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Resumo  

 A metanfetamina (MET) é uma droga de abuso, cujo consumo tem vindo a aumentar a 

nível mundial. Vários estudos mostraram que o consumo de MET induz danos irreversíveis a 

nível cerebral, reflectindo-se em défices cognitivos. Apesar dos mecanismos serem ainda pouco 

conhecidos, tem sido sugerido que a neurogénese do giro dentado (GD) poderá contribuir para 

estes défices, uma vez que tem um papel fundamental na cognição. No geral, a MET tem um 

impacto negativo na neurogénese do GD, nomeadamente na proliferação celular e na 

diferenciação em neurónios. Por outro lado, tem sido demonstrado que o neuropeptídeo Y 

(NPY) exibe propriedades protectoras, pró-proliferativas e pró-neurogénicas. Para melhor 

perceber os mecanismos implícitos nos défices cognitivos induzidos pela MET, o nosso objectivo 

consistiu em estudar o seu efeito na neurogénese do GD, focando principalmente na capacidade 

de auto-renovação das células estaminais, na diferenciação em neurónios e nas propriedades 

funcionais dos neurónios imaturos e maturos. Mais ainda, o papel protector do NPY foi avaliado 

na tentativa de identificarmos um potencial alvo terapêutico contra os efeitos nefastos 

provocados pela MET na neurogénese do GD. 

 Neste trabalho, usámos neuroesferas do GD para estudar o impacto da MET nas 

propriedades de auto-renovação das células estaminais. Verificámos que a MET (1 nM) retarda a 

progressão do ciclo celular da fase G0/G1 para a fase S, aumentando o número de células na 

fase G0, acompanhado pela diminuição da expressão da ciclina E. Em paralelo, a MET diminuiu 

os níveis de fosforilação do receptor do factor de crescimento da epiderme (FGFR) e da proteína 

cinase regulada por sinal extracelular (ERK). Além disso, a MET (10 nM) diminuiu a capacidade de 

auto-renovação das células estaminais do GD verificado pela diminuição do número de 

neuroesferas. No entanto, a MET diminuiu a divisão celular no sentido da auto-renovação (pares 

de células Sox2+/Sox2+) aumentando no sentido da diferenciação (pares de células Sox2-/Sox2-), 

tendo sido este efeito mediado por receptores N-metil-D-aspartato (NMDA). Em concordância, 

verificámos que o fenótipo neuronal foi preferencialmente gerado. Em conclusão, a MET afectou 

negativamente a proliferação e a auto-renovação das células estaminais, mas levando à sua 

diferenciação em neurónios. 

 No presente trabalho, foi também explorado o efeito da MET na morte celular, 

proliferação e diferenciação neuronal em culturas derivadas de neuroesferas do GD, bem como 

o papel protector do NPY. Estas culturas foram expostas a diferentes concentrações de MET (1 – 

1000 nM) e foi verificado um aumento da morte celular por apoptose e por necrose para 

concentrações superiores a 10 nM sem, no entanto, afectar a proliferação celular. Mais ainda, a 

MET aumentou a libertação de glutamato, e a inibição dos receptores NMDA preveniu a morte 
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celular por apoptose. Curiosamente, a MET diminuiu a diferenciação em neurónios para todas as 

concentrações testadas, inclusivamente a concentração não tóxica (1 nM). O NPY conseguiu 

prevenir a morte celular por apoptose induzida pela MET, através da activação dos receptores Y1 

ou Y2, bem como o aumento da libertação de glutamato induzida pela MET. Por outro lado, o 

NPY preveniu também a diminuição do número de neurónios maturos provocada pela MET 

através da activação dos receptores Y1. É ainda de salientar que, por si só, o NPY promoveu a 

proliferação e a diferenciação neuronal através da activação dos receptores Y1. Em resumo, a 

MET teve um impacto negativo na viabilidade e neurogénese das células do GD, mas o NPY 

revelou-se uma ferramenta promissora contra estes feitos nefastos. 

 O efeito da MET na neurogénese e nas propriedades funcionais dos neurónios imaturos 

e maturos foram avaliados num modelo animal de neurogénese no GD, os murganhos G42 

(GAD67-GFP), em que os neurónios imaturos são identificados pela expressão da proteína verde 

fluorescente (GFP). Assim, os animais foram administrados com 2 mg/kg de MET, uma vez por 

dia durante 7 dias. A MET promoveu a diferenciação dos neurónios imaturos sem alterar o seu 

número. Contudo, a MET não teve qualquer efeito na cinética dos potenciais de acção (PAs) nem 

nas propriedades passivas de membrana (capacitância, resistência de membrana e potencial de 

membrana em repouso). As células GFP
+
 do grupo 2 e do grupo 3, que geram poucos PAs ou alta 

frequência de PAs, respectivamente, geraram correntes pós-sinápticas excitatórias (CPSEs), 

exibindo também potenciação após aplicação de trens de estimulação nas fibras do córtex 

entorrinal medial. Curiosamente, a MET induziu potenciação de longa duração (PLD) nas células 

do grupo 3, enquanto nas células maturas aumentou a amplitude da PLD. Em conclusão, a MET 

induziu diferenciação dos neurónios imaturos, incitou PLD nas células GFP
+
 do grupo 3 e gerou 

maior PLD nas células granulares maturas. 



Abstract 

23 
 

Abstract 

 Methamphetamine (METH) is a drug of abuse, whose consumption has been increasing 

worldwide. Several studies reported that METH causes irreversible brain abnormalities that may 

reflect in cognitive deficits. Despite the fact that the underlying mechanisms are still not well 

known, it has been suggested that dentate gyrus (DG) neurogenesis may contribute to these 

deficits, since it plays an essential role in cognition. In general, METH exerts a negative impact in 

DG neurogenesis. In contrast, several studies evidenced that neuropeptide Y (NPY) displays 

neuroprotection and enhances proliferation and neurogenesis in the DG. Therefore, we aimed to 

study the effect of METH in DG neurogenesis, specifically looking to DG stem cell capacities, 

neuronal differentiation and functional properties of immature neurons. Furthermore, we 

unraveled if NPY could be a therapeutic target against the injurious effects caused by METH in 

DG neurogenesis.  

In the present work, we took advantage of DG neurosphere cultures to study the impact 

of METH on DG stem cell self-renewal functions. We observed that METH (1 nM) delayed cell 

cycle from G0/G1 to S phase transition, increasing the number of cells in the quiescent state 

(G0). In fact, these data correlated with a decrease in cyclin E expression. Also, METH decreased 

the phosphorylation levels of the epidermal growth factor receptors (EGFR) and extracellular-

signal-regulated kinase 1/2 (ERK1/2) protein levels. Moreover, METH (10 nM) decreased DG 

stem cell self-renewal as verified by the decrease in the number of secondary neurospheres. 

However, METH shifted DG cell division from self-renewal (Sox2+/Sox2+ pairs of daughter cells) 

to differentiation (Sox2-/Sox2- pairs of daughter cells), an effect mediated by N-methyl-D-

aspartate (NMDA) receptor activation. In agreement, METH (10 nM) increased immature 

neurons in DG neurospheres. Overall, METH altered DG stem cell properties by delaying cell 

cycle and decreasing self-renewal capacities by shifting DG stem cell proliferation or self-renewal 

to differentiation towards neuronal fate.  

We also investigated the effect of METH on cell death, proliferation and differentiation 

in DG-derived neurosphere cultures, as well as the protective role of NPY. Cultures were 

exposed to different concentrations of METH (1 – 1000 nM) and an increase in cell death by 

necrosis and apoptosis was verified to concentrations up to 10 nM. Furthermore, METH (10 nM) 

increased glutamate release, and inhibition of NMDA receptors prevented cell death by 

apoptosis. Interestingly, METH decreased neuronal differentiation at all concentrations tested, 

including at the nontoxic concentration (1 nM). On the other hand, NPY prevented apoptotic cell 

death via activation of Y1 or Y2 receptor subtypes, as well as prevented glutamate release 

induced by METH. Again, the protective effect of NPY via Y1 receptors was verified as it 
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prevented the decrease of mature neurons induced by METH. Besides, NPY by itself promoted 

cell proliferation and neuronal differentiation once again through activation of Y1 receptors. 

Taken together, METH negatively affects DG cell viability and neurogenesis, and NPY revealed to 

be a promising protective tool against the deleterious effects of METH on hippocampal 

neurogenesis.   

The effect of METH on the functional properties of new neurons was performed using an 

animal model of DG neurogenesis, the G42 (GAD67-GFP) mice, where immature neurons express 

the green fluorescent protein (GFP). Thus, mice were administered with 2 mg/kg METH (i.p.), 

once a day for 7 days. As a result, we found that METH promoted differentiation of GFP+ cells 

without changing their number. However, METH had no effect in action potential (AP) firing 

kinetics or in passive membrane properties (membrane capacitance, input resistance and resting 

membrane potential). Furthermore, GFP+ cells (group 2 and group 3, generating few or high 

frequency APs, respectively) generated excitatory postsynaptic currents (EPSCs) as well as 

potentiation upon medial perforant pathway (MPP) fiber stimulation. Interestingly, METH 

induced long-term potentiation (LTP) in group 3 cells, whereas generated a stronger LTP in 

mature DG neurons. In conclusion, METH leads to immature neurons differentiation, induces LTP 

in group 3 GFP
+
 cells and strengths LTP in mature DG neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

Chapter 1 

Introduction 

  



 

 
 

  



Introduction 

27 
 

1. Introduction 

 

1.1. Methamphetamine  

 

1.1.1. General properties of methamphetamine  

 Methamphetamine (METH) belongs to the family of the amphetamine-like drugs, which 

also include amphetamine (AMPH) and 3,4-Methylenedioxymethamphetamine (MDMA, 

ecstasy). The structure of these drugs is very similar with the neurotransmitter dopamine (DA) 

(Fleckenstein et al., 2007; Figure 1.1) and, indeed, amphetamines exert their psychoactive action 

by mainly affecting the dopaminergic system (Neve et al., 2004).  

 METH is easily manufactured due to the easy access and low cost of reagents, resulting 

in an increase use worldwide (United Nations Office on Drugs and Crime, 2011). This drug is 

commonly known as crystal, meth, speed, crank or ice, and can be found in powder, tablets, 

paste or crystalline form (Figure 1.1), being administered intravenously, orally, by inhalation or 

smoked. The physiological and behavioral alterations observed in METH abusers may include 

hypertension, hyperthermia, cerebrovascular hemorrhage, stroke, seizures, renal and liver 

failure (Albertson et al., 1999; Perez et al., 1999), cognitive deficits, agitation, aggressiveness, 

paranoia, and psychosis (reviewed by Cadet and Krasnova, 2009). Also, cessation of regular 

METH use induces sleep disturbance, anxiety, hyperphagia and craving (Cruickshank and Dyer, 

2009). 

 METH is a lipophilic molecule with a low molecular weight (149.24 g/mol), and has weak 

base properties and low protein binding ability, which allows its passive diffusion into the brain, 

cells and vesicular compartments (de la Torre et al., 2004). In fact, our group characterized the 

time-course changes of METH levels in plasma and brain from mice administered with 30 mg/kg 

METH (i.p.), and we concluded that within 1 h, METH diffused fast to circulation and rapidly 

reached the brain (Martins et al., 2011). Moreover, METH can be metabolized in the human liver 

microsomes through the activation of the cytochrome P450 2D6, yielding the formation of two 

metabolites: AMPH, which results from the N-demethylation of METH, and 4-

hydroxymethamphetamine, resulting from its aromatic hydroxylation (Lin et al., 1997; 

Cruickshank and Dyer, 2009). In the rat, METH can be excreted in urine as METH (30-50%) and as 

several metabolites, such as 4-hydroxymethamphetamine, AMPH, 4-hydroxynorephedrine and 

4-hydroxyamphetamine. Noteworthy, intraperitoneal (i.p.) injection of METH leads to a faster 

excretion than oral administration (Caldwell et al., 1972). In fact, our group observed that 1 h 

after METH administration (30 mg/kg, i.p.), AMPH was also significantly detectable in both 

plasma and brain (Martins et al., 2011). 



Chapter 1 

 

28 
 

 

 

Figure 1.1 – (A) Chemical structure of DA and amphetamine-like drugs such as AMPH, METH and 
MDMA (ecstasy). (B) Methamphetamine can be found as crystals, powder, tablets or capsules. 
Adapted from Fleckenstein et al., 2007. 
 

 

1.1.2. Methamphetamine neurotoxicity 

 

Dopaminergic deregulation 

 DA is a neurotransmitter that, upon binding and activation of D1, D2, D3, D4 and D5 

receptors, plays a major role in motor control, motivation, cognition and reward behavior 

(Schultz, 2007). In addition, DA autorreceptors localized presynaptically function as modulators 

in the control of neuronal firing rating and neurotransmitter release (Beaulieu and Gainetdinov, 

2011). DA action is terminated by uptake from the extracellular space into presynaptic terminals 

via dopamine transporter (DAT) and then stored in synaptic vesicles via the vesicular 

monoamine transporter-2 (VMAT-2; Riddle et al., 2006; Figure 1.2 A). In fact, due to its similar 

structure to DA, METH has the particularity to have high affinity to DAT and VMAT-2 (Yamamoto 

et al., 2010). Accordingly, METH promotes the release of DA from nerve endings, increasing its 
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extracellular levels (Kish, 2008), therefore, inhibiting DA uptake via VMAT-2 (Brown et al., 2000) 

and DAT (Fleckenstein et al., 1997; Figure 1.2 B). Specifically, Sandoval and collaborators (2000) 

demonstrated that METH (4x 5 or 10 mg/kg, 2 h apart, s.c.) decreases DAT activity in mice 

striatal synaptosomes that persists after synaptosome wash (Sandoval et al., 2000). METH-

induced alterations in dopaminergic neurons is not restricted to DAT as this drug is also able to 

decrease VMAT-2 immunoreactivity in striatal synaptosomes, enhancing monoaminergic deficits 

(Hadlock et al., 2010).  

 

 

Figure 1.2 – METH-induced alterations on dopaminergic system. In the absence of METH (A), DA 
is released from the presynaptic terminals and will activate DA receptors (green arrows), which 
activation is involved in motivational, memory and reward processes. Afterwards, cytoplasmic 
uptake of DA is mediated by DAT, whereas vesicular uptake occurs via VMAT-2 (dark blue 
arrows). In the presence of METH (B), DA release from vesicles, presynaptic terminals, and by 
DAT and VMAT-2 reverse transport is increased (red arrows) while DA uptake is inhibited, 
resulting in overactivation of DA receptors and long-term METH intake will lead to dopaminergic 
deficits.  
 

 

 The activation of DA receptors upon METH exposure induced dopaminergic deficits as 

described by O’Dell and collaborators (1993). Indeed, inhibition of D1 or D2 receptors prevented 

DA depletion in rat striatum after a binge administration of METH (4x 4 mg/kg, 2 h apart, s.c.). 

Furthermore, the inhibition of the same receptors was able to prevent the increased release of 
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DA induced by METH administration (O’Dell et al., 1993). Additionally, METH-induced loss of 

VMAT-2 by activation of D2 receptors, through a mechanism that involved astrocytic activation 

(Hadlock et al., 2010). Besides, the activation of neuronal nitric oxide synthase (nNOS) may be a 

reliable mechanism of METH-induced DA depletion, since its inhibition (Di Monte et al., 1996) or 

deletion (Itzhak et al., 1998) can prevent these effects.  

 Overall, METH changes dopaminergic homeostasis in the central nervous system (CNS) 

by enhancing the release of DA from nerve terminals, inhibiting its uptake and overactivating DA 

receptors that will trigger neurotoxic events (Figure 1.2 B). 

 

Glutamatergic dysfunction and excitotoxicity 

 Glutamate is the main excitatory neurotransmission in the CNS. Glutamatergic 

transmission occurs via activation of ionotropic N-methyl-D-aspartate (NMDA), -amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate (KA) receptors, or 

metabotropic G protein-coupled receptors (Tata and Yamamoto, 2007).  

 In addition to the afore-mentioned effects on dopaminergic system, several pieces of 

evidence indicate that METH interferes with the glutamatergic system in several brain regions 

(reviewed by Silva et al., 2010; Gonçalves et al., 2014). Indeed, Yamamoto and colleagues (1999) 

showed that glutamatergic transmission is decreased by METH due to presynaptic hypoactivity 

in behaviorally sensitized rats, an effect that could be mediated by NMDA receptor activation. 

Furthermore, binge administration of METH (4x 10 mg/kg every 2 h, i.p.) increased glutamate 

release in rat lateral striatum that was maintained for 24 h after the last METH injection (Mark et 

al., 2007). Importantly, this finding was corroborated with up-regulation of vesicular glutamate 

transporter-1 (VGLUT1) mRNA in the cortex and VGLUT1 protein in the striatum, suggesting 

enhanced glutamatergic neurotransmission (Mark et al., 2007). In the hippocampus, METH (3x 

7.5 mg/kg, 2 h apart, i.p.) increased extracellular glutamate after each administration that 

persisted 7 h after the last drug injection (Rocher and Gardier, 2001). 

 One of the mechanisms underlying METH-induced excitotoxicity involves calcium (Ca2+) 

release from intracellular stores. Indeed, inhibition of Ca2+ release from the endoplasmic 

reticulum prevented METH excitotoxicity in hippocampal cultures, which was dependent on 

NMDA receptor activation (Smith et al., 2010). Other possible mechanisms may include 

alterations in the expression of glutamate receptor subunits. Indeed, Simões and collaborators 

(2007) observed that a single dose of METH (30 mg/kg, i.p.) increased GluN2A and GluA2 subunit 

protein levels in rat hippocampus. Importantly, alterations in glutamatergic receptors may 

contribute to spatial memory deficits observed in these animals. In agreement with the above-



Introduction 

31 
 

mentioned effects in the hippocampus, cortical and striatal GluA2 subunit levels were increased, 

together with a decrease and increase levels of GluN1 and GluN2A, respectively (Simões et al., 

2007). These and others studies have suggested that brain regions react differently under METH 

exposure. Noteworthy, not only may the glutamatergic system be involved in the development 

of excitotoxic events, but also could play a role in mechanisms of addiction (Crawford et al., 

2013). Indeed, activation of group II metabotropic glutamate receptor (mGluR) by LY379268 (0.3 

or 1 mg/kg, i.p.), whose activation decreases glutamate release, attenuated the motivation for 

METH self-administration (0.05 mg/kg/infusion, 6 h/day for 14 days).  

 In conclusion, alterations of glutamatergic transmission (glutamate release and receptor 

subunit expression) depend on the frequency of METH exposure, and can induce excitotoxicity. 

