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“I can foretell the way of celestial bodies, 

but can say nothing of the movement of a small drop of water” 

- Galileo Galilei 
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ABSTRACT 

 

The characterization of rainfall is of fundamental importance to many fields in hydrology, and 

engineering applications, such as modelling of runoff, soil erosion, and climate, calibrating 

remote sensing data, designing rainwater harvesting systems, among others. The work 

presented in this thesis focuses on some aspects related to rainfall. Special attention is 

dedicated to measuring and charactering the rainfall variability, both within individual rain 

events and historical time series. Characterizing the raindrop properties (sizes and fall speeds) 

is also an emphasis in this research study, which is particularly important for water erosion 

studies, whether under natural or laboratory conditions.  

 

The first part of the thesis focuses on natural rainfall. The data sets used comprise: (i) annual 

and monthly time series dating from the 19
th

 century, obtained from meteorological stations 

scattered over Portugal; (ii) three-year rainfall measurements obtained on an outdoor 

experimental site set up at Coimbra, using different types of rain gauges, including a laser 

disdrometer which provided records with one-minute temporal resolution. The longest time 

series allowed the study of full monotonic trends and partial trends in the annual and monthly 

rainfall; whereas, the high temporal resolution series were used to characterize the rainfall 

events according to e.g. the raindrop properties. 

 

The increased variability has been reported for inter- and intra-annual rainfall, which leads to 

increased concern about water resources management and water scarcity issues. In this thesis 

when full monotonic trends were investigated in annual rainfall, there was no evidence for 

rejecting the null hypothesis of no trend. In order to deal with the non-monotonic character of 

the trends obtained, shorter periods were then analysed; the partial trends showed a sequence 

of alternately decreasing and increasing trends in annual and monthly rainfall. 

 

The high variability of rainfall is also observed in shorter time scales. Variations can occur, 

for instance, within individual rainfall events. In this thesis, this fact is considered, for 

example, in relation to the rainwater chemical composition, which can vary over relatively 
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short time periods. A rain sampler that has low manufacturing costs was developed for 

collecting sequential small volume rain samples, and this way, allowing the assessment of 

variations of rainwater composition during individual rain events.  

 

Instead of centring on the rainfall average properties over large volumes and long time 

intervals, rainfall can be modelled as a discrete process consisting of numerous individual 

raindrops that differ in size and fall speed. Relationships were estimated between these 

raindrops’ characteristics and the rain rates and kinetic energy based on the disdrometric data 

from 35 rain events. Results confirmed that, for example, power laws fitted well the 

relationship between the kinetic energy and the mass-weighted mean drop diameter, and the 

kinetic energy-rain rate relationship.  

 

The second part of this thesis focuses on rainfall simulation, which is a widely used tool that 

allows the repetition of experiments under controlled conditions and in a less time consuming 

manner. There has been a tendency to use constant intensity at the expense of considering the 

temporal variability and rainfall patterns. In this thesis, laboratory experiments were carried 

out in order to study the effects of heavy rainfall bursts within storm events on runoff and soil 

loss. Results showed that the instant at which rainfall bursts occur during long duration rain 

events has a strong influence on the discharge hydrographs and associated transport 

processes; if ignored it might cause both under and over estimation of runoff discharge and 

soil loss.  

 

Rainfall simulators were also studied in relation to the drop properties. A laboratory set-up 

that combines spray nozzle simulators and meshes was tested, suggesting that meshes can be 

used to increase the mean rainfall intensity and kinetic energy on the control plot (mainly 

through the formation of bigger drops). The exploratory experiments were then important to 

characterize simulated rainfall and promote the versatility of the nozzles by using meshes. 
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RESUMO 

 

A caracterização da precipitação assume uma importância fundamental em diversos domínios 

da hidrologia e em aplicações de engenharia, como por exemplo na modelação do 

escoamento, da erosão dos solos, e do clima, na calibração de dados de deteção remota, na 

conceção de sistemas de captação de água da chuva, entre outros. O trabalho apresentado 

nesta tese foca alguns aspetos relacionados com a precipitação, dando especial atenção à 

medição e caracterização da variabilidade da precipitação, tanto à escala do evento como em 

séries temporais históricas. A caracterização das propriedades das gotas de chuva (tamanho e 

velocidades de queda) é também destacada neste trabalho tanto sob condições naturais como 

laboratoriais, sendo particularmente importante para estudos de erosão hídrica. 

 

A primeira parte da tese foca-se na precipitação natural. O conjunto de dados usados inclui: 

(i) séries temporais anuais e mensais que datam do século XIX, obtidas por estações 

meteorológicas dispersas por Portugal; (ii) mais de 3 anos de medições obtidas numa 

instalação experimental localizada em Coimbra, usando diferentes tipos de pluviómetros, 

incluindo um distrómetro que regista dados com resolução de 1 minuto. As séries temporais 

longas permitiram o estudo de tendências monotónicas e parciais na precipitação mensal e 

anual; enquanto que os dados com elevada resolução temporal foram usadas para caracterizar 

os eventos pluviosos de acordo, por exemplo com as propriedades das gotas de chuva.  

 

O aumento da variabilidade tem sido assinalado para a precipitação inter e intra-anual, o que 

suscita uma crescente preocupação no âmbito da gestão de recursos hídricos e escassez da 

água. Nesta tese quando foram investigadas as tendências monotónicas da precipitação anual, 

não houve evidências para rejeitar a hipótese nula de ausência de tendência. Com o intuito de 

lidar com o carácter não-monotónico das tendências obtidas foram realizados testes de 

tendência para diferentes sub-períodos que indicaram alternância entre períodos de aumento e 

diminuição da precipitação anual e mensal.  
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A elevada variabilidade manifestada pela precipitação estende-se também a escalas temporais 

menores. As variações podem ocorrer, por exemplo, ao nível dos eventos pluviosos. Nesta 

tese, este facto é considerado, por exemplo, em relação à composição química da água, que 

pode variar para períodos de tempo curtos. Um amostrador com baixo custo de fabrico foi 

desenvolvido para recolher sequencialmente pequenas amostras de água da chuva e, deste 

modo, permitir estimar a variabilidade da composição da água durante os eventos pluviosos. 

 

Em alternativa a uma abordagem sobre as propriedades médias da precipitação para elevados 

volumes e longos intervalos de tempo, a precipitação pode ser modelada como um processo 

discreto, uma vez que consiste em numerosas gotas individuais que diferem no tamanho e na 

velocidade de queda. A relação entre as características das gotas, intensidade e energia 

cinética da chuva foi analisada com base em 35 eventos pluviosos registados com um 

distrómetro. Os resultados confirmaram, por exemplo, que a lei de potência ajusta-se bem à 

relação entre a energia cinética e o diâmetro médio das gotas (ponderado pela massa), e à 

relação entre energia cinética e intensidade da chuva.   

 

A segunda parte da tese foca-se na simulação de chuva em laboratório, ferramenta 

amplamente utilizada que permite a repetição das experiências sob condições controladas e 

num curto espaço de tempo. Em laboratório é frequente utilizarem-se intensidades de chuva 

constantes em detrimento da reprodução de variabilidade temporal e diferentes padrões de 

chuva. Neste trabalho realizaram-se experiências laboratoriais com a intenção de estudar os 

efeitos de picos de intensidade de eventos pluviosos no escoamento superficial e transporte 

sólido. Os resultados mostram que os instantes em que os picos de chuva ocorrem durante 

longos eventos podem ter uma grande influência nos hidrogramas e nos processos de 

transporte sólido; no caso de serem ignorados podem causar estimativas por defeito ou por 

excesso das descargas líquidas e perdas de solo. 

 

Os simuladores de chuva foram também estudados no que concerne às propriedades das 

gotas. Foi testada uma instalação experimental que combina simuladores de chuva por 

aspersão e redes; sugerindo que estas podem ser utilizadas para aumentar a intensidade e 
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energia cinética da chuva na zona de controlo (principalmente pela formação de gotas 

maiores). As experiências laboratoriais foram, portanto, importantes para caracterizar as 

chuvas simuladas e promover a versatilidade dos aspersores através do uso de redes. 
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1. INTRODUCTION 

 

1.1. Rationale and objectives 

 

During the last decades, the changes in global climate have been a major concern for the 

scientific community. Such developments will have significant impact on local, regional and 

global hydrologic regimes, which can affect the ecological, economic and social systems (e.g. 

IPCC, 2007; Zereini and Hötzl, 2008). Climate monitoring provides the scientific basis for 

reducing uncertainty, forecasting areas that are under threats of e.g. flash flooding, and 

supports decision-making in a complex and changing world. The rainfall is a main driver of 

variability on water resources, which makes it an essential variable to study.  

 

In Portugal, the spatial, seasonal and inter-annual variability of rainfall follows a complex 

pattern (e.g. Miranda et al., 2002; de Lima et al., 2007; 2010a). While some areas can have 

long periods of unusually dry conditions that reduce the availability of water resources, other 

areas can be affected by an increase in extreme rainfall events (e.g. de Lima et al., 2013a; de 

Lima et al., 2013b) with a consequent increase in flood risk (e.g. Costa et al., 2008). In this 

context, reliable estimation of rainfall is of primary importance.  

 

The densification of the national precipitation-monitoring networks has given the opportunity 

to complement studies already carried out in Portugal, in particular, for studying short-term 

rainfall variability (e.g. Brandão et al., 2001). In addition, recently techniques such as the use 

of optical disdrometers have allowed gathering more detailed information on rainfall 

characteristics that can cover an entire rainfall event, and even study the inter-event variability 

(e.g. Tokay et al., 2003; Cao et al., 2008; Frasson et al., 2011). 

 

As rain consists of a spectrum of drop sizes, a description of rainfall microstructure is needed 

to better understand the rainfall variability. In this context, different parameterizations have 
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been proposed to model discrete drop size distributions, such as the exponential distribution 

(e.g. Marshall and Palmer, 1948) the lognormal distribution (e.g. Levin, 1954), and the 

gamma distribution (e.g. Ulbrich, 1983). Nevertheless, our understanding of the raindrop size 

variation is still far from complete, and more analyses of in situ measurements under a wide 

variety of climatic regimes would be helpful.  

 

The lack of accurate data on raindrop characteristics is not only observed in relation to natural 

conditions, but also in the laboratory for simulated rainfall. Rainfall simulators are a useful 

tool in the study of geomorphological processes, and the knowledge of drop size and fall 

speed is especially important for the determination of rainfall erosion ability (e.g. Ghadiri and 

Payne, 1977; Hudson, 1995).  

 

Different types of rainfall simulators are currently in use, the two most common are the non-

pressurized and the pressurized rainfall simulators. Despite the advantages and disadvantages 

of each type, they typically display considerable differences compared with natural rainfall, 

for example, because of the difficulty in getting a large range of drop sizes, and adequate drop 

velocity at the time of incidence with the soil surface (e.g. Agassi and Bradford, 1999). 

Several research studies using nozzle spray simulators have been carried out in the Civil 

Engineering Department of the Faculty of Science and Technology of the University of 

Coimbra (e.g. de Lima and Torfs, 1993; de Lima and Singh, 2003; de Lima et al., 2003, 2008) 

always seeking for producing simulated rain of different characteristics, for different 

application purposes. 

 

The work presented in this thesis will focus on some aspects related to rainfall, from the 

measurement to the characterization of rainfall variability, both within individual rain events, 

and historical time series. It will also comprise the characterization of raindrop properties 

(sizes and fall speeds) whether under natural or simulated conditions. More specifically, the 

objectives of the thesis are: 

 

- study and compare different instruments for rainfall measurement;  
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- analyse the variability of raindrop characteristics measured at an outdoor experimental site; 

- investigate the long-term variability of annual and monthly rainfall in Portugal;  

- carry out laboratory experiments on the effects of the temporal variation of rain intensities 

on runoff and soil loss;  

- study the performance of rainfall simulators focusing on rainfall characteristics and explore 

potential improvements, particularly, in rainfall kinetic energy.  

 

1.2. Outline 

 

The thesis is structured in eleven chapters. Except for the introductory and the concluding 

chapters, each of the other seven (from Chapter 3 to 9) contain a section of literature review, 

materials and methodology, discussion of results, and a conclusion section. One can hence 

read each chapter separately.  

 

The thesis is divided into two main parts. The first part focuses on the study of natural rainfall 

including the analysis of the field measurements and the rainfall variability. The second part 

concentrates on the study of the simulated rainfall and describes the laboratory experiments 

carried out in order to analyse the simulated rain characteristics.  

 

The overview that follows briefly summarizes each chapter: 

 

1. Chapter 1 is an introductory chapter that describes the rationale and objectives of the 

research study. It also gives the structure of the document, and the publications involved 

in the achievement of the present thesis. 

 

2. Chapter 2 is the research review, introducing the reader to several basic concepts that 

support the work contained in the later chapters. This chapter covers issues on both 

natural and simulated rainfall. 
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Part I – Natural rainfall: measurements and variability 

 

3. Chapter 3 presents a comparison of rainfall data provided by different types of rain 

gauges, including four catching gauges and three non-catching gauges. The data 

comprises 60 rainy periods recorded at an outdoor experimental site, in Coimbra 

(Portugal). 

 

4. Chapter 4 describes a volume-based sequential rain sampler that allows the assessment of 

variations in the chemical composition of rainwater during individual rain events in one 

place. The performance of the apparatus is analysed for a few tests conducted under field 

conditions in Coimbra (Portugal). 

 

5. Chapter 5 presents the characterization of rainfall events recorded in Coimbra, Portugal, 

for a three-year period. Time series of raindrop diameter and fall speeds, with 1-min time 

resolution, are used. The parameterization of the drop size distribution is explored by 

fitting the gamma distribution to the empirical data. 

 

6. Chapter 6 presents the analysis of annual and monthly rainfall records from 

meteorological stations in mainland Portugal and in the Madeira and Azores 

archipelagos. The study analyses the presence of linear monotonic trends in the annual 

and monthly rainfall over the record period and over sub- periods (i.e. partial trends). 

 

Part II – Simulated rainfall: laboratory experiments 

 

7. In Chapter 7, rainfall simulator experiments are performed focusing on the importance of 

when rainfall burst occurs during storm events of equal duration and depth on runoff and 

soil loss processes.  

 

8. Chapter 8 presents the laboratory tests conducted by combining spray nozzle simulators 

with meshes in order to change simulated rainfall characteristics. Rainfall intensity, drop 

size distribution and drop fall speeds are analysed.  
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9. Chapter 9 presents the changes on the rainfall kinetic energy of spray nozzle simulators 

caused by the incorporation of a mesh underneath.  

 

10. Chapter 10 summarizes the conclusions, and presents a discussion of future research. 

 

11. Chapter 11 lists the studies consulted in the course of this research, and which are 

referred to in the thesis.  

 

12. Appendix A describes the rain gauges used for data collection including their technical 

specifications. 

 

13. Finally, Appendix B lists the measured data series recorded on the outdoor experimental 

site performed at Coimbra during this Ph.D. program. 

 

1.3. Publications 

 

Some chapters of this thesis, Chapters 4, 6, 7, 8 and 9, contain material that has been 

submitted to international journals. Some of them have been published, while others are 

currently under review. They are presented as provided to the journals, with the exception of 

some layout changes (e.g. numbering of figures and tables). Table 1 shows the references of 

the articles and the corresponding chapters of the thesis.  
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Table 1. Publications in international scientific periodicals with referees. 

Chapter Reference 

6 

de Lima, M.I.P., Carvalho, S.C.P., de Lima, J.L.M.P. 2010. Investigating annual and 

monthly trends in the precipitation structure: an overview across Portugal. Natural 

Hazards and Earth System Sciences 10, 2429–2440. 

7 

de Lima, J.L.M.P., Carvalho, S.C.P., de Lima, M.I.P. 2013. Rainfall simulator 

experiments on the importance of when rainfall burst occurs during storm events on 

runoff and soil loss. Zeitschrift für Geomorphologie 57(1), 91–109. 

4 

Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2014. Rainwater sequential 

sampler: assessing intra-event water composition variability. Journal of Engineering 

Research and Technology 1(1), 1-7. 

8 

Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2014. Using meshes to change 

the characteristics of simulated rainfall produced by spray nozzles. International Soil 

and Water Conservation Research 2 (2), pp. - (in press) 

9 

Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2014. Increasing the rainfall 

kinetic energy of spray nozzles by using meshes. Land Degradation & Development. 

(In revision: revised manuscript submitted) 

 

 

In the scientific article corresponding to the Chapter 6 the author of this thesis helped in the 

analysis of data and in the preparation of figures and tables. In the scientific article 

corresponding to the Chapter 7 the author was responsible for the execution of the laboratory 

experiments and the preparation of figures and tables. 

 

This research study also contributed to publications in proceedings (Table 2) and 

communications in scientific meetings (Table 3).  
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Table 2. Publications (papers) in proceedings of scientific meetings. 

Related 

Chapter 
References 

6 

de Lima, M.I.P., Carvalho, S.C.P., de Lima, J.L.M.P., Coelho, M.F.E.S. 2010. 

Variabilidade e tendências da precipitação anual e mensal em Portugal. 10º 

Congresso da Água, Associação Portuguesa dos Recursos Hídricos (APRH), Alvor, 

Portugal, 21-24 March, 8 p.  

6 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. Coelho, M.F.E.S. 2011. 

Comportamento da precipitação em Portugal Continental: tendências anuais e 

mensais. VII Congresso Ibérico sobre Gestão e Planeamento da Água, Fundação 

Nova Cultura da Água (FNCA), Talavera de la Reina, Toledo, Spain, 16-19 

February, 9 p. 

6 

de Lima, M. I. P., Coelho, M.F.E.S., Carvalho, S.C.P., de Lima, J.L.M.P. 2011. 

Recent variability in the temporal structure of precipitation in Portugal: an analysis 

across scales. World Environmental and Water Resources Congress 2011: Bearing 

Knowledge for Sustainability, American Society of Civil Engineers (ASCE), Palm 

Springs, California, 22-26 May, 1429-1438. 

6 

de Lima, M. I. P., Coelho, M.F.E.S., Carvalho, S.C.P., de Lima, J.L.M.P. 2011. 

Tendências recentes no regime pluviométrico em Portugal Continental. 10º 

Simpósio de Hidráulica e de Recursos Hídricos dos Países de Língua Portuguesa 

(SILUSBA), Porto de Galinhas/PE, Brazil, 26-29 September, 7 p. 

7 

de Lima, J.L.M.P., Carvalho, S.C.P., de Lima, M.I.P. 2012. Influência da intra-

variabilidade temporal da intensidade de chuvadas no escoamento superficial e 

transporte sólido: ensaios laboratoriais. 11º Congresso da Água, Associação 

Portuguesa dos Recursos Hídricos (APRH), Oporto, Portugal, 6-8 February, 9 p. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

8 

 

Table 3. Communications (abstracts) in scientific meetings. 

Related 

Chapter 
References 

Appendix 

A.1. 

de Lima, J.L.M.P., de Lima, M.I.P., Carvalho, S.C.P., Gerardo, R., Isidoro, J. 2010. 

Concepção de udómetro “low cost”. 10º Congresso da Água, Associação Portuguesa 

dos Recursos Hídricos (APRH), Alvor, Portugal, 21-24 March. 

6 

Carvalho, S.C.P., de Lima, M.I.P., Coelho, M.F.E.S. 2010. Long and short term 

precipitation trends in Portugal. 10th International Precipitation Conference, 

Coimbra, Portugal, 23-25 June, Book of Abstracts, 79-79. 

Appendix 

A.1. 

de Lima, J.L.M.P., Carvalho, S., Gerardo, R., de Lima, M.I.P., Isidoro, J.M.G.P. 2010. 

Development of a low cost rain-gauge at the University of Coimbra. 10th 

International Precipitation Conference, Coimbra, Portugal, 23-25 June, Book of 

Abstracts, 76-76. 

5 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. 2010. Fine-scale characterization 

of rainfall events in Coimbra. 10th International Precipitation Conference, Coimbra, 

Portugal, 23-25 June, Book of Abstracts, 74-75. 

6 

de Lima, M.I.P., Carvalho, S.C.P., de Lima, J.L.M.P. 2010. Trends in small-scale 

precipitation: cause for concern in small drainage basins in Portugal? 13th Biennial 

Conference Euromediterranean Network of Experimental and Representative 

Basins, Seggau Castle, Austria, 5-8 September, Book of Abstracts,167-167. 

6 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. 2010. Observed precipitation 

trends and variability in Portugal. II Seminário Ibérico - International Geosphere-

Biosphere Programme, Lisbon, Portugal, 4-5 November. 

6 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P., 2010. Tendências da 

precipitação em Portugal Continental - períodos de secas e cheias. Workshop - 

Gestão do Risco em Secas, Instituto Superior de Agronomia, Lisbon, Portugal, 11 

November. 

5 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. 2011. Caracterização de eventos 

pluviosos em Coimbra: medições com um distrómetro. VII Congresso Ibérico sobre 

Gestão e Planeamento da Água, Fundação Nova Cultura da Água (FNCA), Talavera 

de la Reina, Toledo, Spain, 16-19 February. 

Appendix 

A.1. 

de Lima, J.L.M.P., de Lima, M.I.P., Carvalho, S.C.P., Gerardo, R., Isidoro, J. 2011. 

Concepção de udómetro “low cost” RUC (Rain-gauge University of Coimbra). VII 

Congresso Ibérico sobre Gestão e Planeamento da Água, Fundação Nova Cultura 

da Água (FNCA), Talavera de la Reina, Toledo, Spain, 16-19 February. 

5 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. 2011. Drop-size distribution of 

rainfall events in Coimbra, Portugal. European Geosciences Union General 

Assembly 2011, Vienna, Austria, 3-8 April, Geophysical Research Abstracts, Vol. 

13, EGU2011-11117. 
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5 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. 2011. Estudo da distribuição de 

gotas em eventos pluviosos em Coimbra, Portugal. 10º Simpósio de Hidráulica e de 

Recursos Hídricos dos Países de Língua Portuguesa (SILUSBA), Porto de 

Galinhas/PE, Brazil, 26-29 September. 

Appendix 

A.1. 

de Lima, J.L.M.P., de Lima, M.I.P., Carvalho, S.C.P., Gerardo, R., Isidoro, J. 2011. 

Concepção de udómetro de baixo custo. 10º Simpósio de Hidráulica e de Recursos 

Hídricos dos Países de Língua Portuguesa (SILUSBA), Porto de Galinhas/PE, 

Brazil, 26-29 September. 

5 

Carvalho, S.C.P., de Lima, M.I.P., de Lima, J.L.M.P. 2012. Exploratory analysis of 
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Geophysical Research Abstracts, Vol. 15.  
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2. RESEARCH REVIEW 

 

2.1. Introduction 

 

Precipitation can be defined as the liquid or solid products of the condensation of water 

vapour that falls from clouds or are deposited from air onto the earth’s surface. The 

precipitation processes are hence coupled to atmospheric dynamics and thermodynamics 

through the latent heat released and absorbed during the phases of changes of water. Liquid 

precipitation includes rain, drizzle, and mist. Solid precipitation can be graupel, hail, snow, 

rime, glaze, and sleet. The form how the precipitation is found depends on a variety of factors, 

such as the atmospheric moisture content, temperature at the earth’s surface, vertical motion, 

among others. All forms of precipitation are commonly expressed in terms of the vertical 

depth of water that would be accumulated on a flat level surface, if all the precipitation 

remained where it fell. A description of the precipitation types and their formation can be seen 

in e.g. Chow et al. (1994), Bourgouin (2000), Ahrens (2006), and Li and Gao (2012). 

 

As regards causes, precipitation is subdivided into (e.g. Bjerknes, 1919; Eliassen, 1962; 

Smith, 1979): convective, orographic, and frontal. Convective precipitation results from the 

rapid ascension of moist air due to the instability of the atmosphere; this type of precipitation 

is more common during the warmer months of the year as localized intense heating of surface 

is required to initiate the convection cycle. Orographic precipitation occurs when air is forced 

to rise over a particular topographic barrier; the ascending air expands, promoting cooling, 

condensation and precipitation. Frontal precipitation results from the contact between two air 

masses at different temperatures; the warmer less dense air mass is pushed up over the colder 

dense one.  

 

The complex relationship between precipitation processes and dynamics of the atmosphere is 

hence a source of continuous concern for scientists. Many studies have been focusing on 
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finding accurate means to measure precipitation, understanding impacts on precipitation 

patterns by e.g. climate change, aerosols or land use, and improving prediction models, in 

order to avoid weather hazards that can cause economic losses and affect livelihood around 

the world (e.g. Georgakakos and Kavvas, 1987; Pielke et al., 2007; Strangeways, 2007; 

Michaelides, 2008; Trenberth, 2011). 

 

This chapter reviews briefly some research studies on rainfall that are relevant to the later 

chapters. Four subsections are presented: rainfall measurements (section 2.2); rainfall space 

and time variability (section 2.3); variability of raindrop characteristics (section 2.4); and 

reproducing rain events in laboratory (section 2.5). 

 

2.2. Rainfall measurements  

 

The measurement of rainfall is a critical need to many applications in meteorology, 

hydrology, agriculture, and climate research, providing input data to e.g. flood zone planning 

and prediction models, hydrologic and climatological models, and management of water 

resources. Precipitation monitoring networks have been established comprising different types 

of rain gauges to guarantee the accuracy of data, and also radar and satellite sensors, which 

offer a very high spatial resolution (Figure 1).  

 

Figure 1.  Precipitation measurement by satellite, radar and rain gauges (UCAR, 2009). 
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The purpose of rain-gauge networks is to provide accurate point measurement of rain rates 

and rain accumulations at the ground surface. The description of the typical instruments and 

discussion of aspects of rainfall measurement can be found in e.g. WMO (1994), Michaelides 

et al. (2009), and Vuerich et al. (2009). These instruments can be classified in: non-recording 

and recording gauges. The non-recording gauges operate by a collector positioned above a 

funnel that leads into a container; the most widely used is, probably, the Hellmann gauge (see 

Appendix A.2.). For recording gauges the most common types are the tipping bucket (see 

Appendix A.3.) and the weighing gauge (see Appendix A.4.). The tipping bucket consists on 

capturing a volume of rainwater in one of two small buckets, and once the bucket is full, it 

overbalances and tips down, registering the time of the tip. The weighing gauge consists on 

capturing rainwater in a collection system and recording its weight.  

 

Unfortunately, the instruments do not always provide accurate measurements of rainfall. The 

measurements can be affected by systematic errors caused by the measuring device or human 

errors that include the observation errors. For example, in Strangeways (2007) and WMO 

(2008) this issue is discussed with possible preventative measures. The systematic errors vary 

by e.g. the type of precipitation (rain, drizzle, snow) and gauge design. The choice of the site 

and the consequent exposure to the effects of e.g. wind, the prevention of loss by evaporation, 

and splashing effects, are important considerations to be taken into account. Moreover, the 

number and distribution of the gauges required for a specific area will depend on the rainfall 

natural variability and the purpose of the data collection.  

 

Radar has been gradually developed as a tool for quantitative rainfall measurement. The 

advantages of this technology over the traditionally rain-gauge networks include covering 

large areas and providing high spatial and temporal resolutions (see e.g. Collier, 1989; 

Krajewski and Smith, 2002). A fundamental problem of radar remote sensing of rainfall is to 

guarantee accurate conversion of the radar reflectivities measured aloft to rainfall intensities 

at the ground. In this context, variations in raindrop sizes distributions can have a great impact 

on the derived algorithms used in rainfall rate estimations associated with radar (e.g. 

Uijlenhoet, 1999). 
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In order to measure the raindrop characteristic at the ground level, the disdrometers are the 

most widely used instruments. Different types of disdrometers are available such as: the 

impact-type Joss-Waldvogel disdrometer (e.g. Kinnell, 1976), which transform the vertical 

momentum of an impacting drop into electric pulses whose amplitude is a function of the 

drop diameter; the 2-dimensional video distrometer (abbreviated to 2DVD) (e.g. Kruger and 

Krajewski, 2002), which measures the size, shape, orientation and fall velocity of each drop 

falling through the sensor area by imaging techniques using fast line scan cameras; and the 

optical disdrometers (e.g. Löffler-Mang and Joss, 2000, see also Appendix A.6), which are 

able to measure the size and fall speed of raindrops that pass through a laser beam (Figure 2).  

 

           

Figure 2. (a) View of the laser disdrometer manufactured by Thies Clima installed in the 

Department of Civil Engineering of the University of Coimbra; (b) Detail of the disdrometer 

measuring precipitation particles that pass through the laser beam (Thies, 2007). 

 

The disdrometer measurements can also be affected by different sort of errors, caused for 

example by undersampling (e.g. Gertzman and Atlas, 1977) and by environmental conditions, 

such as wind effect (e.g.  ešpor et al.,  000). Some instrument limitations are also related 

with the resolution and sensitivity as it cannot distinguish drop sizes within a given size 

interval; there are also some errors related to the light sheet which can make some drops to 

appear to be smaller than other drops of the same sizes; and the drop splashing on the housing 

of the instrument, which can lead to the drop fragmentation and produce un-realistically low 

fall speeds (e.g. Krajewski et al., 2006; Yuter et al., 2006; Niu et al., 2010). 

(a) (b) 
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The instruments for measuring rainfall thus differ in the design and measuring principle 

applied. Instruments, such as tipping bucket gauges, are commonly used in national 

monitoring networks for already some time, while equipment based on optical techniques 

have more recently been widely spread; since each one has its own limitations and strengths it 

is required their comparison to assess the accuracy and suitability to a specific purpose. 

Several types of equipments have been used in this thesis (see Chapter 3 and Appendix A). 

 

2.3. Rainfall space and time variability 

 

The variety of methods that have been developed for measuring rainfall allows the estimation 

of its spatial and temporal distribution. The study of changes in space-time rainfall variability 

is receiving world-wide attention due to global warming and the corresponding urban 

drainage impacts; floods resulting from extreme rainfall can have significant economic and 

social implications. There is indeed the need to anticipate and reduce the uncertainty 

associated with different precipitation (e.g. rainfall) scenarios.  

 

Some relevant researches on the detection of long-term precipitation trends can be seen in e.g. 

Lettenmaier et al. (1994), Türkeş (1996), Zhang et al. (2000) and Partal and Kahya (2006). 

Most of these studies that identified hydroclimatologic trends and climatic variations have 

used the Mann–Kendall test (Mann, 1945; Kendall, 1970). This procedure can be useful as 

missing values are allowed and the data do not need to follow any particular distribution (e.g. 

Gilbert, 1987). More detail on this method will be given in Chapter 6. The precipitation trends 

can be detected in historical records providing that such records are representative and cover a 

long period of time; in fact, the short length of existing precipitation records are often an 

limiting factor. In a study on annual and monthly precipitation in mainland Portugal, based on 

long time series (between 88 and 145 years), de Lima et al. (2010b) highlighted that the 

majority of the studies focus on the second half of the 20th century or even on smaller 

periods, and only a few studies report results for longer periods.  
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For the southern Europe, some studies have predicted drier climate based on climate models 

and past observed records, as a result of increased evapotranspiration and a relatively slow 

decrease of rainfall amounts and rain events frequency (e.g. Cubasch et al., 1996; 

Kostopoulou and Jones, 2005; Vicente-Serrano and Cuadrat-Prats, 2007). As for the southern 

Europe, in Portugal mainland the annual rainfall amounts are also projected to decrease, 

within the range of 20 to 40% of its current values, especially in southern regions (Miranda et 

al., 2006). Moreover, previous studies have reported high variability in the rainfall regime, see 

e.g. Corte-Real et al. (1998), de Lima et al. (2007), and Durão et al. (2009); the total annual 

rainfall varies highly with geographical location (Figure 3), and it also exhibits strong 

seasonal variability (Figure 4). 

 

 

Figure 3. Representation of mean annual rainfall (1971-2000) in mainland Portugal. The map 

was created using the Inverse-Distance-Weighted interpolation method. 
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Figure 4. Monthly rainfall for three measuring stations in mainland Portugal (the 

characteristics of the data series can be seen in the Table 11, Chapter 6). 

 

The characterization of rainfall in the Portuguese North Atlantic Archipelagos of Madeira and 

Azores has been less studied than that in mainland Portugal. For Madeira the global models 

show a strong reduction in winter rainfall, in particular in the high grounds, as well as, 

reductions of spring and autumn rainfall, which are only partially compensated by an increase 

in the summer; in terms of the annual average, the reduction can be from 20 to 30% by the 

end of the 21
st
 century (Miranda et al., 2006).  
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For Azores, it is expected small changes in the annual rainfall; however, some changes may 

occur in the annual cycle, with the strong winter rainfall being compensated by decreasing 

rainfall in the other seasons (Miranda et al., 2006). 

 

Besides the long-term trends discussed, short-term variability at different geographical scales 

should also be considered. Changes can occur for example in the intensity of individual 

storms or in its length and frequency.  

 

2.4. Variability of raindrop characteristics 

 

Besides concentrating on rainfall average properties over large volumes and time intervals, 

rainfall should also be considered as a discrete process, consisting of numerous individual 

raindrops that differ in size and fall speed, landing in different positions (Figure 5). Although, 

on average, the raindrops are distributed homogeneously in space, for a particular volume 

their concentration will fluctuate in space and time. In 1 m
3
 of air, the number of  raindrops is 

typically of the order of 10
3
 (Uijlenhoet, 1999). 

 

Figure 5. Scheme of space distribution of raindrops in a volume of air (Jaffrain, 2012). 

 

In relation to the drop diameters, they range typically from 0.1 to 6 mm (Uijlenhoet, 1999). 

The smallest drop size, 0.1 mm, is hence the threshold size which separates the cloud droplets 

that are kept suspended in the air indefinitely, from the falling raindrops. In relation to the 
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maximum diameter, in fact, the majority of the raindrops found in nature are smaller than 

3 mm (Rogers and Yau, 1989).  

