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Resumo 

O adenocarcinoma ductal do pâncreas (ACP) é uma neoplasia altamente agressiva, 

com um carácter acentuadamente invasivo e um perfil de expressão de microRNAs 

anormal, que tem sido fortemente associado à malignidade do ACP. A gemcitabina é o 

fármaco mais utilizado na terapia deste tipo de cancro, embora sem grande impacto na 

sobrevivência dos pacientes. A falta de tratamentos eficazes para o ACP levou-nos a 

considerar a possibilidade de usar os microRNAs, como potenciais alvos terapêuticos, no 

desenvolvimento de uma estratégia de terapia génica com relevância clinica para esta 

doença. Os microRNAs são uma empolgante e promissora classe de pequenas moléculas 

de RNA capazes de regular pós-transcricionalmente a expressão génica. Cada tipo de 

cancro é caracterizado por uma assinatura genética de microRNAs, apresentando uma 

forte desregulação nos níveis de expressão dos mesmos. Desde modo, acreditamos que 

reequilibrar os níveis de microRNAs em células tumorais pode ser decisivo no tratamento 

do cancro em geral e do ACP em particular. Assim, desenhámos uma estratégia 

terapêutica para abordar o cancro do pâncreas, que consistiu na combinação da 

modulação dos níveis de expressão de microRNAs, utilizando sistemas de transporte e 

entrega de material genético, com pequenas doses de fármacos, de forma a promover um 

forte efeito antitumoral e reduzir possíveis efeitos secundários.   

A primeira parte deste trabalho foi focada no estudo do potencial de um nanosistema, 

composto por albumina–1-palmitoil-2-oleoil-sn-glicero-3-etilfosfocolina: 

colesterol/oligonucleótidos anti-microRNAs (OAMs),na razão de carga (+/-) (4/1), para 

efectuar de forma eficiente a entrega de oligonucleótidos contra microRNAs, como o 

miR-21, miR-221, miR-222 e miR-10, que se encontram sobrexpressos em células 

tumorais de ACP. O nanosistema desenvolvido promoveu uma internalização celular 

eficiente do seu conteúdo, tendo induzido uma redução significativa nos níveis de 

expressão de todos os microRNAs testados e um aumento significativo dos alvos diretos 

do miR-21 e do grupomiR-221/miR-222, os supressores tumorais PTEN e p27
kip1

, 

respectivamente. Adicionalmente, avaliou-se o potencial terapêutico da combinação dos 

OAMs com pequenas quantidades de fármacos. Para tal, procedeu-se à transfeção das 

células de ACP com o nanosistema contendo AMOs e posteriormente ao tratamento com 

fármacos. Os resultados obtidos mostraram que o silenciamento do miR-21 e miR-221 

sensibiliza as células tumorais à acção do sunitinib e que a sua acção conjunta promove 

um efeito sinergístico antitumoral substancial. Estes factos demonstram o grande 
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potencial do nanosistema gerado para mediar a entrega de OAMs e da estratégia 

antitumoral combinada. A segunda parte do trabalho centrou-se no desenvolvimento de 

uma nova estratégia terapêutica visando a supressão da metastização, e no esclarecimento 

dos mecanismos biológicos envolvidos. O microRNA-139-5p, previamente identificado 

encontrar-se silenciado em ACP, foi indicado como potencial regulador da expressão do 

receptor 4 da quimiocina C-X-C (CXCR4), tendo-se verificado constituir um marcador de 

células estaminais tumorais e desempenhar um papel crucial no processo de migração das 

células tumorais. Os nossos resultados mostraram que existe uma correlação inversa entre 

os níveis de miR-139-5p e a expressão do CXCR4 em várias linhas celulares de ACP. 

Após a transdução das células de ACP com um vector lentiviral contendo o gene que 

codifica o miR-139-5p, foi possível obter um aumento substancial dos níveis deste 

microRNA nestas células tumorais. Observou-se uma redução significativa quer dos 

níveis totais da proteína CXCR4, quer dos seus níveis na superfície celular. 

Adicionalmente, verificou-se um efeito inibitório em células com perfil invasivo, 

nomeadamente ao nível das suas características morfológicas. Os resultados obtidos 

mostraram também que o miR-139-5p altera o mecanismo indutor de migração, de forma 

dependente e não dependente do CXCR4, e diminui a capacidade clonogénica das células 

tumorais pancreáticas. Por fim, verificou-se que o miR-139-5p promove um efeito 

sensibilizador à acção de pequenas quantidades dos fármacos docetaxel ou sunitinib, 

tendo a combinação destas estratégias promovido um efeito sinergístico antitumoral 

significativo. 

Em conclusão, os nossos resultados indicam claramente que a modulação da 

expressão de microRNAs em células tumorais de cancro do pâncreas pode promover 

alterações fisiológicas relevantes para a supressão da sua tumorigenicidade e conduzir a 

uma maior susceptibilidade à acção antitumoral de fármacos, mesmo em doses reduzidas, 

resultando num efeito antitumoral sinergístico. Assim, uma estratégia antitumoral 

combinando a modulação de microRNAs com pequenas quantidades de agentes 

quimioterapêuticos apresenta-se promissora no tratamento do cancro pancreático. 
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Abstract 

 
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer, 

characterized by strong invasive features and aberrant microRNA expression which has 

been associated with hallmark malignancy of PDAC. Gemcitabine is the current standard 

treatment for PDAC, although no significant improvement in patient’s survival has been 

achieved. The lack of effective PDAC treatment options prompted us to investigate 

whether microRNAs would constitute promising therapeutic targets toward the generation 

of a gene therapy approach with clinical significance for this disease.  

MicroRNAs are an exciting new class of small RNA molecules that post-

transcriptionally regulate gene expression. Each type of cancer, including PDAC, presents 

a microRNA signature, characterized by abnormal microRNA expression levels. 

Therefore, restoring appropriate microRNA levels in tumoral cells may be a crucial turn 

in PDAC treatments.  

Taking advantage of gene delivery vector technologies such as cationic liposomes 

(non-viral vectors) or viral–based vectors, we designed a therapeutic approach to manage 

pancreatic cancer, consisting of microRNA modulation in combination with small 

amounts of chemotherapeutic drugs, in order to promote a broader antitumoral effect and 

reduce potential side-effects.  The first part of the work was focused on the potential of 

the human serum albumin–1-palmitoyl-2-oleoyl-sn-glycero-3-

ethylphosphocholine:cholesterol/anti-microRNAoligonucleotides (AMOs) (+/-) (4/1) 

nanosystem to efficiently deliver AMOs, targeting the overexpressed microRNAs miR-

21, miR-221, miR-222, and miR-10, into PDCA cells. 

The developed nanosystem promoted an efficient cellular internalization of the 

carried nucleic acids, and all tested microRNAs showed a significant reduction in their 

levels of expression. Moreover, our results clearly demonstrate that abrogation of miR-21 

and miR-221/miR-222 cluster expression levels could induce a significant increase in 

their direct targets, the tumor suppressors PTEN and p27
kip1

, respectively. Additionally, 

experimental studies consisting of a two-step sequential treatment, where PDAC cells 

were firstly transfected with AMOS targeting miR-21, miR-221 and miR 222 and 

subsequently treated with chemotherapeutic drugs, allowed us to evaluate the impact of 

microRNA cell sensitization to chemotherapeutic drugs. The obtained results showed that 

the combination of microRNA silencing, namely miR-21, with low amounts of the 

chemotherapeutic drug sunitinib resulted in a strong and synergistic antitumor effect. 
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Overall, these results are indicative of the great potential of the developed nanosystem, to 

efficiently mediate AMOs delivery, and of the generated combined strategy to mediate a 

significant and synergistic antitumor activity. 

The second part of the work was centered in the development of a new microRNA-

based therapeutic strategy, focused on the suppression of the metastasis processes and in 

the clarification of the underlying biological mechanisms.  

MiR-139-5p was identified as a downregulated microRNA in PDAC and has been 

predicted to target C-X-C Chemokine receptor 4 (CXCR4). Emerging evidence suggests 

that CXCR4 exerts a crucial role in the metastatic process of PDAC, being enrolled in cell 

motility and proliferation, and was identified as a molecular marker in pancreatic cancer 

stem cells (PCSCs) with high metastatic potential. Our studies showed the existence of an 

inverse correlation between miR-139-5p and CXCR4 expression in this type of tumor. 

The use of a lentivirus-based vector able to stably express miR-139-5p in PDAC cells 

allowed the assessment of miR-139-5p relevance in the regulation mechanisms of 

CXCR4 In this regard, the ectopic expression of miR-139-5p in PDAC cells was shown 

to result in a substantial decrease of the CXCR4 protein levels, including the cellular 

surface CXCR4, and in a visible lack of classic motility features. Invasion assays 

indicated that miR-139-5p could affect CXCR4 dependent and non-dependent migration 

in cells overexpressing this microRNA. Furthermore, an inhibitory effect of miR-139-5p 

on the ability of PDAC cells to form spheres, particularly spheres with bigger dimensions, 

was observed, indicating a possible clonogenic suppressor role of miR-139-5p in this type 

of tumor. Importantly, modulation of miR-139-5p expression in PDAC cells was shown 

to enhance cell susceptibility to the action of small amounts of sunitinib or docetaxel, 

resulting in a significant and synergistic antitumor activity. 

Overall, our results clearly demonstrate that restoring expression levels of key 

microRNAs in pancreatic cancer constitutes a promising therapeutic strategy, particularly 

when combined with small doses of chemotherapeutic drugs, since it could result in a 

potent antitumor activity and reduced side effects. 

  



9 

 

  



10 

 

  



11 

 

Chapter 1 

 

 

Objectives 

  



12 

 

  



13 

 

Objectives 
 

Cancer is one of the major causes of death, thus molecular mechanisms supporting its 

malignancy require thorough investigation.  The main goal of this work was to evaluate 

the therapeutic potential of microRNAs in PDAC and to generate a novel strategy for the 

treatment of pancreatic cancer. Our approach consisted in combining a gene therapy 

technology focused in microRNA modulation and chemotherapy in order to achieve an 

effective and synergistic antitumor activity, without causing significant side effects.  

In order to accomplish this goal we proposed to use different gene delivery systems 

in two distinct tasks based on the microRNA expression profile, depending on whether 

they display an overexpression, thus acting as oncogenes; or as downregulated 

microRNAs, revealing tumor suppressor features.  

Concerning overexpressed microRNAs, our approach consisted in the use of a lipid-

based system to mediate intracellular delivery of anti-miRNA oligonucleotides (AMOs) 

into tumor cells and combining them with chemotherapeutic agents in order to obtain a 

strong antitumor activity. To accomplish this purpose the following objectives were 

defined: 

 

 Biophysical characterization of a lipid-based system, HSA-EPOPC:Chol/AMOs 

(+/-) (4/1), with the ability to mediate intracellular deliver of anti-miRNA 

oligonucleotides (AMOs) into tumor cells.  

 

 Evaluation of the efficiency of the HSA-EPOPC:Chol/AMOs (+/-) (4/1) 

nanosystem to mediate miR-21, miR-221, miR-222 and miR-10b silencing. 

 

 Characterization of the antitumor activity of microRNA-mediated silencing, 

specifically its impact in apoptosis and proliferation signaling pathways.  

 

 Evaluation of the therapeutic potential of the microRNA silencing in the presence 

or absence of several chemotherapeutic drugs, such as gemcitabine, docetaxel and 

sunitinib, aiming at achieving an antitumor synergistic effect.  
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Regarding the downregulated microRNA, our proposal was to further investigate the 

biological relevance and therapeutic potential of re-establishing its normal expression 

levels. To address this issue, the following objectives were defined: 

 

 Use a lentiviral vector for stable and constitutive expression of a downregulated 

microRNA, miR-139-5p, thus creating a valuable in vitro model, consisting of up-

regulation of this suppressed microRNA.  

 

 Evaluation of the efficiency of the lentiviral vector to mediate miR-139-5p ectopic 

expression in pancreatic cancer cells. 

 

 Assessment of miR-139-5p role in the post-transcriptional regulation of metastasis 

mediators in pancreatic cancer, specifically the C-X-C Chemokine receptor 4 (CXCR4).  

 

 Addressing from multiple perspectives the antitumor activity of miR-139-5p, more 

precisely, its potential to inhibit proliferation and cell motility, arrest metastasis 

formation, and anti-clonogenic features. 

 

 Evaluation of the therapeutic potential of miR-139-5p when integrated into a 

broader strategy that incorporates the use of chemotherapeutic agents, aiming at achieving 

a concerted antitumor effect upon PDAC cells, thus resulting in a synergistic outcome. 
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Chapter 2 

 
 
 
 
 

Managing pancreatic adenocarcinoma: a special focus in 

microRNA gene therapy. 

This chapter was partially based on a review paper – in preparation 
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1. Pancreatic cancer 

Cancer is a worldwide calamitous health problem, with a calculated probability of 

incidence per sex of one in every three women and one in every two men throughout their 

lives in the United States (US), where one in four deaths is also attributed to cancer 

alone.
1
 Pancreatic cancer (PC) is known to be one of the most deadly cancers, with a 

median survival inferior to 6 months and approximately 2% of survival within 5-years 

after diagnosis.
1
 It holds the fourth position in the USA in deaths related to cancer, being 

only surpassed by colorectal, breast and lung and bronchus cancers. PC has an estimated 

incidence of 43,920 new diagnosed cases in both sexes annually in the US, which 

ultimately results in the death of 37,390 patients, reveling the need for an urgent route to 

overcome this drastic numbers.
2,3

 Despite its moderate incidence when compared to other 

carcinomas, PC accounts for the highest mortality rate by far, the survival associated to it 

showing the slightest improvement over the past 30 years.
3
 Pancreatic cancer still remains 

as an unsolved therapeutic challenge for science despite all efforts carried out to improve 

current treatments. Only minor significant advances have been achieved to unravel key 

mechanisms of PC, and always with a modest clinical impact.
4
 Besides, most cases are 

still diagnosed at advanced stages of the disease mainly due to the lack of early symptoms 

or to symptoms resembling other diseases, consequently no improvement in survival 

prognosis being achieved with current diagnostic approaches. Most patients present 

locally advanced or metastatic disease and thus are not eligible for curative surgery.
5
 

 Pancreatic ductal adenocarcinoma (PDAC) is the most predominant type of PC, 

accounting for more than 90% of pancreatic cancers.
6
 PDAC is a very aggressive 

malignancy that is associated to a very low survival rate. Early and belligerent 

metastization to distant organs also characterizes this type of tumor, being one of its most 

hostile features. Surgical resection of the primary tumor still holds the major hope for 

patients, although candidates to this surgery represent a very low percentage of all 

patients, and often allows to remove only a small part of the tumor.
7
 Current 

chemotherapy is often insufficient and controversial in the treatment of inoperable 

PC.
8
Although many studies point towards the use of a cocktail of different 

chemotherapeutic agents in combinations with radiation treatments, gemcitabine is the 

frontline therapy with the better outcome in unresectable tumor cases, representing for 
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now the most prominent strategy in terms of overall survival.
8
 Life span for PC patients is 

largely unsatisfactory, therefore the need for a more efficient and broad therapeutic 

strategy is the primary purpose for PC research.  

 

1.1. Etiology of Pancreatic Cancer 

The causes of pancreatic cancer are still largely unknown. There are several risk 

factors associated to this type of cancer (Table 1), such as the demographic character, 

which is related with the increasing advanced age of the population, the majority of the 

cases are diagnosed at older patients (mainly after 75 years of age), whereas only 

approximately 13% are identified before 60 years of age.
9
 

 

Table 1 - Risk factors for development of pancreatic cancer. 

Group of Risk Factors for PC Risk Factors 

Demographic Increasing advanced age of the 

population 
9
. 

Racial factors 
9
 

Environmental  Smoking 
9
 

Alcohol 
9
 

Diet – obesity related. 
9
 

Genetic Familiar Inheritance  

Genetic mutations 

Other Pancreatic lesions 

Pancreatitis 

Diabetes 

 

 

Nevertheless, environmental factors have also a major impact in terms of cancer 

development, mainly if are lifestyle related. Several studies point towards smoking habits 

as the most harmful and well-established factors for PC, followed by alcohol 

consumption.
9,10

 A cohort study performed in approximately 34000 women showed that 

current smokers were twice more likely to develop pancreatic cancer than nonsmokers. 

Prolonged smoking habits increase the relative risk of pancreatic cancer, by 1.5-fold to 3-

fold, on a dose-dependent manner correlated with the number of cigarettes smoked. 

Alcoholic beverage intake was also addressed in this study and the results obtained 

suggest a relation between alcohol consumption and PC. Risks tended to be elevated in 
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women who reported to have greater beer, wine and liquor intake, being the liquor the 

beverage with highest relation with pancreatic cancer.
11

 

Dietary unbalance, obesity and/or diabetic problems also have a major contribution to 

pancreatic cancer.
10,12

 Dietary patterns have long been associated with several diseases, 

including cancer. In the case of cancer of exocrine pancreas, a diet composed by a large 

variability of vegetables, fruit, fish, poultry and whole grains, and with low fat dairy was 

associated with an approximate 50% reduction in pancreatic cancer risk both in man and 

in woman. On the opposite side, in the case of a diet characterized by a higher intake of 

red and processed meats, potato chips, sugary beverages, sweets, high fat dairy, eggs and 

refined grains there was a 2-fold elevated risk of pancreatic cancer for men, although no 

significant association was attainable for women.
13

 Disturbed dietary patterns often result 

in obesity, which became an epidemic and an extreme worrying disease mainly in western 

civilization, being frequently related with cancer by causing low-grade chronic 

inflammation. Obesity increases circulating levels of TNF-α and IL-6 and infiltration of 

inflammatory cells in pancreas accelerating the development of  pancreatic lesions, 

specifically pancreatitis, thus ultimately leading to PC.
14

 

Pancreatic cancer exhibits a high complexity underlying carcinogenesis, being 

controlled by a large variety of biological and environmental factors. Therefore, the 

initiation of the disease might be triggered by a multiplicity of molecular events that 

appear long before any tumorigenic feature becomes evident. The aggressive tumorigenic 

phenotype of PC is either supported by a group of well-established mutations, such as in 

the KRAS gene, p53, Smad4, p16 and other tumor-suppressor genes that greatly amplify 

oncogenic signal and lead to the impairment of the main cellular signaling pathways that 

regulate cell proliferation, pro-apoptotic events and cell migration. Additionally, 

heterogeneous assembly of growth factors and/or cytokines can also promote tumor 

growth and spreading from primary site. These factors can derive from cancer cell itself 

(autocrine) or stromal cell (paracrine) and are helper effectors in tumour growth and 

metastization. To better understand the physiology of pancreatic cancer, it is also 

necessary to acknowledge all the events occurring in the tumor microenvironment.  

 

1.2. PDAC microenvironment - pancreatic stroma 

The pancreatic tumour stroma is likely to be one of the central barriers for the 

effective delivery of therapeutic agents and has been reported to have a key role in 

promoting epithelial-to-mesenchymal transition (EMT).
15

 It is characterized by a strong 
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desmoplastic reaction in which the surrounding tissue presents a robust fibrotic texture, as 

one of its most distinctive features, mostly resulting from excessive extracellular matrix 

deposit in the course of chronic inflammation and/or wound healing. The stroma in 

PDAC is a rather multifaceted and dynamic structure as it is composed by a wide range of 

cells that create a rich environment for the tumoral cells, since they produce many growth 

factors that contribute to cell proliferation and migration. The recruitment of 

inflammatory cells to the stroma by these growth factors greatly increases the production 

of cytokines and chemokines, which in turn impair cell adhesion capacities, thus 

promoting cell migration.
16

 Moreover, due to the fact that pancreas produces insulin, 

cancer cells are exposed to high levels of this growth promoting hormone, once more 

thriving a strong tumorigenic niche for pancreatic cancer progression.
17

 On the other 

hand, the mechanisms of chemo-resistance promoted by extra-tumor cell factors are 

related with the fibrotic texture of the stroma that increases the difficulty of drugs to reach 

tumour vasculature, cross the vessel wall and reach the tumour tissue.
18

 Although it is not 

clear the way this chemo-resistance is accomplished, the hedgehog signaling pathways 

seem to have a pivotal role in the microenvironment-related chemotherapy resistance in 

pancreatic cancer, as it has been related with the promotion of the desmoplastic reaction, 

thus decreasing blood vessel net around the tumour.
19

 

 

1.3. Precursor Pancreatic Lesions 

Taking in account the high mortality rate of pancreatic cancer in opposition to other 

types of cancers, where medical advances have permitted to overcome the initial 

malignancy and improve patient’s survival rates, it becomes mandatory to expand our 

knowledge of early indicators or precursors of PC in order to follow this tendency of life 

improvement verified in other types of cancer. It is perceptible that PC does not arise 

from de novo, but rather follows a multistep alteration path involving the disruption of 

many molecular signaling pathways and cellular metabolic balances.  

There are three main precursor lesions of pancreas identified: Pancreatic 

Intraepithelial Neoplasia (PanINs), Mucinous Cystic Neoplasms (MCNs) and Intraductal 

Papillary Mucinous Neoplasms (IPMNs), but many other types and subtypes have also 

been referred.  

PanINs are microscopic non-invasive epithelial lesions found in the smaller 

pancreatic ducts formed by proliferation and metaplasia of ductal epithelium. These type 

of lesions can be classified in three grades:  PanINs 1, PanINs 2 and  PanINs 3 according 
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to the increased degree of  architectural and cytonuclear atypias and represent the most 

frequently observed epithelial precursor lesions in the pancreas.
20

 PanIN3, a high grade 

lesion is usually found simultaneously in the pancreas with invasive PDAC.
21

 

 

 

 

Figure 1- A pancreatic precursor lesion model representing some genetic alterations occurring during 

the multistep progression to invasive PDAC. Molecular abnormalities observed in PanIN progression can 

be broadly classified as “early” (PanIN1), “intermediate” (PanIN2) and “late” PanIN3 (adapted from Maitra 

A et al, 2003).22
 

 

Usually, PanINs tend to develop in the head of the pancreas, in resemblance of 

PDAC localization. Pancreatic Intraepithelial Neoplasia is also associated with a chronic 

pancreatitis clinical background, which can elucidate the epidemiological association 

between long standing pancreatitis and an increased risk of subsequent malignancy.
23

 

Some oncogenic traces can be distinguished in PanINs lesions, mainly KRAS gene 

mutations as one of the earliest genetic abnormalities, with increased incidence as higher 

is the grade of PanINs, with 36%, 44%, and 87% of cancer-associated PanIN-1A, PanIN-

1B, and PanIN-2/3 lesions, respectively.
24

 In respect to tumor-suppressor genes 

alterations, p16INK4A/CDKN2A, TP53, and DPC4/SMAD4/MADH4 are the most 

frequently observed, and their function is inactivated in a significant share of PanINs, 

reflecting the relative frequency of loss of their function in invasive adenocarcinomas.
25–

27
 The impaired function of the tumor suppressor gene p16INK4A/CDKN2A in PanINs is 

related with inappropriate progression of cell cycle, thus facilitating cancer development. 
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On the other hand, intraductal papillary mucinous neoplasms (IPMNs) or cystic 

neoplasia of “mucinous” type, are macroscopic cysts, that are easily detectable in 

radiologic exams, in opposition to PanINS. A rich mucin production, which is a 

glycoprotein produced by epithelial cells and usually associated with proliferation of 

tumors,
28

 is a key feature of these types of lesions and is the cause of cystic dilation. Its 

frequency is greater in men than in woman and invasive IPMNs are more prone to happen 

in elderly patients, usually associated with abdominal symptoms before final diagnosis.
20

 

 IPMNs can be divided also in three types according to their morphology, histology 

and depending if the development of these lesions occur with the involvement of the 

branches or main pancreatic duct: MD type, a more aggressive type of IPMNs that 

involves the main pancreatic duct and has a possible malignant outcome; BD type, which 

tend to occur in younger patients, is limited to smaller branches and has a lower 

malignant potential; and mixed-type, which origin is not yet clear, and typically harbors a 

high-grade dysplasia or an associated invasive carcinoma.
29

 Regarding the genetic 

mutation profile, IPMN share a common path with other pancreatic lesions and PDAC 

itself. By instance, KRAS2 gene mutation is often pointed out as the most frequent in 

IPMNs and, although the mutation frequency varies from study to study, it can be found 

approximately in 80% of the cases.
30

 However, there is always a lower prevalence of 

KRAS2 gene mutation in IPMN’s than in PDAC.  TP53 is also a gene that could be 

mutated both in IPMNs (0-50%) and PDCA (75%), and its inactivation seems to be a late 

molecular event before being hit the invasive carcinoma status.
31

 

Mucinous Cystic Neoplasms (MCNs) of the pancreas are mucin-secreting cysts 

epithelial neoplasms and are more often identified in the tail or body of the pancreas, not 

exhibiting a linkage with the pancreatic ductal system. Although MCNs are rare tumors, 

they are mainly detected in women, around  90% of the cases, and in younger patients.
28

 

In contrast with IPMNs, MCNs most probably form de novo cystic tumors. Regarding its 

histology, mucinous cystic neoplasms can be classified according to the grading lining 

epithelium: mucinous cystadenomas, when present noninvasive features; MCNs with 

moderate dysplasia; and MCNs with carcinoma in situ.
32

 Concerning the molecular 

alterations referred above for others pancreatic lesions, MCNs harbourKRAS2 mutations 

even in lower grades of dysplasia, while TP53 and DPC4/SMAD4 mutations usually 

occur at a later invasive stage.
33,34

 

The identification of perceptible precursor lesions for a highly aggressive, often fatal, 

neoplasm like PDAC has created a new hope for the early detection and treatment of this 



25 

 

invasive neoplasia.  Although, fruitful therapies for PDAC precursor lesions persist as a 

work in progress and may be of great importance in the future, understanding 

carcinogenesis of pancreatic cancer augments the possibility to translate the acquired 

knowledge into early detection and treatment actions, before the inception of malignancy. 

 

1.4. Current therapeutic strategies for PDAC 

Although cancer remains as a prevailing disease, improved access to universal 

healthcare has permitted to achieve early diagnoses and to develop new and better 

therapies, consequently resulting in an enhancement in the long-term survival for most 

cancer patients. In the case of PDAC, it is clinically classified into three stages regarding 

treatment strategy, namely, resectable, unresectable locally advanced and metastatic, each 

of them with different therapeutic approaches.  

 

1.4.1. Resectable surgery 

Despite the important advances that have been made towards the development of 

better cancer treatments, resectable surgery still stands as the most efficient strategy for 

cancer patients, being the surgeries mainly performed through the techniques of robot 

assisted, laparoscopic, or the traditional open approach. Removal of primary tumor and 

adjacent tissue permits to cure more patients than any other form of cancer therapy, as it 

permits to remove almost 100% of tumor cells, while other therapeutic strategies only 

affect a smaller percentage of tumor cells. Nevertheless, even with a resection surgery, 

only 15%-20% of these PDAC patients are long-term survivors.
35

 Therefore, due to 

elevated rates of failure following curative resection, effective adjuvant strategies became 

an urgent need in order to improve long term survival of the patients. 