 

Mitochondrial dysfunction and oxidative stress 

 Mitochondria are the cellular organelles mainly responsible for energy production 

(adenosine triphosphate, ATP, production), regulation of cellular metabolism, and maintenance 

of Ca2+ homeostasis (Picard et al., 2011). METH was able to interfere with the mitochondrial 

electron transport chain, specifically the complex I (Klongpanichapak et al., 2006), complex II-III 

(Brown et al., 2005) and complex IV, which could slow the production of ATP (Burrows et al., 

2000). Regarding in vitro studies, Tian and collaborators (2009) verified that METH (100 or 300 

µM) induced severe damage to mitochondria (mitochondrial fragmentation) in rat hippocampal 

progenitor cells. Indeed, mitochondria are tightly involved in apoptotic events and these can be 

enhanced by a high dose of METH (40 mg/kg, i.p.) as demonstrated by Jayanthi and 

collaborators (2001). Specifically, it was shown that METH up-regulates the pro-apoptotic 

proteins Bax, Bad, Bak and Bid in mice cortex (Jayanthi et al., 2001). On the other hand, the 

same authors observed that the anti-apoptotic proteins Bcl-2, Bcl-XL and Bclw were down-

regulated in the same brain region (Jayanthi et al., 2001). Moreover, it was proposed that METH 

activates apoptotic mediators in the mitochondria, leading to their translocation into the 

nucleus, thus resulting in DNA fragmentation (Jayanthi et al., 2004). Interestingly, our group 

showed that METH triggers apoptotic cell death to subventricular zone (SVZ) stem/progenitor 

cells, in agreement with the increase of caspase-3 activity (Bento et al., 2011). 

 METH use or exposure increases the release of vesicular and cytoplasmic DA towards 

the cytoplasm and the extracellular space (Iversen, 2006). In fact, due to their acidic pH, synaptic 

vesicles maintain DA to its reduced state and, when DA is outside the vesicular-reducing 

environment is oxidized to 5-cystein-DA and DA quinones, becoming reactive (LaVoie and 

Hastings, 1999; Krasnova and Cadet, 2009). Other oxidative mechanisms include lipid 
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peroxidation, which was verified by elevated levels of malondialdehyde (MDA, product resulted 

from lipid peroxidation) after METH administration in several brain areas, including striatum 

(Yamamoto and Zhu, 1998), caudate putamen, substantia nigra, ventral tegmental area, cortex 

and hippocampus (Horner et al., 2011). Accordingly, post-mortem brain analysis from METH 

users revealed that both lipid peroxidation and 4-hydroxynonenal (a product resulted from lipid 

peroxidation) are increased in the caudate nucleus and frontal cortex (Fitzmaurice et al., 2006). 

Moreover, protein carbonyls resulted from protein oxidation are increased in the hippocampus 

24 h after a binge-administration of METH to Swiss mice (4x 10 mg/kg, i.p.; Gluck et al., 2001). 

Also, up-regulation of total glutathione was verified in mice striatum, frontal cortex and 

hippocampus, whereas an increase of glutathione peroxidase activity was only observed in the 

striatum and frontal cortex after a single dose of METH (10 mg/kg, i.p.; Flora et al., 2002). 

Interestingly, mice that overexpress superoxide dismutase (CuZnSOD), an enzyme that catalyses 

the breakdown of superoxide radicals, are protected against METH-induced toxicity (Cadet et al., 

1994; Krasnova and Cadet, 2009). Additionally, increased activity of CuZnSOD and up-regulation 

of glutathione in its oxidized form (GSSG) were observed in caudate nucleus from METH users 

(Mirecki et al., 2004). 

Overall, oxidative stress resulted from DA, lipid and protein oxidation, or by 

mitochondrial dysfunction induced by METH contributes to neuronal dysfunction and toxicity.  

 

Hyperthermia 

 It is well documented that METH induces hyperthermia and that increase of body 

temperature contributes to METH-induced toxicity (reviewed by Silva et al., 2010; Gonçalves et 

al., 2014). Indeed, increase of environment temperature exacerbated striatal DA depletion 

triggered by METH (4x 5 mg/kg every 2 h, i.p.; Bowyer et al., 1994). On the other hand, DA and 

serotonin (5-HT) depletion caused by METH administration was attenuated when rats were 

placed in a cooled environment (5°C). Accordingly, blockade of METH-induced hyperthermia by 

maintaining rats in a cold room (5°C) completely prevented DA oxidation (LaVoie and Hastings, 

1999). Also, hyperthermia induced by METH (9 mg/kg, s.c.) was the main contributor to the 

increase of blood-brain barrier (BBB) permeability (Kiyatkin ey al., 2007). Despite these data, 

some authors have highlighted that METH-induced toxicity can be independent of hyperthermia 

as, by itself, does not induce DA depletion (Bowyer, 1995). Nevertheless, it seems 

unquestionable that at least hyperthermia aggravates brain dysfunction triggered by METH. 
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Neuroinflammation and inflammatory mediators 

 In response to injury, the brain can trigger an inflammatory response also known as 

neuroinflammation. In fact, it has been suggested that glia and inflammatory mediators may 

contribute to METH-induced neuropathology (reviewed by Silva et al., 2010; Gonçalves et al., 

2014). Importantly, our group demonstrated that an acute high dose of METH (30mg/kg, i.p.) 

induces a robust gliosis and up-regulation of tumor necrosis factor-alpha (TNF-) and TNF 

receptor 1 protein levels, which can justify METH-induced neuronal dysfunction in the 

hippocampus (Gonçalves et al., 2010). Others have also shown that METH increases the levels of 

interleukin-1 alpha (IL-1α) and interleukin-6 (IL-6) mRNA in the striatum (Sriram et al., 2006), and 

IL-1β mRNA in the hypothalamus (Yamaguchi et al., 1991). Accordingly, our group showed that 

METH (30 mg/kg, i.p.) up-regulated TNF-α and IL-6 mRNA levels in mice hippocampus, but 

without changing IL-1β (Gonçalves et al., 2008). In vitro studies demonstrated that METH 

induced microglial cell death followed by increased expression of TNF- α and IL-6 protein levels 

and, interestingly, low concentrations of exogenous TNF-α was able to prevent the toxic effects 

mediated by METH through the activation of IL-6 signaling (Coelho-Santos et al., 2012). 

Moreover, METH-induced neuroinflammation in mouse hippocampal organotypic slice cultures 

was characterized by a marked microglial activation, which was further prevented by the 

activation of neuropeptide Y (NPY) Y2 receptor subtype (Gonçalves et al., 2012a). 

 Overall, several studies have demonstrated that METH is able to trigger the activation of 

microglia cells and astrocytes, that will lead to the release of pro-inflammatory mediators and, 

therefore, contributing to neuronal dysfunction and toxicity. 

 

Blood-brain barrier 

 More recently, it has been suggested that METH neurotoxicity may also result from its 

capacity to change blood-brain barrier (BBB) integrity (reviewed by Silva et al., 2010; Gonçalves 

et al., 2014). Indeed, some studies showed that METH increases BBB permeability in rodents, 

specifically in the cerebral cortex (Sharma and Ali, 2006), hippocampus, amygdala (Bowyer and 

Ali, 2006) and caudate-putamen (Bowyer et al., 2008). Also, our group observed that METH (30 

mg/kg, i.p.) transiently increases BBB permeability in mice hippocampus, an effect that could be 

explained by the decrease of tight junction (TJ) proteins, such as the zonula occludens 1, claudin-

5 and occludin, that are involved in the integrity maintenance of the BBB (Martins et al., 2011). 

Moreover, an increased activity of the metalloproteinase 9 could contribute to these alterations 

of the BBB function, probably due to the extracellular matrix degradation (Martins et al., 2011). 

Besides these animal studies, in vitro approaches demonstrated that METH can have a direct 
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effect on endothelial cells since it is able to alter human brain microvascular endothelial cell 

(BMVEC) properties followed by down-regulation of TJ proteins (Ramirez et al., 2009). On the 

other hand, our group observed that a low concentration of METH increases barrier permeability 

across BMVECs via eNOS/NO-mediated transcytosis but not involving alterations on TJ proteins 

(Martins et al., 2013). Thus, METH can alter BBB function through different mechanisms, which 

turns the brain more vulnerable to external factors including pathogens. 

 

 

 

 
Figure 1.3 – Schematic representation of neurotoxicity induced by METH. Adapted from 
Gonçalves et al., 2014. 
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In summary, METH interferes with dopaminergic transmission that can trigger oxidative 

stress. Furthermore, METH induces changes in glutamatergic transmission, an effect that seems 

to be correlated with memory deficits observed in METH abusers. Besides, mitochondrial 

dysfunction, hyperthermia, neuroinflammation and BBB dysfunction can also contribute to 

METH-induced toxicity (Figure 1.3). 

 

 

1.2. The hippocampus 

 The hippocampus was named due to its resemblance to the seahorse, i.e., derives from 

the Greek hippos that means horse and kampos, meaning sea monster. The hippocampus is part 

of the forebrain, is located in the medial temporal lobe under the cerebral cortex and plays a 

crucial role in learning and memory as well as in the formation of new episodic memories (Li et 

al., 2009).  

The hippocampus has a highly stereotypical connection pattern: information from the 

layer II of the entorhinal cortex (EC) enters the hippocampus forming the perforant pathway that 

passes the subiculum and establishes synaptic connections on the dentate gyrus (DG) and cornu 

ammonis 3 (CA3) areas (Neves et al., 2008; Figure 1.4). The perforant pathway can be 

distinguished in the medial (MPP) and lateral (LPP) perforant pathways whose axonal projections 

terminate specifically in the middle and outer third of the molecular layer of the DG, 

respectively. Dentate granule cells (DGCs) project their dendrites towards the molecular layer to 

receive synaptic inputs from both MPP and LPP, whereas the axons, or mossy fibers, reach the 

proximal dendrites of CA3 pyramidal cells (Deng et al., 2010; Figure 1.4). In turn, CA3 pyramidal 

cells project to other cells of the CA3 through commissural connections and to CA1 pyramidal 

cells through the Schaffer collateral projections. In addition, CA1 pyramidal neurons receive 

direct synaptic inputs from layer III of the EC and send axonal outputs towards the subiculum 

and the deep layers of the EC (Neves et al., 2008; Figure 1.4).  
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Figure 1.4 – Schematic representation of the cytoarchitecture of the hippocampus. The DG 
receives inputs from axons of the perforant path (in purple) that derive from layer II of the EC. 
DGCs project their axons or mossy fibers to the proximal apical dendrites of CA3 and CA2 
pyramidal neurons. CA3 neurons, in turn, project into the ipsilateral CA1 pyramidal layer through 
the Schaffer collaterals. Also, projections from layer II and layer III of the EC contact directly with 
CA3 and CA1 pyramidal neurons, respectively.  
 

 

 In addition to this well-known trisynaptic pathway, other excitation circuits have been 

recently found, involving a population of larger pyramidal neurons that reside between the CA3 

and CA1 areas, named CA2. Indeed, this region receives inputs from the supramammilary 

nucleus of the hypothalamus (Haglund et al., 1984; Maglóczky et al., 1994), and mossy fibers 

from the DG (Kohara et al., 2014). Still, it is controversial whether CA2 cells receive projections 

from layer III EC (Chevaleyre et al., 2010; Kohara et al., 2014), but form functional glutamatergic 

synapses with CA1 pyramidal neurons (Kohara et al., 2014). 

 

1.2.1. Synaptic plasticity in the hippocampus 

 

Long-term potentiation 

 The hippocampus plays an important role in learning and memory mainly due to a high 

level of synaptic plasticity (Neves et al., 2008). The DG of the hippocampus receives synaptic 

inputs from the MPP and the LPP characterized by different short-term plasticity properties. 

Indeed, paired-pulse stimulation of MPP results in short-term depression, whereas stimulation 

of the LPP shows short-term facilitation, suggesting high and low transmitter release probability, 

respectively (Colino and Malenka, 1993). On the other hand, DG neurons can experience long-

lasting increase of synaptic strength in response to specific pre- and postsynaptic firing pattern, 

an effect identified as long-term potentiation (LTP; Bliss and Lømo, 1973). The mechanism for 

LTP induction in the DG may rely on an increase in neurotransmitter release, an increase in 
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postsynaptic response, or a combination of both (Bliss et al., 2003). In fact, an increase in 

glutamate release onto DG neurons resulted from high frequency stimulation of the perforant 

pathway will induce LTP (Dolphin et al., 1982). Also, several pieces of evidence demonstrated 

that LTP in DG cells are dependent on postsynaptic NMDA receptor activation (Colino and 

Malenka, 1993; Ge et al., 2007a; Kannangara et al., 2014). Specifically, blocking NMDA receptors 

impair LTP in the DG (Colino and Malenka, 1993; Ge et al., 2007a) and postsynaptic NMDA 

receptor-containing GluN2A subunits were shown to be important for synaptic plasticity and 

spatial memory performance (Kannangara et al., 2014). Also, plasticity of synapses between CA3 

and CA1 pyramidal neurons have been object of intensive study. Indeed, CA3 and CA1 pyramidal 

neurons generate LTP in response to firing pattern at mossy fibers (Harris and Cotman, 1986; 

Yeckel et al., 1999) and Schaffer collaterals (Zakharenko et al., 2001; Bayazitov et al., 2007), 

respectively.  

 LTP induction in the hippocampus is induced by repetitive release of glutamate from the 

presynaptic terminals that leads to the activation of postsynaptic AMPA receptors followed by 

cell depolarization. The resulting postsynaptic neuron depolarization leads to removal of 

magnesium (Mg2+) ions that block NMDA receptors, and Ca2+ ions are allowed to enter the cell. 

Also, voltage-gated Ca2+ channels (VGCCs) can be recruited for LTP induction (Lamprecht and 

LeDoux, 2004). Ca2+ influx through NMDA receptors or VGCCs trigger the delivery of new AMPA 

receptors into postsynaptic sites (process known as spine AMPAfication). This results in 

enhanced synaptic responses which last for several hours. Spines enriched with new AMPA 

receptors, in turn, can undergo structural changes through rearrangement of cytoskeletal 

microfilaments composed by F-actin (Fukazawa et al., 2003). In addition to the mechanism 

outlined above, other intracellular signaling pathways may ensure synaptic efficacy, such as the 

phosphorylation of calcium/calmodulin-dependent kinase II (CaMKII). Indeed, Ca2+ binds to 

CaMKII promoting the translocation from the cytoplasm to the synapse, which binds to GluN2B 

subunit of NMDA receptors (Barria and Malinow, 2005). This CaMKII activity results in the 

recruitment of AMPA receptors into the surface of dendritic spines (Hayashi et al., 2000). 

Indeed, the recruitment of AMPA is responsible for synaptic strengthening. 

 

Long-term depression 

 Long-term depression (LTD) is defined as long-lasting decrease of synaptic plasticity 

strength. It has been suggested that hippocampal LTD is important for the processing of relevant 

information by deleting or inhibiting irrelevant information. Indeed, in the hippocampus, 

inhibition of NMDA receptor-dependent LTD impairs reversal learning (Nichols et al., 2008). 
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LTD induction at MPP synapses requires activation of all groups of mGlu receptors (group I, II 

and III mGlu receptors). In detail, activation of group I mGlu receptor induces LTD in a 

mechanism independent of NMDA receptor activation (Camodeca et al., 1999), but requires 

activation of Src family of non-receptor tyrosine kinases (Luttrell et al., 1999), which further 

activates p38 MAPK (Rush et al., 2002). These kinases, in turn, will phosphorylate transcription 

and translation factors, thereby regulating gene expression and protein synthesis (Kelleher et al., 

2004; Thomas and Huganir, 2004). Moreover, activation of Group II mGlu receptors induces a 

rapid and prolonged depression of MPP-evoked excitatory postsynaptic potentials (EPSPs) after 

low frequency stimulation (LFS) (Pöschel and Manahan-Vaughan, 2005), and reversible 

depression of field EPSPs (fEPSPs) accompanied by a reduction of paired-pulse depression, 

suggesting a decrease of presynaptic neurotransmitter release (Huang et al., 1999). However, 

induction of LTD mediated by these receptors not only is dependent on presynaptic decrease of 

neurotransmitter release, but also is dependent on NMDA receptor activation. In the same 

context, activation of protein kinase A and C (PKA and C) seems to be downstream targets for 

LTD induction (Huang et al., 1999). 

In addition to the abovementioned induction of LTD upon mGlu receptor activation, LTD 

can be also induced by a prolonged train of LFS (1-2 Hz) at the MPP (Huang et al., 1999) and LPP 

(Christie and Abraham, 1992). LFS-induced LTD requires postsynaptic elevation of intracellular 

Ca2+ concentration (O’Mara et al., 1995), specifically resulting from the activation of the nitric 

oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway at postsynaptic sites followed by 

activation of PKG (Wu et al., 1998). Additionally, activation of low voltage-activated Ca2+ 

channels, or T-type Ca2+ channels, is also involved in LTD induction at MPP-DG synapses (O’Mara 

et al., 1995). 

 

1.2.2. Methamphetamine and synaptic plasticity in the hippocampus 

 It has been shown that METH induces memory deficits (Thomson et al., 2004) and that 

cognition is dependent on LTP induction (Neves et al., 2008). Accordingly, rats administered with 

METH (5 mg/kg, i.p., for 12 days) present lower membrane potential and input resistance in CA1 

pyramidal neurons, correlated with neuronal injury (Hori et al., 2010). Moreover, both chronic 

regimen and prenatal exposure to METH reduced LTP in CA1 pyramidal cells (Hori et al., 2010). 

In addition, METH perfusion (30 µM) to hippocampal slices was able to increase glutamatergic 

synaptic transmission observed by the increase of fEPSPs without tetanic stimulation and, 

interestingly, this effect seems to be NMDA-independent (Swant et al., 2010). This enhanced 

baseline synaptic transmission was proposed to be mediated by activation of dopaminergic D1 



Introduction 

39 
 

and serotonergic 5-HT1A receptors. Besides, administration with 10 mg/kg (i.p.) twice a day for 5 

days decreased LTP amplitude in CA1 pyramidal neurons (Swant et al., 2010). On the other hand, 

chronic administration of METH (24 mg/kg, i.p.) for 14 days did not induce any effect in LTP 

magnitude of CA1 pyramidal cells. However, LTP was decreased after 21 days of drug 

abstinence, which was correlated with poorer spatial memory performance (North et al., 2013). 

Moreover, the medial prefrontal cortex (mPFC) receives excitatory inputs from the 

hippocampus, but repeated METH administration (4 mg/kg, i.p., for 4 days) impairs LTP in the 

hippocampal-mPFC and D1 receptor activation seems to contribute to this effect (Ishikawa et al., 

2005). 

 To date, little is known regarding the effect of METH on hippocampal synaptic plasticity, 

but the few studies available show that METH decreases LTP in CA1 pyramidal neurons that 

could be correlated with memory deficits. On the other hand, the effect of this psychostimulant 

on the plasticity of the DG is far from being accomplished, including the effect of METH on 

synaptic plasticity and integration of young neurons resulted from the differentiation of resident 

stem cells. 