 

As a raindrop is accelerated downward by the effect of gravity, its motion is retarded by the 

increase of the frictional resistance of the air. The drop velocities range typically from 0.1 m s
-1

 

for the smallest raindrops to over 9 m s
-1

 for the largest raindrop (Uijlenhoet, 1999). While for 

drops smaller than 1 mm, the terminal fall speed increases approximately linearly with 

increasing drop size, for bigger drops the terminal fall speed increases at a lower rate, and 

become constant at diameters of around 6 mm (Houze Jr., 1994). 

 

The microstructure of rainfall can then be represented by means of the statistical distribution 

of the number, size and fall speed of the raindrops within a reference volume or time interval. 

The number of raindrops that one happens to measure as a function of the diameter, present in 

a unit volume of air, is the so-called drop size distribution (DSD). In Chapter 5, the 

calculation of DSD will be described in more detail. 

 

The microphysical processes involved in the development of DSD are known to be complex; 

the variability of DSD is related with the mechanisms such as condensation/evaporation, 

coalescence/collision, and breakup (e.g. Pruppacher and Klett, 2010). This variability is not 

well understood and so as recommended by McFarquhar (2010) efforts should still be done to 

acquire a large amount of data for investigation of DSD from e.g. heavy rain rates in a variety 

of locations.  

 

Despite the DSD variability, some theoretical continuous distributions have been fitted to the 

measured DSD. In order to guarantee sufficient accuracy, DSD parameterization requires 

large DSD samples (Smith and Kliche, 2005). Different parameterizations of the DSD have 

been proposed in the literature. One of the pioneering studies was carried on by Marshall and 

Palmer (1948), who proposed an exponential distribution for DSD. As the exponential 

parameterizations have been claimed to tend to overestimate the numbers of small drops, 

distributions using an extra (third) parameter have been suggested, namely the lognormal 

distribution (e.g. Levin, 1954), and the gamma distribution (e.g. Ulbrich, 1983). 
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Depending on e.g. geographic location, climatic regime, season, and other factors, the shape 

and then the parameters deduced from DSD will differ (e.g. Sauvageot and Lacaux, 1995; 

Rosenfeld and Ulbrich, 2003; Nzeukou et al., 2004; Rao et al., 2009). For example, Kozu et 

al. (2006) revealed seasonal and diurnal variations of DSD in Asian Monsoon Region; the 

authors found that e.g. the morning DSDs were narrower than the afternoon ones, implying 

that the local convection cycle over land, which often causes peak afternoon rainfalls, 

produces broader DSDs. 

 

The information on the size of drops complemented with their velocities can be used to 

compute the rainfall kinetic energy. Nevertheless, this approach is not frequently used since 

direct measurements of these drop characteristics (with e.g. disdrometers) have been 

uncommon up to the last decade. Instead, the kinetic energy of a given rainfall event has been 

estimated from kinetic energy-rain rate relationships that have been proposed in the literature 

(e.g. Wischmeier and Smith, 1958; Carter et al., 1974; Kinnell, 1981; Rosewell, 1986). These 

relationships are mainly obtained from kinetic energies computed from DSD measurements, 

which are specific to climate conditions and intensity ranges. Therefore, the use of these 

relationships in different conditions should be validated before its implementation. Insights on 

the estimation of kinetic energy based on different DSDs are given in e.g. Smith and De 

Veaux (1992), Uijlenhoet and Stricker (1999), Salles et al. (2002), Brodie and Rosewell, 

(2007); power laws relationships between kinetic energy and rain rates were presented in 

these studies, and it will be also estimated in Chapter 5. 

  

2.5. Reproducing rain events in laboratory 

 

Rainfall simulation has been an important tool in disciplines, such as, hydrology, agronomy, 

and geomorphology, used for different purposes, e.g. the assessment of overland flow 

generation, infiltration rates, splash, or process-based experiments on soil surface sealing and 

crusting dynamics (e.g. Mutchler and Hermsmeier, 1965; de Ploey 1981; de Lima and Singh, 

2002; Cerdà and Doerr, 2007; Seeger, 2007; de Lima et al., 2008; 2011). 
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Because of the unpredictable and infrequent nature of rain, it would be very difficult to study 

e.g. the effects of soil erosion by water in the field. Rainfall simulators can be used in order to 

overcome these natural limitations, allowing the repetition of experiments under controlled 

conditions. With minimum time-consuming, experiments can be performed with the chosen 

rainfall characteristics (Figure 6a shows the laboratory experiments performed with a rainfall 

simulator, which are described in Chapter 8). 

 

        

Figure 6. Views of laboratory experiments making use of a nozzle rainfall simulator at the 

Civil Engineering Department of the Faculty of Science and Technology of the University of 

Coimbra. 

 

In relation to the drawbacks of using rainfall simulators, Dunkerley (2008a) presents a 

literature review that claimed a lack of correspondence between natural and simulated rain 

events in relation to e.g. rain rates, range of drop sizes, kinetic energy, and drop arrival rate. 

He also highlighted other rain event properties that require attention, such as the intra-event 

variation in rain rate. Experiments involving the change of the rainfall intensities 

instantaneously during a simulated storm have been conducted by some authors (e.g. 

Flanagan et al., 1988; Zhang et al., 1997; Parsons and Stone, 2006), but are not as common as 

constant intensity experiments, mainly because of difficulties in implementing a sequence of 

intensities; in Chapter 7, the possibility of using a single nozzle rainfall simulator to simulate 

rain events of varying intensity will be explored.  

(a) (b) 
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Since the 1930’s more than 100 rainfall simulators with plot dimensions <5 m² were 

developed differing in design (from drop-formers to nozzle-type simulators), rainfall 

intensities and rain characteristics (Iserloh et al., 2013). Rain simulators can be classified 

according to the way they produce drops. The two major types are: non-pressurized rainfall 

simulators or drop-former simulators that use hypodermic needles or capillary tubes (e.g. 

Munn and Huntington, 1976; Kamphorst, 1987); and pressurized rainfall simulators, such as 

spray nozzles (e.g. Meyer and McCune, 1958; Esteves et al., 2000) (Figure 6b shows a spray 

nozzle which was used in the laboratory experiments with a mesh suspended underneath, see 

Chapters 8 and 9). 

 

In the non-pressurized rainfall simulators, the drops fall when their weight overcomes surface 

tension forces; therefore, the main disadvantage of this type of simulator is that the fall height 

can be insufficient for drops to reach their terminal velocities. The other widely known 

disadvantage is that they usually produce a narrow range of drop sizes (e.g. Tossell et al., 

1987).  

 

For the pressurized rainfall simulators, theoretically, as the water is released under pressure, 

drops reach higher fall speeds compared to simulated rainfall from non-pressurized 

simulators. Due to the high pressure of the supplied water, a broader range of drop sizes is 

also expected for the pressurized rainfall simulators (e.g. Battany and Grismer, 2000). 

 

Despite the concern and advancements towards rainfall simulation standardization, there is 

still limited research on the assessment and comparison of simulators’ performance in relation 

to raindrop characteristics, in particular the kinetic energy. 

 

The characterization of simulated drops is crucial to assess, for example, the effect of drop 

impact on physical properties of the soil surface by evaluating the kinetic energy with which 

drops impact the soil surface (e.g. Bisal, 1960; Ziegler et al., 1997). Moreover, Thompson and 

James (1985) showed a decrease in soil infiltration, and increase in hydraulic resistance of the 

soil surface with increasing drop kinetic energy.  
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3. COMPARISON OF MEASUREMENTS FROM AN OUTDOOR 

EXPERIMENTAL SITE WITH SEVERAL TYPES OF RAIN GAUGES 

 

 

Abstract 

 

Instruments for measuring precipitation differ in the design and measuring principle applied; 

since each one has its own limitations and strengths it is required their comparison to assess 

the accuracy and suitability to a specific purpose. Rainfall measurements were performed on 

an outdoor’s experimental site, comprising 60 rainy periods corresponding to a total of around 

580 mm. The main aim of this study was to compare the measurements from seven different 

types of rain gauges: catching gauges, namely Hellmann, tipping-bucket and weighing 

gauges; and non-catching gauges, that included optical and impact sensors. Descriptive 

analyses were performed to evaluate and compare the rainfall depths provided by each gauge 

and the reference values. Analyses also included the assessment of rain rate measurements 

based on 1-min rain rate time series yielded by the continuous-recording gauges. As the 

rainfall measurements can be affected by different sources of errors, related for example to the 

wind, time series of wind speed were registered and compared with the variability of rain 

measurements. The results show high dispersion of the measurements around the reference 

rain depths, in particular for non-catching rain gauges. Nevertheless, the median of the 

relative error is within ± 5% for the majority of the gauges.  

 

 

 

 

 

 



 

 

 

 

 

 

26 

 

3.1. Introduction 

 

The availability of accurate rainfall data is required for hydrological studies, whether related 

to water balances, flood forecasting or optimization and verification of climate models. 

Nevertheless, measuring the rainfall accurately can be challenging, due to its natural 

variability in both space and time. Several techniques have been used to measure rainfall, 

namely: in-situ local measurements using e.g. tipping bucket rain gauges or optical 

disdrometers (e.g. Löffler-Mang and Joss, 2000; WMO, 2008); ground-based remote sensing 

measurements, by means of e.g. radars (e.g. Krajewski and Smith, 2002); and satellite-based 

remote sensing techniques (e.g. Barret and Martin, 1981). 

 

The accuracy of the rainfall measurements obtained from the different instruments, as well as 

their comparative performance, is widely discussed in the literature (e.g. Huffman et al., 1995; 

Ciach and Krajewski, 1999; Ciach, 2003; Morin et al., 2003; Yilmaz et al., 2005; Keefer et 

al., 2008; Savina et al., 2012). For example, an important advantage of satellite-based 

measurements is to cover large areas, but the calibration and validation of satellite sensors 

raise questions on data reliability (e.g. Rudolf et al., 1996). Regardless of the recent advances 

in remote sensing of rainfall, the in-situ local measurements are still the basic input for many 

studies with application to e.g. agriculture, water resources management and calibration of 

satellite-based rainfall estimation (e.g. Habib et al., 2010). 

 

Rain gauges are widely used for measuring rain rates and accumulations near the surface. 

Several types of rain gauges have been developed, which have different measuring principles 

(e.g. quantification of volume, weight or by laser beam attenuation) or design details (e.g. 

collecting area). These instruments can be classified in (e.g. Lanza et al., 2010): catching 

gauges (e.g. weighing and tipping buckets rain gauges) or non-catching gauges (e.g. optical 

and impact disdrometers).  

 

The rainfall data obtained by rain gauges can be affected by various types of measuring 

errors, including (e.g. Lanza and Vuerich, 2012): catching errors, which means that the 

instrument does not detect the full amount of water falling through the atmosphere due to, for 
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example, splashing and evaporation processes, or weather conditions (e.g. wind); and 

counting errors, which are related to the correctly quantification of the amount of water that is 

collected/detected by the instrument. 

 

In order to assess the temporal variability of rainfall intensity, the instruments should acquire 

high resolution data. For example, the tipping bucket gauge detects every increment of rainfall 

(which can be e.g 0.1 mm for the instrument TE525MM-L manufactured by Campbell 

Scientific), and it typically records the time of the tip, or the number of tips that have been 

detected within a selected time period (e.g. one minute); the disdrometer, on the other hand, 

estimates instantaneous rain rates based on the size and amount of drops over the sensing area 

per unit time (e.g. 30 seconds) (e.g. Tokay et al., 2003; Michaelides et al., 2009).  

 

The aim of this chapter is the comparison of rainfall data provided by different rain gauges. 

Instruments, such as tipping bucket gauges, are commonly used in national monitoring 

networks for already some time while equipment based, for example, on optical techniques 

have more recently been widely spread. The analysis comprises 60 rainy periods recorded by 

seven different types of gauges on an outdoor experimental site. The preparation of the 

network of instruments was undertaken by the author within the ambit of the Ph.D. program. 

 

3.2. Material and methods 

 

3.2.1. Measuring site and rain gauges 

 

Different types of rain gauges were used to monitor rainfall on the same site, in Coimbra (in 

the centre region of mainland Portugal). Geographic coordinates of the measuring site are 

40°11'8" N and 8°24'52" W. The climate of this area is Csb (Mediterranean climate) in the 

Köppen's classification, which corresponds to humid mesothermal climate with dry or 

temperate summer. 
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The analysis reported in this study concerns the comparison of the instruments’ measurements 

recorded for similar field conditions. The instruments consist of catching type gauges, namely 

two Hellmann gauges, a tipping bucket gauge and a weighing gauge; and non-catching rain 

gauges that included optical and impact sensors (see Table 4). A non-conventional rain gauge 

developed in the University of Coimbra was also included in this comparison. The RUC 

(Rain-gauge University of Coimbra) measures the rainfall accumulated over a given period of 

time and it is comparable to other standard rain gauges (e.g. Hellmannn rain gauge). The 

appendix A includes a description of all the instruments used. 

 

Table 4. List of the seven rain measuring devices studied. 

Gauge ID Manufacturer/ model Gauge type Reporting method 

SRG.1 University of Coimbra / RUC Non-conventional rain collector Hand-emptied  

SRG.2 VWR / Hellmann rain gauge Standard rain gauge Hand-emptied 

SRG.3 Wilh.Lambrecht / Hellmann rain gauge Standard rain gauge Hand-emptied 

TBG.4 Casella Cell / 100000E Tipping bucket rain gauge Datalogger 

WPG.5 MPS / TRwS 204 Weighing precipitation gauge Real-time PC monitoring 

MWS.6 Vaisala / Weather Transmitter WXT510 Multi-parameter weather sensor Real-time PC monitoring 

DIS.7 Thies Clima / Laser Precipitation Monitor Disdrometer Real-time PC monitoring 

 

Because the accuracy of rainfall measurements are significantly influenced by field 

conditions, the instruments were all collocated at the top of the building of the Department of 

Civil Engineering of the University of Coimbra (Portugal) to ensure similar exposure 

conditions (see Figure 7). The rooftop of the University’s building was chosen as a way to 

prevent the instruments from being vandalized. The instruments were positioned at 1.5 m 

above a flat surface, which is the typical height used in the national udometric networks. It 

was ensured that the surrounding wall was not closer to the instruments than a distance of 2.5 

times the height by which it extends above the instrument (e.g. WMO, 2008). 
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Figure 7. (a) Position of the rain gauges at the top of the building; (b) View of the 

instruments. Measurements are in meters. See Table 4. 

 

3.2.2. Rainfall data 

 

The rainfall was collected for more than three years (see appendix B, Figure B.1); however, as 

some of the instruments were set up later, the time period considered in this chapter was only 

two years, from 26 March, 2011 to 25 March, 2013. Please note that the Chapter 5, which 

focuses on the disdrometer measurements (with 1-min time resolution), comprises a selection 

of rainfall events from a three year period starting in July 2009. 

 

An operator (the author) was required to record daily the measurements of the non-recording 

rain gauges, as well as, checking the data of the continuously recording rain gauges. The term 

“rainy period” will be used to describe the time intervals for which the accumulated rainfall 

was recorded (see appendix B, Table B.1). 

 

(a) 

 (b) 
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The dataset selected comprises 60 rainy periods, and corresponds to a total of around 580 mm 

(mean of 7 gauges); the total rainfall depth of events ranged from 0.4 to 25 mm (mean of 7 

gauges), see Figure 8a. Different rainfall conditions were observed during the studied period, 

which include extreme rain storms reaching rain rates of around 100 mm h
-1

. Moreover, the 

selected rainy periods were observed in different seasons, although they are scarce in summer. 

 

Figure 8. Hyetograph of 60 rainy periods selected from the period between March, 2011 and 

March, 2013: (a) Rainfall depths (mean of 7 gauges) and maximum rain intensity detected 

with the disdrometer (DIS.7); (b) Accumulated rainfall from the 60 rainy periods, for each 

gauge. 
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3.3. Methodology 

3.3.1. Analysis of rainfall accumulation for 60 rainy periods 

Preliminary analyses of the rainfall time series included checking the data periods, when all 

the gauges were collecting data simultaneously, in particular, some of the gaps resulted from 

repairs and maintenance services on some instruments, and identifying clearly incorrect 

values. Inaccurate records were excluded. 

 

The rainfall measurements provided by rain gauges can be affected by different sources of 

errors, related to e.g. the wind, evaporation, and wetting loss on the internal walls of the 

collector. The “true” rainfall value can be estimated by correcting the systematic errors using 

empirical relationships based on e.g. gauge design, wind speed and type of precipitation 

(Sevruk and Hamon, 1984); yet the correction procedures itself can lead to new uncertainties. 

The comparison of measurements from different type of rain gauges will be performed, and 

related with the variability of e.g. wind speed.  

 

The assessment of the performance of gauges requires the identification of the “true” rain 

events’ depth, which is unknown. However, since different gauges were used in this study, it 

is possible to estimate the uncertainty of one instrument’s measurements by the “deviations” 

from the mean obtained from all or a set of instruments. In this study, as the rain-

accumulation time series provided by the MWS.6 equipment showed several anomalous 

values, and a much lower total rainfall amount (481 mm), see Figure 8b, its records were 

excluded from the calculation of the reference rainfall depths.  

 

For a given rainy period T recorded with a rain device A, the relative error of the rain gauge 

measurements is expressed by:  

T

TT

T
x

xx
RE

,6

,6,1

,1


  (3.1) 

  

where x1,T is the rain accumulation measured by a single device for a given rainy period, and 

x6,T is the mean of the rainfall accumulation from the 6 gauges, taken here as the “true” value. 
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Regression lines were established for rainfall data from each gauge and the references values. 

The root mean square error (RMSE) was determined to measure the difference between 

observed data and the data predicted by the fitted line. 

  

R S  √
1

n
∑ (    ̂ )

 

n

  1

 
(3.2) 

where xi is the observed rainfall depth,  ̂  is the predicted rainfall depth (by the regression 

line), and n is the number of rainy periods. 

 

3.3.2. Analysis of 1-min rain rate measurements 

 

The comparative study of the different types of rain gauges also includes the analysis of 1-min 

rain rate measurements yielded by the continuous-recording gauges (WPG.5, MWS.6 and 

DIS.7), and the data from the tipping bucket gauge (TBG.4), which recorded the exact time of 

the tip. The measurements from the SRG.1, SRG.2 and SRG.3 were not included as 

the dataset corresponds to rainfall accumulated during longer time periods (appendix B, Table 

B.1). 

 

The coefficient of variation for 1-min rain rate measurements (from 4 gauges) were related to 

the wind speed. The time series of the wind speed were obtained with the MWS.6, i.e. the 

Weather Transmitter WXT510 manufactured by Vaisala. 

 

3.4. Results and discussion 

 

3.4.1. Analysis of rainfall accumulation for 60 rainy periods 

 

The performance of the investigated instruments was first determined by the relative error of 

rain gauge measurements of 60 rainy periods assuming the reference value as the mean of the 
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rain accumulations from 6 instruments. Figure 9 illustrates the percentage relative errors 

obtained for each gauge by box-and-whisker plots; the plots indicate the values obtained for 

the mean (circles), median (thin line), 25–75th percentiles (box limits), 10–90th percentiles 

(whisker caps) and outliers (rings), which are values that lie more than one and a half times 

the length of the box from either end of the box. 

 

Figure 9. Box-and-whisker plots representing the relative error of rainfall measurements 

provided by the 7 studied instruments; 60 rainy periods were investigated.  

 

For the majority of the gauges, with the exception of MWS.6 and DIS.7, the median of the 

relative error was close to zero ± 5%, and the inter-quartile range was around 8%. In fact, for 

these rain gauges (SRG.1-3, TBG.4 and WPG.5) approximately half of the observed rain-

depth amounts are within the WMO limits of rainfall measurement accuracy, i.e. 5%. The 

inaccuracy of rain measurements by non-catching rain gauges (MWS.6 and DIS.7) has been 

already reported in the literature by Lanza and Vuerich (2012) after analysing 1-minute rain 

intensity measurements. 

  

The assessment of the performance of the non-conventional rain collector and the two 

standard rain gauges (SRG.1-3) showed that the rainfall measurements are not strictly 

equivalent as the design of the non-conventional rain collector (SRG.1) differs from the 

model Hellmann rain gauges (SRG.2 and SRG.3). The non-conventional rain gauge collected 
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more rainfall amount than the Hellmann gauges; yet the median of the relative error is within 

the ± 5%. The collector of SRG.1 does not have a sharp rim (see appendix A.1.), which might 

increase the error by splashing processes. Although the Hellmann gauges studied (SRG.2 and 

SRG.3) have different collecting areas (100 cm
2
 and 200 cm

2
), the results were similar, e.g. 

the median of the relative error was around -2.3%, and the inter-quartile range was close to 

7.4%.  

  

In relation to the recording rain gauges, TBG.4 was the instrument whose mean of the relative 

error was closer to zero, i.e. 0.7% and a standard deviation of 7.9%; on the opposite, MWS.6 

is the instrument that less agree with the reference time series, with a mean of -20.9% and 

standard deviation of 35.5%. The MWS.6 tended to underestimate rainfall depths, which 

might be explained by the difficulty to detect small drops by impact sensors. The optical 

disdrometer, DIS.7, also showed a high spread of relative errors (standard deviation of 16%), 

but mainly caused by an overestimation of measurements (mean of 5.8%). 

 

In Figure 10a the rainfall depths provided by each gauge, Pi, were plotted against the 

reference values (mean of 6 gauges), Pref. The best fit equations were found (Figure 10b): 

refiii PmcP   (3.3) 

 

where mi and ci are the coefficients of the regression line, see Table 5.  

 

As observed in Figure 10b, the MWS.6 tended to underestimate the rainfall depths (the 

majority of the data points are below the 1:1 line). In relation to the other gauges, the 

measurements were in general close to the 1:1 line. The deviation of the regression lines from 

the 1:1 line can be related to systematic errors inherent to the devices. 
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Figure 10. (a) Scatter plot of rainfall depths measured by each gauge against the reference 

values (b) and corresponding fitted trend lines. 

 

Table 5. Coefficients of the regression lines illustrated in Figure 10b, and root mean square 

errors (RMSE). 

Gauge 

ID 

Coef. 

regression line 
RMSE 

(mm) 
ci mi 

SRG.1 0.199 1.022 0.903 

SRG.2 0.022 0.966 0.588 

SRG.3 -0.038 0.986 0.699 

TBG.4 0.049 1.001 0.625 

WPG.5 -0.203 0.981 0.409 

MWS.6 -0.242 0.831 3.299 

DIS.7 -0.030 1.044 1.034 

 

The RMSE is a reasonable measure of the difference between the rain-gauge measurements 

and the estimated rainfall depths by the regression line. The best quality of estimation was 

obtained with WPG.5 (RMSE was 0.4 mm); whereas the MWS.6 gauge yielded the maximum 

RMSE (around 3.3 mm).  

 

3.4.2. Analysis of 1-min rain rate measurements 

 

The 1-min rain rate measurements of four gauges (TBG.4, WPG.5, MWS.6 and DIS.7) were 

compared, taking also into account the time series of wind speeds. In Figure 11 three 

examples of measured rainy periods are shown (26-27 March 2011, 7-8 May 2012, and 7-8 
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March 2013); other rainy periods show similar discrepancy of rainfall depths, these three were 

chosen due to the high wind speeds observed.  

 
Figure 11. Representation of time series of wind speed, rain rates (mean of four gauges), and 

accumulated rainfall (for each gauge). The rainy periods were observed in: (a) 26-27 March 

2011; (b) 7-8 May 2012; (c) 7-8 March 2013. Broken scales for the x-axis of (a) and (c) were 

created to better visualize the rainy period. 
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In Figure 11a the maximum values of rain rate and wind speed observed were 18 mm h
-1

 and 

6 m s
-1

, respectively. Moreover, the highest discrepancy between gauges’ measurements was 

observed in the periods of higher rain rates; for these periods the wind speed was low (around 

2 m s
-1

), and so the wind-induced errors were not expected to be significant. In Figure 11b and 

Figure 11c the effect of high rain rates (maximum of 51 and 83 mm h
-1

, respectively) in the 

discrepancy of measurements is confirmed, in particular for the acoustic gauge (MWS.6).  

 

In relation to the wind, it is known that at higher wind speeds the noise of instrument 

measurements is likely to increase significantly. The presence of the instruments interferes 

with the air flow producing turbulence; the wind speed increases at the collecting 

aperture/detection area which might reduce the amount of raindrops collected/detected. In this 

context, it could be expected that, for example, in Figure 11c at around 12:57, the high wind 

speeds (over 5 m s
-1

) lead to high differences of rainfall accumulations measured by the 

gauges, but the differences were low (maximum of 0.27 mm in 3.5 mm, i.e. less than 10%). 

The extent of the differences will then, probably, depend on wind speed, as well as the fall 

speed of raindrops and the design of the gauge.  

 

In Figure 12 the variation coefficients of rain rate measurements from the four gauges 

(TBG.4, WPG.5, MWS.6 and DIS.7) were represented in relation to the rain rate classes – 

results included records from the same three rainy periods shown before (see Figure 11). The 

higher coefficients of variation were observed for lower rain rates. According to Sevruk et al. 

(2009), under low rain rates a great amount of small drops are, in fact, blown away even by 

low wind speeds. Moreover, it is not expected a perfect match between 1-min rain rates 

provided from instruments such as the disdrometers and the tipping bucket gauges, as their 

differences in operational factors affect the measurements. In general, the poor performance 

of the tipping bucket gauges is recognized during light rain periods as the instrument might 

take too long to record a tip and some evaporation of rain can occur in the bucket; also some 

rainwater amount can be lost during the tipping movement of the bucket at higher rain rates 

(e.g. Molini et al., 2005). In relation to the rainfall rates measured by disdrometers, the 

overestimation of records has already been reported; for example Vuerich et al. (2009) 
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pointed out that a possible error can occur from coincident drops, which are detected by the 

laser as one single but large drop. 

 

Figure 12. Box-and-whisker plots of the coefficient of variation of rain rate measurements in 

relation to rain rate classes. The resolution of data is 1-min and is related to the measurements 

of four gauges (TBG.4, WPG.5, MWS.6 and DIS.7) in the three rainy periods observed in 26-

27 March 2011, 7-8 May 2012 and 7-8 March 2013. 

 

3.5. Concluding remarks 

 

This study compared the performance of different types of rain gauges, under field conditions, 

in recording rainfall depths. The dispersion of the measurements around the reference value 

was high. Nevertheless, despite the differences found across the seven types of gauges, the 

median of the relative error is within ± 5% for the majority of the gauges. Moreover, the fact 

that the rainfall time series provided by the different gauges are not strictly equivalent could 

be expected, as the instruments tested have different designs and measuring principles. For 

example, the accumulative rainfall depth (from 60 rainy periods) was 8% higher for the 

disdrometer comparing with the weighing precipitation gauge: a possible error can occur from 

coincident drops, which are detected by the laser as one single but large drop; or an 
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underestimation from weighing precipitation gauge as a result of evaporation processes. In 

order to obtain accurate measurements, attention must be paid to calibration methods, in 

particular for non-catching rain gauges – optical and impact sensors – which had less 

agreement with the reference values (mean of 6 gauges).  

 

The discrepancy of 1-min rain rate measurements observed for the continuous-recording 

gauges is also expected to be a consequence of different sources of errors, e.g. wetting and 

catching losses due to wind speed and evaporation processes, which can be intensified by 

their location at the top of the building. It was possible to detect the variation coefficients of 

rain measurements were high for low rain rates. 
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4. RAINWATER SEQUENTIAL SAMPLER: ASSESSING 

INTRA-EVENT WATER COMPOSITION VARIABILITY1 

 

 

Abstract 

 

Rainwater sequential sampler instruments can be very useful in characterizing the variability 

in rainwater composition, which can occur over relatively short time periods. The main aim of 

this study was to develop a low-cost volume-based sequential rain sampler for the assessment 

of variations in the chemical composition of rainwater during individual rain events in one 

place. In order to evaluate the performance of the apparatus a few tests were conducted under 

field conditions in Coimbra (Portugal). Rainy periods were analysed in relation to the 

following physicochemical parameters: electrical conductivity, pH, turbidity, nitrates, 

sulphates and chloride. The results showed that the rainwater composition varied over time; 

moreover, some parameters were found to be highest at the beginning of the rainy period, 

followed by a rapid decline of the initial value and then remained approximately constant. The 

findings suggest that the rainwater sequential sampler is a low-cost solution tool that can be 

useful for non-continuous assessment of intra-event rainwater composition variability. 

 

 

 

 

 

 

 

 

 

                                                 

1 Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2014. Rainwater sequential sampler: assessing intra-event water 

composition variability. Journal of Engineering Research and Technology 1(1), 1-7. 
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4.1. Introduction 

 

Rain is a scavenging agent for pollutants present in the atmosphere (e.g. Engelmann, 1968) 

creating a potential of contamination for terrestrial and aquatic ecosystems. Collecting 

rainwater sequentially is crucial to understand the variability in rainwater composition during 

rain events. 

 

The rainwater composition is related to the atmospheric composition. For example, in rural 

areas that are located far from cities and industrial pollution and are not so much affected by 

the transport of pollutants, the rainwater is expected to be low polluted, as the air is mostly 

clean. On the contrary, urban areas are typically marked by intense traffic and industry can 

produce pollutants that are “washed out” from the atmosphere during rainfall events (e.g. 

Helmreich and Horn, 2009).  

 

A wide variety of sequential rain samplers have been proposed: manual sampling (e.g. Gatz 

and Dingle, 1971); linked collection vessels (e.g. Cooper et al., 1976); automatic sequential 

samplers (e.g. Ronneau et al., 1978); and continuous monitors (e.g. Tomich and Dana, 1990). 

In addition, a classification of sequential rain samplers can be defined by the way the rain is 

fractionated, i.e. by volume (e.g. Mangoni et al., 1998) or at fixed time intervals (e.g. Gray et 

al., 1974). The method used to collect the rainwater might affect the results (e.g.  Laquer, 

1990a). 

 

The variability in different rainwater components has been explored in relation to, for 

example, the rainfall event intensity and depth, the season when it occurs, and the antecedent 

dry periods (e.g. Huff and Stout, 1964; Dawson, 1978; Lim et al., 1991). Some of the studies 

on rainwater chemical composition use daily or lower time resolutions (e.g. Mantovan et al., 

1995; Okuda et al., 2005). However, as pointed out by Raynor and Hayes (1981), and 

Seymour and Stout  (1983) short-period samples (e.g. hourly) can provide crucial 

information, because the rainwater composition and the meteorological conditions (e.g. wind 

patterns, temperature, humidity) often change significantly over time during an event, and 
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important relationships might be masked by inadequate temporal resolution of the 

observations.  

 

The aim of this research was to present a volume-based sequential rain sampler that can be 

adapted for low or high volume resolution (by using sampling-bottles with different 

capacities). The equipment was designed to attain: low manufacturing cost, set-up and 

maintenance easiness, and no power requirements. It was tested under field conditions in 

Coimbra (Portugal). 

 

4.2. Rainwater sequential sampler 

 

4.2.1. Design of the equipment 

 

The intra-event variability of rainwater quality can be explored by collecting sequential 

samples of rainwater (with an appropriate resolution) during the event. In this study a volume-

based sequential rain sampler was designed (Figure 13, see also the photograph of the 

equipment in Figure 14c). The components of this equipment are:  

 

i) Rainwater collection: a knife-edge collector ring; an aluminium funnel with an 

aperture diameter of 0.358 m; a flexible hose that connects the funnel to a flume; 

an adjustable support which keeps the funnel at an height of 1.5 m above the 

ground; and a support for the flume. 

ii) The sampler: an acrylic flume with 11 openings (regularly spaced at 100 mm) 

where bottles are attached; and 11 polypropylene bottles to collect/store the 

rainwater samples. 
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Drainage 
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water

> 10 mm

0.5 mm 0.5 mm1 mm 1 mm 1 mm1 mm1 mm1 mm1 mm1 mm1 mm

   2 x 50 ml 9 x 100 ml

(a)

(b)

 

Figure 13. (a) Setup of the rainwater sequential sampler. Distances are in meters; (b) 

Hydraulic scheme of the rainwater sampling. 

 

This study was performed in a way to provide a continuous storage of rainwater until a 

maximum of 10 mm of cumulative rainfall depth. For that purpose, and taking into account 

the funnel aperture/collecting area, i.e. around 0.1 m
2
, a maximum of 1000 ml of rainwater 

were collected (using a total of 11 individual samples): 50 ml (0.5 mm) for the first two 

bottles and 100 ml (1 mm) for each of the other bottles (Figure 13b); after all the bottles are 

filled the additional rain is disregarded. The first two bottles were used to better capture the 

eventual stronger variation on rainwater composition at the beginning of the events. Because 

all the sampling bottles attached in the equipment have 100 ml capacity, the volume collected 

(a) 

(b) 
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in each bottle was adjusted by placing small glass spheres in the bottle (Figure 13a); i.e. the 

first two bottles were filled with small glass spheres until the empty space left were enough 

for storing a maximum of 50 ml of rainwater. There was also some concern regarding mixing 

the rainwater from earlier samples and the following ones. Therefore, each bottle also 

contains a large polystyrene sphere which seals it once it is filled and prevents the inflow of 

additional rainwater; as entrapped air was present surrounding the float sphere and the water 

level, the inexistence of rainwater mixing between individual samples was confirmed. This 

sealing also protects samples from contamination. 

 

4.2.2. Advantages and disadvantages of the equipment 

 

The sequential rainwater samplers found in the literature vary in complexity, but the manual 

collection of rainwater is the simplest and least expensive method in terms of equipment 

requirements (e.g. Gatz and Dingle, 1971; Castillo et al., 1985). However, the long term 

availability of an operator to carry out the experiments makes this procedure difficult to 

implement. The sampler present in this study has low manufacturing costs and the bottles are 

filled in sequence by gravitational flow. Indeed, the samplers based on linked collection 

vessels, such as the present, have a simple construction (e.g. Cooper et al., 1976). 

 

Since these samplers are designed to operate unattended, the number of samples that can be 

collected is an important specification to consider. The number of sampling bottles typically 

used in linked collection vessels is five or less (Laquer, 1990b), this equipment is prepared to 

attach 11 samples. 