 

1.4.2. Radiotherapy 

Surgery and radiation are considered to be local treatments as they directly target 

the tumor in a specific area of the body. Nevertheless, more than 80% of the patients with 

PDAC cannot be submitted to surgery at the time of diagnosis, and half of these patients 

have already developed distant metastasis, making this type of cancer one of the most 

difficult to handle from a clinical point of view.
36

 

Radiotherapy appears as viable option for the treatment of cancer, as it is a non-

invasive treatment and patients usually present a faster and easiest recovery. Near 52% of 

cancer patients undergo radiotherapy at least once during their treatment course.
37

 The 
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mechanism underlying radiotherapy is irradiation with high-energy radiation (x-rays, 

gamma rays and fast-moving charged particles like electrons and protons) damaging 

intracellular components like DNA, thus leading to cell death.
38

 However, radiation lacks 

specificity, as it damages not only the solid tumors but also healthy tissue, suggesting that 

other complementary tools may be of extreme importance to overcome this obstacle. To 

this purpose, many studies are being addressed, by instance, Babaein and Ganjalikhani 

suggest the application of nanoparticles as radio sensitizer, this being considered a new 

promising strategy to improve efficiency of radiotherapy.
39

 

Considering PDAC, performance status, tumor size and cachexia of the patient have 

a significant influence on the outcome of (neo) adjuvant radiotherapy, making it a limited 

option for the treatment of these patients, thus paving the way for other therapeutic 

strategies, such as chemotherapy. Many times both therapeutic strategies are used in 

combination, chemo-radiation, in order to ameliorate the patients status and decrease side 

effects.
36

 

 

1.4.3. Chemotherapy 

Chemotherapy is still the golden standard treatment for the vast majority of 

unresectable tumors, either alone or in combination with surgery. Nowadays, a 

considerable number of drugs are available for the treatment of the innumerous cancer 

types (Table 2), and many others are in study phases, waiting to be approved for clinical 

practice. The three main goals of chemotherapy are to cure the patient from cancer, 

control tumoral growth and spreading, and provide palliative care to terminal patients. 

In the cases where there is the possibility to resect the tumor, the use of 

chemotherapy may be strategically applied in two different stages of the treatment either 

as a neoadjuvant care, in order to shrink the tumor, making the surgery more easy, or to 

sensitize the tumoral cell to radiation effect; or as adjuvant care, to improve chances of 

complete annihilation of tumoral cells after tumor removal, as many cells could be 

undetectable or left behind during surgery. 

 

1.4.3.1. Chemotherapy in PDCA 

So far, no treatment has had a significant impact on pancreatic cancer and most of 

the currently used drugs are to relief and control the patient symptoms.  Up to now, the 

standard care for patients with unresectable pancreatic cancer is either fluorouracil (5-FU) 
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combined with radiotherapy, introduced in 1969 after a trial study indicating an  

improved median survival from 6.3 to 10.4 months, when compared to radiotherapy 

alone,
40

 or gemcitabine, introduced by Burris et al in the late 1990s after a comparative 

study of the efficacy of gemcitabine against fluorouracil (5-FU). Despite, Burris and 

colleagues did not registered a significant increase in overall survival (4.41months for 5-

FU against 5.65 months for gemcitabine), gemcitabine exhibited a better clinical 

response, resulting in an improvement on patients symptoms, 23.8% when compared to 

4.8% of 5-FU, and became generally recognized as a standard treatment for unresectable 

pancreatic cancer.
41

 Along the years, many studies have questioned which of these two 

drugs achieved a better outcome for PDAC patients. However, none of these studies 

could fully elucidate this issue, since both drugs exhibit similarly low survival rates, 

proving that the treatments for pancreatic cancer have been failing to improve long-term 

survival. Gemcitabine (2’, 2’-difluorodeoxycytidined) is a nucleoside analog exhibiting a 

significant antitumor activity against different tumor cell lines in vitro, including 

pancreatic and other gastrointestinal tumors. Gemcitabine is a pro-drug that is internalized 

by the cells through membrane transporters, being then converted into the active form 

through phosphorylation promoted by deoxycytidine kinase (dCK). Its cytotoxicity is 

exerted by gemcitabine diphosphate (dFdCDP) and gemcitabine triphosphate (dFdCTP) 

through incorporation into DNA, thus inhibiting DNA synthesis, through inhibition of 

ribonucleotide reductase and deoxycytidine monophosphate deaminase (the primary 

enzyme responsible for gemcitabine degradation), and by stimulation of deoxycytidine 

kinase (the enzyme responsible for gemcitabine activation).
42

 Nevertheless, gemcitabine 

alone produces only an 11% response rate with a median survival of 5.4 months in PDAC 

patients, being generally accepted that there is no particularly effective chemotherapy for 

patients with pancreatic cancer. The standard therapy currently ranges from palliative 

treatment, to a single agent chemotherapy, 5-fluorouracil (5-FU) or gemcitabine, or to a 

5-FU/gemcitabine-based combined regimen. In this context, it became mandatory to 

develop new drugs and new therapeutic strategies in order to improve the current state of 

care of PDAC patients. 

 

1.4.3.2. Emerging chemotherapeutic agents in PDAC 

In many patients, chemoresistance to gemcitabine treatment is observed after a 

certain period of time. A sub-population of cells, termed cancer stem cells (CSCs), may 

be responsible for this phenomenon, as they display increased resistance to the action of 
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this chemotherapeutic drug, fueling back the tumor, improving tumor aggressiveness, 

thus leading to relapse.
43

 

The search for new drugs that could improve patient’s survival and surpass acquired 

chemoresistance led to the discovery of paclitaxel as a possible chemotherapeutic agent 

that could be administrated along with gemcitabine. Paclitaxel belongs to the class of 

taxanes, showing antimicrotubular activity, by inhibiting the depolymerisation of 

microtubules.
44

 More recently, a new therapeutic strategy,  consisting of human albumin 

nanoparticles bound to paclitaxel, nab-paclitaxel, was developed in order to promote an 

efficient delivery of paclitaxel into tumoral cells.
45

 Promising data have emerged from a 

pilot Phase I/II study where advanced PC patients were submitted to a chemotherapeutic 

regiment of a combination of nab-paclitaxel and gemcitabine.  The median survival rate 

registered was 8.7 months, and the overall response rate was 23% (Table 2).
46

 

Another recent chemotherapeutic regiment with proven efficacy in metastatic solid 

cancers, such as colon and pancreatic cancer, is FOLFIRINOX, which is the combination 

of several drugs: fluorouracil, irinotecan, oxaliplatin and folinic acid. Irinotecan promotes 

cellular toxicity via specific inhibition of the eukaryotic enzyme DNA topoisomerase I. 

Preclinical studies have indicated that when irinotecan is administered before fluorouracil 

and folinic acid results in a synergistic antitumor activity.  Oxaliplatin exerts its cytotoxic 

effect through the formation of platinum-DNA adducts that are responsible for blocking 

DNA replication. Single-agent oxaliplatin has low activity in many tumours, nevertheless, 

when combined with fluorouracil or irinotecan, a synergistic effect is observed in the 

treatment of solid tumors.
47,48

 Due to the relatively non-overlapping toxicities of 

fluorouracil, folinic acid, irinotecan, and oxaliplatin, a regimen combining these agents 

was studied in a phase I clinical trial showing significant responses in patients with 

advanced pancreatic cancer.
48,49

 In 2011, Thierry Conroy and colleagues performed this 

clinical trial in order to elucidate the therapeutic potential of FOLFIRINOX in 

comparison with a gemcitabine monotherapy, in patients with a low severe status of 

illness.
49

 They observed a substantial increase in patient’s survival, with a median overall 

survival of 11.1 months in the FOLFIRINOX group as compared to 6.8 months in the 

gemcitabine group. Moreover, the objective response rate was 31.6% in the 

FOLFIRINOX group versus 9.4% in the gemcitabine group, as described in Table 2. 

However, patients of the FOLFIRINOX group exhibit more severe side effects, revealing 

an undesirable toxicity. Nevertheless, FOLFIRINOX was considered to be a valuable 
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option for the treatment of patients with metastatic pancreatic cancer and to have good 

performance status.
49

 

Table 2-Examples of experimental chemotherapeutic regiments for PDAC.GEM – gemcitabine 

treatment alone (adapted from Chan SL  et al, 2014).
50

Year of publication 

and 

reference 

Agent Arm 
Nº 

patients 

Percentage of patients 

(%) 
Response 

rate (%) 

Median overall 

survival 

(months) 

Locally 

advanced 

pancreatic 

cancer 

Metastatic 

pancreatic 

cancer 

2002 
51 

Fluorouracil 

GEM + 

Fluorouracil 
160 10.6 89.4 6.9 6.7 

GEM 162 9.9 90.1 5.6 5.4 

2003 
52 

5-fluoruracil + 

leucovorin + 

epirubicin + 

carboplatin 

5-Fluoruracil + 

Leucovorin + 

Epirubicin + 

Carboplatin 

71 49.2 50.7 14 7.9 

GEM 67 47.4 52,2 5.9 5.9 

2005 
53 

Oxaliplatin 

GEM + 

Oxaliplatin 
157 30 70 26.8 8.8 

GEM 156 32 68 17.3 6.9 

2006 
54 

Irinotecan 

 

GEM + Irinotecan 60 22 78 15 6.4 

GEM 70 14 86 10 6.5 

2011 
49 

FOLFIRINOX 
FOLFIRINOX 171 0 100 31.6 11.1 

GEM 171 0 100 9.4 6.8 

2013 
46 

Nab-paclitaxel 

GEM + nab-

paclitaxel 
431 0 100 23.0 8.5 

GEM 439 0 100 7 6.7 

 

 

Pancreatic cancer is a very heterogeneous and highly complex disease, with a wide 

variety of activated tumor pathways. Although patients’ survival rates treated with the 

therapeutic regimen presented in Table 2 remain largely unsatisfactory, these drugs still 

hold the best treatment for pancreatic cancer. These data point out the urgent need for 

additional investigation towards the discovery of new and more efficient multitargeted 

therapeutic strategies for PC. 

 

2. Gene Therapy 

 
Regardless of gene therapy concept emerged only in the middle of 1960s, it was not 

until the 1980s that the first in vitro studies were performed, and only 10 years later 

clinical trials involving gene therapy strategies were accomplished.
55

 Nevertheless, the 

real advent in gene therapy would be boosted by one of the greatest achievements in 

science – “The Human Genome Project”. Sequencing the entire human genome, in order 

to build genetic and physical maps spanning the human genome, map all the human 

genes, and label their functions, as well as other parts of the genome has been a 

remarkable task. Consequently, an enormous amount of genetic information was created 

and most importantly, many new genes were identified,
56

 thus, paving the way to 

personalized medicine.
57

 Therefore, gene therapy holds great promise to cure many 
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diseases such as cancer, degenerative neurologic disorders and all sorts of inherited 

genetic diseases. Genes are the raw material for gene therapy, as it consists in transferring 

exogenous genetic material, not only DNA, but also RNA molecules, into target cells, 

aiming at replacing, correcting or balance defective genes that are backing different sort 

of diseases, ultimately improving patients prognosis. Moreover, gene therapy is not only 

considered to be a valuable alternative to conventional therapies, but may also 

complement and improve them.  

After the first gene therapy clinical trial accomplished in 1989 by Rosenberg et al.,
58

 

more than 2076 new clinical trials were approved (Figure 2), in a clear majority related to 

cancer treatment(63,8%), followed by monogenic diseases (8.9%), infectious diseases 

(8.2%) and cardiovascular diseases (8.1%), as mentioned in Wiley database on gene 

therapy clinical trials  (http://www.wiley.co.uk/genmed/clinical).  

 

 

Figure 2 - Distribution of completed or ongoing clinical trials according to the targeted diseases. 

(From:  http://www.wiley.co.uk/genmed/clinical, updated June 2014) 

 

Nevertheless, up to date very few gene therapy products are available in the market, 

being China the pioneer in 2003, commercializing the first gene therapy product, 

Gendicine, an adenovirus vector carrying the human p53 gene, for the treatment of head 

and neck squamous cell carcinoma.
59

 More recently, in Europe, a new gene therapy 

product, consisting of alipogene tiparvovec (Glybera(®)) that makes use of an adeno-

associated virus (AAV) vector, was approved for the treatment of familial lipoprotein 

lipase deficiency.
60

 A broader and safer use of gene therapy (GT) products still remains a 

major milestone to be achieved. 

http://www.wiley.co.uk/genmed/clinical
http://www.wiley.co.uk/genmed/clinical
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2.1. Strategies of Gene Therapy 

 

2.1.1. Insertion of therapeutic genes  

The more common approach in gene therapy consists in the insertion of a normal 

gene in a non-specific region of the host genome, in order to replace a dysfunctional or 

absent gene, or simply the introduction of a new therapeutic gene, aiming at achieving a 

specific therapeutic effect. Diverse strategies can be endorsed, such as using tumor 

suppressor genes, immune-stimulatory genes, survival genes or suicide genes. As an 

example, a Phase I trial is being conducted towards the treatment of high grade gliomas, 

using neural stem cells transduced with an adenovirus containing the gene that encodes a 

rabbit carboxylesterase that can convert the pro-drug,CPT-11 (irinotecan) into its active 

metabolite, SN-38, in a more efficient manner than the endogenous human form. This 

therapy allows a tumor-localized production of SN-38, significantly increasing the 

therapeutic efficacy of irinotecan.
61

 In this case, the purpose of the insertion of the 

therapeutic gene (a gene encoding the rabbit carboxylesterase) was not to act as single 

therapy, but rather to be used to complement and reinforce the therapeutic regiment of 

irinotecan in high-grade glioma patients.
62

 Concerning pancreatic cancer, several clinical 

trials are being conducted using gene insertion technology. In 2001 a Phase I clinical trial 

demonstrated the efficiency of a tumor vaccine, consisting of lymphoblastoid cells 

transduced with a gene encoding the mutated ki-ras-p21 oncogene, establishing a tumor 

antigen approach.
63

 Transduced cells induced an increase in the immunoreactivity, 

suggesting that autologous cellular vaccine hold great hope for future therapeutic 

application in pancreatic cancer. 

In general, gene insertion strategy offers innumerous therapeutic possibilities, 

including those transferring extra copies of a normal gene to overcome the loss of 

function of a certain gene, thus restoring a normal phenotype; introducing therapeutic 

genes coding, for instance, coding for foreigner antigens or cytokines that activate cells of 

the immune system, so as to aid killing of diseased cells; genes encoding toxic 

compounds (suicide genes or prodrugs), thus killing diseased cells directly, or by 

promoting ectopic expression of tumor suppressor genes, as it will explored further ahead 

in this work. 
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2.1.2. Gene silencing 

Regulating genome expression in a post-transcriptional manner is a gene therapy 

strategy that can offer promising results. This approach consists in inhibiting the 

expression of genes that are responsible for supporting pathological conditions in a vast 

number of diseases. In cancer, oncogenic genes promote the establishment of tumorigenic 

features such as abnormal cell proliferation, tumor growth and bypass of apoptotic 

signaling pathways. Therefore, restraining the aberrant oncogenic expression constitutes 

an attractive approach for the development of new cancer therapies.   

Since the discovery of RNAi therapeutic, in which small RNA molecules, such as 

siRNAs and miRNAs, are able to regulate the expression of specific genes in a 

complementary binding manner leading to the silencing or degradation of the mRNA, 

many new opportunities have emerged towards the design of innovative RNAi 

therapeutic strategies. Although, siRNAs and miRNAs are both responsible for post-

transcriptional regulation, and display many similarities in terms of biogenesis, the main 

difference lies on their mode of target recognition. While siRNAs form a perfect duplex 

with their targets at only one site, directing the cleavage of the target mRNAs at the site 

of complementarity, miRNAs bind to the target at the 3′ untranslated regions (UTRs) 

through imperfect complementarity at multiple sites, inducing translational repression or 

transcript degradation, depending on the degree of complementarity between RNAi 

molecule and the target mRNA.
64

 

Gene therapy presents endless opportunities, whether it is making use of DNA genes 

or small interfering RNA molecules to surpass disease related mechanisms. However, 

several crucial steps regarding the transference of genetic material into target cells remain 

a challenge, namely reach the specific cells and overcome the cell barriers, such as 

cytoplasm membrane, endocytic vesicles and nucleus envelope, in the case of plasmid 

DNA delivery. Therefore, much work has been devoted to the design of improved 

strategies for a successful intracellular delivery of therapeutic genetic material.  

 

2.2. Delivery systems 

The development of competent “molecular shuttles”, i.e., delivery vectors that 

mediate an efficient delivery of genetic material into target cells, is a critical and 

demanding task, and until now, many different approaches have been designed to reach 

this goal. 
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An important feature to be highlighted in the development process of the delivery 

systems is their ability to be used in systemic therapies, as these strategies encounter 

diverse hurdles such as blood clearance, strong interaction with blood components and 

accumulation in specific organism niches, such as the liver or lungs that could 

significantly reduce the gene delivery efficiency into target cells.
65

 Furthermore, the 

development of strategies for proper cellular internalization, release and distribution into 

the cell cytoplasm, subcellular compartments or nucleus also present challenging 

difficulties, since DNA genes should be delivered into the cell nucleus while in the case 

of RNAi therapeutics, RNA molecules should reach cytoplasm in order to incorporate 

into RISC complex.
66

 

A total of 2076 gene therapy protocols were approved for clinical trials until now, 

and the vast majority involves the use of viral vectors (67%), due to the high transgene 

delivery/expression exhibited by these systems (Figure 3).  

 

 

Figure 3 – Distribution of completed or ongoing clinical trials according to the diseases targeted. 

(http://www.wiley.com//legacy/wileychi/genmed/clinical) Update June 2014. 

Nonetheless, several concerns, mainly related with safety issues, limited capacity to 

carry genetic material and high costs and difficulty to produce in large scale, have 

prompted investigators to look for other reliable options, such as non-viral vectors.    

Since 2008, the number of non-viral based clinical trial, such as naked DNA and 

lipofection, increased from a total of 270 and 105, respectively, to 365 and 113 clinical 

trials. However, when compared with other gene therapy approaches, such as viral 

vectors, the number of clinical trials based on non-viral vectors is still largely inferior. 

http://www.wiley.com/legacy/wileychi/genmed/clinical
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Overall, these facts show that there is an urgent need for the development of 

innovative gene delivery systems. Regarding recent reports in gene therapy research, 

optimization of previous strategies, and development of new ones towards a more 

efficient and safer gene delivery hold great promising results for therapeutic applications. 

Non-viral gene therapy research has been expanding at an increasing pace to look for 

new methods for nucleic acid delivery, since, despite their lower transfection efficacy 

when compared to viral vectors, they exhibit promising features in terms of safety and 

versatility.  Moreover, in comparison to viral vectors, non-viral systems are inexpensive 

and easy to be submitted to quality control evaluation and to scale-up production.
67,68

  

During the development of gene delivery systems it should be taken in consideration that 

their stability in biological fluids must be guaranteed, as well as their ability to escape the 

immunological surveillance and clearance mechanisms. Cellular barriers, such as the 

plasma and nuclear membranes, the endocytic pathway and potential degradation by 

cytoplasmic enzymes, constitute further obstacles that must be considered. Therefore, 

appropriate systems must be devised to ensure that the various physiological/cellular 

barriers associated to transfection process are surpassed, thus allowing the efficient 

delivery of nucleic acids into the target cells (Figure 4).
69–71

 

 

 

Figure 4 - Physiological/cellular barriers to transfection. A successful nucleic acid delivery system 

should reach the target tissue/organ, avoid enzymatic degradation and diffuse through the extracellular 

matrix, reach the target cell, cross the plasma membrane, escape the endosome and/or avoid degradation in 

the cytoplasm, release the nucleic acids into the cytoplasm and ensure that the nucleic acids reach their 

target, either in the cytoplasm or the nucleus(adapted from Faneca et al, 2013).
72
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Several parameters must meet the unanimity among peers for an accurate and 

efficient design of delivery systems. Preferably, these delivery systems should: (i) protect 

nucleic acids from degradation; (ii) be effectively internalized in specific target 

tissues/organs/cells, including non-dividing cells; (iii) promote release of the carried 

genetic material into the cytoplasm (antisense oligonucleotides, siRNAs, miRNAs) or 

nucleus (plasmid DNA, splice-switching oligonucleotides); (iv) exhibit high biological 

activity at low doses; (v) display no cellular toxicity; (vi) have a good biosafety profile 

for in vivo therapeutic applications; (vii) be easy to produce and have a reasonable shelf-

life to allow the transport, distribution and, consequently, their widespread use. 

The classification for delivery vectors is commonly divided into two different 

categories, according to their nature, non-viral vectors and viral vectors, which will be 

described further ahead. 

 

2.2.1. Non-viral vectors 

Non-viral systems that were already developed for gene therapy usage present 

some clear advantages over viral systems, mostly related with nonpathogenic features, 

cost-effectiveness and easiness of production. Nevertheless, regarding nucleic acid 

delivery and consequent gene expression they are still highly compromised, as usually a 

lower percentage of cells are effectively transfected in vivo, and gene expression remains 

transient.
68,73,74

 

Non-viral vectors can be divided in three major groups; naked DNA, physical and 

chemical approaches. For naked DNA, or pDNA, a low rate of cellular uptake gave to this 

strategy a very limited use, owing to rapid degradation by nucleases in the serum and 

clearance by the mononuclear phagocyte system.
75

 Within the group of physical systems, 

there are several different known strategies, for instance, electropermeabilization was 

developed as an in vivo electroporation strategy to deliver plasmid DNA by means of 

series of electrical pulses that enhance cell membrane permeability, thus permitting the 

DNA to enter the cell.
76

 Furthermore, sonoporation, which consists in the use of low-level 

ultrasound to enhance the internalization of plasmid-DNA into target cells, was developed 

as a non-invasive alternative method.
77

 Laser irradiation, making use of an alternative 

energy source, is able to locally disrupt cell membrane allowing the efficient delivery of 

nucleic acid, although the underlying mechanism is not yet fully understood.
78

 

Magnetofection makes use of magnetic fields to enhance transfection, by coupling 

magnetic nanoparticles to DNA which are then concentrated preferentially into the target 
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cells by the influence of an external magnetic field.
79

 Ballistics or gene-gun is a strategy 

where naked DNA plasmid is moved into target cells, on an accelerated particle carrier, 

and is also used to increase gene transfer in vivo although it is generally less effective 

than the others strategies.
76

 In spite of having established utility for applied research, 

these methods are prone to cause substantial cell damage. Therefore it became crucial to 

invest in safer and more efficient carriers for gene transfer.  

The chemical systems (namely liposomes, polymers and inorganic nanoparticles) are 

the most well studied and have been shown to improve transfection efficiency and 

biocompatibility, therefore, being appropriate for clinical applications. Lipid-based 

nanocarries are one of the most widely used strategies for the delivery of nucleic acids or 

to entrap drugs, both in an aqueous and a lipid phase. Liposomes, phospholipid vesicles 

with a bilayer membrane structure, offer several advantages over other delivery systems, 

as they are considered to be non-toxic, biodegradable, and most importantly, non-

immunogenic, as most of them are typically composed of naturally occurring lipids.
80

 

Among these, cationic liposomes constitute promising systems for the bench-to-bedside 

transposition of nucleic acid-based therapeutics.
81

 Some polymers are also an attractive 

solution for gene delivery as they exhibit interesting features, such as improved 

biodistribution, reduced toxicity, diverse architecture, and are non-immunogenic and 

easily eliminated from the organism.
82

 Also, inorganic nanocarriers were demonstrated to 

be suitable gene delivery systems, presenting low toxicity and properties that permit 

controlled delivery into target cells. The vast majority of inorganic materials used for the 

development of nanosystems such as calcium phosphate, gold, carbon materials, silicon 

oxide and iron oxide, offer wide availability, rich functionality and good 

biocompatibility.
83

 

 

2.2.1.1. Cationic liposomes 

Since cationic liposomes were first described by Felgner el al.,
84

 a vast number of 

cationic liposome formulations have been established, some of them demonstrating to be 

highly effective both in vitro and in vivo models of disease.
85

 However, very few of these 

lipid-based systems reached the clinical trial phase and their applicability was shown to 

have limited therapeutic efficacy.
86

 In this context, an enormous effort is currently being 

made to increase the efficiency of cationic liposomes as gene delivery systems, including 

the synthesis of new cationic lipids and the design of new cationic liposome-based 

formulations.  
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Cationic lipids are the structural basis of cationic liposomes, and are usually mixed 

with neutral charged lipids, aiming at achieving a high nucleic acid delivery capacity. 

Cationic lipids include a group of amphiphiles that exhibit a positive charge which 

triggers their interaction with negatively charged nucleic acids leading to the formation of 

cationic liposome/DNA complexes (lipoplexes). Among the most extensively used 

cationic lipids are 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC) and 

1,2-dioleoyl-3-trimethylammonium propane (DOTAP), usually in combination with 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and/or cholesterol as “helper 

lipids”. These helper lipids sustain a valuable advantage that is mostly related with 

fluidity features and lipid exchange, which consequently influences the gene delivery 

efficiency of the complexes and their cytotoxicity.
87

 Small modifications in the 

composition/structure of cationic lipids could result in a significant change in the 

biological activity of the lipoplexes. Therefore, a complete understanding of the 

relationships between cationic lipids composition/structure and their biological activity, 

as well as their cytotoxicity, is crucial for the development of efficient gene delivery 

systems. 

 Several other factors have major impact in the gene delivery capacity of the 

lipoplexes as it is the charge ratio between cationic lipids and DNA, zeta potential and 

particle size.  A tight balance between the three parameters should be attained aiming at 

achieving maximum efficacy in gene delivery. Cationic lipid/DNA charge ratio largely 

influences particle size, as neutral zeta potential promotes a mean diameter of the 

particles that can easily exceed 1000 nm, whereas, low cationic lipid/DNA ratios result in 

lipoplexes with small size distribution, but exhibiting negative surface charge. In the case 

of the lipoplexes prepared with an excess of cationic liposomes (complexes with a 

positive lipid/DNA charge ratio) a homogeneous size distribution (mean diameter near 

200 nm) and a positive surface charge were observed.
88

 In this regard, lipoplexes with a 

positive zeta potential usually mediate a much higher transfection activity than those with 

a negative zeta potential, which is most probably due to the interaction of the positively 

charged complexes with the negatively charged cell membrane components, such as 

proteoglycans.
88,89

  In accordance with previous reports, in most of the cases, lipoplexes 

that exhibit a slight positive charge and a mean diameter higher than 300 nm are more 

efficient in mediating transfection than those with the same lipid composition but with an 

excess of negative or positive charge.
90–92
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2.2.1.1.1. Strategies to enhance the biological activity of cationic 

liposome-based systems 

Although significant progress has been made regarding the development of 

lipoplex formulations, their efficiency is still below the required for their successful 

clinical application. In this regard, functional devices have been introduced in lipoplex 

formulations to help overcome the biological barriers associated to the transfection 

process, such as targeting a specific tissue or cell type, transposing the plasma membrane, 

escaping lysosomal degradation and overcoming the nuclear envelope.
89

 These devices 

include, for example, the use of targeting ligands to increase the specificity of cellular 

uptake. It has been demonstrated that adding cell-specific ligands to cationic liposome- 

based systems allows the use of lower doses of these systems and their cargo, while 

simultaneously facilitates tissue targeting, improving transfection efficiency and reducing 

side-effects.
89

 Figure 5shows several examples of cell-surface molecules and ligands 

which have already been explored in targeting strategies. 

 

 

Figure 5 - Cell-surface receptors and ligands used in gene therapy targeting strategies. By coupling 

specific ligands to cationic liposome-based systems it is possible to improve cell internalization and, in 

certain cases, achieve tissue and cell specificity (adapted from Faneca et al, 2013).
72

 

 

Transferrin and folic acid (FA) are two strong examples of widely explored targeting 

ligands. For instance, taking advantage of the transferrin receptor (TfR), which is  

abundantly expressed in cancer cells and in certain tissues such as the nervous tissue and 

the endothelial tissue that composes the blood brain barrier (BBB), and its mechanism of 
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internalization and recycling to the cell surface, several reports have shown that the 

conjugation of transferrin to the surface of the liposomes improved their binding to this 

receptor in order to enhance both DNA
93

 and siRNA
94

 internalization. Regarding folic 

acid as a ligand, the fact that the folate receptor is overexpressed in innumerous types of 

cancer, including breast and ovarian cancers,
95,96

 offers the possibility to use this receptor 

to develop novel targeted-cationic liposomes-based strategies. Hence, the conjugation of 

folic acid by covalent coupling to cationic liposomes has been used to deliver different 

nucleic acid molecules, such as DNA,
97

 antisense oligodeoxyribonucleotides
98

 and 

siRNA
99

. Moreover, based on the electrostatic interaction between the folic acid and 

liposome, a new gene delivery system was generated by non-covalent association of FA 

to DOTAP:Chol or EPOPC:Chol cationic liposomes (folic acid-associated lipoplexes). 

