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Abstract 

 

Obesity is a pandemic public health problem, associated with a multitude of 

health problems such as cardiovascular disease, type 2 diabetes mellitus and other 

metabolic disorders. Considering the limited efficacy of current therapies to counteract 

the metabolic changes of obesity, new effective therapeutic strategies to increase 

energy expenditure and weight loss are under investigation. Bile acids and its anti-

obesogenic effects have been recently associated with an increased number of 

multilocular UCP-1-positive fat cells in white adipose tissue depots.  These cells, also 

known as brite or beige cells, induce a conversion of white adipocytes with typical fatty 

acid storage towards an oxidative phenotype, thereby stimulating energy metabolic 

fluxes and improving whole-body metabolism. However, the mechanism underlying bile 

acid metabolic effects are still unclear. In fact, it remains to be established whether they 

are the result of a direct action on the adipose tissue or a consequence of actions in 

other key metabolic organs such as liver. Due to the critical role of the Wnt/ β-catenin 

signaling pathway in adipogenesis and its protective effect against obesity and 

associated metabolic alterations, we proposed to address: if the bile acid 

chenodeoxycholic acid (CDCA) is able to decrease fat accumulation in 3T3-L1 

adipocyte cultures; if these effects are dependent on UCP-1 increased mitochondrial 

oxidative capacity and the implication of the Wnt/ β-catenin signaling pathway. CDCA 

exposure during 96 h induced a concentration-dependent decrease in triglycerides 

accumulation in adipocytes, being this effect blocked when the Wnt/ β-catenin pathway 

was inhibited. The reduction on lipid accumulation caused by CDCA was associated 

with an increase in UCP-1 content, and consequent mitochondrial uncoupling. In the 

presence of XAV939, a blocker of the Wnt/ β-catenin pathway, CDCA was not able to 

decrease triglyceride accumulation neither to induce an increase in UCP-1 content. 

Despite UCP-1 induction, CDCA treatment did not increase the content in electron 

transport chain proteins neither reactive oxygen species generation; mitochondrial 

membrane potential was increased in cells incubated with 50 µM CDCA. 

Importantly, our results showed for the first time that CDCA decreases lipid 

accumulation in vitro, an effect associated with increased UCP-1 content and involving 

the Wnt/β-catenin pathway. This favours the argument that CDCA action as general 

metabolic integrator is probably dependent on a direct effect on adipose tissue.  

 

Keywords: adipocytes; bile acids; energy expenditure; canonical Wnt pathway. 
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Resumo 

 

 A obesidade é uma pandemia deste século, sendo um problema de saúde 

pública que está associado a outras doenças tais como doenças cardiovasculares, 

diabetes mellitus tipo 2 e outras doenças metabólicas. Considerando a limitada 

eficácia das atuais terapias no tratamento das alterações metabólicas associadas à 

obesidade, novas estratégias terapêuticas efetivas direcionadas para o aumento do 

gasto energético e perda de peso têm sido alvo de investigação. Os ácidos biliares e 

os seus efeitos anti-obesogénicos têm sido recentemente associados ao aumento de 

adipócitos multiloculares com expressão de UCP-1 em depósitos de tecido adiposo. 

Estas células, também conhecidas por células “brite” ou “beige”, induzem a conversão 

de adipócitos do tecido adiposo branco tipicamente com função de armazenar ácidos 

gordos em células com um fenótipo mais oxidativo. Esta conversão induz a 

estimulação dos fluxos metabólicos energéticos, conduzindo a uma melhoria do 

metabolismo de todo o organismo. No entanto, o mecanismo subjacente à ação dos 

ácidos biliares na indução destes efeitos não é ainda conhecido. Na realidade, está 

ainda por esclarecer se os efeitos dos ácidos biliares se devem a um efeito directo no 

tecido adiposo ou se por outro lado, são consequência da acção dos ácidos biliares 

em orgãos chave no metabolismo, tal como o fígado. Dado o papel que a via de 

sinalização Wnt/ β-catenina tem na adipogénese, assim como os seus efeitos 

protectores contra a obesidade e alterações metabólicas associdas, propomo-nos a 

perceber: se o ácido biliar, ácido quenodeoxicólico (CDCA), induz uma diminuição da 

acumulação de triglicerídeos em culturas de adipócitos 3T3-L1; se os efeitos do CDCA 

são dependentes de um aumento da capacidade oxidativa mitocondrial associada à 

UCP-1 e qual a implicação da via da sinalização Wnt/ β-catenina nestes efeitos. A 

exposição ao CDCA durante 96 horas induziu uma diminuição na acumulação de 

triglicerídeos nos adipócitos, sendo este efeito dependente da concentração de CDCA 

e bloqueado quando a via Wnt/ β-catenina foi inibida. A redução na acumulação de 

triglicerídeos induzida pelo CDCA esteve associada com um aumento do conteúdo em 

UCP-1, e um consequente desacoplamento mitocondrial. Na presença do XAV939, um 

inhibidor da via Wnt/ β-catenina, o CDCA não induziu uma diminuição da acumulação 

de triglicerídeos, nem um aumento do conteúdo em UCP-1. A exposição de 3T3-L1  a 

CDCA não alterou o conteúdo em proteínas da cadeia transportadora nem a produção 

de ROS; o potencial de membrana mitocondrial foi mais elevado em células incubadas 

com 50 µM CDCA. 
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Os nossos resultados mostraram pela primeira vez que o CDCA diminui a 

acumulação lipídica in vitro, estando este efeito associado a um aumento do conteúdo 

em UCP-1 e dependente da via da Wnt/ β-catenina. Assim, este estudo suporta o 

potencial efeito do CDCA como integrador metabólico, provavelmente através de um 

efeito direto no tecido adiposo. 

   

Palavras chave: adipócitos; ácidos biliares; gasto energético; via Wnt/ β-catenina. 
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Diets rich in caloric content associated with decreased physical activity have 

contributed to the high incidence of obesity. Data from the World Health Organization 

shows that this disorder is increasing at alarming rates, specifically, the worldwide 

obesity prevalence has doubled since 2008. This is due to the high occurrence of new 

cases of overweight and obesity not only in high-income countries but also in middle-

income countries (World Health Organization, 2014). In Europe, it is estimated that 

over 50% of men and women were overweight, and approximately 23% of women and 

20% of men were obese in 2008. Moreover, overweight is considered as the most 

common childhood disorder in the European region. Data estimates that over 60% of 

children who are overweight before puberty will be overweight in early adulthood 

(World Health Organization, 2011). As such, this disorder is considered to be one of 

the major public health problems in the world but not per se. This is related to the 

development of obesity-associated complications such as insulin resistance, high blood 

pressure and dyslipidemia. Together, these conditions constitute the metabolic 

syndrome, a known condition associated with an increased risk for type 2 diabetes, 

cardiovascular diseases and increasing mortality (Wilson et al., 2005).  

Mitochondrial abnormalities have been reported in overweight and obese 

subjects (Goodpaster et al., 2001). The excessive nutrient supply increases lipid 

uptake into adipocytes and leads to an increase in mitochondrial activity with the 

generation of reactive oxygen species (ROS). The ROS accumulation mediates 

oxidative damage and compromises the mitochondrial function, number, morphology, 

and dynamics (Kusminski & Scherer, 2010). These alterations in mitochondria 

dysregulate the intracellular dynamic of the adipocyte and induces a markedly increase 

in the expression of genes coding for inflammation proteins (Bastard et al., 2006).  

Thus, a release of pro-inflammatory cytokines also contributes to an impairment of the 

insulin signaling pathway. The consequent release of fatty acids could trigger the 

development of insulin resistance in peripheral organs (Curtis et al., 2010). The 

excessive lipid accumulation promotes mitochondrial oxidative damage and a low 

oxidative capacity in skeletal muscle cells. Consequently, the generation of ROS and 

the accumulation of incompletely oxidized lipid intermediates interfere with the insulin 

signal transduction, and also contribute to the development of insulin resistance in liver 

and skeletal muscle and lipotoxicity in pancreatic β-cells (Meex et al., 2010).  

Based on obesity and its related co-morbidities, intense research has been 

focused on therapies directed at improving mitochondrial function. 
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1.1 Adipose Tissue 

 

1.1.1 White adipose tissue 

 

1.1.1.1 Physiology 

 

White adipose tissue (WAT) constitutes the majority of adipose tissue in the 

body and is considered the main organ responsible for energy storage (Trayhurn & 

Beattie, 2001). The tissue is located primarily in subcutaneous and in visceral depots, 

with other various distributed sites throughout the body. Depending on its location, the 

heterogeneity and the metabolic function of each depot are variable (Bjørndal et al., 

2011).  

WAT is composed by vascular-stromal fraction and mostly by mature 

adipocytes, but also fibroblasts, adipocyte precursors, endothelial cells and 

macrophages (Cristancho & Lazar, 2011). Adipocytes are unilocular (i.e., typically 

containing a single fat dropet) cells with a rounded appearance. The cells have few 

mitochondria and the larger lipid droplet occupies the most part of the cell volume with 

the nucleus and other cellular structures at the cell’s periphery (Church et al., 2012). 

The lipid droplet is a specialized structure for triglyceride (TG) storage that can 

increase in size and in volume. It is constituted by a phospholipid bilayer that surrounds 

the hydrophobic core, which contains neutral lipids and sterol esters. The lipid droplet 

is coated by proteins specialized in the TGs stabilization namely caveolin and perilipin. 

Moreover, lipid droplets have specific machinery to the production and release of its 

lipid content (Walther & Farese Jr, 2009). 

 

1.1.1.2  Function 

 

1.1.1.2.1 Classical role 

 

The primary role of WAT is the storage of TGs. During postprandial periods, 

glucose and lipids are converted into TGs via lipogenesis and subsequently, stored in 

the lipid droplet. The storage of large quantities of energy in the form of lipids occurs by 

the expansion of existing adipocytes (hypertrophy) and by the formation of new 

adipocytes from existing pre-adipocytes (hyperplasia). Conversely, in periods of food 

deprivation, the lipolysis of TGs is stimulated, occurring the release of glycerol and free 

fatty acids (FFAs) into circulation to maintain energetic homeostasis (Hajer et al., 
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2008). It is noteworthy that mitochondria play a pivotal role in de novo lipogenesis, re-

esterification of fatty acids and lipolysis. During de novo lipogenesis, mitochondria 

generate the key intermediates for the synthesis of TGs. More specifically, pyruvate is 

converted into acetyl-CoA in the matrix, while glycerol-3-phosphate is obtained via 

glyceroneogenesis. Furthermore, mitochondria are also responsible for lipid β-oxidation 

during lipolysis (Nye et al., 2008). 

Besides the role of WAT in the storage of TGs, this tissue is also involved in 

other physiological processes such as coagulation, blood pressure and inflammation 

(Hajer et al., 2008). 

 

1.1.1.2.2 Endocrine function 

 

All the functions that have been already mentioned are, to some extent, 

regulated by a larger number of adipokines secreted by adipocytes. These hormone-

like molecules have a paracrine or autocrine effect, depending on its site of action 

(Church et al., 2012).  

Leptin is one of the hormones secreted by adipocytes. Its plasma levels are 

correlated with the amount of total body fat and are increased during fed status and 

decreased during fasting situations. This hormone is involved in the regulation of food 

intake and fat mass (Trayhurn & Beattie, 2001). Leptin production is stimulated by 

insulin, resulting in the suppression of food intake and the stimulation of energy 

expenditure. Leptin’s actions are mediated by leptin receptors, which are mainly 

located in the central nervous system where the metabolic signals induce the 

expression of specific neuropeptides/neurotransmitters (Ahima & Flier, 2000). The 

integration of these signals between hypothalamus and peripheral tissues is mediated 

by the activity of hypothalamic adenosine monophosphate-activated protein kinase 

(AMPK), a well-studied and established metabolic sensor (Towler & Hardie, 2007). 

While hypothalamic AMPK is responsible for reducing food uptake, its activation in 

peripheral tissues is associated with energy production processes during periods of 

starvation (Long & Zierath, 2006). Therefore, leptin mediates the induction of lipid 

oxidation in the liver, lipolysis in adipose tissue and lipid oxidation and glucose uptake 

in skeletal muscle (Rasouli & Kern, 2008). When plasma leptin concentrations fail to 

suppress feeding or mediate weight loss, this leads to the occurrence of an obese state 

with leptin contributing to the production of pro-inflammatory cytokines (Lancha et al., 

2012). In addition, leptin has a role in systemic effects namely in the modulation of T-

cell immune response (Ahima & Flier, 2000). 



  Chapter 1 - Introduction 

6 

 

Another important protein exclusively produced by adipocytes is adiponectin. 

This protein is highly expressed in lean organisms, so its levels are inversely related to 

the body fat mass. Adiponectin plays a role in insulin sensitization (Matsuda & 

Shimomura 2013). The mechanism involves the binding of adiponectin to specific 

transmembrane receptors located in skeletal muscle and liver. Hormone binding 

triggers AMPK activation which reduces insulin receptor substrate-1 (IRS-1) inhibitory 

serine phosphorylation and activates the expression of peroxisome proliferator-

activated receptor (PPAR)-α target genes (Wang et al. 2007). Adiponectin inhibits 

hepatic glucose uptake, increases fatty acid oxidation in muscle and liver, enhances 

glucose uptake in muscle and stimulates energy expenditure (Galic et al., 2010). In 

addition to these actions, this hormone has anti-atherosclerotic functions based on its 

anti-inflammatory effects (Okamoto et al., 2002). 

Moreover, WAT secretes other types of hormones such as resistin, retinol 

binding protein 4 (RBP4) and visfatin (Rasouli & Kern, 2008). However, the importance 

of these proteins in the development of insulin resistance phenotype is still less clear 

and poorly understood than those of leptin and adiponectin in humans.  

Besides adipokine production, WAT also secretes cytokines, such as tumor 

necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte-chemoattractant protein-1 

(MCP-1) and plasminogen-activated inhibitor (PAI-1) (Galic et al., 2010). These 

cytokines are highly secreted by the non-adipose cells when an increase in adipose 

tissue mass occurs. Thus, alterations in adipokines secretion and an increment in 

cytokines release are mainly associated with the chronic inflammation and insulin 

resistance phenotypes, typically observed in obesity (Fain, 2010).  

 

1.1.2 Brown adipose tissue 

 

1.1.2.1 Physiology 

 

Brown adipose tissue (BAT) is referred as an energy dissipating tissue and its 

distribution is inversely correlated to the age and body mass index (BMI) (van Marken 

Lichtenbelt et al., 2009; Lowell & Flier, 1997). 

Brown adipocytes are derived from multipotent mesenchymal stem cells and 

are distributed in different locations (Cypess & Kahn, 2010). The discrete location 

predominates in cervical-supraclavicular, perirenal/adrenal and paravertebral regions. 

These brown fat pads are closer to the major blood vessels and their cells derive from 

muscle progenitor cells - Myf5 (myogenic factor 5) expressing positive cells (Timmons 
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et al., 2007). On other hand, the already proven existence of brown adipocytes diffused 

in WAT depots have a different origin, since these cells derive from Myf5 negative cells 

(Seale et al., 2009; Ravussin & Galgani, 2011).  

The induction of brown adipogenesis triggers a cascade of events that 

ultimately leads to lipid accumulation, mitochondrial biogenesis and the increase in 

expression and content of the hallmark protein of this tissue, the mitochondrial native 

uncoupling protein-1 (UCP-1), also known as thermogenin (Ravussin & Galgani, 2011). 

The key regulator of brown adipogenesis is the zinc-finger containing transcription co-

factor PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16), which 

interacts with PPAR-γ and CCAAT/enhancer binding protein (C/EBP)-β (Lee et al., 

2013). When fully mature, BAT cells express UCP-1, β3-adrenergic receptors (ARs) 

and other BAT proteins such as type 2 iodothyronine deiodinase (D2) and peroxisome 

proliferator-activated receptor γ coactivator-1α (PGC-1α) (Anghel et al., 2007). These 

proteins play a critical role in the activation of thermogenesis, enhancing mitochondrial 

biogenesis and oxidative metabolic pathways in the cells. 