 

Depending on the number of samples and the purpose of the analysis, the collection of 

samples can be based on time or on rainfall volume; automatic sequential samplers are usually 

able to sample at unit times but in that case some extra care should be taken to avoid 

incomplete record of the event, for example, if a sample container is not big enough, the 

excess of water will overflow before the next container is in position to fill. 
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The total amount of rainfall collected by the present sampler can be easily adapted to different 

measuring schemes by using bottles with different volume capacities, i.e., decreasing or 

increasing the sampling volume resolution.  

 

In addition to the assessment of the intra-event water composition variability, if one wants to 

register the intensity and duration of the rain event, it is necessary to complement the 

measurements using a recording rain gauge (e.g. tipping bucket rain gauge), which would 

obviously involve extra costs and power requirements. 

 

This equipment only provides an unrefrigerated collection of samples; some other devices 

store the samples under refrigeration conditions, see e.g. Kawakubo et al. (2001). For studies 

aiming at analysing rainwater composition in terms of stable chemical species, the samples 

can be removed immediately after the end of the event, which guarantee their 

physicochemical integrity. Nevertheless, this sampler is easily transported to the field and it 

does not require power. The equipment also has low maintenance requirements (it can be 

easily cleaned with distilled water). 

 

4.3. Testing the sampler 

 

4.3.1. Measuring site 

 

The sequential rain sampler was tested in the field in the city of Coimbra (Portugal), which is 

located in the valley of Mondego River, and it is at approximately 50 km from the Atlantic 

coast (Figure 14). The sampler was installed on the flat roof of the building of the Department 

of Civil  ngineering of the University of Coimbra (with geographic coordinates  0º11’08”  

and 08º  ’5 ”W). 
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Figure 14. (a) Location of Coimbra in mainland Portugal; (b) Location of the study site in the 

city of Coimbra (black triangle); (c) Photograph of the equipment.  

 

4.3.2. Data acquisition 

 

The dataset analysed comprises four rainy periods (Table 6), which were selected based on 

the following criteria: i) a minimum rainfall amount of 6 mm (to provide at least 7 sampling 

bottles); ii) a minimum of 6 hours of dry period prior to sampling (dry period means here that 

the rain intensity was lower than 0.05 mm h
-1

).  
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Table 6. Description of the rainy periods sampled. 

Rainy periods 1 2 3 4 

Date (day-month-year) 

(h:min) 

01-09-2011  

17:23 – 20:20 

02-11-2011 

8:08 – 9:36 

11-11-2011  

6:31 – 10:30 

23-09-2012 

3:04 – 6:13 

Antecedent dry period (h)   8.0 33.4 43.5 119.6 

Total rain amount (mm) 10 10 10 6 

Total duration (min) 178 89 240 190 

Shortest sampling duration* (min) 7 1 7 2 

Longest sampling duration** (min) 51 49 58 134 

Mean rain intensity (mm h
-1

) 3.4 6.8 2.5 1.9 

Maximum rain intensity (mm h
-1

) 10.2 69.8 13.6 63.0 

Mass-weighted mean drop diameter, 

Dm (mm) 
1.76 2.11 1.48 1.64 

*The “shortest sampl ng durat on”  s the m n mum  nterval needed to f ll a sampl ng bottle. 

**The “longest sampl ng durat on”  s the ma  mum  nterval needed to f ll a sampl ng bottle. 

 

 

In relation to the procedure for collection and analysis of rainwater samples: all the 

components of the rain sampling equipment were pre-washed with distilled water; the 

sampling bottles were removed immediately after being filled. 

 

The electrical conductivity (EC), pH and turbidity of rainwater were measured immediately 

upon completing the removal of samples, using the following portable instruments: HI9033 

Multi-range EC meter, HI8314 pH/ORP/Temperature meter, and the HI93125 Turbidity 

meter, all of them manufactured by Hanna Instruments.  

 

In addition to the electrical conductivity, pH and turbidity measurements, the sampled 

rainwater from rainy period 4 (23-09-2012) was frozen and transported to an analytical 

laboratory for analysing nitrates, sulphates, and chloride. The concentrations of sulphates and 

nitrates were measured by ion chromatography, and the chloride was determined by the Mohr 

Method.  

 

Although under certain conditions the chemical composition of the rainwater (e.g. pH) can 

change between the time from filling the first bottle and the time of sampling collection, it is 
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believed that such time period is not long enough to influence the concentration of the major 

inorganic ions in the dissolved fraction (e.g. Krupa, 2002). 

 

The rain intensity was measured by a laser disdrometer (“Laser Precipitation  onitor” from 

Thies Clima) installed next to the sequential rain sampler. This instrument also yields the 

number of raindrops over 21 size classes and 20 fall speed classes. The rainfall data temporal 

resolution is one-minute and the depth resolution is 0.001 mm. 

 

The variability in rainwater composition was explored in relation to the distribution of 

raindrop sizes. The laser disdrometer provided each minute a two dimensional matrix with the 

count of drops in each size and fall speed classes; the matrices were added over the sampling 

period to obtain one single matrix, which was used for determining the mass-weighted mean 

drop diameter (Dm). 

 

The Dm allows the quantification of the overall distribution of raindrop sizes and is obtained 

by (e.g. Ulbrich, 1983): 

 m  
∑   

  (  )   
 1
i 1

∑   
3 (  )    

 1
i 1

     (4.1) 

where Di [mm] is the central diameter of the size class i (21 classes) and N(Di) [mm
-1

 m
-3

] is 

the expected number of drops, with diameters between D and D+ΔD, present per unit volume 

of air. 

 

The N(Di) [mm
-1

m
-3

] defined in the Eq. (4.1) is obtained by (e.g. Krajewski et al., 2006):  

  (  )=
1

A t   

∑
n j

vj

 0

j 1

   (4.2) 

where nij is the number of detected raindrops in the size class i and fall speed class j (20 

classes), which is measured during the time period Δt [s] taken to fill the sampling bottles, vj 
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[m s
-1

] is the fall speed at the middle of the fall speed class j, A [m
2
] is the detection area and 

ΔDi [mm] is the width of the size class i. 

 

4.3.3. Data analysis 

 

Figure 15 shows the hyetographs of the four rainy periods investigated (see also Table 6). The 

total amount of rainwater collected in each rainy period was 10 mm, with the exception of 

rainy period 4 (23-09-2012), which accumulated 6 mm. The time taken to fill all the 

sampling-bottles for the four rainy periods varied from 89 min (rainy period 2) to 240 min 

(rainy period 3). The time needed to fill each sampling bottle is also represented in Figure 15; 

the highest difference in sampling duration was observed for the rainy period 4 (23-09-2012), 

ranging from 2 to 134 min. 
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Figure 15. Hyetographs of the four rainy periods (see Table 6). Time needed to fill each 

sampling bottle is represented on the hyetographs (time between two vertical dotted lines). 

 

The mean intensity for the four rainy periods varied between 1.9 mm h
-1

 (rainy period 4) and 

6.8 mm h
-1

 (rainy period 2). The mass-weighted mean drop diameter (Dm) ranged from 1.48 to 

2.11 mm (Table 6). The highest Dm was observed in rainy period 2 (02-11-2011), which was 

expected since the highest mean and maximum intensity was found for this sampling period, 

and bigger drops are typically more abundant in high rain rate episodes. 

 

The physical and chemical parameters that characterize the rainwater of the rainy periods 

investigated using the rainwater sequential sampler are given in Table 7. 
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Table 7. Description of rainwater parameters for the four rainy periods (see Table 6 and Figure 15): I (Rainfall Intensity), Dm (Mass-Weighted Mean 

Drop Diameter), EC (Electrical Conductivity), Tr (Turbidity), Cl
-
 (Chloride), S  

 -
 (Sulphates), and   3

-
 (Nitrates), used to test the sampler. 

S
a

m
p

le
s 

n
u

m
b

er
 

R
a

in
fa

ll
 a

m
o

u
n

t 

(m
m

) 

01-09-2011 02-11-2011 11-11-2011 23-09-2012 

I 

(mm h-1) 

Dm 

(mm) 

Tr  

(FNU) 

EC  

(μS cm-1) 
pH 

I 

(mm h-1) 

Dm 

(mm) 

Tr  

(FNU) 

EC 

(μS cm-1) 
pH 

I 

(mm h-1) 

Dm 

(mm) 

Tr  

(FNU) 

EC 

(μS cm-1) 
pH 

I 

(mm h-1) 

Dm 

(mm) 

Tr  

(FNU) 

EC 

(μS cm-1) 
pH 

Cl-  

(mg L-1) 
   

    

(mg L-1) 

   
   

(mg L-1) 

1 0.5 0.5 1.38 1.76 48.0 6.73 0.5 2.06 3.79 35.2 7.05 0.5 1.02 2.90 21.2 6.41 0.8 1.42 3.73 75.3 7.34 13.0 0.24 0.04 

2 0.5 3.4 1.70 1.14 30.4 6.62 1.4 1.88 3.02 33.0 7.06 3.8 1.62 1.49 11.9 6.79 18.2 2.22 1.40 21.3 7.53 4.1 7.47 0.65 

3 1.0 3.7 1.96 0.74 8.4 6.82 19.2 1.92 1.70 9.6 6.98 4.0 2.20 0.74 5.8 6.88 14.3 1.82 1.09 10.8 7.53 2.4 0.17 0.00 

4 1.0 7.8 2.21 0.48 5.5 7.20 49.6 2.25 1.07 6.6 6.91 3.6 1.18 0.90 6.0 6.84 12.9 1.73 0.91 7.8 7.40 4.1 2.65 2.71 

5 1.0 7.7 1.91 0.47 5.2 7.26 39.8 2.09 0.68 5.4 7.00 2.8 1.22 0.88 6.3 6.75 12.2 1.91 0.95 7.3 7.43 4.1 32.03* 2.00 

6 1.0 3.9 1.69 0.57 5.4 7.14 35.6 1.79 0.67 4.2 7.17 2.4 1.18 0.83 4.5 6.84 3.6 1.20 0.65 9.1 7.02 5.9 3.46 0.05 

7 1.0 2.4 1.57 0.39 5.2 7.06 69.1 2.53 0.61 3.6 7.10 2.1 1.27 0.76 3.3 7.02 0.5 1.05 0.56 15.8 7.18 2.4 5.14 0.01 

8 1.0 4.6 1.69 0.46 5.1 6.96 69.8 2.56 0.65 3.1 6.98 1.4 0.95 0.59 2.8 7.30 
 

  
  

   

9 1.0 6.2 1.77 0.22 9.9 6.51 32.9 2.14 0.61 2.9 7.10 8.5 1.53 0.47 2.2 6.98 
 

  
  

   

10 1.0 8.0 1.78 0.39 7.7 6.43 33.3 1.95 0.49 2.7 6.93 7.9 2.10 0.53 2.2 6.86 
 

  
  

   

11 1.0 4.6 1.63 0.53 11.8 6.50 14.2 1.70 0.42 3.1 7.10 7.6 2.02 0.74 3.3 6.74         

Mean 3.4 - 0.65 12.96 6.84 6.8 - 1.25 9.95 7.03 2.5 - 0.98 6.32 6.86 1.9 - 1.33 21.06 7.35 5.14 3.19 0.78 

Coef. of variation 0.80 - 0.67 1.06 0.04 2.16 - 0.91 1.22 0.01 1.03 - 0.70 0.90 0.03 2.27 - 0.83 1.16 0.03 0.71 0.89 1.43 

 

*Apparent anomalous value; it was ignored in the analysis 
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Empirical turbidity time variation was represented in Figure 16a for the four rainy periods 

investigated. The turbidity of the rainwater reduced over time; a power law fitted well the 

data. The results suggest the suitability of high resolution sampling – in particular, the 2 first 

bottles with 0.5 mm of rain each – to assess the intra-event rainwater composition; in case e.g. 

3-mm sampling-bottles were used, the rapid decline of turbidity in the beginning of this 

particular event would be unnoticed. This variability in rain turbidity is consistent with 

several studies that report the presence of higher concentration of suspended matter during the 

beginning of rainfall and decrease throughout the rain event, which is likely to result from 

“washout” processes (e.g. Jambers et al., 2000). 
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Figure 16. (a) Turbidity measured for each sample collected during the four rainy periods. 

Power laws are fitted to the data; (b) pH measured in the rainwater samples collected during 

the four rainy periods. 

 

The rainwater sequential sampling also permitted to identify the pH fluctuations during the 

rainy periods (Figure 16b). For the four rainy periods investigated, the samples pH values 

(a) 

(b) 
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ranged between 6.4 and 7.5. The mean (± standard deviation) for each rainy period was 6.8 (± 

0.3), 7.0 (± 0.1), 6.8 (± 0.2), and 7.3 (± 0.2) for rainy periods 1 to 4, respectively. 

 

 

Figure 17. Electrical conductivity (EC) measured in each sample during the four rainy 

periods. Rainfall intensity was averaged over each sampling interval. 

 

Figure 17 shows the evolution of the electrical conductivity of the rainwater during the four 

rainy periods. They all show the occurrence of higher electrical conductivity at the beginning 

of rainfall and a rapid decreased in the first millimetre of rain. Nevertheless, it is possible to 

observe some differences between the studied rainy periods. For example, the rainy period 4 

(23-09- 01 ) reached the highest electrical conductivity, 75 μS cm
-1

, which might be 

explained by the corresponding longest antecedent dry period, ~ 5 days (see Table 6). This 

relationship is usually described in the literature, for example Nyika et al. (1996) observed 

that the rainwater samples had higher electrical conductivity when there was no rainfall on the 

days before the rainwater collection, in comparison with the samples taken after a rainy day.  

 

The Figure 18a shows the variations of concentrations of chloride, sulphates and nitrates for 

the rainy period 4 (23-09-2012). The chloride concentration was higher in the first 0.5 mm 

and, after that, the concentration fluctuated between 2 and 6 mg L
-1

 (see also Table 7). The 

0

2

4

6

8

10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

M
e

a
n

 r
a

in
 i

n
te

n
s

it
y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)

Rainfall amount (mm)

0

20

40

60

80

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10

M
e

a
n

 r
a

in
 i

n
te

n
s

it
y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)

Rainfall amount (mm)

0

2

4

6

8

10

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

M
e

a
n

 r
a

in
 i

n
te

n
s

it
y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)
Rainfall amount (mm)

0

5

10

15

20

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

M
e

a
n

 r
a

in
 i

n
te

n
s

it
y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)

Rainfall amount (mm)

EC

Intensity

0

2

4

6

8

10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

M
e
a
n

 r
a
in

 i
n

te
n

s
it

y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)

Rainfall amount (mm)

0

20

40

60

80

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10

M
e
a
n

 r
a
in

 i
n

te
n

s
it

y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)

Rainfall amount (mm)

0

2

4

6

8

10

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

M
e
a
n

 r
a
in

 i
n

te
n

s
it

y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)
Rainfall amount (mm)

0

5

10

15

20

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

M
e
a
n

 r
a
in

 i
n

te
n

s
it

y
 

(m
m

 h
-1

)

E
C

 (
μ

S
 c

m
-1

)

Rainfall amount (mm)

EC

Intensity



 

4. RAINWATER SEQUENTIAL SAMPLER:  ASSESSING INTRA-EVENT 

WATER COMPOSITION VARIABILITY 

 

 

 

55 

 

rainwater sequential samples have concentrations of sulphates between 0.2 and 7.5 mg L
-1

, 

with a mean value of 3.2 mg L
-1

. In relation to the nitrates, the mean concentration recorded 

was 0.8 mg L
-1

; and 2.71 mg L
-1

 was the maximum value detected, which corresponds to the 

sample filled at the time of maximum rain intensity (~ 63 mm h
-1

), see Figure 15. 

 

Figure 18. (a) Concentrations of chloride, sulphates and nitrates during the rainy period 4 (23-

09-2012); (b) Concentrations of chloride, sulphates and nitrates plotted against the mass-

weighted mean drop diameter (Dm). 

 

The relationship between the processes of removal of pollutants from the atmosphere and 

raindrop sizes has been studied for a long time. For example, Levine and Schwartz (1982) 

stated that the removal of HNO3 vapour depend on raindrop size, with the smaller drops 

(< 1 mm) having the greatest contribution to the washout scavenging. In addition, Ebert et al.  

(1998) establish different relationships between scavenged particle sizes (0.19 - 1.8 μm) and 

the most effective raindrop diameter. In Figure 18b the mass-weighted mean drop diameter 

(Dm) is plotted against the concentrations of chloride, sulphates and nitrates measured in the 

rainy period 4 (23-09-2012), apparently showing no clear relationship. The variation of Dm, 

ranging from 1.05 to 2.22 mm, seems to have a different effect on rainwater composition 

depending on the ionic species. For example, the highest concentrations of sulphates (7.5 and 

5.1 mg L
-1

) were observed for the extreme (highest and lowest) values of Dm (2.22 and 

1.05 mm, respectively) (see also Table 7). But the small sample size analysed does not allow 

any inference of relations between the relevant variables, which in any case was not the main 

goal of this work. 
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4.4. Concluding remarks 

 

This study proposed a rainwater sequential sampler that can be useful as a low-cost solution 

to explore rainwater composition variations during a rainfall event. Because of the simplicity 

of its design, the apparatus can be easily adapted to include different sample volumes and 

total amount of sampled rainfall. A drawback is that in order to register the intensity and 

duration of the rain event it is necessary to use in addition a recording rain gauge. 

 

Sequential samples of rain were collected in Coimbra (Portugal) during four rainy periods to 

test the performance of the equipment. The higher resolution of the initial rainwater samples 

(2 bottles with 0.5 mm of rainwater each whereas all other bottles have 1 mm) allowed the 

detection of higher values of some parameters followed by a rapid decline. Results suggest 

that the volume resolution of the device is able to assess rainwater composition variability 

during a rain event, but if necessary this can be easily adapted to specific requirements. 
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5. ANALYSIS OF RAINFALL EVENTS IN COIMBRA, PORTUGAL: 

VARIABILITY OF RAINDROP CHARACTERISTICS 

 

 

Abstract 

 

The characterization of the rainfall structure at small time scales is of particular interest for 

many hydrological applications. The aim of this study is to characterize rainfall events 

according to the size and fall speed of drops, including the intra-event variability. Rainfall 

data comprise a set of 35 independent rainfall events recorded during three years with a laser 

disdrometer in Coimbra, Portugal. The data temporal resolution is one-minute. Descriptive 

statistics of time series of raindrop diameter, fall speed, rain rate and kinetic energy were 

studied. The empirical raindrop size distribution (DSD) was calculated based on data from all 

the 35 events recorded, and also provided for individual rainfall events: the parameterization 

of DSD was attained by using the gamma distribution to fit the empirical data. Results 

confirmed that the gamma DSD parameters varied with rain rates; moreover, the skewness of 

DSD increased from low to high rain rates. Power laws were shown to fit well the 

relationships between the mass-weighted mean diameter and kinetic energy, as well as the 

kinetic energy-rain rate relationship. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

58 

 

5.1. Introduction 

 

The characterization of the rainfall structure at small time scales is of particular interest for 

many hydrological applications, and the increasing availability of high-resolution records, 

provided by disdrometers is allowing this study at time scales of e.g. one minute. One study 

approach is by defining rain events, whose properties are meaningful for specific applications, 

such as soil erosion, rainfall modelling and rainfall-runoff modelling.  

 

In the early studies, raindrop size was measured using the flour method (Laws and Parsons, 

1943), filter paper (Marshall and Palmer, 1948) and photographic cameras (e.g. Jones, 1959), 

among other approaches. In recent years, instruments such as optical disdrometers have 

become popular in scientific research (e.g. Do Khac et al., 2004; Brawn and Upton, 2008; 

King et al., 2010; Frasson et al., 2011). These sensors are able to measure the size of 

raindrops that pass through a laser beam (e.g. Thies, 2007). Different statistics can then be 

obtained to characterize the rain in terms of drop sizes: the mass-weighted mean diameter of 

drops, and drop size distribution (DSD) are commonly analysed (e.g. Haddad et al., 1996; 

Uijlenhoet, 1999; Fornis et al., 2005; Marzuki et al., 2010). 

 

The relation between the distribution of drop sizes and the rain rate has interested the 

scientific community for a long time; for early studies see e.g. Laws and Parsons (1943) and 

Best (1950). For example, Carter et al. (1974) found that the median drop size increases with 

increasing rain rate up to 63.5 mm h
-1

 and decreases at higher intensities; this could be 

explained by the instability of large drops which break into smaller ones. The relationship 

between rain rate and the median drop size or the drop-size distribution is not unique, as there 

are many factors affecting the drop characteristic. For example, several authors explored the 

variability of raindrop size distribution according to the rain’s type, e.g. stratiform and 

convective (e.g. Blanchard, 1953; Mason and Andrews, 1960; Tokay and Short, 1996;  

Caracciolo et al., 2006; Niu et al., 2010).  

 

Despite the variability of raindrop size distributions, the measurements from numerous 

researchers suggest that averaged distributions tend to be positively skewed, unimodal and 
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parameterized with a few parameters (e.g. Lu et al., 2008). In order to model discrete drop 

size distributions (resulting from the size classes established by the disdrometer) different 

parameterizations have been proposed. The exponential distribution (e.g. Marshall and 

Palmer, 1948) is the most widely used (Zhang et al., 2008). Because the exponential 

parameterizations have been claimed to tend to overestimate the number of small drops, 

distributions using an extra (third) parameter have been suggested, namely the lognormal 

distribution (e.g. Levin, 1954), and the gamma distribution (e.g. Ulbrich, 1983). 

 

Raindrop falling speed is also an important variable in the characterization of rainfall. The 

terminal velocity of water drops was measured under laboratory conditions by e.g. Gunn and 

Kinzer (1949), Beard and Pruppacher (1969), and Beard (1976). Following these findings and 

because data on drop sizes are usually more easily available in comparison to drop fall speed 

records, it is often assumed that the terminal velocity of a drop is mainly determined by its 

size and is the same as that for drops falling in stagnant air; power laws that describe the 

terminal velocity as a function of the equivalent spherical diameter were derived, and are 

commonly used (e.g. Atlas et al., 1973; Brandes et al., 2002).  

 

Over the last decades, instruments such as the optical disdrometers have also been used to 

monitor the drop fall speeds. Some authors (e.g. Krajewski et al., 2006) showed that, in 

general, their fall speed measurements agreed closely with those of Gunn and Kinzer (1949), 

which are usually a reference for drop size-terminal velocity relationship. However, Montero-

Martínez et al. (2009) claimed that raindrops, in their studied size range of 0.1 - 3 mm, did not 

all fall at the theoretical terminal velocity during the periods of high rainfall rates as a result of 

the break-up of larger drops that fall at greater velocities. Recently, Leijnse and Uijlenhoet 

(2010) concluded that the effect of high-velocity small drops would be negligible, in 

particular, for remote sensing of rainfall using radar, microwave links, or optical links, since 

the errors induced by the use of slightly different drop size-terminal velocity relations would 

be obscured by other error sources. Nevertheless, it has been suggested the importance of 

further investigation of the drop fall speed at natural outdoor conditions in different places, 

because for example, adverse environment conditions such as the air pollution, might change 

the surface tension of water and cause more frequent breakup of drops. 
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The information about the diameter and fall speed of each individual raindrop permits to 

estimate the rainfall kinetic energy, which is of particular interest for water erosion studies. A 

wide variation of relationships between kinetic energy and rain rate have been proposed in the 

literature (e.g. Kinnell, 1981; Rosewell, 1986; Steiner and Smith, 2000; Assouline, 2009; 

Petan et al., 2010). For example, Salles et al. (2002) states the most suitable mathematical 

function to link kinetic energy and rain rate is a power law considering the existing drop-size 

distribution models from literature.  

 

This study analyses the variability of raindrops’ characteristics (size and fall speed) using data 

from Coimbra (Portugal); the estimation of relationships between these variables and the rain 

rates and kinetic energy focuses on individual events, and also on data from all the 35 selected 

events.  

 

5.2. Material and methods 

 

5.2.1. Study area and experimental equipment 

 

Rainfall data were recorded with a laser disdrometer installed in the city of Coimbra 

(Portugal). The disdrometer used is manufactured by Thies Clima (see Appendix A.6.). In the 

equipment a laser-optical source produces a light-beam (infrared of 785 nm and measuring 

area of 4777 mm
2
) then a receiver transforms the optical intensity into an electrical signal. 

When a raindrop falls through the light-beam, the receiving signal is reduced. The size of the 

drop is calculated from the amplitude of the reduction and the fall speed of the drop is 

determined from the duration of the reduced signal. The equipment provides the distribution 

of the drops’ diameter over  1 size classes (0.1 5 ≤ D < 8.000 mm, with irregular class 

widths) and  0 fall speed classes (0.0 ≤ v < 20.0 m s
-1

, with irregular class widths) (Thies, 

2007). The data temporal resolution is one-minute. 
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5.2.2. Rainfall events 

 

The study explores a set of 35 independent rainfall events recorded during three years, from 

July 2009 to June 2012, that correspond to a total of 12321 minutes and 589.3 mm. The 

following criteria were adopted to identify the individual events (e.g. Dunkerley, 2008b; 

Jaffrain and Berne, 2012): a minimum rain depth of approximately 10 mm; a minimum inter-

event period of at least 15 min (i.e. during at least 15 min the rain rate is lower than 0.05 mm h
-1

).  

 

The description of the selected rainfall events in relation to rain rate and duration are shown in 

Table 8. These events were recorded throughout the year, spanning the 4 seasons, although 

45% of the events were observed in the fall. 

 

The properties of the selected rainfall events varied considerably. For example, the total 

amount of rainfall ranged from 9.5 mm (events 1 and 14) to 38.3 mm (event 6). Most of the 

events (94%) lasted more than 2 hours. The analysis of the events’ mean rain rates shows that 

90% of the data are below 7 mm h
-1

, with an average value of 4 mm h
-1

.  
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Table 8. Description of the 35 rainfall events selected during the three year records, in the 

period from July 2009 to June 2012. 

Event 

Date (day-month-year) / Time (h:min) 
Duration 

(h:min) 

Depth  

(mm) 

Mean rain  

rate  

(mm h-1) 

1-min 

maximum 

rain rate 

(mm h-1) 

Coef. of  

Var. of  

1-min rain 

rate 

Season 
start end 

1 22-07-2009 20:36 22-07-2009 21:53 01:18 9.5 8.2 39.3 1.05 Summer 

2 20-10-2009 04:54 20-10-2009 09:57 05:04 20.4 4.1 31.1 1.16 Fall 

3 21-10-2009 19:18 21-10-2009 23:52 04:35 18.9 4.3 39.4 1.42 Fall 

4 14-11-2009 00:10 14-11-2009 02:37 02:28 19.1 7.9 80.1 1.81 Fall 

5 15-11-2009 15:19 16-11-2009 04:43 13:25 38.2 2.9 28.1 1.14 Fall 

6 16-11-2009 06:50 16-11-2009 14:12 07:23 38.3 5.2 45.3 1.31 Fall 

7 16-11-2009 18:52 16-11-2009 20:54 02:03 12.3 6.0 26.9 1.16 Fall 

8 29-11-2009 02:05 29-11-2009 05:33 03:29 18.3 5.3 59.2 1.52 Fall 

9 06-12-2009 10:32 06-12-2009 15:24 04:53 13.9 2.8 20.7 1.05 Fall 

10 06-12-2009 16:43 06-12-2009 20:46 04:04 13.8 3.4 63.3 1.98 Fall 

11 22-12-2009 21:37 23-12-2009 06:19 08:43 17.5 2.1 20.1 1.68 Winter 

12 30-12-2009 09:09 30-12-2009 09:51 00:43 10.2 14.3 98.6 1.61 Winter 

13 12-01-2010 03:29 12-01-2010 11:37 08:09 22.7 2.8 52.5 1.51 Winter 

14 13-01-2010 10:10 13-01-2010 15:22 05:13 9.5 1.9 16.0 1.13 Winter 

15 16-01-2010 09:39 16-01-2010 18:44 09:06 22.0 2.4 19.5 1.13 Winter 

16 17-02-2010 00:58 17-02-2010 09:01 08:04 12.3 1.5 7.7 0.70 Winter 

17 05-03-2010 05:46 06-03-2010 01:11 19:26 16.0 0.8 3.0 0.72 Winter 

18 20-04-2010 20:19 21-04-2010 00:06 03:48 17.4 4.6 49.3 1.63 Spring 

19 13-11-2010 23:05 14-11-2010 04:30 05:26 24.0 4.4 173.9 2.95 Fall 

20 16-11-2010 21:56 17-11-2010 06:06 08:11 16.4 2.0 20.8 1.02 Fall 

21 20-11-2010 00:20 20-11-2010 03:42 03:23 10.3 3.2 56.0 2.21 Fall 

22 07-12-2010 13:19 07-12-2010 15:31 02:13 10.2 4.7 44.3 1.70 Fall 

23 30-12-2010 13:06 30-12-2010 19:50 06:45 14.6 2.3 25.1 1.54 Winter 

24 06-01-2011 16:28 06-01-2011 19:45 03:18 15.3 4.6 29.2 0.88 Winter 

25 13-02-2011 08:36 13-02-2011 12:10 03:35 12.2 3.5 51.7 1.72 Winter 

26 18-02-2011 20:34 19-02-2011 06:59 10:26 19.8 2.0 15.2 1.15 Winter 

27 28-03-2011 17:05 28-03-2011 21:47 04:43 14.5 3.1 22.9 1.23 Spring 

28 18-04-2011 23:09 19-04-2011 07:47 08:39 16.2 1.9 26.8 1.49 Spring 

29 29-04-2011 16:00 29-04-2011 20:06 04:07 13.0 3.2 42.9 2.02 Spring 

30 01-09-2011 17:23 01-09-2011 21:15 03:53 9.8 2.5 9.1 0.97 Summer 

31 02-11-2011 08:08 02-11-2011 11:09 03:02 22.9 8.1 80.3 1.51 Fall 

32 22-11-2011 01:40 22-11-2011 09:25 07:46 15.5 2.1 11.2 1.04 Fall 

33 10-12-2011 06:53 10-12-2011 10:19 03:27 10.1 2.9 15.5 1.14 Fall 

34 13-04-2012 23:32 14-04-2012 05:13 05:42 14.0 2.6 20.8 1.40 Spring 

35 25-04-2012 09:56 25-04-2012 18:46 08:51 20.3 2.3 18.7 1.23 Spring 

Mean   05:52 16.8 3.9 39.0   

Minimum 
 

00:43 9.5 0.8 3.0   

Maximum 
 

19:26 38.3 14.3 173.9   
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5.2.3. Rainfall rates, raindrop properties, and rainfall kinetic energy 

 

As explained before in the description of the disdrometer, the instrument provides a two 

dimensional matrix with the count of drops in each size and fall speed classes. These data 

were used to calculate the rainfall intensity, R [mm h
-1

], by (e.g. Krajewski et al., 2006): 

  

(5.1) 

with R(Di) being the intensity for a given drop size class i: 

 
(5.2) 

where ni is the number of drops detected in the size class i during the interval t = 1/60 h, Di 

[mm] is the drop diameter at the middle of the size class i, and A [mm
2
] is the disdrometer 

detection area.  

 

Aside from rainfall rate, information on the size and fall speed of drops was explored; basic 

descriptive statistics of time series of raindrop diameter (D) and fall speed (v) were 

determined (i.e. the average, maximum, minimum and coefficient of variation). 

 

In order to characterize the rainfall microstructure, a fundamental property commonly used is 

the raindrop size distribution (DSD), N(D). The N(Di) [mm
-1

m
-3

] represents the expected 

number of raindrops in the drop-size class i (21 classes), present per unit volume of air, and is 

calculated by (e.g. Krajewski et al., 2006):  

 

(5.3) 

where Di [mm] is the drop diameter at the middle of the size class i, nij is the number of 

detected raindrops in the size class i and belonging to the fall speed class j (20 classes), which 

is measured during the interval Dt (1 min), vj [m s
-1

] is the fall speed of the raindrops at the 

middle of the fall speed class j, A [m
2
] is the disdrometer detection area and DDi [mm] is the 

width of the size class i. 

R = ∑R (Di)

21

i=1

 

R (Di) =
π

6A t
niDi

3
 

 N(Di)=
1

A t  i

∑
nij

vj

20

j=1
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The mass-weighted mean diameter, Dm [mm], is another useful parameter to describe the 

DSD, and is estimated by  (e.g. Ulbrich, 1983; Testud et al., 2001): 

 
(5.4) 

All the variables in Eq. (5.4) were defined before for Eq. (5.3). 

 

The relationship between Dm and rain rates was investigated based on data from all the 35 

selected events; Spearman's rho was calculated to assess the correlation between the variables. 

Compared to the widely used Pearson’s r, Spearman's rho is more robust to outliers and to 

nonlinearity (e.g. Helsel and Hirsch, 2002). 

 

The parameterization of raindrop size distribution was attempted by using the gamma 

distribution, which is believed to fit the shape of the DSD as more small than large raindrops 

are found in a particular volume (e.g. Wong and Chidambaram, 1985). The gamma 

distribution function has the form (e.g. Ulbrich, 1983):  

 
(5.5) 

where N(D) [mm
-1

 m
-3

] is the raindrop size distribution as a function of the raindrop diameter 

D [mm], N0 [mm
-1-μ

 m
-3

] is number concentration parameter or scaling parameter, μ [unitless] 

is the shape parameter, and Λ [mm
-1

] is the slope parameter.  

 

The parameters N0, μ, and Λ were estimated based on the method of moments, where the kth 

moment, Mk, is calculated by (e.g. Tokay and Short, 1996): 

 

(5.6) 

and Γ is the standard gamma function.  