The obtained results showed that these lipoplexes mediate a much higher transfection 

efficiency and antitumoral activity than plain lipoplexes (lacking folic acid).
91

 

In addition, endowing cationic liposomes with the ability to improve endosomal 

release of nucleic acids to avoid lysosomal degradation is another promising strategy. 

Although cationic liposomes can promote the destabilization of the endosomal membrane 

by themselves, several endosomolytic agents have been developed, based on known 

fusogenic or pore-forming proteins and peptides, in order to significantly improve the 

cytoplasmic availability of nucleic acid molecules.
100,101

 Some of the endosomolytic 

agents most applied to cationic liposome technology are the hemagglutinin subunit 2 

(HA2) fusion peptide of the Influenza vírus and GALA, a peptide composed of repeating 

sequences of Glu-Ala-Leu-Ala, as both undergoes a conformational change under acidic 

pH and assumes fusogenic properties that potentiate the destabilization of the endosomal 

membrane.
100

 Interestingly, human serum albumin (HSA) was also shown to undergo a 

low pH-induced conformational change, thereby acquiring fusogenic properties, 

promoting DNA release from the endocytotic pathway.
102,103

 Moreover, considering that 

this is one of the most abundant human proteins in plasma, its use in cationic liposomes 

coating exhibits a great potential to ameliorate some of the undesired interactions between 

cationic liposome/DNA complexes and serum components. The incorporation of HSA 

into lipoplexes increases their binding and uptake by target cells, and mediates a much 

higher gene expression than the corresponding plain lipoplexes, and although it is not yet 

clear, the internalization of these complexes is thought to be performed via non-specific 

cell surface receptors, as in coated pit-mediated endocytosis.
90,103,104

 Additionally, the use 

of HSA-coated nanosystems could overcome some of the problems associated with the 
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use of highly positively charged complexes for gene delivery in vivo.
90,103,104

 Our 

previous studies also demonstrated that the conjugation of HSA to EPOPC:Chol/DNA 

lipoplexes strongly enhances the transfection activity of lipoplexes not only in vitro, 

including in the presence of serum, but also in an animal model of mammary 

adenocarcinoma.
90,104

 Overall, these observations encourage the use of these HSA-based 

nanosystems in gene therapy approaches.  

 

2.2.1.1.2. Delivery of Oligonucleotides mediated by cationic 

liposomes 

As RNAi therapeutics presents an increasing pace of development, it became 

demanding for cationic liposome technology to follow this trend. Sequence specific 

oligonucleotides (ONs) aiming at blocking gene expression through translational arrest or 

mRNA degradation have been successfully used as therapeutic tools in a variety of 

diseases, including cancer.  

Regarding oligonucleotides delivery with recourse to cationic liposomes, several 

studies have reported both in vitro
105–107

 and in vivo
108,109

 effective applicability. On the 

other hand, a combined strategy, where delivery of therapeutic oligonucleotides was 

accompanied by chemotherapeutic drugs, reveled to be a promising strategy for cancer 

treatment.
110,111

 As an example, Yu-Li Lo and Yu Liu reported the use of PEGylated 

cationic liposomes to carry antisense oligonucleotide (ASOs) and epirubicin to an in vitro 

colorectal adenocarcinoma cell line, as a strategy to overcome multidrug resistance. In 

this study, the combined action of ASOs that  target selected suppressors of efflux pumps, 

with this antineoplastic agent intensified the epirubicin-mediated apoptosis.
111

 Thus, the 

development of cationic liposomes formulations aiming at simultaneously encapsulate 

therapeutic oligonucleotides and chemotherapeutic drugs may represent one of the most 

significant steps in order to attain greater and synergistic antitumor effect with these 

combined approaches to cancer treatment. 

 

2.2.1.2. Viral systems for gene delivery 

Viral vectors are usually associated with increased risk of immunogenicity, and 

others safety concerns, and are technically demanding. In this regard, many efforts have 

been made towards the development of safer and efficient viral vectors for application in 

gene therapy. As a desirable tool in biomedical technology, engineered viral vectors 

should exhibit the attracting characteristics of an efficient ability to infect host cells and 

transfer DNA without invoking an immune response or the uncontrolled insertion of 
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exogenous material into the genome as well as safety application problems. Among the 

advantages of viral vectors, when compared to non-viral vectors, is the more efficient 

gene transfer, usually a single dose of viral particles is sufficient to induce proper 

transgene expression.
112

 

 

 

Figure 6 - Principle of generation of a viral vector. (a) Converting a virus into a recombinant vector. 

Schematic of a generic viral genome is shown with genes that are involved in replication, production of the 

virion, and pathogenicity of the virus. The genome is flanked by cisacting sequences that provide the viral 

origin of replication and the signal for encapsidation. The packaging construct contains only genes that 

encode functions required for replication and structural proteins. The vector construct contains the essential 

cis-acting sequences and the transgene cassette that contains the required transcriptional regulatory 

elements. (b) The packaging and vector constructs are introduced into the packaging cell by transfection, by 

infection with helper virus, or by generating stable cell lines. Proteins required for replication and assembly 

of the virion are expressed from the packaging construct, and the replicated vector genomes are 

encapsidated into virus particles to generate the recombinant viral vector. (adapted from Verma IM, 

Weitzman MD, 2005).
113

 

 

The most commonly used viral vectors are derived from adenovirus, retrovirus and 

adeno-associated virus (AAV). Other viral vectors that have been less extensively used 

are derived from herpes simplex virus 1 (HSV-1), vaccinia virus, or baculovirus. 

Retroviruses envelope contains a virus-encoded glycoprotein that specifies the host 

range or types of cells that can be infected by binding to a cellular receptor. The envelope 

protein promotes fusion with a cellular membrane on either the cell surface or in an 

endosomal compartment, afterwards the double-stranded DNA is transferred to the 
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nucleus, where it is integrated into the host cell genome by a mechanism involving the 

virus-encoded enzyme integrase, being stably maintained.
114

 

Adenoviruses are non-enveloped viruses able to transduce both, dividing and non-

dividing eukaryotic cells. They are often used as replication competent oncolytic viruses 

for delivery of DNA sequences into the desired target cell. Subsequently to infection, 

oncolytic adenoviruses replicate in a tissue-specific manner and spread their viral progeny 

to neighboring cells. These viral vectors exhibit low pathogenicity and cytotoxicity due to 

the low number of viral genes present in the Ad vector, minimizing immune 

response.
115

On the other hand, a suicide gene therapy using replication-deficient vectors 

has been used, and all trials reported that intraprostatic administration of a replication-

deficient adenoviral vector was well tolerated and no dose-limiting toxicity was 

observed.
116

 Still, extensive preclinical and clinical research, including trials with long-

term follow-up will be required to bring adenoviral gene therapy for cancer toward 

clinical implementation. 

 

2.2.1.2.1. Lentivirus vectors –particular focus in HIV 

Gene transfer vectors based on retroviruses, including oncogenic retroviruses and 

lentiviruses, provide effective means for the delivery, integration and expression of 

exogenous genes in mammalian cells. The inability of simple retroviral based vectors to 

transduce non-dividing cells has limited their potential utility for gene therapy. In contrast 

to simple retroviruses, lentiviruses present the ability to infect non-dividing cells. The 

capacity to efficiently transduce non-dividing cells, shuttle large genetic payloads and 

maintain stable long-term transgene expression are attributes that have brought lentiviral 

vectors (LVs) to the forefront of gene delivery vehicles for research and therapeutic 

applications in a clinical setting.
117

 Stable long-term transgene expression is a desirable 

characteristic for any research/clinical application involving transgene delivery in vivo. In 

pursue of this goal, lentivirus vectors have long demonstrated to be highly efficient to 

mediate long-term transgene expression in vivo.
118

 

Different types of lentivirus-based vectors have been produced, including those 

developed from the immunodeficiency viruses derived from human (HIV-1 and HIV-2). 

The mechanism by which lentiviruses infect non-dividing cells, namely HIV-1, is 

supposed to be related with the efficiency of uncoating, due to the capsid protein 

association with intracellular retroviral complexes, accounting for the disparity between 

lentiviruses and simple retroviruses in transduction of quiescent cells.
119

 HIV-1 based 
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vectors display competent transduction of non-dividing cells while retaining the ability to 

integrate transgenes into the target cell genome in the absence of an inflammatory 

response. However, safety concerns still remain as a major drawback with the use of 

lentiviral vectors. 
117

 

A gene therapy approach for pancreatic ductal adenocarcinoma demonstrated that 

the HIV-1-based lentiviral vectors are very efficient in gene transfer for PC-derived cells 

both in vitro and in vivo. The success of pancreatic cancer gene therapy strongly relies on 

the delivery vector, thus expression of selected tumor suppressor transgenes delivered by 

lentiviral vectors resulted in the inhibition of cell proliferation and the induction of cell 

death by apoptosis.
120

 Sicard F. et al developed a lentivirus based vector coding the anti-

miR-21 molecular sponges, after finding evidences that despite locked nucleic acid 

antagomiRs could successfully inhibited miR-21 function in vitro failed to target this 

miRNA in vivo.
121

 Their results demonstrated, for the first time, that miRNA antagonists 

are highly efficient in targeting miR-21, when delivered by LVs, both in vitro and in vivo, 

without impacting on endogenous miRNA biogenesis. Moreover, they also found that 

tumor cell proliferation and tumor progression are strongly inhibited following miR-21 

depletion promoted by miR-21 sponges transduced with LVs.  

Regarding this, HIV-1-based lentiviral vectors could be a powerful tool to deliver 

microRNA modulators in pancreatic cancer.  

 

3. MicroRNAs 

 
MicroRNAs were first identified in Caenorhabditis elegans in the beginning of the 

1990s, when Lee et al discovered that a small 22 nucleotide RNA sequence, lin-4, could 

negatively regulate the level of LIN-14 protein.
122

 It was suggested for the first time that 

this sequence was responsible for regulating translation via an antisense RNA-RNA 

interaction, since it bound in a complementary way to the 3’ untranslated region (UTR) of 

lin-14 mRNA. MicroRNAs are small endogenous non-coding RNAs with 20 to 22 

nucleotide length, but with a powerful task of modulating mRNA transcription in a 

posttranscriptionally manner. These tiny molecules constitute only 1% to 3% of human 

genome, however they are able to regulate a large portion of the genome.
123

  Around 100 

microRNA genes have been identified in invertebrates and up to 1000 in vertebrate and 

plants, all of which are available in miRBase.
124

 Bioinformatic algorithms have estimate 

that each microRNA can target hundreds of different mRNAs, hypothesizing that a large 
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proportion of the transcriptome is under the control of miRNA regulation.
125

 Therefore, 

microRNAs display extensive regulatory activity in virtually all biological processes such 

as cell cycle, cellular differentiation, survival, proliferation and apoptosis.
126

 

The biogenesis of microRNAs (Figure 7) involves a multi-step sequential process that 

is initiated in the nucleus, comprising the processing of a long primary transcript (the pri-

miRNA), performed by Drosha-DGCR8 complex, into 70 to 100nt hairpin precursors, the 

pre-miRNAs. Afterwards, the pre-miRNA is translocated to the cell cytoplasm, under the 

action of exportin-5, being further cleaved by the ribonuclease Dicer into a mature 

miRNA duplex.
127

 Subsequently, the mature miRNA duplex is integrated into the RNA 

induced silencing complex (RISC) that leads to the degradation of the duplex into a single 

stranded of miRNA, mature RISC.
128

 After the assembly of the microRNA into the RISC 

complex and its maturation, it can bind to its target mRNAs by complementary base 

pairing at their 3'UTR, through the seed sequence (7 to 8 nucleotides). The degree of 

complementarity between the miRNA and the target mRNA determines whether the 

miRNA will inhibit translation or, less frequently, induce degradation of the target 

mRNA.
127,128

  

 These regulatory molecules present a much simpler mechanism in plant than in 

metazoan organisms, as in plants  miRNAs  commonly exhibit  a nearly perfect 

complementarity to the target mRNA, prompting  mRNA cleavage by a RNAi-like 

mechanism, much similarly to siRNAs.
128

 However, mammalian miRNAs have an 

imperfect pairing with their targets, where the first 2-9 nucleotides of the miRNA, 

representing the seed sequence, display an almost perfect and contiguous base pairing, 

being responsible for the main miRNA-mRNA interaction, leaving the rest of the 14 to 20 

nucleotides (microRNA “tail”) with a more intermittent binding.
123
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Figure 7 - MicroRNA biogenesis (adapted from  V. Narry Kim, 2005).
128

 

 

Although it is assumed that microRNA function is control gene expression 

posttranscriptionally, by regulating mRNA translation or stability in the cytoplasm, the 

mechanistic details in repressing protein synthesis are not totally clarified.
126

 Moreover, 

emerging evidences of new functions of miRNAs indicate that miRNAs could regulate 

pre-mRNA processing in the nucleus or act as chaperones that modify mRNA structure or 

modulate mRNA–protein interactions.
129

 Additionally,  observations that mammalian 

miRNAs can either be imported into the nucleus or excreted from one cell to another 

through exossomes reinforce their widespread importance in cellular biology.
129,130

 

MicroRNA-mediated gene silencing involves translational repression and/or mRNA 

degradation through endonuclease cleavage of the target mRNA. However, some 

questions remain unanswered concerning mechanistic details of miRNA-mRNA 

regulation, as extensive base-pairing between the microRNA and the mRNA is not 

always sufficient to induce cleavage. Several different mechanisms have been proposed 
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for mRNA silencing mediated by microRNAs: by blocking translation elongation, 

through promoting premature dissociation of ribosomes (ribosome drop-off); or through 

the association of Argonaute-2 (AGO2) protein, from the RISC complex, with both 

eukaryotic translation initiation factor 6 (eIF6) and large ribosomal subunits; or 

competition between Argonaute proteins and eukaryotic translation initiation factor 

4E(eIF4E) for binding to the cap structure of the mRNA, preventing the large ribosomal 

subunit from assembling with the small subunit.
126

 Subsequently,  translational repression 

is accomplished as the targeted mRNA undergoes sequestration into P-bodies where they 

are shielded from the translation machinery, thus silenced, and may also be submitted to 

decay.
126,131

 Moreover, miRNA-mediated gene silencing also involves mRNA 

degradation, which is accomplished via deadenylation and decapping of the mRNA 

molecules, through the recruitment of the decay machinery components.
131

 

 

3.1. Other non-coding RNAs 

Apart from rRNAs (ribosomal RNAs), tRNAs (transfer RNAs), snRNAs (small 

nuclear RNAs) and more recently microRNAs and siRNA, other important non-coding 

RNAs (ncRNAs) have been discovered while eukaryotic transcriptomes were assessed. 

 Recently, Hirose T et al. reviewed their taxonomy: overall, eukaryotic ncRNAs can 

be classified either as small RNAs (~20–30 nucleotides (nt); e.g., miRNAs), intermediate 

sized RNAs (~30–200 nt; e.g., snRNAs), and lncRNAs (> ~200 nt).
132

 Small RNAs are 

non-coding RNA molecules smaller than 150 nt, and in this category we can find, for 

example, piRNAs (PIWI-interacting RNAs) and crRNAs (clustered regularly interspaced 

short palindromic repeats). piRNAs function as guide molecules to silence 

complementary transposon RNAs either by post-transcriptional cleavage or by 

transcriptional silencing, and are known to be highly heterogeneous sequences and not 

well conserved across species.
132

 As for crRNAs, these molecules are encoded by 

clustered, regularly interspaced, short palindromic repeats (CRISPR) loci in prokaryotes 

and are known to function as a genome defense mechanism against foreign genetic 

elements such as plasmids and viral genomes through antisense targeting.
132,133

 Regarding 

lncRNAs (non-coding RNA), these are recently discovered non-coding RNA molecules 

larger than 200 nt, known to occupy a considerable portion of whole ncRNAs and for 

being widespread in the nucleus and cytoplasm. They are also characterized by the lack of 

strong conservation among species and to display cell-type-specific expression patterns. 

Being precursors for small RNA molecules, responsible for processing of other RNAs or 
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key coactivators of proteins involved in transcriptional regulation are some of the most 

well described functions of lncRNAs.
132,134

 

Genetic and epigenetic events can disrupt ncRNA loci and their related proteins, and 

emerging evidence indicate a relevance of the dysregulation of these ncRNAs in many 

diseases such as cancer and neurological, cardiovascular and other human disorders.
135

 

Nevertheless, a special focus will be given to microRNAs as a hallmark of cancer, 

particularly in pancreatic cancer.  

 

3.2. MicroRNAs and Cancer 

Dysregulation in microRNA expression levels is considered to be associated to 

tumorigenesis, as more than 50% of miRNA genes are located in cancer associated 

genomic regions.
136

 MicroRNAs can target cancer related genes, therefore they can act as 

oncogenes (oncomiR), promoting proliferation and/or repressing apoptosis, or as tumor 

suppressors, by repressing genes responsible for the maintenance of tumorigenesis.
137

 The 

first reported case of abnormal miRNA expressions was found in B-cell chronic 

lymphocytic leukaemia (CLL).
136

 Posteriorly several genome-wide profiling studies were 

performed in various solid tumors, such as  breast cancer,  glioblastoma,  hepatocellular 

carcinoma, lung cancer, colon cancer and endocrine pancreatic tumours, and other 

anomalous microRNA expression patterns were identified.
136,138,139

 Both normal and 

tumoral tissues exhibit unique microRNA expression profiles, a specific signature being 

inherent to a variety of tumor types, which can be used to characterize and identify them. 

Interestingly, microRNAs were also identified in many human fluids, including human 

blood stream, as circulating microRNAs, making them a valuable tool as biomarkers for 

cancer diseases, as patients and control groups could be easily distinguished by analyzing 

a specific set of microRNAs. Furthermore, specific miRNA expression signatures have 

been identified as characteristic of some cancer subtypes, and therefore useful for tumor 

classification, but have also been associated with prognosis, staging, and response to 

therapy.
138,140,141

 

Special attention has been devoted to microRNAs involved in different cellular 

pathways of high importance to maintain cancer malignancy. Some of these microRNAs 

are pivotal players in several carcinogenic pathways, revealing a widespread monopoly 

over tumoral maintenance.
138
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MicroRNA-21 has attracted the attention of researchers in various fields, and is 

probably one of the most extensively studied miRNAs. Moreover, miR-21 was identified 

as the best hit in a number of profiling experiments designed for the detection of miRNAs 

dysregulated in cancer. It was shown to be strongly up-regulated in various types of 

cancer, including glioblastoma, breast, colon, lung, pancreas, prostate, gastric and 

hepatocellular carcinoma, acting in some pivotal signaling pathways promoting tumor 

growth, invasion and chemoresistance (Figure 8), thus, making miR-21 one of the most 

promising prognostic markers for cancer diagnose.
142

 

 

 

 
Figure 8 - Model of miR-21 network and feedback regulation. Maturation of miR-21from pri-miR-21 is 

shown in the center of the model. MiR-21 direct target genes are depicted on blue background. Genes 

shown on green background are regulated (probably indirectly) by miR-21 and are involved in miR-21 

processing from pri-miR-21 to pre-miR-21.(Adapted from Krichevsky A. and Gabriely G, 2009).
142

 

 

Another example of well-studied microRNAs is the let-7 family, which is frequently 

downregulated in the vast majority of cancers. Let-7 tumor suppressor activity was found 

to exert an effect upon two of the most important oncogenic genes, RAS and c-MYC. 
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143,144
 This microRNA functions extend from suppressor of cell proliferation, to inducer 

of apoptotic signaling pathways and sensitizer to chemotherapeutic agents.
145,146

 

Much different microRNAs can be found dysregulated in cancer, some exerting 

oncogenic roles in signaling pathways that promote tumor growth, increased 

angiogenesis, stemness, etc., others prevented from regulating normal physiological 

events. One of the most aggressive characteristic of cancer is the ability of tumoral cells 

to escape from the primary tumor and invade healthy tissues, thus promoting metastasis 

formation. This event is also supported by the action of oncogenic microRNAs. Abba M. 

and colleagues reviewed the impact of microRNAs in the regulation of matrix 

metalloproteinase, which are enzymes responsible for the breakdown of collagen Type 

IV, thus responsible for extracellular matrix and tissue remodeling.
147

 However, these 

proteins are also endorsed in cancer progression, epithelial to mesenchymal transition 

(EMT) and metastization, being the normal physiological processes disrupted. Abba M 

and colleagues presented data comprising 55 different studies, where a group of 13 

miRNAs were distinguished by targeting both MMP-2 and MMP-9 in a large variety of 

cancers types. Amongst them, miR-10b, miR-21, miR-125b, miR-138 and miR-181b 

showed that the regulation of these MMPs, and thus the associated invasion of normal 

tissue by tumoral cells and the establishment of novel metastasis, are strongly determined 

by the action of a multiplicity of miRNAs.  

PDAC can also be distinguished by a specific dysregulated group of microRNAs 

responsible for backing it tumorigenic features. This group of miRNAs will be addressed 

below.  

 

3.3. Dysregulated microRNA in PDAC 

Pancreatic adenocarcinoma shares a common feature with other solid tumours: an 

abnormal expression of microRNAs, usually implicated in several supportive mechanisms 

of oncogenesis. Studies based on high-throughput microarray technologies were 

performed using available in vitro models as well as tumour samples, excised from PDAC 

patients, in order to establish a common expression pattern for this malignancy, and thus a 

tumoral microRNA signature for pancreatic cancer.
148–150

 Nevertheless, when it comes to 

identify a large group of differentially expressed microRNAs in PDAC, consensus among 

research groups has been an arduous issue, since numerous parameters, such as 

differences in measurement platforms and laboratory protocols, small sample sizes as 

well as variability among samples, can strongly influence the attained results and partially 
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the lack of reproducibility. However, a meta-review approach can give further insight into 

the analysis of experimental data resulting from numerous individual studies, 

consequently increasing statistical significance and subsequently discard inconsistent data 

among different profiling studies. By instance, in 2013, Ma M. et al reviewed eleven 

microRNA profile studies in PDAC, reporting 439 miRNAs differentially expressed, that 

gathered a total of 538 tumours and 206 noncancerous control samples. A group of 

microRNAs, which levels of expression were consistent across studies, was elected by the 

authors and is presented in Table 6.
151

 

Table 6- PDAC meta-signature from the vote-counting strategy (reported consistently in at least five 

studies) 

microRNA name 

Corrected 

p-value 

Permutation 

p-value 

No. of 

studies 

Up-regulated    

hsa-miR-155 6.17E-11 8.64E-13 8 

hsa-miR-100 3.32E-09 7.01E-11 7 

hsa-miR-21 2.75E-09 3.29E-11 7 

hsa-miR-221 1.56E-08 9.34E-10 7 

hsa-miR-31 1.44E-05 8.83E-07 5 

hsa-miR-143 6.78E-04 4.56E-06 5 

hsa-miR-23a 3.27E-03 5.09E-05 5 

Down-regulated    

hsa-miR-217 7.56E-07 4.37E-09 5 

hsa-miR-148a 2.00E-05 3.55E-07 5 

hsa-miR-375 1.08E-03 8.70E-06 5 

 

Exhaustive investigation has been devoted to microRNAs to further enlighten their 

role in signaling pathways responsible for supporting tumoral cells proliferation, survival 

and metastasis in pancreatic cancer. The importance of microRNAs that are often referred 

to exhibit an aberrantly expression pattern in pancreatic cancer will be reviewed. 

 

3.3.1. Up-regulated microRNAs in PDAC 

MiR-155 is known to play a crucial role in the post-transcriptional regulation of 

TP53INP1 (tumor protein 53-induced nuclear protein 1), which is under the direct 

control of p53, a tumor suppressor gene. TP53INP1 induces cell cycle arrest and 

apoptosis, and its expression is lost in early stages of pancreatic cancer. Gironella and 
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colleagues describe miR-155 as the responsible for TP53INP1 repressed expression and 

that the restoration of TP53INP1 levels is in accordance with the regression of 

tumorigenic features of pancreatic cancer.
152

  Furthermore, miR-155 was also shown to be 

involved in the control of invasiveness and migration ability of pancreatic tumoral cells 

by modulating the STAT3 pathway and reducing SOCS1 expression levels.
153

 

Additionally, abnormal levels of miR-155 were detected in noninvasive precursor lesions, 

a premature stage of pancreatic cancer, and increased oncogenic activity of miR-155 was 

related with poorer survival chances in PDAC patients, making this microRNA a 

fundamental biomarker in differentiation of this malignancy and a predictor for patient 

outcome.
154,155

 

Distinct roles can be attributed to miR-100 in different cancers, making it a quite 

contradictory microRNA, as it can behave either as an oncogene or a tumor suppressor 

gene, depending on the tumor type. In breast cancer, miR-100 was found to be 

downregulated and was related with progressive pathological feature and poor prognosis 

in patients. Reestablishment of miR-100 expression levels led to tumor growth inhibition 

by strongly reducing IGF2 (insulin-like growth factor 2) expression, a known oncogene. 

156
 Moreover, it was reported that this microRNA could also regulate the expression of 

HOXA1, a gene enrolled in EMT, either in breast cancer and in non-small cell lung 

cancer.
157,158

 Nevertheless, in non-small cell lung cancer elevated levels of miR-100 were 

detected, and an opposite effect of the regulation of HOXA1 was observed when in 

comparison with breast cancer cases, where it seems to increase tumoral cell survival and 

chemoresistance, exhibiting a dual and divisive role.
157,158

 Chen J. and colleagues 

reviewed this contradictory role of miR-100 in a variety of cancers, reporting several 

studies where this microRNA can display either oncogenic or tumor suppressor 

features.
159

 Concerning pancreatic ductal carcinoma, the consequences of miR-100 

overexpression are still poorly understood. It was reported that metastatic pancreatic cell 

lines present a greater expression of miR-100 than in non-metastatic cell lines.
160

 

Additionally, a functional link was established between miR-100 and IGF1-R (insulin 

growth factor 1 receptor), known to control the ability of pancreatic cancer cells to 

metastasize in vivo, as it is involved in the proliferation mechanisms in cancer. It was 

observed that after transfection with miR-100 inhibitors into S2VP10 pancreatic cancer 

cells the IGF1-R expression levels were decreased.
160

 Moreover, miR-100 was also 

described to be up-regulated in a genetically engineered mouse pancreatic cancer model, 

the p48-Cre/LSL-KrasG12D model, as well as in human pancreatic cancer stem cells, 
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demonstrating it widespread importance in the conservation of tumorigenic features of 

PDAC.
161,162

 

MiR-21, as in much other type of malignancies, is strongly up-regulated in PDAC. 

This microRNA has demonstrated to be enrolled in cell proliferation, survival and 

gemcitabine resistance in pancreatic ductal adenocarcinomas,
163,164

 and most importantly, 

it is detected in early pancreatic lesions know to be precursor of pancreatic cancer.
165

 

However, recent reports suggest complementary roles for miR-21 in pancreatic cancer. 

For instance, hypoxic microenvironment of pancreatic tumor was shown to regulate miR-

21 expression levels through increase of the HIF-1α expression, and hypoxic conditions 

are described as metastasis enhancer.
166

 Pancreatic tumoral cells were reported to improve 

their ability to invade and metastasize by inducing tumor-associated fibroblasts (TAFs) to 

express miR-21.
167

 Taken together, these findings provide evidence that miR-21 is a 

promising dual target, both in tumoral cells and in stroma cells.   