 

1.3. Adult neurogenesis 

 In the adult rodent brain, new neurons are continually generated throughout life and 

they become functionally integrated in the preexistent circuitries (Lledo et al., 2006). In fact, 

neurogenesis occurs in restricted brain regions and the best described niches are the 

subventricular (SVZ) and subgranular zone (SGZ). Regarding the SVZ, stem/progenitor cells lay 

adjacent to the ependymal layer, which lines the lateral ventricles. The resulting neuroblasts 

derived from stem/progenitor cells migrate through the rostral migratory stream towards the 

olfactory bulb. There, neuroblasts move radially into the granular and periglomerular layers and 

differentiate into mature interneurons participating in odor discrimination (Zhao et al., 2008). In 

humans, SVZ neurogenesis ceases by the eighteenth month of life, however quiescent stem cells 

remain in the SVZ area (Sanai et al., 2004). Noteworthy, neurogenesis can occur in other brain 

areas, including the hypothalamus (Kokoeva et al., 2005, 2007), cerebral cortex, cerebellum and 

olfactory bulb (Decimo et al., 2012). SGZ neurogenesis of the hippocampus will be further 

described in detail due to the importance of this structure for the present thesis. 
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1.3.1. Neurogenesis in the subgranular zone of the dentate gyrus 

 DGCs continue to be generated throughout adulthood in the SGZ of the DG, a thin layer 

localized in the innermost part of the granule cell layer right adjacent to the hilus (Ehninger and 

Kempermann, 2008). Resident stem and progenitor cells of the SGZ have the ability to self-

renew, i.e., maintain stem cell identity after cell division (Gage, 2000). Self-renewal properties 

can be demonstrated in vitro in the presence of growth factors (epidermal and fibroblast growth 

factors) by using the neurosphere assay: generation of secondary/tertiary neurosphere colonies 

derived from a stem cell prevenient from a primary/secondary passage neurosphere colony 

(Babu et al., 2007). Importantly, Suh and collaborators (2007) demonstrated that cells expressing 

the stem cell marker SRY (sex determining region Y)-box 2 (Sox2) can self-renew, generating two 

Sox2+ cells, identical to the initial one. Stem/progenitor cells exhibit multipotency, verified both 

in vitro (Babu et al., 2007) and in vivo (Suh et al., 2007; Chetty et al., 2014).  

 Within the SGZ, type 1 cells, or radial glia-like cells, are the precursor cells of DGCs and 

can be identified by the expression of the astroglial marker glial fibrillary acidic protein (GFAP), 

Sox2 and nestin, which is an intermediate filament highly expressed in stem and progenitor cells. 

Particularly, these cells extend long apical processes into the molecular layer (Filippov et al., 

2003; Figure 1.5). Radial glia-like cells give rise to transient amplifying cells, or type 2 cells, which 

can be distinguished from their precursor cells as they do not express GFAP and lack processes 

towards the molecular layer, being horizontally orientated in the SGZ (Filippov et al., 2003; 

Figure 1.5). Type 2 cells undergo cell division and can be subgrouped in type 2a and type 2b cells 

(Kronenberg et al., 2003). Type 2a cells express nestin, lack doublecortin (DCX, a microtubule-

associated protein expressed in precursor and immature neurons) and some may express the 

prospero-related homeobox 1 (Prox1, DGC marker; Steiner et al., 2008). Conversely, type 2b 

cells express DCX, polysialylated-neural cell adhesion molecule (PSA-NCAM, role in cell-cell 

adhesion), neuronal differentiation factor (NeuroD, transcription factor involved in neuronal 

differentiation) and Prox1 (Filippov et al., 2003; Ehninger and Kempermann, 2008; Steiner et al., 

2008). Further differentiation of type 2 cells gives rise to type 3 cells that show low proliferative 

activity. Similarly to type 2 cells, these cells also express DCX, PSA-NCAM, NeuroD and Prox1, but 

lack nestin expression (Kronenberg et al., 2003; Ehninger and Kempermann, 2008). Type 3 cells 

are postmitotic neurons and begin to project dendrites vertically towards the molecular layer 

and axons towards the hilus (Brandt et al., 2003). Indeed, further differentiation of type 3 cells 

generates postmitotic immature granule neurons, which develop more extensive dendrites 

(Zhao et al., 2006) and axons (Toni et al., 2008) towards the molecular layer and hilus/CA3 
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subfield, respectively (Figure 1.5). The functional properties of DGCs are described in the next 

section. 

 An important tool to identify stem, progenitor or immature DGCs is the use of 

retroviruses expressing fluorescent proteins. Retroviruses infect replicating cells and, therefore, 

allow the identification and manipulation of newborn neurons driving adult neurogenesis. 

Indeed, this procedure permits morphological analyses and characterization of synaptic 

integration during neuronal maturation (Espósito et al., 2005; Zhao et al., 2006; Ge et al., 2007a; 

Toni et al., 2008). Using this technique, it has been shown that 10-day-old neurons have 

dendrites reaching the inner molecular layer, whereas dendrites of 14-day-old neurons reach the 

middle molecular layer (Zhao et al., 2006). Moreover, these dendrites present varicosities 

instead of spines, which are defined as swelled dendritic proportions. Additionally, 21-day-old 

neurons which dendrites already reach the outer molecular layer exhibit spines, the main 

postsynaptic sites that receive glutamatergic inputs (Zhao et al., 2006). Regarding axonal 

development, immature DGC mossy fibers begin to form synapses with postsynaptic targets in 

the CA3 subfield 17 days after cell division, and continue to mature thereafter (Toni et al., 2008). 

These immature DGCs form functional glutamatergic synapses and establish synaptic 

connections with mossy cells, interneurons and CA3 pyramidal neurons (Toni et al., 2008). 

Moreover, along with this differentiation process, immature DGCs migrate out the SGZ towards 

the granule cell layer.  

 
Figure 1.5 – Schematic representation of the SGZ neurogenesis. Radial glia-like cells (type 1) are 
stem cells of the SGZ with self-renewal capacities. These cells give rise to transient amplifying 
cells (type 2) that present a different morphology from type 1 cells, but maintaining the ability to 
self-renew. Type 3 cells, or neuroblasts, result from the differentiation of type 2 cells, and 
maturation proceeds with dendritic and axonal development, giving rise to mature dentate 
granule neurons that will integrate into the preexistent neuronal circuitries. 
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In brief, stem and progenitor cells from the SGZ proliferate and differentiate into DGCs 

that are fully integrated into the preexistent neuronal circuitries of the DG (van Praag et al., 

2002). 

 

1.3.2. Functional properties of dentate granule cells: young versus mature dentate granule 

cells 

 

Excitability 

Action potentials (APs) are brief sharp electrical events that permit communication 

between nerve cells. APs are generated by the abrupt and selective membrane permeability to 

sodium (Na+) followed by potassium (K+) ions (Kandel et al., 1991). An AP is triggered by a 

depolarization of the plasma membrane that reaches the voltage threshold for opening of 

voltage-gated Na+ channels. During the opening of Na+ channels, their conductance increases, 

resulting in a rapid inward Na+ flow. This causes more depolarization, resulting in the opening of 

more Na+ channels and the membrane sharply depolarizes towards Na+ reversal potential (ENa), 

at which the electrochemical gradient of Na+ ions across the membrane is zero. The drop of Na+ 

channel driving force, their voltage-dependent inactivation and the opening of voltage-gated K+ 

channels lead sharp membrane repolarization due to increase of K+ conductance and K+ outward 

flow (Kandel et al., 1991). Importantly, this mechanism of AP generation and waveform was 

nicely described by the classical Hodgkin-Huxley model (Kandel et al., 1991). Young DGCs have a 

relative low AP threshold, but during maturation both AP amplitude and firing dynamics 

(frequency) increases (Mongiat et al., 2009). Furthermore, voltage-dependent inward Na+ and 

outward K+ conductances increase during development of young DGCs (Espósito et al., 2005). 

Interestingly, Schimdt-Hieber and collaborators (2004) showed that early low threshold APs are 

Na+ channel-independent, as they are insensitive to tetradotoxin (TTX), but are generated by T-

type Ca2+ channels. Accordingly, immature DGCs exhibit large amplitudes of inward Na+ and 

outward K+ conductances, and repetitive spikes only after the fourth week of age (Espósito et al., 

2005) before which low threshold Ca2+-dependent spikes dominate (Mongiat et al., 2009). 

 

Passive membrane properties 

 Young and mature DGCs have different resting membrane potential (RMP). In particular, 

young neurons are characterized by a more depolarizing potential that will gradually become 

more hyperpolarized during maturation (Espósito et al., 2005; Spampanato et al., 2012). Indeed, 

a correlation between RMP and AP firing has been made by Spampanato and colleagues (2012) 
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showing that cells with RMP around -30 mV fire one or few mini-spikelets in response to 

depolarizing current injections. In addition, immature DGCs that fire few AP during the 

depolarization step present RMP around -50 mV. In contrast, mature neurons with RMP of -80 

mV exhibit repetitive fully-blown AP during the current step (Spampanato et al., 2012). 

 The input resistance (Rin) of a neuron depends on the density of ion channels opened at 

any given time (Espósito et al., 2005). In fact, Liu and collaborators (2000) classified the 

maturation stage of DG cells by their Rin, by showing that DG cells with highest values of Rin have 

more depolarizing RMP and small dendritic length (Liu et al., 1996). Also, Schmidt-Hieber and co-

workers (2004) used this parameter to identify young DGCs and immature neurons since these 

cells exhibit high Rin in the gigaohm (G) range that is gradually decreased as DG cells mature. In 

fact, cells showing this high Rin also fire APs with short amplitude, whereas neurons with a more 

mature AP firing profile have lower Rin (Espósito et al., 2005). 

 Another characteristic of immature DGCs is the lower membrane capacitance (Cm), 

which is proportional to cell surface. Indeed, immature neurons have a smaller soma than 

mature DGCs, correlated with a lower Cm. Accordingly, cells with small Cm present high Rin and 

depolarized RMP. As DGCs mature, a gradual increase of Cm is paralleled by Rin decreases and 

RMP hyperpolarization (Espósito et al., 2005; Vivar et al., 2012). 

 

Synaptic transmission and plasticity 

The main role of SGZ neurogenesis is to give rise to neurons from stem/progenitor cells 

that will then integrate into DG circuitry. Indeed, these new-incorporating cells must be able to 

receive inputs and send outputs. Noteworthy, during some stages of neuronal development of 

type 1, or radial glia-like cells, neither GABAergic nor glutamatergic synaptic transmission has 

been detected (Tozuka et al., 2005). However, although radial glia-like cells do not show fast 

synaptic responses, they present GABA signaling (Song et al., 2012). Indeed, GABA released from 

fast-spiking interneurons (parvalbumin-positive interneurons) maintains radial glia-like cells 

quiescence, and γ2-containing GABAA receptors mediate this effect (Song et al., 2012).  

Type 2 cells (transient amplifying cells) have no afferent synaptic connection, but 

express both glutamate and GABA receptors (Zhao et al., 2006). In fact, neither perforant 

pathway stimulation (Ge et al., 2006) nor NMDA or AMPA receptors activation (Tozuka et al., 

2005) induce postsynaptic responses in type 2 cells. However, these cells show GABA-evoked 

currents after focal application of GABA via GABAA receptor activation (Tozuka et al., 2005). Also, 

stimulation of the hilar region evokes GABA currents but not after stimulation of the MPP, 

suggesting that GABA is released from local interneurons (Tozuka et al., 2005). 
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As dendrites develop in young DGCs, not only do they receive inhibitory inputs from 

local GABAergic interneurons, but also they receive glutamatergic synapses from mossy cells and 

perforant path in the molecular layer (Ge et al., 2006). At this stage, GABA is excitatory in 

contrast to what is observed in mature DGCs. Indeed, immature neurons have high intracellular 

chloride (Cl
-) concentration due to high expression of Na

+
-K

+
-2Cl

-
 co-transporter (NKCC1), a Cl

-
 

importer (Ge et al., 2007b; Figure 1.6). In these cells, NKCC1 drive Cl- ions into the cell and, as a 

consequence, the activation of GABAA receptors leads to the efflux of Cl
-
, depolarizing the 

membrane (Ge et al., 2007b). As DGCs mature, the expression of NKCC1 is down-regulated 

giving place to the K
+
-Cl

-
 co-transporter (KCC2), a Cl- exporter, and switching GABA from 

excitatory to inhibitory (Ge et al., 2007b; Figure 1.6).  

 

 

Figure 1.6 – Schematic representation showing the effect of GABA on immature and mature 

dentate granule cells (DGCs). In immature DGC, the Na
+
-K

+
-2Cl

-
 co-transporter (NKCC1) is highly 

expressed, whereas the K+-Cl- co-transporter (KCC2) is poorly expressed, resulting in high 

chloride concentration inside the cell ([Cl
-
]i). Therefore, GABAA receptor activation leads to Cl

-
 

outflow and membrane depolarization. During maturation, KCC2 is up-regulated and NKCC1 
down-regulated, switching GABA from depolarizing to hyperpolarizing action. 
 

 

 The first glutamatergic excitatory inputs occur in parallel with dendritic development 

and elongation towards the molecular layer (Espósito et al., 2005; Zhao et al., 2006). Indeed, 19 

day-old immature DGCs exhibit already excitatory postsynaptic currents (EPSC) induced by 

stimulation of the MPP, despite the low amplitude. However, DGCs reach its maximal amplitude 

around 49 day-old (Mongiat et al., 2009). Indeed, the growth and development of newborn DG 

neuronal dendrites (Zhao et al., 2006) correspond to the increase of EPSC amplitudes (Mongiat 

et al., 2009). Interestingly, neurons generated in adulthood remarkably present similar 

responses of short-term plasticity from the afferents inputs of LPP and MPP as neurons 

generated during development (Laplagne et al., 2006). Meanwhile, morphological studies show 
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that immature neurons extend axons towards the hilus (Zhao et al., 2006; Toni et al., 2008; Gu et 

al., 2012) and transmit outputs to CA3 area with development and extension of axonal mossy 

fibers. Indeed, thin axonal fibers can be seen in the hilus in 10 day-old neurons (Zhao et al., 

2006) and maturation from 17 to 75 day-old DG neurons show a gradual increase in presynaptic 

vesicles (Toni et al., 2008). In addition, adult-born neurons elicit postsynaptic currents in 

interneurons, mossy cells and CA3 pyramidal cells, being fully integrated in the existent circuitry 

(Toni et al., 2008).   

 In addition to synaptic integration into existent circuitries, synaptic plasticity has also 

been demonstrated in developing DGCs. Indeed, Ge and collaborators (2007a) found that 

neurons older than 2 weeks exhibit LTP in response to theta-burst stimulation (TBS). 

Importantly, the authors also observed a critical period for enhanced synaptic plasticity that 

corresponds to one month-old young DGC and this LTP enhancement was dependent on the 

activation of GluN2B-containing NMDA receptors (Ge et al., 2007a). Moreover, the same group 

used an optogenetic method to excite adult-born DG and, simultaneously, investigate the 

evoked postsynaptic currents in CA3 area. Noteworthy, 1 week-old neurons (post-retroviral 

infection) do not induce any postsynaptic responses at CA3 pyramidal cells, indicating that 

mossy fibers had not reached the CA3 area yet (Gu et al., 2012). On the other hand, at 2 week of 

age, excitation of newborn DG neurons produces EPSCs in CA3 pyramidal cells, reaching the 

maximum amplitude at one month-old (Gu et al., 2012) that corroborates with enhanced LTP in 

these immature neurons. 

 In summary, new DG neurons develop from resident stem/progenitor cells that 

integrate into preexistent synaptic circuitries through dendritic and axonal morphological 

changes, allowing them to receive inputs from EC and send outputs to CA3 pyramidal cells, 

respectively. 

 

1.3.3. Function of adult dentate gyrus neurogenesis 

 It is well established that the hippocampus is essential for the formation of new episodic 

memories as well as for long-term memory storage (Neves et al., 2008). In fact, this was 

assessed by elimination of synaptic transmission through deletion of NMDA receptors 

specifically in the CA1 area, which was correlated with poor memory performance in the Morris 

water Maze (MWM; Tsien et al., 1996). Accordingly, it has been proposed that DG adult 

neurogenesis gives its major contribution to the formation of new memories. Indeed, the 

importance of neurogenesis on spatial memory was demonstrated by Garthe and collaborators 

(2009) by showing that ablation of neurogenesis for several weeks induce learning and memory 
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deficits. Furthermore, a critical period for enhanced synaptic plasticity was verified in four week-

old immature neurons (Ge et al., 2007a) since these were preferentially recruited into spatial 

memory networks (Kee et al., 2007). Accordingly, inactivation of these same immature neurons 

disrupted hippocampal memory retrieval (Gu et al., 2012). Importantly, the correct timing at 

initial stages of neuronal differentiation is crucial for the proper integration into existent 

circuitries and consequently to memory performance (Farioli-Vecchioli et al., 2008).   

 The hippocampus is also responsible in forming new associative memories by storing 

memories independently of each other, retrieving memories from partial cues and flexibly 

applying stored memories to novel situations (Yassa and Stark, 2011). Indeed, this brain region 

allows the formation of distinct memories from similar episodes that are stored in a distinct non-

overlapped manner, a phenomenon identified as pattern separation. Pattern completion, on the 

other hand, is involved in the recall of previously acquired memories from partial information 

cues (Yassa and Stark, 2011). Interestingly, it seems that hippocampal neurogenesis facilitates 

pattern separation as demonstrated by Nakashiba and colleagues (2012). These authors showed 

that mature DGCs are not very important for pattern separation between similar environments, 

but are required for achieving a rapid pattern completion. Additionally, the same authors 

observed that adult born DGCs are essential for proper acquisition and discrimination of similar 

contexts (Nakashiba et al., 2012). Interestingly, increasing neurogenesis promotes a higher level 

of discrimination between two similar contexts, which strongly reveal the importance of 

neurogenesis on hippocampal pattern separation (Sahay et al., 2011). Importantly, immature DG 

neurons presenting NMDA receptor-containing GluN2B subunits seem to be essential to 

facilitate pattern separation (Kheirbek et al., 2012). In agreement, GluN2B subunits are required 

for the induction of LTP in young DG neurons during the critical period of enhanced synaptic 

plasticity (Ge et al., 2007a). 

 In summary, incorporation of newborn neurons into the preexistent neuronal circuitries 

plays a crucial role in the formation of new memories as well as in the discrimination of two 

similar contexts, known as pattern separation. 

 

1.3.4. Modulation of adult subgranular zone neurogenesis 

 SGZ is a dynamic neurogenic niche that can be easily susceptible to intrinsic and extrinsic 

factors. Indeed, neurogenesis can be positively modulated by astrocytes that recruit stem cells 

to differentiate into neurons (Song et al., 2002), an effect that involve ephrin-B2 signaling 

(Ashton et al., 2012; Figure 1.7), which has been shown to regulate neuronal spine 

morphogenesis and synaptogenesis of adult hippocampal neurons (Xu et al., 2011). 
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Neurotransmitters can also modulate neurogenesis as demonstrated by Tozuka and 

collaborators (2005) where GABA-induced depolarization to type 2 cells increase the expression 

of NeuroD. Moreover, glutamate mediates NMDA-induced excitation to neural progenitor cells, 

leading to differentiation of neural progenitor cells (Deisseroth et al., 2004). Extrinsic factors 

such as voluntary exercise confirmed to increase the number of proliferating cells, neuronal 

differentiation and survival (Bruel-Jungerman et al., 2009; Snyder et al., 2009). Moreover, 

enriched environment (home cages that enhance sensory, cognitive and motor stimulation) 

contributes to the survival of proliferating precursor cells and the neuronal phenotype is 

preferentially generated (Kempermann et al., 1997; Figure 1.7). On the other hand, injuries such 

as temporal lobe epilepsy transiently increases the number of DCX-expressing immature granule 

neurons, but the development of these neurons is compromised since granule cells born after 

status epilepticus present abnormal dendrites with high spine density that project into the hilus 

(Jessberger et al., 2007). Furthermore, some newborn DGCs migrate into the hilus instead the 

granule cell layer, which results in the generation of aberrant circuitries (Jessberger et al., 2007). 