 

Cao and Zhang (2009) have shown that the middle-moment estimators (M2, M4 and M6) 

produce smaller errors than lower and higher-moment estimators, provided the DSD follows 

Dm= 
∑ Di

4
N(Di)  i

21
i=1

∑ Di
3
N(Di)  i

21
i=1

 

 N(D) = N0 D
μ𝑒−ΛD   

Mk = N0

Г( μ+k+1)

Λ
 μ+k+1
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the gamma distribution. The gamma DSD parameters were hence obtained (Cao and Zhang,  

2009): 

 

(5.7) (5.8) 

 

(5.9) 

 
(5.10) 

After analysing the drop size data, the drop fall speed (v) analysis was performed. The mean 

drop fall speed (vm) was calculated as, 

 

(5.11) 

where nj is the number of detected raindrops in the fall speed class j, vj (m s
-1

) is the fall speed 

at the middle of the fall speed class j, and N is the total number of detected raindrops.  

 

The diameter and fall speed of raindrops was also used to estimate the time-specific kinetic 

energy KEtime [J m
-2 

h
-1

] (e.g. Usón and Ramos, 2001):  

 

(5.12) 

with 

 

(5.13) 

where 𝜌 is the water density (10
-6

 kg mm
-3

), nij is the number of detected raindrops in the size 

class i and fall speed class j, which is measured during the interval t = 1/60 h, vj [m s
-1

] is the fall 

speed of the raindrops at the middle of the fall speed class j, A [m
2
] is the detection area, and 

Di [mm] is the drop diameter at the middle of the size class i. 

 

μ   
11η-7+ η2+1 η+1

2(1-η)
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M4
2

M2M6

 

Λ   √
M2
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Г( μ+3)
 

vm=
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20
j=1

N
 

KEtime = ∑  
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KEtime(Di) 
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 ρ π
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Power law KEtime-R relationships were obtained based on data from all the 35 events 

recorded, and also provided for individual rainfall events. 

 

The rainfall kinetic energy can also be estimated in terms of volume-specific rain kinetic 

energy KEmm [J m
-2 

mm
-1

], which is obtained by the ratio of KEtime/R, see Chapter 9 (section 

9.2.2.). Nevertheless, as stated by Salles et al. (2002) estimating KEmm-R relationships 

produces erroneous results from a statistical point of view, as relating KEmm to R would be 

equivalent to relating the ratio KEtime/R to R; the KEmm were hence not studied in this chapter. 

 

The sub division of data into different rain rate classes allows to study drop characteristics 

(diameter and fall speed) at different rain rates, see e.g. Coutinho and Tomás (1995), Nzeukou 

et al. (2004), and Islam et al. (2012). Eight rain rate classes were defined such that the width 

of the range, increases in a roughly exponential manner (Table 9) (Harikumar et al., 2009) 

 

Table 9. Definition of rain rate class intervals. 

Class 
Class interval 

(mm h
-1

) 

Total number of 

1-min records 

R1 0.2 < R 2003 

R2 0.2 ≤ R <0.5 1544 

R3 0.5 ≤ R <1 1723 

R4 1.0 ≤ R < 2 2283 

R5 2.0 ≤ R < 5 2929 

R6 5 ≤ R < 10 1204 

R7 10 ≤ R < 20 437 

R8 R ≥  0 198 

 

5.3. Results and discussion 

 

The results on the variability of raindrop characteristics are given in three sections: drop size 

(section 5.3.1), drop fall speed (section 5.3.2), and rainfall kinetic energy (section 5.3.3). 
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5.3.1. Characterization of drop size 

Figure 19a shows the mass-weighted mean drop diameter (Dm) and the maximum drop 

diameter for the 35 rainfall events. The Dm varied from roughly 0.6 to 1.7 mm, whereas the 

maximum drop diameter varied from 4 to 8 mm. Despite the wide spread of the data points, 

the coefficient of variation of drop diameter seems to be directly related to Dm, i.e. events with 

higher Dm have a higher coefficient of variation of diameters (Figure 19b).  

  

Figure 19. (a) Dm (mass-weighted mean diameter) for the 35 rainfall events; the dots are 

scaled according to the maximum drop diameter recorded in each event. (b)  Dm plotted 

against the coefficient of variation of drop diameter. The fit line is indicative of the tendency 

in the data. 

 

The intra-event variability of drop sizes was also assessed. Figure 20 shows examples of time 

series of drop size (minimum and maximum diameter, and mass-weighted mean diameter), 

and rain rates; rainfall events were selected from the Table 8 (event 8, 12 and 19) as their 1-

min maximum rain rate was particularly higher, from 59 to 174 mm h
-1

. Please note that in 

Figure 20 (and Figure 25), event 12, there are not periods of time without rain, although some 

instants have very low rain rates (around 1 mm h
-1

). The figure suggests a tendency for the 

mass-weighted mean diameter to increase with the increasing of the rain rate, so in the next 

step this relationship will be explored. 
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Figure 20. Time series of drop size and rain rate for three rainfall events. Since disdrometers 

can not measure the very small drops, the minimum diameter measured is truncated at 

0.125 mm.  

 

In Figure 21, the R is plotted as a function of Dm in a log scale in order to accommodate their 

large variation. Figure 21a shows the scatterplot of the rainfall events 8, 12 and 19 (the same 

as Figure 20) fitted with power laws. For the three rain events the Spearman's rho is higher 

than 0.80 and there is enough statistical significance to reject the null hypothesis of no 

correlation.  
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Figure 21. Dm-R relationships fitted with power law equations based on data from: (a) the 

individual rainfall events 8, 12 and 19; (b) all the 35 rainfall events. The Spearman's rho is 

reported. 

 

A similar relationship between Dm and R was used to characterize the rainfall based on data 

from all the 35 rainfall events (Figure 21b). Dm is not able to explain all observed variability 

of the rain rate, rho = 0.66, which is acceptable as the attempt is to explain the rain rate 

variability over 12321 minutes using one single parameter estimated from each raindrop size 

spectra. 

 

As the mass-weighted mean diameter provides limited information on drops properties, other 

statistics need to be studied, such as the drop size distribution. Figure 22a to Figure 22c 

illustrates the raindrop size distributions for the rainfall events 8, 12 and 19. The variation of 

the DSD is observed not only from event to event but also across a specific rain event (Figure 

22a to Figure 22c, grey dots). The drop size distribution for a whole event (Figure 22a to 

Figure 22c, black triangles) was generated by averaging the total number of rain drops in each 

size class recorded at 1-min resolution. The gamma distribution was adjusted to the data, see 

parameters in Table 10 estimated based on the method of moments; the Pearson’s r 

correlation coefficients were determined to measure the goodness-of-fit.  
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3,0328; rho = 0,836; p <0,05; 
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3,2456; rho = 0,904; p <0,05; 
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Figure 22. Empirical raindrop size distributions fitted with gamma distributions for: (a) event 

8; (b) event 12; (c) event 19; (d) 8 rain rate classes obtained from the entire data set (35 

rainfall events), defined in Table 9. 
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Table 10. Parameters of the gamma distribution used for modeling the DSD illustrated in 

Figure 22 and skewness of the distribution. Pearson’s r correlation coefficients are indicated. 

Rain event 

Rain 

rate 

classe 

Average 

number 

 of drops 

Coef. of gamma distribution 

Skewness r 
μ 

Λ 

(mm
-1

) 

N0 

(mm
-1-μ

 m
-3

) 

Event 8 - 1153 -1.45 1.48 1242.8 3.90 0.943 

Event 12 - 2390 -1.13 1.29 2189.2 3.62 0.990 

Event 19 - 1217 -1.65 1.21 860.2 4.12 0.922 

All events 

(35) 

R1 180 -0.62 5.46 1951.0 2.57 0.930 

R2 371 -0.50 4.64 4081.8 2.75 0.836 

R3 540 -0.88 3.49 2714.6 3.06 0.708 

R4 709 -0.83 3.02 3186.4 3.05 0.731 

R5 1068 -1.48 1.90 1667.0 3.80 0.734 

R6 1475 -1.47 1.59 2005.6 3.89 0.921 

R7 2574 -1.10 1.77 4785.1 3.46 0.990 

R8 5355 -1.17 1.30 5502.2 3.69 0.985 

All events - 858 -1.72 1.46 781.1 4.06 0.842 

 

The variation of drop distribution as a function of rain rate is also explored. The next step 

consists in taking the whole data set (the 35 rainfall events) and trying to fit gamma 

distributions to the empirical raindrop size distributions obtained according to different ranges 

of R (see Table 9).  

 

As expected the variation of DSD gamma parameters are clearly dependent on rain rate 

classes (Figure 22d, Table 10). The narrower DSD (and lower skewness, 2.57) correspond to 

lower values of R, i.e. class R1, which indicates lesser concentration of large drops. As the 

value of R increases (from R1 to R8), the concentration of large drops per unit of volume, 

N(D), also increases. The gamma DSD model showed smaller shape parameters (μ), and 

higher slope parameters (Λ) for lower rain rates, e.g. R2, and the opposite, i.e. higher μ, and 

smaller Λ, for higher rain rates, e.g. R5. Note that the gamma distribution reduces to the 

exponential distribution when μ = 0; in this study for all rain rate classes the μ is negative, 

which means the DSD is concave upward on a semilogaritmic plot. The highest 

concentrations of drops were hence found for the minimum drop size classes, <0.50 mm.  
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5.3.2. Characterization of drop fall speed 

 

Within certain limits, raindrop fall speed increases with an increase in drop size. Figure 23 

shows the total number of drops as a function of drop diameter and drop fall speed obtained 

by averaging rain drops in each size and fall speed classes over the 8 rain rate classes, and the 

35 rain events. The laboratory measurements of drop terminal velocities by Gunn and Kinzer 

(1949) in stagnant air (pressure of 760 mm, temperature of 20°C, and relative humidity of 

50%) are also shown as a reference. 

 

 

Figure 23. Total number of drops as a function of drop diameter and drop fall speed for 8 rain 

rate classes and the 35 rain events. The Gunn and Kinzer (1949) measurements are 

represented (with crosses) as a reference. 

 

In general, the observed diameter-fall speed relationship followed the Gunn-Kinzer 

measurements, but for some rain rate classes, e.g. R1 and R8, it is clear the spread of fall 

speeds of smaller drops; in fact, for the drops with diameters lower than 1 mm the observed 

fall speeds tend to be higher than the corresponding Gunn-Kinder measurements. For all the 

eight rain rate classes, the highest concentration of drops had diameters smaller than 2 mm, 

which is consistent with drop size distributions shown in the section 5.3.1, and fall speeds 
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lower than 5 m s
-1

. The following analysis will focus on the characterization of drop fall 

speeds of the 35 rainfall events. 

 

The mean drop fall speed of all observed rainfall events is shown in Figure 24a and it ranges 

from 2.0 to 3.0 m s
-1

; in particular, the majority of the events (80%) have a vm between 2.4 

and 2.8 m s
-1

. The variability of the drop fall speed for all rainfall events is illustrated in 

Figure 24b by the coefficient of variation, ranging from 0.37 to 0.66. It does not seem to have 

a direct relationship between vm and the variation coefficient of drop fall speed, i.e. events 

with higher vm are not necessarily the ones with higher coefficient of variation. 

 

 

Figure 24. (a) vm (mean raindrop fall speed) for the 35 rainfall events; (b) vm plotted against 

the coefficient of variation of drop fall speed. 

 

Using the same three events studied before in drop size analysis, Figure 25 shows the time 

series of drop fall speed (mean, minimum and maximum) and rain rate with 1-min resolution. 

The vm shows some fluctuations during the whole event that occurs without an evident 

correlation with the rain rate variation (see also Figure 26). For example, in the event 12 at the 

time of the highest rain rate (98.6 mm h
-1

, recorded at 09:12), the vm (2.3 m s
-1

) for that 1 

minute interval was lower than the mean fall speed for the whole event (2.7 m s
-1

). 
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Figure 25. Time series of drop fall speed and rain rate of the rainfall events 8, 12 and 19.  

 

In order to understand the relation between the drop fall speed and the rain rate, this time 

for all studied rainfall events, in Figure 26 vm was plotted against R. The vm seems not to be 

related with the rain rate (rho = 0.292). It is common knowledge that larger drops fall faster 

than smaller ones, and as noticed before higher rain rates indicate increased concentration of 

large drops. However, despite this fact, the existence of a great amount of small drops might 

explain the low values of mean fall speeds, when the rain rates and the concentration of large 

drops are the highest. In Figure 27 the absolute frequency of raindrop fall speed is shown for 

the 8 rain rate classes by averaging rain drops in each fall speed classes over the rain rate 

class; it is possible to observe that for R8 the highest concentration of drops is for fall speeds 

of 1.2 m s
-1

, whereas for lower rain rates, class R6, the highest concentration is for drops that 

fall quicker, 3.8 m s
-1

.  

 

vm 
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Figure 26. Mean raindrop fall speed (vm) plotted against R based on data from all the 35 

rainfall events. The Spearman's rho is indicated. 

  

Figure 27. Absolute frequency of raindrop fall speeds for 8 rain rate classes obtained from the 

35 rainfall events. 

 

5.3.3. Characterization of rainfall kinetic energy 

 

Here we explore the variability of rainfall kinetic energy within the individual rainfall events 

and from all the 35 rainfall events. Figure 28 shows the hyetograph and the time-specific 

kinetic energy of rain event 8. In the figure it is observed that as the rain rate increases so does 

the kinetic energy. 
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Figure 28. Hyetograph and time-specific kinetic energy of the rainfall event 8. 

 

To investigate the correlation between kinetic energy and rain rate, KE-R relationship was 

plotted for the three rainfall events (Figure 29a). Power laws fitted well the data. Figure 29b 

(dash line) confirms that type of relation based on the data from all the 35 rainfall events; 

indeed, the KE-R relationship follows the power law, KE=aR
b
, where a = 7.4246 and b = 

1.2476. 

 

Figure 29. KEtime-R relationship based on data from: (a) the rainfall events 8, 12 and 19 (b) all 

the 35 rainfall events. Power laws are fitted to the data. 

 

The kinetic energy is estimated based on drop size (and drop fall speed) measurements (see 

Eq. 5.13). When relating the volume-weighted mean diameter to the kinetic energy, the power 
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law function fitted well KE-Dm relationship (Figure 30). Nevertheless, because of the natural 

variations of raindrop characteristics, the estimation of the kinetic energy from the KEtime -Dm 

relationship is limited (rho = 0.813). 

     

Figure 30. KEtime-Dm relationship based on data from: (a) the rainfall events 8, 12 and 19 (b) 

all the 35 rainfall events. Power laws are fitted to the data. 

 

5.4. Concluding remarks 

 

The study provided information on the variability of rain rate, kinetic energy and raindrop 

characteristics (diameter and fall speed) for single event scale and based on data from all the 

35 events recorded in Coimbra from July 2009 to June 2012, in order to attempt the 

estimation of relationships between these rainfall parameters.  
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size recorded and the dispersion of drops diameter. Nevertheless, the variability of mass-
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rain rate classes; in the case of lower rain rates, e.g. < 2 mm h
-1

, the distribution was 

characterized by a large number of small to medium sized drops < 2.5 mm, whereas higher 

rain rates indicated increased concentration of larger drops, from 2.5 to 5 mm. 

 

Unlike the raindrop sizes, analysis of the drop fall speeds revealed that the mean fall speed did 

not increase progressively with the rain rate. The existence of a great amount of small drops, 

which fall with less velocity, is likely to explain the low values of mean fall velocities, even 

when the rain rates and the concentration of large drops are the highest. 

 

The relationship between rain rate and kinetic energy was well described by power laws. This 

might be explained as both rainfall rate and kinetic energy are estimated based on the number 

of drops and their size. Moreover, power laws also fitted well KE-Dm, despite the natural 

variations of raindrop characteristics.  
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6. INVESTIGATING ANNUAL AND MONTHLY TRENDS IN 

PRECIPITATION STRUCTURE: AN OVERVIEW ACROSS 

PORTUGAL2 

 

 

Abstract 

 

This work investigates recent changes in precipitation patterns manifested in long annual and 

monthly precipitation time series recorded in Portugal. The dataset comprises records from 14 

meteorological stations scattered over mainland Portugal and the Portuguese North Atlantic 

Islands of Madeira and Azores; some of the time series date back to the 19th century. The 

data were tested for trends using the Mann-Kendall non-parametric test and Sen’s non-

parametric method, searching both for full monotonic trends over the record period and for 

partial trends. Results provide no evidence for rejecting the null hypothesis of no trend in 

annual precipitation, when a monotonic linear model was used. Nevertheless, the analyses of 

50 years’ moving averages showed an increase over time, in the recent past, for many of the 

series in mainland Portugal and the Islands. For the longest time series this behaviour was 

preceded by a decrease over time. The analyses of partial trends in the time series suggested a 

sequence of alternately decreasing and increasing trends in annual and monthly precipitation, 

which are sometimes statistically significant. The trend changing points were identified. 

 

 

 

 

 

 

 

 

                                                 

2 de Lima, M.I.P., Carvalho, S.C.P., de Lima, J.L.M.P. 2010. Investigating annual and monthly trends in the precipitation 

structure: an overview across Portugal. Natural Hazards and Earth System Sciences 10, 2429–2440. 
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6.1. Introduction 

 

Variations in precipitation over daily, seasonal, annual, and decadal time-scales have an 

impact on water balances. Thus it is important to understand the recent changes in 

precipitation patterns as part of the long term behaviour of this process, e.g. to predict changes 

in other hydrological processes. For these studies, one limiting factor is the short length of 

many existing precipitation records and the spatial representativeness of the available data. 

Thus, the majority of the studies on this topic are based on relatively short time series, 

covering a few decades, over periods of about 40–50 years. Only a few studies report results 

for longer periods, essentially covering the 20th century as a whole. The fact that many 

studies may be reporting different results highlights the need for further insight into both 

empirical findings, based on point precipitation data analyses, and numerical models of 

climate change projection. Several studies of precipitation trends over the Mediterranean 

Basin and the Iberian Peninsula are reported in Lionello et al. (2006). 

 

This study aims at improving our understanding of the dynamics of precipitation and of the 

recent changes in this process over the Portuguese territory. It complements previous studies 

for mainland Portugal which have reported high variability in the precipitation regime and 

discussed recent patterns of change. Among these studies are: Corte-Real et al. (1998), 

Goodess and Jones (2002), de Lima et al. (2007, 2010b), Rodrigo and Trigo (2007), Durão et 

al. (2009), Mourato et al. (2010). There are also projections for the future behaviour of this 

process over the territory including Miranda et al. (2002, 2006) and López-Moreno et al. 

(2009). For example, Miranda et al. (2006) predict that the annual precipitation in mainland 

Portugal will decline within the range of 20 to 40% by the end of the 21st century. Climate 

change scenarios in the Portuguese North Atlantic Archipelagos of Madeira and Azores are 

discussed by e.g. Santos et al. (2004). Nevertheless, the characterization of precipitation in 

these archipelagos has been less studied than that in mainland Portugal. In particular, the 

problem of fluctuations in precipitation variability over time has not been fully explored yet 

for these islands. 
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The work reported here investigates annual and monthly precipitation records that include the 

longest time series available for Portugal that we are aware of. The data are from 14 

meteorological stations in mainland Portugal and in the Madeira and Azores island groups. 

The study focused on the presence of linear monotonic trends in the temporal structure of 

precipitation over the record period and over sub-periods (i.e. partial trends). Trends were 

examined using the Mann-Kendall non-parametric test and Sen’s non-parametric method. 

Partial trends were investigated using the method proposed by Tomé and Miranda (2005), 

with a view to performing a piecewise linear fitting to climate data and to detecting the 

associated trend change points.  

 

6.2. Study area and precipitation data 

 

This work examines 14 long precipitation data sets from mainland Portugal and the 

Portuguese North Atlantic Archipelagos of Madeira and Azores. The data were obtained by 

the Institute of Meteorology (IM) and the Institute for Water (INAG), of Portugal, and have 

annual and monthly resolutions. Some of the time series date back to the 19th century, 

spanning periods that range between 88 and 145 years. The first records are from 1863. The 

location of the precipitation measuring sites is shown in Figure 31 and Table 11: ten sites are 

in mainland Portugal and four are in the islands. Three sites are located in the Azores, 

specifically on the islands of Faial, Terceira and S. Miguel, and the fourth site is on Madeira 

Island. Table 11 also presents some descriptive statistics for the annual time series. 
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Figure 31. Study area: (a) location of mainland Portugal and the Madeira and Azores 

archipelagos; (b) location of ten precipitation measuring stations in mainland Portugal; (c) 

location of four precipitation measuring stations in the Madeira and Azores archipelagos. 
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Table 11. Identification of the precipitation measuring sites and some descriptive statistics for 

the annual time series. 

Measuring Station (Code) 
Latitude 

(N) 

Longitude 

(W) 

Altitude 

(m) 
Period 

Annual precipitation 

Mean  

(mm) 

Coef. of 

Variation 

Max.  

(mm) 

Min.  

(mm) 

M
a

in
la

n
d

 P
o

rt
u

g
a

l 

Travancas  (03N-01G) 41º50’ 07º18’ 884 1914-2006 985 0.252 1636 499 

Moncorvo  (06O-04UG) 41º10’ 07º03’ 385 1878-1995 569 0.263 1095 253 

Porto (546)  1º08’ 08º36’ 93 1863-2007 1237 0.251 2255 604 

Coimbra (549)  0º1 ’ 08º 5’ 141 1900-1998 982 0.216 1651 524 

Penha Garcia (13O-01UG) 40º03’ 07º01’ 495 1911-1998 808 0.264 1597 432 

Lisboa (535) 38°43' 09°09' 77 1871-2007 733 0.250 1421 416 

Évora (557) 38°34' 07°54' 309 1871-2007 629 0.253 1186 346 

Beja (562) 38°01' 07°52' 246 1900-2007 563 0.246 1042 301 

São Brás de Alportel (31J-01C) 37º10’ 07º45’ 325 1909-2002 837 0.306 1693 431 

Lagos (31E-01UC) 37º06’ 08º40’ 14 1902-2006 527 0.302 1098 187 

A
zo

re
s 

Horta/Faial (506) 38º31’  8º38’ 60 1901-1994 1020 0.168 1623 692 

  Angra do Heroísmo /Terceira (511) 38º 0’  7º13’ 74 1865-2004 1065 0.204 1650 588 

Ponta Delgada/S. Miguel (513) 37º 5’  5º 0’ 35 1865-1994 884 0.234 1459 432 

M
a

d
ei

ra
 

Funchal (522) 3 º38’ 16º53’ 49 1865-2000 623 0.343 1419 200 

 

 

Mainland Portugal lies in the transitional region between the sub-tropical anticyclone and the 

sub-polar depression zones, between latitudes 36
◦
56

' 
and 42

◦
09

' 
N and longitudes 6

◦ 
10

' 
and 

9
◦
34

' 
W. The climatic variables exhibit strong north-south and west-east gradients, and 

precipitation also exhibits strong seasonal variability. The dominant climate in mainland 

Portugal is mild Mediterranean with a warm, dry summer period. These characteristics are 

more pronounced in the south. The climate is greatly influenced by the latitude, the orography 

and the proximity of the Atlantic Ocean (see e.g. Miranda et al., 2002). 

  

The Madeira archipelago is situated in the North Atlantic Ocean, about 900 km from 

mainland Europe (Figure 31). It is formed by two main islands of volcanic origin: Madeira 

(728 km
2
) and Porto Santo (42 km

2
). It is in the Atlantic subtropical belt under the direct 

influence of the Azores high pressure system. The geographical position of the  adeira 

archipelago is between parallels 30
◦
01

' 
and 33

◦
07

' 
N and between longitudes 15

◦
51

' 
and 17

◦
15

' 
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W. The complex topography of Madeira Island and its small size play a crucial role in the 

local precipitation regime, which is marked by high spatial variability (e.g. de Lima and de 

Lima, 2009). The winter months are quite wet, particularly at higher altitudes, and stormy and 

cloudy conditions may last for several days at a time.  

 

The Azores archipelago is located in the  orth Atlantic ridge, between latitudes 36◦ 5' and 

39◦ 3'   and longitudes   ◦ 5' and 31◦17' W. It comprises 9 islands of volcanic origin, in 3 

groups: Western, Central and Eastern. The warm Gulf Stream and their latitudinal position 

affect the islands’ climatic conditions. For most of the year the Atlantic depressions track 

across the Azores islands. The precipitation is heavier and more frequent in winter. In late 

spring and summer the Azores region is under the influence of the Azores anticyclone (e.g. 

Santos et al., 2004; Miranda et al., 2006). 

 

6.3. Methodology 

 

This section gives a brief overview of the methods used in the data analyses. All the methods 

are extensively described in the literature so there is no need to go into their details here. 

  

Preliminary analyses of the precipitation time series included checking the data for gaps and 

clearly incorrect (i.e. anomalous) precipitation values. Then the data were statistically tested 

for normality using the Shapiro-Wilk test (e.g. Royston, 1982) and the Kolmogorov-Smirnov 

(e.g. Deheuvels, 1981) non-parametric tests. In the Kolmogorov-Smirnov test the p-value was 

computed using the analytical approximation to the test statistics of Lilliefors, proposed by 

Dallal and Wilkinson (1986). 

  

The preliminary analyses were complemented with the investigation of the homogeneity of 

the data. Inhomogeneities in time series can result, for example, from changes in 

observational routines, relocation of the measuring station, and changes in station 

surroundings or in measurement techniques. The four tests selected to check the time series 

homogeneity were: Standard Normal Homogeneity Test (SNHT) (Alexandersson and 
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Moberg, 1997), the Buishand range test (Buishand, 1982), the Pettitt test (Pettitt, 1979), 

1979), and the Von Neumann ratio test (von Neumann, 1941). All tests but the Pettitt test are 

parametric. The Pettitt test is based on the ranks of the elements of a series rather than on the 

values themselves (Pettitt, 1979). It can be very useful to apply more than one statistical test 

when it comes to detecting inhomogeneities in time series (e.g. Wijngaard et al., 2003; Costa 

and Soares, 2009). 

  

All the homogeneity tests assume as null hypothesis that the variable tested is independent 

and identically distributed. In the SNHT, Buishand range and Pettitt tests the alternative 

hypothesis is associated with the existence of deviations in the mean, whereas the Von 

Neumann ratio test assumes that the distribution is not random. This last test is the only one 

that cannot locate the change-point. But the sensitivity of these tests to detect the break 

differs: the SNHT is better at identifying breaks near the beginning and the end of a series, 

whereas the the Buishand range and the Pettitt tests identify the breaks in the middle of a time 

series more easily (Hawkins, 1977).  

 

With respect to their homogeneity, the precipitation time series were assembled in categories 

based on the classification used by Wijngaard et al. (2003). Therefore, the precipitation series 

were classified as “useful”, “doubtful” and “suspect”, depending on the number of tests that 

rejected the null hypothesis at the 1% significance level. This classification amounts to a 

qualitative assessment of the adequacy of the time series to conduct trend and variability 

analyses.  

 

The presence of trends in the precipitation time series was examined using the Mann-Kendall 

non-parametric test (e.g. Gilbert, 1987) and Sen’s non-parametric method (Sen, 1968; Gilbert, 

1987). The Mann-Kendall test is useful if the possible trend in a time series can be considered 

monotonic; moreover, the time series should not be characterized by seasonality. The null 

hypothesis, H0, of no trend assumes that the observations are randomly ordered in time and is 

tested against the alternative hypothesis, H1, associated with increasing or decreasing 

monotonic trends. In this work the null hypothesis is tested at the 10, 5, 1 and 0.1% 

significance levels; the test is taken in its two-sided form (see e.g. Sneyers, 1990). Sen’s 
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estimator can be used for estimating the change per unit time in time series that exhibit linear 

trends.  

 

The method described in Tomé and Miranda (2005) was used to deal with the non-monotonic 

character of trends in the data. This method was built based on a study developed by Karl et 

al. (2000) about global warming changes and corresponds to an extension of the method 

proposed in Tomé and Miranda (2004). The methodology aims at fitting an unknown number 

of continuous straight-line segments to a time series and at detecting the trend change-points. 

The number and location of the breakpoints are optimized simultaneously. Thus, the method 

searches for such segments that best fit the data, in a least-squares sense, while satisfying a 

pair of conditions: a minimum time distance between breakpoints and a minimum trend 

change at each breakpoint. The conditions imposed in our study are explained below. 

 

6.4. Results and discussion 

 

6.4.1. Analysis of annual precipitation 

 

This section first presents the results of the preliminary analyses of the annual data and 

afterwards the results of the trend analyses.  

 

The statistics for the Shapiro-Wilk and Kolmogorov-Smirnov tests for normality applied to 

the annual precipitation time series are given in Table 12. The statistics provided evidence to 

reject the null hypothesis of normality for the data from Horta and São Brás de Alportel. Even 

though normality is a pre-condition for some of the subsequent tests of homogeneity, the tests 

are applied to all the data sets. However, one should keep in mind that the results of the 

normality and homogeneity testing of the precipitation time series might affect the validity of 

the conclusion of the subsequent trend tests (below) and should be carefully taken into 

account.  
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Table 12. Statistics of the Shapiro-Wilk and Kolmogorov-Smirnov tests for normality, applied 

to the annual precipitation time series. The results in bold indicate which series have normal 

distributions for a 5% significance level. The * mark indicates that the result is a lower bound 

of the true significance. The classification of the time series as ‘useful’, ‘doubtful’ and 

‘suspect’ is based on the results of the homogeneity tests, as proposed by Wijngaard et al. 

(2003). 

 Measuring Station Period 
Normality tests Classification based 

on homogeneity tests Shapiro-Wilk Kolmogorov--Smirnov 

M
a

in
la

n
d

 P
o

rt
u

g
a

l 

Travancas 1914-2006 0.159 0.200* Useful 

Moncorvo 1878-1995 0.029 0.200* Useful 

Porto 1863-2007 0.013 0.200* Useful 

Coimbra 1900-1998 0.148 0.200* Useful 

Penha Garcia 1911-1998 0.010 0.079 Useful 

Lisboa 1871-2007 0.001 0.091 Useful 

Évora 1871-2007 0.011 0.200* Useful 

Beja 1900-2007 0.037 0.200* Useful 

São Brás de Alportel 1909-2002 0.001 0.015 Useful 

Lagos 1902-2006 0.008 0.200* Useful 

A
zo

re
s 

Horta (Faial) 1901-1994 0.001 0.017 Useful 

Angra do Heroísmo (Terceira Island) 1865-2004 0.406 0.048 Doubtful 

Ponta Delgada (S. Miguel Island) 1865-1994 0.834 0.200* Suspect 

M
a

d
ei

ra
 

Funchal (Madeira) 1865-2000 0.008 0.200* Useful 

 

The outcomes of the four homogeneity tests (SNHT, the Buishand range test, the Pettitt test 

and the Von  eumann ratio test) yielded the classification for each precipitation series that is 

presented in Table 12. Although almost all data sets are classified as “useful”, results indicate 

that some time series may not be homogeneous over the full record period. Two time series 

were not classified as “useful”: the data from Ponta Delgada are classified as “suspect” and 

the data from Angra do Heroísmo are classified as “doubtful”. It was not possible to explain 

these behaviours from the existing metadata. Taking into consideration the results of the 

normality tests for the time series from São Brás de Alportel and Horta, the tests for 

homogeneity might be considered inconclusive; the data sets were classified as “useful”. 

Thus, for some time series the results of the trend analysis over the full period should be 
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interpreted cautiously. But for the sub-periods considered in the partial trends analyses, all the 

precipitation series are classed as “useful”. 

 

Results of the annual precipitation trend analyses are given in Table 13 and Figure 32. This 

figure shows the annual time series for selected locations, the monotonic linear trend fitting to 

the data and the partial trends identified using the method described in Tomé and Miranda 

(2005). Table 13 gives the results of the trend analysis for the full record period and for two 

selected contiguous periods having distinct behaviour. The statistical significance of the 

results was assessed using the Mann-Kendall test. Over the full time span of the records there 

was no evidence to reject the null hypothesis of no trend in annual precipitation at any of the 

stations from mainland Portugal. For the Azores, the results indicate a decrease of 19 mm 

decade
−1

 in the annual precipitation from Horta (Faial Island). But this result could be biased, 

taking into consideration the results of the normality and homogeneity tests discussed above. 

Because the other time-series from the Azores were not found to be homogeneous over the 

full period of the records they were not tested for trends over that period. For Funchal 

(Madeira Island), results show a reduction in annual precipitation of about 10.5 mm decade
−1

 

over the record period. 
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Table 13. Sen’s estimator of the slope (mm decade
-1

) of monotonic and partial trends of the 

annual precipitation, as well as for the trends in the 50-year moving average series. The 

confidence levels for the trend tests are marked: 
+
90%, 

*
95%, 

**
99% and 

***
99.9%. The 

periods selected for partial trends were based on breakpoints located using the methodology 

described by Tomé and Miranda (2005). The 50-year moving average series were taken to be 

centred on the corresponding period. NH identifies series that were not considered 

homogeneous.  

 

Measuring Station 
Monotonic  Trends Partial Trends 50-years moving average 

Period (mm dec-1) Period (mm dec-1) Period (mm dec-1) 

M
a

in
la

n
d

 P
o

rt
u

g
a

l 

Travancas 1914-2006 -4.32 
1940-1960 

1960-1981 

164.67 

-78.80 
1937-1980 -4.57** 

Moncorvo 1878-1995 -3.78 
1945-1965 

1965-1989 

164.60** 

-25.30 

1902-1931 

1932-1970 

-15.85*** 

1.75+ 

Porto 1863-2007 -3.35 
1947-1967 

1967-2002 

222.33 

52.88 

1887-1926 

1927-1982 

-23.52*** 

25.37*** 

Coimbra 1900-1998 -1.75 
1946-1966 

1966-1992 

204.85 

-68.71 
1924-1973 7.45*** 

Penha Garcia 1911-1998 -5.64 
1945-1965 

1965-1993 

140.33+ 

-56.33 
1934-1972 -7.25*** 

Lisboa 1871-2007 -2.61 
1933-1963 

1963-1983 

70.54+ 

-74.40 

1895-1928 

1929-1982 

-21.02*** 

11.46*** 

Évora 1871-2007 -3.78 
1942-1981 

1981-2001 

-8.23 

44.83 
1895-1982 -1.15* 

Beja 1900-2007 -2.92 
1933-1961 

1961-1981 

67.28 

-66.31 
1924-1982 9.38*** 

São Brás de Alportel 1909-2002 12.78 
1935-1962 

1962-1982 

75.60 

-139.24 
1933-1977 23.10*** 

Lagos 1902-2006 7.15 
1941-1961 

1961-1981 

116.67+ 

-105.11+ 1926-1981 18.52*** 

A
zo

re
s 

Horta 1901-1994 -19.00** 
1947-1967 

1967-1994 

-70.40+ 

19.55 
1925-1969 -14.69*** 

Angra do Heroísmo 1865-2004 NH 
1944-1964 

1964-1992 

-5.89 

-35.69 
n.a. n.a. 