BAT is physiologically and functionally different of WAT. It has a rich capillary 

network and is innervated by a high density of noradrenergic fibers. Brown adipocytes 

are small multilocular cells (small lipid droplets) with a polygonal shape, and a high 

mitochondrial content (Lee & Cowan, 2013). BAT mitochondria (Figure 1.1) are rich in 

laminar cristae and contain a unique protein, UCP-1, in the inner mitochondrial 

membrane. When activated, this protein dissipates the proton gradient of the 

intermembrane space to the mitochondrial matrix with high mitochondrial substrate 

oxidation mainly from fatty acids (Bouillaud et al., 1992). This process is a chemical 

energy dissipating process that uncouples electron transport through respiratory chain 

from ATP production, resulting in heat production - process known as thermogenesis. 
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Figure 1.1 - Schematic representation of BAT mitochondrion. Free fatty acids (FFAs) are 

transferred into the mitochondria via the general activation of carnitine shuttle system. FFAs can 

bind to UCP-1, activating its condutance. In another way, acylcarnitine molecules are then 

oxidized in the mitochondria through β-oxidation, with the released acetyl CoA moities being 

oxidized in the citric acid cycle, generating reduced molecules of nicotinamide adenine 

dinucleotide (NADH). These molecules donate electrons to Complex I of the mitochondrial 

respiratory chain. The blue arrows illustrate the protonic (H
+
) flow between the matrix and the 

inter-membrane space, as consequence of the electron transport to the final acceptor, 

molecular oxygen (O2). Protons can reenter the mitochondrial matrix through ATP synthase, 

generating adenosine-5’-triphosphate (ATP) or, in another way, protons can reenter through 

uncoupled protein-1 (UCP-1). ADP, Adenosine diphosphate; P1, Inorganic phosphate (Adapted 

from Nicholls, D. G., 2013). 

 

1.1.2.2 The renaissance of BAT in humans 

 

Until a few years ago, it was believed that BAT was only present in larger 

mammals such as ourselves during childhood, and the amount of this tissue decreased 

during the ageing process, until it was virtually inexistent in adulthood (Lean, 1989). 

The small amounts of BAT in adults were considered absent or irrelevant to biological 

processes. However, using positron emission tomography in combination with 

computed tomography, Virtanen and collaborators demonstrated the existence of an 

highly active BAT in adult humans (Virtanen et al., 2009). During cold exposure, it was 

shown an increase in glucose uptake in some distinct areas, which coincided with an 

Outer  

Mitochondrial  

Membrane 
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increase in gene expression profile characteristic of BAT, namely the expression of the 

UCP-1 gene. Furthermore, histological analyses confirmed the presence of multilocular 

cells filled with lipid droplets.  

The existence of BAT in healthy adult individuals has supported the resurgence 

of global interest in the study of this tissue (Virtanen et al., 2009). The existence of 

activatable BAT in adult humans suggested that this capacity could have tremendous 

metabolic significance on body weight control. 

Figure 1.2 - Anatomical location of active BAT in humans measured by positron emission 

tomography in combination with computed tomography. From left to right, are represented 

a transversal slice of clavicles, a sagittal slice of the spine and a coronal slice of the thorax. The 

active BAT are represented by red and green areas (Adapted from Ravussin & Galgani, 2011). 

 

1.1.2.3  Function 

 

1.1.2.3.1 Thermogenic process 

 

Considering that BAT is an energy efficient tissue for heat production in small 

mammals, it plays a role in body temperature regulation during periods of hibernation 

or torpor. This is a process of interest in hibernating animals and in newborns because 

of their necessity to maintain body temperature autonomically (Enerbäck, 2010).  

The exposure to temperatures below thermoneutrality induces thermogenesis 

by two mechanisms, the shivering of skeletal muscle and the adaptative non-shivering 

in BAT (Saito, 2013). 

The non-shivering thermogenesis of BAT implies sympathetic nervous system 

stimulation (Bartness, 2010). This process is also regulated by the thyroid hormone, 

being the process dependent on the activity and expression of D2 (Silva, 2006). This 

enzyme is responsible for the conversion of thyroxin (T4) into 3,5,3’-tri-iodothyronine 

(T3) which triggers the UCP-1 transcription (Ribeiro et al., 2000). Otherwise, during 

sympathetic stimulation, the activation of noradrenergic fibers present in BAT leads to 
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the release of norepinephrine. This cathecolamine binds to β3-ARs expressed in brown 

adipocytes, and activates adenylate cyclase. The cyclic adenosine monophosphate 

(cAMP) activates protein kinase A (PKA) which in turn phosphorylates and activates 

the p38 mitogen-activated protein kinase (MAPK) pathway. The increase in the p38 

MAPK activation enhances the action of transcriptional factors that regulates 

thermogenic gene expression. This regulation includes transcriptional induction of the 

genes encoding for UCP-1, components of the enzymatic machinery responsible for 

oxidative phosphorylation and cellular machinery responsible for the uptake of lipids 

and glucose (Cannon & Nedergaard, 2004). The action of PKA also includes the 

phosphorylation and activation of perilipin and hormone sensitive lipase (HSL). 

Activation of HSL induces its translocation to lipid droplets and consequently the 

hydrolysis of TGs into FFAs and glycerol (Vosselman et al., 2013).  

Figure 1.3 - Schematic representation of regulation of the thermogenic process through 

sympathetic nervous system stimulation. Norepinephrine (NE) activates protein kinase A 

(PKA), leading to the hydrolysis of triglycerides (TGs) into free fatty acids (FFAs) and glycerol. 

Despite its function as uncoupling protein-1 (UCP-1) activators, these molecules are oxidized in 

the mitochondria, resulting in the formation of reducing equivalents namely nicotinamide 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). The process results in 

the release of energy by heat production; cAMP, cyclic adenosine monophosphate; CAC, Citric 

acid cycle; H
+
,
 
Hydrogen ion; H2O, Molecular water; HSL, Hormone sensitive lipase; O2, 

Molecular oxygen (From Cannon & Nedergaard, 2004). 
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The released FFAs not only serve as activators of UCP-1 but are also the main 

substrate for thermogenesis (Vosselman et al., 2013).  

The high availability of substrates and the numerous UCP-1-rich mitochondria 

of BAT contributes to the consumption of large amounts of fat and are associated with 

an intense thermogenic function (Cannon & Nedergaard, 2004).  

 

1.1.2.3.2  Regulation of glucose and lipid metabolism 

 

Several studies have pointed a role for BAT as a chemical energy dissipation 

tissue that promotes weight loss, controls body fat deposition and protects mice from 

diet-induced obesity, diabetes and insulin resistance (Ghorbani et al. 1997; Hamann et 

al. 1996). In fact, evidence showed a role for BAT in energy homeostasis since mice 

lacking BAT became severely obese (Hamann et al., 1996). Transgenic mice with 

markedly reduced BAT and UCP-1 expression also had impaired metabolic parameters 

as increased total body lipid content, hyperglycemia and hyperinsulinemia (Hamann et 

al., 1995). In accordance, it has also been shown that mice resistant to obesity and 

diabetes had higher amounts of BAT and UCP-1 (Kopecky et al., 1995).  

In line with recent findings, BAT is involved in the regulation of plasma TG 

metabolism. The activation of BAT induces the clearance of triglyceride-rich-

lipoproteins and fatty acids in blood of mice (Bartelt et al., 2011).  A short-term cold 

exposure induces the channeling of lipid excess levels into BAT due to an increase in 

the expression of lipoprotein lipase (LPL) and fatty acid translocase/ cluster of 

differentiation 36 (FAT/CD36) that stimulate lipolysis and the uptake of lipids into brown 

adipocytes, respectively (Bartelt et al., 2011). BAT also plays a role in glucose 

metabolism. Cold induced an increase in glucose uptake in human brown adipocytes, 

being this process dependent on the expression of glucose transporter type 4 (GLUT4) 

(Orava et al., 2011).  

Therefore, the activation of BAT and the enhancement of energy expenditure 

due to sympathetically activation have glucose and lipid-lowering effects. Considering 

all the metabolic effects of BAT, a role for this tissue in combating obesity and related 

disorders in rodents has been proved (Kopecky et al., 1995). 
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Figure 1.4 - Schematic representation of lipid and glucose metabolism in BAT induced by 

cold exposure. The cold exposure induced the clearance of serum lipids by increasing 

lipoprotein lipase (LPL) activity and free fatty acids (FFAs) uptake through fatty acid 

translocase/ cluster of Differentiation 36 (FAT/CD36). Otherwise, the sympathetic innervation 

also induces glucose uptake. The increase in glucose content contributes not only to the 

production of adenosine triphosphate (ATP) by anaerobic pathways but also to the 

glyceroneogenesis, contributing to the triglyceride (TG) synthesis. All this leads to increased 

lypolysis, leading to FFAs oxidation and energy expenditure in the mitochondria. ATGL, Adipose 

triglyceride lipase; DGAT, Diacylglycerol acyltransferase; GPAT, Glycerol 3-phosphate 

acyltransferase; GyK, Glycerol kinase; HSL, Hormone sensitive lipase; MGL, Monoacylglycerol 

lipase; PAP1, Lipid phosphate phosphatase 1; PKA, Protein kinase A; TAG, Triacylglycerol; 

UCP-1, Uncoupling protein-1 (Adapted from Festuccia et al., 2011). 

 

Despite the study of the significance of BAT in humans is far from complete, it is 

demonstrated the inverse relationship between obesity and BAT. A detailed analysis 

showed that the prevalence and the activity of cold-activated BAT is inversely 

correlated with adiposity and also dependent of other parameters such as BMI, age 

and sex (Cypess et al., 2009). Moreover, it was demonstrated that a defective 

activation of BAT contributes to age-related accumulation of body fat (Yoneshiro et al., 

2011). These findings suggest a role of BAT in the regulation of energy balance and 
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body fat content, protecting against body fat accumulation in humans as it has been 

demonstrated in mice.  

 

1.1.2.4 BAT activation 

 

BAT as a non-shivering thermogenic tissue has a role in energy balance in mice 

and humans. The metabolically active role of BAT is revealed by several studies in 

which BAT is a stimulator of energy expenditure and a glucose/fatty acids regulator 

(Bartelt et al., 2011; Kopecky et al., 1995). Then, the renewed attention in BAT and the 

advances in its function understanding reinforce the importance of this tissue as a 

potential tool with therapeutic benefits in the control of energy balance in humans. 

These recent observations have increased the search for strategies to activate and 

recruit BAT.  

The capacity of BAT to be activated in humans is demonstrated firstly by cold-

induced metabolically active BAT in healthy humans (Saito et al., 2009). Secondly, 

evidence showed that patients with pheochromocytoma, a cathecolamine-secreting 

tumor, had a high rate of 18F-fluorodeoxyglucose (18F-FDG) uptake in BAT with an 

increase in metabolic rate and weight loss (Fukuchi et al., 2004). Indeed, 

cathecolamines stimulate BAT thermogenesis because when the tumor is resected, the 

18F-FDG uptake levels disappeared and the metabolic rate decreased (Cannon & 

Nedergaard, 2004). Thus, BAT is a flexible tissue with capacity to dissipate energy and 

can be activated in the presence of different stimuli. Cold exposure is the most widely 

known strategy to induce BAT activation. Adding to the effects of the acute response, a 

prolonged exposure to cold induces a chronic response characterized by higher UCP-1 

levels, mitochondrial biogenesis and hyperplasia of brown adipocytes (Lowell & Flier, 

1997). Another pathway is the activation of the adrenergic systems. However, 

treatment with β-agonists has not been successful (Arch, 2002). β3-specific agonists 

are used to increase energy expenditure but somehow, these agonists do not reach the 

biological levels to activate the β3-ARs. In addition, the overstimulation of these 

receptors has been linked to vascular events as heart attack and stroke (Cypess et al., 

2012). Recent studies have focused on novel activators such as irisin, a protein 

secreted during exercise, and cardiac natriuretic peptides (NPs), a class of molecules 

produced in the heart (Boström et al., 2012; Whittle & Vidal-Puig, 2012). This data 

pointed to the action of both molecules at inducing energy expenditure, UCP-1 

expression and stimulating brown fat-like cells development. 
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Although, the activation of BAT, via either environmental or pharmacologic, 

could be used to increase energy expenditure, many questions remain regarding about 

the efficacy, safety and durability of these treatments.  

 

1.2 Obesity 

 

1.2.1 Progression of adipose tissue dysfunction in obesity 

 

The increase in adiposity in genetic or diet-induced obesity models has been 

linked to the insulin resistance phenotype (Guilherme et al., 2008). This cause-and-

effect relationship pointed to an impairment of the secretory function of WAT as a 

cause of the metabolic alterations observed in peripheral tissues, specifically on 

skeletal muscle and liver (Langin, 2010).  

Different factors contribute to the WAT dysfunction state (Cinti, 2012). Due to 

high caloric intake, the high-energy excess accumulation in adipocytes leads to 

adipocyte hypertrophy. As such, in an obese condition, the enlargement of adipocytes 

can per se promote an insufficient vascularization, compromising the oxygen supply of 

the cells (Cinti, 2012). Thus, in obesity, hypoxia is considered an upstream event from 

oxidative stress, endoplasmic reticulum stress, adipokine dysregulation, adipocyte 

death and inflammation (Wood et al., 2009; Fischer-Posovszky et al., 2011). This initial 

event (Figure 1.5) includes the recruitment of the transcription factor, hypoxic inducible 

factor-1α (HIF-1α). The molecular mechanisms induced by this factor in the presence 

of ROS, free fatty acids and pro-inflammatory cytokines are mediated through the 

activation of several intracellular signaling pathways that implicate nuclear factor (NF)-

κB, IκB kinase (IKK), activating protein-1 (AP-1) and c-Jun NH2-terminal kinase (JNK) 

(Cai et al., 2006; Guilherme et al., 2008). These transcription factors lead to alterations 

in gene expression pattern of adipocyte specific genes and also other genes related to 

inflammation and cellular dysfunction in adipose tissue during obesity (Guilherme et al., 

2008). All these pathways could interact with insulin signaling via serine/threonine 

inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1) (Bastard et al., 2006). 

Obesity is associated with a pro-oxidant environment, being oxidative stress 

one of the major causes of mitochondrial dysfunction in adipocytes. The mitochondrion 

constitutes a major source of ROS that are considered as byproducts of aerobic 

respiration. During this process, as a result of imperfectly coupled electron transport 

associated with oxidative phosphorylation, the leakage of electrons principally from 
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complex I and complex III of the electron respiratory chain leads to reduction of a small 

proportion of oxygen molecules to superoxide anion (O2
·-) (Wood et al., 2009). This 

radical can react with other molecules and form secondary products such as 

peroxynitrite (ONOO-), hydrogen peroxide (H2O2) and the hydroxyl radical (·OH) 

(Green et al., 2004). Oxidative stress depends on the ratio between the production of 

these radicals and its removal by several cell defense mechanisms. These 

mechanisms include several antioxidant enzyme systems that are able to scavenge 

ROS (Li et al., 2013). However, its effectiveness is limited and when the levels of ROS 

increase, these radicals are able to induce mitochondrial oxidative damage of lipids, 

proteins and DNA (Curtis et al., 2014). Therefore, mitochondrial ROS can cause a 

decrease in mitochondrial ATP synthesis, dysregulate cellular calcium homeostasis, 

and induce the mitochondrial permeability transition pore. This leads to a compromised 

mitochondrial function and to the induction of cellular stress responses that ultimately 

causes apoptosis (James & Murphy, 2002).  

In obesity, elevated levels of fatty acids may provide an additional source of 

excess oxidative phosphorylation substrates, inducing ROS production (Kahn & Flier, 

2000). Therefore, elevated ROS appear to upregulate the expression of NADPH 

oxidase and decreased the activity of antioxidant enzymes which establish a vicious 

cycle that augments oxidative stress in WAT and blood (Furukawa et al., 2004). The 

increased ROS generation is linked to mitochondrial damage, causing reduced 

mitochondrial DNA (mtDNA) content, reduced electron transport chain (ETC) 

enzymatic activity as well as alterations in mitochondrial network (Curtis et al., 2014). 

As such, ROS production compromised all important mitochondrial functions in 

adipocytes, namely oxidative phosphorylation, β-oxidation and mitochondrial 

biogenesis (Choo et al., 2006). Moreover, oxidative stress is linked to a dysregulation 

of adipocytokines which includes an increase in the expression of IL-6, PAI-1, MCP-1 

and a decrease in the expression of PPAR-γ and adiponectin (Furukawa et al., 2004). 

The increased expression of MCP-1, a potent chemoattractant for monocytes and 

macrophages, causes the infiltration of these cells and the inflammation of the adipose 

tissue (Furukawa et al., 2004).  

Despite the effects on macrophage activity and in WAT metabolism, the 

alterations on cytokines production also cause alterations in other organs by systemic 

action (Furukawa et al., 2004).  
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Figure 1.5 - Schematic representation of the events that leads to the adipose tissue 

dysfunction in obesity. The low levels of molecular oxygen (O2) induce the production of 

transcriptional factors (TFs) that causes alterations in gene expression pattern. This includes 

alterations in the mitochondrial function, in the secretion of adipokines and in glucose 

metabolism. These effects are beyond the induction of a pro-inflammatory state as well as in the 

development of white adipose tissue (WAT) insulin resistance. Angptl4, Angiopoietin-like 4; FA, 

Fatty acid; GLUT1, Glucose transporter-1; HIF-1, Hypoxia-inducible factor 1; IL-6, Interleukin 6; 

MCT1, Monocarboxylate transporter 1;  PAI-1, Plasminogen activator inhibitor-1; VEGF, 

Vascular endothelial growth factor (Adapted from Trayhurn, 2013). 

