with fatal methamphetamine intoxication, and could be re-
versed by microinjection of the mobile electron carrier, co-
enzyme Q10, by the mitochondrial-targeted antioxidant and 
O2

.-
 scavenger, Mito-TEMPO, and by the inhibitor of oxida-

tive stress-induced necrotic cell death, IM-54 [123].  

Mitochondria may also be important targets for MDMA 

hepatotoxicity [116, 124, 125]. Methamphetamine or 

MDMA administration caused a rapid and transient decrease 

in cytochrome oxidase (or mitochondrial complex IV) stain-

ing in dopamine-rich regions, such as the striatum, nucleus 

accumbens and substantia nigra of rats [116], suggesting that 

increased extracellular dopamine levels may contribute to the 

inhibition of metabolic function, through ROS or quinones 

derived from dopamine metabolism. MDMA also induced 

oxidative stress and mitochondrial dysfunction in cultured 

rat hepatocytes, involving a marked rise in intracellular Ca
2+

 

and subsequent ATP and GSH depletion [126]. In these 

cells, MDMA caused mitochondrial impairment and induc-

tion of the mitochondrial permeability transition, accompa-

nied by mitochondrial depolarization and depletion of ATP, 

through uncoupling of oxidative phosphorylation [125]. In 

the liver, MDMA may cause the oxidative inactivation of 

key mitochondrial enzymes involved in energy supply, fat 

metabolism, antioxidant defense, and chaperone activities, 

such as mitochondrial aldehyde dehydrogenase, 3-ketoacyl-

CoA thiolases, and ATP synthase, which most likely con-

tribute to mitochondrial dysfunction and subsequent liver 

damage in MDMA-exposed animals [124]. It is possible that 

MDMA quinone metabolites contribute to inhibition of mi-

tochondrial function by directly interacting with mitochon-

drial proteins, such as cytochrome c, which can react with 

quinone electrophiles forming selective adduct "electrophile 

binding motifs" within the protein [127]. 

Mitochondrial Dysfunction Induced by Cocaine 

Cocaine was also demonstrated to influence mitochon-
drial function in different cell types and uncoupling of mito-
chondrial respiration has been hypothesized as a possible 
source of ROS following cocaine administration [63, 64]. 
Acute cocaine toxicity partially requires the presence of a 
functional respiratory chain, as shown by the lower levels of 
cocaine-induced cell death in rho-zero cells, which lack 
functional mitochondria, in comparison with rho-plus cells 
[119]. Cocaine exposure in rat cortical neurons was shown to 
induce mitochondrial dysfunction, including loss of mito-
chondrial potential and decrease in ATP levels, and activa-
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tion of the mitochondrial apoptotic pathway [119, 128]. In 
addition, exposure to cocaine leads to the downregulation of 
mitochondrial gene expression [129], resulting in reduced 
activity and protein levels of mitochondrial complex I [63, 
129, 130]. Cocaine may interact directly with mitochondria 
and other intracellular targets [131], because it is able to en-
ter into the cell due to its positive charge at physiological 
pH. Mitochondrial function and energy metabolism were 
shown to be affected in brains of human cocaine abusers 
[132], where the occurrence of aberrant cell death was sug-
gested by the enhanced degradation of nuclear poly (ADP-
ribose) polymerase (PARP)-1, an apoptotic hallmark, which 
appeared to be the consequence of oxidative stress and acti-
vation of nuclear apoptosis-inducing factor [133].  

Studies in hepatic mitochondria showed that in vivo co-

caine administration decreased state 3 respiration, the respi-

ratory control ratio and the activity of complexes I, II/III, and 

IV, which were accompanied by increased lipid peroxidation 

and decreased GSH levels [63]. In vivo administration of 

cocaine may also lead to a decrease in mitochondrial mem-

brane potential [134], and enhanced mitochondrial ROS pro-

duction [64] in hepatic mitochondria. Mitochondrial dys-

function after in vivo cocaine administration can be due to 

cocaine and/or its metabolites, as suggested by the signifi-

cant inhibition of respiration in isolated mouse liver mito-

chondria by norcocaine, N-hydroxynorcocaine, and particu-

larly norcocaine nitroxide, whereas cocaine caused no sig-

nificant effects [65]. In isolated liver and brain mitochondria, 

cocaine inhibited complex I driven-respiration, through a 

direct effect on this complex [135, 136].  