Ponta Delgada 1865-1994 NH 
1923-1943 

1943-1989 

200.46** 

4.30 
n.a. n.a. 

M
a

d
ei

ra
 

Funchal 1865-2000 -10.49* 
1950-1970 

1970-2000 

231.00*** 

-32.68 

1889-1942 

1943-1975 

-30.65*** 

8.74*** 
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Figure 32. Annual precipitation series for six stations in mainland Portugal and four stations 

in the islands. Sen’s estimator of the slope of monotonic trends over the full record periods 

(blue line) is indicated in the legend. The red line is the fit for partial trends. For better 

visualization, note that the Y axes scales are not the same for all the plots. 
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The 50-year moving average series of annual precipitation were also examined. The reason 

for adopting 50 years as the time-window instead of a shorter period was to reduce the impact 

of precipitation cycles of a few decades on the analyses. Figure 33 shows a plot of the 50-year 

moving average series where each data point is centred on the corresponding 50-year period. 

Overall, the 50-year moving average analyses suggest an increasing tendency in annual 

precipitation (i.e. positive trend slope) in the recent past for many of the series in mainland 

Portugal and the islands. For the longest time series this behaviour was sometimes preceded 

by a decrease over time. The rate of change observed for different sub-periods is given in 

Table 13; results are not given for the series that were not considered homogeneous. It is 

worth noting that the presence of correlation in the data may cause errors in trend analysis and 

frequently lead to rejecting the null hypothesis, which means that trend is accepted even in 

cases when it does not exist. 

   

Figure 33. The 50-year moving average series of the annual precipitation from Portugal; the 

data from the islands are plotted with dashed lines. The data are centred on the 50-year 

window. See also Table 13. 

 

Examination of the 50-year moving average data and the non-monotonic character of the 

behaviour observed led us to investigate partial trends in precipitation. For that purpose the 

method proposed in Tomé and Miranda (2005) was used. This methodology identifies times 

of significant change in the precipitation series. The results for annual precipitation that are 
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shown in Figure 32 and Figure 34 were obtained by unconstraining (in practical terms) the 

minimum rate of change, set at 0.01 mm year
−1

, at consecutive breakpoints by imposing a 

minimum allowed interval of 20 years between breakpoints and a minimum allowed length of 

5 years for the first and last segments. These conditions were empirically chosen based on the 

application examples given in Tomé and Miranda (2005) and on the examination of the data. 

In certain cases, these conditions may introduce some bias in the results, with the location of 

the breakpoints (i.e. times of significant change) in particular being affected.  

 

Figure 34 reveals that the patterns of precipitation variation over time are not the same for all 

the data sets investigated. Nevertheless, results suggest that in mainland Portugal sub-periods 

of increasing and decreasing trends in annual precipitation occur in the records and that they 

alternate over time. The dominant common annual precipitation pattern is, therefore, 

alternating periods of increasing and decreasing trends. The characterization of the frequency 

associated with this behaviour is hampered by the short length of the time series. In addition 

there are some small shifts in the breakpoints from data set to data set. The minimum interval 

between breakpoints and the minimum length of the first and last segments that were imposed 

for the automatic search for times of significant change in the series can bias the results. Also, 

the very low spatial density information provided by the data used in this study makes it 

difficult to evaluate the influence of local factors (e.g. topographical factors) on the results. 

With respect to the Atlantic archipelagos, the scarcity and dispersion of the data do not allow 

us to conclude whether there is a pattern in annual precipitation there. 

 



 

6. INVESTIGATING ANNUAL AND MONTHLY TRENDS IN PRECIPITATION 

STRUCTURE: AN OVERVIEW ACROSS PORTUGAL 
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Figure 34. Partial trend fits to the annual precipitations for: (a) ten locations in mainland 

Portugal (adapted from de Lima et al., 2010b); (b) four locations in the Madeira and Azores 

archipelagos. The time series are not plotted. 

 

Table 13 shows the rate of change associated with partial trends for two consecutive periods; 

these were individually selected for the different stations, respecting the breakpoints between 

periods with significantly different trends that were identified by the methodology used in this 

analysis. It highlights how the results can be completely different depending on the period 

analysed, and that extrapolations beyond these periods can be extremely dangerous without a 

comprehensive understanding of larger scale precipitation dynamics.  

 

For example, in the period between roughly 1940 and 1960 in mainland Portugal there was an 

increase in annual precipitation, followed by a decreasing trend from about 1960 to 1980 (see 

Figure 34a). It should be noted that there are shifts in the corresponding breakpoints between 

the data sets and that these dates are only indicative. Table 13 shows the results of partial 

precipitation trends for such consecutive periods. From the information in this table, Sen’s 

estimator confirms reductions in annual precipitation over mainland Portugal in the period 

roughly from the 60s–70s until the 80s–90s for almost all locations; but 75% of these trends 

are not statistically significant.  oreover, in many locations this behaviour changed into an 
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increasing trend period which has recently apparently been followed again by another period 

of decreasing trend. It is worth noting that the first and last segments are too short to allow a 

reliable estimation of trend since this estimator could easily be biased. 

 

The partial trends in annual precipitation for the four data sets from the Azores and Madeira 

are shown in Figure 34b. The reduced number of time series does not allow the same type of 

comparative analysis, nor can we draw conclusions about whether there is a regular pattern in 

the precipitation structure. But the results do suggest the presence of a sequence of alternating 

decreasing and increasing trends in annual precipitation in these locations. This behaviour is 

qualitatively similar to that exhibited by the data from mainland Portugal, although the two 

patterns are not in phase. The drivers of precipitation are known to be different in the several 

locations, and so there was no expectation that the results would coincide. 

 

6.4.2. Analysis of monthly precipitation 

 

Table 14 presents the results of the trend analyses of monthly precipitation recorded in 

mainland Portugal and the Islands for the full record period and for sub-periods. Some 

monthly trends obtained for sub-periods are also shown in Figure 35.  
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Table 14. Sen’s estimator of the monthly precipitation trends (mm decade
-1

) and the 

respective confidence levels: +90%, *95%, **99% and ***99.9%. The data are for the full 

period and for sub-periods of negative trend in annual precipitation, which were selected for 

each time series based on the breakpoints located in the partial trend analyses. The results for 

mainland Portugal were partly reported in de Lima et al. (2010b). 

 Station name Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

M
a

in
la

n
d

 P
o

rt
u

g
a

l 

Travancas 
1914-2006 -1.56 -2.97 -5.30+ -1.13 -0.49 -1.20 0.06 0.92* 0.48 7.00** -1.18 -4.36 

1960-1981 -24.17 0.80 -23.20 -1.94 22.52 -0.58 -1.56 -0.40 -10.50 -7.14 -58.00* -3.81 

Moncorvo 
1878-1995 0.32 0.12 -2.03* -0.99 -0.53 0.13 0.00 0.00 -0.57 -1.56 -1.52 -0.14 

1965-1989 -25.47+ -15.52 -14.77 12.25 -3.92 3.49 0.00 0.00 0.02 3.72 5.18 18.10 

Porto 
1863-2007 0.84 0.68 -2.52 -0.89 -0.04 -0.57 -0.17 0.31 -0.24 -0.97 -0.82 1.85 

1967-2002 -12.25 -19.38 -17.45+ 6.46 -6.43 -6.34 4.75* 1.33 -0.67 24.88+ 9.36 24.06 

Coimbra 
1900-1998 4.13 1.25 -6.41** -0.10 2.10 0.02 -0.25 -0.17 -0.58 0.79 -1.10 -1.02 

1966-1992 -42.24* -28.50 -11.80 10.69 -22.75+ -1.91 -0.33 2.00 -2.62 18.54 -9.38 13.05 

Penha Garcia 
1911-1998 2.72 0.74 -10.90*** 0.06 1.75 -0.40 0.00 0.00 0.00 0.07 -0.14 0.00 

1965-1993 -35.22+ -26.29 -7.39 7.25 0.04 -3.84 0.00 0.00 0.05 12.77 -2.53 7.97 

Lisboa 
1871-2007 0.89 -0.64 -2.83** -1.13 -0.47 -0.36 0.00 0.02 -0.08 -0.35 -0.29 -0.63 

1963-1983 -73.29* -35.93 -23.68 7.00 2.64 -3.64 1.59* 0.00 -3.54 -6.58 -22.79 8.58 

Évora 
1871-2007 -0.07 -0.63 -2.15* -0.85 -0.77 -0.45 0.00 0.00+ 0.21 0.32 -1.24 -0.07 

1981-2001 11.27 -5.96 -0.71 -24.45* 34.13+ -1.16 0.00 0.00 5.55 20.94 -18.42 -8.29 

Beja 
1900-2007 0.19 -0.81 -3.25** 0.17 -0.54 -0.26 0.00 0.00 0.05 1.44 -1.51 0.33 

1961-1981 -14.89 -6.37 -13.53 3.58 6.13 -11.33 0.17 0.10 -4.58 3.22 -32.44* 17.79 

São Brás de Alportel 
1909-2002 4.35 -2.88 -5.16* 1.42 1.00 0.00 0.00*** 0.00** 1.18*** 0.95 -1.16 8.92* 

1962-1982 -56.14 -28.07 -20.73 3.10 -2.38 -11.97 0.22** 0.00 2.00 -14.15 -33.54 13.81 

Lagos 
1902-2006 0.18 -0.08 -1.15 0.74 -0.07 -0.11+ 0.00 0.00+ 0.00 1.66 -0.70 1.33 

1961-1981 -40.62 9.39 -29.12* 5.98 -1.86 -4.55 0.00* 0.00 -1.91 -3.10 -49.08* -14.19 

A
zo

re
s 

Horta 
1901-1994 -2.79 -0.50 -1.73 -2.53+ -2.86* -2.02+ -0.68 -1.82+ -0.46 1.81 1.02 -0.91** 

1967-1994 -25.90* -1.60 -7.78 -7.20 6.46 -2.62 -2.65 2.50 -4.25 16.53+ 25.99* 0.89 

Angra do Heroísmo  

(Terceira Island) 

1865-2004 1.17 -0.53 1.08 -0.02 -0.73 0.09 0.15 0.51 0.89 1.32 -0.72 1.18 

1964-1992 -41.28* -18.27 -10.60 11.06 13.23 -6.05 -5.29 2.82 23.27* -4.43 16.50 -4.43 

Ponta Delgada  

(S. Miguel Island) 

1865-1994 3.42* 2.00+ 1.88 0.26 -0.05 -0.03 0.45 -0.17 1.99* 2.71* 3.55** 1.41 

1943-1989 -7.38 0.29 -8.28 5.58 -4.00 1.83 -1.00 1.27 6.14 -6.17 2.52 12.17+ 

M
a

d
ei

ra
 

Funchal  
1865-2000 -1.57 -0.15 -1.78 -0.68 0.00 0.00 0.00 0.00+ -0.08 0.00 -2.95+ -0.34 

1970-2000 -9.60 -16.75* -9.50 -9.40* 5.05 -0.17 0.00 0.00 -1.00 13.62 -11.50 11.29 
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Figure 35. Monthly precipitation trends in selected periods for: (a) five locations in mainland 

Portugal; (b) four locations in Azores and Madeira. The periods analysed are identified in the 

legend and were selected based on the partial trend analyses and results, and correspond to 

decreasing trend sub-periods in annual precipitation. 

 

Results for the full record period do not suggest important overall changes in precipitation 

distribution over the year. The exception is the precipitation in March: over time spans 

ranging from 88 to 145 years precipitation exhibits a decreasing trend in all the ten stations in 

mainland Portugal that were investigated; for seven of the data sets the trends are statistically 

significant, at least at the 5% significance level. For the Azores, only the data from Horta 

showed a decreasing pattern for  arch, which was not statistically significant. Similar 

behaviour was revealed by the data from Funchal.  

 

The analyses of sub-periods yield different results. An example is given in Table 14 for 

periods from roughly 1960 to 1980, when a decreasing trend in annual precipitation was 

observed; but this result is only significant for the data from Lagos. The exception is the data 

from Porto; it reveals an increasing trend over this period, but not statistically significant. The 
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selection of the sub-periods was based on the results of partial trend analysis of annual 

precipitation, and so the sub-periods studied are not exactly the same for all the data sets. This 

may help explain some of the different results obtained for the rate of change in monthly 

precipitation for the various data sets (Figure 35), apart from local factors.  

 

Figure 36 shows the analysis of partial trends in monthly precipitation observed in mainland 

Portugal for January, March, October and December. For each month, the tendencies are 

given in Table 14 for selected sub-periods and suggest that the distribution of precipitation 

over the year (i.e. seasonal distribution) changes over time; some of the results are statistically 

significant. When analysed individually, monthly precipitation exhibits alternately decreasing 

and increasing trends. This type of pattern was also observed for annual precipitation. 

 

Figure 36. Partial trends in monthly precipitation in mainland Portugal: (a) January; (b) 

March; (c) October; (d) December. The time series are not plotted. 
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6.5. Concluding remarks 

  

The investigation of monotonic linear trends in long precipitation time series was used as an 

exploratory tool to detect long term patterns of variation in this climate element in mainland 

Portugal and the Azores and Madeira archipelagos. On the whole this analysis did not reveal 

statistical evidence for rejecting the null hypothesis of no trend in annual precipitation over 

the full record period, in those geographical locations, based on the data that were explored in 

this study. However, the analyses of the 50-year moving averages of annual precipitation 

revealed an increase over time, in the recent past, for many of the series. For the longest time 

series this behaviour was preceded by a decrease over time.  

 

The analyses of partial trends in the time series revealed a sequence of alternating periods of 

decreasing and increasing trends in annual and monthly precipitation, and these are sometimes 

statistically significant. These contiguous periods, exhibiting distinct tendencies, are defined 

by turning points in the behaviour of precipitation which are times of significant change in the 

properties of precipitation. The study of monthly precipitation suggested that redistribution of 

precipitation during the year took place over several decades, which means that some seasons 

were wetter while others were drier. However, results also show that this behaviour is not 

persistent and that changes can occur rapidly, in terms of the relevant time scales being 

discussed here. The limited number and origin of the precipitation time series used in this 

work means that it is not possible to perceive the presence of regional patterns. This issue is 

more pertinent for the Azores and Madeira, where the spatial variability of precipitation is 

very marked; at the same time, the homogeneity tests identified some probable problems in 

the data that may reduce the usefulness of some of the time series for trend studies and, 

therefore, affect the reliability of the results. It is noticeable, however, that over the longest 

period of records, which ranges from 88 to 145 years, March exhibits a decreasing trend in all 

the ten stations in mainland Portugal, seven of which are statistically significant at the 5% 

significance level. This type of behaviour was not revealed by the data from the islands, for 

this study. There is evidence that global and local factors can both affect the spatial 

distribution of trends in mainland Portugal and in the Portuguese archipelagos, which has 

been also reported in the literature for other locations in the Iberian Peninsula and nearby 
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territories (see e.g. Zhang et al., 1997; Lionello et al., 2006; de Lima et al., 2007; Costa et al., 

2010; González-Hidalgo et al., 2011; Mourato et al., 2010).  

 

This study also confirms that the results from precipitation trend analyses based on a 

monotonic (linear) model should be handled carefully, especially if only a small number of 

data sets are studied. In addition, it demonstrates that the analyses of short precipitation 

records consisting of only a few decades can be biased by the period studied. Complementary 

methods should therefore be used to better understand the structure of precipitation. 

  

We have already stressed these issues in a previous publication (de Lima et al., 2010b), based 

on the analyses of data sets from mainland Portugal which have been reanalysed and further 

explored in the present work. But this fuller study of precipitation time series from Portugal, 

which is now more focused on the variability of monthly precipitation (i.e. seasonal 

variability), and the study of additional data (i.e. the study of long series from the Azores and 

Madeira islands), lends more weight to our previous conclusions. Thus, this work provides a 

more comprehensive and in-depth discussion of the long-term behaviour of annual and 

monthly precipitation in Portugal than is found in de Lima et al. (2010b), thanks to the greater 

diversity of analytical methods used and the overall analyses of precipitation records for 

mainland Portugal and the Portuguese islands of Madeira and the Azores. This compilation of 

results is also important for the overall understanding of the local conditions and regional 

specificities of precipitation in Portugal. 
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7. RAINFALL SIMULATOR EXPERIMENTS ON THE IMPORTANCE 

OF WHEN RAINFALL BURST OCCURS DURING STORM EVENTS 

ON RUNOFF AND SOIL LOSS3 

 

 

Abstract 

 

The influence of the temporal structure of rainfall on the discharge hydrographs and 

associated transport processes has not yet been fully explored. Nevertheless, the expectation is 

that characteristics of the rain spells have important effects on both runoff and soil loss, in 

particular the time when heavy rainfall bursts occur during storm events. This experimental 

study focuses especially on the influence of when such bursts occur during rain storm events 

of equal duration and depth on runoff and soil loss processes.  

 

Laboratory experiments were conducted using a rainfall simulator and a soil flume to study 

the different responses caused by rain events characterized by a constant base intensity 

interrupted by short 5-minute rainfall bursts. These bursts occurred at different times during 

the event. On average, the greatest runoff and amount of sediment transported were caused by 

the rainfall bursts that occurred later in the event. Results obtained in the laboratory 

experiments are expected to represent the response typical of advanced, centred and delayed 

rainfall patterns.  

 

Thus, rain storm temporal variability and patterns should be considered in the definition of 

design hyetographs for rainfall-runoff and rainfall-erosion modelling. Ignoring the time of 

occurrence of the heaviest rain intensity within storm events can cause both under and over 

estimation of runoff discharge and soil loss. 

 

                                                 

3 de Lima, J.L.M.P., Carvalho, S.C.P., de Lima, M.I.P. 2013. Rainfall simulator experiments on the importance of when 

rainfall burst occurs during storm events on runoff and soil loss. Zeitschrift für Geomorphologie 57(1), 91–109. 
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7.1. Introduction 

 

The occurrence of extreme rainfall events severely affects society and can have a significant 

economic impact. Rainfall characteristics, which include intensity, duration, direction of 

movement, moving speed and temporal and spatial variability, affect both the integrated 

response of a catchment area (e.g. runoff hydrograph) and the distributed response (e.g. the 

temporal and spatial variability of soil moisture), several studies have already focused on 

these problems (e.g. Black, 1972; Foroud et al., 1984; Singh, 1997; 2005; Assouline et al., 

2007; Chang, 2007; Cerdà and Doerr, 2007; de Lima et al., 2009). Knowledge of these 

characteristics and the probability of their occurrence is very important for designing 

engineering structures and urban drainage systems, reservoir management, pollution and 

erosion control, and agricultural practices (e.g. Stedinger et al., 1993; Hosking and Wallis, 

1997). In this context, design hyetographs determine the shape and timing of the 

corresponding runoff hydrograph and are also expected to affect strongly soil loss. 

 

A number of design hyetographs have been proposed by e.g. Bonta and Rao (1988), Grimaldi 

and Serinaldi (2006) and Ellouze et al. (2009). Some examples of hyetograph patterns are: 

rectangular, which has been commonly used, but in certain cases it has been found to 

underestimate both, volume and peak discharge (e.g. Lambourne and Stephenson, 1987), 

triangular (Yen and Chow, 1980), Chicago hyetograph (Keifer and Chu, 1957), and best linear 

unbiased estimation (BLUE) hyetograph (Veneziano and Villani, 1999). In these hyetographs, 

maximum intensities (bursts) can occur at any instant during a storm event. Researchers have 

tried to assess the influence of when these rainfall bursts occur during the event on runoff 

hydrographs (e.g. El-Jabi and Sarraf, 1991; Alfieri et al., 2008). Rain storm patterns have 

been classified depending on the part of the event duration in which the heaviest intensity falls 

(Dunkerley, 2012). One example of a classification of rain patterns defines advanced, centred 

or intermediate, delayed and uniform patterns. A storm event pattern is classified as advanced 

when high rainfall intensities take place early in the event, and the delayed pattern is the 

opposite. In the centred pattern high rainfall intensities occur in the middle part of the event. 

Finally, the uniform pattern assumes constant rainfall intensity for the entire duration of the 

event (no temporal variability). Other pattern classification considers which quartile delivers 
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the greatest rain depth: first quartile events, second quartile events, etc. Both criteria are found 

in e.g. Huff (1967), Chukwum and Schwab (1983), Zhang et al. (1997), Ng et al. (2001), de 

Lima and Singh (2002), Tsai (2008), and de Oliveira et al. (2010). In many cases the 

application of the two criteria leads to the same classification of a given pattern. It should be 

noted that no attempt is made in this paper to review in depth the already significant literature 

on representative rainfall patterns. 

 

Water resources engineering projects require analysis of the relationship between the rainfall 

structure and the runoff response (e.g. Chow, 1964; Hewlett et al., 1977; Segond et al., 2007). 

According to Singh (1997) the shape, timing and peak flow of a stream flow hydrograph are 

influenced by watershed and drainage network characteristics, storm rainfall dynamics 

(amount, intensity, duration, velocity and direction of storm movement), infiltration and 

antecedent soil moisture conditions. The hydrologic response is also affected by the temporal 

and spatial distribution of rainfall induced by wind (e.g. Erpul et al., 2003; 2004; Ries et al., 

2009; Vermang et al., 2011). 

 

Experiments using varying simulated rainfall intensities have been attempted by several 

authors but are not as common as constant intensity experiments, mainly because of 

difficulties in implementing a sequence of intensities. Rainfall simulations permit the control 

of parameters such as rain intensity and duration. In fact, producing rain events to order, with 

pre-defined patterns and durations, is one of the main advantages of using rainfall simulators 

in hydrological research, both in the field and in the laboratory (e.g. Mermut et al., 1997; 

Cerdà, 1999; Clarke and Walsh, 2007; Ries et al., 2009; Fister et al., 2011). In a recent paper, 

Dunkerley (2012) refers a number of authors that used varying simulated rainfall intensities 

(e.g. Flanagan et al., 1988; Zhang et al., 1997; Parsons and Stone, 2006). When using nozzle-

spray rainfall simulators the rainfall intensity can be changed by: (i) adjusting the operating 

pressure to change the discharge at the nozzles, (ii) using several sets of independent nozzles 

that can be switched on and off, and (iii) changing the position of the drainage area relative to 

the location of the nozzles and wetted area, to achieve specific rainfall intensities. When 

experiments are conducted using low discharges it is difficult to change the operating pressure 
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in a replicable way. Also, it is complicated to use different sets of nozzles to achieve a variety 

of rainfall intensities. In this study we implemented the third option, as explained below. 

 

The aim of this study is to quantify the importance of when rainfall bursts occur, during the 

simulated storm event, on runoff and sediment production. The study involved laboratory 

experiments using a rainfall simulator and a soil flume. The following features were explored: 

time to runoff, final runoff time, peak runoff rate, total runoff volume, peak sediment flux and 

total sediment transported. The experimental set-up used in this work provided data on runoff 

and sediment transport flows over time. 

 

7.2. Materials and methods 

 

7.2.1. Simulated rainfall patterns  

 

The selected conceptualized storm events used in the experiments are shown schematically in 

Figure 37. Two sets of experiments were done and the empirical data will be discussed 

separately for each set. They used a storm characterized by: a duration of 8 hours, a constant 

base intensity of 8 mm h
-1

 interrupted by five periods of intense rainfall (bursts) of 100 mm h
-1

 

and 5-minute duration. These periods of high intensity rainfall are located at the beginning, 

25 %, 50 %, 75 % and at the end of the total duration of the rainfall event, and are expected to 

simulate different rain patterns (advanced, advanced-centred, centred, centred-delayed and 

delayed, in Figure 37, or simply three categories: 1 and 2 – advanced, 3 – centred, and 4 and 5 

– delayed). The rainfall intensities used in these laboratory experiments are comparable to the 

intensities used by several other authors (e.g. Frauenfeld and Truman, 2004; Parsons and 

Stone, 2006; Dunkerley, 2008b). 
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Figure 37. Sketch (not to scale) of the different basic hyetographs referred in the text. 

 

Different times of occurrence of high intensity bursts of rainfall during a rain event can be 

embraced by usual rainfall patterns classification (see section 1, e.g. advanced, centred or 

delayed patterns). The proposed laboratory scheme sought to create laboratory conditions that 

would lead to an understanding of how the time a high intensity rainfall burst occurs during a 

rain event affects runoff and soil loss. It is extremely difficult to replicate the soil conditions 

exactly, because: (i) of soil sample variability, (ii) of compaction of the soil when filling the 

flume, and (iii) the characteristics of the top surface layer of the soil, which has a major 

influence on the availability of soil particles for the transport by overland flow. Thus a long 

simulated rain event was conceptualized with low intensity, interrupted from time to time by 

high intensity bursts. Because the base intensity did not produce runoff at any time, the effect 

of the rain burst could be comparable to different rainfall patterns such as the patterns defined 

in Figure 37. 

 

These synthetic patterns are clearly oversimplified rainfall patterns which cannot represent the 

wide variability observed in natural conditions. But, even though their intrinsic simplicity, 

they make comparisons of the response more clear and results easier to interpret. The use of a 

simple hyetograph with two fixed intensities can be justified by: (i) difficulty in changing 

rainfall intensities, accurately, when using nozzle rainfall simulators, and (ii) keep hyetograph 

simple and prominent to make results more noticeable. 
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7.2.2. Laboratory set-up 

 

The experiments were carried out using a rainfall simulator and a soil flume. The schematic 

representation of the experimental set-up is shown in Figure 38. A similar set-up has been 

used in other laboratory works (e.g. de Lima et al., 2008; 2009; 2011).  

 

 

Figure 38. Sketch of the laboratory set-up used in the experimental runs. 

 

Rainfall simulator 

 

The rainfall simulator consists of: a constant level reservoir; a pump; a hose carrying water 

from the pump to the nozzle; an automatic pressure gauge to monitor the pressure at the 

nozzle, and a single downward-oriented full-cone nozzle which was fixed 2.25 m above the 

geometric centre of the soil flume surface. The nozzle was from Spraying Systems Co.; it is 

made of stainless steel and is a standard type (HH) with the capacity-size code of 22 (an 

orifice diameter of 4.8 mm). The operating pressure of the simulator was kept constant at 

73 kPa. A detailed description of this equipment is given in de Lima et al. (2008, 2009, 2011).  
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Soil and soil flume 

 

The use of laboratory soil flumes is well established in runoff–erosion research (e.g. 

Frauenfeld and Truman, 2004; Parsons and Stone, 2006; de Lima et al., 2008; 2009; 

Dunkerley, 2012). The soil flume used in these experiments was built of metal sheets and was 

2.0 m long, 0.1 m wide and 0.12 m deep. A 0.10 m layer of soil was placed over a metal grid 

bottom covered by a permeable fabric that allows free drainage. The use of a small flume can 

be justified: (i) easier to use (e.g. smaller volumes of soil, since the flume has to be emptied 

and refilled, smaller discharges to measure volumetrically and smaller volumes of runoff to 

oven-dry), (ii) guaranty that the soil was homogeneous, (iii) guaranty that initial soil moisture 

conditions were the same for the different laboratory sets of experiments, and (iv) guaranty 

one-dimensional flow (in the downslope direction), namely because no lateral variations of 

rainfall occurs due to the small width of the flume. 

 

The soil was taken from the right bank of River Mondego, in Coimbra, Portugal. The material 

consisted of 7 % clay, 9 % silt and 84 % sand and gravel, which classifies it as loamy sand: 

the classification is based on the criteria proposed by Gerakis and Baer (1999). The soil 

texture information is listed in Table 15, the grain-size of coarser particles was determined by 

conventional sieving, while the grain-size of finer particles was determined by laser 

diffraction 

 

Table 15. Particle size distribution of the soil used in the experiments. 

Material 
Particle Size 

(mm) 

Distribution 

(%) 

Clay <0.0062 6.7 

Silt 
0.0062-0.0233 

0.0233-0.1500 

3.2 

6.3 

Sand and 

Gravel 

0.1500-0.5000 

0.5000-4.7600 

4.7600-19.1000 

31.6 

40.7 

11.5 
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Water  

 

The characteristics of the water used in rainfall simulation experiments are important because 

they can affect processes at the soil surface. In these experiments, tap water was used in the 

various runs and it had the following approximate physical and chemical characteristics: 

temperature, 23 °C (first set of experiments) and 17 °C (second set of experiments); 

conductivity, 100 μS cm
-1

; pH, 7; total hardness, 30 mg L
-1

 of CaCO3; turbidity, 3 NTU. 

Because it is expected that the water properties remained practically unchanged during the 

various laboratory runs it is assumed that water did not influence the outcome of the 

experiments, in relative terms. 

 

7.2.3. Laboratory procedure 

 Soil 

 

The air soil collocated in the flume was previously sieved (high frequency mechanical sieve) 

using a 4.75 mm aperture square-hole mesh in order to break-down all aggregates, and all 

vegetative material and unusual coarser particles were removed. Afterwards the soil was 

mixed up mechanically to guaranty homogeneity for the different repetitions and placed in the 

soil flume to achieve a 0.10 m thick layer of uniform depth. To obtain a plane surface, a 

sharp, straight-edged blade that could ride on the top edge of the sidewalls of the flume was 

used to remove excess soil. Surface slope was set at 10 %. The bulk density of the soil 

depends greatly on the degree of compaction, therefore the same mass of soil was used each 

time the flume was filled (1.6 g cm
-
³ for air-dried soil material). 

 

To ensure identical initial conditions (e.g. in terms of soil moisture, soil compaction, soil 

surface roughness) for the different runs, the soil material in the flume was removed and 

replaced with new air dried soil material before each set of laboratory experiments. The 

procedure was repeated for the two sets of experiments. 
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Runoff, drainage and soil loss 

 

Overland flow and sediment loss were measured by collecting samples in metal containers at 

the downstream end of the soil flume, non-stop, every 15 seconds, whenever flow occurred. 

The initiation of overland flow at the flume outlet defined the starting time for the 

measurements. The sediments were calculated based upon the oven-dry sediment mass. 

 

The total amount of water percolated through the 0.10 m soil depth (free drainage), collected 

also at the downstream end of the soil flume, was approximately the same for the different 

experiments and was not taken in consideration in this study.  

 

Rainfall patterns 

 

With the current set-up, specific rainfall intensities were achieved by conveniently setting the 

position of the drainage area (soil flume) relative to the location of the nozzle (i.e., wetted 

area). Thus, the position of the nozzle was changed relative to the soil flume during the 

experimental runs, as appropriate, to capture the intended rainfall intensity over the 

predefined time intervals. This was achieved with the help of wheels and 2 electric motors 

(see Figure 38). It took on average 5 seconds to move the nozzle from one position to another. 

 

The rainfall simulator produced a circular wetted area below the nozzle (Figure 39 – left). The 

main factors affecting water application (water distribution at ground level) are: nozzle type, 

operating pressure, nozzle diameter, nozzle elevation, wind speed, heat and damp (e.g. Keller 

and Bliesner, 1990; Tarjuelo et al., 1999; Louie and Selker, 2000). Mean rainfall intensities 

over the flume were estimated measuring the simulated rain using 11 gauges equally spaced 

along the flume (at a slope of 10 %), during 5 minutes (Figure 39b, see also Table 16). The 

spatial distribution of the rainfall simulated in the laboratory over the soil flume, for both 

positions of the flume relative to the nozzle, resembles natural conditions in that it is not 

uniform. Moreover, we can consider that it could represent a rain cell, static over the drainage 

area. For the spatial rain distribution associated with both simulated average intensities, the 

uniformity coefficient developed by Christiansen (1942) is below 80 % (Table 16), but 
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considerable lower for position 1 than for position 2 (e.g. Christiansen, 1942; Vories and von 

Bernuth, 1986; Losada et al., 1990). Another issue is the drop trajectory and impact angle of 

the drops on the flume surface for the two rainfall intensities. It is observed that the angles of 

inclination of the trajectories of drops at impact, measured from the vertical, increase as the 

distance to the nozzle increases, but can be disregarded here because of the set-up geometry 

(de Lima et al., 2011). 

  

Figure 39. Simulating different temporal rainfall intensities: Left, representation (top view) of 

the two soil flume positions with respect to the wetted area under the nozzle; Right, 

corresponding rainfall intensities observed along the soil flume for the average intensities of 8 

and 100 mm h
-1

. 

 

Table 16. Rainfall measurements taken along the soil flume at positions 1 and 2 (3 repetitions 

of 11 samples each), as defined in Figure 39. 

 Position 1 Position 2 

 Base rainfall intensity Rainfall burst 

Mean (mm h
-1

) 8.3 100.1 

Minimum (mm h
-1

) 2.8 38.6 

Maximum (mm h
-1

) 14.4 137.8 

Standard deviation (mm h
-1

) 4.4 35.1 

Coefficient of variation 0.31 0.25 

Uniformity coefficient (%) 54.5 72.5 
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For the two average rainfall intensities that were applied in the laboratory experiments, the 

simulated raindrop size distribution and fall velocities were determined using a Laser 

Disdrometer, usually used in outdoor conditions. This disdrometer has a time resolution of 1-

minute. The mean drop diameter and velocity are presented in Figure 40. The measurements 

were taken under windless conditions over 15 minutes at several horizontal distances from the 

vertical that contains the nozzle, at the level of the soil surface of the flume. The mean 

raindrop diameter ranged from 0.66 to 0.76 mm, while the mean drop velocity ranged from 

2.08 to 2.79 m s
-1

. 