 

1.2.2 Adipocyte dysfunction linking obesity to insulin resistance 

 

Fischer-Posovszky and coworkers showed that adipocyte death (apoptosis or 

necrosis) is the initial event that leads to the macrophage recruitment and 

consequently, the inflammation process (Fischer-Posovszky et al., 2011; Cinti et al., 

2005). The mobilization and infiltration of macrophages seems to be dependent on an 

increased production of ROS that increase the expression of MCP-1 (Xu et al., 2003). 

During this process, a switch of M2 macrophages towards M1 activated macrophages 

is induced (Lumeng et al. 2007).  The M1 macrophages form crown-like structures 
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around dead adipocytes before the removal process by phagocytosis. Because of the 

size of adipocytes and the time required for its removal, a chronic low-grade 

inflammation is induced (Cinti et al., 2005). Interestingly, the degree of infiltration of 

macrophages is higher in visceral fat than in subcutaneous fat in an obese state. These 

observations are based on the capacity of visceral adipocytes to reach more rapidly its 

critical size based on its smaller size (Murano et al., 2008). Hence, visceral fat 

accumulation is associated with an increased cardiovascular risk. 

The adipose-specific inflammation seems to be an important step in the insulin 

resistance phenotype and obesity related complications (Xu et al., 2003). During 

obesity, the local increase in oxidative stress in accumulated fat causes the 

dysregulated production of adipocytokines. Adipocytes and macrophages secrete large 

amounts of TNF-α, IL-6, leptin, resistin and other pro-inflammatory cytokines while 

serum adiponectin levels are diminished in obesity (Hotta et al., 2000). Despite the 

action of other factors, TNF-α is considered the major factor responsible for the 

development of insulin resistance in WAT. It seems to interact with insulin cascade 

signaling via serine/threonine inhibitory phosphorylation of IRS-1, contributing to the 

insulin resistant phenotype (Hotamisligil & Spiegelman, 1994). In addition, TNF-α  and 

alterations in adipokines secretion also contributes to reduce the ability of adipocytes to 

accumulate TGs, increasing the levels of circulating FFAs (Maassen et al., 2007). 

Therefore, the high levels of circulating FFAs can be taken up and accumulate 

in skeletal muscle (Figure 1.6) and liver, contributing to general insulin resistance. The 

intracellular lipid accumulation has been linked to an increased fatty acid flux that leads 

to an accumulation of lipid intermediates (diacylglycerol, long-chain acyl CoAs and 

ceramides) in the cytosol (Szendroedi et al., 2012). These intermediates can interfere 

with the insulin-signaling cascade and muscle glycogen synthesis, promoting a 

decrease in the glucose uptake (DeFronzo & Tripathy, 2009). Moreover, the 

accumulation of FFAs induces deleterious effects on skeletal muscle mitochondrial 

function with a disruption in mitochondrial oxidative phosphorylation (Kelley et al., 

2002). 
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Figure 1.6. Chronic inflammation in adipose tissue triggers insulin resistance in skeletal 

muscle. The recruitment of macrophages also contributes to alterations in cytokine expression 

and secretion. Specifically, macrophages secrete tumor necrosis factor-α (TNF-α) which impairs 

triglyceride (TG) storage and increases lypolysis. The circulating free fatty acids (FFAs) can be 

taken up and accumulate in skeletal muscle cells. The accumulation of lipid intermediates can 

interfere with several pathways, inhibiting glucose uptake and imparing the expression of genes 

involved in mitochondrial function. AP1, Activator protein-1; ATP, Adenosine triphosphate ; CM, 

Ceramide; CO2, Carbon dioxide; GLUT4, Glucose transporter type 4; H2O, Water; IKK, IκB 

kinase; JNK, Jun N-terminal kinase; MAP4K4, Mitogen-activated protein kinase kinase kinase 

kinase-4; NF-κB, Nuclear factor-κB ; PKC, Protein kinase C; PGC-1, PPARγ co-activator-1; 

PPAR-γ, peroxisome proliferatoractivated receptor-γ;  (From Guilherme et al. 2008). 

 

1.3 Therapeutical strategies 

 

1.3.1 Classical therapies 

 

The development of different type of approaches, whether behavioral or 

pharmacologic, is required to counteract obesity and related disorders. The current 

obesity therapies are mainly focused on regulating energy intake and energy 

expenditure (Clapham & Arch, 2007).  
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The behavioral modifications are based in lifestyle modifications, which includes 

diet and physical activity. Although these type of alterations are potentially effective in 

weight loss, they are difficult to implement in obese people and sometimes not 

successful as desired (Godpaster et al., 2011).  

On the other hand, pharmacologic approaches have showed limited efficacy 

besides adverse side effects. There are only three drugs (sibutramine, phentermine, 

and orlistat) approved by the food and drugs administration (FDA) for weight loss 

based on the reduction of energy intake or in the reduction of intestinal absorption. 

However, none of them have adequate long-term clinical efficacy (Cypess & Kahn, 

2010). As such, other approaches have been developed to restore the correct 

equilibrium between energy intake and energy expenditure. Drug treatments based on 

thiazolidinedione (TZD) drug class, as pioglitazone and rosiglitazone, improve insulin 

sensitivity by several mechanisms. They promote adipocyte differentiation and 

enhance mitochondrial biogenesis, increasing lipid storage in WAT and fatty acid 

oxidation capacity. Although the significant effects on decreasing insulin resistance, 

these agents have associated some side effects (Willson et al., 2001). The bariatric 

surgery is an effective approach implemented in recent years but it is only suitable for 

severely obese people with co-morbidities. Although the metabolic improvement 

verified in those obese people, bariatric surgery is an invasive method with possible 

surgery complications (Sjöström et al., 2012).  

The described approaches have associated risks and are not useful for all the 

obesogenic population. Thus, novel therapeutic tools based on targeting energy 

expenditure are being researched. Recently, these therapeutic tools are based on BAT 

characteristics to reduce adiposity in WAT (Zafrir, 2013). 

 

1.3.2 BAT recruitment 

 

The research community has described BAT and its targeting as an efficient 

approach in the treatment of dyslipidemia, obesity, and type 2 diabetes (Cypess & 

Kahn, 2010). These effects are beyond the metabolic effects of BAT by elevating 

whole-body energy expenditure and by regulating glucose and fatty acids levels in 

circulation. However, the activation of BAT is not an efficient weight loss strategy in 

overweight or obese humans (van Marken Lichtenbelt et al., 2009). 

Instead of therapeutical strategies targeting the activation of BAT, novel 

approaches in order to stimulate and increase BAT mass in the body are under 

development. This is based on several studies that show that, in mice, the prolonged 
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cold exposure stimulation, treatment with β3-AR agonists or PPAR-γ agonists protect 

mice from diet-induced obesity by inducing an increase in BAT mass and UCP-1 levels. 

(Petrovic et al., 2010; Kopecky et al., 1995). Moreover, the transplantation of BAT 

caused an improvement of the metabolic profile in mice, being these effects BAT mass 

dependent (Stanford et al., 2013). Thus, this increase in BAT mass improved glucose 

tolerance, increased insulin sensitivity and lean mass, and decreased leptin, 

triglycerides and cholesterol levels.  

Several works have shown an increase in multilocular UCP-1-positive fat cells 

in anatomical sites corresponding to WAT (Barbatelli et al., 2010), referred as brite 

cells. One of the potential mechanisms to explain the origin of these cells is the direct 

conversion of mature white adipocytes into brown-like adipocytes through a 

transdifferentiation process that is called “browning” of WAT (Himms-Hagen et al., 

2000). On other hand, it is suggested that brite cells could be derived from “masked” 

brown adipocytes in WAT that can be unmasked upon prolonged stimulation by the 

presence of a physiological or pharmacological stimuli that elevates the intracellular 

cAMP levels (Cousin et al., 1992).  Although other processes to explain this 

phenomenon are still debated, the transdifferentiation theory is considered the main 

process responsible for white to brown adipocyte conversion. In this process, white 

adipocytes have the capacity to directly be transformed into mature cells with 

morphological and functional similarities of brown adipocytes (Cinti, 2012; Barbatelli et 

al., 2010). This is supported by data demonstrating that the appearance of this type of 

cells coincides with a decline in the number of white adipocytes simultaneously with an 

increase in the number of  brown-like adipocytes at fat depots (Himms-Hagen et al., 

2000; Frontini et al., 2013).  

 

1.3.2.1 Brite cells 

 

In the presence of a thermogenic stimulus, the “browning” of WAT induces the 

appearance of an intermediary phenotype in white cells, the UCP-1-positive brown-like 

adipocytes in WAT depots (Petrovic et al., 2010). These cells are called inducible, 

beige, or “brite” (from the combination of the words brown and white) cells and despite 

they are distinct from “classical” brown adipocytes, they are not considered as a distinct 

cell type on their own (Townsend & Tseng, 2012).  

Brite cells have a developmental origin, characteristics and gene expression 

profile distinct from WAT and “classical” BAT. The brown-like adipocytes that arise in 

classical white adipose depots did not express the myogenic lineage marker Myf5, the 
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early marker of myogenesis (Barbatelli et al., 2010). This shows that brite cells have a 

different cell lineage from classical brown adipocytes which express Myf5, a common 

feature shared with skeletal muscle precursor cells. Thus, brite cells are probably 

directly induced from mature WAT, which the cell lineage is characterized as Myf5-

negative cells (Seale et al., 2009).  

 

Figure 1.7 – Developmental origin of brite adipocytes. Myf5-negative mesenchymal 

precursors can be differentiated into brite cells or into white adipocytes, given the right stimuli. 

Furthermore, white adipocytes can undergo transdifferentiation into brite cells. The activation of 

these cells demonstrates that they are thermogenically competent cells, similar to brown 

adipocytes. ADRB3, β3-adrenergic receptor; BMP7, Bone morphogenic protein 7 (From 

Peschechera & Eckel, 2013). 

 

The majority of brown-like adipocytes in humans showed molecular and 

functional characteristics similar to brown adipocytes in BAT depots (Giralt & Villarroya, 

2013). The brite cells are constituted by large cells with an irregular shape as well 

multiple and heterogeneous lipid droplets (Lehr et al., 2009). Moreover, these cells 

have high expression levels and proteic content of UCP-1 and mitochondrial oxidative 

enzymes (Petrovic et al., 2010). Some data points to the fact that the 

transdifferentiation process induces the appearance of mixed features between white 
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and brown adipocytes phenotype (Barbatelli et al., 2010). Although some differences, 

brite cells are competent cells in thermogenesis and in energy expenditure at the same 

levels of classical brown adipocytes (Giralt & Villarroya, 2013). 

In terms of gene profile, the expression of regulators as PGC-1α, C/EBPβ or PRDM16 

during the transdifferentiation process, contributes to a similar pattern of gene 

expression in brite cells when compared to brown adipocytes (Pisani et al., 2011). The 

expression of UCP-1 can be considered a cell marker of the transdifferentiation 

process. In addition to the expression of genes implicated in thermogenesis, the 

expression of other genes related to mitochondrial biogenesis is upregulated after this 

process. Interestingly, brite cells are also characterized by the expression of certain 

WAT genes (Lo & Sun, 2013). Although the up-regulation of BAT specific markers, it is 

noteworthy that brite cells store energy surplus and have a whiter adipocyte phenotype 

in the absence of a thermogenic stimulus. This capacity seems to provide evidence 

that the conversion of white adipocytes into brite cells is a bidirectional interconversion 

process (Lee & Cowan, 2013).  

 

1.3.2.1.1 Regulation of the “browning” process 

 

The process of transdifferentiation can be induced by the stimuli of a wide 

spectrum of molecules. These molecules have been reported to induce the activation 

of BAT function in vivo, but they have also been reported to induce beige cell 

development. (Hondares et al., 2011; Karamitri et al., 2009; Pisani et al., 2011).  

A number of studies showed that the expression of some transcription factors is 

sufficient to the development of beige cells in mice and in pheochromocytoma patients 

(Sharp et al., 2012; Frontini et al., 2013).  Transcriptional factors involved in the 

process are critically required at different stages of the transdifferentiation process, 

contributing to the expression of characteristic BAT markers, especially at 

mitochondrial level (Hondares et al., 2011). During this process, the transcriptional 

factors act by binding to conserved cAMP-response element (CRE) sites, promoting 

the transcription of CRE-containing genes which are required for full brown-like 

adipocyte formation (Karamitri et al., 2009). The main regulators of “browning” are 

PRDM16, PPAR-γ and PGC-1α (Lo & Sun, 2013). 
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Figure 1.8 - The main “browning” transcriptional regulators involved in the 

transdifferentiation process.  Peroxisome proliferator-activated receptor-γ (PPAR-γ), PR 

domain containing 16 (PRDM16) and PPAR-γ co-activator 1-α (PGC-1α) are involved in the 

induction of BAT genes and also in the repression of WAT genes. BAT, Brown adipose tissue; 

WAT, White adipose tissue (Adapted from Lo & Sun, 2013). 

 

PPAR-γ is one of the transcriptional factors involved in the regulation of the 

transdifferentiation program. A full activation of this factor is required to enhance UCP-

1, PGC-1α and other genes expression related to mitochondrial biogenesis 

(Nedergaard et al., 2005).  PPAR-γ is not only involved in the induction of brown fat 

genes but also in the repression of white fat genes (Vernochet et al. 2009). In addition, 

the transcription cofactor PGC-1α also plays a role in the development of brite cells. 

Several studies showed that mice deficient in PGC-1α have impaired UCP-1 and 

mitochondrial genes expression while the ectopic expression of this factor induced an 

increase in mitochondrial and thermogenic genes expression (Puigserver et al., 1998; 

Tiraby et al., 2003; Uldry et al., 2006). Hence, PGC-1α is critical for the expression of 

genes involved in the regulation of mitochondrial biogenesis, oxidative metabolism and 

thermogenesis (Puigserver et al., 1998).  

The development of brown adipocytes is also dependent of other transcriptional 

regulator - PRDM16. This factor seems to stimulate the appearance of brown-like 

adipocytes by association with other co-regulators as PPAR-α, PPAR-γ, PGC-1α and 

also C/EBPβ (Sharp et al., 2012). These interactions provoke the expression of 

thermogenic genes and others brown fat genes while causing the repression of white 

fat specific genes through association with co-repressors (Kajimura et al., 2008). As 
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such, PRDM16 seems to be the critical transcriptional factor for the development of 

brite cells and it is also a metabolic integrator on the regulation of thermogenesis in 

differentiated brown adipocytes (Hondares et al., 2011).  

In another way, PPAR-α is also mentioned like an important transcription factor 

that plays a role in BAT development. This transcription factor is involved in the cellular 

lipid uptake and in mitochondrial and peroxisomal β-oxidation due to the interaction 

between PPAR-α and PRDM16 (Mandard et al., 2004; Seale et al., 2009). 

Furthermore, PPAR-α induces PGC-1α gene transcription which contributes to the 

induction of the thermogenic function (Barbera et al., 2001). Thus, while PPAR-γ 

seems to be important in the induction of thermogenic genes mainly in the early steps 

of BAT differentiation, the PPAR-α seems to be more important in the terminal steps. 

As such, PPAR-α induces fatty acid oxidation and consequently, it is a critical factor in 

fully differentiated brown adipocytes (Hondares et al., 2011). 

All the factors described above are considered as brown-like adipocyte 

development key markers in the acquisition of a complete BAT-like phenotype. Hence, 

the development of brite cells leads to an increase in UCP-1, fatty acid oxidation 

enzymes and ETC proteins that contributes to a higher uncoupling and respiratory 

capacity (Tiraby et al., 2003). The energy dissipation that is associated with a higher 

metabolic rate in mitochondria contributes to a decrease in fat mass and to a possible 

amelioration of insulin sensitivity. 

 

1.3.2.1.2 Mitochondrial Biogenesis 

 

Mitochondrial biogenesis is a program that results in increased mitochondrial 

mass. This process involves the synthesis, import of protein and lipids and the 

replication of the mitochondrial genome. Mitochondrial biogenesis requires the 

integration of multiple transcriptional regulatory pathways controlling the expression of 

mitochondrial genome and nuclear encoded oxidative phosphorylation genes (Hock & 

Krali, 2009). This coordination is regulated by PGC-1α, a transcriptional co-activator of 

the expression of other transcription factors, namely, the nuclear respiratory factor 

(NRF)-1. NRF-1 is responsible for the activation of the expression of nuclear genes 

coding for electron respiratory chain (ETC) enzymes, for example β-ATP synthase, 

cytochrome c, cytochrome c oxidase subunit IV (Puigserver & Spiegelman, 2003). In 

addition, NRF-1 also regulates the expression of mitochondrial transcription factor A 

(TFAM). Its translocation into mitochondria induces the transcription and replication of 
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the mitochondrial genome (Wu et al., 1999). The co-ordinate regulation of these 

systems contributes is essential to a balanced assembly and function of mitochondrion. 