 In contrast, rodent neurogenesis can be negatively modulated by ageing, verified by the 

reduced number of radial glia-like and progenitor cells, as well as the number of postmitotic 

immature granule neurons (Rao et al., 2006; Gebara et al., 2013; Figure 1.7). Interestingly, 

hippocampal neurogenesis in humans continues throughout life with only a minor decrease 

during ageing (Spalding et al., 2013). Also, stress and glucocorticoid exposure/administration 

reduce rodent proliferation (Boku et al., 2009) and differentiation into neurons (Chetty et al., 

2014), but enhances hippocampal oligodendrogenesis (Chetty et al., 2014; Figure 1.7). In the 

same context, the decrease of hippocampal neurogenesis by chronic stress is known to 

contribute to the onset of depression (Dagytè et al., 2011; Snyder et al., 2011). Regarding the 

effect of neurodegenerative diseases in neurogenesis, a mouse model of Parkinson disease 

shows a reduced number of proliferating cells as well as newborn neurons (Kohl et al., 2012). 

Similarly, animal models of Alzheimer disease carrying a mutated form of the amyloid precursor 

protein, a membrane protein that originates β-amyloid protein after proteolysis, present 

decreased proliferation, neuronal differentiation or survival (Haughey et al., 2002; Donovan et 

al., 2006). Additionally, in a mouse model of Huntington disease, dendritic arborization was 

reduced as well as long-term survival of newborn DG neurons (Pla et al., 2014). Another feature 

with a negative impact in neurogenesis is neuroinflammation (Figure 1.7), since proinflammatory 

cytokines (IL-6 and TNF-) were shown to impair neurogenesis (Ekdahl et al., 2003; Monje et al., 

2003). 
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 In general, chronic exposure to drugs of abuse has a negative impact on cell 

proliferation, on immature neurons or survival of newborn DGCs, verified to several drugs as 

follows: MDMA (Hernández-Rabaza et al., 2006), cocaine (Yamaguchi et al., 2004), nicotine 

(Abrous et al., 2002), heroin (Eisch et al., 2000) and alcohol (Richardson et al., 2009; Taffe et al., 

2010; Figure 1.7). An interplay between impairment of neurogenesis and memory deficits 

induced by cocaine was pointed by Sudai and co-workers (2011), showing that the decrease in 

newborn neurons was correlated with the poorer memory performance in the water T-maze. On 

the other hand, chronic administration of a low dose of AMPH increased neuronal 

differentiation as well as the survival of newborn neurons (Dabe et al., 2013). Similarly, MDMA 

increased cell proliferation after intermittent administration of MDMA (5 mg/kg, every 2 days; 

Catlow et al., 2010). 

 

 

Figure 1.7 – Modulation of SGZ neurogenesis. Summary of some of the effects that positively or 
negatively modulates cell proliferation, neuronal differentiation and neuronal survival of 
stem/progenitor cells of the SGZ. 
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1.3.5. Neurogenesis and methamphetamine 

As briefly pointed to other psychostimulants, METH can also alter the homeostasis of 

neurogenesis, effects that also dependent on the dose and frequency of exposure to the drug 

(reviewed by Silva et al., 2010; Gonçalves et al., 2014). Indeed, it has been first demonstrated by 

Hildebrandt and colleagues (1999) that a single dose of 50 mg/kg METH (i.p.) for 15 days 

decreases the number of BrdU-positive cells in the DG of gerbils. Accordingly, a single 

administration of 25 mg/kg METH (i.p.) to gerbils induced a transient decrease of proliferation in 

the SGZ (Teuchert-Noodt et al., 2000). On the other hand, mice administered with 1 mg/kg 

METH (s.c.) for 14 days showed no effect on DG cell proliferation (Maeda et al., 2007). 

Moreover, Mandyam and collaborators (2008) used different paradigms of self-administration to 

correlate with human patterns of METH abuse as follows: recreational, chronic and dependence. 

Indeed, self-administration for 1 h/day, twice weekly, of 0.05 mg/kg/infusion METH (i.v.) to 

Wistar rats (intermittent short-access, recreational pattern) increased proliferating cells in the 

SGZ (Mandyam et al., 2008; Recinto et al., 2012) as well as DCX-positive cells, with no effect on 

cell survival, neuronal and astroglial differentiation (Mandyam et al., 2008). However, METH 

administered 6 h/day for 22 days (Recinto et al., 2012) or 49 days (Mandyam et al., 2008, chronic 

and dependence paradigms) decreased the number of proliferating and DCX-positive cells, as 

well as the survival and differentiation into neuron and astrocytes (Mandyam et al., 2008).  

An interesting analysis of cell cycle in rats self-administering METH demonstrated that 

this drug (0.05 mg/kg/injection, i.v., 6 h daily access for 13 days) decreases the population of 

cells in the S phase of the cell cycle, without changing, however, its length (Yuan et al., 2011). In 

fact, the different response of DG cells to METH stimuli depends on the maturational state as 

observed by Yuan and collaborators (2011), showing that METH (0.05 mg/kg/injection, i.v., 1 h 

daily access for 13 days) increased the number of radial glia-like cells (type 1 cells) in the rat DG. 

On the other hand, METH (0.05 mg/kg/injection, i.v., 1 or 6 h daily access for 4 or 13 days) 

decreased the number of proliferating neuroblasts (type 2a cells) and increased the number of 

late precursor cells (type 3 cells; Yuan et al., 2011). Interestingly, Recinto and collaborators 

(2012) showed that decreased hippocampal proliferation in self-administered rats is correlated 

with poorer working memory performance, and withdrawal increased the survival of the 

progenitors. In vitro studies also point that METH impairs proliferation of hippocampal 

precursors as observed by Tian and collaborators (2009), where the authors showed that METH 

(300 µM) decreases the number of proliferating cells in rat hippocampal neural progenitor cell 

cultures, due to mitochondrial fragmentation-triggering apoptotic events. Additionally, 

Venkatesan and collaborators (2011) argued that METH (100 µM) decreases the number of 
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proliferating cells in neural progenitor cell cultures in part due to an increase of oxidative and 

nitrosative stress. In the SVZ, our group demonstrated that METH increases the number of 

Sox2
+
/TUNEL

+
 cells, meaning that SVZ stem/progenitor cells are also a target for METH-induced 

toxicity. Additionally, METH decreased cell proliferation, neuronal differentiation and 

axonogenesis in SVZ neurosphere cultures (Bento et al., 2011). 

As a result, METH induces changes in hippocampal neurogenesis, depending on the 

dose/concentration and/or frequency of exposure. Interestingly, different stages of DG neuron 

development react differently upon METH exposure. Therefore, little is known regarding the 

effect of METH on DG stem cell dynamics as well as the underlying mechanisms of METH-

induced toxicity. Importantly, how METH affects the functional properties and integration of 

preexistent circuitries of young DG neurons needs further consideration. 

 

1.4. Neuropeptide Y in the central nervous system 

 Neuropeptide Y (NPY) is a 36 amino acid peptide and was first isolated and characterized 

by Tatemoto and colleagues from the porcine brain extracts (Tatemoto et al., 1982a, Tatemoto, 

1982b). Furthermore, this neuropeptide belongs to the neuropeptide tyrosine family that also 

comprises peptide YY (PYY) and pancreatic polypeptide (PP; Michel et al., 1998).  

 NPY is widely expressed in the CNS, specifically in the cerebral cortex, nucleus 

accumbens, amygdala, entorhinal cortex, hypothalamus and hippocampus (Schwartzberg et al., 

1990). Indeed, NPY can be expressed in cell bodies, axons and terminals in the cerebral cortex, 

corpus callosum, caudate putamen, hippocampus and hypothalamus (Chronwall et al., 1985). 

Specifically, this peptide is expressed by somatostatin-positive interneurons in the cerebral 

cortex (Papadopoulos et al., 1987) and, in the hippocampus, there is a wide distribution being 

found in the hilus of the DG, CA1, CA2 and CA3 subfields (Chronwall et al., 1985; De Quidt and 

Emson, 1986). 

 NPY participates in many physiological functions in the CNS such as feeding (Gao et al., 

2004) and anxiety-/depression-like behaviors (Broqua et al., 1995; Sajdyk et al., 1999). Also, this 

neuropeptide modulates neurotransmitter release (Malva et al., 2012) and neurogenesis in both 

SGZ (Howell et al., 2003, 2005) and SVZ (Agasse et al., 2008), as well as neuroprotection against 

excitotoxic insult (Silva et al., 2003a) and drugs of abuse administration (Thiriet et al., 2005). 

 

1.4.1. Biosynthesis and structure 

The human NPY gene is located on chromosome 7 at the locus 7p15.1 (Baker et al., 

1995) and NPY cDNA consists of 291 bases, suggesting that the prepro-NPY has 97 amino acids 
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long with a molecular weight predicted to about 11 kDa (Minth et al., 1984). In detail, the NPY 

gene presents four exons separated by three introns. The first exon includes the 5’-

nontranslated segment of NPY, the second exon comprises the signal peptide and the majority 

of NPY sequence, the third exon contains the terminal tyrosine, the sequence GKR (glycine, 

lysine and arginine) and the first 23 amino acids of the C-flanked peptide of NPY (CPON), and the 

fourth exon includes the terminal heptapeptide of the CPON and the 3’-nontranslated sequence 

(Minth et al., 1986; Allen, 1990). In fact, prepro-NPY comprises a hydrophobic 28 amino acid N-

terminal signal peptide sequence followed by NPY sequence, the GKR and a 30-amino acid 

terminal peptide at the C-terminal peptide, CPON (Minth et al., 1984; Figure 1.8 A). As reviewed 

by Cerdá-Reverter and Larhammar (2000) the enzyme signal peptidase removes the signal 

peptide located at the N-terminal of the prepro-NPY, which will generate the pro-NPY. 

Moreover, the removal of C-terminal CPON from pro-NPY by the prohormone convertase, 

results in the NPY1-39. Then, the enzyme carboxypeptidase removes the lysine and the arginine 

residues from the GKR sequence at the COOH terminal from NPY1-39 peptide, resulting in NPY1-37. 

Afterwards, the G residue is removed by the amidating enzyme, resulting in the final amino acid 

sequence of the active NPY molecule, NPY1-36 (Cerdá-Reverter and Larhammar, 2000; Figure 1.8 

A). 

 

 

Figure 1.8 – NPY biosynthesis (A) and three dimensional structure (B). Adapted from Cerdá-
Reverter and Larhammar, 2000; Silva, 2003; Baptista, 2009; Dyzma et al., 2010. 
 

 

After complete biosynthesis of NPY, the resultant neuropeptide molecule consists in a 

total of 36 amino acids with a high content of tyrosine residues. In fact, comparing the primary 
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structures of NPY with PYY and PP, this neuropeptide contains a N-terminal tyrosine similar to 

PYY and the same C-terminal tyrosine as PP (Tatemoto, 1982b). Indeed, an extensive analysis 

revealed that the tertiary structure of NPY crystals has globular and compact structure, due to 

stabilized interactions between a poly-proline helix and an α-helix separated by a type I β-turn, 

creating a hairpin-like loop that makes closer the N-terminal with the C-terminals (Allen et al., 

1987). Specifically, the residues 13-32 from the amphiphilic α-helix are stabilized by hydrophobic 

interactions with the amphiphilic poly-proline helix in residues 1-8 (Minakata et al., 1989; Figure 

1.8 B). 

 

1.4.2. Neuropeptide Y receptors 

 NPY receptors belong to the family of G-protein coupled receptors (Michel, 1991; 

Benarroch, 2009) and modulate the inhibition of adenylate cyclase activity followed by inhibition 

of cAMP generation (Michel et al., 1991). Moreover, NPY receptors inhibit intracellular Ca2+ 

influx at both synaptic and nonsynaptic terminal areas (Toth et al., 1993; Silva et al., 2003b). 

Moreover, NPY receptor activation is able to activate the mitogen-activated protein kinase 

(MAPK) pathway (Howell et al., 2005) and enhance G-protein coupled inwardly rectifying 

potassium channels (GIRK channels; Paredes et al., 2003). 

 

Y1 receptor 

 Y1 receptors are glycoproteins with molecular weight around 70 kDa (Wan and Lau, 

1995). Also, Y1 receptor gene is grouped together with Y5 receptor in mice chromosome 8B3-C2 

and in human chromosome 4q31 (Eva et al., 2006). In fact, the C-terminal of NPY is essential for 

Y1 receptor recognition and a full NPY sequence is necessary for Y1 receptor to be fully activated 

(Wan and Lau, 1995). The first Y1 receptor agonist to be described was [Leu31,Pro34]NPY, 

obtained by the replacement of Ile31 and Gln34 for Leu31 and Pro34 (Fuhlendorff et al., 1990). 

Indeed, this agonist has high affinity to Y1 receptor, whereas low affinity is observed to Y2 

receptors (Fuhlendorff et al., 1990). Regarding Y1 receptor antagonists, the most used are non-

peptides, which includes BIBP3226 (Vanderheyden et al., 1997), LY357897 (Hipskind et al., 1997) 

and BIBO3304 (Wieland et al., 1998). 

 The main physiological functions of Y1 receptors are the regulation of food intake (Kask 

et al., 1998; Kanatani et al., 2000; Gao et al., 2004), anxiety and stress (Broqua et al., 1995; 

Sajdyk et al., 1999), seizure threshold (Gariboldi et al., 1998), ethanol dependence (Bhisikar et 

al., 2009; Sparrow et al., 2012) and GABAergic transmission (Molosh et al., 2013). 
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 These receptors are widely distributed in both central and peripheral nervous systems. 

Hence, in the CNS, Y1 receptor mRNA expression is highly expressed in the cerebral cortex, 

amygdala, hypothalamus and spinal cord (Kishi et al., 2005). Furthermore, Y1 receptor 

immunoreactivity is evident in the nucleus accumbens, caudate putamen, ventral tegmental 

area, hypothalamus and cerebellum (Wolak et al., 2003). In the rat and mice hippocampus, Y1 

receptor mRNA is highly expressed in the granule cell layer of the DG (Kishi et al., 2005) and in 

pyramidal layers, whereas moderate density hybridization was found in the ventral and 

intermediate subiculum (Kishi et al., 2005). Furthermore, Wolak and collaborators (2003) 

observed that Y1 receptors are highly expressed within the cell bodies and fibers of CA1, CA2 and 

CA3 subfields of Sprague-Dawley rats, but in the DG the only immunoreactivity observed was in 

fibers from the molecular layer. Regarding human hippocampus, the granule cell layer of the DG 

express high levels of Y1 receptor mRNA, whereas almost undetectable levels was found in the 

subiculum, and CA1 and CA3 subfields (Caberlotto et al., 1997).   

 

Y2 receptor 

 NPY Y2 receptor subtype is a 7 transmembrane protein with a molecular weight of 50 

kDa (Parker and Williams, 1990) and is confined in the human chromosome 4q31 like Y1 

receptor subtype and in mice chromosome 3 (Ammar et al., 1996). In fact, this receptor has 

higher affinity to NPY and PYY (Rose et al., 1995) and can be activated by NPY(3-36) and NPY(13-

36), which have more affinity for this receptor than for Y1 receptors (Grandt et al., 1996). 

Regarding Y2 receptor antagonists, the first to be synthesized was T4-[NPY(33-36)] (Grouzmann 

et al., 1997), followed by the non-peptide BIIE0246 (Doods et al., 1999) and, more recently, the 

JNJ-31020028, a non-peptide that can cross the BBB (Shoblock et al., 2010; Swanson et al., 

2011). 

 Y2 receptor main physiological functions involve the regulation of neurotransmitter 

release, specifically the inhibition of glutamate release (Silva et al., 2003b), and reduction of 

neuronal excitability, i.e., the duration of epileptic activity and the number of seizure episodes in 

mice hippocampus (El Bahh et al., 2005). Noteworthy, overexpression of Y2 receptors alone, or in 

combination with NPY overexpression, suppresses seizures in the hippocampus and slowed the 

progression of kindling (Woldbye et al., 2010). Besides, these receptors mediate spatial and 

nonspatial working memory processing (Redrobe et al., 2004), anxiety-/depression-like 

behaviors (Tasan et al., 2010), and circadian rhythm (Soscia and Harrington, 2005). Furthermore, 

Y2 receptors are also involved in food intake as demonstrated by Ortiz and colleagues (2007), 

which inhibition increased food intake, whereas activation increased insulin levels in diet-
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induced obese mice (Ortiz et al., 2007). Regarding ethanol abuse, central blockade of Y2 receptor 

subtype suppresses ethanol self-administration (Rimondini et al., 2005).  

 Y2 receptor mRNA is expressed throughout the brain, exhibiting high expression in the 

hippocampus, hypothalamus and amygdala, whereas moderate levels can be found in substantia 

nigra and ventral tegmental area (Parker and Herzog, 1999). Besides, Y2 receptor protein is 

expressed in several brain areas, specifically in the olfactory bulb, the layers 2/3 and 6 of the 

cerebral cortex, amygdala, hypothalamus and hippocampus (Stanić et al., 2011). Specifically in 

the DG, Y2 receptor localization is mainly presynaptic since high levels are found in the mossy 

fibers, whereas in CA1 and CA2, Y2 receptor is mainly localized in cell bodies (Stanić et al., 2006). 

 

Y3 receptor 

 Y3 receptors are considered as putative because this receptor has not been cloned yet 

and no specific agonists or antagonists have been found (Michel et al., 1998). However, Glaum 

and collaborators (1997) suggested that the positions 13 and 14 of NPY are important for Y3 

receptor recognition. Also, this receptor subtype has high affinity to NPY, but poorly recognizes 

PYY and PP in the rat cardiac myocytes (Balasubramaniam et al., 1990).  

 This receptor subtype is present in the heart and chromaffin cells (Balasubramaniam et 

al., 1997) however, little is known about the presence and distribution of Y3 receptors in the 

CNS. In fact, Monnet and collaborators (1992) reported its expression in the rat CA3 dorsal 

hippocampus. Other pieces of evidence pointed that Y3 receptors are expressed in the nucleus 

tractus solitarius (NTS) and, upon NPY activation, modulates bradychardia, hypotension and 

inhibition of glutamate responses (Grundemar et al., 1991). Moreover, NPY, but not PYY and PP, 

through activation of Y3 receptors, inhibits EPSCs of NTS neurons and suppresses inhibitory 

postsynaptic currents evoked from local GABAergic interneurons of the NTS in the brain stem 

(Glaum et al., 1997). 

 

Y4 receptor 

 Human Y4 receptor gene is localized in the region 10q11.2 of the chromosome 10, 

whereas in mice is confined to the chromosome 14 (Darby et al., 1997). Furthermore, human Y4 

receptor is a 7-transmebrane protein, with a 60 kDa molecular weight, and is coupled to an 

adenylyl cyclase, which results in the inhibition of the second messenger cAMP (Voisin et al., 

2000). In addition, Berglund and collaborators (2003) observed that human Y4 receptor subtype 

forms a 160 kDa homodimer, and this complex dissociates upon PP or 1229U91 (agonist) 

binding. In fact, PP binds to the receptor with high affinity and selectivity (Berglund et al., 2001), 
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whereas NPY and PYY have lower and similar affinities between them (Zou et al., 2008). 