In parallel with miR-21, miR-221 was found to be up-regulated in pancreatic cysts 

with malignant potential and to drive invasive cancer, demonstrating that miR-221 

aberrant expression is also an early event in the development of pancreatic cancer.
168

 

MiR-221 was also reported to be a key player in diverse pathological pathways in PC 

such as cell proliferation, survival, migration, invasion, metastasis and, finally, 

acquisition of the epithelial-mesenchymal transition (EMT) phenotype by regulating the 

platelet-derived growth factor (PDGF) signaling cascade.
142

 Moreover, these events have 

demonstrated to be partially a consequence of the downregulation of the miR-221 target, 

p27
Kip1

.
169

 Some other mRNA targets of miR-221 were highlighted by Sarkar S.et al, 

revealing that the inhibition of miR-221 could decrease the proliferative capacity of the 

pancreatic cancer cells by rescuing the tumor suppressor activity of PTEN, p27
kip1

, 

p57
kip2

, and PUMA, which are well-known tumor suppressors.
170

 

Although some microRNAs were not referred in Table 6, many different studies 

highlighted their importance in promoting tumorigenesis, as it is the case of the 

microRNAs miR-10b and miR-196a. Studies in breast cancer have always focused on 

miR-10b due to its involvement in metastasis formation.
171,172

 Regarding pancreatic 

cancer, miR-10b up-regulation was also demonstrated to have a relevant role in 

invasiveness features of tumor cells, thus leading to a possible poor prognostic for 

patients.
173

 Preis M. and colleagues, analyzed several samples of PDAC and found that 

miR-10b was one of the most frequently and consistently overexpressed microRNAs. 

Their data also suggested that lower levels of miR-10b were associated with improved 
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response to multimodality neoadjuvant therapy, higher probability of surgical resection, 

delayed time to metastasis, and increased survival.
174

 More recently, a study revealed 

some possible mechanistic properties of miR-10b in promoting invasiveness in pancreatic 

cancer, as Tat-interacting protein 30 (TIP30) was identified as its direct target. MiR-10b 

was shown to suppress TIP30 expression, which in turn enhances EGFR signaling, 

facilitates EGF-TGF-β cross-talk and enhances the expression of EMT-promoting genes, 

whereas decreasing the expression of several metastasis-suppressing genes.
175

 

MiR-196a biological relevance in pancreatic cancer is still largely unclear, despite 

being mentioned in several genomic profiling studies as one of the most differentially 

expressed microRNAs in pancreatic cancer. Recently, Huang and colleagues suggested 

that the nuclear factor kappa-B-inhibitor alpha(NFKBIA), an inhibitor of the NF-κB 

transcription factor, which is implicated in the progression of pancreatic cancer, is a target 

of the miR-196a in PDAC.
176

 They registered increased levels of miR-196a in four 

different pancreatic cell lines and enhanced expression of NFKBIA after miR-196a down-

regulation, which promoted inhibition of migration, suggesting a direct regulation 

mechanism of miR-196a in migratory ability of pancreatic tumoral cells. Reinforcing this 

data, miR-196a was also pointed as an important modulator in abnormal physiological 

processes, such as apoptosis, invasion, and proliferation in pancreatic cancercells.
177

 

Regardless of all these evidences relatively to the oncogenic role of miR-196a in 

pancreatic cancer, as far as we know, no attempt was been made to use this promising 

microRNA as a therapeutic strategy for the treatment of PDAC.  

 

3.3.2. Downregulated microRNAs in PDAC 

Dysregulated microRNAs in cancer also include miRNAs that are partially or 

strongly inhibited, enhancing a tumorigenic phenotype. The downregulated microRNAs 

in PDAC highlighted by Ma M. et al are miR-217, miR-148a and miR-375, since they 

gather more consensuses among the majority of genomic microRNA profile studies.   

Emerging evidences points towards a tumor suppressor function of miR-217 in 

several types of cancer. Low cellular levels of this microRNA were associated with 

improved invasion ability, increased cell motility and cell proliferation in both renal cell 

carcinoma and hepatocellular carcinoma.
178,179

 In addiction, it was described that miR-

217 downregulation was associated with drug-resistance in chronic myelogenous 

leukemia.
180

 The molecular mechanisms involving miR-217 were investigated in PDAC 

by Wu-Gan Zhao and colleagues, who analyzed this microRNA expression profile in 
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normal and tumoral tissues as well as in PDAC cell lines, reporting a different profile in 

healthy and malignant samples, being miR-217 significantly downregulated in PDAC 

tissues and cell lines. Furthermore, a significant suppression of cell growth was observed 

after ectopic expression of miR-217, both in vitro and in vivo, which was inversely 

correlated with KRAS expression, due to direct post-translational regulation. Moreover, 

the expression of miR-217 had also the ability to affect other downstream molecular 

effectors, indicating a regulatory role in KRAS signaling pathway.
181

 Restraining of 

KRAS protein expression in a miR-217 dependent manner promote the decline of 

anchorage-independent colony formation in PDAC cells. Remarkably, after in vivo 

xenograft treatment with miR-217 expression vector it was observed a decrease of tumor 

growth, revealing a therapeutic potential for PDAC.
181

 

Similarly to other dysregulated microRNAs in PDAC, miR-148a was also described 

as aberrantly under expressed in hepatocellular carcinoma, gastric cancer and non-small 

lung cancer, being associated with more aggressive features and poor survival rates.
182–184

 

The major pathway in which miR-148a seems to play a pivotal role in malignancy control 

are intrinsically related with the epithelial to mesenchymal transition (EMT), 

predominantly acting as a metastasis suppressor.
182–184

 Particularly in gastric cancer, the 

inhibition of EMT through miR-148a action is partially attributed to the downregulation 

of vimentin and to the up-regulation of E-cadherin. In addition, miR-148a was also found 

to inhibit cancer metastasis by suppressing TGFβ-induced EMT through  SMAD2, its 

direct functional target.
185

 In breast cancer, restoration of normal miR-148a expression 

levels had a great impact in angiogenesis via targeting insulin-like growth factor-I 

receptor (IGF-IR) and insulin-receptor substrate-1(IRS1) and suppressing their 

downstream serine/threonine-specific protein kinase(AKT) and mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways.
186

 

Moreover, a tumor suppressor role was also recognized to miR-148a in hepatocellular 

carcinoma stem cells. This microRNA was shown to attenuate the CSCs-like properties 

through the inhibition of transforming growth factor beta/SMAD2 (TGF-β/SMAD2) 

signaling pathway upon treatment with Glabridin.
187

 Importantly, it was also stated that 

miR-148a could sensitize cancer cells to the chemotherapeutic action of cisplatin and, in a 

lesser extent, to 5-flurouracil (5-FU) in oesophageal cancer, thus attenuating 

chemoresistance.
188

 Notably, miR-148a gene expression inactivation was shown to be a 

consequence of DNA hypermethylation in PDAC-derived cell lines and PDAC samples, 

compared with adjacent samples of non-pathologic tissue. Moreover, evidences of 

http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
http://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
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aberrant hypermethylation of the miR-148a coding region were reported to occur early in 

human PDAC precursor PanIN lesions.
189

 Therefore, this epigenetic event is deeply 

involved in the premature loss of miR-148a expression in pancreatic cancer.
189

 To further 

elucidate the molecular mechanisms where miR-148a acts as a tumor suppressor in 

pancreatic cancer, it is important to identify its direct functional targets and, to date, few 

of them have been acknowledged in PDAC. In 2011, Sven-T Liffers and colleagues 

observed, through luciferase based reporter assays, that the protein phosphatase CDC25B 

was a candidate target of miR-148a
190

 Moreover, using an in vitro model based on 

lentiviral-mediated stable miR-148a overexpression in the IMIM-PC2pancreatic 

carcinoma cell line, they demonstrated that miR-148a overexpression had an inhibitory 

influence on the growth potential of pancreatic cancer cells. More recently, two 

oncogenic genes, cholecystokinin-B receptor (CCKBR) and B cell lymphoma 2 (Bcl-2), 

were found to be under the post-transcriptional regulation of miR-148a. This microRNA 

was found to not only inhibit the proliferation of pancreatic cancer cells, but also to 

promote cells apoptosis in vitro through the suppression of CCKBR and Bcl-2 

expression.
191

 Controversially, another research group described miR-148a as an 

“inappropriate therapeutic tool” against pancreatic cancer, as they observed that there was 

no dramatic effect on cell proliferation and cell chemo-sensitivity in four PDAC cell 

lines.
192

 Additionally, after substantial overexpression of miR-148a it was observed that 

this microRNA faintly modulates protein expression. More importantly, in vivo data 

demonstrate that modulating miR-148a expression either in the epithelial tumor cells 

and/or in the tumor microenvironment does not impede tumor growth. Moreover, they 

also evaluated cell sensitivity to gemcitabine and concluded that no correlation exists 

between miR-148a expression levels in several PDAC cell lines and intrinsic sensitivity 

to gemcitabine. Neither transient nor stable overexpression of miR-148a improves 

PDAC-derived cell lines sensitivity to gemcitabine in vitro. Interestingly, a recent study 

provided evidences for a different approach, using miR-148 as a molecular tool for PDAC 

by engineering an oncolytic virotherapy strategy, that ultimately exhibited promising 

results for the treatment of pancreatic cancer.
193

 MicroRNA-148a, along with miR-216a, 

was used to generate miR-targeted pancreatic adenovirus. As miR-148a and miR-216a are 

highly expressed in normal pancreatic tissue, and their expression is lost in tumoral 

pancreatic cells, these microRNAs could selectively control E1A expression and viral 

replication in normal cells, by selectively binding to pre-design binding sites, leaving the 

oncolytic virus to target strictly tumoral cells. Thus, the developed targeted therapy with 



56 

 

oncolytic adenoviruses was able to preserve the normal pancreatic function of the non-

neoplastic pancreas, improving their safety profile, and to promote an effective antitumor 

response.
193

 

In the past few years, miR-375 mechanisms in PDAC have been studied, since it is 

considered one of the most consistently downregulated miRNAs in pancreatic cancer. 

However, a limited number of studies on pancreatic cancer have been focused on the 

targeting and on the clinical and prognostic significance of miR-375. A large study, 

involving the analysis of miR-375 expression in normal pancreatic tissue and tumoral 

samples of PDAC, identified miR-375 as candidate with a strong potential for future 

clinical applications.
194

 It was demonstrated that miR-375 might be used to classify 

normal, chronic pancreatitis and cancerous tissues, allowing to discriminate between 

neoplastic and non-neoplastic processes in pancreatic cancer. In other types of cancer, 

miR-375 is also described as an important mediator of normal cellular function. In breast 

cancer, it was identified as targeting short stature homeobox 2 (SHOX2), readily 

mediating EMT suppression. In addition, epigenetic silencing of miR-375 in HER2-

positive breast cancer cells conferred trastuzumab treatment resistance.
195,196

 

Corroborating the same antitumorigenic profile, a study performed in non-small-cell lung 

cancer (NSCLC) also found miR-375 significantly down-regulated.
197

 Moreover, the 

authors showed that this miRNA could be an important biomarker for survival, as patients 

with low miR-375 expression had worse overall survival rates than those with high miR-

375 expression. Overall, miR-375 is involved in the suppression of core hallmarks of 

cancer, such as cell growth, invasion, migration, metastasis and proliferation, by targeting 

several important oncogenes (Figure 9), like AEG-1, YAP1, IGF1R and PDK1, thus 

making it an encouraging target to address in many antitumor strategies.
198
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Figure 9 - MicroRNA-375 targets and regulation in cancer. Mir-375 exerts tumor suppressor role upon 

several different targets, displaying a wide intervention in major tumorigenic pathways. ATG7- autophagy-

related protein 7; YAP1- Yes-associated protein 1; AEG-1 - astrocyte elevated gene-1 protein ; PDK1-3-

phosphoinositide-dependent protein kinase 1; 14-3-3Z-  14-3-3 zeta protein ; IGF1R- insulin-like growth 

factor-I receptor; SP1- Transcription factor Sp1 ; JAK2- Janus kinase 2 ; (adapted from Yan JW, 2013)
199

 

 

Indeed, miR-375 was first identified as a pancreatic islet-specific miRNA that 

regulates the glucose-induced insulin secretion, consequently being an important 

participant in glucose homeostasis by controlling the growth and morphogenesis of the 

pancreatic islet, and later as a lost microRNA in pancreatic malignant cells
199

 

Several studies search for the impact of this lost in PDAC, for example, Jian Zhou 

and colleagues provided data correlating miR-375 restoration levels with induced 

apoptosis and abrogation of cell proliferation in vitro.
200

 In addiction, the low levels of 

this microRNA was also associated with lymph nodes metastasis formation and advanced 

stage of the disease.
199

 One of the potential mechanisms relaying beneath miR-375 action 

is associated with the repression of the 3-phosphoinositide-dependent protein 

kinase 1 (PDK1) expression, consequently promoting a decrease in the tumorigenicity of 

pancreatic cells through the regulation of the Akt signaling pathway. Inhibition of PDK1 

by miR-375 includes the inhibition of cell proliferation and the induction of apoptosis and 

cell cycle arrest at G0/G1 phase in PDAC cells.
179

 Moreover, the chemo-preventive agent 

benzyl isothiocyanate (BITC), known for inhibiting the growth of pancreatic cancer cells 

in vitro, was reported to be capable of modulating the levels of miR-375, along with miR-
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221, in order to diminish the cell viability and sensitize pancreatic tumoral cells to its 

antiproliferative action.
201

 

Although not emphasized in Table 6, microRNA-139-5p was also reported as  a 

tumor-suppressor microRNA  in a variety of cancer types, such as colorectal cancer, 

glioma, esophageal squamous cell carcinoma, hepatocellular carcinoma and PDAC, 

nevertheless its mechanisms of regulation were not addressed until recently in this last 

case.
202–205

 Several oncogenes may be potential targets of miR-139-5p in pancreatic 

cancer, probably most of them related with metastasis induction since miR-139-5p was 

found to regulate translocation-associated of Notch protein (NOTCH1) and type I insulin-

like growth factor receptor (IGF1-IR) in colorectal cancer, inhibiting cell proliferation 

and metastasis and promoting apoptosis and cell cycle arrest.
202,206

 MicroRNA-139-5p 

was also shown to be involved in the regulation of c-Fos and Rho-kinase 2 in 

hepatocellular carcinoma, contributing to the repression of cell invasiveness.
205,207

 

Moreover, in gastric cancer, miR-139-5p was found to regulate the human epidermal 

growth factor receptor 2 (HER2), which has been associated with metastasis and poor 

prognosis.
208

 MicroRNA-139-5p epigenetic silencing was described as an important event 

in a mechanism supporting invasiveness through HER2-mediated up-regulation of C-X-C 

chemokine receptor type 4 (CXCR4). This chemokine receptor has been extensively 

associated with cancer metastasis,
209

 including pancreatic cancer.
210–212

 Additionally 

CXCR4 was also reported to be a cancer stem cell-specific marker for pancreatic 

cancer.
213

 Regarding the importance of CXCR4 in PDAC tumorigenicity, it could be of 

utmost importance unveil the existence of a correlation between miR-139-5p and CXCR4 

in pancreatic cancer, since it could hold the key for the metastasis control therapeutics.  

Other dysregulated microRNAs were addressed in many molecular mechanistic 

studies in PDAC, such as miR-125, miR-10a miR-15a/b, miR-let7 and miR-17-5p, and 

their extreme importance in hallmark tumorigenic pathways were confirmed.
173,214–220

 

Nevertheless, to our knowledge, no substantial effort has been made in order to take 

advantage of the known role of these microRNAs to create novel microRNA-based 

therapeutic approaches to PDAC. There is an urgent need for new findings in the 

translational research field with prognostic, predictive and therapeutic value. 

Taken together, these findings suggest that the microRNA regulating role in 

pancreatic cancer is poorly understood, and that only few work has accomplished the goal 

of unraveling the mechanisms supporting either oncogenic or tumor suppressor roles of 

the previously described microRNAs. Moreover, these evidences also prompted us to 
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hypothesize that most of these highlighted microRNAs are, indeed, profoundly embedded 

in some of the most important and mentioned hallmarks of pancreatic cancer, such as 

invasion, migration and metastasis formation. Therefore, this group of microRNAs can be 

associated to the known aggressive profile of PDAC, such as the resistance to the overall 

available treatments, providing a more real picture of the true nature of this belligerent 

type of cancer.  

 

3.4. Strategies used for the modulation of microRNA expression 

Proper delivery of miRNA-targeting agents or microRNA mimics is limited by 

several critical hurdles, such as reduced in vivo stability, inappropriate biodistribution, 

lack of cell specificity, disruption and saturation of endogenous RNA machinery, and 

potential side effects. In order to overcome these barriers and translate microRNA 

innovations into clinical applicability, appropriate approaches, including delivery 

systems, must be design. Anti-miRNA oligonucleotides (AMOs) are molecular tools able 

to induce microRNA silencing either in vitro or in vivo, since these compounds have the 

ability to tightly bind and inactivate the miRNA action.
221

 Similarly, microRNA 

replacement therapy, in which the lower endogenous levels of microRNAs are augmented 

with recourse to oligonucleotide mimics, is another strategy to modulate intracellular 

microRNA levels.
222

 Oligonucleotides constitute an important tool for the manipulation 

of miRNA function in biological systems, mainly due to their unique characteristics (low 

size, low immunogenicity, high target affinity). Chemical modifications of 

oligonucleotides confer nucleases resistance and increase their binding affinity to their 

targets, consequently improving their performance.
223

 Locked Nucleic Acid (LNA™) 

nucleosides are a successful example of this type of microRNA expression modulators, 

consisting of a class of nucleic acid analogues containing one or more LNA nucleotide 

monomers with a bicyclic furanose unit locked in a RNA-mimicking sugar conformation. 

Thus, conformational restriction is translated into exceptional hybridization affinity 

towards complementary single-stranded RNA molecule, and its efficiency has been 

proven both in vitro and in vivo.
224–226

 

Gene therapy has the potential to reverse the cause of diseases, which is the major 

goal of biomedical research, rather than treat the symptoms. Therefore, therapeutic 

approaches making use of microRNA technology had already been study in order to 

manage malignancy in different types of cancer. For instance, in lung cancer, the 

downregulated miR-29 was subject of microRNA replacement therapy using a cationic 
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liposome-based system, consisting of DOTAP, cholesterol and  D-α-

Tocopherylpolyethyleneglycol 1000 succinate (vitamin E TPGS), to efficiently 

deliver miR-29b both in vitro and in vivo.
227

 This strategy not only promoted a reduction 

in the expression of key miR-29b targets but also in cell growth and clonogenicity of in 

vitro non-small carcinoma cells. In addition, systemic delivery of these lipoplexes 

containing miR-29b increased the tumor miR-29b levels, consequently downregulating 

the tumoral mRNA targets, and significantly inhibited tumor growth in vivo. As an 

example of anti-sense microRNA strategy in tumors, it was recently used chlorotoxin-

coupled stable nucleic acid lipid particles (SNALPs), encapsulating antisense 

oligonucleotides against miR-21, in glioblastoma tumoral cells. In vitro studies revealed 

an efficient miR-21 silencing that resulted in increased levels of the tumor suppressors 

PTEN and PDCD4, caspase 3/7 activation and decreased tumor cell 

proliferation. Moreover, the targeted nanoparticles demonstrated to have excellent 

features for in vivo application.
228

 

Another work demonstrated that exosomes, small endosomal-derived vesicles that are 

secreted by a variety of cell types and tissues, could efficiently deliver let-7a miRNA to 

EGFR-expressing breast cancer cells in vivo.  The authors engineered the donor cells to 

express the transmembrane domain of platelet-derived growth factor receptor fused to the 

GE11 peptide (targeting EGFR positive cells), loaded with let-7, that were posteriorly 

intravenously administrated to a xenografts breast cancer mouse model, resulting in 

significant inhibition of tumor development.
229

 The biocompatibility and toxicity profiles 

of exosomes, which notably are natural carriers of miRNA in vivo, support their 

application in drug delivery systems. Viral vectors have also been shown to be highly 

effective in gene transfer into cancer, and particularly oncolytic adenoviruses have been 

considered as highly eligible vehicles for delivery of therapeutic genes to treat cancer due 

to their tumor-restricted replication capabilities. Wenjia Lou and colleagues, proposed to 

use oncolytic adenovirus co-expressing miRNA-34a and IL-24 in a hepatocellular 

carcinoma xenografts mouse model in order to achieve a synergistic antitumoral effect.
230

 

Their data demonstrated that miRNA-34a can be efficiently expressed after transduction 

with oncolytic adenovirus, and miRNA-34a and IL-24 can be efficiently co-expressed by 

a single oncolytic adenovirus. Moreover, simultaneous expression of miRNA-34a and IL-

24 showed no effect on adenovirus replication in HCC tumor cells. The mature miRNA-

34a exerted it antitumor action by inducing apoptosis through downregulation of Bcl-2 

and suppressing metastasis and angiogenesis by targeting c-MET and SIRT1 genes. In 
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addition, IL-24 can also exert dramatic antitumor activity by itself, further reinforcing the 

obtained result in which AdCN205-IL-24-miR-34a could dramatically inhibit the tumor 

cell growth in vitro, and resulted in complete tumor regression without tumor recurrence 

in vivo.
230

 

Our group demonstrated that an almost complete abrogation of up-regulated 

microRNA in PDAC was obtained by the intracellular delivery of antisense 

oligonucleotides using a human serum albumin –cationic lipoplexes nanosystem. MiR-21, 

miR-221, miR-222 and miR-10b expression levels in a PDAC cell line were thoroughly 

inhibited, resulting in a significant increase in the levels of their targets. In this study we 

also showed that the modulation of miR-21 levels in combination with low amounts of 

the chemotherapeutic drug sunitinib resulted in a strong and synergistic antitumor effect, 

demonstrating that this combined strategy could be of great importance for therapeutic 

application in PDAC.
231

 

Herein, many different options have been explored for efficient delivery of 

microRNA mimics or antagomiR. Nevertheless, effective microRNA therapeutics are still 

been evaluate regarding their toxicity and safety features in a clinical context.  

 

3.5. MicroRNA Gene Therapy in clinical trials 

More than prognostic biomarkers or diagnose tools, microRNAs are stepping into 

a new era of therapeutic strategies against several diseases. The first case of a microRNA-

based gene therapy product achieving a clinical trial was Miravirsen and has currently 

completed a Phase 2 clinical trial. Miravirsen was developed by Santaris Pharma, a 

Danish RNAi therapeutics company and is a LNA-based microRNA inhibitor targeting 

miR-122, a liver specific microRNA shown to be crucial for the functional infection of 

Hepatitis C virus, constituting the first microRNA-based therapy for a disease.
232,233

 

Another microRNA therapeutic based company, Regulus Therapeutics, has put focus on 

cardiovascular diseases, and although their studies did not reach clinical trials, substantial 

work was performed regarding antagomir strategies in non-human primates. MicroRNA-

33 inhibition, using modified antisense oligonucleotides against miR-33a and miR-33b in 

African green monkeys, demonstrated to promote a decrease in the very-low-density 

lipoprotein(VLDL)-triglycerides and an increase in high-density lipoprotein (HDL), 

endorsed by a significant reduction on the repression of miR-33 predicted target genes, 

without displaying significant side-effects. These data provide evidences that 

pharmacological inhibition of miR-33a and miR-33b is a promising therapeutic strategy 
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to raise plasma HDL and to lower VLDL triglyceride levels, providing treatment of 

dyslipidaemias that increase cardiovascular disease risk.
233,234

 Still, considering cardiac 

diseases, an American company (miRagen Therapeutics) developed other antagomir 

strategies dedicated to miRNA-based drugs for the treatment of cardiac and muscular 

diseases. This company has some LNA-based antagomirs with great potential for 

human clinical trials, namely MGN-1374, MGN-4893, MGN-9103, targeting miR-208 in 

chronic heart failure, miR-15/miR-195 in cardiac ischemic injury and miR-451 in 

polycythemia vera,respectively.
233,235–237

 

Although several key microRNAs were subject of interest in the regulation of cancer 

malignancy, clinical trials designed to test microRNA-based gene therapy approaches for 

this disease were quite scarce. In this regard, new gene therapy strategies have been 

designed in order to restore normal expression levels of such microRNAs, by 

incorporating oligonucleotides against microRNAs or microRNAs mimic into target cells.  

Some microRNAs have demonstrated to be potential clinical targets for cancer therapy, 

specifically let-7, miR-29, miR-21 and miR-34a.
238

 Regarding miR-34 family members, 

which are transcriptionally induced by p53, and miR-34a that is specially enrolled in the 

p53 transcriptional network, its suppression in cancer cells is tightly related to resistance 

to apoptosis induced by p53-activating agents, although, as illustrated in Figure 10, many 

other cancer processes are controlled by miR-34a.
239–241

 Moreover, this microRNA can 

act synergistically with conventional cytotoxic therapies in different cancer types, making 

it a very interesting option for microRNA-based therapies.
242

 

 

 

Figure 10 – Oncogenic process inhibited by the tumor-suppressor activity of miR-34a. 

 



63 

 

Mirna Therapeutic, an American company pioneer in microRNA therapeutics, 

developed the first microRNA replacement therapeutic targeting cancer, using miR-34 

mimics incorporated into a lipid-based particle (MRX34), already in clinical 

trials.
242

Precedingin vitro and in vivo studies in hepatocellular carcinoma models showed 

inhibition of tumor cells in vitro, efficient delivery of the lipid nanoparticles to the liver, 

and a significant tumor regression, some mice were even tumor-free, as well as prolonged 

survival of treated mice carrying this type of tumor.
242

 

Much work has been devoted to miR-34a in PDAC. In 2011 an in vivo study was 

performed using a lipid-based nanosystem, for intravenous administration, containing a 

miRNA expression plasmid to deliver into pancreatic cancer cells, the miR-34a in 

conjunction with miR-143/145 being chosen as therapeutic microRNAs to manage PDAC 

tumorigenicity.
243

 The obtained results pointed for a successful microRNA modulation, 

since the restoration of the miR-34a levels in cancer cells promoted both pro-apoptotic 

and antiproliferative effects in pancreatic cancer xenografts. Thus, the systemic miRNA-

coding plasmid delivery mediated by nanovectors resulted in the growth inhibition of 

both subcutaneous and orthotopic pancreatic cancer xenografts, demonstrating to be a 

highly effective tool to addressed PDAC.
243

 MicroRNA-34a also accounts for the 

regulation of pancreatic cancer stem cells features, such as self-renewal capacity, 

consequently representing an important tumor suppressor to fight tumor-initiating cells in 

PDAC.
244

 

More recently, another miR-34a delivery strategy was developed, this one 

comprising nanocomplexes containing a tumor-targeting and cell-penetrating bifunctional 

CC9 peptide.
245

 The authors showed in vitro that treatment with these nanocomplexes 

resulted in increased levels of miR-34a that promoted the downregulation of its target 

genes, namely E2F3(transcription factor E2F3), Bcl-2 (B-cell lymphoma 2), c-myc and 

cyclin D1, and ultimately the cell cycle arrest, apoptosis and migration suppression. 

Treatment with these nanocomplexes in vivo significantly repressed tumor growth and 

prompted cancer cell apoptosis.
245

 

Therefore, the novel MRX34 therapeutic may be a suitable tool for the treatment of 

pancreatic cancer, as such remarkable scientific data impels this hypothesis.  
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3.6. Other RNAi-based therapeutic in clinical trials 

Despite microRNA gene therapy in cancer has still a long way to go, siRNA 

therapeutics present a boarder number of option to be used in a clinical context, as many 

siRNA strategies reach clinical trials.   