 

Figure 1.9 - The action of peroxisome proliferator-activated receptor γ coactivator 1-α 

(PGC-1α) in mitochondrial biogenesis. The expression of PGC-1α is induced by protein 

kinase A (PKA) and/ or p38 mitogen-activated protein kinase (MAPK) activation. This factor 

leads to the nuclear respiratory factor (NRF) -1/-2 expression, resulting in the expression of 

subunits of electron respiratory chain and in an increase of mitochondrial DNA replication and 

transcription. cAMP, cyclic adenosine monophosphate; CREB, cAMP response element-binding 

protein; mt TFA, Mitochondrial transcription factor A (From Puigserver & Spiegelman, 2003). 

 

During the “browning process”, the combined action of PPAR-γ and PGC-1α 

induced mitochondrial biogenesis in white adipocytes (Lo & Sun, 2013). Thus, the 

expression of “browning” transcriptional regulators increase mitochondrial oxidative 

capacity, associated with increased expression of mitochondrial OXPHOS and fatty-

acid oxidation enzymes (Hondares et al., 2011). In fact, the analysis of brite cells 

confirmed the existence of a high mitochondrial density, with mitochondria exhibiting an 

intermediate morphology between white and brown adipocytes (Frontini et al. 2013).  

There is evidence that the mitochondrial dysfunction and consequently, the 

defective oxidative metabolism are involved in fat accumulation and in the development 

of insulin resistance during visceral obesity (Nisoli et al., 2007). Given that, it is 
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noteworthy that the induction of PGC-1α and mitochondrial biogenesis may be crucial 

for the restoration of mitochondrial function in adipocytes (Meex et al., 2010). The 

induction of UCP-1 in WAT and the stimulation of mitochondrial biogenesis have been 

shown to enhance mitochondrial content and activity and to stimulate oxidative 

capacity. In fact, it was showed an increase in the expression of cytochrome c, 

cytochrome c oxidase and the expression of mitochondrial fatty acid enzymes carnitine 

palmitoyltransferase-1 (CPT-1) and medium chain acyl-coenzyme A dehydrogenase 

(MCAD) under conditions of PGC-1α ectopic expression in adipocytes (Tiraby et al., 

2003). Therefore, the high oxidative capacity and the energy expenditure in adipocytes 

enhance fat oxidation. It is noteworthy that the reduction in body weight is 

accompanied not only by an improvement in WAT function but also in the 

pathophysiology of several risk factors linked to obesity (Furukawa et al., 2004). 

 

1.4 Wnt/ β-catenin signaling pathway   

 

The wingless-type mouse mammary tumor virus integration site family (Wnt)/ β-

catenin signaling is a pathway implicated in the differentiation and in the development 

of various cells types of numerous tissues. In particular, this pathway plays a role in 

white and brown adipogenesis (Bennett et al., 2002; Longo et al., 2004). 

 The Wnt/ β-catenin signaling pathway is regulated by Wnts and others secreted 

molecules. The Wnts are glycoproteins that bind to its receptor complex composed of 

Frizzled transmembrane receptors and low-density lipoprotein receptor-related protein -

5 or -6 (LRP5/6) co-receptors which serves as docking site for axin (Clevers, 2006). 

This scaffold protein forms a cytoplasmic multi-protein complex which also comprises 

adenomatous polyposis coli (APC) and glycogen synthase kinase 3β (GSK3β). The 

stabilization of axin enhances the efficiency of GSK3β – mediated phosphorylation of 

β-catenin, the key mediator of the Wnt/ β-catenin pathway (Metcalfe & Bienz, 2011).  

Although the central role that GSK3 plays in the canonical Wnt signaling, this 

kinase that consists of highly homologous α and β isoforms is involved in numerous 

cellular processes. Owing to its role in the regulation of the insulin signaling cascade, 

the modulation of GSK3 activity leads to alterations in insulin action. In fact, a high 

GSK3 activity is reported in insulin-resistant obese rodent models where the GSK3 

activation causes the negative modulation of glycogen synthesis and glucose 

transporter activity (Henriksen & Dokken, 2006). 

In the Wnt/ β-catenin signaling pathway, the absence of Wnt ligand inhibits the 

pathway. The glycogen synthase kinase 3β (GSK3β) is active and causes the 
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phosphorylation of β-catenin, which leads to its proteasome-mediated degradation. The 

phosphorylated β-catenin is targeted for ubiquitylation and subsequent proteasomal 

degradation. Hence, the inhibition of β-catenin translocation into the nucleus represses 

β-catenin-mediated transcriptional activation (Kang et al., 2005).  

 

Figure 1.10 - The canonical Wnt signaling pathway. (Left panel) In the absence of Wnt 

ligands, β-catenin is recognized by the destruction complex and is phosphorylated by glycogen 

synthase kinase-3 (GSK3). Phosphorylated β-catenin is targeted for ubiquitination, being 

degraded at the proteosome level. In the nucleus, the transcription of Wnt target genes is 

inhibited. (Right panel) In the presence of Wnt ligands, β-catenin is stabilized, being 

translocated into the nucleus where by interaction with T cell-specific factor (TCF), promotes the 

transcription of Wnt target genes. β-TrCP, F box/WD repeat protein; APC, Adenomatous 

polyposis coli; CK1, Casein kinase I; Dvl, Disheveled proteins; Fz, Frizzled receptors; LRP, 

Low-density lipoprotein receptor-related protein (From Clevers, 2006). 

 

In another way, the presence of Wnt ligands causes the activation of the Wnt/β-

catenin signaling pathway. The binding of Wnt proteins to the Frizzled receptors and to 

LRP5/6 recruits Disheveled proteins to the plasma membrane (Figure 1.10). The 

Disheveled proteins interacts with axin which recruits its associated proteins, namely 

GSK3β (Metcalfe & Bienz, 2011). The inhibition of GSK3β induces the stabilization of 

β-catenin, causing the cytosolic accumulation of the hipophosphorylated β-catenin in 

the cytoplasm. After a while, β-catenin is translocated into the nucleus where it 

interacts with T cell-specific factors (TCFs), forming a co-activator complex that 
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regulates gene expression (Cristancho & Lazar, 2011; Prestwich & MacDougald, 

2007). Recently, PPAR-γ is considered as an inhibitor of Wnt signaling pathway by 

interacting and stimulating the activity of GSK3β that in turn leads to proteasomal-

dependent β-catenin degradation (Liu et al., 2006). 

Although some questions remained to be addressed to understand the cascade 

of events that occurs after the induction of the master adipogenic transcription factors 

expression, it is known that the activation of the pathway do not appear to influence the 

transcription of C/EBPβ or C/EBPδ but inhibits the expression of PPAR-γ and C/EBPα 

(Kang et al., 2005). The activation of the pathway modulates the relative levels of cell 

type specific transcription factors involved in adipogenesis and brown adipogenesis 

while the inhibition of the pathway is required to induce these processes. It is 

noteworthy that the canonical Wnt signaling is regulated by several secreted inhibitors 

that influence the activation or the inhibition of the pathway (Chung et al., 2012). In fact, 

the overexpression of Wnt10b, an activator of the pathway, induces a reduction in 

adipogenesis and confers resistance to diet-induced obesity in mice (Wright et al., 

2007). Alterations in Wnt signaling system have been associated with the development 

of obesity and type 2 diabetes (Christodoulides et al., 2009). 

 

1.4.1 “Browning” process - Wnt/ β-catenin dependence 

 

The activation of the canonical Wnt signaling pathway prevents the expression 

of critical transcription factors for the differentiation of brown adipocytes, such as 

C/EBPβ and PPAR-γ both in vitro and in vivo (Longo et al., 2004; Kang et al., 2005). 

Interestingly, this activation is also responsible for the suppression of UCP-1 

expression in mature brown adipocytes which may be associated with the suppression 

of PGC-1α transcription (Kang et al., 2005).  

The activation of the canonical pathway can be modulated at several levels by 

the expression of Wnt ligands or other molecules that interfere in the signaling cascade 

pathway (Ehrlund et al., 2013). For instance, the presence of endogenous activators of 

this pathway (Wnt10a and/or Wnt10b) or a specific GSK3β inhibitor, CHIR99021, 

promoted an impairment of BAT function (Longo et al., 2004). This included a reduction 

in the expression of brown adipocyte markers genes, namely PGC-1α. Moreover, the 

same study indicated that the activation of the Wnt pathway caused the suppression of 

mitochondrial and nuclear-encoded mitochondrial gene expression, some of which 

involved in fatty acid oxidation and also oxidative phosphorylation (OXPHOS) (Kang et 

al., 2005). Despite the absence of brown adipocyte phenotype, the cells presented 
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unilocular droplets and a continuous expression of white adipocytes markers in mice 

(Kang et al., 2005). 

In line with previously findings that Wnt/ β-catenin signaling pathway regulates 

not only brown adipogenesis and brown adipocyte genes expression, but also the 

differentiation of brown into white adipocytes, it is suggested a role for this pathway in 

the “browning” process (Kang et al., 2005). Despite the scarce knowledge about the 

Wnt dependence, recent data supported this role by demonstrating the Wnt 

involvement in the plasticity of WAT (Kang et al., 2005). Hence, the  modulation  of  this  

pathway  might promote  the  expression  of  genes  involved  in  the potentiation of 

beige cell development and the subsequent mitochondrial  biogenesis (Ehrlund et al., 

2013).  

 

1.5 Bile acids 

 

1.5.1 Synthesis and Function 

 

Bile acids (BAs) are a family of steroid molecules that are produced in the liver, 

accumulated in the gallbladder and excreted into the small intestine (Mano et al. 2004). 

They are synthesized from cholesterol by the action of hepatic enzymes via classical 

pathway or an alternative pathway that seems to be less common (account only to 6% 

of BAs synthesis) (Mano et al., 2004; Schubring et al., 2012). The classical pathway 

consists of 7α-hydroxilation of cholesterol by cholesterol 7 alpha-hydroxylase 

(CYP7A1) and the subsequent reactions that include the modification of the ring 

structure of cholesterol, namely oxidation and shortening of the side chain, and the 

conjugation of the bile acid with an amino acid (Thomas et al. 2008). The resulting 

products are the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) 

which are converted into secondary bile acids by the action of intestinal flora (Fiorucci 

et al., 2009).  
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Figure 1.11 - Molecular structure of primary bila acids CA (left) and CDCA (right).  

 

The conjugated BAs have different chemical properties and distinct biological 

activities. In the intestinal lumen, the amphipathic nature of BAs promotes digestion 

and the absorption of dietary lipids and vitamins. To maintain a functional pool of BAs, 

they are reabsorbed and transported back into the liver, being extensively recycled 

(Mano et al., 2004). Besides their function in dietary lipid absorption, in the regulation of 

their own synthesis and cholesterol homeostasis, BAs are responsible for the activation 

of several signaling pathways involved in lipid and glucose homeostasis (Trauner et al., 

2010). 

 

1.5.2 Bile acids and energy homeostasis 

 

It is well established that BAs have a beneficial effect in the maintenance of 

metabolic homeostasis. Evidence shows that BAs are implicated in decreasing serum 

and hepatic levels of TGs in a model of obesity, insulin resistance and 

hypertriglyceridemia (Watanabe et al., 2004). These results are consistent with another 

study where the administration of CA prevented and reversed diet-induced weight gain 

with a decrease in adiposity (Watanabe et al., 2006). These effects are associated with 

an increase in the expression of several genes involved in the control of energy 

expenditure in BAT in mice (Watanabe et al., 2006). Recently, evidence showed that 

another bile acid, CDCA also reversed obesity and related disorders in mice. The 

CDCA administration induced an increase in UCP-1 content in BAT, being the 

beneficial effects of this steroid molecule justified at least in part by UCP-1 mediated 

thermogenesis (Teodoro et al., 2014). Moreover, in the same study, it was 

demonstrated that CDCA mediated the appearance of UCP-1 expressing cells in WAT 

(Teodoro et al., 2014). 
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The mechanism underlying these BAs effects has remained elusive. Some 

research has been focused on BAs as ligands of the farnesoid X receptor (FXR) and 

the G protein coupled receptor (TGR5). Therefore, BAs might be able to exert its 

function triggering the induction of the signaling cascade pathway activated by one of 

these receptors (Watanabe et al., 2004; Kawamata et al., 2003).  

Based on the BAs beneficial effects in the whole body metabolism and 

considering its effects on elevating UCP-1 levels, BAs could contribute to a reduction in 

adiposity, acting as metabolic integrators in the reversion of dietary obesity and the 

stabilization of a lean phenotype (Watanabe et al., 2012). BAs seem to be a promising 

therapeutic approach for the clinical management of metabolic disorders. 

 

1.5.2.1 Bile acids and FXR 

 

FXR is a nuclear receptor that when activated by BAs protects against body 

weight gain and fat deposition in liver and skeletal muscle (Cipriani et al., 2010). These 

effects are attributed to an increase in the expression of genes involved in lipoprotein 

clearance while the genes involved in the biosynthesis of TGs are repressed (Claudel 

et al., 2005). In fact, the activation of FXR induces the apolipoprotein C2, a co-activator 

of LPL, which decreases serum levels of TGs and FFAs (Neuschwander-Tetri, 2012). 

In particular, in adipocytes, the activation of FXR induces an increase in adipose tissue 

storage by the expression of PPAR-γ, sterol regulatory element-binding protein 

(SREBP)-1c and fatty acid binding protein (FABP) (Rizzo et al., 2006). The activation of 

FXR in liver seems to induce the expression of PPAR-α and its target genes, 

increasing fatty acid oxidation and decreasing the capacity to secrete or store TGs 

(Teodoro et al., 2011). The role of FXR in lipid metabolism is supported by data 

showing that FXR deficient mice had increased serum and hepatic TGs, and 

cholesterol levels due to an increase in the production of VLDLs (Thomas et al., 2008; 

Neuschwander-Tetri, 2012). Moreover, the activation of FXR seems to have a key role 

in enhancing glucose uptake and promoting insulin sensitivity, counteracting insulin 

resistance in liver and skeletal muscle tissue in an obese animal model (Cipriani et al., 

2010).  

Despite the beneficial effects of BAs, recent studies provided controversial 

effects of synthetic FXR agonists when compared with BAs effects. In fact, the 

synthetic FXR agonist GW4064 exacerbates insulin resistance and glucose 

intolerance, inducing obesity and diabetes in high fat fed mice (Watanabe et al., 2011). 

In line with the above observations, evidence also showed an improvement of glucose 
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homeostasis in a FXR deficiency in obesity (Prawitt et al., 2011). These data suggest 

that BAs might exert its beneficial effects through a pathway independent of FXR.   

 

1.5.2.2 Bile acids and TGR5 

 

BAs are also ligands of TGR5. Diet supplementation with BAs in obese mice fed 

a high fat diet reversed diet-induced obesity, decreased WAT mass and improved 

glucose tolerance (Watanabe et al., 2006). The authors attribute these effects to the 

activation of TGR5.  

The activation of this receptor leads to the activation of cAMP-PKA signaling 

pathway and the subsequent expression of D2, a thyroid hormone-activating enzyme. 

Thus, the conversion of T4 into T3 and the increasing levels of intracellular T3 induces 

the binding of transcription factors to specific sequences in the promoter of T3 

responsive genes such as UCP-1, and PGC-1α, the master regulator of mitochondrial 

biogenesis (Watanabe et al., 2006; Casas et al., 2008; Hall et al., 2010). Thus, the 

signaling pathway TGR5-cAMP-D2 is reported as an interesting target in the regulation 

of energy expenditure in obese patients. This is in the line with recent findings where 

the administration of BAs induced a high consumption of O2 simultaneously with an 

increase in mitochondrial activity and energy expenditure in brown adipocytes as well 

as in human skeletal myocytes (Watanabe et al., 2006; Blanchet et al., 2012).  

Conversely, some reports have now questioned the role of TGR5 as a target for 

metabolic control. Interestingly, the exposure of BAs derivatives in mice lacking or 

overexpressing D2 or TGR5 has the same BAs effects (Sato et al., 2008; da-Silva et 

al., 2011). In addition, primary and secondary BAs appear activate TGR5 at high 

concentrations demonstrating a low affinity of BAs to this receptor (Kawamata et al., 

2003). Hence, more research will be necessary to understand the mechanism through 

which BAs exert its beneficial metabolic effects. 

 

1.6 Aims/ Objectives 

 

Bile acids are signaling molecules implicated in the prevention and reversion of 

metabolic disorders. Its beneficial effects have been reported in a mice model of 

obesity, insulin resistance and hypertriglyceridemia (Watanabe et al., 2004). The 

authors attributed these effects in the whole body metabolism at least in part by UCP-

1-mediated thermogenesis in BAT. Additionally, bile acids have also been shown to 

induce an increase in mitochondrial content and a higher expression of mitochondrial 
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biogenesis markers in BAT (Watanabe et al., 2006; Teodoro et al., 2014). Moreover, 

there is evidence that the natural bile acid CDCA induce the appearance of some UCP-

1 positive adipocytes interspread in white adipose tissue. In line with these findings, 

BAs could induce UCP-1 expressing adipocytes, being the fatty acid storage 

phenotype of these cells converted towards a fat utilization phenotype. However, it 

remains to be established if the anti-obesity effect of CDCA is a direct effect in adipose 

tissue or a consequence of actions in other key metabolic organs. Moreover, although 

controversy remains, the canonical Wnt signaling pathway may be implicated in BAs 

effects. 