 

Figure 40. Raindrop mean diameter and fall velocities. Soil flume positions 1 and 2 are 

indicated in Figure 39 – left. The measurements were taken at the flume installation level, 

2.25 m below the nozzle (vertical distance). The nozzle was operated at 73 kPa. 

 

Figure 41 presents the distribution of the number of drops as a function of drop diameter and 

fall velocity measured at positions 1 and 2 (see Figure 39 and Figure 40). At position 1, where 

the mean rainfall intensity is low (8 mm h
-1

) and so the number of drops is small, the 

maximum number of drops was recorded around the 0.5 –1 mm diameter class and velocities 

of 3.5 m s
-1

. But at position 2, where the rainfall intensity is higher (100 mm h
-1

), there were 

more drops belonging to lower diameter classes, i.e. less than 0.5 mm diameter, and 

exhibiting velocities of around 2 m s
-1

. 
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Figure 41. Histograms of simulated raindrops observed for the soil flume at positions 1 (left) 

and 2 (right); the data are for 15 minutes of simulated rainfall. The rain simulator was 

operated at 73 kPa. For better visualization, the vertical axes are scaled differently in the two 

plots. 

 

7.3. Results  

 

Rainfall-runoff experiments were conducted using simulated rainfall events that aimed at 

recreating responses to advanced, centred and delayed rainfall patterns (see the 

conceptualized hyetographs shown in Figure 37).  

 

The main characteristics of runoff (Figure 42) and soil loss (Figure 43) triggered by the 5 high 

intensity rainfall bursts that occurred at different times during the simulated event are 

summarized in Table 17 for the two sets of experiments. Whereas the soil used to fill the 

flume had the same origin and expectable characteristics, it is likely that the characteristics of 

the soil and the final result for the deposition of the soil material in the flume (e.g. soil 

compaction), for the two sets of experiments, were not exactly the same. Although the 

experimental procedure was carried out carefully and similar experimental conditions were 

established each time, in fact, these conditions are not strictly reproducible and this might 

have affected the results. During the simulated events, Hortonian overland flow took place 

only during and shortly after the rainfall bursts: no runoff was generated during periods of 

lower (base) intensity rainfall. The free drainage provided prevented the 0.10 m soil layer 
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placed in the flume from approaching saturation except, probably, on the top surface layer 

during the high intensity bursts. 

 

 

Figure 42. Measured runoff hydrographs: (top) first set of experiments, (bottom) second set of 

experiments. The origin of the horizontal axes coincides with the beginning of each burst of 

intense rainfall: 1 – advanced, 2 – advanced-centred, 3 – centred, 4 – centred-delayed and 5 – 

delayed. 
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Figure 43. Measured transported sediment graphs: (top) first set of experiments, (bottom) 

second set of experiments. The origin of the horizontal axis coincides with the beginning of 

each burst of intense rainfall. See also Figure 42 which shows the measured runoff 

hydrographs. 
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Table 17. Characteristics of runoff hydrographs and sediment transported (see also Figure 42 

and Figure 43), for the two sets of experiments. 

 1st set 2nd set 

Rainfall bursts 1 2 3 4 5 1 2 3 4 5 

Rainfall patterns 
Advanced 

Advanced-

centred 
Centred 

Centred-

Delayed 
Delayed 

Advance

d 

Advanced-

centred 
Centred 

Centred-

Delayed 
Delayed 

          

Initial runoff time 

(min:s)* 03:32 00:47 00:32 00:28 00:22 03:17 01:14 00:35 00:32 00:33 

Final runoff   time 

(min:s)* 
05:56 06:48 06:40 06:40 07:05 05:56 05:42 05:51 06:29 05:20 

Peak runoff 

(×10-3 mm s-1) 
8 17 18 21 21 13 13 20 22 24 

Total runoff volume 

(mm) 
0.6 4.0 4.8 5.6 5.6 1.3 2.2 4.8 5.5 5.4 

Peak sediment flux 

(×10-3 g s-1 m-2) 
24 59 117 141 157 41 38 46 52 74 

Total sediment 

transported (g m-2) 
1.5 10.6 20.6 32.1 16.6 4.4 4.7 7.8 8.8 10.7 

*
from the start of the period of intense rainfall 

 

Notice that in Figure 42 and Figure 43 the origin of the horizontal axes (t=0) coincides with 

the beginning of each intense rainfall burst, for the different rain patterns. Thus, hydrographs 

and sediment graphs are superimposed to highlight the differences between the graphs. Also, 

the 8 mm h
-1

 rainfall intensity (dashed line) does not exist for the period of high intensity 

located at the end of the event (i.e., the end of the 5-minute 100 mm h
-1

 intensity is the end of 

the simulated rainfall). 

 

Runoff volumes and peak discharges that originated from the high-intensities in the simulated 

rain increased perceptibly as the bursts were occurring progressively later (Figure 42), thus, 

this increase in the response might be expected for the advanced to the delayed rainfall 

patterns (Figure 37). Furthermore, the beginning of runoff was strongly delayed for the early 

burst (thus, also expected for advanced rainfall patterns), compared with the response 

observed for the other bursts (Figure 42). 
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For the different rain and runoff events, the collected soil loss at the downstream end of the 

flume was the result of raindrop impacted overland flow transport. There were no signs of 

concentrated flow, there was no rill formation observed during the short period of time that 

overland flow existed because runoff only occurred during the intense rainfall bursts. Whereas 

the difference in runoff between the two sets of experiments is not relevant, the difference in 

the results for the total sediment transport and peak sediment flux was very marked: total 

sediment transported in the second set of experiments was approximately 50 % less in relation 

to the first set. Table 17 shows that the total sediment transported, for the first set of 

experiments, varied between 1.5 and 32.1 g m
-2 

whereas for the second set it varied between 

4.4. and 10.7 g m
-2

. 

 

Infiltration in time for rainfall bursts 1 (advanced), 3 (centred) and 5 (delayed), of the first set 

of experiments, is shown in Figure 44. The soil was able to infiltrate most of the rainfall 

during the burst that occurred earlier, causing a strong delay in the ponding time and 

consequent runoff generation, therefore runoff volume and sediment loss are small. On the 

other hand, for the more delayed burst, runoff started quickly after it began because 

infiltration capacity decreased fast as the result of higher moisture content due to nearly 8 

hours of rainfall. In this case runoff volume is large with repercussions on the competence for 

sediment transport. 
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Figure 44. Infiltration in time for rainfall patterns 1, 3 and 5 (first set of experiments). 

 

Higher transport capacity was noticed as water depth and stream power increased from 

upslope to downslope. The runoff generated by rainfall bursts was responsible for the total 

sediment transport. Sediment loss followed the behaviour of runoff; the outflow and soil loss 

increased over time as the bursts of intense rainfall occurred later in the different rainfall 

patterns (Figure 45). For the more opposite cases (i.e., burst occurring in the beginning and 
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end of the simulated event), for the first set, an increase of 10 times is observed for the total 

runoff volume and 11 times for the total sediment loss, whereas, for the second set the 

increase is 4 and 2.4, respectively (see Table 17). Some of these differences might be due to 

different initial conditions in the soil flume, which are always expected in this type of 

laboratory work, regardless of how much care is taken in the preparation of the experiments. 

 

Figure 45. For the five rainfall bursts: (a) total runoff volume, (b) peak runoff, (c) total 

amount of sediment transported, and (d) peak sediment flux. Squares and triangles represent 

empirical data from the first and second set of experiments, respectively, whereas the adjusted 

lines are only indicative of the tendency in the data. 

 

Figure 45 illustrates more clearly the behaviour of runoff and soil loss for the five rainfall 

bursts and for the two sets of experiments. Total runoff volumes and peak discharges show a 

tendency to be lower for the advanced rainfall bursts and higher for the delayed bursts. The 

adjusted lines are only indicative of the trend observed for the two sets of experiments. For 
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example: (i) the peak runoff rate and total runoff volume are exactly the same for the rainfall 

patterns 4 and 5, (ii) the two data sets present similar runoff behaviour but rather different soil 

loss for both total amounts and fluxes. The fluctuations in the results and the marked 

differences amongst the two sets of experimental runs can be explained, at least partly, by: (i) 

measurement errors (e.g. manual collection of runoff), (ii) characteristics of the soil placed on 

the flume, including compaction effects (iii) changing properties of the top soil as a result of 

crusting, and (iv) eventual incorrect positioning of nozzle relative to the flume. Although a 

tendency is revealed by the experiments, these results are preliminary; laboratory procedures 

are being developed seeking for more control over some variables (e.g. soil) that are expected 

to have strongly affected here the outcome of the experiments, in addition to the different rain 

patterns. 

 

 

Figure 46. For the five rainfall bursts: (a) relation between the total amount of sediment 

transported and total runoff volume, and (b) relation between peak sediment flux and peak 

runoff rate. Squares and triangles represent empirical data from the first and second set of 

experiments, respectively, whereas the adjusted lines are only indicative of the tendency in the 

data. 

 

In both series of experiments the five rainfall bursts yielded total soil loss and peak sediment 

flux that increased with runoff volumes and peak discharges, respectively. This can also be 

seen in Figure 46 where sediment transport is plotted against runoff: higher runoff volumes 

are associated with greater amounts of soil loss since more energy is available to displace 
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sediment. Nevertheless, when handling the soil in the laboratory to fill the flume it is difficult 

to attain the same compaction of the soil material, particularly at the top layer where water 

erosion processes take place. Therefore, when the surface layer is more compacted, more 

runoff but less soil loss are expected, since fewer loose particles are expected to be available. 

This interpretation might help to explain the different behaviour observed between the first 

and second experimental runs in terms of runoff production and sediment loss. 

 

With respect to the duration of overland flow (Figure 47), as bursts of intense rainfall are 

located more and more to the end of the events it is observed that the time to runoff decreased, 

whereas the corresponding base time increased. These trends could also be observed in the 

overland flow hydrographs (Figure 42) and the infiltration plots (Figure 44). Note that time to 

runoff is taken from the beginning of the corresponding rainfall burst since there is no runoff 

observed during the low intensity periods. 

 

Figure 47. For the five rainfall bursts in the 8 hour event: (a) time to runoff, in relation to the 

beginning of corresponding high intensity rainfall periods, and (b) duration of surface runoff. 

Squares and triangles represent empirical data from the first and second set of experiments, 

respectively, whereas the adjusted lines are only indicative of the tendency in the data. 

 

Although Figure 45, Figure 46 and Figure 47 show a non-linear response, this behaviour 

cannot be easily extrapolated to other situations without many repetitions, with different soils, 

slopes and rainfall intensities and patterns, such data will permit to conduct statistical analysis 
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of the results and thus to get a better insight on the influence of the type of rainfall patterns on 

runoff and water erosion. Therefore, for the exploratory study reported here the fit lines are 

merely indicative of a trend in the data and applied only to these specific experiments 

conducted on the soil flume. But qualitatively, results justify further investigation on the topic 

of this study. 

 

7.4. Concluding remarks  

 

It is known that heavy rainfall intensities lead to marked detachment of soil particles and 

facilitate soil loss through increased overland flow. However, the variation of rain intensity 

within an event is also crucial for the processes of overland flow and soil erosion. But the 

system is complex and highly nonlinear. All rainfall-runoff processes occurring over 

permeable surfaces and water erosion processes are tough to model exactly because of the 

imbricate phenomena involved. This work focused on the effect of the timing of high 

intensity bursts within events of a given duration and mean intensity. The main findings from 

this study are: 

 

 It is possible to simulate in the laboratory rain events of varying intensity using a 

single nozzle rainfall simulator. 

 

 The instant at which rainfall bursts occur during long duration rain events has a strong 

influence on runoff and associated soil loss. 

 

 In these experiments, the delayed rainfall bursts led to greater runoff depth and total 

sediment loss, these bursts also generated higher runoff peaks and sediment fluxes 

than were observed for bursts occurring earlier in the rain event. 

 

 The earlier the intense rainfall period occurs in a given event (advanced pattern), the 

more delayed is the initiation of runoff, and the runoff base time tends to be smaller. 
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All these conclusions can largely be explained by the changes in soil moisture content 

observed as the rainfall event developed, as a consequence of the temporal variability of the 

infiltration capacity and overland flow (i.e., water depths and velocities). It is likely that 

alteration of the structure of the soil surface over time (in particular the repeated and 

cumulative effect of the impact of high intensity rain on the soil surface) might also have 

contributed to the observed runoff and sediment production. The empirical data used in this 

exploratory work could also be influenced by the actual soil conditions obtained when filling 

the flume. 

 

Despite some limitations, this research has practical implications for understanding the runoff 

and water erosion response to varying rainfall intensities. Ignoring intra-event rainfall 

variability (e.g. when high intensity burst occurs during a rainfall event) can cause both 

under- and overestimation of runoff discharge and soil loss. For flood risk management, 

special attention should be paid to the assessment of the hydrological response to rain events 

exhibiting a delayed pattern. Although the results obtained in this study, in quantitative terms, 

cannot be extrapolated to plots or drainage basins, they clearly indicate qualitatively the trend 

expected in the overland flow and soil erosion processes, triggered by different rainfall 

patterns. However, it is expected that for very impervious surfaces (i.e., urban drainage 

basins) the issue of when a high intensity burst occurs during a given rain event is less 

important than for pervious surfaces because the initial abstractions are smaller. 

 

Further studies should investigate more complex rainfall patterns, other soil types and surface 

slopes, and be extended to runoff plots and small catchment areas. Special attention should be 

given to soil moisture monitoring when exploring these processes. 
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8. USING MESHES TO CHANGE THE CHARACTERISTICS OF 

SIMULATED RAINFALL PRODUCED BY SPRAY NOZZLES4 

 

 

Abstract 

 

Rainfall simulators have been used for many years contributing to the understanding of soil 

and water conservation processes.  evertheless, rainfall simulators’ design and operation 

might be rather demanding for achieving specific rainfall intensity distributions and drop 

characteristics and are still open for improvement. This study explores the potential of 

combining spray nozzle simulators with meshes to change rainfall characteristics, namely 

drop properties (drop diameters and fall speeds). A rainfall simulator laboratory set-up was 

prepared that enabled the incorporation of different wire meshes beneath the spray nozzles. 

The tests conducted in this exploratory work included different types of spray nozzles, mesh 

materials (plastic and steel), square apertures and wire thicknesses, and positions of the 

meshes in relation to the nozzles. Rainfall intensity and drop size distribution and fall speed 

were analysed. Results showed that the meshes combined with nozzles increased the mean 

rainfall intensity on the 1 m
2
 control plot below the nozzle and altered the rain drops’ 

properties, by increasing the mass-weighted mean drop diameter, for example. 

 

 

 

 

 

 

 

 

 

                                                 

4 Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2014. Using meshes to change the characteristics of simulated rainfall 

produced by spray nozzles. International Soil and Water Conservation Research 2 (2), pp. - (in press) 
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8.1. Introduction 

 

Rainfall simulation is a common tool that has been widely used in studies related to soil 

erosion, nutrient and pollutant transport, water conservation and agricultural management 

practices. One of the main advantages of rainfall simulation is the possibility to generate and 

replicate rainfall with a specific intensity and duration (e.g. de Lima and Singh, 2003; Potter 

et al., 2006; de Lima et al., 2013c). In laboratory controlled conditions, it is also possible to 

reduce the effects of the variability of temperature, humidity and wind, as experienced in the 

field (e.g. de Lima et al., 2003; Fister et al., 2012).  evertheless, rainfall simulators’ design is 

demanding, raising questions on rainfall distribution and intensity, drop characteristics, 

manpower required, energy availability, costs and transportability. 

 

In the literature, one finds many studies that have used rainfall simulators. These include 

studies by Mutchler and Hermsmeier (1965), de Ploey (1981), Bowyer-Bower and Burt 

(1989), and de Lima et al. (2003, 2008). However, the rainfall simulators’ drop properties and 

spatial intensity distribution is often not discussed (e.g. Lascelles et al., 2000; Ries et al., 

2009) although some studies report on the mean drop size of the simulated rain (e.g. Arnaez et 

al., 2007; Marques et al., 2007). In natural rain, large mean drop sizes are associated with high 

rain intensities, but in simulated rain the relationship between drop size and intensity may be 

different. For example, Parsons and Stone (2006) reported simulated intensities ranging from 

59 to 170 mm h-1, but the median drop size remained constant at 1.2 mm.  

 

Rain simulators can be classified according to the way they produce drops. The two most 

common types of simulators are: (i) non-pressurized rainfall simulators or drop-former 

simulators which drip water from hypodermic needles and capillary tubes (e.g. Munn and 

Huntington, 1976; Kamphorst, 1987; Elbasit et al., 2010); (ii) pressurized rainfall simulators, 

such as spray nozzles (e.g. Meyer and McCune, 1958; Esteves et al., 2000). 

 

Non-pressurized rainfall simulators are less used in the laboratory; but they are a convenient 

technique for places experiencing difficult access and limitations in water supply (e.g. 

Humphry et al., 2002). The well-known disadvantage in these simulators is that they produce 
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a narrow range of drop sizes (e.g. Tossell et al., 1987) and a small drop fall speed. Some non-

pressurized rainfall simulators include meshes below the drop formers in order to break up 

water drops into a distribution of drop sizes closer to that of natural rainfall and to randomize 

drop landing positions (e.g. Holden and Burt, 2002; Clarke and Walsh, 2007; Fernández-

Gálvez et al., 2008).  

 

Pressurized rainfall simulators have an important advantage over the non-pressurized 

simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed under 

pressure. For example, the hydraulic spray nozzles, which are commonly used in scientific 

and technical experiments on soil and water conservation, operate by discharging the water 

under pressure through an exit orifice with a small diameter. This leads to an increase in water 

velocity, causing instability in the nozzle exit and subsequent breakup into small drops; 

typically a spray nozzle provides a broader range of drop sizes compared to non-pressurized 

simulators (e.g. Battany and Grismer, 2000).  oreover, drops’ properties and hence the entire 

simulated event will depend on the pressure applied, the flow rate, and the nozzle design (e.g. 

Kincaid, 1996; Cerdà et al., 1997; Erpul et al., 1998). 

 

To our knowledge, meshes have been combined with drop-former simulators but not with 

nozzle type simulators. However, Schindler Wildhaber et al. (2012) recently described a 

“field hybrid simulator”, and claimed that the performance of the simulator improved in 

relation to the mean drop size and kinetic energy when a mesh grid (aperture size of 2 mm × 

1.7 mm) was fixed at a distance of 0.5 m under a spray nozzle. 

 

The objective of this study was to further explore the effect of meshes on spray nozzle rain 

simulations, namely on rain intensity, drop size and drop fall speed. In particular, we are 

interested in the raindrop properties which are important for calculating rainfall erosivity. 

These properties depend on the design and operation of rainfall simulators. 
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8.2. Materials and methods 

 

8.2.1. Laboratory set-up 

 

Figure 48 shows a schematic representation of the laboratory set-up used in this study. The 

main components are: the rainfall simulator which includes a downward-oriented spray nozzle 

operating in a static position; a mesh suspended by a system of cables and pulleys at variable 

vertical distances to the nozzle; and rainfall measuring devices, namely rain gauges and a 

disdrometer. These measuring devices were set at 2.35 m below the nozzles, on an horizontal 

plane. The rainfall simulator installation also includes a constant head reservoir, a submersible 

pump, a pressure tank, a pressure sensor, two pressure gauges, a pressure switch, pipes and a 

flexible hose.  

 

Figure 48. Set-up of the laboratory experiments. 

 

Nozzles  

 

Four types of spray nozzles were used to simulate rainfall with different intensities and drop 

size distributions. The nozzles selected were single full-cone nozzles (HH-22, HH-14W and 
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HH-4.3W) and a multiple full-cone nozzle (7G-1). All were manufactured by Spraying 

Systems Co. Table 18 gives a description of the spray nozzles used in the experiments, 

including the pressure at the nozzle, spray angle (i.e. angle of the water cone; see Figure 49) 

and discharge. The pressure at the nozzle was kept constant at 1.5 bar for all the 

experiments. Spraying Systems Co. (2013) claims that the spray angle of the nozzles is higher 

at this pressure and that, in general, increasing operating pressure is expected to lead to 

decreasing drop sizes and increasing drop velocities.  

 

Table 18. Description of the spray nozzles used in the experiments. All nozzles are 

manufactured by Spraying Systems Co. 

Spray nozzle code HH-22 
HH-

14W 

HH- 

4.3W 
7G-1 

Type 
Full-cone spray 

nozzle: standard 

Full-cone spray 

nozzle: 

wide angle 

Fine spray nozzle 

(multiple full 

cone pattern) 

Pressure (bar) 1.5 1.5 1.5 1.5 

Discharge (L min
-1

) 11.9 7.6 2.3 4.3 

Spray angle (º) 90 120 120 170 

 

Meshes  

 

The rain simulator was adapted to allow for the installation of meshes at different distances 

beneath the nozzles, with the purpose to change the characteristics of the simulated sprays. 

Thus, the set-up included a system of cables and pulleys that were used to support and 

position the meshes, which were stretched and attached to a 1 m
2
 metal square frame. The 

main characteristics of the meshes used in the experiments are described in Table 19. The 

meshes had different square apertures and wire thicknesses, defining different percentages of 

open area in relation to the area of the frame. Since the adhesion and surface tension forces 

depend on the material, two materials were tested: steel and plastic.  
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Table 19. Properties of the wire meshes used in the experiments. 

Meshes 1 2 3 4 5 6 

Material 
Plastic 

(polyethylene and polypropylene) 

Steel 

(welded wire ) 

Square aperture (mm) 12 20 40 20 40 40 

Weight (g m
-2

)
 210 470 235 1200 600 5500 

Wire thickness (mm) 1.0 - 1.5 2.0 - 3.0 2.0 - 3.0 1.4 1.4 4.0 

Open area (%) 82 79 89 87 93 83 

 

 

Instrumentation 

 

Characteristics of the nozzle sprays such as drop size and fall speed, and raindrop count over 

time were measured using a Laser Precipitation Monitor, manufactured by Thies Clima (e.g. 

Thies, 2007). The instrument includes a laser-optical source which produces a light-beam 

(infrared, 785 nm); in a receiver, the optical intensity is transformed into an electrical signal. 

When a raindrop falls through the light-beam (measuring area: 4777 mm
2
) the receiving 

signal is reduced. The diameter of the drop is calculated from the amplitude of the signal 

reduction and the drop fall speed is determined from the duration of the reduced signal. The 

disdrometer used in the laboratory yields the distribution of the raindrops over 21 diameter-

size classes (from 0.125 mm to 8.000 mm) and 20 fall speed classes (up to 20.0 m s
-1

). The 

class intervals do not all have the same width. 

 

The rain intensity on the target surface was assessed using rain gauges with an opening 

diameter of 0.116 m, corresponding to a collection area of 10568 mm
2
 (see section 8.2.2 – 

rainfall intensities).  

 

 

 

 



 

8. USING MESHES TO CHANGE THE CHARACTERISTICS OF SIMULATED 

RAINFALL PRODUCED BY SPRAY NOZZLES  

 

 

 

131 

 

8.2.2. Methodology 

 

The laboratory experiments were comprised of rain simulations from spray nozzles combined 

with meshes and spray nozzles only (i.e. the meshes were absent from the rain simulations). 

For these two cases, the simulated rainfall intensity and drop size and fall speed were 

examined. The laboratory procedures included: (1) selection of the nozzle and operating 

pressure of 1.5 bar; (2) selection of a mesh, which was positioned at a certain vertical distance 

from the nozzle; (3) start of the rainfall simulation; (4) rain measurements (rain gauges and 

disdrometer). We have undertaken the measurements defined in Table 20 and explained 

below. 

 

Table 20. Summary of experiments using different combinations of nozzles and meshes. 
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 3 replicates; 15 rain gauges (5 rain gauges located on the control plot), see Figure 50c. 

 disdrometer in 3 positions,  3 replicates (sampling time was 15 seconds), see Figure 50d. 

 Not measured 

 

 

Position of the meshes 

 

The meshes were suspended at three positions: 200, 400 and 600 mm vertical distances below 

the nozzles. These three positions of the meshes are represented schematically in Figure 49, 
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which also shows the spray angle and the spray boundary for each nozzle, obtained for an 

operation pressure of 1.5 bar. This figure illustrates the expected interception of the sprays by 

the square meshes (1×1 m
2
), which varies with the vertical distance between the meshes and 

the nozzles. At some positions the meshes are able to intercept the whole spray. The 

information on the nozzles’ sprays was based on photographs captured during the 

experiments.  

 

Figure 49. Spray angle and spray limit boundary for the 4 nozzles used in the experiments; the 

3 mesh positions beneath the nozzles are represented. The nozzle vertical distance to the 

target surface is 2.35 m; operating pressure is 1.5 bar; on the target surface, measures are for 

the wetted area. Distances are in mm. 

 

Rainfall intensities 

 

A control square plot of 1 m
2
 was used for assessing the simulated rainfall intensities on the 

target surface. This plot (horizontal measuring plane, in Figure 48) was defined at a height of 

1 m above the floor and at a vertical distance of 2.35 m below the nozzle, and was centred in 

relation to the nozzle position. We will refer to this area as “control plot”. We noticed that this 

control plot size has been adopted in many soil and water conservation studies on small scale 

field plots that have used rainfall simulators. 

 

The distribution of the simulated rainfall intensity on the control plot was evaluated with 41 

rain gauges scattered over the plot (Figure 50a); the sampling interval for the rain 

measurements was three minutes and 3 replicates were undertaken. The uniformity of the 

distribution was assessed using the coefficient of uniformity (CU) defined by Christiansen 

(1942).  

 1 
  

HH-22                     HH-14W 

  
             HH-4.3W                  7G-1  1553-14 

2
0

0

90°

4
0

0
6

0
0

2
3

5
0

2000

2
0

0

120°
4

0
0

6
0

0
2

3
5

0

2500

2
0

0

120°

4
0

0
6

0
0

2
3

5
0

2000

2
0

0

170°

4
0

0
6

0
0

2
3

5
0

2000

2
0

0
4

0
0

6
0

0
2

3
5

0

500

60°

spray limit 

boundary 

mesh 

  
HH-22                     HH-14W 

  
             HH-4.3W                  7G-1  1553-14 

2
0

0

90°

4
0

0
6

0
0

2
3

5
0

2000

2
0

0

120°

4
0

0
6

0
0

2
3

5
0

2500

2
0

0

120°

4
0

0
6

0
0

2
3

5
0

2000

2
0

0

170°

4
0

0
6

0
0

2
3

5
0

2000

2
0

0
4

0
0

6
0

0
2

3
5

0

500

60°

spray limit 

boundary 

mesh 



 

8. USING MESHES TO CHANGE THE CHARACTERISTICS OF SIMULATED 

RAINFALL PRODUCED BY SPRAY NOZZLES  

 

 

 

133 

 

 

Figure 50. (a) Position of the 41 rain gauges used to measure the rainfall intensity on a 1 m
2
 

square plot (control plot, top view); (b) Spatial distribution of the simulated rainfall intensity 

[mm h
-1

] under the 7G-1 nozzle, estimated using Kriging; (c) Position of 15 rain gauges used 

to measure the rainfall intensity along a given direction (top view); (d) The position of the 

disdrometer used to measure drop properties (top view). The black ring identifies the position 

of the nozzle. 

 

The laboratory work involved 32 experiments that included combinations of 4 nozzles with 6 

meshes, positioned at 3 vertical distances from the nozzle (not all possible combinations were 

considered in this exploratory work; see Table 20). In addition, 3 replicates were carried out 

 
 

 
 

 

 1 

 2 
Fig. 1. (a) The position of the 41 rain-gauges used to measure the rainfall intensity on a 1 m2 square plot (top 3 
view); (b) Spatial distribution of simulated rainfall intensity (mm h-1) under the 7G-1 nozzle. The black ring 4 
identifies the nozzle position. (c) The position ofrain-gauges used to measure the rainfall intensity (top view); (d) 5 
The position of the disdrometer used to measure drops properties (top view). 6 
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for each case. Because using a 41 rain-gauge grid for assessing the rainfall spatial distribution 

for all these cases would imply a great number of measurements, and because the rainfall 

intensity distribution was observed to be approximately symmetric (see Figure 50b, for nozzle 

7G-1), then the rainfall distribution on the target surface was estimated by studying the rain 

distribution along a single transect; this is illustrated in Figure 50c that shows equally 

distributed rain gauges set along a given direction defined on the wetted area, at the target 

surface level. Thus, estimates of rainfall intensity on the control plot used data from 5 rain 

gauges, distributed along 1 m; and across the whole wetted area rain intensity was estimated 

using data from 15 rain gauges that covered a 3.5 m distance (Figure 50c). 

 

Drop properties 

 

Raindrop diameter and fall speed were recorded with a laser disdrometer, which was 

positioned with the light-beam coinciding with the target surface (i.e. measuring plane of the 

rain gauges). Three measuring positions were adopted on this plane (Figure 50d). 

 easurements’ sampling time was 15 seconds; this small sampling time is explained by 

limitations of the disdrometer and its software in handling a large number of raindrops 

during the usual 1-minute resolution of the device, because counting limits of the number of 

particles were surpassed during the laboratory runs and the 1-minute data were then not 

reliable. So, to avoid exceeding the number of drops’ counting limit we have restricted the 

observation time; we expect that the time variability in the simulations is small and that this 

procedure did not introduce important bias in the results; we nevertheless took 3 replicates of 

the measurements and calculated the mean. For each measurement the instrument provides a 

two dimensional matrix with the count of drops in each of the size and fall speed classes, 

which is used for determining the drop size distribution of the simulated rain.  

 

The number and size of raindrops within a unit volume of air can be described by the number 

concentration, N(D) [mm
−1

m
−3

], also called the raindrop size distribution (DSD), where D 

[mm] is the spherical equivalent diameter of each raindrop. The expected number of drops 

N(Di) [mm
-1

m
-3

] in the raindrop size class i (21 classes, with Di [mm] being the central 

diameter of the size class i) is obtained by :  
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(8.1) 

where nij is the number of detected raindrops in the size class i and belonging to the fall speed 

class j (20 classes) that is measured during the interval t (here is t=15 s, as explained 

above), vj [m s
-1

] is the fall speed of the raindrops at the middle of the fall speed class j, A [m
2
] 

is the disdrometer detection area and Di [mm] is the width of the drop size class i. 

 

The DSD can also be described in general by the mass-weighted mean drop diameter, Dm 

[mm], which is estimated using (e.g. Ulbrich, 1983):  

 

(8.2) 

 

The mean fall speed of the raindrops, vm [m s
-1

], is calculated by: 

 

(8.3) 

where nj is the number of detected raindrops in the fall speed class j, vj [m s
-1

] is the central 

fall speed of the fall speed class j, and N is the total number of detected raindrops. 

 

8.3. Results and discussion 

 

This section is dedicated to exploring simulated rainfall intensities and drop properties. The 

control runs were for mesh free simulations (i.e. without combining nozzles and meshes). 

 

8.3.1. Rainfall intensities 

The distribution of the simulated rainfall intensity on the target surface (at 2.35 m below the 

nozzle) were examined for different experimental runs (Table 20). We aimed at investigating 

the impact of the following variables on the simulated rain intensities: 
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i) Nozzle type: rainfall intensities simulated by different nozzles were compared, with each 

nozzle being combined with one plastic mesh (20 mm square aperture), and for 3 mesh 

positions;  

 

ii) Mesh position: rainfall intensities obtained for 3 mesh positions were compared for 

combinations of 4 nozzles and 2 plastic meshes (12 mm and 20 mm square aperture);  

 

iii) Mesh characteristics: rainfall intensities obtained using different mesh characteristics 

(material, aperture and wire thickness) were compared for rain simulated by one nozzle 

type (HH-14W) and the meshes positioned at one fixed position (i.e. at 600 mm vertical 

distance below the nozzle). 

 

a) Material: the influence of the meshes’ material on the simulated rain was studied by 

comparing the effects of 3 plastic meshes with those of 3 steel meshes.  

b) Aperture: the effect of different meshes’ apertures was studied by comparing the 

rainfall intensities obtained using plastic meshes with square aperture of 20 mm and 

40 mm (both with ~2.5 mm wire thicknesses). The same effect was studied for the 

steel meshes with squares apertures of 20 mm and 40 mm (both with 1.4 mm wire 

thicknesses).  

c) Wire thickness: the influence of the wire thicknesses was explored by comparing the 

impact of 40 mm square aperture steel meshes with wires of 1.4 mm and 4 mm 

thicknesses.  

 

 

With and without combining the nozzles with meshes 

 

The mesh-free rainfall simulations were compared with the rainfall altered by combining the 

four nozzles with plastic meshes of 20 mm square aperture, positioned at three different 

distances from the nozzles (200, 400 and 600 mm). Figure 51a to Figure 51d show the rain 

intensities observed along the 3.5 m diameter of the wetted area on the target surface. 

 



 

8. USING MESHES TO CHANGE THE CHARACTERISTICS OF SIMULATED 

RAINFALL PRODUCED BY SPRAY NOZZLES  

 

 

 

137 

 

 

Figure 51. Rainfall intensities observed along the 3.5 m diameter of the nozzle spray wetted 

circle, for simulations conducted without combining the nozzles with meshes and combining 

the nozzles with a plastic mesh (square aperture of 20 mm) that was positioned beneath the 

spray nozzles, at vertical distances of 200, 400 and 600 mm: (a) HH-22; (b) HH-14W; (c) 

HH-4.3W and (d) 7G-1. Data are average values of 3 replicates. 

 

Nozzles HH-22 and 7G-1 are the ones producing the highest intensities beneath the nozzle, 

which decreases strongly a short distance away (Figure 51a and Figure 51d); they also yield 

less uniform water distribution on the control plot. Figure 51 shows that the mean rainfall 

intensities were higher for meshes combined with the nozzles than for mesh-free simulations. 