In myocardial cells, cocaine also inhibited complex I of 

the mitochondrial respiratory chain [130]. Cocaine exposed 

rats showed increased oxygen consumption in cardiac fibers, 

specifically through complexes I and III, decreased ATP 

synthesis and increased ROS levels in interfibrillar mito-

chondria [137]. These effects were prevented by MitoQ, a 

mitochondrial-targeted antioxidant, suggesting that mito-

chondrial dysfunction was preceded by oxidative stress 

[137]. Xanthine oxidase and subsequent mitochondrial ROS 

generation were also shown to play a critical role in the se-

quence of events leading to cocaine-induced cardiac dys-

function [138]. In utero cocaine exposure resulted in in-

creased oxidative stress and fetal cardiac myocyte apoptosis, 

through activation of c-Jun-NH2-terminal kinase (JNK) and 

p38 MAPK-mediated mitochondrial-dependent apoptotic 

pathway [139]. 

Mitochondrial Dysfunction Induced by Opioid Drugs 

Street heroin was also shown to induce mitochondrial 
dysfunction and mitochondrial-dependent apoptosis in rat 
cortical neurons [140]. In primary cultured cerebellar granule 
cells, heroin induced apoptosis through JNK/c-Jun pathway-
mediated upregulation of Bim, which was translocated to 
mitochondria, leading to Bax activation [141]. Chronic high-
dose morphine treatment could also promote apoptosis in 
SH-SY5Y cells, via JNK-mediated activation of mitochon-
dria-dependent pathway, involving ROS generation associ-
ated with the mitochondrial permeability transition pore, 

which exerted a positive feedback regulation of JNK activity 
[142].  

EXCITOTOXICITY 

Another source of oxidative stress induced by drugs of 
abuse is excitotoxicity due to increased post-synaptic gluta-
mate signaling. Several brain structures that receive input 
from the reward pathway send reciprocal glutamatergic pro-
jections back to the ventral tegmental area, which can affect 
dopamine release [143]. Glutamatergic neurotransmission 
has been implicated in several processes involved in drug 
addiction, including reinforcement, sensitization, habit learn-
ing, context conditioning, craving, and relapse [144]. 
Moreover, glutamate receptors were shown to play a role in 
the reinforcement of long-lasting drug-seeking behaviors 
[143]. Glutamatergic effects of drugs of abuse in the reward 
pathway may be modulated by dopamine in the nucleus ac-
cumbens, which controls the efficacy of glutamatergic corti-
costriatal synapses [145]. Amphetamine [146, 147] and co-
caine [148] increase extracellular glutamate concentrations 
in brain areas such as the ventral tegmental area, nucleus 
accumbens, prefrontal cortex or striatum. Amphetamine-
induced glutamate efflux in the rat ventral tegmental area 
was shown to be mediated by glutamate transporters and 
ROS [146]. Chronic cocaine exposure induced synaptic plas-
ticity in ventral tegmental area and nucleus accumbens glu-
tamatergic synapses, including changes in structural plastic-
ity (i.e. increase in the number of dendritic spines), in gluta-
mate homeostasis, implicating glial and neuronal impair-
ment, and in post-synaptic glutamate signaling [143].  

Excitotoxicity is caused by a massive influx of extracel-
lular Ca

2+ 
resulting from the overactivation of the N-methyl-

D-aspartate (NMDA) glutamate receptor. Indeed, an increase 
in intracellular Ca

2+
 was observed in rat cortical neurons, 

after cocaine exposure [128]. Intracellular Ca
2+ 

activates sev-
eral Ca

2+
-dependent enzymes involved in the degradation of 

proteins, phospholipids, and nucleic acids, many of which 
generate ROS or reactive nitrogen species (RNS) [149]. Ac-
tivation of these pathways may lead to necrotic cell death 
involving mitochondrial dysfunction, membrane breakdown, 
cytoskeletal alterations, and 

.
NO-derived free radicals, or 

apoptosis [149].  

Moreover, impairment of energy metabolism, resulting 
from mitochondrial dysfunction, may affect the maintenance 
of the resting potential, leading to an increase in glutamate 
release, and exacerbation of NMDA receptor activation 
[150]. This may contribute to a rise in cytosolic Ca

2+
 and 

mitochondrial uptake of Ca
2+

, generating free radicals. Thus, 
mitochondrial dysfunction associated with the loss of Ca

2+ 

homeostasis and enhanced cellular oxidative stress has long 
been recognized to play a major role in cell damage associ-
ated with excitotoxicity [149]. Under normal conditions, 
Ca

2+ 
taken up by mitochondria can physiologically increase 

ATP generation by activating matrix dehydrogenases [151]. 
However, an increase in mitochondrial Ca

2+ 
can also promote 

ROS and 
.
NO generation, and the loss of cytochrome c due 

to the mitochondrial permeability transition, which can result 
in increased mitochondrial ROS release [152].  