In this work, we aimed to explore BAs effects in adipocytes cultures and their 

dependence on the Wnt/ β-catenin signaling pathway. With this in mind, CDCA-induced 

transdifferentiation was evaluated in the presence of an activator (CHIR99021) or an 

inhibitor (XAV939) of the Wnt/ β-catenin pathway. 

Since mitochondria are a key organelle in the metabolism of the adipocytes and 

also in the development of adipocyte dysfunction during obesity, we addressed the 

effects of CDCA on adipocytes mitochondrial function.  

Considering the growing interest in the development of therapeutic strategies to 

counteract the alterations that leads to obesity and adipocyte dysfunction, this study 

will help us to unravel BAs effects in adipocytes and the molecular mechanisms 

underlying such effects. 
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2.1 Materials 

 

Except when the source of the compound is described, all compounds were 

purchased from Sigma-Aldrich (St Louis, MO). All other reagents were obtained with 

the highest grade of purity commercially available.  

  

2.2 Cell line 

 

3T3-L1 cell line (ATCC CL-173) was derived by clonal expansion from murine 

Swiss 3T3 cells. Due to its potential to differentiate from fibroblasts to adipocytes, 3T3-

L1 cell line has been largely used as an in vitro model in adipocyte differentiation and in 

studies related to obesity and metabolic diseases (Green & Meuth 1974). 

 

2.3 Cell culture 

 

3T3-L1 cells were maintained in a pre-adipocyte expansion medium - 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 25 mM D-glucose, 

30 mM sodium bicarbonate, 2 mM L-glutamine and 1 mM sodium pyruvate, with 1% 

antibiotic/antimycotic (Life Technologies, Carlsbad, CA ) and 10% new-born calf serum 

(NCS) (Life Technologies). The cells were cultured in 75-cm2 tissue culture flasks 

(Sarstedt, Nümbrecht, Germany) and maintained in a humidified atmosphere incubator 

with 5% CO2 at 37 °C. The medium of the cells was changed every two days and when 

cells reached approximately 70-80% confluence, cells were detached with 0.05% 

trypsin (Life Technologies) and passaged with a typical 1:6 dilution. For assay 

preparation, cells were counted with an automated cell counter (TC10 Automated Cell 

Counter, Bio-Rad Laboratories, Hercules, CA) and seeded in 12-well plates (Orange 

Scientific, Braine-l'Alleud, Belgium) at a density of 50,000 cells per well.  

 

Based on conventional protocols (Kovacic et al. 2011; Martini et al. 2012), the 

differentiation of the 3T3-L1 pre-adipocytes was not successfully achieved. The 

differentiation of the cells was too low and the cells detach easily from the plates which 

did not allow to proceed with the differentiation protocol neither cells treatment. In order 

to try to solve these problems, we tested some modifications in the protocol. In fact, we 

tested some protocols using the known commonly differentiative agents insulin, 
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dexamethasone (DEX), isobutylmethylxanthine (IBMX) and rosiglitazone. The protocols 

tested were summarized in Table 2.1.   

 

Table 2.1. Protocols tested for the effective differentiation of 3T3-L1 pre-adipocytes. 

 Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5 

 

Day 0-3 

 

BMI BMI BMI BMI BMI 

 

Day 3-5 

 

DMII 

IBMX 

Insulin 

DEX 

Rosiglitazone 

DMII 

IBMX 

DEX 

Rosiglitazone 

 

DMII 

IBMX 

Insulin 

DEX 

 

DMII 

Insulin 

DMII 

Insulin 

Rosiglitazone 

 

Day 5-7 

 

DMII 

Insulin 
DMII 

DMII 

Insulin 

DMII 

Insulin 

DMII 

Insulin 

 

Day 7- until 

differentiation 

 

DMII DMII DMII DMII DMII 

Abbreviations: BMI, Basal medium I: DMEM 25 mM glucose, 10% NCS and antibiotics; DMII, 

Differentiation medium II: DMEM 25 mM glucose, 10% foetal bovine serum (FBS) and 

antibiotics; DEX, Dexamethasone; IBMX, Isobutylmethylxanthine.  

 

The differentiation of each tested protocol was followed during approximately 2 

weeks, being the progression of adipogenesis examined microscopically. This 

examination was based on the number and size of multiple lipid particles in the 

cytoplasm of the cells along the protocol. After the morphologic analysis at microscope, 

we concluded that the further described protocol allows a complete differentiation of the 

fibroblasts into adipocytes.  

This protocol was based on the experiences described by Zebisch and 

coworkers (Zebisch, K et al. 2012). Cells were maintained in 12-well plates until 

reaching absolute confluence. After 48 h, the medium was replaced by a differentiation 

medium containing DMEM 25 mM glucose with 10% foetal bovine serum (FBS) (Life 

Technologies) and supplemented with 0.5 mM IBMX, 0.25 µM DEX, 1 µg/mL insulin 

and 2 µM rosiglitazone (Cayman Chemical Company, Ann Arbor, MI). After 48 h, the 

medium was removed from each well and was replaced by DMEM 25 mM glucose only 

supplemented with 1 µg/mL insulin for two additional days. After that, the cells were 



Chapter 2 – Materials and Methods 

39 

 

maintained in adipocyte maintenance medium containing DMEM 25 mM glucose with 

10% FBS. The medium was refreshed every two days. 100% differentiated adipocytes 

were acquired approximately around day 7 of the differentiation process. The 

differentiation was confirmed by morphologic analysis (Figure 2.1).  

 

Figure 2.1. Microscopic appearance of 3T3-L1 fibroblasts and 3T3-L1 adipocytes.  (A) 

3T3-L1 fibroblasts at day 2 of the differentiation with no accumulation of lipids. (B) 3T3-L1 

adipocytes at day 8 of the adipocyte differentiation protocol described previously. The cells 

became more spherical and nearly all of the cells contained lipid droplets in their cytoplasm. 

This differentiation state remained unchanged during the subsequent days. Scale bar, 20 µm. 

 

Once the cells reached the 100% differentiated state, they were submitted to 

different treatment conditions: 

 

 In a first task, the cells were submitted to different concentrations of CDCA (10 

and 50 µM) during 96 h;   

 In a second task, the cells were submitted to 10 µM CDCA and 3µM 

CHIR99021 treatment during 96 h; 

 In a third task, the cells were submitted to 10 µM CDCA and 1 µM XAV939 

treatment during 96 h.  

 

In these experiments, control cells were maintained in the same conditions and 

received an equivalent amount of vehicle, ethanol (in the case of CDCA treatment) and 

DMSO (in the case of XAV939 or CHIR99021 treatment). Thereafter, the cells were 

subsequently used for experiments.  

All the photometry and fluorescence measurements were made in a Victor3 

1420-050 series (Perkin-Elmer, Waltham, MA) plate reader.  

A B 
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2.4 Live-dead assay 

 

 Viability and the death of the cells were evaluated with LIVE/DEAD® 

Viability/Cytotoxicity Kit (Life Technologies) using the fluorescent marker ethidium 

homodimer-1 (EtHD-1).  The fluorescent marker EtHD-1 indicates the loss of plasma 

membrane integrity. When the cell membrane is disrupted, EtHD-1 enters and 

intercalates in the DNA, producing a bright red fluorescence in dead cells (Palmeira et 

al. 2007). As such, the total of both viable and non-viable cells was detected using 

Hoechst 33342, a specific fluorescent molecule that interacts with chromatin. In that 

way, Hoechst 33342 provides a direct measurement of the total number of cells in a 

well, resulting in a bright blue fluorescence in all the nucleus of the cells (Richards et al. 

1985). Non-viable cells were identified as those who exhibited simultaneously EtHD-1 

and Hoechst 33342 staining. 

After the treatment period, the cells were incubated in the presence of 4 µM 

EtHD-1 and 1 µL/mL Hoechst 33342 (Life Technologies) in a phosphate buffered saline 

(PBS) solution during 30 min at 37 °C in the dark, according to the manufacturer’s 

instructions. The medium was changed for a new medium (PBS) to remove the excess 

of probe and then used for the viability analysis. Cells were observed and distinct 

randomly selected areas per well were recorded using a fluorescence microscope 

(Nikon eclipse TS100, Amsterdam, Netherlands) and a NIS elements D4.11.01 Nikon 

software. The amount of the cells present in recorded images was counted, with the 

data expressed according to the percentage of viable cells in the total number of cells 

per well. The count of the cells was made using ImageJ software.  

 

2.5 LDH release 

 

Cell viability and membrane integrity were evaluated by the amount of 

cytoplasmic enzyme lactate dehydrogenase (LDH) released into the medium of the 

cells. The assay is based on the conversion of pyruvate to L-lactate, which results on 

the conversion of NADH into NAD+. The rate of conversion of NADH into NAD+ is 

proportional to LDH activity (Moran & Schnellmann 1996). As such, LDH activity is 

determined comparing the activity of LDH in medium to total LDH activity in medium 

and cell lysates using a LDH assay kit purchased from Hospitex Diagnostics (Sesto 

Fiorentino, Italy).  
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After the respective treatment during the time indicated, the medium of each 

well was collected. In addition, the cells were also collected from the wells using RIPA 

buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% DOC, 

0.1% SDS) containing a cocktail of protease inhibitors (Sigma-Aldrich). The cell lysates 

were obtained by passing the cells through a 26-gauge syringe. Then, the samples 

were collected and transferred to a clean 96-well plate where the enzymatic analysis 

was determined according to the assay kit at 37 °C. Firstly, 200 µL of medium assay 

reaction (4:1 mixture of R1 and R2 reagents), was added to each well and the basal 

absorbance was acquired. After that, 20 µL of each cell lysate sample was added into 

each well. The reaction was monitored at 340 nm and the LDH activity was calculated 

based on ΔA/min x 16030, according to the assay kit.  

 

2.6 Sulforhodamine B assay 

 

 The sulforhodamine B assay is a colorimetric assay well suited to determining 

the cellular protein content. The dye sulforhodamine binds to basic aminoacids 

residues under acidic conditions, which provides a sensitive method of measuring the 

protein content in comparison with other assays. The determination was made as 

previously described by Skehan and co-workers with slight modifications (Skehan et al. 

1990).  

After the treatment period and the subsequent assays, it is necessary to 

normalize the values obtained according to the cellular protein content in each well. 

The cells were washed twice with PBS and fixed with p-formaldehyde (4% in PBS) 

during 30 minutes on a shaking table. Then, the cells were washed twice with PBS and 

once with distilled water. After that, the plates were air dried and then the 

sulforhodamine B solution (0.5% in 1% acetic acid) was added to each well, being the 

plates incubated at room temperature during 30 min in the dark on a shaking table. The 

plates were washed four times with 1% acetic acid to remove the unbound dye, and the 

plates were air dried once more. To solubilize the protein-bound dye, 10 mM Tris base 

solution (pH 10) was added to each well in an equal volume to the original culture 

medium. The plates were submitted to a gentle stirring on the shaking table during 5 

min. The absorbance was measured at 540 nm.  
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2.7 Bicinchoninic acid assay 

 

The bicinchoninic acid (BCA) assay is a well described assay used to determine 

protein concentration (Walker 1994). The reaction is based on the reduction of Cu2+ to 

Cu+ by proteins in the presence of alkaline conditions. The purple coloured product of 

this reaction is linear to the protein concentration of unknown samples.  

BCA solution was prepared by mixing 50 parts of bicinchoninic acid solution 

with 1 part of copper (II) sulphate solution. After diluting the unknown samples, 25 µL of 

each sample was added to 200 µL of BCA solution in a 96-well plate. In parallel, a 

standard curve with known concentrations of bovine serum albumin (BSA) (0.1%) was 

prepared (0, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL). The plate was incubated during 30 min at 

37 ºC in the dark. Then, the absorbance was measured at 540 nm. The protein 

concentrations were determined based on standard curve and considering the dilution 

factor of the sample. 

 

2.8 Oil red O staining 

 

The oil red O assay constitutes a method for quantifying lipid deposition. The 

lipid  accumulation is proportional to the extent of differentiation of the cells and the 

assay specifically allows the quantification of triglycerides accumulation in the 

differentiated adipocytes (Ramírez-Zacarías et al. 1992). 

After the treatment period, the cells were washed twice with PBS and fixed with 

p-formaldehyde (4% in PBS) during 30 min on a shaking table. Then, cells were 

washed twice with PBS and once with distilled water. After this, the cells were stained 

with oil red-O-dye (6:4, 0.6% oil red in isopropanol) during 1 h on a shaking table. After 

this, the cells were washed three times with distilled water to remove the excess of dye 

in each well. The incorporated dye in the cells was dissolved in 200 µL of isopropanol, 

and the absorbance measured at 490 nm. The values were normalized according to 

the protein content in each well which was measured with the sulforhodamine B assay, 

described in section 2.6. The values were expressed in comparison with controls set as 

100%.   

 

2.9 Measurement of mitochondrial membrane potential 

 

The monitoring of the mitochondrial membrane potential (Δψm) was determined 

based on the accumulation of tetramethylrhodamine methyl ester (TMRM) (Life 
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Technologies), in the mitochondrial matrix, in a direct proportion to their Δψm. This cell 

permeant, cationic fluorescent probe allows the detection of small changes in Δψm 

which is indicative of mitochondrial function state (Distelmaier et al. 2008). 

The monitoring of Δψm was done according to a modified procedure of Rolo and 

co-workers (Rolo et al. 2003). 3T3-L1 fibroblasts were seeded in 12-well plates, 

differentiated and after the treatment period, the medium of each well was removed 

and the cells were incubated with 6.6 µM TMRM (prepared in dimethyl sulfoxide 

(DMSO)) in 1 mL of medium without FBS at 37 °C, in the dark during 30 min. After this 

incubation period, the medium of the cells was removed, and a new medium without 

FBS was added to remove the excess probe. The fluorescence was measured using 

excitation and emission wavelengths of 485 and 590 nm, respectively. Initially, the 

basal fluorescence was recorded and then, Δψm was estimated based on the complete 

depolarization caused by the incubation of the cells with 1 mM carbonyl cyanide p-

(trifluoromethoxy)phenylhydrazone (FCCP). The values were normalized according to 

the protein content in each well, measured with the sulforhodamine B assay, described 

in section 2.6. 

 

2.10 Measurement of reactive oxygen species generation 

 

The evaluation of ROS generation was determined fluorometrically, using the 

2’,7’-dichlorodihydrofluorescin diacetate (H2DCF-DA) probe. This probe easily diffuses 

through the cellular membrane and can be hydrolysed by intracellular esterases, 

becoming cell trapped. The resulting product can then be oxidized to a fluorescent 

product, 2’,7’-dichlorofluorescin, in the presence of ROS (Gomes et al. 2005).  

The determination of ROS formation was performed according to a method with 

slight modifications (Zhou et al. 2001). 3T3-L1 fibroblasts were seeded in 12-well 

plates, differentiated and after the treatment period, the medium of each well was 

removed and the cells were incubated with 50 µM H2DCF-DA (prepared in DMSO) in 1 

mL of medium without FBS in the incubator at 37 °C in the dark during 30 min. After 

this incubation period, the medium of the cells were removed, and 1 mL of new 

medium without FBS was added. The fluorescence was measured using excitation and 

emission wavelengths of 485 and 538 nm, respectively. To calculate the amount of 

ROS generation, the basal measurement of ROS was acquired, followed by the 

recorded fluorescence when 5 µL of 0.5 mM antimycin A was added. The addition of 

antimycin A blocks complex III of the mitochondria chain, provoking a maximal ROS 
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generation. The results were normalized accordingly to the protein content in each well, 

measured with a sulforhodamine B assay, described in section 2.6. 

 

2.11 Measurement of cytochrome c oxidase activity 

 

In order to study the mitochondrial function, it is important to evaluate the 

function of mitochondrial proteins, namely cytochrome c oxidase.  

The activity of this protein was evaluated in a closed chamber of an oxygen 

sensitive electrode (Hansatech Instruments Ltd, Norfolk, UK). The monitoring of 

oxygen concentration was polarographically measured using a Clark electrode as 

previously described (Brautigan et al. 1978). The reactions were performed at 25 °C in 

0.5 mL of PBS medium. This medium was supplemented with 2 µM rotenone, 10 µM 

cytochrome c and 150 µg of protein samples. After recording the basal cytochrome c 

oxidase activity, 5 mM ascorbate and 0.25 mM tetramethyl-p-phenylenediamine 

(TMPD) were added to the reaction medium. The reaction was initiated and the 

cytochrome c oxidase activity was recorded. The activity is expressed in nAtoms O/ 

min/ mg protein.   