CALLA-01, a siRNA nanoparticle product in phase I trial, was firstly developed by 

Calando Pharmaceuticals. They developed a system consisting of a cyclodextrin-

containing polymer and human transferrin, incorporating a siRNA targeting M2 subunit 

of ribonucleotide reductase (R2), promoting tumor growth repression in solid 

tumors.
246,247

 Since then, many more have followed Calando Pharmaceuticals steps, as 

new siRNA-based therapeutics underwent preclinical and clinical phases.
247

For instance, 

a therapeutic strategy involving siRNA was accomplished in a human trial for dual 

targeting of VEGF and kinesin spindle protein (KSP), in patients with liver metastasis 

from endometrial cancer.
248

 A lipid-based nanoparticle formulation was used for 

intracellular delivery of siRNA molecules into tumoral cells, leading to dual 

downregulation of VEGF and KSP, through siRNA-mediated mRNA cleavage. 

Moreover, antitumor activity, including complete regression of liver metastases was 

observed in patients. It was also shown that the intravenous administration of the 

nanoparticles was safe and well tolerated, providing proof-of-concept for RNAi 

therapeutics in humans and forming the basis for further development in cancer 

therapy.
248

 Overall, the increasing number of fruitful clinical studies using siRNA 

prompted this new field of gene therapy to experience a fast expansion.
249

 

Regarding pancreatic cancer, one siRNA-based therapy have been successfully 

developed by Silenseed Ltd, an Israeli company, that uses a RNA interference approach 

to efficiently target KRAS in PDAC patients.
250

 Acknowledging that 90% of pancreatic 

cancer cases exhibits KRAS mutations, robustly affecting its signaling pathway, leading 

to pancreatic neoplasia, this siRNA-based therapy holds promising results towards PDAC 

management in a clinical context.
251

 Moreover, the therapeutic strategy of silencing 

KRAS has proven to be an effective approach to control pancreatic tumor 

proliferation.
250,252

 Hence, they designed a siRNA delivery system comprising of a 

biopolymeric cylindrical implant that permits anti-KRASG12D siRNA drug released 

throughout a period of months into a tumor (Local Drug EluteR, LODER).Collected data 



65 

 

from in vitro and in vivo experiments provide evidences of significant decrease in KRAS 

levels, leading to inhibition of proliferation and epithelial–mesenchymal transition, as 

well as reduced tumor growth.
250

 This therapeutic strategy has now entered in a Phase I 

clinical trial aiming at evaluating firstly the safety of the implantation of a single dose of 

siG12D LODER (Local Drug EluteR targeting G12D K-Ras mutations) followed by a 

dose-escalation phase in patients diagnosed with operable adenocarcinoma. In a posterior 

Phase II clinical trial it will be assessed the efficiency of the administration of a single 

dose siG12D LODER in combination with chemotherapeutic regiments, such as 

gemcitabine or FOLFIRINOX, in patients with unresectable locally advanced pancreatic 

cancer.
247

 

Taken together, these facts also envision an auspicious future for microRNA based 

therapies. 

 

3.7. Therapeutic perspective of using microRNA modulation as an antitumor 

tool in PDAC 

MicroRNAs represent a fine-tuning in molecular pathways, more than massive 

modulators in cell physiologic events. Nevertheless they are of great importance for the 

regulation of normal cell functions. Since their discovery, many studies had focused on a 

one-to-one relationship between microRNA and genes. Over the time, this view was 

quickly surpassed by novel discoveries which illustrated a much more complex network 

between these two players, and an intricate regulation of biological systems sustained by 

differential microRNA expression pattern.
253

 

Understanding the full extent of microRNAs functional activity, from their biology to 

their molecular properties, has allowed the development of bioinformatics tools that make 

use of computational algorithms, based on specific base-pairing  rules and cross-species 

conservation requirements, to predict the targeting of a given mRNA by a specific 

microRNA.
254

 Consequently, a huge amount of data has emerge from the interface of the 

bioinformatics and biologic system studies, arising MiRnomics as a new field in science, 

and several public microRNA databases were made available online for the scientific 

community, as it is PicTAR, microBASE, TargetScan, miRanda, just to mention a few of 

them.
255,256

 Nevertheless, bioinformatics tools may deliver false positive microRNA-

mRNA correlation, as the biological context of these RNA molecules interactions are not 

taken in consideration or poorly estimated, enhancing the need for an integrative 
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approach with experimental studies in order to establish a comprehensive view on this 

computational predictions.
253

 

Acknowledging that microRNA present two extremely important features in terms of 

regulation of genome expression, as it is multiplicity and cooperativity, where one 

miRNA can target more than one gene (multiplicity), and one gene can be controlled by 

more than one miRNA (cooperativity),
257

 the hypothesis of obtaining a wide control over 

cell tumorigenic properties through the modulation a small group of microRNAs, with 

high multiplicity scores seems a thrilling opportunity to boost microRNA therapeutics. 

The relevance of these small regulatory RNA molecules in cancer had been largely 

foreseen as potential diagnostic and prognostic molecular markers, taking advantages of 

circulating microRNAs in exossomes, or for the identification of tumor subtypes 

according to their microRNA profile. However, microRNAs can also be seen as highly 

promising therapeutic agents, mostly due to the ability that a single microRNA has to 

target several crucial pathways in tumorigenesis maintenance.  

Recent developments in RNAi therapeutics in cancer constitute an evidence of the 

remarkable opportunity to efficiently combine miRNA with chemotherapeutic regiments 

as a novel strategy for cancer therapy. Many different approaches for tumor delivery of 

microRNAs have been presented, and many others are still being developed, in order to 

be applied in a clinical context for the treatment of pancreatic cancer.  

To our knowledge, up to date no scientific studies were performed in order to 

discover the efficacy of a combined therapy of new chemotherapy regimens, such as 

FOLFIRINOX, with microRNA expression modulation, although it could hold promising 

results, as a synergistic effect would be expected. Ji et al (2009) conducted a study in 

which they demonstrated that in vitro miR-34a restoration levels was followed by 

sensitization of pancreatic tumoral cells to the action of chemotherapy agents such as 

docetaxel, gemcitabine and cisplantin.
258

 Also, albumin coated lipoplexes could be 

considered to deliver antisense oligonucleotides, aiming at inhibiting overexpressed 

microRNAs, as a gene therapy approach for PDAC.
231

 The combination of gene delivery 

with current standard chemotherapeutic agents can promote significant anti-tumor activity 

in pancreatic tumoral cells, as describe by Passadouro M et al and Xu J and colleagues, 

thus holding great hope in achieving novel therapeutic strategies to improve PDAC 

treatment and patient survival.
231,259
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Hence, novel strategies that encompass the combination of the modulation of 

differentially expressed microRNAs with different chemotherapeutic regiments may hold 

great importance for future management of cancer. 
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MicroRNA inhibition combined with 

chemotherapeutic drugs as a novel 

therapeutic strategy for pancreatic 

cancer 

 

Marta Passadouro; Maria C. Pedroso de Lima; Henrique Faneca, MicroRNA 

modulation combined with sunitinib as a novel therapeutic strategy for pancreatic 
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1. Introdution 
 

Pancreatic ductal adenocarcinoma (PDAC) is the most predominant type of pancreatic 

cancer, accounting for more than 90% of new pancreatic cancer cases.
6
 This disease still 

remains a therapeutic challenge, since only minor significant advances have been 

achieved, and always with a modest clinical impact.
4
 Despite its moderate incidence when 

compared to other carcinomas, PDAC has one of the highest mortality rates and  very low 

survival improvements have been made over the past 30 years.
3
 This fact is mainly due to 

asymptomatic features leading to a late diagnosis in an advanced state of the disease, 

where early and aggressive metastization to distant organs has already occurred. The 

overall median survival is 2-8 months, and only 1-4% of all patients with pancreatic 

carcinoma survives for 5 years.
260

 Therefore there is a pressing need for developing new 

and efficient therapeutic strategies for pancreatic cancer.  

Accumulated evidence has shown that microRNAs are key regulators in cancer, 

managing a variety of biological processes relevant for tumor development such as 

proliferation, angiogenesis and metastization, and therefore they constitute highly 

promising targets for anti-tumor therapies.
261

 These endogenous small non-coding RNA 

molecules of approximately 22 nucleotides display a critical role as epigenetic regulators 

of gene expression, acting post-transcriptionally, through binding to their target mRNA 

resulting in translation inhibition. Microarray technology has enabled to reveal 

differential microRNA expression patterns depending on the tissue, cell type and even 

developmental stages of a tumor. In the latter case, the cellular phenotype originated by 

the disruption of microRNA regulation is not yet well established, demanding a deeper 

and meticulous investigation.
262

 

At early stages of cancer progression profound alterations occur in microRNA levels, 

and oncomiR become overexpressed whereas tumor-suppressor microRNAs become 

downregulated, leading to tumor growth and/or repression of apoptosis. A large number 

of  studies  have shown that microRNAs, such as the aberrantly expressed miR-21, miR-

221, miR-222 and miR-10b, act as leading mediators in cancer, due to their ability to 

support tumoral development and cancer cell resistance to chemotherapy.
194,263,264

 MiR-

21 was shown to regulate the function of several tumor suppressor genes, including 

PTEN, a phosphatase and tensin homolog gene that is a negative regulator of the 

PIK3/Akt survival pathway.
164,265–267

 Mir-221 and miR-222 are known to target the 

cyclin-dependent kinase inhibitor p27
Kip1

, which exerts its anti-proliferative action at the 



72 

 

G1 phase of the cell cycle, its function being frequently inactivated in many lethal human 

epithelial cancers.
268,269

 A few studies have identified miR-10b as a tumor promoter that 

determines the extent of the expression levels of Homeobox D10 gene, and consequently 

RHOC pro-metastatic gene, as a downstream signaling target, both of these genes being 

involved in metastatic processes in several types of cancers.
173,270

 

The increase of tumor suppressor gene expression has been a successful assignment in 

antitumor strategies, namely by promoting cell chemosensitivity to a broad range of 

therapeutic drugs used in cancer treatment.
271

 By instance, downregulation of miR-21 was 

reported to directly reinforce susceptibility of breast cancer cells to chemotherapy.
265

 This 

gene expression modulation involves the use of oligonucleotides against the 

overexpressed microRNAs. In this regard, cationic liposome/DNA complexes 

(“lipoplexes”) have been extensively studied aiming at developing appropriate non-viral 

gene delivery nanosystems.
69,272

 Much effort has been devoted to the synthesis of new 

cationic lipids, selection of different helper lipids and association of proteins or fusogenic 

peptides aiming at enhancing lipoplex biological activity.
68,88,273,274

 Coating cationic 

liposomes with the most abundant plasma protein, albumin, alleviates some of the 

undesired interactions between cationic liposome/DNA complexes and serum 

components and facilitates intracellular gene delivery by inducing lipoplex binding and 

uptake into target cells and by promoting endosome membrane destabilization under 

acidic conditions.
90,103

 Our previous observations indicated that association of albumin to 

lipoplexes, prepared with EPOPC:Chol cationic liposomes at the 4/1 lipid/DNA (+/−) 

charge ratio, strongly increases their transfection activity with reporter and therapeutic 

genes in several types of cells, both in vitro and in vivo, showing the high gene delivery 

efficiency of this nanosystem.
104,275

 Nevertheless, the HSA-EPOPC:Chol/DNA (+/−) 

(4/1) lipoplex nanoformulation was never tested as an oligonucleotide delivery system. 

Although gemcitabine constitutes the current frontline therapy for pancreatic cancer, 

with a better outcome in unresectable tumor cases, new drugs are becoming the focus of 

attention for the treatment of progressive pancreatic neuroendocrine tumors, namely 

sunitinib malate which has been recently approved for this purpose in clinical 

trials.
8,276

Sunitinib is a competitive inhibitor of the catalytic activity of a strictly related 

receptor tyrosine kinases (RTKs) group, including vascular endothelial growth factor 

receptors (VEGFR) and platelet-derived growth factor receptors (PDGFRs), and due to its 

multi-targeted profile, the activity of sunitinib is likely mediated by multiple distinct anti-

tumour mechanisms.
277

This drug acts by blocking the activity of those RTKs in major 
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pathways related with tumor growth, proliferation and metastasis dispersal, thus  

exhibiting a potent antitumor and antiangiogenic effect.
278

 For patients with advanced 

stage of pancreatic adenocarcinoma, who had been first submitted to gemcitabine-based 

treatments with no significant results, there are no reliable second line therapies and 

sunitinib has already been pointed out as a promising drug for treating such patients.
279

 

Considering the  instrumental role of microRNAs in tumorigenesis and the success of 

combining several drugs targeting major effectors of the tumorigenic process  as the most 

promising treatment for this disease, we evaluated the potential of a new therapeutic 

strategy based on the combination of low amounts of chemotherapeutic drugs and 

oligonucleotides against different microRNAs, delivered by the developed albumin-

associated nanosystem, aiming at achieving a significant and synergistic antitumor effect 

in PDAC. 
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2. Materials and methods 
 

Cell lines and culture conditions  

The Hs766T cell line was obtained from American Type Culture Collection (ATCC) 

(Manassas, VA, USA) and used as an in vitro tumoral model for human metastatic 

pancreatic carcinoma. The cells were maintained in adherent culture using Dulbecco’s 

Modified Medium (DMEM) from Invitrogen (Life Technologies, Carlsbad, CA, 

USA) supplemented with 10% fetal bovine serum (FBS) from Gibco (Life Technologies, 

Carlsbad, CA, USA) and 100 μM each of penicillin and streptomycin from Sigma-

Aldrich (Munich, Germain). HPNE, an immortalized normal pancreatic epithelium cell 

line, was kindly provided by Dr. Ming-Sound Tsao from the Ontario Cancer Institute, 

Toronto, Ontario, Canada. HPNE cells were grown in keratinocyte serum-free medium, 

purchased from Gibco (Life Technologies, Carlsbad, CA, USA), supplemented with EGF, 

bovine pituitary extract from Invitrogen (Life Technologies, Carlsbad, CA, USA) and 

with 1x antibiotic-antimycotic from Gibco (Life Technologies, Carlsbad, CA, USA). Both 

Hs766T and HPNE cells were grown at 37ºC, under 5% of CO2, in humidified 

atmosphere. 

 

Antisense inhibitors and drugs 

Anti-microRNA oligonucleotides (AMOs) againstmiR-221, miR-222, miR-21 and 

miR-10b and scrambled oligonucleotides (control), as well as 5`-fluorescein-labelled 

oligonucleotides, for confocal microscopy, and digoxigenin (DIG)-labelled 

oligonucleotides, for miR-21 detection, were all purchased from Exiqon (Vedbaek, 

Denmark) as miRCURY locked nucleic acids (LNA
TM

). 

The chemotherapeutic drugs docetaxel and gemcitabine were purchased from Sigma-

Aldrich (Munich, Germany) and stock solutions were prepared in distilled water and 

subsequently stored at -20ºC and at room temperature, respectively. Sunitinib malate 

(Sutent®) was kindly offered by Pfizer (Basel, Switzerland) and the stock solutions were 

prepared in DMSO from Sigma-Aldrich (Munich, Germany) and stored at -20ºC. 

 

Preparation of cationic liposomes and lipoplexes 

Small unilamellar cationic liposomes were prepared with lipids (Avanti Polar Lipids, 

AL, USA) dissolved in CHCl3. The cationic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-

ethylphosphocholine (EPOPC) and cholesterol (Chol) were mixed at 1:1 molar ratio and 
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dried under a nitrogen flux. The dried lipid film was then rehydrated with deionized water 

to a final lipid concentration of 4 mM. The obtained multilamellar liposomes were then 

submitted to sonication for 3 min and extruded 21 times, through two staked 

polycarbonate filters of 50 nm pore diameter using a Lipofast device (Avestin, Toronto, 

Canada), in order to obtain small unilamellar liposomes. Finally, the liposome suspension 

was diluted 3 times with deionized water and filter-sterelized using a 0.22 μm pore-

diameter filter (Schleicher & Schuell, Dassel, Germany). The suspension was stored at 

4ºC until use. For intracellular distribution studies, EPOPC:Chol liposomes were labelled 

with 0.1% carboxyfluorescein-dioleoylphosphatidylethanolamine (carboxyfluorescein-

PE). Lipoplex preparation was performed by adding the components in the following 

order: HEPES-buffered saline solution (HBS) (100 mM NaCl, 20 mM Hepes, pH 7.4); 

liposome suspension in the appropriate amount to achieve the 4/1 (+/-) lipid/LNA charge 

ratio; and human serum albumin (HSA) solution at a ratio of 32 μg of HSA/μg of AMOs. 

This mixture was incubated at room temperature for 15 min and the necessary amount of 

LNAs was gently added and submitted to a further 15 min incubation period. 

 

Mean diameter and zeta potential  

Nanosystems were characterized with respect to their mean diameter and zeta 

potential using a Zetasizer Nano ZS (Malvern Instruments Ltd, Worcestershire, UK), 

which measures these parameters by a phase analysis light scattering method. The 

analysis was performed at 25°C in HEPES-buffered saline solution, and lipoplexes were 

prepared immediately before analysis. 

 

Transfection assays  

Transfection assays were performed in Hs766T cells using HSA-

EPOPC:Chol/AMOs (+/-) 4/1 lipoplexes containing AMOs or scrambled 

oligonucleotides. For RNA expression analysis, 1.5x10
5
 cells/well were seeded in 12-well 

culture plates, 24 h before transfection, aiming at achieving 80% of confluence. For the 

target protein analysis, 3x10
5 

cells/well were seeded in 6-well culture plates, 24 h before 

transfection. For cell viability assays, 0.35 x10
5
 cells/well were seeded in 48-well culture 

plates, 24 h prior to transfection. Before transfection cell medium was replaced by 

DMEM-HG medium without serum or antibiotics and after that 0.15 ml of lipoplexes per 

1 ml of DMEM medium were gently added to each well and incubated with cells for 4 h 

(5% CO2 at 37ºC). After this period of incubation, cell medium was replaced by DMEM-
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HG with serum and antibiotics, and cells were further incubated for 48 h and 72 h for 

RNA and protein analysis, respectively, and during both incubation periods for cell 

viability assays.  

 

Intracellular distribution of lipoplexes and oligonucleotides 

In order to evaluate intracellular distribution of the nanosystems, Hs766T cells, 

seeded in 12-well culture plates (previously covered with coverslips) 24 h before 

transfection, were incubated with lipoplexes prepared from carboxyfluorescein-labelled 

EPOPC:Chol liposomes. Cells were incubated with lipoplexes for a period of 4 h in 

DMEM-HG (without serum or antibiotics). The transfection medium was then removed 

and cells were carefully washed twice with a phosphate-buffered saline solution (PBS) 

and incubated for 30 min with 200 nM of Lysotrack Red DND-99 purchased from 

Molecular Probes (Life Technologies, Carlsbad, CA, USA) which labels acidic 

compartments of living cells. Cells were washed three times with PBS and fixed with 4% 

of paraformaldehyde solution for 15 min at room temperature. Nuclei labeling was 

accomplished through a5 min incubation at room temperature with the fluorescent DNA 

binding dye Hoechst 33342 (1 μg/ml) (Invitrogen Life Technologies, Paisley, UK). Cells 

were then mounted in Mowiol 40-88 from Sigma-Aldrich ( Munich, Germany) and 

images were taken in a confocal microscope (LSM-510 META, Zeiss), using a 40x 

objective. For evaluation of cytoplasmic delivery of AMOs, lipoplexes were prepared 

with 100 nM of 5`-fluorescein-labeled AMOs and cells were submitted to the previously 

described protocol in order to acquire confocal microscopy images. 

 

Extraction of total RNA and cDNA synthesis 

Total RNA was isolated from transfected cells and purified using the miRCURY 

RNA Isolation Kit - Cell and Plant (Exiqon, Vedbaek, Denmark), following 

manufacture’s protocol. Briefly, after cell lysis, the total RNA was adsorbed to a silica 

matrix, washed with the recommended buffers, eluted with elution buffer by 

centrifugation and quantified in a Nanodrop UV-Vis spectrophotometer (Thermo Fisher 

Scientific, Wilmington, USA).  

For quantification of microRNA expression levels,  one-first strand cDNA synthesis 

reaction was performed with Universal cDNA Synthesis Kit (Exiqon, Vedbaek, 

Denmark), providing a template for all microRNA real-time assays, by performing a 60 

min incubation at 42ºC, followed by a heat–inactivation step of the reverse transcriptase 
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for 5 min at 95ºC. Finally, cDNA was diluted 1:60 with RNase free water and stored at 

4ºC. For determination of target mRNA expression levels, cDNA synthesis was 

performed using the One Strand cDNA Synthesis Kit purchase from BioRad (Hercules, 

CA, USA). cDNA was then incubated for 5 min at 25ºC, 30 min at 42ºC, followed by a 

heat–inactivation step of the reverse transcriptase for 5 min at 85ºC. Finally, cDNA was 

diluted 1:3 with RNase-free water and stored at 4ºC. 

 

Quantitative real-time PCR 

For quantification of microRNA expression levels, the resulting cDNA was 

submitted to real-time qRT-PCR using the specific primer set for each microRNA in 

analysis, specifically miR-221, miR-222, miR-21, miR-10b and the reference RNA 

(U6snRNA), in combination with miRCURY LNA Universal RT microRNA PCR system 

from Exiqon (Vedbaek, Denmark). A master mix was designed for each primer set, 

according to the recommendations for the real-time PCR setup of individual assays 

suggested in the used kit. For each reaction, performed in duplicate, 6 µl of master mix 

were added to 4 µl of template cDNA. The reactions were monitored using a real-time 

instrument ABI Prism 7300 qPCR System from Applied BioSystems (Life Technologies, 

Carlsbad, CA, USA). The PCR conditions were 10 min at 95ºC, for polymerase 

activation, and 40 cycles of amplification with 10 s at 95ºC and 1 min at 60ºC, ramp-rate 

1.6ºC/s.  Threshold values for threshold cycle determination (Ct) were generated 

automatically by the SDS Optical System software.  

For quantification of target mRNA expression levels, the resulting cDNA was 

subjected to real-time qRT-PCR using the specific primer set for each target mRNA in 

analysis, obtained from Qiagen (Hilden, Germany), and iQ SYBR Green Supermix Kit 

from BioRad (Hercules, CA, USA). Each reaction was performed in duplicate, by adding 

10 µl of master mix to 2.5 µl of template cDNA. The reaction conditions consisted of 

enzyme activation at 95ºC for 10 min, followed by 40 cycles at 95ºC for 15 s 

(denaturation), 30 s at 55ºC (annealing) and 35 s at 72ºC (elongation).  

For both miRNA and mRNA quantification, a melting curve protocol was started 

immediately after amplification and consisted of 1 min heating at 55º followed by 80 

steps of 10 s, with a 2ºC increase at each step. Threshold values for threshold cycle 

determination (Ct) were generated automatically by the SDS Optical System software. 

Relative miRNA and mRNA levels were determined following the ΔΔCt method in 

comparison with control cells. 
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Western blot analysis 

Seventy-two hours after transfection,  Hs766T cells were washed twice with a 

phosphate-buffered saline solution (PBS) and solubilized in RIPA buffer (25 mM Tris-

HCl, pH7.7; 150nM NaCl; 1%NP-40; 1% sodium deoxycholate; 0.1% SDS) containing a 

protease inhibitor cocktail from Sigma-Aldrich (Munich, Germany), 2 mM dithiothreitol 

and 0.1 mM phenylmethylsulfonyl fluoride. The whole-cell suspension was subjected to 

sonication for 3 s and centrifuged at 14.000 rpm for 8 min at 4ºC. The supernatant was 

collected and stored at -20ºC until use. Protein concentration was determined using the 

Bio-Rad Dc protein assay from BioRad (Hercules, CA, USA). Heat-denaturated protein 

samples (40 μg per lane) were ressuspended in loading buffer (20% glycerol, 10% SDS, 

0.1% bromophenolblue), loaded and resolved onto a 10% polyacrylamide gel for 

electrophoretic separation. After electrophoresis, the proteins were transferred to a 

polyvinylidene fluoride (PVDF) membrane from Millipore (Bedford, MA, USA). The 

membrane was then blocked for non-specific binding for 60 min in a Tris-buffered saline 

solution (TBS) containing 1% of Tween 20 and 5% of bovine serum albumin (BSA), 

followed by incubation overnight at 4ºC with primary antibodies: rabbit monoclonal 

antibody against p27
Kip1

 protein (Cell Signaling Technology, MA, USA), rabbit 

monoclonal antibody against PTEN protein (Cell Signaling Technology, MA, USA), 

rabbit monoclonal antibody against HoxD10 protein (Abcam, Cambridge, UK) and 

mouse monoclonal antibody against RHOC protein  (Abcam, Cambridge, UK). The 

primary antibodies were diluted at 1:2000 in TBS-5% milk or TBS-5% BSA. The 

membrane was washed three times with TBS-1% Tween 20 for 10 min and then 

incubated for 1 h at room temperature with goat-anti rabbit antibody (GeHealthcare, 

Hatfield, UK) at a dilution of 1:10000, as a secondary antibody for p27
Kip1

, PTEN and 

HoxD10, and with a goat-anti mouse antibody from (GeHealthcare, Hatfield, UK) at a 

dilution of 1:10000, as a secondary antibody for RHOC. The membrane was washed 

thoroughly in a TBS-1% Tween-20 solution, and the bound antibody was detected using 

the enhanced chemiofluorescence detection reagent (ECF), purchased from GeHealthcare 

(Hatfield, UK), according to manufacturer’s recommendations. Images were obtained 

using a VersaDoc Imaging System Model 3000 from BioRad (Hercules, CA, USA) and 

detection was performed at 570 nm. The analysis of band intensity was made using the 

Quantity One software from BioRad (Hercules, CA, USA). 
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Fluorescence in situ hybridization 

Fluorescence in situ hybridization was performed as described by Lu et al. 
280

 with 

some modifications. Briefly, Hs766T cells were seeded onto multi-chambered coverglass 

slides from Lab-Tek (Rochester, NY, USA) appropriate for confocal microscopy. Forty-

eight hours after transfection with lipoplexes containing anti-miR-21 or scrambled 

(control) oligonucleotides, cells were washed with PBS, fixed with 4% paraformaldehyde 

for 30 min at room temperature and permeabilized at 4ºC in 70% ethanol for 4 h. Cells 

were then incubated with fresh acetylation solution [0.1 M triethanolamine and 0.5% 

(v/v) acetic anhydride] for 30 min at room temperature, rinsed twice in Tris-buffered 

saline (TBS) and pre-hybridized in the absence of LNA probe in the hybridization buffer 

[50% formamide, 5 x SSC (0.75NaCl, 0.075M sodium citrate), 5 x Denhardt’s solution 

(1% Ficoll (type 400), 1% polyvinylpyrrolidone, and 1% BSA), 250 µg/ml yeast tRNA, 

500 µg/ml salmon sperm DNA, 2% (w/v) blocking reagent from Roche (Basel, 

Switzerland), 0.1% CHAPs, 0.5% Tween 20] for 2 h at 52ºC. The hybridization step was 

carried out overnight, at the same temperature, using the digoxigenin-labelled (DIG-

labelled) LNA probe for miR-21 and a scrambled probe. Three stringency washes were 

performed also at 52ºC to completely remove the non-hybridized probe. Endogenous 

peroxidase activity was inactivated by incubation in 3% hydrogen peroxide in TBS with 

0.1% Tween 20 (TBS-T) for 30 min, followed by three washes with TBS-T. The slides 

were then placed in blocking solution (10% heat-inactivated goat serum and 0.5% 

blocking agent in TBS-T) for 1 h at room temperature and incubated for the same period 

of time with an anti-DIG antibody from Roche (Basel, Switzerland) conjugated with the 

hydrogen peroxidase purchased from Sigma-Aldrich (Munich, Germain).. To amplify the 

antibody signal, slides were further incubated with a TSA plus Cy3 solution 

(PerkinElmer, Waltham, MA) for 10 min in the dark, in accordance with the 

manufacturer’s protocol. Cells were finally stained with the fluorescent DNA-binding dye 

Hoechst 33342 (1 µg/ml) (Invitrogen Life Technologies, Paisley, UK) for 5 min in the 

dark, washed with cold PBS, and mounted in Mowiol (Sigma-Aldrich, Munich, 

Germany). Confocal images were acquired in a point scanning confocal microscope Zeiss 

LSM 510 Meta (Zeiss, Göttingen, Germany), using a 60x oil objective.  