Amphetamine was shown to directly interfere with the 
NMDA receptor channel [153], and NMDA receptors may 
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be involved in the dopaminergic neuropathology produced 
by amphetamines [154]. In addition, NMDA receptor activa-
tion and ONOO

-
 generation mediated the selective inhibition 

of mitochondrial complex II, upon exposure to metham-
phetamine [117]. Excessive glutamate release induced by 
amphetamines has been linked to 

.
NO-mediated nitration of 

proteins in dopaminergic and serotoninergic terminals and to 
neuronal cell death [155-157]. In special, the biosynthetic 
enzymes of dopamine and serotonin, TH and tryptophan 
hydroxylase, respectively, are readily nitrated by both 

.
NO 

and ONOO
- 

[158]. Additionally, ONOO
-
 is known to de-

crease mitochondrial complex II-III activity [157], and may 
be involved in amphetamine-induced mitochondrial dysfunc-
tion. Excitotoxicity induced by amphetamines may lead to 
the activation of the protease calpain I, which contributes to 
the proteolysis of several cytoskeletal proteins [156], and 
also catalyzes the conversion of xanthine dehydrogenase to 
xanthine oxidase, which may contribute to increase the lev-
els of O2

.- 
[159]. Thus, amphetamine-induced excitotoxicity 

may contribute to oxidative stress.  

Furthermore, changes in the subunit composition of 
NMDA receptors may contribute to the cytotoxicity of street 
heroin, since HEK293 cells expressing GluN1/GluN2B 
NMDA receptors were more sensitive to street heroin toxic-
ity, compared to cells expressing GluN1/GluN2A [160]. 

OTHER SOURCES OF OXIDATIVE STRESS 

Microglial Activation/Inflammation 

Activation of microglia in response to drugs of abuse 
may also generate oxidative stress. Although microglia are 
the resident immune cells within the CNS, protecting the 

brain against injury, and microglial activation is necessary 
for host defense and neuron survival, the overactivation of 

microglial cells results in deleterious and neurotoxic conse-
quences [161].  

Amphetamines, including D-amphetamine, metham-
phetamine and MDMA, induce a substantial microglial re-

sponse in brain areas where neuronal degeneration occurs, 
which is associated with the release of toxic substances such 
as O2

.-
, 

.
NO, pro-inflammatory cytokines, and prostagland-

ins, which have been previously implicated in neurotoxicity, 
[161, 162]. Reactive microgliosis was found in the brains of 

human methamphetamine abusers, and persisted over longer 
periods of abstinence [163]. A consistent, robust, and selec-

tive activation of microglia in response to methamphetamine 
administration seems to precede the appearance of morpho-

logical indicators of axon pathology, suggesting that acti-
vated microglia may contribute to methamphetamine-

induced neurotoxicity [164]. Moreover, methamphetamine 
was found to be toxic to both neurons and microglial cells 
[165] and to trigger an inflammatory process and hippocam-

pal neuronal dysfunction, which can be prevented by treat-
ment with the anti-inflammatory drug indomethacin [166].  

It was demonstrated that cultured microglial cells can be 
activated by dopamine quinones [167], which may be asso-
ciated with amphetamine neurotoxicity [162]. Microglial 
activation by amphetamines may also contribute to neurotox-
icity by increasing the expression of cytokines, such as the 
interleukins IL-1  and IL-6, and tumor necrosis factor  

(TNF- ), which initiate and promote neuroinflammation 
[157], and may contribute to oxidative stress [168]. 

The heart is also a target for inflammation induced by 
drugs of abuse, due to catecholamine release induced by 
these drugs [169]. The hearts of rats treated with a metham-
phetamine binge administration regimen presented focal in-
flammatory infiltrates with abundant monocytes and occa-
sional necrotic foci [170]. The phagocytic response can fur-
ther exacerbate catecholamine-induced oxidative stress, 
which may cause alterations in cardiac proteins and energetic 
metabolism [169]. 