 

2.12 Western blot analysis 

 

The Western blot is a technique that enables the quantification of specific 

proteins in a cell or tissue sample. 

Total cellular protein extracts were prepared from differentiated cells after the 

treatment period.  The cells were washed three times with PBS and then, the cells 

were collected from the wells using RIPA buffer containing a cocktail of protease 

inhibitors. The cell lysates were obtained by passing the cells through a syringe (BD 

Plastipak, Franklin Lakes, NJ) and then, cells lysates were centrifuged at 10,000 xg for 

10 min at 4 °C. The resulting supernatant was collected and used for the subsequent 

protocol. The protein quantification was determined through BCA assay described in 

section 2.7. Then, protein samples were prepared using Laemmli sample buffer (Bio-

Rad) with 5% β-mercaptoethanol. For western blot analysis, 50 µg of protein was 

loaded per lane and electrophoresed on a 10% sodium dodecyl sulphate (SDS)-

polyacrylamide gel in buffer 25 mM Tris-HCl containing 192 mM glycine and 0.1% SDS 

pH 8.3 at 120 mV.   

After electrophoresis, protein samples were transferred to polyvinylidene 

difluoride (PVDF) membranes using 25 mM Tris-HCl containing 192 mM glycine and 
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20% methanol during 90 min at 100 mV. Then, membranes were blocked in 5% non-fat 

milk in tris-buffered saline-tween-20 (TBS-T: 20 mM Tris (pH 7.6), 150 mM NaCl and 

0.1% Tween-20) for 2 h with agitation. After that, the membranes were washed three 

times with tris-buffered saline (TBS). Membranes were incubated with primary 

antibodies (Table 1) diluted in wash buffer (Life Technologies) with 5% (v/v) of blocking 

buffer (Life Technologies), overnight at 4 °C. Membranes were washed three times with 

TBS-T and incubated with biotin-conjugated secondary antibodies, anti-mouse or anti-

rabbit, (Life Technologies) with agitation for 1 h. After that, membranes were washed 

with TBS three times and incubated with Qdot-625 streptavidin conjugate (Life 

Technologies). To confirm the equal amount of protein per lane, it was used a loading 

control for the total protein content in the samples. 

Membranes were imaged using a Bio-Rad Gel Doc EZ Imager and an Image 

Lab 4.1 software. The densitometric analysis was performed using ImageJ software. 

 

Table 2.2. List of primary antibodies used for Western Blotting analysis. 

Antibody Specie Dilution Supplier 

COX-I Mouse 1:100 MitoSciences (Eugene, OR) 

COX-IV Mouse 1:1000 MitoSciences 

UCP-1 Rabbit 1:500 
Abcam (Cambridge, MA) 

Cleaved caspase-3 Rabbit 1:500 Cell Signaling (Danvers, MA) 

 

 

2.13 Real-time polymerase chain reaction 

 

To determine the expression pattern of some genes, mRNA expression was 

analysed using semi-quantitative real-time polymerase chain reaction (RT-PCR).   

Ribonucleic acid (RNA) was extracted from the cells using the PureLink RNA 

mini kit (Life Technologies), with the extraction performed according to manufacturer’s 

instructions. Briefly, cells were lysed by adding lysis buffer with 2-mercaptoethanol to 

each well. Each cell lysate was manually homogenised manually by passing the lysate 

through a syringe. 70% ethanol was added and each sample was mixed and 

transferred to a spin cartridge. In the spin cartridge, RNA bound to the membrane and 

after it was washed, purified RNA was eluted into a recovery tube. 
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RNA quantification was determined on a Qubit® 2.0 Fluorometer (Life 

Technologies). The assay was prepared by adding 10 µL of each sample to 190 µL of 

Qubit working solution prepared by diluting Qubit reagent (Life Technologies)  in Qubit 

buffer (1:200) (Life technologies).  Then, tubes were incubated at room temperature for 

2 min. Assay tubes were inserted in the Qubit fluorescence system and stock 

concentration of RNA samples were determined. After that, cDNA (complementary 

DNA) was synthesized with the Bio-Rad iScript cDNA synthesis kit using 500 ng of 

RNA.  Each sample reaction was performed with iScript reaction mix and iScript 

reverse transcriptase in a Minicycler thermal cycler (Bio-Rad). The expression of genes 

of interest was evaluated by the real time semi-quantitative PCR on a MiniOpticon Real 

time PCR system (Bio-Rad). Each sample reaction was performed using iQ SYBR 

Green Supermix (Bio-Rad) and respective forward and reverse primers. The 

expression of each gene of interest was normalised considering the expression of the 

housekeeping gene 18S ribosomal (18S rRNA).  

The primers used and its sequences are described in Table 2. 
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Table 2.3. List of primers and its respective nucleotide sequences. 

Gene  Primer Sequence 

18S 
Forward GCCCGAGCCGCCTGGAATAC 

Reverse CCGGCGGGTCATGGGAATAAC 

COX-III 
Forward TCATCGTCTCGGAAGTATTTTT 

Reverse ATTAGTAGGGCTTGATTTATGTGG 

COX-IV 
Forward AGAAGGCGCTGAAGGAGAAGGA 

Reverse CCAGCATGCCGAGGGAGTGA 

CPT-1α 
Forward GCAGCTCGCACATTACAAGGACAT 

Reverse AGCCCCCGCCACAGGACACATAGT 

FAS 
Forward GGCTGCCTCCGTGGACCTTATC 

Reverse GTCTAGCCCTCCCGTACACTCACTCGT 

GLUT4 
Forward ACCGGCTGGGCTGATGTGTCT 

Reverse GCCGACTCGAAGATGCTGGTTGAATAG 

PEPCK 
Forward GGCAGCATGGGGTGTTTGTAGGA 

Reverse TTTGCCGAAGTTGTAGCCGAAGAAG 

PGC-1α 
Forward CCCAAAGGATGCGCTCTCGTT 

Reverse TGCGGTGTCTGTAGTGGCTTGATT 

PPAR-α 
Forward TGCGCAGCTCGTACAGGTCATCAA 

Reverse CCCCCATTTCGGTAGCAGGTAGTCTTA 

PPAR-γ 
Forward GGCGAGGGCGATCTTGACAGG 

Reverse GGGCTTCCGCAGGTTTTTGAGG 

UCP-1 
Forward CACGGGGACCTACAATGCTTACAG 

Reverse GGCCGTCGGTCCTTCCTT 

TFAM 
Forward AGGAGCTGAAGGCATGCGGTGAAG 

Reverse GTCCAGTGCGTGCGGGTGAAC 

 

 

2.14 Statistical analysis 

 

 Data were statistically analysed using GraphPad Prism 5.03 (GraphPad 

Software, Inc.,La Jolla, CA) and are presented as mean ± standard errors of mean 

(SEM). Statistical significance between groups was performed using one-way ANOVA 

followed by a Bonferroni post-hoc test for 3 or more groups comparison. In the 

analysis, a value of P < 0.05 was considered statistically significant.  
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3.1 CDCA effect in 3T3-L1 adipocytes 

 

3.1.1 Cell viability 

 

Bile acids have been described as amphipatic compounds which might interfere 

with cell membranes causing alterations in cell viability in isolated and cultured 

hepatocytes, as well as in a human breast carcinoma cell line (Im et al., 2001; Perez & 

Briz, 2009). Taking this into account, cell viability was evaluated in 3T3-L1 adipocytes 

incubated with CDCA to determine the potential cytotoxic effects of this molecule in this 

cell line. 

Firstly, cell viability was assessed based on the capacity of EtHD-1 to enter into 

cells that have lost membrane integrity. The results showed that CDCA caused no 

alterations on cell viability when compared to control, at both concentrations (Figure 

3.1).  
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Figure 3.1 - 3T3-L1 adipocytes viability after CDCA treatment. (A) 3T3-L1 adipocytes were 

cultured and treated with different concentrations of CDCA (10 µM and 50 µM) for 96h. The 

viability of the cells was assessed by incubating the cells with EtHD-1/ Hoechst 33342 

fluorescent markers according to Live-dead assay described in Methods (Chapter 2). Data are 

expressed in terms of percentage of viable cells (number of viable cells in the total number of 

counted cells per area selected) and represent the mean ± SEM of different experiments (n=3). 

No statistically significant differences were found (P<0.05). (B) Representative fluorescence 

images for each condition of CDCA treatment showing dead cells with EtHD-1 (red) and nuclear 

staining with Hoechst 33342 (blue) in 3T3-L1 adipocytes. Scale bar, 20 µm.  

 

The data is consistent with the results observed for cell viability determined by 

LDH release (Figure 3.2). Any of the CDCA concentrations tested induced significant 

LDH release.  

Both results indicate that CDCA does not induce necrotic cell death in 3T3-L1 

adipocytes incubated with 10 µM or 50 µM for 96h. 
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Figure 3.2 - 3T3-L1 adipocytes viability after CDCA treatment.  3T3-L1 adipocytes were 

cultured and treated with different concentrations of CDCA (10 µM and 50 µM) for 96h. The 

viability of the cells was determined by estimating the release of LDH into the media, according 

to the LDH assay kit described in Methods (Chapter 2). The cell viability was expressed as the 

percentage of LDH no released into the medium of total LDH when compared to control, 

considered as 100%. Data represent the mean ± SEM of different experiments (n=4). No 

statistically significant differences were found (P<0.05). 

 

In addition and in the line with the observations that CDCA did not induce 

necrosis, it was evaluated if CDCA could interfere with any intracellular mechanism 

implicated in programmed cell death – apoptosis. Caspase 3 has been referred as an 

effector caspase of the cell’s entry point into the apoptotic pathway which can be 

activated by two distinct pathways – the extrinsic and the intrinsic pathway (Boatright & 

Salvesen, 2003). The cleaved form of this protein is considered as a hallmark of the 

activated apoptotic pathway (Porter & Jänicke, 1999). To further dissect the possible 

role of CDCA in apoptosis, the content of cleaved-caspase 3 in 3T3-L1 adipocytes was 

evaluated. 

As shown in Figure 3.3, no differences were detected in cleaved-caspase 3 

content in cells treated with 10 µM and 50 µM CDCA when compared to control.  Thus, 

the data clearly indicates that there is no evidence of significant necrosis or apoptosis 

in 3T3-L1 adipocytes treated with the tested CDCA concentrations. 
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Figure 3.3 – Cleaved-caspase 3 content in 3T3-L1 adipocytes after CDCA treatment. (A) 

3T3-L1 adipocytes were cultured and treated with different concentrations of CDCA (10 µM and 

50 µM) for 96h. Cleaved-caspase 3 content were assessed in cell lysates by Western blotting 

analysis and normalized with a loading control. Data are expressed as arbitrary units and 

represent the mean ± SEM of different experiments (n=5). No statistically significant differences 

were found (P<0.05). (B) Image of Western blotting is representative of protein content in each 

condition. 

 

3.1.2 Triglycerides accumulation 

 

Bile acids have been reported to improve several parameters of TG metabolism 

in mouse models of hypertriglyceridemia (Watanabe et al., 2004). Considering the 

potential therapeutic applications of bile acids in the modulation of metabolic disorders, 

it is important to dissect the role of CDCA on the metabolism of these cells. Since 

adipocytes store energy in the form of TGs, TGs content was determined in 3T3-L1 

adipocytes. 

CDCA decreased the lipid accumulation in 3T3-L1 adipocytes after 96h of 

exposure (Figure 3.4). This effect was statistically significant for both concentrations 

used (10 µM and 50 µM CDCA) when compared to control. However, the effect was 
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more pronounced in cells treated with 50 µM CDCA. This data suggested that CDCA 

reduce lipid accumulation in a CDCA dose-dependent manner.  
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Figure 3.4 - Triglycerides accumulation in 3T3-L1 adipocytes after CDCA treatment. 3T3-

L1 adipocytes were cultured and treated with different concentrations of CDCA (10 µM and 50 

µM) for 96h. TG accumulation was assessed using oil red O staining. Data are expressed as 

percentage of control, considered as 100%, and represent the mean ± SEM of different 

experiments (n=5). * indicates statistically significant different versus control (P<0.05); & 

indicates statistically significant different versus 10 µM CDCA (P<0.05). 

 

3.1.3 Mitochondrial function 

 

3.1.3.1 Mitochondrial membrane potential 

  

The mitochondria in adipose tissue are involved in the regulation of lipid 

metabolism through the regulation of lipogenesis and lipolysis. Moreover, abnormal 

mitochondrial function has been linked to lipid accumulation in adipocytes. Therefore, 

the decrease in lipid content of adipocytes suggests a high oxidative capacity due to 

changes in the mitochondrial function (Medina-Gómez, 2012). 

Mitochondria have an electrochemical potential across their inner membrane 

and alterations in this potential reflect the state of mitochondrial function. In this work, it 

was determined the effect of CDCA in mitochondrial membrane potential in 3T3-L1 

adipocytes. The results showed that 10 µM CDCA did not induced any alterations in 

mitochondrial membrane potential in CDCA treated cells when compared to control 

(Figure 3.5). However, 50 µM CDCA induced a statistically significant increase in 

mitochondrial membrane potential when compared to 10 µM CDCA-treated cells.   
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Figure 3.5 - Mitochondrial membrane potential (Δψm) in 3T3-L1 adipocytes after CDCA 

treatment. 3T3-L1 adipocytes were cultured and treated with different concentrations of CDCA 

(10 µM and 50 µM) for 96h. The mitochondrial membrane potential, expressed as relative 

fluorescence units (RFUs), was assessed fluorometrically using the TMRM probe as described 

in Chapter 2. Data represent the mean ± SEM of different experiments (n=5). * indicates 

statistically significant different versus 10 µM CDCA (P<0.05). 

 

3.1.3.2 Generation of reactive oxygen species  

 

Mitochondria are considered as an important source of ROS. An enhancement 

of ROS production has been linked to alterations in cell signaling, increased mutations 

in mtDNA and an abnormal mitochondrial function (Bonnard et al., 2008).  

In order to determine if CDCA treatment alters ROS generation, ROS levels 

were assessed in 3T3-L1 adipocytes using the fluorescent probe H2DCF-DA.  

The results showed no differences for the basal generation of ROS in 3T3-L1 

adipocytes exposed to 10 µM and 50 µM CDCA when compared to control (Figure 

3.6). Also, in the presence of antymicin, an inhibitor of complex III of mitochondria, no 

alterations were reported in the mitochondrial capacity to generate ROS. Thus, there is 

no evidence that CDCA affected the generation of ROS. 
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Figure 3.6 – Reactive oxygen species (ROS) generation in 3T3-L1 adipocytes after CDCA 

treatment. 3T3-L1 adipocytes were cultured and treated with different concentrations of CDCA 

(10 µM and 50 µM) for 96h. The ROS generation, expressed as relative fluorescence units 

(RFUs), was assessed fluorometrically using the H2DCF-DA probe. After the basal fluorescent 

measurement (A), antimycin was added to block complex III of electron transport chain to 

induce maximal ROS generation (B). Data represent the mean ± SEM of different experiments 

(n=7). No statistically significant differences were found (P<0.05).    

 

3.1.3.3 Cytochrome c oxidase activity 

 

In order to better characterize the mitochondrial function of 3T3-L1 adipocytes 

submitted to CDCA treatments, the enzymatic activity of cytochrome c oxidase (COX) 

was also evaluated. This complex is part of the electron respiratory chain and its 

activity is an indicator of mitochondrial oxidative phosphorylation competence and 

undoubtedly of mitochondrial function (Li et al., 2006). 

The results showed no significant differences in mitochondrial activity in 3T3-L1 

adipocytes when compared to control (Figure 3.7).  

This data was in agreement with the previous results shown in mitochondrial 

membrane potential (for 10 µM CDCA condition) and ROS production (for all conditions 

tested). Furthermore, the increase in mitochondrial membrane potential in cells treated 

with 50 µM CDCA was not associated with increased COX activity. 
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Figure 3.7 - Cytochrome c oxidase (COX) activity in 3T3-L1 adipocytes after CDCA 

treatment. 3T3-L1 adipocytes were cultured and treated with different concentrations of CDCA 

(10 µM and 50 µM) for 96h. The COX activity was measured using a Clark-type oxygen 

electrode. Data are expressed in nAtoms O/ min/ mg protein and represent the mean ± SEM of 

different experiments (n=5). No statistically significant differences were found (P<0.05).   

 

3.1.3.4 Mitochondrial proteins content 

 

Since CDCA has described to induce an increase in markers of mitochondrial 

biogenesis in BAT in mice (Teodoro et al., 2014), it was hypothesized whether CDCA 

effects in 3T3-L1 adipocytes could be explained by an increase in mitochondrial protein 

content. 