 

Cell viability assays 

Cellular viability and proliferation were evaluated by a modified Alamar Blue assay, 

under different experimental conditions.
281

 This assay measures the redox capacity of 
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tumoral cells and allows the determination of cell viability without cells detachment. To 

evaluate the effect of the combined strategies involving AMOs and chemotherapeutic 

drugs, cells were seeded onto 48-well culture plates and transfected, as mentioned above. 

Twenty-four hours cells after transfection, cells were treated with different amounts of 

drugs for a period of 24 h and cell viability was then measured. Briefly, 300 µl of 

DMEM-HG medium containing 10% (v/v) Alamar Blue dye (prepared from a 0.1 mg/ml 

stock solution of Alamar Blue) were added to each well and cells were  incubated  at 37º 

C for 1 h in a 5% CO2 humidified atmosphere. One-hundred fifty microliters of 

supernatant were collected from each well, transferred to 96-well plates and absorbance 

was measured at 570 and 600 nm in a SPECTRAmax PLUS384 spectrophotometer 

(Molecular Devices, Union City, CA). Cell viability (as a percentage of untreated control 

cells) was calculated according to the equation (A570-A600) of treated cells x 100/(A570-

A600) of control cells. 

 

Statistical Analysis 

Data are presented as the mean ± standard deviation (SD). The data were analyzed 

using the Graph Path Prism (version 5.0) software (La Jolla, USA). Statistical analyses 

were performed by analysis of variance (ANOVA) using Dunnett’s Multiple Comparison 

test or Student’s t test. P value <0.05 was considered statistically significant. P< 0.05 (*), 

P < 0.01 (**) and P < 0.001 (***). 
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3. Results and discussion 
 

3.1. Efficient oligonucleotide delivery mediated by HSA-

EPOPC:Chol/AMOs (+/-)(4/1) lipoplexes 

Cationic liposomes brought new insights into bionanotechnology by facilitating the 

introduction of nucleic acids into target cells, thus allowing a controlled modification of 

their genetic expression profile and consequently a specific effect.
72,88,89

 However, most 

of the nanosystems based in cationic liposome have been applied for DNA delivery, but 

whether these carriers have the ability to promote efficient and controlled release of 

oligonucleotides into tumor cells has yet to be demonstrated.  Therefore, our initial 

studies addressed the potential of a previously developed gene delivery formulation, 

HSA-EPOPC:Chol/DNA (+/-) (4/1), to efficiently release anti-microRNA 

oligonucleotides (AMOs) targeting overexpressed microRNAs involved in cancer, 

towards the generation of  a new therapeutic approach.  

The analysis of the physicochemical properties of our HSA-EPOPC:Chol/AMOs (+/-) 

(4/1) formulation reveals a neutral zeta potential (0.4±1.5 mV), which is most probably 

due to the presence of HSA that masks the positive charge from cationic liposomes and a 

mean diameter of approximately 450 nm. This neutral zeta potential indicates that the 

interaction of lipoplexes with the negatively charged cellular membrane is not due to 

electrostatic interactions, but rather to the interaction of the associated HSA with 

cytoplasmic membrane receptors.
90

 The cellular internalization of these lipoplexes, 

prepared from carboxyfluorescein-labeled liposomes, was evaluated in a PDAC cell line 

(Hs766T cells) by confocal microscopy. 

Cellular internalization of HSA-EPOPC:Chol/AMOs (+/-) (4/1) lipoplexes, prepared 

from carboxyfluorescein-labelled liposomes, was evaluated in a PDAC cell line (Hs766T 

cells) by confocal microscopy.  
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Figure 11 - Internalization of HSA-EPOPC:Chol/AMOs (+/-)(4/1) lipoplexes in Hs766T pancreatic 

adenocarcinoma cells. (A) Cells were transfected with lipoplexes prepared from carboxyfluorescein-

labelled EPOPC:Chol liposomes and stained with LysoTracker red (200 nM), for acidic compartment 

labeling, and Hoechst 33342 (1μg/ml), for nucleus labeling. (B) Cells were transfected with lipoplexes 

containing fluorescein-labeled oligonucleotides and stained with Hoechst (1μg/ml), for nucleus labeling.  

Confocal microscopy images (x40 magnification), are representative of triplicates of two independent 

experiments. DIC means differential interference confocal microscopy. Bars correspond to 20 µm. 

 

As illustrated in Figure 11A, an intense green fluorescence, corresponding to 

lipoplexes, was observed throughout the cytoplasm of almost all cells, demonstrating 

efficient cellular internalization of this nanosystem. Moreover, the results presented in 

Figure 1A show that lipoplexes (green fluorescence) were not co-localized with the 

lysosomal compartments (red fluorescence), suggesting their successful release from the 

endolysosomal pathway to the cytoplasm, consequently avoiding nucleic acid degradation 

inside the lysosomes.   

In order to evaluate the efficacy of the HSA-EPOPC:Chol/AMOs (+/-) (4/1) 

nanosystem to mediate the intracellular delivery of AMOS, Hs766T cells were transfected 

with lipoplexes prepared with fluorescein-labeled oligonucleotides. As shown in Figure 

11B, 4 h after transfection, fluorescent particles (green dots) were homogeneously 

distributed throughout the cytoplasm of almost all cells. This observation suggest that the 

HSA-EPOPC:Chol/AMOs (+/-) (4/1) lipoplex formulation has the ability to efficiently 

complex AMOs, promote binding and internalization into tumor target cells and deliver 

their content into the cell cytoplasm, showing that this nanosystem presents a great 

A 

B 
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potential to be used in antitumor strategies involving the delivery of anti-microRNA 

oligonucleotides.   

 

3.2. Robust microRNA inhibition after transfection with HSA-

EPOPC:Chol/AMOs (+/-)(4/1) lipoplexes 

Each type of cancer can be characterized by a distinct microRNA signature and  

emerging evidences indicate that some microRNAs, such as miR-221/miR-222,  miR-21 

and miR-10b, display a frontal role in managing tumor survival and aggressiveness.
282

 

Mir-221 and miR-222 are known to target the tumor suppressor gene coding for the 

cyclin-dependent kinase inhibitor p27
Kip1

 and their role was established in PDCA, as key 

inhibitors of cell cycle arrest, apoptosis and sensitization of cells to gemcitabine.
194,269,283

 

Upregulation of these two microRNAs is often related with poor patient survival 

rate.
284,285

  MiR-21 has been identified as an upregulated microRNA in almost all cancer 

types, including PDAC, and among other important microRNAs involved in tumoral 

regulation, miR-21 stood out as the one with most significant expression in PDCA 

associated to metastatic status or proliferation index.
286,287

 Studies performed by Nakata 

and colleagues indicated that miR-10b is also an upregulated microRNA in pancreatic cell 

lines, with up to 10-fold increased levels as compared to  normal cells.
173

 Moreover, these 

authors showed that transfection with miR-10b was associated with invasiveness of 

pancreatic cancer cell lines, making miR-10b another important microRNA to be 

manipulated towards the development of new PDAC therapies.  

In order to determine the expression profile of miR-221, miR-222, miR-21 and miR-

10b in an in vitro metastatic model of pancreatic adenocarcinoma, the levels of these 

microRNAs were measured in Hs766T cells. As illustrated in Figure 12, these four 

microRNAs are differentially expressed in this cell line.  
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Figure 12- Relative microRNA expression levels in Hs766T cells when compared with the HPNE cell 

line. Hs766T and HPNE cells were submitted to RNA extraction 48 hours after seeding. MiR-221, miR-

222, miR-21 and miR-10b expression levels were quantified through qRT-PCR and presented as fold 

increase units relative to the levels registered with HPNE control cells. U6 snRNA was used as the internal 

sample normalizer. Results are presented as mean ± S.D obtained from triplicates of three independent 

experiments. *p<0.05 and  **p<0.01 correspond to values that differ significantly from those obtained with 

HPNE cells. 

 

The microRNA cluster miR-221/miR-222 is more prominently overexpressed (14-

fold and 8 fold-increase, respectively), than miR-21 and miR-10b, both exhibiting a 3-

fold-increase in their expression levels, when compared with those obtained in an in vitro 

model of normal pancreatic epithelium (HPNE cell line).   

Following the demonstration of the feasibility of the HSA-EPOPC:Chol-based 

nanosystem to mediate efficient delivery of AMOs, we evaluate the effect of 

intracellularly delivered anti-microRNAs to promote microRNA silencing. For this 

purpose, Hs766T cells were transfected with lipoplexes containing antisense 

oligonucleotides targeting miR-221, miR-222, miR-21 or miR-10b (a scrambled 

oligonucleotide was used as a control), and  the expression levels were analyzed for each 

microRNA after 48h. As shown in Figure 13 A, a significant reduction in the levels of all 

tested microRNAs was obtained when cells were transfected with 80 nM of AMOs.  
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Figure 13 - MicroRNA modulation in Hs766T cells. (A) RT-PCR quantification of miR-221, miR-222, 

miR-21 and miR10b levels in Hs766T cells transfected with HSA-EPOPC:Chol/AMOs (+/-) (4/1) 

lipoplexes containing 80 nM of AMOs. As control, Hs766T cells were transfected with the same lipoplex 

formulation prepared with 80 nM of scrambled oligonucleotides.  MicroRNA levels were assessed 48 hours 

after transfection and are presented as mean ± S.D obtain from triplicates of five independent experiments. 

***p<0.001) corresponds to values that differ significantly from those obtained in the control condition. (B) 

Confocal analysis of FISH staining in Hs766T cells transfected with lipoplexes containing 80 nM of AMOs 

against miR-21 (antimiR-21) or 80 nM of scrambled oligonucleotides (control). After 48 hours, cells were 

subjected to miR-21 labeling with 5´-DIG (digoxigenin) LNA probes (red dots), as described in Material 

and Methods. Nuclear staining was accomplished using Hoescht 33342 (1 μg/ml). Results are representative 

of triplicates of three independent experiments. Bars correspond to 20 µm.  

 

In the case of miR-21, nearly to 99% of microRNA silencing was achieved. A similar 

inhibition pattern was observed for miR-10b, with a 94% decrease in its levels, and a 

maximum inhibition of 79% and 89% was attained for the expression levels of miR-221 

and miR-222, respectively. Concentrations of AMOs higher than 80 nM did not show 

further significant improvement in reducing the levels of microRNAs and lower 

concentrations resulted in a lesser efficacy of microRNAs inhibition (data not shown), 

A 
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revealing that 80 nM was the optimal AMOs concentration to promote microRNA 

silencing.  

The efficient miR-21 silencing in Hs766T cells was also evident from fluorescence in 

situ hybridization experiments. Figure 13 B displays typical images obtained from these 

essays, showing a huge decrease in miR-21 staining (red dots) in the cell cytoplasm 

following transfection with our nanosystems containing anti-miR-21 oligonucleotides, 

when compared to that observed in cells transfected with lipoplexes prepared with 

scrambled oligonucleotides. These results are in agreement with those showing the high 

intracellular delivery of AMOs promoted by HSA-EPOPC:Chol/AMOS (+/-)(4/1) 

lipoplex formulation  (Figure 11B), thus demonstrating the efficacy of the developed 

nanosystem to mediate microRNA silencing.  

 

3.3. MicroRNA targets are differentially modulated in PDAC  

In previous reports, p27
kip1

 protein was shown to play an important role in regulating 

cell cycle arrest, being described as a potential target in prostate cancer therapeutic,
284

 and 

both miR-221 and miR-222 were considered as potent regulators of cell cycle through 

p27
kip1

 protein.
283

 

On the other hand, Meng and colleagues and Liu and colleagues pointed miR-21 as 

responsible to directly modulate the expression of PTEN gene in hepatocarcima (HCC), 

showing that the decrease of miR-21 levels results in the decline of HCC cell 

proliferation, acceleration of apoptosis and cell invasiveness decay.
266,288

 PTEN is a 

tumor suppressor factor playing a dual phosphatase activity in the PI3K signaling 

pathways, which in turn controls major biological processes such as cellular growth, 

proliferation and protein synthesis, by directly acting as a central negative regulator. 

Several reports have suggested dysregulation of PTEN as an important mediator of 

carcinogenesis in pancreas.
289,290

 However, tumor samples collected from pancreatic 

cancer patients exhibit  only an estimated 1% of PTEN mutations, which points towards 

the hypothesis of a post-transcriptional regulation of the expression levels of PTEN gene, 

most likely involving microRNAs as the most important mechanism in this process.
291

 

MiR-10b, was also identified as a microRNA with altered expression patterns in 

several cancers, being associated to suppression of  Homeobox D10 (HoxD10) protein 

synthesis and consequently allowing the expression of RHOC gene, as a downstream 

signaling target, which is known to be involved in metastatic processes by inducing cell 

migration.
270,292–294
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The recognized oncomiR activity of these four microRNAs and their demonstrated 

deregulation in PDAC make them promising targets for new therapeutic strategies 

involving AMO delivery. In this regard, we further evaluated the effect of microRNA 

silencing on the mRNA and protein levels of the molecular targets p27
kip1

, PTEN, 

HoxD10 and RHOC, aiming to analyze the potential of the developed nanosystem in a 

therapeutic context and clarify the mechanisms involved in an antitumor response.  

Forty-eight hours after transfection of Hs766T cells with lipoplexes containing 

antimiR oligonucleotides, mRNA levels were quantified by RT-qPCR. Our results show 

that, despite successful microRNA inhibition mediated by the developed nanosystem 

(Figure 13A), the antimiR oligonucleotides targeting miR-221 and miR-222 were not able 

to significantly increase the p27
kip1 

mRNA levels (Figure 14A).  
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Figure 14 – Target mRNA expression levels after microRNA silencing. mRNA levels were quantified 

by RT-qPCR, 48 hours after transfection of Hs766T cells  with lipoplexes containing 80 nM of AMOs or 

scrambled oligonucleotides (control). (A) p27
kip1

 mRNA levels after cell treatment with scrambled, anti-

miR-221 or anti-miR-222 oligonucleotides. (B) PTEN mRNA levels in Hs766T cells after transfection with 

scramble or anti-miR-21 oligonucleotides. (C) HoxD10 and RHOC mRNA levels after Hs766T cell 

treatment with scrambled or anti-miR-10b oligonucleotides. Results are presented as mean ± S.D obtained 

from triplicates of four independent experiments. **p<0.01, ***p<0.001 correspond to values that differ 

significantly from those obtained in the control condition. 

 

The lack of total inhibition of miR-221 and miR-222 levels observed after cell 

transfection might be responsible for this effect. In fact, the remaining miR-221 and miR-

222 in cell cytoplasm could be sufficient to induce the post-transcriptional inhibition of 

p27
kip1 

gene. On the other hand, it is also possible that miR-221 and miR-222 are not able 

to induce cleavage of p27
kip1 

mRNA, but rather its translational repression by a less 

efficient mechanism, justifying the absence of a significant increase in the p27
kip1 

mRNA 

levels after treatment with antimiR-221 or antimiR-222 oligonucleotides.
295

 As shown in 

Figure 14B, miR-21 silencing resulted in an increase of approximately 40% in PTEN 

mRNA levels after cell treatment with AMOs, which is most probably due to the almost 

total miR-21 silencing induced by the antimiR-21 oligonucleotides (Figure 13). 

Regarding miR-10b inhibition, two targets were addressed: HoxD10, as a direct target, 

and RHOC, as downstream target but still the main regulator of an important pathway 

C 
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related with cell migration.
173

 Transfection of Hs766T cells with 80 nM of antimiR-10b 

oligonucleotides promoted a 1.9-fold increase in the mRNA levels of Homeobox D10 

gene and 27% decrease in the mRNA levels of RHOC, when compared to that observed 

with cells treated with scrambled oligonucleotides (Figure 14C). This result meets the 

expected outcome, since HoxD10 exerts its regulatory role on the transcription levels of 

its downstream target, RHOC, negatively setting the expression levels of this gene.
294

 

Although no significant changes in p27
kip1

 mRNA levels were observed after cell 

treatment with AMOs targeting miR-221 and miR-222, Western blot analysis showed an 

approximately 1.1-fold and 1.6-fold increase of p27
kip1

 protein levels  following treatment 

with antimiR-221 and antimiR-222 oligonucleotides, respectively (Figure 15 A and B). 

The difference found for the increase of p27
kip1

 expression could be due either to an 

insufficient miR-221 inhibition (Figure 13), thus avoiding significant increase of the 

protein levels, or to a predominant role of miR-222 in the post-transcription regulation of 

p27
kip1

gene. The combination of both antimiR oligonucleotides, simultaneously targeting 

miR-221 and miR-222, did not result in a significant increase of the p27
kip1

mRNA and 

protein levels, when compared to that observed with anti-miR-222 alone (data not 

shown). 

Regarding PTEN protein expression levels, it was observed that the almost total miR-

21 silencing (Figure 13), promoted by transfection of Hs766T cells with lipoplexes 

containing 80 nM of AMOs against this microRNA, resulted in a substantial enhancement 

in the PTEN levels. In fact, in these conditions an increase of 60% in the expression 

levels of this protein, when compared to that observed with Hs766T cells treated with the 

same amount of scrambled oligonucleotides, showing that our strategy successfully 

modulate PTEN protein levels.  

In the case of HoxD10 and RHOC, although mRNA levels were modulated towards 

an antitumoral profile, the analysis performed by Western blot showed no significant 

alterations in the protein levels after miR-10b silencing. 
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Figure 15 – Western blot analysis of target protein levels after microRNA silencing. Protein was 

extracted from Hs766T cells, 72 hours after transfection with HSA-EPOPC:Chol/AMOs (+/-) (4/1) 

lipoplexes containing 80 nM of AMOs or scrambled oligonucleotides (control), as described in Material 

and Methods. (A) Protein levels and (B) representative Western blot image of p27
kip1

 protein quantification 

after treatment with scramble, anti-miR-221 or anti-miR-222 oligonucleotides. (C) Protein levels and (D) 

representative Western blot image of PTEN protein quantification after treatment with scrambled or 

antmiR-21 oligonucleotides. (E) Protein levels and (F) representative Western blot image of HoxD10 and 

RHOC protein quantification after treatment with scrambled or anti-miR-10b oligonucleotides. Results are 

presented as target protein-expression levels relative to control, corrected for individual α-tubulin or β-actin 

signal intensity, and are the mean ± S.D. obtained from four independent experiments. *p<0.05, **p<0.01 

correspond to values that differ significantly from those obtained in the control condition. 

 

Despite the effective silencing of miR-10b induced by AMOs treatment, the inability 

to successfully change HoxD10 and RHOC protein levels led us to consider that both 

effectors might have a multiplicity of regulators in PDAC that promote their translational 

repression, which probably demands a more broad strategy to modulate their expression 

levels. 

Overall, the obtained results show that transfection of PDAC cells with the HSA-

EPOPC:Chol/AMOs (+/-) (4/1) nanosystem, containing AMOS targeting miR-21, miR-

221 or miR-222, promote a significant post-transcriptional modulation of important tumor 

suppressor genes, such as PTEN and p27
kip1

, respectively.  

 

3.4. Combination of oligonucleotides against miR-21 with sunitinib 

results in a synergistic antitumor effect in PDAC 

 Gemcitabine has long been the only standard treatment for pancreatic cancer, but 

increasing resistance over time impelled medicine to seek other drugs in order to improve 

patient survival. Docetaxel has been used in combination with gemcitabine as front line 

therapy to reduce the size of the tumor and overcome its metastatic phase.  Nevertheless, 

none of these drugs or their combination revealed to be an effective treatment for 

pancreatic cancer.
296

 On the other hand, sunitinib malate, a potent RTK’s inhibitor, has 

been demonstrating to be a successful drug in pancreatic cancer clinical trials and is 

revealing new data that points towards a more meaningful treatment for this disease.
297

 

The possibility of combining the inhibition of microRNAs, thus sensitizing cancer cells 

by decreasing some of their main regulators of tumorigenesis, with chemotherapeutic 

drugs that have shown high potential in clinical trials, emerged as a promising antitumor 
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strategy. Indeed,  combining two or more therapeutic approaches with different 

mechanisms can exert a synergistic effect over cancer progression and tumor resistance to 

chemotherapeutic drugs.
298

 

 In this regard, we investigated whether a two-step sequential treatment, involving the 

modulation of aberrantly expressed microRNAs, to sensitize tumoral cells to the action of 

drugs, and the subsequent treatment with chemotherapeutic agents could result in a 

significant and synergistic antitumor effect. For this purpose, we evaluated the in vitro 

antitumor activity mediated by HSA-EPOPC:Chol/AMOs (+/-) (4/1) lipoplexes, 

containing oligonucleotides against miR-221, miR-222 or miR-21 (since these AMOs 

presented the most promising results in terms of tumor suppressor gene modulation in our 

PDAC model), in combination with small amounts of chemotherapeutic drugs, docetaxel, 

gemcitabine or sunitinib malate. From the results obtained using different doses for each 

chemotherapeutic agent (data not shown), only the lower concentration resulting in a 

small but still significant effect on tumor cell viability was chosen to be applied in the 

combined strategies (1 µM docetaxel, 5 µM gemcitabine and 15 µM sunitinib). These low 

amounts of drugs were used to avoid the adverse effects that are usually associated to the 

higher clinical doses of chemotherapeutic agents. As illustrated in Figure 16, treatment of 

Hs766T cells with 1 µM of docetaxel or 5 µM of gemcitabine or 15 µM of sunitinib 

malate resulted in a decrease of approximately 16%, 10% and 18% in cell viability, 

respectively.  
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Figure 16- Cell viability after treatment with anti-miR oligonucleotides and chemotherapeutic drugs. 

Hs766T cells were transfected with lipoplexes containing 80 nM of antimiR-21, antimiR-221, antimiR-222 

or scrambled (control) oligonucleotides. After 24 hours, cells were incubated in the absence or presence of 

1 μM of docetaxel (A), 5 μM of gemcitabine (B) or 15 μM of sunitinib (C), for 24 hours. Cell viability was 

measured by the Alamar Blue assay as described in Material and Methods. Data are expressed as the 

percentage of non-treated control (NTC) cells and correspond to mean ± S.D. obtained from triplicates of 

three independent experiments. *p<0.05, ***p<0.001 correspond to values that differ significantly from 

those obtained in the control condition.  

 

A 

B 
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 The impact of microRNA inhibition per se on cell viability was even smaller than 

that observed with the low amounts of chemotherapeutic drugs alone, this being verified 

for any of the three studied microRNAs, miR-21, miR-221 or miR222 (Figure 16). 

Although target protein expression levels were substantially increased upon microRNA 

silencing (Figure 15), a reduction of only approximately 5% in the viability of Hs766T 

cells was obtained when compared to that observed in the control condition (cells treated 

with scrambled oligonucleotides). Nevertheless, in agreement with other authors, this is 

an expected result, since this kind of approach represents a fine-tuning of molecular 

signaling, rather than a single molecular effector with major impact on cell 

metabolism/viability.
299,300

 

 Combination of AMOs with chemotherapeutic drugs did not result in any significant 

therapeutic effect in the case of docetaxel or gemcitabine, as no further considerable 

reduction in cell viability was achieved (Figure 16A and B). However, when Hs766T 

cells were sequentially treated with AMOs (against miR-21, miR-221 or miR-222) and 

sunitinib, a substantial reduction in cell viability was observed as compared to the extent 

of cell death (21%) registered with scrambled oligonucleotides and sunitinib (Figure 

16C). Importantly, cell  treatment involving the combination of oligonucleotides antimiR-

21 with sunitinib resulted in a cell viability decrease of approximately 45%, showing that 

this combined strategy promoted a significant and synergistic antitumor effect, which was 

much higher than that observed with any of the two strategies by themselves (Figure 

16C). PTEN, a direct miR-21 target, is an important cell cycle regulator and therefore its 

upregulation (Figure 15C and D) strongly affects apoptosis signaling pathways, inducing 

cell sensitization to sunitinib.  Moreover, miR-21 has been pointed to have great impact in 

almost all types of cancers, since it targets many important protein mediators involved in 

tumorigenesis, which could also contribute to the high and synergistic antitumor effect of 

this combined strategy.
110,301,302

 On the other hand, miR-221 or miR-222 inhibition 

followed by treatment with sunitinib promoted a smaller, but still considerable, increase 

in the antitumor effect, inducing a decrease of 32% in cell viability (Figure 16C). A 

similar result was obtained with a combined treatment involving simultaneous 

transfection with anti-miR-221 and anti-miR-222 oligonucleotides (data not shown). 

Although different modulation of p27
kip1

 expression levels was obtained with anti-miR-

221 or anti-miR-222 oligonucleotides (Figure 15A and B) a similar reduction in cell 

viability was observed, showing that these microRNAs may also target other molecular 
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regulators with a crucial role in carcinogenesis that have not been addressed in this 

study.
170

 

 The results obtained with these combined approaches, involving the PDAC cell 

treatment with AMOs (against miR-21, miR-221 or miR-222) and sunitinib (Figure 16C), 

are still more remarkable considering the fact that the same combined strategies involving 

the drugs gemcitabine or docetaxel (Figure 16A and B), which represent the therapeutic 

front-line for PDAC, promoted a much lower antitumor activity. 
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4. Conclusion 

 
Overall, our results clearly show that the HSA-EPOPC:Chol/AMOs (+/-) (4/1) 

nanosystem has the ability to efficiently deliver antisense oligonucleotides into PDAC 

cells, inducing an almost total inhibition of microRNAs (miR-21, miR-10b, miR-221 and 

miR-222) aberrantly expressed in this cancer model. Moreover, our data constitute 

evidence that the strong reduction in the levels of these microRNAs resulted in a 

significant modulation of their targets, this being particularly evident for miR-21 and 

miR-221/miR-222, where their inhibition promoted a significant increase in the levels of 

their protein targets, PTEN and p27
Kip1

 protein, respectively. The notable synergistic 

antitumor effect observed with combination of microRNA inhibition and low amounts of 

the chemotherapeutic drug sunitinib, show that this combined strategy could be of great 

importance for application in PDAC due to the association of reduced side effects, 

promoted by lower drug concentrations, with a high therapeutic activity. 



99 

 

  



100 

 

Chapter 4 

 

 

MiR-139-5p: a new player in 

pancreatic cancer CXCR4 mediated-
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Faneca. MiR-139-5p, a new player in CXCR4-mediated metastasis in 
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1. Introduction 

 
Pancreatic cancer is a highly aggressive pathology, as patients are frequently 

diagnosed at a late stage of tumor development and commonly present early 

dissemination to distant organs, declining survival possibilities.
4
 Nevertheless, the 

biological mechanisms underlying the development of metastatic progression and the 

dissemination of tumoral cells into distant organs, remain largely unknown. Therefore, a 

better understanding of the biology behind pancreatic cancer invasion and the seeding of 

metastasis is urgently needed. Moreover, managing the progression and development of 

metastasis could promote a better quality of life for PDAC patients, as they could subsist 

as chronic cancer patients rather than in an acute life-threatening situation with limited 

survival chances.  