Regarding Y4 receptor ligands, the Y1 receptor antagonist, GW1229 (also known as 1229U91 or 

GR121118), is an Y4 receptor agonist, and UR-AK49 is a non-peptide antagonist for this receptor 

(Ziemek et al., 2007).  

 In the CNS, Y4 receptor mRNA is highly expressed in the brainstem and hypothalamus, 

but moderate expression is observed in the entorhinal cortex, hippocampus (DG, CA1, CA2 and 

CA3) and subiculum (Parker and Herzog, 1999; Berglund et al., 2003). Similarly, Y4 receptor 

immunoreactivity can be observed in the cortex and hypothalamus, specifically in the lateral 

hypothalamic area where orexin neurons highly express this receptor (Campbell et al., 2003). 

The fact that Y4 receptor is expressed in orexin-expressing neurons in the hypothalamus may 

closely be correlated with food intake control. Indeed, selective activation of Y4 receptors in the 

lateral hypothalamic area of freely moving rats induces strong dipsogenic and moderate food 

intake responses (Campbell et al., 2003). In addition, it was suggested that centrally activation of 

Y4 receptor may be involved in both luteinizing hormone, hormone responsible for triggering 

ovulation and production of testosterone, and follicle-stimulating hormone release that 

regulates development, growth and pubertal maturation of the body (Raposinho et al., 2000). 

Also, Y4 mRNA can be found in whole rat retina and retina endothelial cell line (Álvaro et al., 

2007), where was shown to inhibit KCl-evoked increase of intracellular Ca2+, and so to have a 

neuroprotective role (Álvaro et al., 2009). 

 

Y5 receptor 

 Y5 receptor is a 7 transmembrane protein with a molecular weight of 57 kDa (Campbell 

et al., 2001) and the gene resides in human chromosome 4q, approximately 20 kb away from Y1 

receptor gene and in an opposite orientation (Gerald et al., 1996; Herzog et al., 1997; 

Larhammar and Salaneck, 2004). Furthermore, human Y5 receptor shares only 30-33% of the 

amino acid sequence with Y1, Y2 and Y4 receptor subtypes, and 88% with rat Y5 receptor (Hu et 

al., 1996). Also, Y5 receptors are preferentially activated by NPY and PYY (Gerald et al., 1996); 

however some specific and selective agonists have been developed, such as the agonist 

[125I][cPP(1-7),NPY(19-23),Ala31,Aib32,Gln34]hPP that has high affinity and specificity for Y5 

receptors, contrarily to what is observed in Y1, Y2 or Y4 receptors (Cabrele et al., 2000; Dumont et 

al., 2004). Cabrele and collaborators (2000) observed that NPY or PP/NPY chimeras provided 

with key motif Ala31-Aib32 show to be highly selective and to have high affinity with Y5 receptors. 

Regarding Y5 receptor antagonists, the non-peptide L-152,804 is potent and highly selective to 

this receptor, but not to Y1, Y2 or Y4 receptors (Kanatani et al., 2000). Moreover, a new Y5 
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receptor antagonist has been described, the trans-N-[1-(2-fluorophenyl)-3-pyrazolyl]-3-oxospiro-

[6-azaisobenzofuran-1(3H),1’-cyclohexane]-4’-carboxamide, which efficiently inhibits these 

receptors when taken orally and is metabolically stable (Haga et al., 2009). 

 In the human brain, high expression of Y5 receptor mRNA is found in the hypothalamus, 

stratum granulosum of the DG, and a lower expression in CA1 and CA3 subfields of the 

hippocampus (Jacques et al., 1998). However, discrete expression of Y5 receptor mRNA can be 

observed in the frontal and temporal cortices (Jacques et al., 1998). In the rat, Y5 receptor mRNA 

(Hu et al., 1996) and immunoreactivity (Wolak et al., 2003) are distributed in the cortex, 

hippocampus (highest expression in the DG and CA3), caudate putamen, nucleus accumbens and 

hypothalamus. 

 The main function of Y5 receptor is the control of food intake. Indeed, the activation of 

this receptor seems to stimulate hyperphagia and increase of body weight (Criscione et al., 1999; 

Mashiko et al., 2003). Furthermore, Y5 receptor activation is involved in the control of neuronal 

excitability (Woldbye et al., 1997), as well as in the inhibition of glutamate release from 

hippocampal synaptosomes (Silva et al., 2005). Moreover, activation of this receptor subtype 

induces neuroprotection in the DG and CA3 hippocampal subfields of organotypic slice cultures 

exposed to an excitotoxic insult (Silva et al., 2003a). Regarding drugs of abuse, inhibition of Y5 

receptors decreases cocaine-induced self-administration, increases DA release in the nucleus 

accumbens and leads to hyperactivity (Sørensen et al., 2012).  

 

y6 receptor 

 y6 receptor gene is localized in the region 5q31 of the human chromosome 5 and mRNA 

was found in cardiac and skeletal muscle tissues (Gregor et al., 1996). Moreover, y6 receptor 

expression in primates has never been found (Matsumoto et al., 1996), thus no physiological 

function has been addressed yet, leading to the interesting hypothesis that, in primates, is 

believed that the y6 gene became nonfunctional during evolution (Gregor et al., 1996; Michel et 

al., 1998). Furthermore, mRNA of this receptor subtype was found in the murine brain, including 

the hippocampus and hypothalamus, and has high affinity to PP (Gregor et al., 1996).  

 

1.4.3. Neuropeptide Y and methamphetamine 

The first study available that explored the effect of METH on NPYergic system points to 

an increase of NPY release in the paraventricular nucleus (PVN) after METH administration (5 

mg/kg, i.p.) to Wistar rats (Yoshihara et al., 1996). In fact, PVN receives NPY projection from the 

hypothalamus (Broberger et al., 1999), an important region for the feeding behavior control, and 
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METH has been shown to decrease food intake (Ginawi et al., 2005). Therefore, the link between 

METH use and food behavior alterations may not rely on changes in NPY release, but may 

interfere with Y1 receptor signaling as it has been suggested to regulate food intake in this 

region. Furthermore, NPY mRNA levels are augmented in the arcuate nucleus of the 

hypothalamus after METH injection (7.5 mg/kg, i.p.; Crowley et al., 2005). Regarding the 

striatum, a single dose of METH (15 mg/kg, i.p.) or multiple doses of 10 mg/kg METH (i.p.) 

managed to decrease NPY immunoreactivity in the posterior nucleus accumbens and caudate 

nucleus, an effect caused by activation of D1 receptors (Westwood and Hanson, 1999). 

However, Horner and collaborators (2006) verified that the expression of prepro-NPY mRNA is 

upregulated in the striatum an effect that also involved D1 receptor activation (Horner et al., 

2006). Moreover, METH addiction revealed no changes on NPY levels in the caudate nucleus, 

caudate putamen, nucleus accumbens or thalamus, but a decrease was observed in the 

Brodmann’s cortical area 9 and 22 (Frankel et al., 2007). Apart from this, Okahisa and 

collaborators (2009) link the Y1 receptor gene to the susceptibility to METH dependence and 

METH use disorders, by pointing that the genotypic distribution of rs7687423 of Y1 receptor 

gene was different in METH users when compared to controls (non-users). 

 The neuroprotective properties of NPY have been raised as an important feature under 

several pathological conditions. At the cellular level, it is well known that NPY modulates 

neurotransmitter release and Ca2+ homeostasis (Silva et al., 2001; Malva et al., 2012). Contrarily 

to NPY, METH administration increases intracellular Ca2+ verified by the activation of calpain, a 

mediator of endoplasmic reticulum-dependent cell death (Jayanthi et al., 2004), and alterations 

of neurotransmitter homeostasis (Mark et al., 2004, 2007). In fact, Thiriet and collaborators 

(2005) found that NPY (10 µg, i.c.v.), through activation of Y2 receptors and to a less extend Y1 

receptors, lowers hyperthermia and protects mice striatum injected with a binge regimen of 

METH (4x 10 mg/kg every 2 h, i.p.). Also, a very interesting finding from our group revealed that 

Y2 receptors are involved in METH-induced memory deficits, demonstrating that blockade of Y2 

receptor subtype completely prevented METH-induced deficits in spatial and recognition 

memory performance in mice injected with 30 mg/kg METH (i.p.; Gonçalves et al., 2012a). 

Indeed, these findings are positively correlated with high expression of Y2 receptors in the DG, 

CA1 and CA3 subfields of the hippocampus in METH-injected mice (Gonçalves et al., 2012a). In 

fact, Y2 receptors seem to have a dual effect: its inhibition protects against METH-induced 

memory deficits, but on the other hand, its activation protects against METH-induced cell death 

in mice hippocampus (Gonçalves et al., 2012b). 
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1.4.4. Neuropeptide Y and neurogenesis of the hippocampus 

New neurons are produced throughout life, but the regulation of neurogenesis is far to 

be unraveled. Nevertheless, some studies have highlighted the impact of NPYergic system on 

neurogenesis.  Howell and collaborators (2003) showed that incubation with NPY (1 µM) for 3, 5 

or 7 days increases the number of proliferating cells (BrdU
+
), progenitor cells (Nestin

+
) and 

committed neurons. Furthermore, these proproliferative and proneurogenic effects induced by 

NPY are mediated by Y1 receptor subtype since SGZ cultures derived from Y1 receptor KO mice 

and incubated with NPY did not exhibit any changes neither on proliferation nor on neuronal 

differentiation (Howell et al., 2003). Also, the same group showed that Y1 homozygous KO 

129/SvJ mice present lower cell proliferation in the SGZ, however without affecting newborn 

neurons survival (Howell et al., 2005). Additionally, NPY-induced proliferation requires 

extracellular-signal-regulated kinase 1/2 (ERK1/2) activation since the phosphorylated state of 

ERK1/2 was up-regulated after NPY incubation (Howell et al., 2005). Another mechanism 

intrinsic to NPY-induced SGZ cell proliferation is the up-regulation of fibroblast growth factor 

receptor 1 (FGFR1) levels, whose activation induces clonal development of neural 

stem/progenitor cells, and together with NPY potentiates proliferation in SGZ cell cultures 

(Rodrigo et al., 2010). Additionally, SGZ cell cultures incubated with NPY showed an increase of 

FGFR1 mRNA and protein levels in proliferating cells via activation of Y1 receptor (Rodrigo et al., 

2010). Moreover, the proliferative effect induced by NPY through Y1 receptors in SGZ cell 

cultures seems to be mediated by NO since the inhibition of nNOS reduced cell proliferation and 

the proportion of Nestin+/BrdU+ cells to control levels (Cheung et al., 2012). An interesting 

finding was that only the intracellular NO is able to contribute to the proliferative effect induced 

by NPY via activation of the cGMP-PKG pathway followed by downstream activation of ERK1/2 

pathway (Cheung et al., 2012). Similarly, animal studies demonstrated that NPY (2.5 pmol, i.c.v.) 

through Y1 receptors specifically enhanced proliferation of transient amplifying neural 

progenitor cells and neuroblasts, and stimulated neuronal differentiation in the DG (Decressac et 

al., 2011). Noteworthy, as described in section 1.3.4, age down-regulates neurogenesis 

(Couillard-Després, 2012) and Hattiangady and collaborators (2005) observed that in middle-

aged (12-21 month-old) and aged (up to 22 month-old) Fisher 344 rats the number of NPY-

positive interneurons in the DG is decreased by half when compared to young rats (3-6 month-

old). 
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1.5. Objectives 

 It has been shown that chronic exposure to METH induces structural alterations in the 

hippocampus as well as hippocampal-dependent memory deficits (Thompson et al., 2004). 

Furthermore, METH can have a dual and opposite effects on DG neurogenesis depending on the 

dose and frequency of exposure to the drug (Mandyam et al., 2008). Indeed, simulating 

recreational use of METH was possible to observe an increase in the number of proliferating 

cells and newborn neurons, whereas addiction administration protocols develop the opposite 

effect. Despite these studies, little information is available regarding the mechanisms underlying 

METH-induced alteration of neurogenesis. Therefore, this study presents three major aims 

regarding the effect of METH on DG neurogenesis: 1 – investigate the impact of this drug of 

abuse on DG stem cell self-renewal capacities; 2 – explore a possible therapeutic strategy taking 

advantage of the protective and proneurogenic properties of NPY; and 3 – study alterations on 

synaptic plasticity of both immature and mature DGCs. 

 Stem cells have the ability to self-renew and differentiate into the major three neural 

cell types: neurons, astrocytes and oligodendrocytes (Pastrana, 2011). In fact, it has been 

recently shown that METH self-administration increases the number of radial glia-like cells, but 

decreases the number of neuroblasts (Yuan et al., 2011). In the present work, we explored the 

effect of METH on DG stem cell self-renewal assessed by the neurosphere assay, as well as cell 

proliferation focusing on cell cycle alterations and the possible contribution of MAPK pathway 

(Heo et al., 2006). Furthermore, we aim to analyze the effect of METH on DG stem cell division, 

characterized by cell fate after cell division: if towards self-renewal or towards differentiation.  

 The second aim consists on the possible protective and proneurogenic role of NPY 

against the toxicity induced by METH. Here, we explored the mechanisms underlying METH- 

induced cell death of DG stem/progenitor cells under differentiation. Meantime, the effect of 

METH on neuronal differentiation will be also taken into consideration. Moreover, NPY will be 

tested to counteract the possible toxic effect induced by this drug, since it was described by 

others to protect striatal cells from METH-induced toxicity (Thiriet et al., 2005). Besides the 

protective effect of NPY, this neuropeptide can also enhance cell proliferation and neuronal 

differentiation to both SGZ (Howel et al., 2003, 2005; Decressac et al., 2011) and SVZ (Agasse et 

al., 2008; Decressac et al., 2009). Here, we will test if NPY is also able to prevent the negative 

effects of METH on neurogenesis.  

Synaptic changes are verified in the DG following learning and can be represented as LTP 

(Neves et al., 2008). In fact, immature DG neurons have a critical period where they exhibit 

enhanced synaptic plasticity (Ge et al., 2007a), which could be correlated with activation and 
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recruitment of these cells during learning acquisition (Kee et al., 2009). Therefore, we addressed 

weather a chronic regimen of METH induces changes in DG neurogenesis and how it could be 

correlated with synaptic plasticity. We will take advantage of the G42 (GAD67-GFP) mice as a 

model of neurogenesis, which was previously described to label immature neurons in the DG 

with a transient GABAergic phenotype (Cabezas et al., 2012). 
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2.1. Abstract  

Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that 

negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers 

stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). 

Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the 

impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM) 

decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase 

transition and increased the number of quiescent cells (G0 phase), which correlated with a 

decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 

or 10 nM) did not induce cell death. In accordance with the impairment of self-renewal capacity, 

METH (10 nM) decreased Sox2+/Sox2+ while increased Sox2-/Sox2- pairs of daughter cells. This 

effect relied on N-methyl-D-aspartate (NMDA) signaling, which was prevented by the NMDA 

receptor antagonist, MK-801 (10 µM). Moreover, METH (10 nM) increased doublecortin (DCX) 

protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell 

properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may 

contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH 

consumers.  

 

 

2.2. Introduction 

 Methamphetamine (METH) is a highly addictive drug whose consumption has been 

increasing worldwide and turned to be a public health problem (Silva et al., 2010). Several 

studies have extensively described the negative effects of METH in the Central Nervous System 

(Gonçalves et al., 2014; Krasnova and Cadet, 2009), concluding that METH abusers exhibit 

smaller hippocampal volume, which was positively correlated with poorer memory performance 

(Thompson et al., 2004). Accordingly, animal studies have clearly demonstrated hippocampal 

neuronal dysfunction (Gonçalves et al., 2010), as well as cognitive deficits induced by this 

psychostimulant (Simões et al., 2007). Nevertheless, the mechanisms of METH-induced memory 

deficits are still poorly understood, but pieces of evidence show that neurogenesis is tightly 

related to memory. In fact, reduction in the number of immature neurons induces deficits in 

long-term retention of spatial cognitive functions (Deng et al., 2009), and ablation of 

hippocampal neurogenesis impairs memory performance related to pattern separation functions 

(Clelland et al., 2009).  
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The information available regarding the effect of METH on neurogenesis describes that, 

in the dentate gyrus (DG), cell proliferation is decreased in gerbils (postnatal day 30) 

administered once with the drug at postnatal day 14-20 (50 mg/kg) (Hildebrandt et al., 1999). On 

the other hand, a lower dose of METH (25 mg/kg) transiently decreased cell proliferation in the 

same region (Teuchert-Noodt et al., 2000). Furthermore, a chronic METH administration (1 

mg/kg/day for 14 days) had no effect on the number of proliferating cells in mice DG (Maeda et 

al., 2007). Interestingly, Wistar rats self-administered with METH (0.05 mg/kg/infusion, 1 h 

intermittent access, 2x a week during 28 days) displayed an increase in DG cell proliferation as 

well as in neuronal differentiation, whereas both short (1 h/day) and long (6 h/day) access 

decreased proliferation and differentiation followed by a reduced number of DG granule cell 

neurons (Mandyam et al., 2008). Furthermore, self-administration of METH (1 h/day access 

METH for 13 days) increased the number of radial glia-like cells (type 1 cells), but decreased the 

proportion of preneuronal neuroblasts (type 2a cells; Yuan et al., 2011) showing that at different 

maturation stages cells respond differently to an external stimuli (Tashiro et al., 2007). Also, 

daily access to METH (6 h/day for 4 or 13 days) decreased the number of proliferating cells in the 

DG without changing, however, the length of S-phase of the cell cycle (Yuan et al., 2011). In vitro 

studies also point that METH reduced proliferation of rat hippocampal neural progenitor cells 

(Tian et al., 2009; Venkatesan et al., 2011). Additionally, our group recently verified that a 

nontoxic concentration of METH (1 nM for 7 days) decreased the number of mature neurons in 

DG-derived neurosphere cultures (Chapter 3, Figure 3.7). Concerning the subventricular zone 

(SVZ), we have also shown that METH decreases cell proliferation, neuronal differentiation and 

maturation of stem/progenitor cells (Bento et al., 2011).  