The mesh used affects the distribution of the rainfall intensity generated by nozzles: it is 

responsible for concentrating the rainfall intensity on the area below the nozzle because most 

drops that hit the meshes will fall vertically underneath, although some drops can also be 

ejected away from the meshes by splash.  

0
50

100
150
200
250
300
350
400
450
500

-1
.7

5

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

In
te

n
s
it

y
 (

m
m

 h
-1

) 

1 m 

0

50

100

150

200

250

300

350

-1
.7

5

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

Horizontal distance to the vertical where 
the nozzle is  positioned (m) 

1 m 

(a) (b) 

(c) (d) 

0

10

20

30

40

50

60

70

-1
.7

5

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

In
te

n
s
it

y
 (

m
m

 h
-1

) 

Horizontal distance to the vertical where 
the nozzle is positioned (m) 

1 m 

0

20

40

60

80

100

120

140

160

180

-1
.7

5

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

1 m 

HH-22 HH-14W 

HH-4.3W 
7G-1 

0

100

200

300

400

500

600

-1
.7

5

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

In
te

n
s
it

y
  (

m
m

/
h

)

Horizontal distance to the vertical where the nozzle is attached (m)

Without mesh I mean (without mesh)
Mesh at 200 mm I mean (mesh at 200 mm)
Mesh at 400 mm Imean (mesh at 400 mm)
Mesh at 600 mm I mean (mesh at 600 mm)

1 m

(a) (b) 

(c) (d) 



 

 

 

 

 

 

138 

 

Meshes at different distances from the nozzle 

 

The importance of the vertical distance adopted between the nozzle and the mesh underneath 

was assessed for the control plot; we tested distances of 200, 400 and 600 mm. Results show 

that, in general, this distance affects the mean rainfall intensity simulated, which tends to 

increase as this distance decreases (Figure 52a). The corresponding wire thickness of the 

meshes are different (see Table 19) but this variable seems not to affect the results. 

  

Figure 52. (a) Mean rainfall intensities observed combining nozzles with plastic meshes 

(square aperture of 12 mm and 20 mm) as a function of the vertical distances between the 

meshes and the nozzle; data are average values for the control plot and lines are only 

indicative of trends. (b) Comparison between the rainfall intensities observed along the 

control plot when combining the spray nozzle HH-14W with plastic meshes (square apertures 

of 12, 20 and 40 mm) and steel meshes (square apertures of 20 mm and 40 mm); the distance 

between the mesh and the nozzle was 600 mm.  
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Meshes made of two materials, different square apertures and thicknesses 

 

The effect of the meshes’ material (plastic and steel) was attempted by using only one nozzle 

type (HH-14W), one distance to the nozzle (600 mm), and two square apertures for both the 

plastic and steel meshes (20 mm or 40 mm).  

 

Descriptive statistics of the measured rainfall intensities are given in Table 21. The mesh 

material (plastic and steel) seems not to influence much the measured rain intensities (Figure 

52b). The results obtained using plastic and steel meshes with different square apertures also 

show that the aperture of the meshes used seems not to affect significantly the intensity of the 

simulated rainfall (Figure 52b). Also, there is no clear evidence of the impact of the wire 

thickness on the measured rain intensities. 

 

Table 21. Descriptive statistics of rainfall intensities measured in the control plot, for nozzles 

combined with steel and plastic meshes. The spray nozzle type used was HH-14W and the 

vertical distance between the mesh and the nozzle was 600 mm. Data are for the 5 gauges in 

the control plot (Figure 50c), 3-minute sampling time, and 3 replicates. 

 Meshes 

W
it

h
o
u

t 
m

es
h

 

Material Plastic wire Steel wire 

Square aperture (mm) 12 20 40 20 40 40 

Wire thickness (mm) 1.0-1.5 2.0-3.0 2.0-3.0 1.4 4.0 1.4 

Average (mm h
-1

) 63.7 57.1 61.5 61.8 64.5 61.2 46.6 

Minimum (mm h
-1

) 62.2 54.9 59.7 59.8 61.6 58.8 42.6 

Maximum (mm h
-1

) 64.9 58.1 62.4 63.6 68.1 63.4 48.7 

Coef. variation 0.02 0.02 0.02 0.02 0.04 0.03 0.05 

Coef. uniformity (%) 98.7 98.1 98.7 98.4 96.5 97.6 96.5 

 

8.3.2. Diameter and fall speed of drops 

 

The diameter and fall speed of the raindrops was analysed for the 4 nozzles tested. The 

rainfall simulated without using meshes was compared to the rain produced when a plastic 
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mesh (with a square aperture of 20 mm) was positioned at three distances from the nozzle 

(200, 400 and 600 mm).  

 

Results suggest that, overall, the presence of meshes increased the mass-weighted mean drop 

diameter (Dm) of the simulated rainfall; in Figure 53a, the majority of points are located above 

the 1:1 line. The mass-weighted mean diameter of the drops simulated with all the nozzles 

without using meshes varied between 0.65 mm and 1.76 mm and between 0.73 mm and 2.69 

mm when meshes were used. 

   

 

Figure 53. Comparison of simulated raindrops’ properties observed combining the spray 

nozzle with a plastic mesh (square aperture of 20 mm) and without mesh: (a) mass-weighted 

mean diameter; (b) mean fall speed. The spray nozzles tested are identified in the legend. The 

results are for meshes positioned at three vertical distances from the nozzles: 200, 400 and 

600 mm. The data were collected during 15 s (3 replicates) with a laser disdrometer 

positioned in three positions that correspond to the 3 data points for each combination nozzle 

type-distance (see Figure 50d). 

 

The formation of larger drops that are caused by the meshes, in relation to the mesh-free 

simulations, increased the mass-weighted mean diameter of the simulated raindrops and lead 

    

 

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5
1

.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

v
m

w
it

h
m

e
s

h
(m

 s
-1

)

vm without mesh (m s-1)

(b)
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0
.0

0
.3

0
.6

0
.9

1
.2

1
.5

1
.8

2
.1

2
.4

D
m

w
it

h
m

e
s

h
(m

m
)

Dm without mesh (mm)

(a)
1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

v
m

w
it

h
m

e
s

h
(m

 s
-1

)

vm without mesh (m s-1)

(b)
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0
.0

0
.3

0
.6

0
.9

1
.2

1
.5

1
.8

2
.1

2
.4

D
m

w
it

h
m

e
s

h
(m

m
)

Dm without mesh (mm)

(a)

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5
1

.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

v
m

 w
it

h
 m

e
s

h
 (

m
 s

-1
) 

vm without mesh (m s-1) 

(b) 
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0
.0

0
.3

0
.6

0
.9

1
.2

1
.5

1
.8

2
.1

2
.4

D
m

 w
it

h
 m

e
s

h
 (

m
m

) 

Dm without mesh (mm) 

(a) 

HH-22 (200 mm) HH-14W (200 mm) HH-4.3W (200 mm) 7G-1 (200 mm)
HH-22 (400 mm) HH-14W (400 mm) HH-4.3W (400 mm) 7G-1 (400 mm)
HH-22 (600 mm) HH-14W (600 mm) HH-4.3W (600 mm) 7G-1 (600 mm)

(a) (b) 



 

8. USING MESHES TO CHANGE THE CHARACTERISTICS OF SIMULATED 

RAINFALL PRODUCED BY SPRAY NOZZLES  

 

 

 

141 

 

to a broader range of drop sizes. This is illustrated in Figure 54 that shows the effect of the 

plastic mesh (square aperture of 20 mm) on the rain simulations recorded just below the 4 

nozzles. It is expected that water drops that hit the meshes will detach from it after growing 

up to a size at which its weight overcomes the surface tension force, thus the number of larger 

drops increases. We note that the increase in drop size caused by the meshes is less strong for 

the HH-22 nozzle; this is because the nozzle was nevertheless producing drops larger than the 

other nozzles, even without the meshes. In particular, just below the nozzle the maximum 

drop diameter recorded for this case was 6.25 mm. Other properties of the spray formed by 

this nozzle are discussed below. 

 

 

Figure 54. Rain drop size distribution produced by spray nozzles combined with a plastic 

mesh (square aperture of 20 mm) and without mesh: (a) HH-22; (b) HH-14W; (c) HH-4.3W; 

(d) 7G-1. The data were collected with the disdrometer positioned in the centered position, on 

the measuring plane, and the meshes were positioned at three distances from the nozzle. 

 

The fine 7G-1 spray nozzle forms very small droplets, yielding a rather dense spray 

resembling fog. The expectation is that the smaller number of drops in the lowest drop size 

class reported by the laser disdrometer (Figure 54d) in comparison to other nozzles (Figure 

54a, Figure 54b and Figure 54c) is explained, at least partly, by the lower size-limit detection 

for the drops (i.e. 0.125 mm diameter) which could lead to undersampling of small drops 

below this limit. However, this effect, if present, does not affect the qualitative evaluation of 

the impact of meshes on changing the properties of the drops formed by this nozzle. 
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The drop fall speed seems not to be much affected by the presence of meshes. Figure 53b 

shows that drop fall speed ranges from 1.2 m s
-1

 to 2.4 m s
-1

 for the mesh-free simulations and 

are between 1.2 m s
-1

 and 2.5 m s
-1

 for the simulations conducted with meshes. This figure 

shows that in 36% of the tests the fall speed was higher in the simulations using meshes, and 

smaller in 28% of them. Nevertheless, it might be expected that without meshes the fall speed 

is higher, because drops are forced out of the spray nozzles at high velocities, whereas drops 

that fall from meshes have an initial velocity of zero. However, despite the short fall distance 

from the mesh to the ground, the bigger drops that are formed due to the presence of meshes 

fall faster because of their greater mass; in addition, it is expected that the majority of drops 

fall to the target surface without hitting the mesh. Similar results were obtained for the plastic 

mesh of 12 mm aperture (Figure 52b and Table 21). 

 

8.4. Concluding remarks 

 

A laboratory set-up was prepared to evaluate the impact of combining meshes with spray 

nozzles on rain simulations, with the meshes being positioned underneath the nozzles and 

intercepting the spray (i.e. the drops trajectories). The meshes were made of plastic and steel, 

with square apertures from 12 to 40 mm, installed at various vertical distances away from the 

nozzles. For the control plot, we report the following findings:  

 

(i) Rainfall intensities 

 

 In general, the meshes increased the mean rainfall intensity on the control plot, beneath the 

nozzle, as most raindrops that hit the meshes fall vertically underneath; nevertheless, this 

effect on the rain simulations is affected by the distance between the mesh and the nozzle. 

 The mean rainfall intensity under the meshes increases as the distance between the meshes 

and the nozzles decreases; this is also explained by the drop concentration effect caused by 

the interception of the drop trajectories by the mesh.  
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 The meshes’ material (plastic and steel), wire thickness and square apertures seem not to 

have much influence on the simulated rain properties; but the limited number of conditions 

studied restricts the analysis of results and hence the tests were not conclusive. 

 

(ii) Raindrop properties  

While intercepting the nozzle sprays, the meshes altered the simulated raindrops’ properties. 

In particular, for the raindrops diameter and fall speed, the main findings were: 

 

 The mass-weighted mean diameter of the simulated raindrops was higher when meshes 

were used, in relation to the simulations carried out without combining meshes and 

nozzles. Because spray nozzles generate typically small drop sizes and narrow drop size 

distributions, when meshes are combined with nozzles they promote the formation of 

bigger drops and the randomization of their landing positions; 

 The mean fall speed of the simulated raindrops was similar for simulations carried out 

with and without meshes. Results suggest that overall the meshes might not have much 

influence on the mean fall speed because regardless of the presence of the meshes a large 

amount of drops still fall directly from the nozzle without hitting the meshes. 

 

Thus, meshes can be used to alter the mean rainfall intensity produced by spray nozzles, and 

also the drop sizes. Note that by varying the operating nozzle pressure, which was kept 

constant in this exploratory work, the diameter and fall speed of drops can be changed. 

Indeed, lower nozzle pressures yield larger drops with lower fall speed, whereas higher 

pressures produce smaller drops with higher fall speed.  

 

In this study no attempt was made to reproduce natural rainfall. Further research should be 

done to investigate how nozzle type, operating pressure and meshes can be used to adjust the 

characteristics of spray nozzle simulated rainfall to those of a specific natural rainfall. 
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9. INCREASING THE RAINFALL KINETIC ENERGY OF SPRAY 

NOZZLES BY USING MESHES5 

 

 

Abstract 

 

Rainfall simulators are an important tool in studying soil erosion, which is a key process 

contributing to land degradation. The kinetic energy of simulated rain is central to these 

studies and it is used as an indicator of the raindrops’ ability to detach particles from the soil 

surface. The main purpose of this experimental work was to explore the usefulness of 

incorporating meshes underneath pressurized nozzles’ rain simulators, that intercept the drops 

sprayed out by the nozzles and change the simulated rain characteristics, namely by 

increasing the rainfall kinetic energy. The laboratory experiments included testing four types 

of spray nozzles (discharge from 2.3 to 11.9 L
 
min

-1
), combined with a high-density 

polyethylene mesh (square aperture of 20 mm). The effect of the mesh was studied for three 

vertical distances between the nozzle and the mesh (200, 400 and 600 mm). A laser 

disdrometer was used to measure the diameter and fall speed of the simulated raindrops. For 

the mesh-free simulations, the nozzles produced drops having on average a mean equivalent 

diameter of around 0.6 mm and a mean fall speed of about 1.5 m
 
s

-1
. The mesh increased the 

formation of bigger drops (>2.5 mm) and, consequently, increased the rainfall kinetic energy 

of the simulated rain; the magnitude of this increase varied with the spray produced by the 

nozzles. Results show that meshes can be useful for increasing the kinetic energy of the 

rainfall simulated by nozzles within soil erosion studies. 

 

 

 

 

                                                 

5 Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2014. Increasing the rainfall kinetic energy of spray nozzles by using 

meshes. Land Degradation & Development. (In revision: revised manuscript submitted) 
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9.1. Introduction 

 

Land degradation is a worldwide process triggered by humankind, highly associated with soil 

erosion and transport of pollutants. Soil erosion is a key process to understand the role of 

water, nutrients, sediments and organic matter losses, which reduce soil fertility and 

contribute to land degradation. Over time, many authors have published on these problems, 

either by reporting on case studies from different parts of the world (recent works are e.g.  

Abu Hammad and Tumeizi, 2012; Meshesha et al., 2012; Thomaz and Luiz, 2012; Zhao et al., 

2013), which includes discussing solutions by means of sustainable land management 

practices, or examining relevant processes and mechanisms in detail (e.g. Cerdà, 1998; Ziadat 

and Taimeh, 2013). Experimental field and laboratory work, relying on simulations of rain, 

have contributed much to the increased understanding of various hydrological and 

geomorphological processes. The versatility of rainfall simulators enables them to be used in 

the laboratory and in the field, providing controlled conditions of rainfall intensity and 

duration (e.g. Wilcox et al., 1986; Kamphorst, 1987; Kainz et al., 1992; Cerdà et al., 1997; 

Regmi and Thompson, 2000; Grismer and Hogan, 2004; de Lima et al., 2005; Seeger, 2007; 

de Lima et al., 2009; 2013c).  

 

However, the capacity of reproducing natural rainfall events through simulations is limited; 

this has been discussed by e.g. Agassi and Bradford (1999), Dunkerley (2008a), Fernández-

Raga et al. (2010), Abudi et al. (2012), and Ries et al. (2014). Namely, some authors (e.g. 

Hall, 1970; Cerdà, 1997; Fernández-Gálvez et al., 2008) pointed out that in soil water erosion 

studies simulated raindrops should desirably have the size and fall speed observed in nature, 

since these are key variables affecting the kinetic energy of individual drops that particularly 

enhance soil detachment (e.g. Bisal, 1960). Some studies have also revealed important 

relationships between the kinetic energy of raindrops and soil surface sealing (e.g. Thompson 

and James, 1985; Ziegler et al., 1997; Assouline, 2004): high kinetic energy of drops can 

induce soil surface sealing and consequently reduce the infiltration rate. The simulated rainfall 

kinetic energy is therefore crucial when choosing the most appropriate type of simulator for a 

particular purpose. 

 



 

9. INCREASING THE RAINFALL KINETIC ENERGY OF SPRAY NOZZLES BY USING MESHES  

 

 

 

 

147 

 

Although a large diversity of rainfall simulators are currently used, the most common types 

are non-pressurised rainfall simulators (drop-formers) (e.g. Walker et al., 1977; Kamphorst, 

1987) and pressurised rainfall simulators (e.g. Dunne et al., 1980; Cerdà et al., 1997; de Lima 

et al., 2003; Montenegro et al., 2013). Cerdà (1999) gives an extended review on both types of 

simulators, and discusses their advantages and inconveniences for rainfall simulations. 

 

The advantages of non-pressurised simulators are related to the spatial rainfall uniformity they 

yield, since these simulators produce uniformly-sized drops; however, this can turn out to be 

also a disadvantage (e.g. Tossell et al., 1987). In addition, the drops’ fall velocities attained 

(fall under gravity) might hamper the reproduction of the kinetic energy of natural rain. In 

order to break up the raindrops and create a drop size distribution closer to that of natural 

rainfall, as well as to random the drops’ landing positions, some experimental set-ups include 

meshes under the non-pressurised drop formers (e.g. Clarke and Walsh, 2007; Fernández-

Gálvez et al., 2008). 

 

The pressurised rainfall simulators have spray nozzles that can be characterized by the nozzle 

discharge, spray angle and pattern, and drop size (e.g. Omer and Ashgriz, 2011). In contrast to 

drop-formers, in these rainfall simulators drops do not rely on gravity to reach terminal 

velocity since they are sprayed out under pressure (e.g. Tossell et al., 1987). Moreover, 

pressurised rainfall simulators provide a wider range of drop sizes than non-pressurised 

simulators, which randomly land on the surface. However, the drop´s properties and hence the 

entire simulated event will depend on the system operating pressure, the flow rate and the 

nozzle design (e.g. Kincaid, 1996; Erpul et al., 1998). All these factors could explain why 

meshes have seldom been used in this type of experimental set-ups. Recently, Schindler 

Wildhaber et al. (2012) conducted a series of experiments using a rainfall simulator that 

comprised a wire mesh screen suspended (0.5 m) below a spray nozzle. In their work, the 

authors stated that despite not being possible to achieve natural rain conditions with the 

proposed simulator, its performance improved with respect to the mean drop size and kinetic 

energy of the simulated rain.  
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As pointed out by e.g. Aksoy et al. (2012), the calculation of simulated rainfall kinetic energy 

is not common in literature. In addition, some studies (e.g. Iserloh et al., 2013) claim that the 

kinetic energy of simulated rain is often likely overestimated since the values are typically 

calculated based on assumptions that diameters and/or velocities from natural rainfall apply 

for simulated rainfall. 

 

This study is dedicated to explore the effect of meshes on the kinetic energy of rainfall 

produced by spray nozzle simulators. This modification of the experimental installation, 

which consists of combining nozzles and meshes, is expected to increase the versatility of 

nozzles in experimental simulations of rain. Thus, a laboratory set-up was prepared aiming at 

exploring different combinations of types of nozzles and distances between the mesh and the 

nozzle. The usefulness of these experiments is to increase our understanding of rain 

simulations using nozzles, namely on laboratory and field studies of soil erosion and surface 

hydrology processes. 

 

9.2. Materials and Methods 

 

9.2.1. Laboratory installation 

 

The laboratory installation was prepared by coupling a mesh to a nozzle rainfall simulator 

(Figure 55). The experimental set-up includes: a constant head reservoir, a submersible pump, 

flexible hoses, a downward-oriented spray nozzle and a mesh suspended horizontally 

underneath by a system of cables and pulleys. 
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Figure 55. View of the laboratory installation, showing the nozzle, the suspended mesh 

underneath and the disdrometer. 

 

In order to explore the effect of a mesh on the intensity and drop characteristics of simulated 

rainfall, four types of spray nozzles manufactured by Spraying Systems Co. were used: three 

single full-cone nozzles (named HH-22, HH-14W and HH-4.3W); and one multiple full-cone 

nozzle (7G-1). Table 22 shows the spray angle and discharge for these nozzles, which were 

operated at a pressure of 1.5 bar. Note that by varying the operating nozzle pressure, the drop 

characteristics can be changed. Spraying Systems Co. (2013) reported that the angle of the 

water cone is higher at this pressure (for the studied nozzles); increasing the operating 

pressure would reduce drop sizes and increase drop velocities, whereas, on the opposite, a 

pressure reduction would increase drop sizes and decrease drop velocities. In relation to 

kinetic energy, as it depends on the number, size and fall speed of drops, the effect of 

changing the nozzle pressure will be determined by the impact caused on these drop’s 

properties; nevertheless, this effect was not studied here. 
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Table 22. Description of the spray nozzles used in the experiments. All nozzles are 

manufactured by Spraying Systems Co. The operating pressure was 1.5 bar for all the 

experiments. 

Spray nozzle 

code 
HH-22 HH-14W HH-4.3W 7G-1 

Nozzle 

photograph 

    

Discharge  

(L min
-1

) 
11.9 7.6 2.3 4.3 

Spray angle 

(º) 
90 120 120 170 

 

 

The mesh, which was attached to a metal square frame of 1 m
2
, is made of high-density 

polyethylene and has 20 mm square aperture; the thickness of the wire is around 2.5 mm.  

 

The simulated rainfall was measured using a Laser Precipitation Monitor (LPM) from Thies 

Clima (Thies, 2007). This disdrometer consists of a laser-optical source that produces a 

parallel light-beam (the area of detection is 4777 mm
2
). The instrument determines the size 

and fall speed of drops by measuring the signal reduction caused by the drop falling through 

the light-beam; the amplitude and duration of the reduced signal is used to estimate the drop 

size and fall speed, respectively. The instrument provides information on the total number of 

drops over 21 size classes (from 0.125 mm to 8.000 mm) and 20 fall speed classes (up to 

20.0 m s
-1

); for both drop size and fall speed, the amplitude of the classes is variable.  

 

9.2.2. Methodology 

 

The mesh (1 m
2
) was positioned centred and at three vertical distances below the nozzles: 

200, 400 and 600 mm. Rainfall measurements were performed under the nozzle with and 

without the presence of the mesh.  
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The characteristics of the simulated rainfall, namely rain intensity, and size and fall speed of 

drops, were measured using a disdrometer installed at 2.35 m below the nozzle (Figure 55). 

The disdrometer was positioned in three locations: just beneath the nozzle and at a horizontal 

distance of 0.30 m (opposite positions); it was kept recording in each position during 3 

minutes. Due to limitations of the disdrometer software in handling a large number of 

raindrops, the sampling interval adopted in this study was 15 seconds instead of the standard 

1-minute interval, defined by the device manufacturer by default. This was achieved by 

repeatedly covering the disdrometer during 45 seconds of each minute recorded, leaving it 

exposed to the simulated rain during 15 seconds in each minute (thus, the data were assumed 

to represent 3 measurements’ repetitions, one for each 15 seconds sampled). For each sampled 

interval, the instrument provided a two dimensional matrix with the count of drops in each of 

the size and fall speed classes. Thus, for each position of the disdrometer, the three matrices 

(i.e. for the 3 repetitions) were averaged to obtain one single matrix for each case, which were 

used for determining the mean drop diameter (Eq. 9.1), the mean drop fall speed (Eq. 9.2), the 

rainfall intensity (Eqs. 9.3 and 9.4), and the rainfall kinetic energy (Eqs. 9.5 to 9.8).   

 

The mean drop diameter, Dmean [mm], was obtained by: 

 
(9.1) 

where ni is the number of detected raindrops in the size class i, Di [mm] is the drop diameter 

at the middle of the size class i, and N is the total number of detected raindrops. D is the 

spherical equivalent diameter of the raindrops. 

 

The mean fall speed, Vmean [m s
-1

], was calculated as:  

 
 (9.2) 

where, nj is the number of detected raindrops in the fall speed class j, vj [m s
-1

] is the fall 

speed at the middle of the fall speed class j, and N is the total number of detected raindrops. 

 

 

Dmean=
∑ niDi

21
i=1

N
 

Vmean=
∑ njvj

20
j=1

N
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The rainfall intensity, R [mm h
-1

], was obtained by (e.g. Krajewski et al., 2006): 

 

(9.3) 

with R(Di) being the intensity for a given drop size class i: 

 
(9.4) 

where ni is the number of drops detected in the size class i during the interval t = 15/3600 h, Di 

[mm] is the drop diameter at the middle of the size class i, and A is the disdrometer detection 

area [m
2
].  

 

The time-specific kinetic energy KEtime [J
 
m

-2 
h

-1
] of the simulated rain was calculated by (e.g. 

Usón and Ramos, 2001):  

 

(9.5) 

with 

 

(9.6) 

where 𝜌 is the water density (10
-6

 kg
 
mm

-3
), nij is the number of detected raindrops in the size 

class i and fall speed class j, which is measured during the interval t (15/3600 h), vj [m
 
s

-1
] is the 

fall speed of the raindrops at the middle of the fall speed class j, A [m
2
] is the detection area, 

and Di [mm] is the drop diameter at the middle of the size class i. 

 

The kinetic energy of the simulated rain was also estimated in terms of volume-specific rain 

kinetic energy, KEmm [J
 
m

-2 
mm

-1
], which is given by (e.g. Salles et al., 2002): 

 
(9.7) 

 

And KEmm (Di) is the volume-specific rain kinetic energy for a given drop size class i: 

R = ∑R (Di)

21

i=1

 

R (Di) =
π

6A t
niDi

3
 

KEtime = ∑  

21

i=1

KEtime(Di) 

KEtime(Di) = 
 ρ π

12A t
∑  

20

j=1

nij vj
2 Di

3 

KEmm = 
KEtime

R
= 
∑ KEtime(Di)

21
i=1

∑ R(Di)
21
i=1
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(9.8) 

 

All variables in Eqs. (9.7) and (9.8) are defined above. 

 

9.3. Results and discussion 

 

This section reports changes observed in rain simulated with four pressurised nozzles (Table 

22), caused by suspending a mesh underneath the nozzles; the focus is on rain intensity, and 

drop size and fall speed. Table 23 shows some properties of the simulated rainfall produced 

by each nozzle without mesh and with the mesh suspended at three vertical distances from the 

nozzles: 200, 400 and 600 mm. Data in Table 23 are averages of the measurements recorded 

for the three positions of the disdrometer, as described above; in each position, 3 replicate 

measurements were taken, the sampling time being 15 s. For mesh-free simulations, the HH-

22 nozzle produced the highest mean rain intensity (174 mm
 
h
−1

), whereas the HH-4.3 

produced the lowest mean rain intensity (22 mm
 
h
−1

). When the mesh was combined with the 

nozzles, most of the drops that hit the mesh fell vertically beneath the nozzles and, 

consequently, the rain intensity increased. The highest (182%) and the lowest (6%) increase 

were both observed for HH-4.3W nozzle, when the mesh was suspended at 200 mm and 

600 mm from the nozzle, respectively. In fact, it was possible to observe that, for all nozzles, 

the lower the distance between the mesh and the nozzle, the higher the increase in rainfall 

intensity. On average, for a distance between the mesh and the nozzles of 200, 400 and 

600 mm, this increase was, respectively, 120%, 48% and 25%. 

 

 

 

 

 

 

KEmm(Di)=106
ρ

2

∑ nijvj
2Di

320
j=1

niDi
3
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Table 23. Description of rainfall characteristics produced by four spray nozzles, for mesh-free 

simulations and combining a mesh at three vertical positions from the nozzle. Data are 

averages for the measurements recorded at three positions of the disdrometer (with 3 

replicates for each position). 
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(J
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-2
 m

m
-1

) 

H
H

-2
2
 

- 174.1 0.74 0.36 1.92 1.63 288.5 1.66 

200 285.3 0.88 0.44 1.99 1.78 524.1 1.84 

400 245.9 0.82 0.42 1.96 1.69 436.5 1.77 

600 229.6 0.77 0.41 1.92 1.67 470.4 2.05 

H
H

-1
4

W
 - 41.2 0.52 0.21 1.41 1.03 35.7 0.87 

200 95.8 0.58 0.30 1.47 1.13 182.8 1.91 

400 69.2 0.52 0.26 1.37 0.98 146.3 2.11 

600 56.2 0.50 0.24 1.41 0.99 126.1 2.25 

H
H

-4
.3

W
 - 21.6 0.47 0.17 1.27 0.95 12.3 0.57 

200 61.0 0.47 0.27 1.28 0.95 243.6 3.99 

400 28.3 0.44 0.20 1.25 0.89 74.9 2.64 

600 22.9 0.44 0.17 1.26 0.90 32.5 1.41 

7
G

-1
 

- 68.4 0.67 0.25 1.47 1.37 49.9 0.73 

200 137.0 0.69 0.36 1.47 1.41 292.8 2.14 

400 104.6 0.66 0.33 1.46 1.39 190.3 1.82 

600 87.3 0.65 0.29 1.42 1.33 111.7 1.28 

where: R (rainfall intensity), Dmean (mean drop diameter), Vmean (mean drop fall speed), KEtime (time-specific rain 

kinetic energy) and KEmm (volume-specific rain kinetic energy). 

 

Figure 56 shows the distribution of the total number of drops as a function of the drop 

diameter and fall speed for mesh-free simulations and for a mesh positioned at 400 mm from 

the nozzle; the drop diameter and fall speed data were measured with the disdrometer 

positioned just below the nozzle. For mesh-free simulations (Figure 56, left), the majority of 

drops had a diameter smaller than 1 mm: 85.4%, for HH.22; 97.9%, for HH.14W; 99.7%, for 

HH.4.3W; and 86.4%, for 7G.1. Without mesh, the maximum raindrop diameter observed was 

~2.5 mm, except for HH-22 nozzle.  
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Figure 56. For 4 nozzles types, total number of drops counted in each size and fall speed 

interval for: mesh-free nozzle simulations (left); and for simulations combining the nozzle 

with a mesh positioned at 400 mm from the nozzle (right). The data were collected during 

15 s (average of 3 replicates) with the disdrometer positioned just below the nozzles. See also 

Table 23. 

> 9 # 0 0 0 0 0 0 0 0 0 0 0 0 0 # 1 1 0 1 0 0 0 0 0 0 0 0 0

8.2 - 9.0 # 2 2 0 1 0 0 0 0 0 0 0 0 0 # 2 1 1 0 0 0 0 0 0 0 0 0 0

7.4 - 8.2 # 6 2 0 1 1 0 0 0 0 0 0 0 0 # # 4 2 0 0 0 0 0 0 0 0 0 0

6.6 - 7.4 # # 7 2 0 0 0 0 0 0 0 0 0 0 # # 6 1 0 0 0 0 0 0 0 0 0 0

5.8 - 6.6 # # 8 3 0 0 0 0 0 0 0 0 0 0 # # # 3 1 0 0 0 0 0 0 0 0 0

5.0 - 5.8 # # # 5 1 0 1 0 0 0 0 0 0 0 # # # 4 1 0 0 0 0 0 0 0 0 0

4.2 - 5.0 # # # 2 1 0 1 0 0 0 0 0 0 0 # # # 3 1 2 0 0 0 0 0 0 0 0

3.4 - 4.2 # # # 9 2 2 1 0 0 0 0 0 0 0 # # # 4 3 3 1 0 0 0 0 0 0 1

2.6 - 3.4 # # # # 3 4 1 0 0 0 0 0 0 0 # # # # 6 2 0 1 0 0 0 0 0 0

1.8 - 2.6 # # # # 6 4 1 0 0 0 0 0 0 0 # # # # # 5 1 1 0 1 0 0 0 0

1.0 - 1.8 # # # # # 5 2 0 0 0 0 0 0 0 # # # # # 6 2 1 0 1 1 2 1 0

0.6 - 1.0 # # # # # 6 2 0 0 0 0 0 0 0 # # # # # 4 1 1 0 0 0 0 0 0

0.2 - 0.6 5 # # # # 4 2 0 0 0 0 0 0 0 9 # # # # 6 2 1 0 0 0 0 0 0
0.0 - 0.2 0 # # 6 2 2 0 0 0 0 0 0 0 0 0 7 # 9 2 1 0 0 0 0 0 0 0 0

> 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.2 - 9.0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.4 - 8.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.6 - 7.4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

5.8 - 6.6 # 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0

5.0 - 5.8 # 1 0 0 0 0 0 0 0 0 0 0 0 0 # 1 0 0 0 0 0 0 0 0 0 0 0 0

4.2 - 5.0 # 4 2 1 0 0 0 0 0 0 0 0 0 0 # 6 2 0 0 0 0 0 0 0 0 0 0 0

3.4 - 4.2 # # 2 0 0 0 0 0 0 0 0 0 0 0 # # 2 0 0 0 0 0 0 0 0 0 1 0

2.6 - 3.4 # # 3 1 0 0 0 0 0 0 0 0 0 0 # # 3 0 0 0 0 0 0 0 0 1 0 0

1.8 - 2.6 # # 8 2 0 0 0 0 0 0 0 0 0 0 # # 5 0 0 0 0 0 0 1 0 0 0 0

1.0 - 1.8 # # # 5 0 0 0 0 0 0 0 0 0 0 # # # 4 1 0 1 0 0 0 0 0 1 0

0.6 - 1.0 # # # 2 1 0 0 0 0 0 0 0 0 0 # # # 4 0 0 0 0 0 0 0 0 0 0

0.2 - 0.6 # # # 4 1 0 0 0 0 0 0 0 0 0 # # # 3 0 0 0 0 0 0 0 0 0 0

0.0 - 0.2 1 # 3 0 0 0 0 0 0 0 0 0 0 0 2 # 4 0 0 0 0 0 0 0 0 0 0 0

> 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.2 - 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.4 - 8.2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.6 - 7.4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.8 - 6.6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

5.0 - 5.8 # 0 0 0 0 0 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 0 0 0 0

4.2 - 5.0 # 1 0 0 0 0 0 0 0 0 0 0 0 0 # 1 0 0 0 0 0 0 0 0 0 0 0 0

3.4 - 4.2 # 8 1 0 0 0 0 0 0 0 0 0 0 0 # 4 1 0 0 0 0 0 0 0 0 0 0 0

2.6 - 3.4 # # 0 0 0 0 0 0 0 0 0 0 0 0 # # 0 0 0 0 0 0 0 0 0 0 0 0

1.8 - 2.6 # # 1 0 0 0 0 0 0 0 0 0 0 0 # # 1 0 0 0 0 0 0 0 0 0 0 0

1.0 - 1.8 # # 3 0 1 0 0 0 0 0 0 0 0 0 # # 3 0 0 0 0 0 0 0 0 0 0 0

0.6 - 1.0 # # 4 0 0 0 0 0 0 0 0 0 0 0 # # 4 0 0 0 0 0 0 0 0 0 0 0

0.2 - 0.6 # # # 0 0 0 0 0 0 0 0 0 0 0 # # 5 0 0 0 0 0 0 0 0 0 0 0

0.0 - 0.2 3 # 1 0 0 0 0 0 0 0 0 0 0 0 # # 0 0 0 0 0 0 0 0 0 0 0 0

> 9 # 0 0 0 0 0 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 0 0 0 0

8.2 - 9.0 # 0 0 0 0 0 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 0 0 0 0

7.4 - 8.2 # 0 0 0 0 0 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 0 0 0 0

6.6 - 7.4 # 1 0 0 0 0 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 0 0 0 0

5.8 - 6.6 # 3 0 0 0 0 0 0 0 0 0 0 0 0 # 2 0 0 0 0 0 0 0 0 0 0 0 0
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For the simulations incorporating the mesh (Figure 56, right), it was found that the mesh 

affected the simulated raindrops mainly by leading to the formation of bigger drops (i.e. larger 

than 2.5 mm). Figure 56 also shows that when using the mesh the fall speeds of big drops are 

typically below 6.6 m
 
s
−1

, and higher fall speeds are usually reached by drops with small 

diameters (< 0.5 mm). This is because larger drops fall from the mesh at an initial zero 

velocity, while the nozzles produce small drops that are sprayed out at high velocities. 