The development of metastasis is the major cause of morbidity and mortality in the 

majority of cancers. Metastization is conventionally defined as a process resulting from 

cumulative genetic alterations within cells of a tumour mass that ultimately tend to 

disseminate from the primary tumor site. Metastatic cells acquire distinct properties such 

as loss of cell adhesion, acquisition of an invasive potential, transport through the 

circulation, extravasation, formation of micro-metastases, and finally the ability to induce 

an angiogenic switch to form macro-metastasis.
303

 Nevertheless, new findings are 

changing the paradigm, stating that metastatic ability may be an innate property shared by 

a cell population, termed cancer stem cells (CSCs) present early in tumor development.
304

 

Invasion and metastization are frequently mediated by inflammatory intermediates, 

including cytokines and chemokines, which facilitate tumor dissemination. The CXC 

motif chemokine receptor 4 (CXCR4) is a stromal cell-derived factor-1 (SDF1-α) 

receptor secreted by leukocytes such as lymphocytes, monocytes, natural killer cells, as 

well as vascular smooth muscle cells, endothelial cells and astrocytes.
305–307

 C-X-C motif 

chemokine 12 (CXCL12), commonly set as SDF1-α, is the specific ligand of CXCR4, 

and the interaction between these two molecules results in a chemotaxis process, mainly 

responsible for attracting CXCR4-expressing cells to fluid-filled cavities with high 

concentrations of CXCL12, to where many tumoral cells disseminate and metastases 

develop.
308

 

It has been shown that CXCL12/CXCR4 axis promotes progression and 

dissemination of various carcinomas, including pancreatic cancer,
210,309,310

 as metastatic 

cancer cells subvert the physiological function of CXCR4/CXCL12 in controlling cell 
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migration and homing.
311

 Moreover, CXCR4 overexpression in PDAC was found to be 

strongly correlated with advanced metastatic stage of disease and a molecular marker for 

CSC’s.
312,313

 

MicroRNAs are an abundant class of endogenous small RNA molecules, 

approximately 22 nucleotides in length, and are known key regulators of gene expression 

by directly binding to the 3′ untranslated regions (UTRs) of targeted mRNAs. Translation 

inhibition or mRNA cleavage is attained through nearly perfect or perfect 

complementarity binding of the microRNA.
123

 The pivotal role of microRNAs in cancer 

progression, including PDAC, prompted the development of anti-tumor therapies 

targeting microRNAs.
261

 Accumulated evidence has demonstrated that microRNAs are 

aberrantly expressed in cancer and different types of tumors can be distinguished by a 

microRNA signature.
138,314

 In 2006, Lee et al, discovered a unique miRNA signature 

capable of distinguishing pancreatic cancer from normal and benign pancreas and miR-

139-5p was found to be strongly downregulated in tumoral samples, indicating a possible 

tumor-suppressor activity of this microRNA in normal pancreatic cells.
315

 

In a preliminary survey, we used three computational algorithms (in-silico prediction), 

including Target-Scan, PicTar and miRBase to search for potential targets of miR-139-5p, 

and CXCR4 was consistently found to be a predicted target for this microRNA. 

A recent report indicated CXCR4 as a possible target for miR-139-5p in gastric 

cancer, since epigenetic silencing of miR-139-5p was shown to be directly involved in the 

induction of C-X-C chemokine receptor type 4 overexpression.
208

 Additionally, the 

authors of this study observed that high levels of CXCR4 and reduced levels of miR-139 

were correlated with lymph node metastasis in human metastatic gastric tumors. A tumor 

suppressor role was also attributed to miR-139-5p in esophageal squamous cell carcinoma 

and in colorectal cancer, as this microRNA was able to inhibit cell proliferation and 

metastasis formation.
202,204

 

Considering the anti-metastatic potential of miR-139-5p, the aim of this work was to 

elucidate the role of this microRNA in the C-X-C chemokine receptor type 4 (CXCR4) 

post-translational regulation in PDAC and further clarify how miR-139-5p contributes to 

the control of invasive features of pancreatic cancer cells. Additionally, a combined 

antitumor strategy involving the miR-139-5p expression followed by treatment with small 

amounts of chemotherapeutic drugs was evaluated as an antitumor strategy towards 

treatment of PDAC.  
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2. Materials and methods 

 
Materials 

Sunitinib malate (Sutent®) was kindly offered by Pfizer (Basel, Switzerland) and 

stock solutions were prepared in DMSO (Sigma, Germany) and stored at -80ºC or 

4ºC.Docetaxel and gemcitabine were acquired from Sigma (Munich, Germany) and stock 

solutions were prepared in distilled water and subsequently stored at -20ºC and at room 

temperature, respectively.  

 

Cells and culture conditions  

Primary Human Pancreatic Cancer Cells  

The 354 primary human pancreatic cancer cells were freshly isolated from early 

passage human pancreatic adenocarcinoma xenografts, as previously described by 
316,317

, 

being designated as a tumor-derived primary cell line. 354 cells were maintained in RPMI 

medium (from Life Technologies, Carlsbad, CA, USA) supplemented with 20% fetal 

bovine serum (FBS),  from Gibco (Life Technologies, Carlsbad, CA, USA) and 100 μM 

each of penicillin and streptomycin from Sigma-Aldrich (Munich, Germain), fungizone 1 

μg/ml and 0.5 mM L-glutamine, both purchased from Gibco (Life Technologies, 

Carlsbad, CA, USA) . Cells were cultured as adherent cells (monolayer) at low passages 

and grown at 37ºC, under 5% of CO2, in humidified atmosphere. 

 

Pancreatic tumor cell lines 

The Hs766T, Panc-1 and MiaPaCA cell lines were obtained from American Type 

Culture Collection (ATCC) (Manassas, VA, USA) and used as in vitro tumoral models 

for human pancreatic adenocarcinoma. The cells were maintained in adherent culture 

using Dulbecco’s Modified Medium (DMEM) from Invitrogen (Life Technologies, 

Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) from Gibco (Life 

Technologies, Carlsbad, CA, USA) and 100 μM each of penicillin and streptomycin from 

Sigma-Aldrich (Munich, Germain). Hs766T cells were grown at 37ºC, under 5% of CO2, 

in humidified atmosphere. 
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Production of lentiviral vectors and cell transduction. 

Viral vectors encoding eGFP and human miR-139-5p precursor stem loop or control 

eGFP, were produced in human embryonic kidney (HEK) 293T cells using a four-

plasmid system, as described previously.
318

 Briefly, the viral particles were produced by 

transient calcium phosphate transfection of 4 x10
6
 human embryonic kidney 293Tcells 

plated in 10 cm Petri dishes (Falcon; Becton Dickinson, Rutherford, NJ) with 13 µg of 

pCMVDR-8.92 packaging construct, 3.75 µg of pMD.G, 3 µg of pRSV-Rev, and 13 µg 

of the interest  vector. Forty-eight hours later, the supernatants were collected, filtered, 

and concentrated by ultracentrifugation, and the viral particle content of batches was 

determined by assaying HIV-1 p24 antigen (RETROtek, Gentaur, Paris, France). Viral 

stocks were stored at -80ºC until use.  

For the lentiviral transduction of Hs766T and 354 cells, cells were plated onto six-

well plates at a final density of 3.5 × 10
5
 cells/well. Twenty-four hours after plating, 10 ng 

and 30 ng of virus, coding for either miR-139-5p and eGFP or control eGFP were added 

per 1 × 10
5
of Hs766T and 354 primary pancreatic tumor cells, respectively; and 8 mg of 

polybrene (hexadimethrine bromide) were also added to each well, to increase the 

efficiency of infection. Cell culture medium was replaced 6 h after infection and cells 

were further grown for 48 h, after which were plated onto 10 cm dishes. Infected cells 

were selected by growing cells in a culture medium containing 1 µg/ml of puromycin. 

 

Extraction of total RNA and complementary DNA synthesis 

Total RNA was isolated from Hs766T and 354 adherent and tumorsphere cells 

transduced with lentiviral vectors and purified, using the miRCURY RNA Isolation Kit - 

Cell and Plant (Exiqon, Vedbaek, Denmark), following manufacture’s protocol. Briefly, 

after cell lysis, the total RNA was adsorbed to a silica matrix, washed with the 

recommended buffers and eluted with 40 µl elution buffer by centrifugation and 

quantification was assessed using a Nanodrop UV-Vis spectrophotometer (Thermo Fisher 

Scientific, Wilmington, USA).  

For quantification of microRNA and mRNA expression levels, one first-strand 

complementary DNA (cDNA) synthesis reaction was performed using the NCode VILO 

miRNA cDNA Synthesis Kit from Invitrogen (Life Tecnlologies Inc, Alcobendas, Spain). 

The resulting cDNA, providing a template for all microRNA and mRNA real-time assays, 

was obtained by performing a 60 min incubation at 37ºC, followed by a heat–inactivation 

step of the reverse transcriptase for 5 min at 95ºC. 
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Quantitative real-time PCR 

For quantification of microRNA and mRNA expression levels, the resulting cDNA 

was diluted 5 times in RNAse-free water and submitted to real-time qRT-PCR. For 

evaluation of miR-139-5p expression levels, a specific forward primer was designed for 

this microRNAand the reference RNA (Snord44) from Qiagen (Hilden, Germany), in 

combination with a reverse Universal qPCR Primer from Invitrogen (Invitrogen, Life 

Tecnlologies Inc, Alcobendas, Spain). 

A master mix was designed for each primer set, according to the recommendations 

for the real-time PCR setup of individual assays suggested in the used kit. For each 

reaction, performed in duplicate, 5 µl of master mix were added to 4 µl of template 

cDNA. The reactions were monitored using a real-time instrument ABI Prism 7300 qPCR 

System from Applied BioSystems (Life Technologies, Carlsbad, CA, USA). The PCR 

conditions were 10 min at 95ºC, for polymerase activation, and 40 cycles of amplification 

with 10 s at 95ºC and 1 min at 60ºC, ramp-rate 1.6ºC/s.  Threshold values for threshold 

cycle determination (Ct) were generated automatically by the SDS Optical System 

software.  

For quantification of CXCR4 mRNA expression levels, the resulting cDNA was 

subjected to real-time qRT-PCR using the specific primer set for each target mRNA in 

analysis, obtained from Qiagen (Hilden, Germany), and iQ SYBR Green Supermix Kit 

from BioRad (Hercules, CA, USA). Each reaction was performed in duplicate, by adding 

6 µl of master mix to 4 µl of template cDNA. The reaction conditions consisted of 

enzyme activation at 95ºC for 10 min, followed by 40 cycles at 95ºC for 15 s 

(denaturation), 30 s at 60ºC (annealing) and 35 s at 72ºC (elongation).  

For both miRNA and mRNA quantification, a melting curve protocol was started 

immediately after amplification and consisted of 1 min heating at 55º followed by 80 

steps of 10 s, with a 2ºC increase at each step. Threshold values for threshold cycle 

determination (Ct) were generated automatically by the SDS Optical System software. 

Relative miRNA and mRNA levels were determined following the ΔΔCt method in 

comparison with control cells. 
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Western blot analysis 

After stable transduction with lentiviral vectors, Hs766T and 354 cells were seeded 

in 12 well plates and incubated during 72 hours. Cells were then washed twice with a 

phosphate-buffered saline solution (PBS) and solubilized in RIPA buffer (25 mM Tris-

HCl, pH7.7; 150nM NaCl; 1%NP-40; 1% sodium deoxycholate; 0.1% SDS) containing a 

protease inhibitor cocktail from Sigma-Aldrich (Munich, Germany), 2 mM dithiothreitol 

and 0.1 mM phenylmethylsulfonyl fluoride. The whole-cell suspension was subjected to 

sonication for 3 s and centrifuged at 14.000 rpm for 8 min at 4ºC. The supernatant was 

collected and stored at -20ºC until use. Protein concentration was determined using the 

Bio-Rad Dc protein assay from BioRad (Hercules, CA, USA). Heat-denaturated protein 

samples (40 μg per lane) were ressuspended in loading buffer (20% glycerol, 10% SDS, 

0.1% bromophenolblue), loaded and resolved onto a 10% polyacrylamide gel for 

electrophoretic separation. After electrophoresis, the proteins were transferred to a 

polyvinylidene fluoride (PVDF) membrane from Millipore (Bedford, MA, USA). The 

membrane was then blocked for non-specific binding for 60 min in a Tris-buffered saline 

solution (TBS) containing 1% of Tween 20 and 5% of bovine serum albumin (BSA), 

followed by incubation overnight at 4ºC with a primary  rabbit polyclonal antibody 

against the CXCR4 protein (AbCam Inc., Cambridge, MA, USA). The primary antibody 

was diluted at 1:2000 in TBS-5% milk or TBS-5% BSA. The membrane was washed 

three times with TBS-1% Tween 20 for 10 min and then incubated for 1 h at room 

temperature with goat-anti rabbit antibody (GeHealthcare, Hatfield, UK) at a dilution of 

1:10000, as a secondary antibody for anti-CXCR4 primary antibody. The membrane was 

washed thoroughly in a TBS-1% Tween-20 solution, and the bound antibody was 

detected using the enhanced chemiofluorescence detection reagent (ECF), purchased from 

GeHealthcare (Hatfield, UK), according to manufacturer’s recommendations. For 

normalization purposes an anti-α-tubulin antibody was used. Images were obtained using 

a VersaDoc Imaging System Model 3000 from BioRad (Hercules, CA, USA) and 

detection was performed at 570 nm. The analysis of band intensity was made using the 

Quantity One software from BioRad (Hercules, CA, USA). 

 

Pancreatic tumorsphere formation assay 

Pancreatic cancer spheres were generated and expanded in DMEM:F12 (Invitrogen, 

Karlsruhe, Germany), supplemented with B-27 (GIBCO, Karlsruhe, Germany) and bFGF 

(PeproTech EC, London, UK). Ten-thousand cells per milliliter were seeded in ultra-low 
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attachment flasks (Corning B.V., Schiphol-Rijk, Netherlands), as described previously.
319

 

After 7 days incubation, 1 ml of medium containing spheres was diluted in 7 ml of 

CASYTON buffer (Roche, Basel, Switzerland) and the number of spheres was counted 

and their size measured in an Innovatis CASY Cell Counter.   

 

 Flow cytometry analysis 

Hs766T and 354 cells were seeded in a 12-well plate, washed twice with a 

phosphate-buffered saline solution and harvested 72h after incubation.   A single cell 

suspension was prepared with a phosphate-buffered saline medium, containing 3% 

flebogamma, acquired from Grifols Movaco (Barcelona, Spain) and cells were incubated 

for 20 minutes on ice.  Cells were then washed twice with PBS and briefly centrifuged 

prior incubation with anti-CXCR4-APC antibody (Beckton Dickinson, Heidelberg, 

Germany)  for surface staining of CXCR4 receptor, and left in the dark at 4ºC for 30 

minutes. Cells were incubated with the appropriate isotype-matched control antibody, 

APC-mouse IgG2a (Biolegend, San Diego, CA). Subsequently, cells were incubated for 5 

minutes at 4ºC with DAPI for exclusion of dead cells (eBiosciences, San Diego, CA). 

Samples were analyzed by flow cytometry using a FACS Canto II (BD) and data were 

analyzed with FlowJo 9.2 software (Ashland, OR). 

 

Fluorescence in situ hybridization 

Fluorescence in situ hybridization was performed in cultured Hs766T adherent cells, 

as described by Lu and Tsourkas
280

 with some modifications. Briefly, transduced Hs776T 

cells were seeded onto multi-chambered coverglass slides (Lab-Tek; NalgeNunc, 

Rochester, NY) appropriate for confocal microscopy imaging. Following 72 h of 

incubation, the cells were washed with PBS, fixed with 4% paraformaldehyde for 30 min 

at room temperature and permeabilized at 4ºC in 70% ethanol for 4 hr. Cells were then 

incubated with fresh acetylation solution [0.1 M triethanolamine and 0.5% (v/v) acetic 

anhydride] for 30 min at room temperature, rinsed twice in Tris-buffered saline (TBS) 

and pre-hybridized in the absence of the LNA probe in hybridization buffer [50% 

formamide, 5 x SSC, 5 x Denhardt’s solution, 250 µg/ml yeast tRNA, 500 µg/ml salmon 

sperm DNA, 2% (w/v) blocking reagent, 0.1%CHAPs, 0.5% Tween) for 2 h at  56ºC. The 

hybridization step was carried out overnight at the same temperature, using the double 

DIG-labelled(5’, 3’- digoxigenin-labelled) LNA probes for miR-139-5p  and a scrambled 

probe as a negative control. Three stringency washes were also performed at 56ºC to 
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completely remove the non-hybridized probe. Endogenous peroxidase activity was 

inactivated by incubation in 3% hydrogen peroxide in TBS with 0.1%Tween-20 (TBS-T) 

for 30 min, followed by three washes with TBS-T. The slides were then placed in 

blocking solution (TBS-T, 10% heat-inactivated goat serum, 0.5%blocking agent) for 1 h 

at room temperature and incubated for the same period of time with an anti-DIG antibody 

(Roche, Amadora, Portugal) conjugated with the hydrogen peroxidase. To amplify the 

antibody signal, slides were further incubated with a TSA plus Cy3 (PerkinElmer, 

Waltham, MA) solution for 10 min in the dark, in accordance with the manufacturer’s 

protocol. The cells were finally stained with the fluorescent DNA-binding dye Hoechst 

33342 (Invitrogen Life Technologies, Paisley, UK) (1 µg/ml) for 5 min in the dark, 

washed with cold PBS, and mounted in Mowiol (Fluka; Sigma). Confocal images were 

acquired in a point scanning confocal microscope Zeiss LSM 510 Meta (Zeiss, Göttingen, 

Germany), with a 60 x oil objective. Digital images were acquired using the LSM 510 

META software. All instrumental parameters pertaining to fluorescence detection and 

image analyses were held constant to allow sample comparison.  

 

Immunocytochemistry 

Immunocytochemistry experiments were performed in transduced Hs766T cells, 

according to established protocols. Briefly, following 24 h of incubation after seeding, 

cells were washed twice with PBS and fixed with 4% paraformaldehyde in PBS for 20 

min at room temperature. The cells were then permeabilized for 5 min with 0.2% Triton 

X- 100 and non-specific binding epitopes were blocked by incubating the cells for 30 min 

with a 5% BSA solution prepared in PBS. Cells were incubated overnight at 4ºC with a 

rabbit monoclonal primary antibody against the CXCR4 protein (BioLegend, San Diego, 

CA, USA)(1: 100) and α-tubulin (1: 100), prepared in PBS containing 1% BSA. 

Following two washing steps with PBS, cells were incubated for 2 h at room temperature 

with the respective secondary antibody (anti-rabbit Alexa Fluor-594conjugate; Molecular 

Probes, Leiden, the Netherlands) diluted 1:500 in PBS containing 1% BSA. Finally, all 

coverslips containing the samples were rinsed twice in PBS and incubated in the dark 

with DAPI (1 µg/ml) for 5 min, before being mounted on glass slides using Moviol 

(Sigma). The samples were then observed by epifluorescence microscopy under a Zeiss 

Axiovert microscope, equipped with a 20 x objective and the rhodamine, DAPIand FITC 

filters. Representative images were taken for each condition, using the same exposure 
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time for each filter, to allow comparison of fluorescence intensity between different fields 

and conditions. 

 

Invasion and migration assays 

Invasion assays were performed using modified Boyden chambers filled with 

Matrigel (BioCoat, BD Biosciences, Heidelberg, Germany). Cells were starved during 6 h 

in DMEM medium without serum, and then added to the Matrigel-coated inserts. Seven-

hundred and fifty microliters of serum-free DMEM medium, DMEM supplemented with 

20% of bovine serum or DMEM with 300ng/ml of recombinant SDF1-α were added to 

the lower chamber, followed by incubation for 24 h at 37ºC. Invading cells were washed 

with PBS containing 1 mM CaCl2 and 0.5 mM MgCl2,fixed in 4% PFA, stained with 

DAPI and then analyzed by confocal microscopy. The ratio of the number of cells in the 

lower chamber to that of seeded cells was calculated using Imaris Software for 3D and 

4D Imaging. 

 

Cell viability assays 

Cell viability and proliferation were evaluated by a modified Alamar Blue assay, 

under different experimental conditions.
281

 This assay measures the redox capacity of 

tumoral cells and allows the determination of cell viability without cells detachment. To 

evaluate the effect of the combined strategies involving miR-139-5p ectopic expression in 

combination with chemotherapeutic drugs, Hs766T transduced cells were seeded onto 48-

well culture plates followed by incubation for 24 h at 37ºC. Cells were then treated with 

different amounts of drugs for a period of 24 h and cell viability was then measured. 

Briefly, 300 µl of DMEM-HG medium containing 10% (v/v) Alamar Blue dye (prepared 

from a 0.1 mg/ml stock solution of Alamar Blue) were added to each well and cells were  

incubated  at 37º C for 1 h in a 5% CO2 humidified atmosphere. One-hundred fifty 

microliters of supernatant were collected from each well, transferred to 96-well plates and 

absorbance was measured at 570 and 600 nm in a SPECTRAmax PLUS384 

spectrophotometer (Molecular Devices, Union City, CA). Cell viability (as a percentage 

of untreated control cells) was calculated according to the equation (A570-A600) of treated 

cells x 100/(A570-A600) of control cells. 
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Statistical Analysis 

Data are presented as the mean ± standard deviation (SD). The data were analyzed 

using the Graph Path Prism (version 5.0) software (La Jolla, USA). Statistical analyses 

were done by analysis of variance (ANOVA) using Dunnett’s Multiple Comparison test 

or Student’s t test. P value <0.05 was considered statistically significant. P< 0.05 (*), P < 

0.01 (**) and P < 0.001 (***). 
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3. Results and Discussion 
 

3.1. MiR-139-5p is downregulated in pancreatic tumor cell lines and in 

primary pancreatic derived-cancer cells.  

An abnormal microRNA expression profile is a hallmark of cancer, contributing to 

the dysregulation of crucial signaling pathways that support normal cell functioning. 

MiR-139-5p was reported to be down-regulated in patient’s pancreatic tumor samples,
315

  

suggesting its involvement in the development and progression of this type of cancer. We 

assessed and compared miR-139-5p expression levels in Hs766T cells and 354 primary 

PC cells, which were compared with those in normal pancreatic epithelial cells. 

Moreover, we evaluated the expression levels of the predicted miR-139-5p target, 

CXCR4. 

 

 

 

Figure 17 - MicroRNA-139-5p and CXCR4 mRNA expression levels in pancreatic cancer cells. Cells 

were submitted to RNA extraction 48 hours after seeding and then miR-139-5p and CXCR4 expression 

levels were quantified through qRT-PCR and presented as fold increase units relative to the levels 

registered with normal pancreatic epithelium control RNA sample. Snord44 and RPL13 were used for 

microRNA and mRNA internal gene normalizers, respectively. (A) Hs766T cell line, **P<0.01, n=3. (B) 

354 primary PC cells, ***P<0.001 and *P<0.05, n=4. P corresponds to values that differ significantly from 

those obtained with normal epithelial pancreatic cells.  

 

As shown in Figure17, miR-139-5p is down-regulated by 2-fold in Hs766T cells, 

whereas in 354 primary derived-tumor cells an extensive repression of this microRNA is 

observed, as concluded by the extremely low values observed, when compared to miR-
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139-5p expression levels in normal pancreatic epithelial tissue. Moreover, CXCR4 

mRNA expression levels were found to be overexpressed both in Hs766T and in 354 

primary PC cells, by 3.5-fold and 5.2-fold, respectively, as compared to normal 

pancreatic epithelium cells. MiR-139-5p and CXCR4 mRNA were also quantified in 

Panc-1 and MiaPaCa cells and presented a similar expression profile as in Hs766T and 

354 primary PC cells (data not shown). These data indicate that there is an inverse 

correlation between miR-139-5p and CXCR4 expression levels both in pancreatic tumor 

cells lines and primary pancreatic cancer cells and corroborate previous reports
315

 stating 

that miR-139-5p was profoundly repressed in several pancreatic patient tumors and 

pancreatic cell lines. Moreover, the observed up-regulation of CXCR4 is consistent with 

previous findings of its involvement in tumor progression.
309,310,320,321

 

 

3.2. Significant and stable miR-139-5p expression was established in 

pancreatic cancer cell lines and in a primary pancreatic tumor cell 

culture. 

To characterize the functional role of miR-139-5p in human pancreatic cancer, we 

developed a lentivirus based-system to constitutively express this repressed microRNA in 

the metastatic pancreatic cancer cell line, Hs766T, and in the 354 primary derived-tumor 

cells and evaluated the miR-139-5p and CXCR4 mRNA levels in both pancreatic cancer 

models, which were compared with those non-transduced cells, as illustrated in Figure 18. 
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Figure 18- MicroRNA-139-5p and CXCR4 expression in Hs766T cells and 354 pancreatic derived-

tumor cells following transduction with lentiviral vectors: Cells were transduced with a lentivirus vector 

coding for eGFP and miR-139-5p and with a lentivirus vector coding for eGFP alone (empty vector) as a 

control. A two weeks period of incubation was considered for a stable and constitutively expression of both 

miR-139-5p and control eGFP. RNA isolation and FISH staining were performed 48h after cells were 

seeded. Results are presented as fold increase units relative to the levels registered with pancreatic tumor 

cells transduced with control lentivirus vector.(A) MiR-139 quantification through qRT-PCR.Snord44 

snRNA was used as reference.***P<0.001 when compared with control transduced cells, n=4 (B) FISH 
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staining in Hs766T transduced cells. Cells were subjected to miR-139-5plabeling with a specific LNA 

probes (red dots), as described in Material and Methods. Nuclear staining was accomplished using Hoescht 

33342 (1 μg/ml). Control experiments targeting the endogenous U6snRNA (positive control) and without 

LNA probe (negative control) were performed in parallel (not shown). Images were obtained by confocal 

microscopy with a 40×EC Plan-Neofluar. Scale corresponds to 20 µm. (C) CXCR4 mRNA quantification in 

Hs766T and 354 primary PC cells through qRT-PCR. RPL13 mRNA was used as reference, n=4.  

 

As demonstrated in Figure 18 A, a significant increase in miR-139-5p expression 

levels was observed after lentiviral transduction, (628-fold increase in Hs766T cells and 

1313-fold increase in 354 primary PC cells) when compared to tumoral cells infected 

with a lentivirus coding for eGFP alone. Moreover, images obtained from in situ 

hybridization experiments, show an efficient miR-139-5p overexpression in Hs766T cells 

transduced with a lentivirus vector coding for eGFP and miR-139-5p, when compared 

with cells transduced with a lentivirus vector coding for eGFP alone (control), as reflected 

by the presence of a substantial amount of miR-139-5p staining (red dots) in the cell 

cytoplasm (Figure 18 B). These data show that two stable pancreatic cancer in vitro 

models were established with a consistent and effective overexpression of miR-139-5p.   

Following the demonstration of the stable expression of miR-139-5p both in Hs766T 

and 354 primary PC cells, we evaluated the effect of this tumor suppressor microRNA on 

the expression of its predicted target, CXCR4. For this purpose, CXCR4 messenger RNA 

(mRNA) levels were quantified by qRT-PCR in transduced cells 48h after seeding. Our 

results show that, despite successful miR-139-5p stable overexpression (Figure 18 A and 

B), no decrease of the CXCR4 mRNA levels was observed (Figure 18 C).  
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3.3. Total CXCR4 protein in metastatic pancreatic cancer cells was 

significantly reduced by ectopic miR-139-5p overexpression. 