Overall, it seems clear that METH interferes with hippocampal neurogenesis, but many 

questions remain unanswered. In fact, the direct effect of this drug on stem cell self-renewal 

capacities has never been addressed before. Herein, we show that METH delays cell cycle 

progression from G0/G1-to-S phase. This effect could be due to the down-regulation of cyclin E, 

a cyclin involved in the progression through the G1 phase and initiation of DNA replication in the 

S phase, and to the decrease of epidermal growth factor receptor (EGFR) and extracellular-

signal-regulated kinases 1/2 (ERK1/2) phosphorylation, mediators in the MAPK signaling 

pathway involved in cell proliferation progression. Also, METH decreases DG stem cell self-

renewal capacities, which seems to involve NMDA receptors. In conclusion, the present work 

reveals a negative impact of METH on DG stem cell capacities that can contribute to memory 

deficits upon METH consumption. 
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2.3. Material and methods 

 

2.3.1. Dentate gyrus neurosphere cultures 

 Post-natal 1-3-day-old C57BL/6J mice were sacrificed by decapitation and brains were 

placed in sterile saline solution. Afterwards, meninges were removed and DG fragments were 

dissected from 450 µm-thick brain coronal sections, digested in 0.025% trypsin and 0.265 mM 

EDTA (both from Life Technologies, Carlsbad, CA, USA), and single cells were obtained by gentle 

trituration. Then, cells were diluted in serum-free culture medium (SFM) composed of 

Dulbecco’s modified Eagle’s medium/Ham’s (DMEM) F-12 medium GlutaMAX-I supplemented 

with 100 U/ml penicillin, 100 µg/ml streptomycin, 1% B27 supplement, 5 ng/ml epidermal 

growth factor (EGF) and 2.5 ng/ml basic fibroblast growth factor (bFGF-2) (all from Life 

Technologies). Afterwards, cells were plated in uncoated Petri dishes and neurospheres were 

allowed to develop for 6 days in a 95% air-5% CO2 humidified atmosphere at 37°C. At 6 days, the 

neurospheres mean diameter was 90.22 ± 2.24 μm (measurements performed on 2 independent 

cultures).  

Experimental procedures were performed according to the guidelines of the European 

Communities Council Directives (2010/63/EU) and the Portuguese law for the care and use of 

experimental animals (DL nº 129/92). All efforts were made to minimize animal suffering and to 

reduce the number of animals. 

 

2.3.2. Cell death assay 

 DG neurospheres were exposed to 10 or 100 nM METH (Department of Chemistry and 

Biochemistry, Faculty of Sciences, University of Porto, Portugal) for 24 h (Figure 2.1 A) and then 

dissociated with NeuroCult® chemical dissociation Kit (Stem Cell Technologies, Grenoble, 

France). Cells were adhered to SuperFrost Plus glass slides (Thermo Scientific, Menzel GmbH & 

Co KG, Braunscheweig, Germany) by centrifugation (360 xg, 5 min; Cellspin I, Tharmac GmbH, 

Waldsoms, Germany), and fixed in 4% paraformaldehyde (PFA). Afterwards, terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed to label 

apoptotic nuclei. Briefly, cells were rinsed 3x 10 min with 0.01 M phosphate-buffered saline 

(PBS) and permeabilized in 0.25% Triton X-100 for 30 min at room temperature. Cells were then 

incubated with terminal deoxynucleotidyl transferase buffer (0.25 U/µl terminal transferase, 6 

µM biotinylated dUTP, pH 7.5; Roche, Basel, Switzerland) for 1 h at 37°C in a humidified 

chamber. Afterwards, cells were rinsed with a termination buffer solution (300 mM NaCl and 30 

mM sodium citrate) for 15 min, followed by PBS for 5 min and incubated with Fluorescein 
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(1:100; Vector Laboratories, Burlingame, USA) for 1 h. Additional SRY (sex determining region Y)-

box 2 (Sox2) immunostaining was performed (as described in the immunocytochemistry section) 

to identify stem cells. Finally, nuclei were counterstained with 4 µg/ml Hoechst 33342 (Sigma-

Aldrich) for 5 min and mounted in Dako fluorescence mounting medium (Dako, Glostrup, 

Denmark). Cell counts were obtained from 6 microscope fields of each coverslip, from 3 

independent cultures performed in triplicate.  

 

2.3.3. Immunocytochemistry 

 DG cell cultures or neurospheres were fixed in 4% PFA for 30 min, permeabilized in 1% 

Triton X-100 and 3% bovine serum albumin (BSA; all from Sigma-Aldrich, St Louis, MO, USA) in 

PBS, followed by overnight incubation at 4°C with the following antibodies: goat polyclonal anti-

Sox2 (1:200; Santa Cruz Biotechnology, Heidelberg, Germany), goat anti-doublecortin (DCX, 

1:500; Santa Cruz Biotechnology) and rabbit polyclonal anti-glial fibrillary acidic protein (GFAP, 

1:500; Sigma-Aldrich). Then, cells were rinsed with PBS and incubated for 1 h with the 

appropriate secondary antibodies: donkey anti-goat Alexa Fluor 594 or donkey anti-rabbit Alexa 

Fluor 488 (both 1:200; Life Technologies). Afterwards, nuclei were stained with 4 µg/ml Hoechst 

33342 (Sigma-Aldrich) and slides were mounted in Dako Fluorescence images for cells counts 

were recorded using a fluorescence microscopy (Leica DMIRE200, Wetzler, Germany). 

 

2.3.4. Cell cycle analysis 

 Six-day-old DG primary neurospheres were exposed to 1 nM METH for 24 h or 72 h 

(Figure 2.2 A), dissociated and fixed in 70% ethanol for 20 min at 4°C. Then, cells were 

centrifuged at 550 xg for 5 min and ressuspended in a solution containing 2% Fetal Bovine 

Serum (FBS; Life Technologies) in PBS. Afterwards, 106 cells/ml were incubated with 10 μM 

Vybrant® Dye Cycle Orange (Life Technologies), which is a DNA-selective and membrane 

permeant probe that binds stoichiometrically to DNA and becomes fluorescent upon binding, in 

the presence of 0.1% Triton X-100 for 45 min at 37°C. Afterwards, cells in suspension were 

centrifuged at 550 xg for 5 min and resuspended in 2% FBS in PBS. Approximately 30000 events 

were analyzed on a FACS Calibur flow cytometer (Becton Dickinson, San Jose, CA, USA) and cell 

cycle was analyzed using the ModFit software.  

Cell quiescence was assessed in DG neurospheres treated with 1 nM METH for 24 h 

(Figure 2.2 A). Neurospheres were dissociated to single cells (NeuroCult®) and incubated for 15 

min at 37°C with 1 µg/ml Hoechst 33342 (Life Technolgies) and 1 µg/ml pyronin-Y (Sigma-

Aldrich), a fluorescent probe that binds to RNA, in culture medium supplemented with 0,1% 
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Triton. Then, cells were centrifuged for 5 min at 550 xg, resuspended in culture medium and 

analyzed on a FACS Aria III (Becton Dickinson). In detail, pyronin-Y was excited at 488 nm and red 

fluorescence was collected at 545/35 nm, and Hoechst 33342 was excited at 355 nm (UV) and 

blue fluorescence was recorded at 450/50 nm. A total of 10000 cells were analyzed per sample 

at a velocity of 400 events/second. Proper controls consisting of cells incubated with either 

Hoechst 33342 or Pyronin-Y were performed to calibrate the cytometer. Also, to exclude dead 

cells, DG cells were incubated with 2 µg/ml propidium iodide (Sigma-Aldrich). Data were 

analyzed using the flowJo software. 

To clarify the behavior of these cells during time, the number of cell divisions within 24 h 

was analyzed.  For that, we took advantage of the tracing dye carboxyfluorescein diacetate 

succinimidyl ester (CellTrace™ CFSE; Life Technologies), a cell-permeable non-fluorescent ester 

that once inside the cell, the esterase cleaves the acetyl groups and the molecule becomes 

markedly fluorescent. The succinimidyl ester group covalently binds to amino groups on 

intracellular macromolecules, anchoring the dye. As cells divide, each daughter cell receives half 

the fluorescent label of the parent and fluorescence intensity can be measured, allowing the 

quantification of the number of generations. Thus, DG neurospheres were incubated with the 

CFSE (10 µM) for 24 h and a total of 10000 cells were analyzed on a FACS Aria III (Becton 

Dickinson) with a 488 nm laser. Control conditions were performed by incubating DG cells with 

the tracing dye for 30 min. Data were analyzed using the flowJo software. 

 

2.3.5. Western blot analysis 

 To evaluate cyclin A, D1 and E protein levels, 6-day-old neurospheres were exposed to 1 

nM METH or to 10 nM METH for cyclin E protein levels determination during 24 h (Figure 2.4 A). 

Moreover, phospho-epidermal growth factor receptor (pEGFR), epidermal growth factor 

receptor (EGFR), phospho-fibroblast growth factor receptor 1 (pFGFR1), phospho-extracellular-

signal-regulated kinases 1/2 (pErk1/2) and extracellular-signal-regulated kinases 1/2 (ERK1/2) 

protein levels were analyzed in DG neurospheres exposed to 1 or 10 nM METH for 6 or 24 h 

(Figure 2.5 A). Regarding DCX and GFAP protein levels, DG cells were exposed to 1 or 10 nM 

METH for 6 days (Figure 2.8 A) and the resulting neurospheres were harvested. Then, DG 

neurospheres were homogenized in RIPA buffer containing 150 mM NaCl, 5 mM EGTA, 50 mM 

Tris, 1% (v/v) Triton X-100, 0.1% SDS and 0.5% sodium deoxycholate, supplemented with a 

protease inhibitor cocktail tablet (Roche, Amadora, Portugal) in the ratio of 1 tablet/10 ml RIPA 

buffer. Afterwards, cells were centrifuged at 17000 xg for 15 min and protein concentration was 

determined using the bicinchoninic acid (BCA) Protein Assay (Thermo Fisher Scientific, 
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Northumberland, UK). Then, 10 µg or 30 µg of protein samples were separated by 

electrophoresis in a 8% or 12% SDS-PAGE, respectively, transferred to a polyvinylidene 

dofluoride (PVDF) membrane (Millipore, Algés, Portugal) and blocked in a solution of 5% non-fat 

dried milk or 4% BSA in PBS-0.5% Tween (PBS-T; Sigma-Aldrich) for 1 h. Membranes were probed 

overnight at 4°C with mouse monoclonal anti-cyclin A (1:200; Abcam, Cambridge, UK), mouse 

monoclonal anti-cyclin D1 (1:100), mouse monoclonal anti-cyclin E (1:100), rabbit polyclonal 

anti-p21 (1:200), mouse monoclonal anti-p27 (1:200) (all from Santa Cruz Biotechnology), mouse 

monoclonal anti-phospho-epidermal growth factor receptor (pEGFR; 1:500; Millipore), rabbit 

polyclonal anti-EGFR (1:200; Abcam), rabbit monoclonal anti- pFGFR1 (1:200; Abcam), rabbit 

monoclonal anti-pERK1/2 (Thr202/Tyr204; 1:200; Cell Signaling Technology, Beverly, MA, USA), 

rabbit monoclonal anti-ERK1/2 (1:200; Cell Signaling Technology), rabbit polyclonal anti-GFAP 

(1:1000; Sigma-Aldrich), goat polyclonal anti-DCX (1:200; Santa Cruz Biotechnology), mouse 

monoclonal anti-β-actin (1:10000; Sigma-Aldrich) and rabbit polyclonal anti-GAPDH (1:500; 

Sigma-Aldrich). Then, membranes were rinsed in PBS-T and incubated for 45 min with alkaline 

phosphatase-conjugated secondary antibodies as follows: anti-rabbit IgG, (1:20000; GE 

Healthcare Europe GmbH, Freiburg, Germany), anti-mouse (1:10000, GE Healthcare Europe 

GmbH) and anti-goat IgG, (1:10000, Zymax, California, USA). Densitometric analysis was 

performed using the ECF reagent (GE Healthcare Europe GmbH), visualized on the Typhoon 9000 

system (GE Healthcare Europe GmbH), and band intensities were quantified using the 

ImageQuant 5.0 software. 

 

2.3.6. Neurosphere self-renewal assay 

 Self-renewal capacity of DG stem/progenitor cells was assessed using the neurosphere 

assay. In detail, DG cells were seeded at clonal density of 10 cells/µl (Coles-Takabe et al., 2008; 

Pastrana et al., 2011) into uncoated 24-well plates and incubated with 1 or 10 nM METH for 6 

days and the total number of primary neurospheres in each well was determined (Figure 2.6 A). 

Afterwards, primary neurospheres were dissociated (NeuroCult® chemical dissociation kit, Stem 

Cell Technologies) and cells were reseeded as aforementioned without treatments for 6 

additional days (Figure 2.6 A). The total number of resulting secondary neurospheres was 

determined in each well. Results are expressed as percentage of the control (untreated) in both 

primary and secondary neurospheres from at least 3 independent cultures and performed in 

triplicate (3 wells per condition within the 24-well plate). 
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2.3.7. Cell-fate studies: cell pair assay 

 Uncommitted stem cells can divide symmetrically into two stem cells (Sox2
+
/Sox2

+
) or 

into two progenitor cells (Sox2
-
/Sox2

-
), or asymmetrically into one uncommitted cell and one 

committed progenitor cell (Sox2+/Sox2-). Taking advantage of these properties, we analyzed if 

METH interferes with cell-fate division. For that, cell pair assay was performed as previously 

described (Bernardino et al., 2012; Santos et al., 2012; Xapelli et al., 2013) with some 

modifications. Hence, stem cells were directly isolated from mice DG and 10000 cells (8840 

cells/cm2) were plated onto poly-D-lysine-coated (Sigma-Aldrich) glass coverslips. After seeding, 

cells were pre-incubated with 10 µM (5R,10S)-(–)-5-Methyl-10,11-dihydro-5H-

dibenzo[a,d]cylcohepten-5,10-imine maleate (MK-801; Tocris) for 15 min and then co-exposed 

with 1 or 10 nM METH for 24 h (Figure 2.7 A). Then, immunocytochemistry to Sox2 was 

performed (section 2.3.3). A total of 40 pairs of daughter cells that resulted from the division of 

one stem cell was characterized according to its symmetric cell division towards self-renewal 

(Sox2
+
/Sox2

+
) and differentiation (Sox2

-
/Sox2

-
), or asymmetric cell division (Sox2

+
/Sox2

-
). Results 

are expressed as percentage of control (untreated) from at least 2 independent cultures 

performed in triplicate. 

 

2.3.8. Data analysis 

 Statistical analysis was determined from at least two independent cultures and by using 

an analysis of variance (one-way ANOVA) followed by Dunn’s multiple comparison or Mann 

Whitney post-hoc tests, as indicated in the figure legends. Data are expressed as mean + 

standard error of the mean (SEM) from at least 2 independent cultures in which each condition 

was performed in duplicate or triplicate, and statistical significance level was set for P < 0.05. 

 

 

2.4. Results 

 

2.4.1. Methamphetamine can induce dentate gyrus stem cell death 

Several studies have previously shown that METH can be toxic to different brain cells 

(Deng et al., 2002; Genc et al., 2003; Mandyam et al., 2007), but the direct effect of this drug on 

DG stem cells has never been addressed before. Thus, in the present study we started by 

evaluating the toxic effect of METH on DG stem cells by quantifying the number of positive cells 

for TUNEL and Sox2 (Figure 2.1 B and C). We observed that 10 nM METH did not induce cell 

death to Sox2-positive cells (111.00 + 24.51% of control; Figure 2.1 C). However, 100 nM METH 
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was toxic to DG neurospheres observed by the significant increase of Sox2- and TUNEL-positive 

cells (196.20 + 26.26% of control; P < 0.01; Figure 2.1 C).  

 

 

Figure 2.1 – METH can induce DG stem/progenitor cell death. (A) Schematic representation of 
the experimental design to assess DG cell death. DG neurospheres were exposed to METH (10 or 
100 nM) for 24 h and the number of TUNEL- and Sox2-positive cells was determined to evaluate 
apoptotic cell death of stem cells. (B) Representative fluorescence images of a TUNEL-positive 
nucleus (green) of a Sox2-positive stem cell (red). Scale bar: 10 µm. (C) Quantification of TUNEL- 
and Sox2-positive cells in the presence of 10 or 100 nM METH. Only the highest concentration 
was toxic to stem cells. Data are expressed as % of control + SEM from at least 2 independent 
cultures where each condition was performed in duplicate. **P < 0.01, significantly different 
from control, using Kruskal-Wallis test followed by Dunn’s multiple comparison post-hoc test. 
 

 

2.4.2. Methamphetamine delays dentate gyrus cell cycle 

Based on our previous results (Figure 2.1 C) and in order to select drug concentrations 

more similar to those frequently present in the brain of METH users, we decided to use 1 or/and 

10 nM of METH in the following studies. Noteworthy, both concentrations did not induce stem 

cell death. Thus, we analyzed the effect of METH (1 nM) on cell cycle progression and, after 24 h, 

there was an increase in the population of cells in the G0/G1 phase (61.59 + 2.77%, P < 0.01) 

when compared to the control (48.91 + 2.12%; Figure 2.2 B). Furthermore, METH induced a 

decrease in the percentage of cells in the S phase (control: 36.86 + 2.81%; METH: 27.72 + 1.69%, 

P < 0.01; Figure 2.2 B). Regarding the G2/M phases, no differences were observed between 
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METH and control conditions (control: 15.04 + 0.77%; METH: 13.42 + 1.08%; Figure 2.2 B). To 

further clarify if METH induces cell cycle inhibition or delay, neurospheres were exposed to 1 nM 

METH for 72 h (Figure 2.2 A). We concluded that METH no longer interfered with G0/G1 

(control: 86.82 + 0.57%; METH: 85.41 + 0.92%), S (control: 9.37 + 0.16%; METH: 10.94 + 0.83%) 

or G2/M phases (control: 3.81 + 0.72%; METH: 3.64 + 0.42%; Figure 2.2 C), indicating that METH 

delays cell cycle progression rather than inhibiting it.  

 

Figure 2.2 – METH delays DG neurosphere cell cycle in the transition from G0/G1 to S phase and 
induces stem/progenitor cell quiescence. (A) Schematic representation of the experimental 
protocol for cytometry analysis. (B and C) Quantification of cells present in different phases of 
the cell cycle after (B) 24 h or (C) 72 h of METH exposure. (B) METH increases the population of 
cells in the G0/G1 phase while decreasing the S phase. (C) In contrast, METH does not induce any 
alterations in cell cycle at 72 h exposure. Data are expressed as % of cells + SEM from at least 2 
independent cultures and each condition was performed in duplicate. **P < 0.01, significantly 
different from control using Mann Whitney post-hoc test. (D) METH (1 nM for 24 h) increases 
the number of cells in quiescent phase (G0) as showed by the representative dot plots 
(representative experiment of 3 independent cultures). 
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To disclose whether delay in the cell cycle is due to entry in quiescence (G0), DG 

neurospheres were exposed to 1 nM METH for 24 h (Figure 2.2 A) and then incubated with 

Hoechst 33342 and pyronin Y to label DNA and mRNA, respectively. Quiescent cells possess less 

mRNA than actively cycling cells and therefore display low levels of pyronin Y-emitted 

fluorescence. As represented in Figure 2.2 D, METH increased in about 20% the cell population 

that rests in G0 (control: 16.5%; METH: 36.4%).  

Furthermore, after analyzing the number of cell divisions within DG cells, we verified a 

decrease in the number of cells with comparable fluorescence when compared to the control 

(30 min of incubation; Figure 2.3 A). In conclusion, two cell divisions in 24 h were observed as 

the fluorescence intensity decreased in comparison to the 30 min-probe exposure in control 

(Figure 2.3 B). 
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Figure 2.3 – DG cells undergo two cell divisions in 24 h. (A) Representative dot plots from a 
control condition and 24 h-time course experiment. (B) Fluorescence analysis histogram showing 
a decrease of GFP fluorescence in both 24 h-time course experiments (green and blue) when 
compared to the control condition (red). 
 