Hyperthermia  

Hyperthermia induced by amphetamines may also in-
crease the formation of ROS and RNS. Mitochondria, one of 
the main cellular sources of ROS, may undergo uncoupling 
when temperature increases, which is associated with in-
creased O2

.-
 formation [117, 171]. Hyperthermia may also 

induce oxidative stress through increased conversion of the 
enzyme xanthine dehydrogenase to the oxidase form, which 
is an important source of oxygen-derived free radicals [172]. 
In addition, high ambient temperature has been shown to 
enhance MDMA-induced dopamine and serotonin release in 
the shell of nucleus accumbens of freely moving rats [173], 
which may contribute to increase the levels of oxidative 
monoamine metabolites. In addition, prevention of hyper-
thermia attenuated oxygen radical generation in the striatum 
of methamphetamine-treated rats [174] and in the hippocam-
pus of MDMA-treated rats [175]. In cortical neuronal cul-
tures, MDMA-induced cell death was found to be dependent 
on serotonin 5-HT2A receptor and potentiated under hyper-
thermia [176]. Prevention of MDMA-induced hyperthermia 
may also decrease MDMA neurotoxicity, and many drugs 
that protect against MDMA-induced neurotoxicity also de-
crease body temperature [158]. Furthermore, hyperthermia 
potentiated MDMA-induced depletion of GSH in freshly 
isolated mouse hepatocytes, and increased lipid peroxidation 
and loss of cell viability [177].  

Drug Interactions 

Drug abusers frequently use more than one drug, and 
drug interactions may alter their cytotoxicity. Combination 
of cocaine and opioids, commonly known as speedball, was 
shown to enhance mitochondrial dysfunction in rat cortical 
neurons [128], which may possibly result in increased oxida-
tive stress. 

Ethanol and MDMA is another frequent drug combina-
tion, and evidence supports an interaction between these two 
agents [178]. The consumption of ethanol increases the hy-
perthermic and hepatotoxic effects associated with MDMA 
abuse, in CD1 mice [179]. Moreover, co-exposure of hepa-
tocytes to ethanol and MDMA results in a synergism of the 
hepatotoxic effects, through a disruption of the cellular redox 
status and enhanced cell death [180]. Thus, the interactions 
between MDMA and ethanol may lead to increased hepato-
toxicity through increased oxidative stress [181].  

CONCLUSION 

As discussed above, oxidative stress induced by drugs of 
abuse contributes to their cytotoxicity in different tissues. 
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Chronic exposure to drugs of abuse often leads to adaptation 
in antioxidant systems, indicating a need to cope with in-
creased oxidative stress. In addition, adaptations in cellular 
redox balance induced by cocaine were found to contribute 
to enduring behavioral plasticity [78] and oxidative stress 
was found to be involved in cocaine-induced memory and 
learning impairments in rats, which could be involved in 
drug toxicity and addiction mechanisms [60]. Another ex-
ample is the methamphetamine-induced impairment of adult 
hippocampal neural progenitor proliferation, which may af-
fect learning and memory processes, and was suggested to be 
mediated by protein nitrotyrosination [182]. Moreover, in-
creases in protein and lipid oxidation in prefrontal cortex, 
amygdala, hippocampus and striatum of rats exposed to 
methamphetamine were also associated with behavioral 
alterations [19]. Thus, oxidative stress may affect neurologic 
processes implicated in drug addiction, and associated be-
havior, suggesting that changes in oxidative balance induced 
by drugs of abuse may contribute not only for their toxicity 
but also to their addictive effects. 
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ABBREVIATIONS 

8-OHdG = 8-hydroxy-2'-deoxyguanosine 

-MeDA = Alpha-methyl dopamine 

CNS = Central nervous system 

CYP = Cytochrome P450 

DAT = Dopamine transporter 

DOPAC = 3,4-dihydroxyphenylacetic acid 

DOPAL = 3,4-dihydroxyphenylacetaldehyde 

Drp1 = Dynamin-related protein 1 

GABA = Gamma aminobutyric acid 

GPx = Glutathione peroxidase 

GSH = Reduced glutathione 

GSSG = Oxidized glutathione 

H2O2 = Hydrogen peroxide 

HNE = Hydroxyl nonenal 

JNK = c-Jun-NH2-terminal kinase 

MAO = monoamine oxidase 

MAPK = Mitogen-activated protein kinase 

MDA = Malondialdehyde 

MDMA = Methylenedioxymethamphetamine 

NADPH = Reduced nicotinamide adenine 
dinucleotide phosphate, 

NMDA = N-methyl-D-aspartate 

N-Me- -MeDA = N-methyl- -MeDA 

NO = Nitric oxide 

NOS = Nitric oxide synthase 

O2
.-
 = Superoxide anion

 

•
OH = Hydroxyl radical 

ONOO
-
 = Peroxynitrite 

PKC = Protein kinase C 

PARP = poly (ADP-ribose) polymerase 

ROS = Reactive oxygen species 

RNS = Reactive nitrosative species 

SERT = Serotonin transporter 

SOD = Superoxide dismutase 

TBARS = Thiobarbituric acid reactive sub-
stances 

TH = Tyrosine hydroxylase 

VMAT2 = Vesicular monoamine transporter 2 

TNF = Tumor necrosis factor 
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