Thus, the content in cytochrome c oxidase subunit I (COX-I), a mitochondrial-

encoded protein and in cytochrome c oxidase subunit IV (COX-IV), a nuclear-encoded 

protein were evaluated in 3T3-L1 adipocytes. 

This data showed no statistical differences in the content of COX-I and COX-IV 

(Figure 3.8), which was correlated with the previous results obtained for COX activity. 
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 Figure 3.8 - Cytochrome c oxidase subunit I (COX-I) and cytochrome c oxidase subunit 

IV (COX-IV) content in 3T3-L1 adipocytes after CDCA treatment. 3T3-L1 adipocytes were 

cultured and treated with different concentrations of CDCA (10 µM and 50 µM) for 96h. Content 

in mitochondrial-encoded protein COX-I (A) and nuclear-encoded protein COX-IV (B) were 

assessed in cell lysates by Western blotting and normalized with a loading control. Data are 

expressed as arbitrary units and represent the mean ± SEM of different experiments (n=4). No 

statistically significant differences were found (P<0.05). (C) Images of Western blotting are 

representative bands of each protein content in each condition. 

 

3.1.3.5 UCP-1 content 

 

Although CDCA decreased TG content in 3T3-L1 adipocytes, it did not increase 

mitochondrial oxidative capacity, as shown by no alterations in neither COX activity nor 

protein content. 

According to the literature, the transdifferentiation of white adipocytes into brite 

cells leads to the appearance of UCP-1-expressing adipocytes in WAT depots. These 

cells are known to function as competent brown adipocytes, dissipating energy mainly 

through the oxidation of stored lipids (Giralt & Villarroya, 2013). Moreover, BAs have 

been described to prevent and reverse fat accumulation by increasing energy 

expenditure in BAT (Watanabe et al., 2006). 
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Taking this into account, it was hypothesized that CDCA decreased lipid 

accumulation by UCP-1-mediated mitochondrial uncoupling in 3T3-L1 adipocytes. 

Our data showed an increase in UCP-1 content (Figure 3.9) after exposure of 

3T3-L1 adipocytes to 10 µM and 50 µM of CDCA for 96h. Interestingly, the increase in 

UCP-1 content was only statistically significant when cells were treated with 10 µM 

CDCA. An increase in UCP-1 content and, consequently, an increase in energy 

expenditure were in agreement with the reduction of lipid accumulation in adipocytes 

treated with 10 µM CDCA. Indeed, the presence of UCP-1 provoked an increase for 

energy demand that was provided by higher fat oxidation of metabolites as TG stored 

in the cells. However, the decrease in lipid accumulation for 50 µM CDCA was not 

consistent with UCP-1 content. This data possibly indicates that the CDCA effect was 

not only induced by UCP-1 dependent thermogenesis but also depends on another 

mechanism not yet determined. 
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Figure 3.9 - Uncoupling protein-1 (UCP-1) content in 3T3-L1 adipocytes after CDCA 

treatment. (A) 3T3-L1 adipocytes were cultured and treated with different concentrations of 

CDCA (10 µM and 50 µM) for 96h. UCP-1 content was assessed in cell lysates by Western 

blotting normalized with a loading control. Data are expressed as arbitrary units and represent 

the mean ± SEM of different experiments (n=4). * indicates statistically significant different 

versus control (P<0.05); (B) Image of Western blotting is representative of protein content in 

each condition. 
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3.1.4 mRNA relative expression 

 

In this study, the relative expression of key genes potentially implicated in the 

effects of CDCA was also analysed. This analysis was performed using semi-

quantitative real time – PCR in 3T3-L1 adipocytes.  

The analysis of genes expression related to adipocyte metabolism revealed that 

the expression of genes involved in fatty acid oxidation (PPAR-α) as well as in the 

pathway of mitochondrial fatty acid oxidation (CPT1α) were not changed after 

treatment with CDCA (Figure 3.10). In addition, CDCA had no effect on the expression 

of genes involved in lipogenesis (fatty acid synthase (FAS) and phosphoenolpyruvate 

carboxykinase (PEPCK)) and on the expression of glucose transporter GLUT4.  
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Figure 3.10 – Relative gene expression analysis in 3T3-L1 adipocytes after CDCA 

treatment. 3T3-L1 adipocytes were cultured and treated with different concentrations of CDCA 

(10 µM and 50 µM) for 96h. The semi-quantitative Real Time-PCR analysis was performed as 

described in methods in chapter 2. The relative gene expression of COX III, COX IV, CPT1α, 

TFAM, PGC-1α, PPAR-γ, PPAR-α, UCP-1, GLUT4, FAS and PEPCK was determined based on 

standard curves  and normalised using 18S RNA as a housekeeping gene (0 µM CDCA = 1, 

dashed line). Data represent the mean ± SEM of different experiments (n=4). * indicates 

statistically significant different versus control (P<0.05).   

 

Furthermore, CDCA did not lead to alterations in the transcription of the master 

regulator of mitochondrial biogenesis PGC-1α, neither in its target gene TFAM. These 

observations were in agreement with the no significant differences in the expression of 
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the gene PPAR-γ gene which is implicated in the induction of UCP-1 and mitochondrial 

biogenesis (Pisani et al., 2011).  

Although CDCA did not induce any alterations in the majority of the genes 

analysed, it was found a statistically significant increase in COX III expression in cells 

treated with 10 µM CDCA when compared to control. Nevertheless, no alterations were 

observed for the expression of nuclear encoded gene COX-IV. 

Consistent with the low expression for PGC-1α and PPAR-γ, the effect of CDCA 

did not induce an increase in UCP-1 gene expression in 3T3-L1 adipocytes.  

The gene expression studies confirm that CDCA treatment during 96h did not 

induce any significant effects at the expression levels of the majority of the genes 

analysed. Despite the absence of alterations at the thermogenic level, the changes in 

COX III expression reinforces the hypothesis that CDCA might play a role at the 

mitochondria transcriptional level.  

 

3.2 CDCA and Wnt/ β-catenin signaling pathway 

 

3.2.1 Triglycerides accumulation 

 

In order to study how the activation or the inhibition of Wnt/ β-catenin signaling 

pathway might modulate CDCA effects, TG accumulation was analysed in 3T3-L1 

adipocytes exposed simultaneously to CDCA and CHIR99021 or XAV939.  

The simultaneously treatment with CDCA and XAV939, a Wnt/ β-catenin 

inhibitor, caused a significant increase in TG accumulation when compared to the cells 

treated only with 10 µM CDCA (Figure 3.11). These alterations indicated that CDCA 

effects were blocked by the presence of XAV939.  

Interestingly, CHIR99021 (a Wnt/ β-catenin activator) effects were opposite to 

XAV939 effects. The results showed that the treatment of the cells only with 

CHIR99021 significantly decreased the triglycerides accumulation when compared to 

control.  Treatment of 3T3-L1 adipocytes simultaneously with CHIR99021 and CDCA 

maintained the reduction on lipid accumulation showed only in the presence of the 

activator.  

These findings showed that CDCA effects declined when the Wnt/β-catenin 

signaling pathway is inhibited. Opposingly, CDCA effects were maintained in the 

presence of the activator of the pathway. Together, we can conclude that CDCA effects 

are dependent of the Wnt/β-catenin signaling pathway. 
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Figure 3.11 - Triglycerides accumulation in 3T3-L1 adipocytes after CDCA treatment. 3T3-

L1 adipocytes were cultured and treated with 3 µM CHIR99021, 1 µM XAV939, 10 µM CDCA 

and simultaneously with 10 µM CDCA and 3 µM CHIR99021 or 1 µM XAV939 for 96h. The 

triglycerides accumulation was assessed using oil red O staining. Data are expressed as 

percentage of control, considered as 100%, and represent the mean ± SEM of different 

experiments (n=7). * indicates statistically significant different versus control (P<0.05); § 

indicates statistically significant different versus 3 µM CHIR99021 (P<0.05); & indicates 

statistically significant different versus 10 µM CDCA (P<0.05); # indicates statistically significant 

different versus 10 µM CDCA + 3 µM CHIR99021 (P<0.05). 

 

3.2.2 Mitochondrial function 

 

As CDCA effects has been found to be modulate through the Wnt/β-catenin 

signaling pathway in 3T3-L1 adipocytes, we next sought to determine if mitochondrial 

protein content was altered when XAV939 blocked CDCA effects. XAV939 did not 

induce any statistical differences in the content of COX-I and COX-IV (Figure 3.12).  
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Figure 3.12 - Cytochrome c oxidase subunit I (COX-I) and cytochrome c oxidase subunit 

IV (COX-IV) content in 3T3-L1 adipocytes after CDCA and XAV939 treatment. 3T3-L1 

adipocytes were cultured and treated with 10 µM CDCA or/and 1 µM XAV939 for 96h. The 

protein levels of mitochondrial-encoded protein COX-I (A) and nuclear-encoded protein COX-IV 

(B) were assessed in cell lysates by Western blotting and the protein content is normalized to a 

loading control. Data are expressed as arbitrary units and represent the mean ± SEM of 

different experiments (n=4). No statistically significant differences were found (P<0.05). (C) 

Images of Western blotting are representative bands of protein content in each condition. 

 

3.2.2.1 UCP-1 content 

 

CDCA showed to induce a decrease in TG accumulation which is blocked in the 

presence of XAV939. Since CDCA effects seemed to be justified in part by an increase 

in UCP-1 content, it is important to understand if XAV939 blocked the decrease in lipid 

accumulation through inducing alterations at the UCP-1 level. 

Therefore, UCP-1 content in 3T3-L1 adipocytes exposed to both 10 µM CDCA 

and 1 µM XAV939 treatment was evaluated. Despite no statistically differences were 
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detected in the UCP-1 content, a slight decrease in the UCP-1 content were detected 

in 3T3-L1 adipocytes submitted to CDCA and XAV939 treatment when compared to 

adipocytes treated only in the presence of CDCA (Figure 3.13). This slight decrease 

might suggest that XAV939 blocks CDCA effects by a decrease in UCP-1 content. 

However, the effects at UCP-1 level not be sufficient to increase lipid accumulation as 

shown in Figure 3.11.  
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Figure 3.13 - Uncoupling protein-1 (UCP-1) content in 3T3-L1 adipocytes after CDCA and 

XAV939 treatment. (A) 3T3-L1 adipocytes were cultured and treated with 10 µM CDCA and/ or 

1 µM XAV939 for 96h. The protein levels of UCP-1 were assessed in cell lysates by Western 

blotting and normalized with a loading control. Data are expressed as percentage of CDCA 

treated cells, considered as 100%, and represent the mean ± SEM of different experiments 

(n=4). No statistically significant differences were found (P<0.05); (B) Image of Western blotting 

is representative of protein content in each condition. 
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Obesity is rapidly becoming one of the major health problems affecting the 

world’s population. Due to increased positive energy balance, this disorder is 

characterized by an excessive accumulation of fat in adipocytes. In these conditions, 

fat accumulation and the generation of ROS are considered as the initial events that 

trigger the dyrsregulation of a large number of endocrine and inflammatory pathways 

that have a negative impact on insulin signaling, and ultimately, cause insulin 

resistance, impairment of triglyceride storage and an increase in lipolysis in WAT 

(Eckel et al., 2005; Guilherme et al., 2008; Médina-Gomez, 2012). Concomitantly, the 

increase of fatty acids in circulation can affect insulin-stimulated glucose metabolism in 

skeletal muscle and also impairs other actions of insulin in other organs, including liver, 

heart and the vasculature (Kim et al., 2008). Insulin resistance is a key factor in the 

progression of type 2 diabetes mellitus, a metabolic disorder characterized by 

hyperglycemia and insufficiency of secretion or receptor insensitivity to endogenous 

insulin. The complications of diabetes include cardiovascular diseases and other 

complications that affect kidney and peripheral nerves (Qatanani & Lazar, 2007). 

However, the mechanisms underlying the development of these pathologies are yet to 

be fully understood. 

Collectively, there is strong evidence to support the idea that excessive fat 

accumulation is a key factor underlying adipose tissue dysfunction. Considering that a 

loss of 5-10% of the WAT mass is sufficient to improve dyslipidemia, hypertension and 

insulin resistance, the reduction of accumulated fat levels constitutes an interesting 

target for the development of new therapies (Furukawa et al., 2004; Jones et al., 2007). 

Given that, a potential therapeutic approach to prevent and reverse these initial events 

in the progression of obesity is based on the targeting of WAT, and in particular, 

mitochondria of adipocytes. 

In this context, CDCA emerge as a potential pharmacological compound to the 

management of obesity and metabolic syndrome by inducing weight loss, improve 

glucose tolerance and insulin sensitivity in animal models (Watanabe et al., 2006). 

However, it is important to dissect whether the role of CDCA in preventing and 

limitating fat accumulation (Teodoro et al., 2014) is a direct or an indirect effect of 

CDCA in WAT. 

This study demonstrates for the first time that the natural bile acid CDCA 

induced the appearance of UCP-1 expressing adipocytes in cultures of 3T3-L1 

adipocytes. The induction of the transdifferentiation of these cells leads to a decrease 

on lipid accumulation, which is correlated with previous results that demonstrate BAs 

beneficial effects in the improvement of the metabolism in vivo (Watanabe et al., 2004, 
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2006, 2012). This suggests that CDCA may improve metabolism by a direct effect on 

the white adipose tissue. We furthermore show that CDCA effects were at least, 

mediated through the Wnt/ β-catenin signaling pathway. In fact, the decrease in TG 

accumulation induced by CDCA was not altered by CHIR99021, an activator of the 

pathway but it was blocked by XAV939, an inhibitor of the pathway. 

Although BAs are essential for solubilization and transport of dietary lipids, 

these molecules exert multiple biological functions as signaling agents by binding to 

membrane and nuclear receptors, endowing them with an endocrine function (Sharma 

et al., 2011). In this study, we showed that CDCA induced a decrease on lipid 

accumulation in 3T3-L1 adipocytes after 96h of treatment. Although the exposure to 

excessive BAs is reported to be cytotoxic, in our study, CDCA did not alter cell viability 

of 3T3-L1 adipocytes. The concentrations used in this study were lower that the 

cytotoxic concentrations reported in several experiments and other cell lines (Im et al., 

2001; Rolo et al. 2003). In these studies, BAs are showed to inhibit cell proliferation in 

cultured HepG2 and human cervical carcinoma cells while other studies showed that 

BAs can induce necrosis, and at a lower concentration, can induce apoptosis through 

intrinsic and extrinsic pathways (Im et al., 2001; Rolo et al. 2003) Thus, our results are 

in agreement with reported experiments which showed that CDCA did not induce any 

effects in cell viability (Im et al., 2001).  

The observed CDCA effect are in accordance with published data showing that 

administration of bile acids such as CA prevented and reversed fat accumulation in 

high-fat fed animals through a decrease in WAT mass (Watanabe et al., 2006, 2011). 

CA has been shown to induce a thermogenic gene response that involves an increase 

in fat oxidation capacity resulting in bile acid-induced energy expenditure (Watanabe et 

al., 2006). Similarly, CDCA has been also described to induce UCP-1 mediated 

thermogenesis whereby a stimulation of energy expenditure caused a reduction in 

adiposity (Teodoro et al., 2014). It is known that TG accumulation depends on the net 

difference between the synthesis and breakdown of TG in adipocytes. Mitochondria 

play a pivotal role in the control of fatty acid β-oxidation (Medina-Gómez, 2012). 

Several studies have reported that increased energy expenditure is associated with an 

induction of UCP-1 positive-like cells in WAT (Watanabe et al., 2006, 2012), being the 

stimulation of UCP-1 mediated thermogenesis an effective strategy to energy 

expenditure and for the stabilization of a lean phenotype (Barbatelli et al., 2010; 

Teodoro et al., 2014). The recruitment of this type of cells also known as brite or beige 

cells causes an increase in UCP-1 content and mitochondrial biogenesis, promoting 
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high mitochondrial activity, including fatty acid oxidation and electron transport chain 

activity (Smorlesi et al., 2012). 

Importantly, our study demonstrated CDCA-induced an increase in UCP-1 

content in 3T3-L1 adipocytes. Previous work has shown that UCP-1 may be ectopically 

induced in white adipocytes (Barbatelli et al., 2010; Böstrom et al., 2012; Petrovic et al., 

2010), and this expression reduced lipid accumulation in 3T3-L1 adipocytes (Senocak 

et al., 2008; Si et al., 2007). Thus, the higher UCP-1 content induced by CDCA is 

related with reduced triglycerides accumulation in white adipocytes that contributes to 

energy expenditure both in vitro and in vivo (Kopecky et al., 1995; Orci et al., 2004; 

Tiraby et al., 2003). These results are consistent with the energy dissipative function of 

UCP-1 that is known to uncouple oxidative phosphorylation, promoting the dissipation 

of cellular energy as heat (Rousset et al., 2004). 