 

After demonstrating that METH impairs the progression of DG stem cells from G0/G1 to 

S phase of the cell cycle, we further investigated possible alterations of cyclins D1, E and A, since 

these proteins are involved in the cell cycle progression. It was possible to conclude that METH 

(1 nM) did not induce alterations of cyclin D1 (control: 100.00 + 17.06%; METH: 94.40 + 10.10% 

of control; Figure 2.4 B) or cyclin A protein levels (control: 100.00 + 12.04%; METH: 104.60 + 

13.93% of control; Figure 2.4 E). On the other hand, the expression of cyclin E was down-

regulated by this drug (control: 100.00 + 4.36%; METH: 90.20 + 1.52% of control; P < 0.05; Figure 

2.4 C). A similar down-regulation of cyclin E was observed with 10 nM METH (control: 100.00 + 

12.74%; 10 nM METH: 49.46 + 8.18% of control; P < 0.05; Figure 2.4 D). Afterwards, we assessed 

the protein levels of both p21 and p27, the main inhibitors of the complexes cyclin D1/Cdk4/6 

and cyclin E/Cdk2, respectively. Thus, METH neither altered the protein levels of p21 (control: 

100.00 + 13.38%; METH: 102.60 + 7.34% of control; Figure 2.4 F) nor of p27 (control: 100.00 + 

11.64%; METH: 101.40 + 5.93% of control; Figure 2.4 G). 

Additionally, since activation of ERK1/2 is highly involved in cell proliferation through the 

upstream activation of EGFR (Gampe et al., 2011) or FGFR1 (Xiao et al., 2007), we determined 

the effect of METH on the phosphorylation levels of FGFR1, EGFR and ERK1/2. Indeed, METH (1 

nM) did not change the protein levels of pFGFR1 (control: 100.00 + 9.44%; METH: 86.02 + 

12.00% of control; Figure 2.5 B) at 6 h of drug exposure, whereas decreased protein levels of 

pEGFR (control: 100.00 + 9.77%; METH: 48.60 + 13.37% of control; P < 0.05; Figure 2.5 C) and 

pERK1/2 (control: 100.00 + 3.95%; METH: 82.02 + 2.11% of control, P < 0.05; Figure 2.5 D) in DG 

neurospheres at 6 h post-METH exposure. However, after 24 h of METH (1 nM) treatment, 

pERK1/2 protein levels were similar to control (101.60 + 5.52% of control; Figure 2.5 D). The 

same effect was observed with 10 nM METH (control: 100.00 + 2.68%; METH 6 h: 77.68 + 5.66% 

of control, P < 0.05; METH 24 h: 123.70 + 13.78% of control; Figure 2.5 E). 
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Figure 2.4 – METH down-regulates cyclin E protein levels in DG neurospheres. (A) Schematic 
representation of the experimental design for western blot studies. METH (1 nM) does not 
induce alterations in (B) cyclin D1 (37 kDa) or (E) cyclin A (60 kDa) protein expression, but (C) 
down-regulates cyclin E (53 kDa) expression, which is also observed at (D) 10 nM METH. 
Additionally, METH (1 nM) does not interfere with (F) p21 (21 kDa) and (G) p27 (27 kDa) 
expression, the main inhibitors of the complexes cyclin D1/Cdk4/6 and cyclin E/Cdk2, 
respectively.  Above the bars, representative western blot images of the different proteins are 
shown, including the housekeeping gene β-actin (42 kDa) or GAPDH (36 kDa). Data are 
expressed as % of control + SEM from at least 4 independent cultures.  *P < 0.05, significantly 
different from control using Mann Whitney post-hoc test. 
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Figure 2.5 – METH down-regulates the phosphorylation form of EGFR and ERK1/2. (A) Schematic 
representation of the experimental design for western blot studies. Exposure to METH (1 nM) 
for 6 h does not induce any effect in (B) pFGFR1 (130 kDa), but (C) down-regulates the 
phosphorylation levels of EGFR (175 kDa). In addition, (D) 1 nM or (E) 10 nM METH decreases 
the phosphorylation form of ERK1/2 (42/44 kDa) after 6 h of drug exposure, but no alterations 
were observed after 24 h. Data are expressed as % of control + SEM from at least 4 independent 
cultures. *P < 0.05, significantly different from control using Mann Whitney or Kruskal-Wallis 
test followed by Dunn’s Multiple comparison post-hoc tests. §§P < 0.01, significantly different 
from METH 6 h-exposure using Kruskal-Wallis test followed by Dunn’s Multiple comparison post-
hoc test. 
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2.4.3. Methamphetamine decreases dentate gyrus neurosphere self-renewal 

DG stem cells have the ability to self-renew and this capacity was assessed using the 

neurosphere assay (Coles-Takabe et al., 2008; Pastrana et al., 2011). Thus, METH (1 nM) 

decreased the number of primary neurospheres (control: 100.00 + 5.29%; METH: 76.77 + 5.29% 

of control, P < 0.01; Figure 2.6 B). However, no differences in the number of secondary 

neurospheres were observed (control: 100.00 + 6.05%; METH: 96.79 + 8.56% of control; Figure 

2.6 B) indicating that 1 nM METH did not interfere with self-renewal capacity of DG 

stem/progenitor cells. In parallel, a higher concentration of METH (10 nM) also decreased the 

number of primary neurospheres (72.37 + 2.06% of control, P < 0.05; Figure 2.6 C). Interestingly, 

the number of secondary neurospheres was also decreased (control: 100.00 + 4.97%; METH: 

76.47 + 3.57% of control, P < 0.01; Figure 2.6 C) showing that METH at 10 nM decreases self-

renewal capacity.  

 

 

Figure 2.6 – METH decreases DG neurosphere self-renewal. (A) Schematic representation of the 
experimental design to evaluate the impact of METH on self-renewal capacity of DG 
stem/progenitor cells. (B) METH (1 nM) decreases the number of primary neurospheres, but 
does not induce any effect on the number of secondary neurospheres. (C) However, 10 nM 
METH is able to decrease both the number of primary and secondary neurospheres. Data are 
expressed as % of control + SEM from 3 independent cultures and each condition was performed 
in triplicate. *P < 0.05; **P <0.01, significantly different from control using Mann-Whitney post-
hoc test. 
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2.4.4. Methamphetamine shifts cell fate towards differentiation via activation of NMDA 

receptors 

 DG stem cells can self-renew, i.e., one stem cell can divide and give rise at least to one 

identical cell to itself and/or generate progenitors that undergo differentiation (Gage, 2000). 

Herein, we observed that 1 nM METH had no effect on DG symmetric cell division towards self-

renewal (Sox2
+
/Sox2

+
: 87.01 + 6.60% of control; Figure 2.7 B). Similarly, no effect was verified on 

symmetric cell division towards differentiation (Sox2-/Sox2-: 110.90 + 4.63% of control) or on 

asymmetric cell division (Sox2
+
/Sox2

-
: 99.07 + 7.00% of control; Figure 2.7 B). However, 10 nM 

METH decreased the number of Sox2
+
/Sox2

+
 pairs of cells (53.74 + 4.69% of control; P < 0.01), 

and the blockade of NMDA receptors with MK-801, completely prevented the effect induced by 

METH (99.34 + 10.52% of control, P < 0.05 compared to METH alone; Figure 2.7 C). Furthermore, 

METH induced an increase of Sox2
-
/Sox2

-
 pairs of cells and MK-801 also prevented this effect 

(METH: 191.10 + 8.20%, P < 0.01; METH + MK-801: 78.57 + 9.82% of control, P < 0.001 compared 

to METH alone; Figure 2.7 C). On the other hand, 10 nM METH did not affect asymmetric cell 

division (Sox2+/Sox2-; Figure 2.7 C).  

 

2.4.5. Methamphetamine increases doublecortin expression in DG neurospheres 

 As METH directs cell division towards differentiation, we further evaluated neuronal and 

astroglial differentiation in DG cells treated for 6 days with METH (Figure 2.8 A). Protein levels of 

DCX, a marker for immature neurons, and of GFAP, an astrocytic marker, were determined by 

western blot. We observed that 1 nM METH did not interfere with both DCX (105.60 + 7.69% of 

control; Figure 2.8 B) and GFAP (94.14 + 14.08% of control; Figure 2.8 C) protein levels. However, 

at a higher concentration (10 nM) METH was able to up-regulate DCX expression (133.70 + 

6.83% of control; P < 0.05; Figure 2.8 B and D), whereas no changes were observed in GFAP 

protein levels (93.05 ± 4.29% of control, Figure 2.8 C and D). Overall, these results demonstrate 

that 10 nM METH directs DG stem/progenitor cell differentiation towards the neuronal fate.  
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Figure 2.7 – METH triggers DG cell-fate division towards differentiation via activation of NMDA 
receptors. (A) Schematic representation of the experimental design to evaluate how METH 
interferes with cell fate. (B) METH (1 nM) does not induce any alterations in DG cell-fate division. 
(C) Nevertheless, a higher concentration of the drug (10 nM METH) decreases the number of 

Sox2+/Sox2+ pairs of daughter cells, which was completely prevented by the NMDA receptor 

inhibitor, MK-801 (10 μM), and increases the number of Sox2-/Sox2- pairs of cells without 

altering asymmetric cell division (Sox2+/Sox2-). Data are expressed as % of control + SEM from at 
least 2 independent cultures where each condition was performed in triplicate. **P < 0.01, 
significantly different from control using Kruskal-Wallis test followed by Dunn´s Multiple 
comparison test. §P < 0.05; §§§P < 0.001, significantly different from 10 nM METH using Kruskal-
Wallis test followed by Dunn´s Multiple comparison test. (D) Representative fluorescence images 

showing Sox2+/Sox2+ (symmetric self-renewing cell division), Sox2+/Sox2- (asymmetric cell 

division), and Sox2-/Sox2- (symmetric differentiation division) pairs of cells. Scale bar: 5 µm. 
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Figure 2.8 – METH increases immature neurons in DG neurospheres. (A) Schematic 
representation of the experimental design of DG cells to evaluate the effect of METH on DG 
neurospheres growth. (B) METH (10 nM) increases DCX (40 kDa) protein levels, but without an 
effect on (C) GFAP (50 kDa) expression. Data are expressed as % of control + SEM from at least 2 
independent cultures. *P < 0.05, significantly different from control using Kruskal-Wallis test 
followed by Dunn´s Multiple comparison test. (D) Representative fluorescence images of DG 
neurospheres showing increased DCX (red) immunoreactivity in DG cells exposed to 10 nM 
METH, without inducing significant alterations in GFAP (green) expression. Nuclei were stained 
with Hoechst 33342 (blue). Scale bar: 50 µm. 
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2.5. Discussion 

 The present work addresses the effect of METH on DG stem cell properties. Indeed, our 

results show that METH at nontoxic concentrations impaired stem cell properties, specifically by 

decreasing self-renewal capacity, delaying cell cycle progression and directing cell fate division 

towards differentiation. Firstly, we verified that METH (100 nM) induced cell death of Sox2
+
 DG 

stem/progenitor cells from free floating neurospheres, having no effect at a lower concentration 

(10 nM). Interestingly, we have shown that exposure to 10 nM METH for 24 h induced cell death 

on plated DG-derived neurosphere cultures (Chapter 3, Figure 3.1). Thus, we may conclude that 

neurospheres plated on poly-D-lysine and in a medium devoid of growth factors initiate 

differentiation and are more sensitive to METH toxicity as compared to free floating Sox2
+
 

neurospheres cultured in the presence of growth factors. This difference may rely on differential 

abilities to repair DNA damages (Fernando et al., 2011), to counteract oxidative stress (Le Belle 

et al., 2011) or/and METH-induced apoptosis mechanisms displayed by stem/progenitor cells 

versus committed progenitors.  

 Herein, we also explored for the first time the impact of METH on the cell cycle in DG 

stem cells. It was possible to observe a delay in the transition from G0/G1 to the S phase, an 

increase of cell population in the quiescence state (phase G0), and a down-regulation of cyclin E 

protein, which forms a complex with cyclin-dependent kinase 2 (Cdk2) being involved in the 

progression through the G1 phase and initiation of DNA replication in the S phase (Mazumder et 

al., 2004). Accordingly, to confirm that METH delays cell cycle progression, the doubling time for 

cell division was assessed and we observed that DG cells undergo two cell divisions in 24 h. On 

the other hand, METH did not induce any alterations in both cyclin D1 and cyclin A protein 

levels, which lead us to conclude that METH specifically impairs G1-to-S transition. In fact, little 

information is available regarding the effect of METH in cell cycle. Nevertheless, Yuan and 

collaborators (2011) assumed that hippocampal proliferating cells may be arrested in the G1 

phase by METH (self-administration of 0.05 mg/kg/injection, 6 h/daily for 13 days) since they 

observed not only a decreased number of cells in the S phase, but also of cells that enter and 

exit the S phase without changing, however, its length. In fact, other psychostimulants like 

cocaine (10 or 100 µM, nontoxic concentrations) also interfere with the transition from G1-to-S 

phase in AF5 progenitor cells (a rat mesencephalic cell line), confirmed by the down-regulation 

of cyclin A2 (Lee et al., 2008). Indeed, the authors demonstrated that this effect was triggered by 

oxidative endoplasmic reticulum stress (Lee et al., 2008). Additionally, Hu and colleagues (2006) 

observed that cocaine inhibited proliferation in human fetal neural progenitor cells with 

simultaneous increase of the cyclin-dependent kinase inhibitor, p21. Moreover, very recently 



METH impairs DG stem cell properties 

 

81 
 

Blanco-Calvo and collaborators (2014) showed that acute administration of cocaine (10 mg/kg) 

decreases the number of proliferating cells in the subgranular zone, which was prevented by the 

inhibition of cannabinoid CB1 or CB2 receptors. Cannabinoid receptor blockade was also able to 

prevent hippocampal-dependent contextual memories induced by cocaine (Blanco-Calvo et al., 

2014). 

 On the other hand, with the present study we verified that METH did not alter protein 

expression of cyclin inhibitors, p21 and p27, which suggests the involvement of other 

mechanisms in METH-induced cyclin E down-regulation. In fact, Heo and collaborators (2006) 

showed that blockade of MAPK pathway with PD-98059 (MEK1 inhibitor) decreased both cyclins 

D1 and E protein levels. These authors investigated the involvement of MAPK pathway activation 

in cell proliferation by stimulating mouse embryonic stem cells with EGF, which induced an 

increase in the phosphorylate state of ERK1/2 and cyclin E proteins (Heo et al., 2006). 

Furthermore, homocysteine, a sulfur-containing intermediate of methionine metabolism, 

decreases phosphorylation of ERK1/2 and cyclin E protein expression in mice SVZ cells incubated 

with FGF-2 (Rabaneda et al., 2008). Based on our results, we may suggest that METH acts 

upstream to ERK1/2 by decreasing the phosphorylation levels of EGFR, which will interfere with 

the MAPK pathway through down-regulation of pERK1/2 followed by a decrease in cyclin E 

expression, that in turn will affect cell cycle progression and resulting in the impairment of DG 

stem cell self-renewal. In fact, little is known regarding the effect of METH on EGFR, but it was 

previously demonstrated that neonatal EGF administration increased METH-induced locomotor 

responses (Mizuno et al., 2004). Still, it was shown that EGFR plays an active role in promoting 

cell proliferation and neuronal differentiation in the SGZ, as well as in rescuing neurogenesis in 

aged rats (Jin et al., 2003). Additionally, in a Parkinson’s disease animal model, EGFR expression 

is down-regulated in proliferating cells in the SVZ (Hӧglinger et al., 2004). Furthermore, it was 

demonstrated that EGFR expression and signaling was reduced in the SVZ of aged mice, which 

resulted in a decrease of cell proliferation and neurogenesis (Enwere et al., 2004). Consistent 

with this finding, we suggest that METH decreases the expression of pEGFR, which down-

regulates MAPK signaling as verified by a transient decrease of ERK1/2 phosphorylation, which 

could lead to down-regulation of cyclin E and, consequently, a decrease in DG stem cell 

proliferation and self-renewal.  

 Although MAPK pathway can mediate cell proliferation, it can also be involved in 

memory performance. Indeed, depending on the frequency of METH exposure, an acute (Cao et 

al., 2013) or chronic (Ito et al., 2007) administration can improve or decline memory 

performance, accompanied with an increase or decrease in the phosphorylation levels of 
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ERK1/2, respectively. Furthermore, ERK1/2 activation leads to the activation of the downstream 

transcription factor cyclic adenosine monophosphate response element-binding protein (CREB) 

followed by increased expression of c-fos, which in the DG identifies neurons processing spatial 

information (Sweatt, 2001). Noteworthy, activation of ERK1/2 is necessary to generate long-

term potentiation in DG immature neurons (Darcy et al., 2014). Interestingly, Kee and 

collaborators (2007) verified that immature neurons present increased c-fos expression, which 

strongly suggest that these cells are recruited to integrate spatial memory circuitries. 

Accordingly, in the present study we demonstrate that METH transiently decreased pERK1/2 

protein levels in DG stem cells and increased immature neurons, which allow us to hypothesize 

that these neurons can be synaptically active and though participate in memory processes. 

Other important characteristic of neural stem cells is the ability to self-renew. Thus, we 

further explored for the first time the effect of METH on DG stem cell self-renewal. METH, at 

nontoxic concentrations (1 nM or 10 nM), was able to decrease the number of primary 

neurospheres, showing that this drug has a negative effect on stem cell proliferation. In fact, the 

findings obtained in cell cycle analysis can be correlated with the decreased number of primary 

neurospheres. Specifically, METH delayed G0/G1-to-S phase progression which decreased the 

proliferative capacity of DG stem cells and, consequently, could decrease the number of 

neurospheres. Also, at the highest nontoxic concentration (10 nM), METH decreased the number 

of secondary neurospheres proving that it affects DG stem cell self-renewal. Some studies 

addressed the effect of METH on DG neurogenesis and focused mainly on cell proliferation. In 

detail, it has been described that METH (25 mg/kg) transiently decreases the number of BrdU-

positive cells in gerbil dentate gyrus (Teuchert-Noodt et al., 2000). Moreover, Mandyam and 

collaborators (2008) observed that this drug (0.05 mg/kg/infusion) administered 1 h/day and 6 

h/day decreases the number of proliferating cells, characterized by the decreased number of Ki-

67-positive cells, a protein expressed during the active phases of the cell cycle. Also, METH 

induces long-term effects in SGZ stem/progenitor cell proliferation, as described by Schaefers 

and colleagues (2009) showing that a single METH administration (50 mg/kg) to 14-day-old 

gerbils decreases the number of BrdU-positive cells, 45 days post-administration. In addition, 

our group demonstrated that 100 µM METH (48 h of exposure) reduced proliferation in SVZ 

cultures (Bento et al., 2011).  

As METH impairs self-renewal capacity, we also explored the influence of METH in DG 

stem cell-fate division, a suitable method to characterize the phenotype of cells that are derived 

from the division of one DG stem cell. Indeed, a stem cell can undergo symmetric cell division 

towards self-renewal, where the two resulting cells are both stem cells (Sox2+/Sox2+ pairs of 
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daughter cells), and towards differentiation, resulting two cells that are committed to 

differentiate (Sox2
-
/Sox2

-
 pairs of daughter cells). Moreover, one stem cell can divide 

asymmetrically, originating one pair of cells consisting in one Sox2
+
 and one Sox2

-
 cell.  