Nevertheless, the mean drop fall speed was similar when using, or not, the mesh (Figure 56 

and Table 23). 

 

Comparison of the mean drop fall speed recorded for the four spray nozzles show that this 

speed was much higher for the HH-22 nozzle than for the other nozzles: 2.4 m
 
s
−1

 just below 

the nozzle compared to e.g. 1.4 m
 
s
−1

 for HH-14W (see Figure 56); moreover, for the HH-22 

nozzle, the fall speed of around 16% of drops was higher than 4.2 m
 
s

-1
 (Figure 56a and 

Figure 56b), while for the other nozzles this percentage was only between 1% (Figure 56f) 

and 8% (Figure 56g). 

 

The kinetic energy of the simulated rain was also determined for the four nozzles, including 

the mesh-free simulations and the simulations incorporating the mesh positioned at three 

vertical distances from the nozzles (Figure 57 and Table 23). Iserloh et al. (2013) report 

values of the kinetic energy found for a large variety of simulators (e.g. nozzles/drop formers, 

working pressure, fall height). We highlight that in our study the results obtained for the 

mesh-free simulations are within the range of reported values and that the rainfall kinetic 

energy clearly increased when the mesh was used in comparison to the mesh-free simulations. 

Figure 57a (KEtime) and Figure 57b (KEmm) show this tendency: the data points are located 

well above the 1:1 line, for both types of kinetic energy; but the percentage increase is 

different for each case (see also Table 23) and it is therefore not viable to distinguish an 

average percentage increase. In particular, the highest increase of kinetic energy was found 

for HH-4.3W nozzle with the mesh at 200 mm; whereas the lowest increase of kinetic energy 

was for the HH-22 with mesh at 400 mm. The experiments show that the kinetic energy is 

sensitive to the presence of large drops. However, it does not affect the general conclusion 

about the effect of the mesh on the rainfall simulations. 
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Figure 57. Comparison of the kinetic energy of the rainfall simulated using meshes with the 

mesh-free simulations: (a) time-specific rainfall kinetic energy; (b) volume-specific rainfall 

kinetic energy. The results are for the mesh positioned at three vertical distances from the 

nozzle. The three data points for each combination nozzle type-distance from the nozzle are 

for the three positions of the disdrometer; data points are averages of 3 measurement 

replicates. 

 

In general, decreasing the distance of the mesh to the nozzle is expected to lead to increased 

rainfall kinetic energy, as more drops are intercepted by the mesh and fall vertically 

underneath. For the HH-4.3W and 7G-1 nozzles, the increase in the rainfall kinetic energy 

was the highest when the mesh was positioned at 200 mm, and the lowest for mesh positioned 

at 600 mm from the nozzle. This result was not confirmed for all simulations that involved the 

HH-22 and HH-14W nozzles.  

 

In order to better understand the effect of the mesh on the rainfall kinetic energy, the 

distribution of KEtime is shown in Figure 58 as a function of the drop size and fall speed (rain 

data in Figure 56 and Figure 58 are the same). Figure 58 highlight that the KEtime distributions 

are different for each nozzle, but a common pattern is identified: the contribution of bigger 

drops (>
 
2.5 mm) to the total kinetic energy is particularly relevant, despite the smaller 

number of drops with larger diameters (see Figure 56).  
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Figure 58. Time-specific kinetic energy, KEtime, for each size and fall speed class for mesh-

free simulations (left), and combining a mesh positioned at 400 mm from the nozzle (right). 

The data were collected during 15 s (3 replicates) with the disdrometer positioned just below 

the nozzle. The KEtime data are average values for the 3 measurement replicates.   
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Figure 59a to Figure 59d show the KEtime for each raindrop size class and for all the nozzles. 

Except for nozzle HH-22, results support that small drops are only responsible for a small 

proportion of the rainfall kinetic energy, due to their small mass. 

 

The impact of drop fall speeds on the rainfall kinetic energy was also inspected. Figure 59e to 

Figure 59h show plots of KEtime as a function of drop fall speed classes: we note high values 

(“peaks”) of kinetic energy for some fall speed classes that appear to be specific for each 

nozzle type; the effect of the position of the mesh is not clear. In spite of the mean drop fall 

speed being similar for experiments with and without the mesh, the relative contribution of 

faster drops (>
 
3.8 m

 
s

-1
) to the total kinetic energy was higher for the experiments using the 

mesh, except for HH-22 (Figure 59e). For example, for the mesh-free simulations using the 

HH-4.3W nozzle, around 50% of the total kinetic energy was provided by drops that fall 

slower than 1.8 m
 
s

-1 
(Figure 58e); whereas for simulations with a mesh, the same 50% of the 

total kinetic energy was provided by drops falling faster than 5 m
 
s

-1
 (Figure 58f). Overall, 

results show that despite the small number of drops with large diameters and high fall speeds 

produced when the mesh was used, they contribute highly to the increase of the kinetic energy 

of the simulated rainfall. 
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Figure 59. Time-specific kinetic energy, KEtime, as a function of raindrop size classes (left), 

and drop fall speed classes (right). The data are for the disdrometer positioned just below the 

nozzle (average for 3 replicates). 
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9.4. Concluding remarks 

 

The main finding of this rainfall simulation laboratory study is that it is possible to increase 

the rainfall kinetic energy by combining nozzles and meshes; this results mainly from the 

formation of bigger drops on the mesh’s wire since mean raindrop fall speed was similar for 

simulations conducted with and without meshes. Although the magnitude of that increase 

differs for each spray nozzle and mesh position, using a mesh systematically increased the 

rainfall intensity and kinetic energy below the mesh, in comparison to the mesh-free 

simulations. However, the experimental results highlight that it is difficult to identify a 

general quantitative model for the expected effect of meshes on rain simulations. 

Nevertheless, for the majority of cases explored in this work, which involved different 

combinations of nozzles and installation distances between the nozzles and the mesh 

underneath, the combination that produced the highest increase in the rainfall intensity and 

kinetic energy was when the mesh was positioned nearer to the spray nozzles.  

 

We believe that modifying the experimental installation, by incorporating meshes, can 

increase the versatility of nozzles in experimental simulations of rain, both in the laboratory 

and in the field; the effect on the simulated rain of combinations involving, for example, 

different operation pressures and different drop fall heights should be also investigated. The 

usefulness of changing the characteristics of the rain simulated by nozzle sprays, and the 

result achieved, depends greatly on the specific experimental conditions and study aims, in 

particular for studying soil erosion and surface hydrology processes. Therefore, these 

exploratory experiments were important to understand how the characteristics of the rain 

simulated using nozzles might be manipulated by combining nozzles and meshes. 
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10. CONCLUSIONS AND FUTURE RESEARCH 

 

Rainfall is one of the most important meteorological variables and characterizing its 

distribution, frequency, and variability is crucial for water-related system design and 

management. Moreover, despite its critical influence on everyday life (e.g. in water supply, 

agriculture, energy production), it is still complex to measure, estimate and forecast rainfall. 

The research presented in this thesis focused on some aspects related to rainfall. Special 

attention was dedicated to measuring and charactering the rainfall variability, both within 

natural and laboratory conditions. 

 

10.1. Conclusions 

 

The following paragraphs summarize the main conclusions of this thesis according to the 

objectives listed in Chapter 1.  

 

- Comparison of different instruments for rainfall measurement, in particular, development 

of an instrument for assessing the variability in rainwater composition 

 

In recent years, considerable efforts have been dedicated to produce quality observational 

rainfall records. A combination of rain-gauge types is normally used in pluviometric 

monitoring networks. Chapter 3 provided a comparison of the performance of different types 

of rain gauges, namely, Hellmann gauges, a tipping bucket gauge, a weighing gauge, optical 

and impact sensors, installed at the top of the building of the Department of Civil 

Engineering. The discrepancy of measurements was high, but approximately half of the 

observations were within the WMO limits of rainfall measurement accuracy (5%). Although 

the rainfall time series provided by the different gauges were not strictly equivalent, that fact 

could be expected, as the instruments tested have different designs and measuring principles. 

For example, the overestimation for the disdrometer can occur from coincident drops, which 
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are detected by the laser as one single but large drop; or the underestimation from weighing 

precipitation gauge might result of evaporation processes.  

 

In addition to the instruments used to measure the rain rates and cumulative rain amounts 

described in Chapter 3, collecting sequential samples of rainwater is crucial to understand the 

variability of rain composition during short time periods. For example, the rainwater quality is 

expected to vary from event to event and within individual events. In Chapter 4 a low-cost 

volume-based sequential rain sampler was developed in a way to accomplish: i) simple 

manufacturing, set-up and maintenance, and no power requirements; and ii) adequate 

sampling resolution to monitor single events. The tests carried out under field conditions 

suggested that the sampling resolution adopted (2 bottles of 0.5 mm, followed by 9 bottles of 

1 mm, until a maximum of 10 mm of cumulative rainfall depth) are adequate to detect the 

inter-event variability of some parameters of rainwater quality; for example, higher turbidity 

was observed in the beginning of the rain event followed by a rapid decline of the initial 

values. Nevertheless, due to the simplicity of the design of the rain sampler, it can be easily 

adapted to include different sample volumes.  

 

- Analysis of the variability of raindrop characteristics measured at an outdoor 

experimental site 

 

The advances in rainfall measurements by using disdrometers for example, allowed an 

increased understanding of the rainfall structure at small time scales (e.g. 1 minute). These 

instruments can monitor rainfall efficiently providing data on raindrop properties (size and 

fall speed). Chapter 5 showed analysis of the variability of raindrop characteristics based on 

35 rainfall events selected from the dataset obtained at an outdoor experimental site 

(described in Chapter 2); relationships between the rain rate, kinetic energy and raindrop 

characteristics were estimated. For example, power laws fitted well relationships between the 

mass-weighted mean diameter and rain rates. Unlike the diameters of raindrops, the mean 

drop fall speed did not seem to increase progressively with the rain rate. Taking into account 

different rain rate classes, the gamma distribution was shown to be a proper fit for the drop 

size distributions presented in this study. The combined measurement of the size and fall 
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speed of drops was also used for calculating the rainfall kinetic energy. The relationship 

between rain rate and kinetic energy is of particular interest for e.g. water erosion studies; 

results showed it was well described by power laws. 

 

- Investigation of the long-term variability of annual and monthly rainfall in Portugal  

 

In addition to the importance of studying the rainfall within individual events and its drop 

properties (see Chapter 5), the study of longer time periods, e.g. projections of negative trends 

for annual rainfall, leads to increased concern about water resources management. In order to 

detect long term patterns of variation in Portugal’s climate, in Chapter 6 the monotonic linear 

trends were investigated in long rainfall time series. Although there was not statistical 

evidence for rejecting the null hypothesis of no trend in annual rainfall over the full record 

period, the inspection of 50-year rainfall moving averages series suggested a raise in rainfall 

in the last decades (since around 1925-30), which was preceded by a period of rainfall 

decline. The analyses of partial trends also revealed a sequence of alternating periods (with 

minimum length of 20 years between breakpoints, and 5 years for the first and last segments) 

of decreasing and increasing trends in annual and monthly rainfall, although not always 

statistically significant. This study supplements previous investigations of rainfall trends in 

Portugal emphasizing that the results obtained based on a monotonic linear model should be 

handled carefully, in particular for small data sets. 

 

- Laboratory experiments on the effects of the temporal variation of rain intensities on 

runoff and soil loss 

 

Techniques for reproducing natural rain events in laboratory have still room for improvement. 

For example, despite the common knowledge that the heavy rain rates promote soil loss, 

constant rain rates are more commonly used in laboratory. Chapter 7 has reiterated the 

importance of having rainfall simulators that provide variable rain intensities within an event 

as a way to achieve an in-depth understanding of the processes of overland flow and soil 

erosion. Laboratory experiments were carried out comprising a single nozzle rainfall 

simulator that produced time-variable high intensity bursts, guaranteeing the same duration 
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and mean intensity of the rain event. The results showed that the later the rainfall bursts 

occurred, the greater was the runoff depth and the total amount of sediment transported; these 

bursts also led to higher runoff peaks and sediment fluxes than the ones observed for other 

rain event patterns. These findings are likely to be explained by the changes in the structure of 

the soil surface and the soil moisture content, as well as from the variability of the infiltration 

capacity over time. The misestimation of the runoff discharge and soil loss may then occur 

from disregarding the instant at which rainfall bursts occur during long duration rain events. 

For engineering purposes, for example to prevent flood hazards, the potential underestimation 

of runoff discharge from delayed rainfall bursts should be considered as a major concern. 

 

- Study of the performance of rainfall simulators in reproducing rainfall characteristics  

 

Rainfall simulators can be a powerful tool to increase our understanding of hydrological and 

geomorphological processes, providing attention is paid to the simulated rainfall 

characteristics (e.g. rain rate, kinetic energy, drop sizes). The research presented in Chapters 8 

and 9 characterized the rainfall produced by spray nozzle simulators, and sought for 

producing simulated rain with different characteristics, which can be important for different 

application purposes; the effect of combining meshes with spray nozzles was then explored, 

which has not been a common procedure in rainfall simulator studies. The measurement of 

rain intensities, number of drops, drop size and fall speed were carried out using a laser 

disdrometer for a number of different experimental settings (e.g. varying the distance between 

the nozzle and the mesh, or the material and square aperture of meshes). The presence of 

meshes gives way to the formation of bigger drops and consequently a broader range of drop 

sizes, compared to mesh-free simulations. Moreover, as a large amount of drops still fall 

directly from the nozzles without hitting the meshes, the mean fall speed were similar for 

simulations with and without meshes. The combined effect of some more (“new”) larger 

drops and their fall speed was then shown to have particularly importance for increasing the 

rainfall kinetic energy. The closer the mesh was positioned to the spray nozzle, the higher the 

mean rain intensities and the increase of rainfall kinetic energy observed. These exploratory 

experiments were hence relevant to increase the versatility of spray nozzles simulators on 

providing different rain properties by incorporating a mesh underneath. 
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10.2. Future Research 

 

Whilst carrying out this research study, some issues that can be further investigated were 

identified, and are presented in the following paragraphs: 

 

- Using the rainwater sequential sampler proposed in this thesis for assessing the variability 

of rainwater quality for all the standard parameters required for human consumption, as it 

could benefit rainwater harvesting systems, namely by helping to understand what 

volume of water should be diverted in the beginning of a storm; 

 

- Studying the recorded rainfall events, according to the rain types (convective and 

stratiform), may possibly give important insights on the estimation of the relationships 

between the rain rate, kinetic energy and raindrop characteristics; 

 

- Simulating complex rainfall hyetograms (e.g. with several high intensity bursts with 

different magnitudes) in the laboratory in order to quantify their effects on discharge 

hydrographs and associated transport processes;  

 

- Exploring the way to achieve simulated rain properties similar to observed natural rain. 

Many variables can be manipulated which affect the outcome properties of the rainfall 

simulations, e.g. nozzle type, operating pressure, presence of meshes. 
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APPENDIX A.1. Non-Conventional Rain Gauge (SRG.1) 

 

The RUC (Rain-gauge University of Coimbra) is a rain gauge used to gather and measure 

precipitation accumulated over a given period of time. This rain gauge was developed in the 

Department of Civil Engineering of the Faculty of Science and Technology, University of 

Coimbra, and it enables the quantification of precipitation that is comparable to other rain 

gauges marketed by various manufacturers. Moreover, its manufacturing and maintenance 

costs are low. The RUC can be useful in scientific research, engineering studies or even in 

short term densification of national pluviometric networks. 

  

RUC is made of simple components 

(Figure A.1 and A.2):   

1. Outside housing 

2. Funnel 

3. Inner can 

4. Support  

 

 

 

Technical Specifications: 

 

 

Outside 

housing 

 

- Colour: white 

- Shape: double cone 

- Material: polypropylene 

Funnel 

- Colour: translucent 

- Type of rim: curved 

- Width of rim: 3.5 mm  

- Material: polypropylene  

Support 

- Galvanized tube with a square 

cross section of 16 mm 

- Iron pile  with square section 

of 12 mm and a height of 800 

mm 
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APPENDIX A.2. Standard Rain Gauges (SRG.2 and SRG.3 ) 

 ( 

The standard rain gauges manufactured by Wilh.Lambrecht GmbH and VWR (model 

Hellmann rain gauge) are non-recording rain gauges. Since these instruments only collect the 

rainfall and do not record it, an operator is required to measure the total rainfall amount at 

regular intervals. In order to estimate the rainfall depth, the total volume of water stored (in a 

graduated cylinder) is divided by the collecting area of the instrument. 

 

The main components of the apparatus are 

(Figure A.3):  

1. Knife-edge collector ring 

2. Outside housing (upper and lower 

parts) incorporating a funnel 

3. Inner can/graduated cylinder 

4. Support 

 

 
 

Technical specifications of VWR rain 

gauge (SRG.2, Figure A.4): 

 

Collecting area (mm
2
) 10000 

Dimensions (mm) 
Height: 300 

Diameter: 115 

Range (mm) 0 - 25 

Graduated cylinder (L) 0.25 

Scale of the graduated 

cylinder (mm) 
1 

 

 

 

 
 

Technical specifications of 

Wilh.Lambrecht GmbH rain gauge 

(SRG.3, Figure A.5):  

 

Collecting area (mm
2
) 20000 

Dimensions (mm) 
Height: 450 

Diameter: 190 

Range (mm) 0 - 60 

Inner can (L)  1.20 

 
 

For further information:  

http://www.lambrecht.net 

https://uk.vwr.com/
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APPENDIX A.3. Tipping Bucket Rain Gauge (TBG.4) 

 
The Casella CEL Tipping Bucket Rain Gauge is a meteorological device used for measuring 

precipitation. The principle consists in harvesting the rainfall which flows down a funnel and 

drips into one of two calibrated buckets balanced on a pivot; when the calibrated amount of 

precipitation has been collected, the bucket becomes overbalanced and tips down, activating a 

magnetic reed switch. The water is discharged by a drainage hole while the other bucket is 

repositioned under the funnel ready for filling.  

The main components of the apparatus are 

(Figures A.6, A.7, and A.8):  

1. Knife-edge collector ring  

2. Funnel 

3. Cover  

4. Magnet 

5. Small bucket 

6. Reed switch 

7. Drain hole 

8. Support 

 

 

Technical specifications: 

Collecting area 

(mm
2
) 

40000  

Bucket size (mm) 0.2 

Transducer 
Magnet/ Reed 

switch  

Capacity Unlimited 

Accuracy (%) ±1 at 1 L h
-1

 

 

 

 

 

For further information:  

http://www.casellausa.com/ 
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APPENDIX A.4. Weighing Precipitation Gauge (WPG.5) 

   ( 

The weighing precipitation gauge manufactured by MPS (model TRwS 204) is an instrument 

for measuring different forms of precipitation, including rain, hail and snow. It consists of a 

storage container, that is weighed to record the precipitation amount and rate of accumulation 

over a set period of time. The increasing weight of the container is calculated by analysing the 

resonating frequency of wires which support the container. A data logger stores the data. 

 

The main components of the apparatus 

are (Figures A.9 and A.10):  

1. Collecting ring with heating  

2. Cover  

3. Container 

4. Support plate 

5. Base plate with box for electronics 

6. Support of sensor 

7. Pedestal 

 

 

 

 

 

Technical specifications: 

Collecting area (mm
2
) 20000 

Range of weight (g) 0 - 12000 

Maximum rain 

intensity (mm min
-1

) 
60 

Resolution (mm) 0.001 

Temporal resolution (s) 60 

Accuracy of 1 min rain 

intensity (%) 
0.02 

 

For further information:  

http://www.mps-system.sk/
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APPENDIX A.5. Multi-parameter weather sensor (MWS.6) 

The Vaisala Weather Transmitter WXT510 is a multi-sensor equipment that enables the 

measurement of the following parameters: wind speed and direction, precipitation, 

atmospheric pressure, temperature and relative humidity. In relation to the precipitation, the 

sensor detects the impact of individual precipitation particles; the mechanical movement of 

the steel cover is converted in electrical signals, which are proportional to the volume of the 

precipitation particles; and the output signal is finally converted in accumulated precipitation. 

The main components of the equipment are 

(Figures A.11 and A.12):  

1. Wind transducer 

2. Precipitation sensor  

3. Pressure sensor 

4. Humidity and temperature sensors 

5. Support 
 

  

 
 

 

 

Technical specifications: 
 

P
re

ci
p

it
a

ti
o

n
 Collecting area (mm2) 6000 

Range (mm h-1) 0 – 200  

Resolution (mm) 0.01  

Accuracy (%) < 5 

Temporal resolution (s) 60 
W

in
d

  
Speed: Range (m s-1) 0 – 60  

Accuracy (%) at 0–35 m s-1 

at 36–60 m s-1 

3  

5 

Resolution (m s-1) 0.1  

Direction: Range 0 – 360° 

Accuracy ± 3.0° 

Resolution 1º 

B
a

ro
m

. 

P
re

ss
u

re
 Range (hPa) 600 – 1100  

Accuracy (hPa) at 0–30°C ± 0.5  

Resolution (hPa)  

at -52°C–60°C 
±1  

A
ir

 

T
em

p
er

a
t.

 

Range (°C) -52 to +60 

Accuracy (°C) at 20°C ±0.3  

Resolution (ºC) 0.1 

R
el

a
ti

v
e 

h
u

m
id

it
y
 Range (%) 0 – 100 

Accuracy (%)  at 0–90 % 

at 90–100 % 

±3  

±5  

Resolution (%) 0.1  

 

For further information:  

http://www.vaisala.com/
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APPENDIX A.6. Disdrometer (DIS.7) 

             

The Laser Precipitation Monitor is a disdrometer manufactured by Thies Clima and measures 

the drop size distribution and velocity of falling precipitation particles. A laser-optical source 

produces a light-beam which is transformed into an electrical signal in the receiver. When a 

precipitation particle falls through the light-beam the receiving signal is reduced. The 

diameter of the particle is calculated from the amplitude of the reduction and the fall speed of 

the particle is determined from the duration of the reduced signal. The disdrometer also 

estimates the intensity, quantity and type of precipitation. 

The disdrometer and its support are shown 

in Figures A.13 and A.14:  

 

 

 

Technical specifications: 

 

                                                                                                                                                                                                                                                                                                                                                                                                   

 

 

 

 

 

For further information: 

http://www.thiesclima.com/ 
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Laser 

  785 nm; class 1M; 

max 0.5 mW optical 

power 

Measuring area 

(mm
2
) 

4776.7 

Temporal 

resolution (s) 
60 

Particle size 

(mm) 
0.125 – 8.000 

Particle speed  

(m s
-1

) 
0.0 – 20.0 

Disdrometer 

classes 

420 (21 diameter  

× 20 speed) 

Intensity of 

precipitation 

(mm h
-1

) 

0.001 – 250 

Error intensity-

quantity  

<15% (rain  

0.5 – 20 mm h-1) 

<30% (snow) 
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Figure A.13 

Figure A.14 



 

  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B: 

CHRONOGRAM AND LIST OF 

MEASURED DATA SERIES



 

  

 



 

215 

 

 

 

 

 

Figure B.1 Chronological distribution of the data collected with the seven instruments: SRG.1, SRG.2, SRG.3, TBG.4, WPG.5, MWS.6, DIS.7. 
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Table B.1 List of the 60 rainy periods measured with the seven instruments: SRG.1, SRG.2, 

SRG.3, TBG.4, WPG.5, MWS.6, DIS.7. 

Rainy 

periods 

Date (day-month-year) / Time (h:min) Rainfall depths (mm) 

start end SRG.1 SRG.2 SRG.3 TBG.4 WPG.5 MWS.6 DIS.7 

1 26-03-2011 10:00:00 27-03-2011 9:00:00 12.8 12.7 12.9 14.1 13.0 10.5 13.7 

2 27-03-2011 9:00:00 28-03-2011 9:30:00 1.9 1.7 1.6 0.8 0.4 0.2 0.8 

3 28-03-2011 9:30:00 29-03-2011 9:30:00 21.2 20.9 20.8 21.2 19.4 12.7 20.0 

4 18-04-2011 12:00:00 19-04-2011 9:30:00 24.9 24.9 25.0 25.0 23.9 27.2 24.4 

5 17-05-2011 9:20:00 18-05-2011 9:30:00 5.6 5.5 5.6 6.0 4.9 6.6 5.5 

6 18-05-2011 9:30:00 19-05-2011 9:30:00 1.3 1.6 1.4 1.2 1.2 1.3 1.3 

7 19-05-2011 9:30:00 20-05-2011 8:50:00 10.3 9.9 10.0 10.2 9.4 11.9 9.4 

8 01-09-2011 13:45:00 02-09-2011 9:45:00 16.2 16.3 16.2 17.8 15.3 12.8 15.7 

9 23-10-2011 14:00:00 24-10-2011 9:40:00 19.8 14.1 14.4 16.6 16.7 5.8 20.2 

10 24-10-2011 9:40:00 25-10-2011 10:30:00 11.7 11.6 11.4 10.4 11.2 4.9 12.8 

11 01-11-2011 17:00:00 02-11-2011 15:30:00 23.5 22.2 22.5 24.0 22.5 23.9 25.0 

12 02-11-2011 15:30:00 03-11-2011 9:40:00 4.5 4.1 4.1 4.4 4.2 3.8 4.6 

13 03-11-2011 9:40:00 04-11-2011 9:30:00 14.8 13.0 13.2 14.4 13.0 15.2 15.0 

14 08-11-2011 10:00:00 09-11-2011 9:00:00 9.6 8.8 8.8 9.5 8.2 5.8 10.3 

15 09-11-2011 9:00:00 10-11-2011 9:30:00 0.5 0.4 0.5 0.5 0.4 0.3 0.5 

16 10-11-2011 9:30:00 11-11-2011 15:30:00 19.3 16.6 22.1 18.2 16.7 13.8 20.1 

17 14-11-2011 13:30:00 15-11-2011 10:00:00 18.7 23.1 23.4 24.5 22.9 23.3 24.8 

18 15-11-2011 10:00:00 16-11-2011 12:20:00 0.9 0.9 0.9 1.1 0.8 1.1 1.3 

19 21-11-2011 10:00:00 22-11-2011 10:00:00 20.2 20.0 19.8 20.6 19.3 17.9 19.7 

20 05-12-2011 14:30:00 06-12-2011 14:00:00 2.3 2.0 2.2 2.2 1.8 0.3 2.1 

21 01-04-2012 10:00:00 02-04-2012 10:00:00 2.4 2.2 2.1 2.4 1.9 2.7 2.4 

22 11-04-2012 10:00:00 12-04-2012 12:00:00 1.9 1.6 1.6 1.6 1.5 0.3 2.2 

23 19-04-2012 14:00:00 20-04-2012 10:00:00 3.5 3.6 3.2 3.2 3.2 0.1 4.1 

24 30-04-2012 15:00:00 01-05-2012 19:00:00 3.3 2.5 2.5 3.0 2.3 2.5 2.9 

25 01-05-2012 19:00:00 02-05-2012 14:00:00 4.3 3.6 3.4 4.0 3.4 4.3 4.6 

26 02-05-2012 14:00:00 03-05-2012 10:30:00 20.2 18.6 19.1 18.8 18.6 21.7 21.2 

27 03-05-2012 10:30:00 04-05-2012 10:30:00 10.5 9.8 10.4 10.2 9.7 10.9 11.4 

28 04-05-2012 10:30:00 05-05-2012 18:00:00 5.6 5.5 5.3 5.2 5.3 5.3 6.0 

29 07-05-2012 10:00:00 08-05-2012 10:00:00 23.8 22.1 21.9 22.2 22.2 14.3 24.0 

30 20-06-2012 9:30:00 21-06-2012 9:30:00 2.4 2.1 2.0 2.2 2.0 1.2 2.9 

31 06-09-2012 14:00:00 07-09-2012 14:00:00 1.0 1.2 1.1 1.0 1.2 1.9 1.4 

32 22-09-2012 9:00:00 23-09-2012 9:00:00 7.5 6.7 6.6 6.6 6.9 6.5 5.6 

33 23-09-2012 9:00:00 24-09-2012 10:00:00 2.0 1.9 1.8 2.0 1.9 2.6 0.9 

34 24-09-2012 10:00:00 25-09-2012 17:30:00 13.7 13.0 12.8 13.9 13.2 14.4 7.5 

35 25-09-2012 17:30:00 26-09-2012 9:00:00 12.8 12.6 12.7 12.7 12.3 9.6 12.0 

36 09-10-2012 9:00:00 10-10-2012 18:00:00 1.9 2.4 2.2 1.9 1.5 0.3 2.1 

37 10-10-2012 18:00:00 11-10-2012 10:00:00 4.4 4.4 4.3 4.5 4.2 2.4 4.4 

38 11-10-2012 10:00:00 11-10-2012 17:30:00 7.8 7.7 7.9 7.7 7.6 6.5 7.3 

39 16-10-2012 17:30:00 17-10-2012 11:30:00 11.2 9.1 9.3 9.8 10.1 5.1 11.2 

40 17-10-2012 11:30:00 18-10-2012 11:30:00 25.1 25.0 25.1 25.0 24.2 25.9 26.5 

41 24-10-2012 17:30:00 25-10-2012 17:30:00 10.7 9.8 10.0 10.6 9.7 10.8 10.9 

42 25-10-2012 17:30:00 26-10-2012 18:30:00 19.4 17.3 17.5 18.8 17.9 14.6 20.6 

43 29-10-2012 9:30:00 30-10-2012 18:00:00 10.5 10.3 10.1 11.0 9.9 10.7 11.2 

44 29-11-2012 14:00:00 30-11-2012 14:00:00 8.4 7.6 8.7 8.6 8.3 9.0 8.3 

45 14-12-2012 14:00:00 15-12-2012 18:00:00 23.1 19.7 19.6 18.4 20.5 7.6 20.8 

46 19-12-2012 10:00:00 20-12-2012 9:30:00 0.6 0.6 0.6 0.9 0.7 0.4 1.3 

47 17-01-2013 10:00:00 18-01-2013 10:00:00 11.5 10.6 10.2 10.3 10.9 2.8 11.7 

48 20-01-2013 14:00:00 21-01-2013 9:30:00 11.2 9.0 9.2 7.6 8.5 3.3 9.2 

49 21-01-2013 9:30:00 22-01-2013 18:00:00 17.7 16.8 17.0 17.8 16.7 18.9 15.9 

50 22-01-2013 18:00:00 23-01-2013 9:30:00 6.9 6.5 6.7 6.8 5.9 6.3 6.2 

51 23-01-2013 9:30:00 24-01-2013 10:00:00 9.2 8.2 7.9 8.0 8.4 2.8 9.1 

52 19-02-2013 10:30:00 20-02-2013 10:00:00 2.7 2.6 2.5 2.6 2.2 1.4 2.7 

53 22-02-2013 10:20:00 22-02-2013 18:00:00 1.7 0.4 1.4 1.5 1.3 1.7 1.9 

54 05-03-2013 10:00:00 06-03-2013 14:00:00 6.6 5.7 5.7 6.2 5.5 4.3 7.2 

55 06-03-2013 14:00:00 07-03-2013 10:30:00 7.8 6.1 6.0 6.8 6.5 4.0 8.3 

56 07-03-2013 10:30:00 08-03-2013 10:00:00 22.5 21.4 21.6 21.8 20.9 18.7 23.3 

57 11-03-2013 10:30:00 12-03-2013 9:30:00 6.4 6.0 6.0 6.5 5.6 5.9 6.4 

58 12-03-2013 9:30:00 13-03-2013 10:00:00 5.0 5.0 5.1 5.4 4.5 4.1 4.9 

59 18-03-2013 10:00:00 19-03-2013 20:00:00 5.5 4.9 4.8 5.2 5.0 4.1 5.2 

60 24-03-2013 18:30:00 25-03-2013 19:00:00 28.8 23.1 23.1 24.3 25.9 12.0 28.2 