 

 

 

Figure 19 – Expression levels of CXCR4 after miR-139-5p ectopic expression in pancreatic cancer 

cells. Protein was extracted from transducedHs766T and 354 primary PC cells, 72 hours after seeding. A 

monoclonal antibody against CXCR4 protein was used for CXCR4 detection and an anti-α-tubulin 

monoclonal antibody was used as control.Results are presented as target protein-expression levels relative 

to control, corrected for individual α-tubulin signal intensity. (A) Representative gel showing CXCR4 

protein levels in Hs766T transduced cells. (B) Quantification of CXCR4 bands observed in (A). 

***p<0.001correspond to values that differ significantly from those obtained with control transduced cells, 

n=3. (C) Representative gel showing CXCR4 protein levels in 354 primary PC transduced cells. (D) 

Quantification of CXCR4 bands observed in(C), n=4. 

 

Although no significant changes in CXCR4 mRNA levels were observed, Western 

blot analysis of protein levels shows that after cell ectopic expression of miR-139-5p, an 

approximately 48% reduction in CXCR4 protein levels in Hs766T cells was obtained 

(Figure 19 A and B). The fact that no alterations on CXCR4mRNA levels were observed 
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in Hs766T cells, despite protein levels were affected, leads us to hypothesize that the 

translational repression of CXCR4 mRNA may have occurred through miRNA-mediated 

gene silencing involving mRNA sequestration in P-bodies where they are shielded from 

the translation machinery, rather than through mRNA degradation by mRNA decay 

machinery in these cells.
126

 On the other hand, no significant changes in CXCR4 protein 

levels were detected in 354 primary PC cells, as shown in Figure 19 C and D, suggesting 

that CXCR4 may not be a preferential target of miR-139-5p in these cells. 

 

3.4. Cell surface CXCR4 expression is strongly reduced upon miR-139-

5p overexpression. 

The functional role of CXCR4 strongly depends on its cellular localization and the 

surface expression of this receptor is crucial to allow binding to its specific ligand stromal 

cell-derived factor-1α (SDF-1α). Therefore, we investigated whether the expression of 

CXCR4 at the surface of PDAC cells could be affected by the ectopic expression of miR-

139-5p. Similarly to other chemokine receptors, CXCR4 can exhibit different cellular 

localizations due to intracellular trafficking, as CXCR4 may cycle between the cell 

surface and endocytic compartments, upon spontaneous or ligand-dependent 

internalization.
322

 Moreover, an intracellular pool of CXCR4 that integrates a recycling 

mechanism, allowing a rapid response to SDF1-α, may be responsible for a fine-tuning 

mechanism of control for its membranarlevels.
322,323

 Importantly, CXCR4 presented at the 

cell surface and in the intracellular pool, account for the total content of this chemokine 

receptor in the cell. However, only cell surface localization of CXCR4 allows direct 

interaction and binding to the SDF1-α, thus promoting the activation of CXCR4 

signalling cascade, which ultimately induces cell proliferation, migration, survival, 

among other biological events.
324

 Therefore, we determine the surface expression of 

CXCR4 in Hs766T cells and in 354 primary PC cells, with and without miR-139-5p 

ectopic expression, by FACS analysis (Figure 20). 
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Figure 20 – Cell surface expression of CXCR4, after miR-139-5p ectopic expression in pancreatic 

cancer cells. Cells were seeded and incubated for a period of 72 hr. Subsequently, cells werewashed with a 

phosphate-buffered saline solution harvested. A single cell suspension was prepared in FACS buffer (PBS 

with 3% flebogamma) and subsequently incubated with an antibody against human CXCR4, stained with 

12G5 APC, and a mouse APC isotype as control, prior flow cytometry analysis.Viable cells were gated 

based on morphologic features, including cell volume (given by the forward scatter, FSC) and cell 

complexity (given by the side scatter, SSC).Mean fluorescence values (geometric mean) are indicated for 

each plot. (A) Fluorescent intensity plots of Hs766T cells transduced without and with miR-139-5p. (B) 

Quantification of CXCR4 fluorescent intensity plots presented in (A). ** p<0.01correspond to values that 

differ significantly from those obtained with control transduced cells, n=4. (C) Fluorescent intensity plots of 

354 primary PC transduced cells without and with miR-139-5p. (D) Quantification of CXCR4 fluorescent 

intensity plots presented in (C). 
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As observed in Figure 20, an overall 33.4% decrease in the CXCR4 surface 

expression in Hs766T cells overexpressing miR-139-5p was obtained (Figure 20 A and 

B). In contrast, in 354 primary pancreatic tumoral cells no significant change in the 

surface expression of CXCR4 was detected (Figure 20C and D), which is consistent with 

the results obtained from Western blot analysis. Taken together, data from the previous 

experiments with 354 PC cells indicate that miR-139-5p might be exerting its tumor 

suppressive role in other molecular targets than CXCR4. 

 

3.5. MiR-139-5p affects sphere formation capacity of pancreatic cancer 

cells. 

Since this chemokine receptor was identified as a molecular modulator of the tumor 

microenvironment, angiogenesis and, most importantly, cancer stem cells (CSCs) 

niche,
313

 we assessed the role of miR-139-5p–CXCR4 axis in stemness features after 

restoring miR-139-5p expression. Cancer stem cells (CSCs) are a subpopulation of tumor 

cells that exhibit the ability to self-renew, to differentiate into the heterogeneous lineages 

of cancer cells and to fuel tumor growth.
325

 Furthermore, CSCs display strong resistance 

to chemotherapeutic agents, being implicated in tumor relapses and metastatic spread.
326

 

Several studies have reported the presence of a subpopulation exhibiting chemoresistance 

and CSCs characteristics and CXCR4 was shown to have a pivotal role in cell-stemness 

maintenance.
214,327,328

 Therefore, this subpopulation with CSCs properties might be a 

potential target to overcome tumor growth and chemoresistance. In this context, we 

investigated the tumor suppressor role of miR-139-5p in the ability of Hs766T and 354 

primary PC cells to form spheres, consequently promoting clonogenic tumor growth. 
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Figure 21 – Quantification and measurement of pancreatic tumorspheres. Cells were seeded in non-

adherent flash and incubated in DMEM:F12 supplemented with B-27 and bFGF for 7 days at 37ºC. After 

incubation, medium containing spheres was dilute in CASYTON buffer and proceeded to sphere counting 

and measurement with Innovatis CASY Cell Counter.  The solid, circular formations represent pancreatic 
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tumorspheres. Results were normalized and presented as percentage values.Scale bars indicate 100 µm (A) 

Pancreatic tumorspheres from Hs766T cells transduced with a control vector and (B) with miR-139-5p 

expression vector. (C) Quantification of Hs766T tumorspheres. *p<0.05; **p<0.01 corresponds to values 

that differ significantly from those obtained with control transduced cells. n=3. (D) Pancreatic tumorspheres 

from 354 primary PC cells transduced with a control vector and (E) with the miR-139-5p expression vector. 

(F) Quantification of 354 primary PC tumorspheres.*p<0.05; ***p<0.001 correspond to values that differ 

significantly from those obtained with control cells, n=3. 

 

As illustrated in Figure 21 (panels A, B and C) transduction of miR-139-5p in 

Hs766T cells was determinant in decreasing clonogenic spheres in number and size. As 

observed, the number of pancreatic tumorspheres, ranging from 40µm to 80 µm, 

diminished by approximately 22% upon transduction with miR-139-5p, when compared 

with control cells, whereas the median size tumorspheres (80-120 µm) did not show a 

significant reduction in number, a decrease of 11.8% being observed when compared with 

control tumorspheres with the same size. However, a trend of miR-139-5p to promote a 

decrease in the number of pancreatic tumorspheres larger than 120 µm was observed, as a 

substantial reduction was obtained for Hs766T tumorspheres expressing miR-139-5p, 

nearly 67%, when compared to control cells. This data indicate that the tumor suppressor 

action of miR-139-5pconditioned the formation of spheres with larger numbers of cells, 

leading to less potential clonogenic spheres.  Sphere-forming capability of 354 primary 

pancreatic tumoral cells, transduced with control and miR-139-5p vectors, was also 

evaluated. As illustrated in Figure 21 (panels D, E and F), a more consistent role of miR-

139-5p was noticed in terms of reducing the number of tumorspheres in all evaluated 

sizes, since it was obtained a 36.3% reduction for tumorspheres with 40-80µm, a 30.4% 

decrease for tumorspheres with 80-120 µm and a 34.8% decrease for tumorspheres larger 

than 120 µm, when compared to control tumorspheres with the same sizes.   

 

3.6. Cells ectopically expressing miR-139-5p do not exhibit prominent 

formation of filopodia or polarized morphology 

CXCR4 is a chemotaxis mediator after binding to SDF1-α, triggering a cellular 

signaling cascade that ultimately results in cell motility.
329

 This led us to address the role 

of miR-139-5p in the regulation of CXCR4-dependent motility. Several reports indicate 

cell polarization and filopodia formation as requirements for chemokine-mediated-

directed migration.
330–332

 Leucocyte chemotaxis studies have described cell polarization 
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as a biological process that results from a bipolar asymmetric shape mediated by the 

recruitment of surface receptors, signaling complexes, and cellular organelles to discrete 

areas of the plasma membrane, thus leading to cytoskeleton rearrangement.
333

 Moreover, 

cancer cells also have the capacity to form filopodia and endorse cytoskeletal 

rearrangements in order to promote cell motility.
334,335

 Immunostaining was performed in 

Hs766T cells to further clarify the cellular localization of CXCR4 and evaluate miR-139-

5p contribution to the cellular motility through the observations of morphological 

features. 

 

 

Figure 22 – Immunocytochemistry analysis of CXCR4 in Hs766T cells with and without miR-139-5p 

ectopic expression.  Cells were incubated for 72h before fixation in 4% PFA and permeabilized with 0.2% 

Triton X- 100. Immunostaining was performed with a primary monoclonal antibody against human 

CXCR4, followed by labeling with an Alexa-fluor 594-conjugated anti-rabbit Ig antibody. The cells were 

then stained with Hoechst and analyzed by confocal microscopy. Green fluorescence corresponds to eGFP 

reporter gene ectopic expression. Scale bars indicate 20 µm. (A) Hs766T control cells transduced with a 

lenviral vector coding only for eGFP reporter gene and (B) with a lenviral vector coding for eGFP reporter 

gene and miR-139-5p.Confocal images are representative of three independent experiments. 

As illustrated in Figure 22, in control experiments (cells transduced only with eGFP), 

a greater number of cells displaying a polarized and elongated morphology with a 

prominent filopodia formation was observed, which was further attested by an apical 

intense red fluorescence (white arrows), corresponding to the direction of the cell motility 

(Figure 22 A). In contrast, in Hs766T cells co-expressing miR-139-5p and eGFP, as a 

reporter gene, fewer cells exhibit a marked CXCR4 surface expression (Figure 22 B). In 

fact, only the cells that were not successfully transduced with the developed lentiviral 

system for miR-139-5p expression (represented by the lack of eGFP green fluorescence) 

A. 

B. 
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show a CXCR4 polarized immunostaining (white arrows). These findings indicate that 

miR-139-5p ectopic expression acts as an inhibitor of CXCR4-mediated cell-motility. 

 

3.7. MiR-139-5p impairs CXCR4-dependent and non-dependent 

migration in Hs766T cells.  

Wehler T. et al evaluated CXCR4 expression in 103 patients with pancreatic cancer 

and established a correlation with progression of human pancreatic cancer. These authors 

reported variable intensities of CXCR4 expression among patient samples, as well as in 

vitro cell lines, but robust CXCR4 expression was strongly associated with advanced 

stages of the disease and a trend to metastasis formation.
312

 Correlation of CXCR4 

expression with cancer dissemination and metastasis formation has also been reported in 

other studies.
209,336–338

 Furthermore, SDF1-α, also known as CXCL12, the specific ligand 

for CXCR4, was found to play a pivotal role in pancreatic cancer progression,
339

 being 

reported to stimulate cell proliferation in CXCR4-positive pancreatic cancer cell lines. 

Additionally, the SDF1-α/CXCR4 axis was shown to be the responsible for inducing cell 

motility, invasion, survival and proliferation in Hs766T cells.
210

 Therefore, we 

investigated the role of miR-139-5p in SDF1-α/CXCR4-mediated migration in this cell 

line. For this purpose, serum starved Hs766T cells were submitted to matrigel invasion 

experimental conditions in the presence of fetal bovine serum (20%), to stimulate 

CXCR4-non-dependent migration, and SDF1-α (300 ng/ml)to evaluate chemotaxis-

induced migration.  

 

 

 

1) 

2) 

3) 

Control miR-139-5p A. 
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Figure 23 – Migration and chemotaxis of transduced Hs766T cells. Panel A: Representative 3D images 

of the number of migrating cells as displayed in Matrigel-coated inserts. Cells were serum starved for 6 

hours prior being seeded into Matrigel-coated inserts and incubated for 24 h (A1) on the absence of FBS, 

(A2) 20% FBS or (A3) 300 ng/ml of recombinant SDF1-α.Cells were then washed with modified phosphate 

buffered saline solution, fixed with 4% of PFA, and nucleus was stained with DAPI. Migration capacity of 

the cells was assessed by confocal microscopy. Panel B: Quantification of migrating cells in all 

experimental conditions from a representative experiment. *p<0.05 correspond to values that differ 

significantly from those obtained with control cells, n=2. 

 

As shown in Figure 23, upon stimulation with 20% of serum (CXCR4 non-dependent 

migration), cells expressing low levels of miR-139-5p (control) tend to migrate in a 

greater number (25% of migrating cells), than cells ectopically expressing miR-139-5p 

(7% of migrating cells).  When control cells were stimulated with the CXCR4 specific 

ligand, SDF1-α, they showed to be more prone to respond to SDF1-α stimulus (17.7% of 

migrating cells), than miR-139-5p expressing cells (3.5% of migrating cells). Indeed, the 

migration values observed for Hs766T miR-139-5p expressing cells when stimulated with 

SDF1-α, were similar to those obtained for cells exposed exclusively to serum-free 

medium (3.6% migrating cells) or to control cells exposed to the same conditions (3.0% 

of migrating cell). Therefore, we can conclude that miR-139-5p expression significantly 

affects CXCR4-dependent and non-dependent migration in pancreatic cancer cells.  

Regarding the CXCR4 non-dependent migration, it was reported that miR-139-5p 

presents a functional role in cancer cell motility and invasion, inhibiting these cellular 
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events through the disruption of the TGF-β, Wnt7/TCF-4, ROCK2 and MAPK/PI3K 

signaling cascades, both in breast cancer and hepatocellular carcinoma.
207,340,341

 These 

data point out the possible role of miR-139-5p in a more widespread control towards the 

maintenance of normal cellular phenotype. 

 

3.8. MiR-139-5p sensitizes pancreatic cancer cells to the action of 

chemotherapeutic agents.  

Despite the many efforts toward the discovery of new or improved antitumor agents 

for the treatment of pancreatic cancer, few cases of success have been reported, and 

gemcitabine is still the golden standard treatment for the vast majority of unresectable 

pancreatic tumors.
41

 

As we have previously shown,
231

 sunitinib has proven to exert a synergistic effect 

when in combination with a non-viral strategy to inhibit miR-21 expression levels in 

pancreatic cancer cells. In addition, docetaxel is also used to treat pancreatic cancer.
44

 

Therefore, we evaluated the potential of a combined treatment involving the use of small 

amounts of these chemotherapeutic drugs (sunitinib, docetaxel or gemcitabine), in 

association with the overexpression of the tumor suppressor miR-139-5p in Hs766T cells. 
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Figure 24 - Viability assessment of control and miR-139-5p transduced Hs766T cells. Twenty-four 

hours after seeding, control and miR-139-5p transduced Hs766T cells were treated for 24 h with and 

without several concentrations of chemotherapeutic drugs. Cell viability was evaluated by the Alamar Blue 

assay (as described in the Materials and Methods section). (A) Cells treated with and without1 µM and 5 

µM of gemcitabine, n=3. (B) Cells treated with and without 5 and 7.5 µM of sunitinib. 

***p<0.001correspond to values that differ significantly from those obtained with control cells, n=4. (C) 

Cells treated with and without 1 µM of docetaxel. ***p<0.001correspond to values that differ significantly 

from those obtained with control cells, n=4.  

 

Hs766T pancreatic tumoral cells transduced either with the control vector or with 

the vector coding for miR-139-5p were treated with three different chemotherapeutic 

drugs, gemcitabine, sunitinib and docetaxel, in order to evaluate the influence of miR-

139-5p overexpression on the sensitization of tumor cells to the action of these 
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chemotherapeutic agents.  As illustrated in Figure 24, overexpression of miR-139-5p was 

able to reduce cell viability approximately 10%. When miR-139-5p overexpression was 

combined with gemcitabine, no further antitumor effect on Hs766T cells was observed at 

the tested concentrations. On the other hand, treatment with sunitinib at 5 µM and 7.5 µM 

resulted in a decrease in cell viability by 23% and 31%, respectively. However, when 

cells overexpressing miR-139-5p were treated with the same drug concentration, a 

stronger reduction in cell viability was observed, approximately 39% and 46% for 5 µM 

and 7.5 µM, respectively, being achieved a synergistic antitumor effect. Experimental 

conditions with docetaxel revealed an even greater antitumor synergistic effect, as cells 

overexpressing miR-139-5p, treated with 1 µM docetaxel, presented a significant 

reduction in viability, nearly 55%, when compared with drug treatment alone in control 

cells (37%), as illustrated in Figure 24 C.  

Hence, the reestablishment of normal levels of miR-139-5p in PDAC cells along with 

treatment with small doses of sunitinib or docetaxel may hold great promise for future 

therapeutic application in this highly tumorigenic cancer.  
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4. Conclusion 

 
Overall, our results clearly demonstrate that miR-139-5p has a pivotal role in 

mediating CXCR4 post-transcriptional regulation in PDAC, as both total and cell surface 

CXCR4 levels were successfully reduced upon up-regulation of miR-139-5p expression 

levels. Moreover, miR-139-5p was able to regulate the capability of Hs766T and 354 

pancreatic tumoral cells to form tumorspheres, as concluded from the fewer and smaller 

spheres found after miR-139-5p overexpression, resulting in a diminished clonogenic 

potential. Additionally, PDAC cells expressing miR-139-5p do not exhibit perceptible 

morphological features of migrating cells, which was reinforced by the results obtained 

for the ability of these cells to invade adjacent areas, as fewer cells migrated in a 

dependent and non-dependent CXCR4 manner. Our findings also showed evidences of a 

therapeutic potential of miR-139-5p, as the restoration of the levels of this microRNA in 

combination with sunitinib or docetaxel induced a synergistic antitumor effect in PDAC 

cells. 

Overall, our findings suggest that a new antitumor therapeutic strategy encompassing 

the modulation of miR-139-5p levels and the concomitant treatment with small doses of 

chemotherapeutic agents could hold great promise for metastasis treatments in pancreatic 

cancer, also reducing the aggressive side effect of the current chemotherapy. In 

conclusion, miR-139-5p was demonstrated to be a potential regulator of CXCR4-

mediated metastasis and a potential tumor suppressor agent for the treatment of some 

subtypes of metastatic PDCA.  
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Chapter 5 

 

 

 

Concluding remarks and future 

perspectives 
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1. Concluding remarks and future perspectives 

 

Although microRNAs are responsible for the fine-tuning of molecular mechanisms 

supporting oncogenic features of tumor cells, their impact goes way beyond the simple 

post-transcriptional regulation of a single gene expression. A synchronized network of 

microRNAs is a powerful tool in the maintenance of a normal cellular phenotype; 

nevertheless disruption of this fragile balance can lead to a disturbing outcome, as it is 

cancer. Currently, gene therapy brings new hope into cancer therapeutics, as many 

innovative and promising gene delivery strategies have been design towards this goal, 

thus renewing the optimism lost in previous unsuccessful attempts. Cancer is a deadly and 

devastating disease in every aspect for patients who suffer from this malignancy. 

 Pancreatic cancer, particularly pancreatic adenocarcinoma is one of the most 

aggressive cancers, offering one of the lowest survival rate and quality of life for patients 

submitted to chemotherapeutic regiments that too often are inefficient. Therefore, in this 

work we sought to comprehend and highlight the extent of microRNAs implications in 

pancreatic tumorigenesis and how they can be addressed as potential therapeutic targets 

and incorporated in antitumoral gene therapy strategies.   

Modulation of microRNA levels comprehends two distinct aspects, depending 

whether they are overexpressed, acting as oncogenes, or downregulated, thus exhibiting a 

tumor suppressor role. Considering up-regulated microRNAs, the obvious strategy is to 

reduce their expression levels making use of antisense molecules responsible for 

inhibiting tumorigenic microRNAs, thus silencing their effect. To this purpose we 

developed a lipid-based nanosystem, HSA-EPOPC:Chol/AMOs (+/-) (4/1), which was 

capable of efficiently deliver anti-microRNA oligonucleotides (AMOs) into tumor cells 

that mediated miR-21, miR-221, miR-222 and miR-10b silencing, prompting significantly 

low expression levels. Although a strong microRNAs inhibition was accomplished, the 

biological activity resulting from this event was not consistent for all tested microRNAs. 

For example, abrogation of miR-10b expression levels, one of the most strongly inhibited 

microRNAs, could not exert any noticeable effect upon the target proteins assessed in our 

study, or a visible cytotoxic effect when in combination with drugs. Owing to this fact, 

we could consider addressing other predicted miR-10b targets, but another important 

issue is the extent in which each microRNA can be thoroughly inhibited, as it strongly 

depends on how much up-regulated this microRNA is. In our studies, we used the same 

amount of AMOs, for all microRNAs shown to be overexpressed, aiming at achieving 
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microRNA silencing, strictly as a proof-of-concept. Nevertheless, further investigation 

needs to be performed in order to reach the required optimal dose of AMOs for each 

different microRNA, aiming at achieving the intended biological effect. Importantly, we 

have demonstrated that our lipid-based nanosytem, HSA-EPOPC:Chol/AMOs (+/-) (4/1), 

stands as a promising tool to mediate intracellular delivery of therapeutic oligonucleotides 

in cancer targeted-therapies, displaying high efficiency in microRNA modulation. The 

therapeutic value of microRNA silencing alone might not result in a sufficient antitumor 

impact in cancer cells, nevertheless, as we demonstrated, they can substantially sensitize 

tumor cells to the action of chemotherapeutic drugs. This was one of the most important 

achievements of our work, since we strongly believe that the developed antitumor 

strategy, consisting of microRNA inhibition in combination with treatment with small 

doses of sunitinib, holds great potential as a therapeutic strategy against PDAC, mainly 

due to the significant synergistic antitumor effect and possible fewer side-effects.    

Regarding microRNAs that are progressively repressed in a tumor phenotype 

context, one of the possible approaches is to consider an ectopic induction of the 

expression of these microRNAs. Many microRNA profiling studies indicated miR-139-5p 

is a strongly downregulated microRNA in PDAC, and in silico prediction pointed 

CXCR4 as a potential target. This chemokine receptor has been described as steadily 

related to metastatic potential in pancreatic cancer cells and as a CSC marker. Currently, 

research and clinical treatment in the cancer field are progressively focused in managing 

this disease as a chronic condition rather than searching for a full cure that may reveal to 

be a utopic issue in a short-term context. Considering that pancreatic adenocarcinoma 

displays early and hostile metastization events, assessing the mechanisms backing this 

aggressive feature may hold great hope for successful achievement of this objective.  

The results obtained in this work elucidate the molecular relevance of miR-139-5p-

CXCR4 axis in the metastasis process in PDAC. This microRNA showed to play a crucial 

role in inhibiting CXCR4 expression in pancreatic tumor cells, adding to the negative 

regulation of invasion and clonogenic properties of these cells. Indeed, PDAC cells 

ectopically expressing miR-139-5p demonstrated a significant decrease in CXCR4 levels, 

thus validating this chemokine receptor as a direct target of this microRNA in pancreatic 

cancer. These findings were followed by a diminished capacity of tumor cells to invade 

adjacent matrix, and to form fewer and smaller clonogenic pancreatic tumorspheres, as it 

was verified in vitro studies. Moreover, migration inhibition properties of miR-139-5p are 

very clear when cells were submitted to a gradient of enriched serum medium, as miR-
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139-5p expressing cells were able to invade adjacent matrix in a significantly lower 

number than control cells.  Additionally, when miR-139-5p expressing cells were 

exposed to SDF1- α gradient, the specific ligand of CXCR4, an even more significant 

inhibition effect was attained, as only basal migration values were registered for these 

cells. This data suggest that this microRNA can exert a remarkable effect in PDAC 

metastatic cells not only in a CXCR4 dependent manner, but also by possibly mediating 

this effect through other molecular effectors that were not addressed in our work. 

Therefore, it is of vital importance to devote thoroughly to investigation of other signaling 

pathways involved in invasiveness, proliferation and stemness in future work, namely the 

TGF-β, Wnt7/TCF-4, MAPK/PI3K, Hedgehog or Notch signaling pathways. In 

accordance with the concept that microRNAs represent a fine-tuning of molecular 

mechanisms, miR-139-5p did not exert a strong cell death effect by itself. Nevertheless, 

when cells expressing this microRNA were subsequently treated with sunitinib or 

docetaxel an evident synergistic antitumor effect was obtain. 

Overall, the in vitro experiments involving microRNA modulation in combination 

with chemotherapeutic drugs brought us further insight into innovative therapeutic 

strategies. It would also be interesting to consider a gene therapy strategy targeting a 

specific microRNA network, aiming at achieving a synergistic effect, through the 

simultaneous silencing and/or ectopic expression of several microRNAs aberrantly 

expressed.   Furthermore, emerging chemotherapeutic treatments for metastatic pancreatic 

cancer, such as FOLFIRINOX, could be a valuable option to incorporate into a concerted 

antitumoral therapeutic strategy with microRNA modulation.  Combination of the 

previously described gene therapy approach with small doses of the drugs that compose 

the FOLFIRINOX regiment, which displays high toxicity amongst patients, could hold 

great promising results, as a high antitumor activity together with a substantial reduction 

in side effects could be achieved, resulting in a benefit for the overall patient health.  

Future work involving in vivo experiments to further validate our previous findings 

would be of utmost importance. Therefore, we consider that is fundamental to evaluate 

our concerted therapeutic strategy in two distinct animal models of pancreatic cancer, 

namely orthotopic and intraspleenic tumor cells injection models.  Validating microRNA 

modulation in combination with drugs could be assessed in an orthotopic animal model of 

PDAC, where mice bearing microRNA ectopically expressing PDAC cells or tumoral 

cells locally transfected with the HSA-EPOPC:Chol/AMOs (+/-) (4/1)nanosystem, would 

be subsequently treated with small doses of sunitinib or docetaxel.  Tumor size and 



135 

 

overall mice survival would be strong and reliable indicators of the therapeutic relevance 

of our concerted antitumor strategy for clinical applicability. Regarding metastasis 

molecular mechanisms relying on miR-139-5p, intrasplenic injection of tumor cells 

would better mimetize the metastasis formation, as tumor cells would be systemically 

circulating in the organism. SDF-1α expressing tissues, such as liver or limph nodes 

constitute the preferential target niches for circulating metastatic tumor cells. Thus, 

assessing the formation of micrometastasis in these tissues, derived from cells ectopically 

expressing miR-139-5p or control cells, and overall survival would give us a 

comprehensive perspective of how valuable this microRNA can be to integrate new 

therapeutic strategies for metastatic pancreatic cancer.  

Overall, our study revealed that microRNA modulation in combination with small 

doses of chemotherapeutic agents can be considered an appropriate approach for cancer 

treatment, particularly for pancreatic adenocarcinoma.  Moreover, we perspective that 

future biomedical therapeutics will progressively consist of integrated multidisciplinary 

approaches, reflecting the myriad aspects of oncogenesis, in order to achieve high 

antitumor activity and reduced side effects.  
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