The inhibition of the Wnt/ β-catenin signaling pathway blocked the CDCA-

decreased TG accumulation. In line with these findings, the inhibition of the pathway by 

XAV939 also induced a slight decrease in the UCP-1 content. In fact, the reduction in 

UCP-1 and its dissipatory energy function are in agreement with the observed increase 

in TG accumulation.  

The Wnt/ β-signaling pathway has been established as an important regulator of 

adipogenesis. PPAR-γ and C/EBPα are the key adipogenic factors of this process, 

thereby inducing the expression of the downstream target genes of the adipogenic 

process (Christodoulides et al., 2009). Wnt signaling pathway is regulated by 

endogenous Wnt inhibitors. The activation of SFRP5, an inhibitor of Wnt pathway, 

increased susceptibility to obesity in high fat fed mice (Mori et al., 2012). As such, 

recent studies have assigned particular importance to the activated canonical Wnt 

pathway, because of its role in inhibiting adipogenesis. The exposure to kirenol showed 

to downregulate the key adipogenic factors, preventing lipid accumulation by 

modulating components of Wnt/ β-catenin pathway in 3T3-L1 adipocytes (Kim et al., 

2014). Wnt10b also prevent adipogenesis, thereby inhibiting WAT development in vivo 

(Wright et al., 2007). The activation of the pathway induced direct effects on visceral 

adiposity, and improves glucose and lipid metabolism in the body overall (Choi et al., 

2013). The downregulation of expression of genes involved in adipogenesis causes a 

reduction in lipid accumulation and visceral adiposity, which exerts beneficial effects 

against obesity (Shen et al., 2014).  Therefore, CDCA and its capacity in regulating 

obesity and metabolic disorders may be dependent on the modulation by this pathway. 

The impact of the Wnt/ β-catenin signaling pathway on UCP-1 expression is 

intriguing. In brown adipocytes, Wnt/ β-catenin activation by CHIR99021 has been 
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shown to decrease PGC-1-mediated UCP-1 expression while limiting lipid 

accumulation (Kang et al., 2005). In contrast, Wnt inhibitory factors of the frizzled-

related family proteins have been shown stimulate to mitochondrial biogenesis and 

function in both adipose tissue and cultured adipocytes (Mori et al., 2012). 

It should be noted that when Wnt/ β-catenin signaling is activated by inhibition 

of GSK3β, free β-catenin molecules are stabilized in the cytosol, that can modulate the 

relative levels of the cell type specific transcription factors, supressing them (Prestwich 

& MacDougald, 2007). In fact, the activation of the canonical Wnt signaling does not 

appear to influence C/EBPβ or C/EBPδ but appears to repress the expression of the 

adipogenic transcription factors PPAR-γ and C/EBPα (Kang et al., 2005).  Since 

C/EBPα induces adipogenesis through the action of PPAR-γ, when β-catenin interacts 

negatively with this transcription factor, this results in the repression of adipogenesis 

(Prestwich & MacDougald, 2007). Although β-catenin may interfere with transcriptional 

activation of UCP-1 as shown in brown adipocytes (Kang et al., 2005), one explanation 

for these results can be based on a complete inhibition of PPAR-γ expression. Thus, 

loss of PPAR-γ function impairs the TG storage capacity of the adipocytes, thereby 

inducing a decrease in TG accumulation. This hypothesis provides an explanation not 

only for the CDCA and CHIR99021 effects but also for the CHIR99021 effects per se in 

the absence of CDCA.  

Accordingly, XAV939 mediates tankyrase inhibition, leading to the stabilization 

of axin and consequently, to the formation of the β-catenin destruction complex 

composed by GSK3β, axin and APC (Huang et al., 2009). In this case, the degradation 

of β-catenin prevents its interaction with the adipogenic transcription factor PPAR-γ, 

preventing the decrease in TG accumulation induced by CDCA. Given that, we can 

demonstrate that canonical Wnt signaling might play a role in the control of TG 

accumulation by a PPAR-γ mechanism. As such, induction of UCP-1 by CDCA may 

involve other mechanisms that have not been clarified yet. 

CDCA might regulate body fat mass by inducing a metabolic coordination 

between UCP-1 and other enzymes of oxidative metabolism (Watanabe et al., 2012). 

In fact, mice fed on a high fat diet containing CA display increase oxygen consumption, 

which was correlated with an increase in the number of lamellar cristae (Watanabe et 

al., 2006). However, our data did not support an up-regulation of mitochondrial 

oxidative phosphorylation activity as previously others studies demonstrated 

(Watanabe et al., 2006, 2012). In this study, CDCA did not alter mitochondrial activity 

neither mitochondrial protein content. Although consistent, our data are not in 

accordance with above observations using CA and CDCA in mice (Watanabe et al., 
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2006, 2012). Considering the UCP-1 function in dissipating the flux of protons from the 

intermembrane space into the mitochondrial matrix, it would be expected that UCP-1 

should decrease the mitochondrial membrane potential as well as the ROS generation 

(Baumruk et al., 1999; Fink et al., 2005; Rousset et al., 2004; Tejerina et al., 2009). 

Under hyperglycemic conditions, ROS generation has shown to increase in parallel 

with the accumulation of lipids during the differentiation of 3T3-L1 pre-adipocytes into 

adipocytes (Furukawa et al., 2004). In these conditions, alterations in mitochondrial 

membrane potential and ROS accumulation leads to deleterious effects at 

mitochondrial level, which has been linked to the disruption of the intracellular dynamic 

of the adipocytes (Curtis et al., 2014). In this study, the lowest concentration of CDCA 

induced no alterations in mitochondrial membrane potential while the highest 

concentration of CDCA increased the mitochondrial membrane potential. On the other 

hand, CDCA was unable to reduce ROS generation in 3T3-L1 adipocytes. Indeed, 

these observations are correlated with the absence of alterations observed in the 

others mitochondrial parameters analysed. These differences can be due to the fact 

that the exposure of the 3T3-L1 adipocytes to a high glucose media did not induce 

alterations in mitochondrial membrane potential neither ROS generation that allow the 

detection of changes in the parameters when UCP-1 is induced. Moreover, it should be 

considered that UCPs form a small family of proteins that comprises UCP-1 but also 

UCP-2 and UCP-3. Despite UCP-1 is a well-characterized protein responsible for 

uncoupling respiration, UCP-2 and UCP-3 appear to be more involved in restricting the 

production of ROS in cells (Rousset et al., 2004). In this regard, the induction of UCP-1 

on adipocytes might not induce alterations in ROS generation maybe due to the fact 

that the physiological function of the protein depends on the tissue where it is 

expressed. In fact, UCP-1 can reduce mitochondrial ROS emission when it is 

expressed in muscle. In contrast, UCP-1 cannot control ROS formation in BAT 

(Adjeitey et al., 2013). Considering the equal metabolic signatures between BAT and 

UCP-1 expressing adipocytes, it is suggested that when expressed in UCP-1 

expressing adipocytes, UCP-1 also not regulate mitochondrial ROS emission.  

BAs seem to regulate energy expenditure by inducing the expression of genes 

involved in BAT thermogenesis (Watanabe et al., 2006). During this process, UCP-1-

positive like cells, once stimulated, can enrich not only the expression of UCP-1 and 

other thermogenic genes but also the expression of mitochondrial genes (Wu et al., 

2012).  In line with recent findings, the induction of thermogenic activity involves the 

combined action of several regulators (Seale et al., 2009). Besides the role of PGC-1α 

in the regulation of adaptative thermogenesis, this transcriptional co-activator is known 
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to be one of the main regulators of cellular energy metabolism, mitochondrial 

biogenesis and fatty acid β-oxidation (Puigserver et al., 2003). The administration of 

bile acids such as CA or CDCA was reported to induce an increase in the expression of 

PGC-1α and UCP-1 genes in WAT (Teodoro et al. 2014; Watanabe et al., 2011). In 

addition, CDCA treated mice exhibited increased expression of mitochondrial 

biogenesis markers (Teodoro et al., 2014). However, in our study, CDCA did not 

induce alterations in the UCP-1 and PGC-1α expression levels while induced an 

increase in COX-III expression. This pattern of expression seems to be not in 

accordance with the previous reported findings. However, the discrepancies between 

the content and the expression of COX-III are possibly justified by a post-transcriptional 

event that act, maybe at the protein synthesis level. On other hand, the UCP-1 gene 

expression levels and the protein content of this protein can be justified by the cellular 

machinery which could promote an increase in protein stability and a downregulation in 

gene expression as a metabolic adaptation to the energy state (Senocak et al., 2008).  

In order to determine the molecular basis for the reduced TG accumulation, we 

investigated the profile changes in the gene expression of enzymes implicated in major 

metabolic processes in adipocytes. The CDCA treatment did not induce alterations in 

the transcript levels of lipogenic enzymes, including FAS and PEPCK. In addition, our 

data indicated a slight increase in the expression of PPAR-α. PPAR-α plays an 

important role in the regulation of genes involved in lipid catabolism and thermogenic 

gene expression through the induction of UCP-1 (Hondares et al., 2011). Therefore, 

CDCA may interfere with cellular energy status, by the mechanistic link between UCP-

1 and AMPK. Previous studies reported that the UCP-1 expressing adipocytes undergo 

metabolic adaptations to compensate the inefficiency of oxidative phosphorylation to 

generate ATP (Senocak et al., 2008; Si et al., 2009). In fact, it was showed that 

mitochondrial uncoupling in adipocytes leads to a decrease in intracellular ATP levels 

in vitro (Klaus et al., 2012; Si et al., 2009). In this respect, the lower ATP yield can 

stimulate the AMPK pathway which has been shown to stimulate glucose transport and 

increase glycolysis (Kemp et al., 2003). Thus, AMPK activation induces glycolytic ATP 

generation while causes a down-regulation of energy consuming processes in 

adipocytes. In accordance, the reduction in TG accumulation would be caused by a 

reduction of lipid synthesis rather than an up-regulation of fatty acid oxidation (Si et al., 

2009). Findings suggest that the maintenance of constant ATP levels depends on 

anaerobic processes which increase ATP generation by lactate production (Si et al., 

2009). In fact, prior studies reported that UCP-1 expression induces an increase in 

glucose oxidation (Si et al., 2007; Tejerina et al., 2009). Although 3T3-L1 adipocytes 
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were cultured with an abundant supply of glucose in the media, our data showed no 

alterations in GLUT4 expression (Figure 3.10) (Si et al., 2007). Despite the apparent 

contradiction about lipogenesis and glucose oxidation routes between our study and 

prior studies, it should be noted that the metabolic cellular adjustments depend on the 

time by which adipocytes are exposed to the uncoupling agent (Senocak et al., 2008). 

In fact, various cell types, when treated with uncoupling agents, respond by primarily 

up-regulating glucose consumption and anaerobic ATP synthesis and, only after, by 

down-regulating oxidative phosphorylation (Cabrero et al., 1999; Rossmeisl et al., 

2000).  In this regard, it is suggested that the primary adaptation of 3T3-L1 adipocytes 

in the response to mitochondrial uncoupling is an increase in glucose oxidation. Thus, 

this hypothesis warrants further investigation to clarify the mechanisms for reduced 

lipid accumulation. These additional studies should involve the quantification of 

metabolic fluxes using isotopic tracers. This analysis would be also important to 

confirm the results obtained for the gene expression analysis. 

BAs are signaling molecules which act as ligands of TGR5 and members of the 

nuclear hormone receptor superfamily that comprises not only FXR but also the 

constitutive androstane receptor (CAR), the pregnane X receptor (PXR) and the 

vitamin D receptor (VDR) (Schaap et al., 2014). Although the biological relevance of all 

receptors, the two best characterized bile acid- activated receptors that are targeted for 

bile acid action are the TGR5 and the FXR. Therefore, the activation of bile acid-TGR5-

cAMP-D2 signaling pathway is one promising pathway supporting bile acids effect. 

TGR5 is a metabotropic receptor of bile acid that is known to be expressed in adipose 

tissue (Kawamata et al., 2003). As such, CDCA might induce the activation of the 

cAMP-dependent thyroid hormone-activating enzyme D2 (Tiwari A. & Maiti P., 2009). 

During this process, T4 derived from foetal bovine serum in media is converted into the 

active form of thyroid hormone (Watanabe et al., 2006). Since T3 is implicated in the 

induction of thermogenesis in mammals, this hormone may be able to induce 

thermogenesis in 3T3-L1 cells in a same manner. However, in our study, the lack of 

evidence of higher mitochondrial function remains contradictory. Therefore, to address 

such issues, it would be interesting to study the oxygen consumption on CDCA-treated 

cells. Moreover, CDCA might induce its effects through the induction of FXR. FXR 

regulates the expression of genes involved in lipoprotein clearance, reducing glucose, 

TG and cholesterol plasma levels (Claudel et al. 2005). Despite its lower content in 

adipose tissue, the activation of FXR leads to the induction of adipose tissue capacity 

storage by altering adipokines secretion and the expression of PPAR-ϒ, SREBP1c and 

FABP. Moreover, the activation of FXR in liver seems to induce the expression of 
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PPAR-α and its target genes, increasing fatty acid oxidation and decreasing the 

capacity to secrete or store TGs (Teodoro et al. 2011). Although the activation of FXR 

has a key role protecting against body weight gain and fat deposition (Cipriani et al. 

2010), these effects seem to be linked to its action in enteropatic tissues and not a 

direct effect in adipose tissue. 

 In summary, our results demonstrate that the natural bile acid CDCA induces a 

decrease in TG accumulation. This decreased is justified by a conversion of white 

adipocytes into UCP-1 positive cells. The increase in the mitochondrial protein UCP-1 

justifies the subsequent energy dissipation process that is crucial to the reduction of TG 

accumulation. However, we do not rule out the possibility of CDCA exert a minor role at 

mitochondria level. CDCA effects seem to be mediated by the Wnt/ β-catenin signaling 

pathway. This pathway has an important role in the control of TG accumulation in 3T3-

L1 adipocytes. The inhibition of the pathway induces a slight decrease in UCP-1 

content and, it might play a role in the control of TG accumulation by a PPAR-γ 

mechanism. Additionally, activation of PPAR-α by CDCA may be the pathway that 

explains UCP-1 induction. CDCA effects on 3T3-L1 adipocytes are summarized in the 

Figure 4.1. 
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Figure 4.1. Mechanisms of CDCA action in the 3T3-L1 adipocytes. CDCA induces an 

increase in UCP-1 content in white adipocytes, thereby inducing an increase in 

mitochondrial uncoupling and an increase in the energy dissipation. This process leads 

to an increase in fatty acid oxidation, and consequently to a decrease in TG 

accumulation in 3T3-L1 adipocytes. This effect is mediated by the Wnt/ β-catenin 

signaling pathway. While the activation of the pathway does not interfere with the 

decrease in TG accumulation induced by CDCA, an inhibition of the pathway blocks 

this reduction. The inhibition of the pathway seems to promote the activation of PPAR-

γ, the key adipogenic factor in the induction of adipogenesis. Therefore, an increase in 

lipid accumulation is at least justified by the induction of the adipogenic process. 
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In the present study, we evaluated the CDCA effects as well as the role of Wnt/ 

β-catenin signaling pathway in the modulation of these BA effects in 3T3-L1 

adipocytes. 

Importantly, using this cell line, we clearly show for the first time that CDCA 

induced UCP-1 positive cells in vitro. Moreover, CDCA induced a decrease in TG 

accumulation. This effect is maintained when canonical Wnt pathway is activated. 

However, the reduction in lipid accumulation induced in the presence of CDCA was 

blocked by the inhibition of the pathway. It was also shown that CDCA effects are 

partially elicited by an induction of UCP-1 which was reported to be partially reduced by 

the inhibition of the canonical Wnt pathway. This protein increases energy expenditure 

and its induction is able to protect adipocyte cells from the deleterious effects of excess 

of lipid accumulation in fat cells. Although CDCA was found to decrease TG 

accumulation through an increase in the induction of UCP-1 and fatty acid oxidation, 

other mechanisms should not be ruled out. Despite no alterations were detected in the 

mitochondrial functional parameters assessed, CDCA was able to induce an increase 

in the expression of mitochondrial-encoded protein subunits.  

This study demonstrates that CDCA induce changes in adipocytes that fully 

account to a decrease in lipid accumulation in vitro. Moreover, our results 

demonstrated that the beneficial effects of CDCA treatment were at least dependent of 

Wnt/ β-catenin signaling pathway. The reduction in lipid accumulation supports the 

decrease in WAT mass and the improvement of the metabolic profile, promoting weight 

loss and insulin sensitivity during conditions of high-fat intake in vivo. Altogether, this 

work demonstrates that CDCA induce alterations at the adipose tissue level that can 

influence the energy balance and prevent dietary-induced obesity.  

Thus, CDCA may contribute to the development of an effective strategy in the 

prevention and in the reversion of the deleterious effects of obesity and associated 

metabolic disorders. However, further studies are needed to better understand the 

molecular and cellular mechanisms involved in the actions of CDCA as well as in its 

modulation by Wnt/ β-catenin signaling pathway. 
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