Accordingly, we found  that METH (10 nM) decreased self-renewal symmetric cell division 

(Sox2
+
/Sox2

+
 pairs of daughter cells), directing division towards Sox2

-
/Sox2

-
 pairs of daughter 

cells consistent with cell commitment. In fact, an animal study showed that Sox2-positive cells in 

the SGZ are able to undergo symmetric or asymmetric cell division, in which one Sox2-positive 

cell can give rise to one neuron and one astrocyte, or to one neural stem cell and one neuron, 

respectively (Suh et al., 2007). Also, we observed that these alterations could be, in part, due to 

the activation of NMDA receptor signaling because inhibition of these receptors prevented the 

shift of cell division towards differentiation. Moreover, we had previously demonstrated that 

METH induces an increase of glutamate release from DG neurospheres and the inhibition of 

NMDA receptors protects DG cells from METH toxicity (Chapter 3, Figure 3.3). In fact, several 

brain injuries, such as status epilepticus (Sugaya et al., 2010), cerebral ischemia (Choi et al., 

2012) and traumatic brain injury (Zheng et al., 2013) can increase neurogenesis, and glutamate 

seems to play a central role upon activation of NMDA receptors (Arvidsson et al., 2001; Urbach 

et al., 2008). Indeed, Nacher and colleagues (2003) observed that a single injection of NMDA 

receptor antagonist (CGP-43487, 5 mg/kg) prevents age-induced decrease of SGZ cell 

proliferation and neurogenesis in both middle-aged (10 month-old) and aged (20 month-old) 

Fisher F344 rats. Moreover, administration of NMDA (30 mg/kg) to Sprague-Dawley rats 

decreased the population of proliferating cells in the DG, whereas administration of MK-801 or 

CGP37849 resulted in the opposite effect (Cameron et al., 1995). Also, MK-801 administration (3 

mg/kg) to NMDA-infused (2 mg/ml) Wistar rats increases the phosphorylated levels of ERK in 

newly generated neurons (Okuyama et al., 2004), which strengths the involvement of NMDA 

receptors in decreasing cell proliferation through regulation of the MAPK pathway. 

Moreover, Deisseroth and collaborators (2004) demonstrated that NMDA receptors play an 

active role in neuronal differentiation, showing that excitatory stimuli induced by NMDA 

receptor activation enhances expression of NeuroD, a downstream regulator of neuronal 

differentiation, and consequently increases neurogenesis in neural progenitor cells culture.  

The present study also reveals that METH (10 nM) enhanced differentiation into 

immature neurons in DG neurospheres, verified by the increase of DCX protein levels. This effect 

correlates with the fact that METH increases the pairs of cells that did not express Sox2 (Sox2-

/Sox2- cell pairs), i.e., differentiating cells. Furthermore, cell cycle alterations induced by METH 

suggest a differentiation shift. In fact, the length of G1 phase may influence the decision for a 
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neural stem cell to proliferate or differentiate as reviewed by Salomoni and Calegari (2010). 

Furthermore, METH did not induce any alterations in GFAP expression, indicating that immature 

neurons are preferentially generated rather than astrocytes. In accordance to our findings, it 

was described by Mandyam and collaborators (2008) that METH self-administration (0.05 

mg/kg/infusion, 1 h/day, 2 days/week for 49 days) increases neuronal differentiation and 

maturation of hippocampal progenitor cells.  

 Our results show that METH interferes with DG stem cell proliferation, an effect due to a 

delay on cell cycle G0/G1-to-S transition involving down-regulation of pEGFR, cyclin E and 

pERK1/2. Additionally, METH impairs DG cell self-renewal capacity via NMDA signaling. These 

effects could be useful to elucidate the impairment of hippocampal neurogenesis and memory 

deficits in METH abusers. 



 

 
 

 

 

 

 

Chapter 3 

 

Neuropeptide Y promotes neurogenesis and protection 

against methamphetamine-induced toxicity in mouse 

dentate gyrus-derived neurosphere cultures 

 



 

 
 



NPY prevents METH-induced neurogenesis impairment 

 

87 
 

3.1. Abstract 

 Methamphetamine (METH) is a psychostimulant drug of abuse that causes severe brain 

damage. However, the mechanisms responsible for these effects are poorly understood, 

particularly regarding the impact of METH on hippocampal neurogenesis. Moreover, 

neuropeptide Y (NPY) is known to be neuroprotective under several pathological conditions. 

Here, we investigated the effect of METH on dentate gyrus (DG) neurogenesis, regarding cell 

death, proliferation and differentiation, as well as the role of NPY by itself and against METH-

induced toxicity. DG-derived neurosphere cultures were used to evaluate the effect of METH or 

NPY on cell death, proliferation or neuronal differentiation. Moreover, the role of NPY and its 

receptors (Y1, Y2 and Y5) was investigated under conditions of METH-induced DG cell death. 

METH induced cell death by both apoptosis and necrosis at concentrations above 10 nM, 

without affecting cell proliferation. Furthermore, at a nontoxic concentration (1 nM), METH 

decreased neuronal differentiation. NPY’s protective effect was mainly due to the reduction of 

glutamate release, and it also increased DG cell proliferation and neuronal differentiation via Y1 

receptors. In addition, while the activation of Y1 or Y2 receptors was able to prevent METH-

induced cell death, the Y1 subtype alone was responsible for blocking the decrease in neuronal 

differentiation induced by the drug. Taken together, METH negatively affects DG cell viability 

and neurogenesis, and NPY is revealed to be a promising protective tool against the deleterious 

effects of METH on hippocampal neurogenesis.   

 

3.2. Introduction  

Methamphetamine (METH) is an addictive psychostimulant drug of abuse highly toxic to 

different brain regions, including the hippocampus, and it was previously shown to induce 

working memory deficits (Simon et al., 2000; Thompson et al., 2004; Simões et al., 2007). 

Moreover, oxidative stress (Mirecki et al., 2004; Fitzmaurice et al., 2006), increase of glutamate 

release (Mark et al., 2004; Tata and Yamamoto, 2008), mitochondrial dysfunction (Jayanthi et al., 

2004; Brown et al., 2005; Wu et al., 2007; Tian et al., 2009), neuroinflammation (Thomas et al., 

2004; Gonçalves et al., 2008, 2010), hyperthermia (Bowyer et al., 1994) and disruption of the 

blood-brain barrier (BBB; Bowyer et al., 2008; Ramirez et al., 2009; Silva et al., 2010; Martins et 

al., 2011) are some of the well-known neurotoxic features of this drug. However, the 

mechanisms underlying METH toxicity are still poorly understood, particularly its effect(s) on 

adult brain neurogenesis.  

 Adult hippocampal neurogenesis is an important modulator of brain plasticity (Prickaerts 

et al., 2004; Lledo et al., 2006) and plays a key role in learning and memory functions (Garthe et 
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al., 2009; Clelland et al., 2009; Jessberger et al., 2009). This is a process that persists throughout 

life but several factors may impair the formation of new functional neurons. In fact, drugs of 

abuse generally have a negative impact on neurogenesis (Mandyam et al., 2008; Silva et al., 

2010; Bento et al., 2011). Chronic exposure to cocaine decreases proliferation in the subgranular 

zone (SGZ), but has no effect on immature cell survival or cell death (Domínguez-Escribà et al., 

2006). Furthermore, a binge alcohol administration to adolescent nonhuman primates decreases 

both proliferation and neurogenesis with an increase in neural degeneration (Taffe et al., 2010). 

On the other hand, 3,4-methylenedioxymethamphetamine (MDMA) administered to adolescent 

Sprague-Dawley rats increases proliferation, whereas neuronal differentiation is compromised 

(Catlow et al., 2010). Chronic administration of morphine and chronic self-administration of 

heroin impair cell proliferation and neurogenesis (Eisch et al., 2000). Concerning METH, the little 

information available points to a negative effect on cell proliferation (Teuchert-Noodt et al., 

2000; Tian et al., 2009), neuronal differentiation, migration and survival of hippocampal 

neuronal cells (Mandyam et al., 2008). Additionally, we recently demonstrated that METH is 

toxic to stem/progenitor cells and decreases proliferation, neuronal differentiation and 

maturation in the subventricular zone (SVZ) (Bento et al., 2011). 

Neuropeptide Y (NPY) is a 36 amino acid peptide widely distributed in both central and 

peripheral nervous systems (Dumont and Quirion, 2006). In fact, NPY regulates several 

physiological functions, such as feeding, anxiety, circadian rhythms, body temperature, sexual 

behavior and cognition (reviewed by Silva et al., 2005a), and has also an important 

neuroprotective role under pathological conditions (Woldbye et al., 2005; Silva et al., 2005b, 

2007). Previously, Thiriet and collaborators (2005) demonstrated that METH-induced cell death 

in mouse striatum was prevented by NPY. Furthermore, this neuropeptide is able to increase 

proliferation and neuronal differentiation in the SGZ (Howell et al., 2003; Decressac et al., 2010), 

in the olfactory epithelium and in the SVZ through Y1 receptors activation (Hansel et al., 2001; 

Agasse et al., 2008; Decressac et al., 2009; Thiriet et al., 2011).  

The present study aimed to characterize the effects of METH on DG stem/progenitor cell 

survival, proliferation and neuronal differentiation, as well as to evaluate the protective role of 

NPY system. Overall, our results demonstrate that NPY is protective against METH-induced DG 

cell death and prevents the decrease of neurogenesis induced by this drug of abuse. 
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3.3. Materials and Methods 

 

3.3.1. Animals 

Post-natal 1-3-day-old C57BL/6J mice were used in the present study. Experimental 

procedures were approved by the Institutional Review Board of Faculty of Medicine, University 

of Coimbra, and were performed according to the guidelines of the European Communities 

Council Directives (86 ⁄ 609 ⁄ EEC) and the Portuguese law for the care and use of experimental 

animals (DL nº 129/92). All efforts were made to minimise animal suffering and to reduce the 

number of animals. 

 

3.3.2. Dentate gyrus-derived neurosphere cultures 

Mice were sacrificed by decapitation and brains were removed and placed in sterile 

saline solution. DG fragments were dissected out from 450 µm-thick brain coronal sections, 

digested in 0.025% trypsin and 0.265 mM EDTA (both from Gibco, Rockville, MD, USA) and single 

cells were obtained by gentle trituration. Cells were diluted in serum-free culture medium (SFM) 

composed of Dulbecco’s modified Eagle’s medium/Ham’s F-12 medium GlutaMAX-I 

supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 1% B27 supplement, 10 ng/ml 

epidermal growth factor (EGF) and 5 ng/ml basic fibroblast growth factor (FGF-2) (all from 

Gibco). Then, cells were plated in uncoated Petri dishes and neurospheres were allowed to 

develop for 6 days in a 95% air-5% CO2 humidified atmosphere at 37°C. Afterwards, 

neurospheres were plated onto poly-D-lysine (Sigma-Aldrich, St Louis, MO, USA) glass coverslips 

in SFM devoid of growth factors for 24 h in order to form a pseudo-monolayer.  

 

3.3.3. Drug treatments  

Methamphetamine [(+)-Methamphetamine hydrochloride, Sigma-Aldrich] was added to 

SFM devoid of growth factors at the concentrations of 1, 10, 100 or 1000 nM for 24 h, 48 h or 7 

days to evaluate cell death, proliferation and differentiation, respectively. The concentrations of 

METH used were chosen in accordance with the physiological range found in blood, urine, or 

tissue samples, including the brain, of METH abusers (Takayasu et al., 1995; Kalasinsky et al., 

2001; Klette et al., 2006; Melega et al., 2007), and with those that have been successfully used in 

prior studies (Ramirez et al., 2009; Bento et al., 2011; Lee et al., 2001; Tocharus et al., 2010; 

Aizenman et al., 2010). 

To investigate the effect of NPY in cell proliferation and neuronal differentiation, DG-

derived neurosphere cultures were incubated with 1 µM NPY (Bachem, Bubendorf, Switzerland) 
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for 48 h and 7 days, respectively. Moreover, to study the protective role of  NPY and its 

receptors, DG-derived neurosphere cultures were pre-incubated with 1 µM BIBP3226 (Y1 

receptor antagonist, Bachem) or 1 µM BIIE0246 (Y2 receptor antagonist, Tocris, Bristol, UK,) for 

15 min, followed by co-incubation with 1 µM NPY, 1 µM [Leu31,Pro34]NPY,  300 nM NPY13-36 or 

1 µM (Gly1,Ser3·22,Gln4·34,Thr6,Arg19,Tyr21,Ala23·31,Aib32)-PP (Y1, Y2 and Y5 receptor agonists, 

respectively; all from Bachem) for 1 h, and then co-exposed with 10 nM METH for 24 h or 1 nM 

METH for 7 days for cell death and differentiation studies, respectively. In attempt to better 

clarify the cellular mechanisms involved in NPY-induced protection, DG-derived neurosphere 

cultures were pre-incubated with 1 µM NPY and the N-methyl-D-aspartate (NMDA) receptor 

antagonist, MK-801 (10 µM, Tocris), for 1 h and 15 min, respectively, and then co-exposed with 

METH (10 nM) for 24 h. Regarding the NPY system, the concentrations used in the present study 

were chosen based on previous works where we showed that NPY and its receptor agonists 

inhibited glutamate release from hippocampal synaptosomes (Silva et al., 2001) and intracellular 

Ca2+ concentration in cultured rat hippocampal neurons (Silva et al., 2003b), as well as prevented 

hippocampal excitotoxicity (Silva et al., 2003a). 

To investigate the role of NPY on neuronal differentiation, DG-derived neurosphere 

cultures were co-incubated with 10 µM cytosine β-D-arabinofuranoside (AraC, Sigma-Aldrich) 

plus 1 µM NPY for 7 days. AraC is a nucleoside analogue which incorporates the C sites of the 

DNA strand, blocking the cells in the S phase of the cell cycle which results in the inhibition of 

cell proliferation (Azuma et al., 2001).  

 

3.3.4. Immunocytochemistry 

DG-derived neurosphere cultures were fixed in 4% paraformaldehyde (PFA), 

permeabilized in 1% Triton X-100, 3% bovine serum albumine (BSA; all from Sigma-Aldrich) in 0.1 

M phosphate-buffered saline (PBS), followed by overnight incubation at 4°C with mouse 

monoclonal anti-NeuN (1:100, MAB377, Chemicon, Temecula, CA), rabbit monoclonal anti-NPY 

(1:200, N9528, Sigma-Aldrich), sheep polyclonal anti-NPY Y1 receptor (1:200, 67320150, AbD 

Serotec, Oxfordshire, UK), rabbit polyclonal anti-NPY Y2 receptor (1:100, ANR-022, Alomone 

Labs, Jerusalem, Israel), mouse polyclonal anti-Tuj1 (1:500, MMS-435P, Covance, Emeryville, 

California, USA), mouse monoclonal anti-GFAP (1:500, #3670, Cell Signaling Technology, 

Danvers, MA) and mouse monoclonal anti-O4 (1:100, MAB345, Chemicon) in 0.1% Triton X-100, 

0.3% BSA in PBS. Cells were rinsed and incubated for 1 h with the appropriate secondary 

antibodies: goat anti-mouse Alexa Fluor 488, donkey anti-rabbit 488, donkey anti-sheep 488 and 

goat anti-mouse 594 (1:200; all from Invitrogen). Nuclei were stained with 4 µg/ml Hoechst 
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33342 (Sigma-Aldrich) and slides were mounted in Dako fluorescence medium (Dako, 

Carpinteria, CA). To confirm antibody specificity, negative controls were performed for each 

immunocytochemical assay, and the antibodies used for the NPY system were also chosen based 

on previous studies (Ruscheweyh et al., 2007; Price et al., 2009; Ferreira et al., 2010; Thiriet et 

al., 2011). Fluorescence images for cell counts were recorded using an Axioskop 2 Plus 

fluorescent microscope, while representative images were recorded using a LSM 710 Meta 

confocal microscope (all from Carl Zeiss, Göttingen, Germany).  

 

3.3.5. Cell death assays 

To evaluate necrotic cell death, propidium iodide (PI; 3,8-diamino-5-(3-

(diethylmethylamino)propyl)-6-phenyl phenanthridinium diiodide; Sigma-Aldrich) was applied in 

DG-derived neurosphere cultures. PI is a polar non-toxic compound that in normal conditions 

does not cross the plasma membrane (Bernardino et al., 2005). Instead, PI only enters dying or 

dead cells, where membranes have lost their integrity, and then binds to DNA. In the present 

study, 3 µg/ml PI was applied to DG-derived neurosphere cultures for the last 40 min of the 24 h 

culture session. Afterwards, cells were fixed with 4% PFA. Then, terminal deoxynucleotidyl 

transferase dUTP nick-end labeling (TUNEL) assay was performed to label apoptotic nuclei, as 

described previously (Bernardino et al., 2008; Bento et al., 2011). To confirm that METH triggers 

apoptosis in DG-derived neurosphere cultures, cells were also co-incubated for 24 h with 100 

nM METH plus 25 µM z-Val-Ala-DL-Asp (OMe)-fluoromethylketone (Z-VAD; Calbiochem EMD4 

Biosciences, Nottingham, UK), a general pan-caspase inhibitor that irreversibly binds to caspases. 

In control conditions, Z-VAD was also shown to decrease basal apoptosis in SVZ cultures as 

described previously (Bernardino et al., 2008; Bento et al. 2011). 

To evaluate total cell death, the number of necrotic (PI-positive and TUNEL-negative) 

and apoptotic cells (TUNEL-positive/PI-negative and TUNEL-/PI-positive, representing cells in 

early and late phases of apoptosis, respectively) were counted and expressed as percentages of 

total cells stained with Hoechst 33342.  

 

3.3.6. Cell proliferation studies 

Cell proliferation was evaluated by 5-bromo-2’-deoxyuridine (BrdU, Sigma-Aldrich) 

incorporation based on our previous work (Bento et al., 2011). DG cells were treated for 48 h 

with METH (1–1000 nM) and 10 µM BrdU was added in the last 4 h of the culture session. 

According to Nowakowski et al. (1989), the estimated duration of the S-phase is 8 h, so the 4 h 

pulse with BrdU will allow the identification of cells that entered the S-phase of cell cycle.  
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Afterwards, cells were fixed in 4% PFA, rinsed in PBS and BrdU was unmasked following 

successive passages in 1% Triton X-100 for 30 min, ice-cold 0.1 M HCl for 20 min, and 2 M HCl for 

40 min at 37°C. Following the neutralization in sodium borate buffer (0.1 M Na2B4O7.10 H2O, pH 

8.5; Sigma-Aldrich) for 15 min, cells were rinsed in PBS and incubated in 3% BSA (Sigma-Aldrich), 

0.3% Triton X-100 in PBS for 30 min. DG-derived neurosphere cultures were incubated with 

mouse monoclonal anti-BrdU antibody conjugated with Alexa Fluor 594 (1:100, B35132, 

Invitrogen) in PBS containing 0.3% Triton X-100 and 0.3% BSA, overnight at 4°C. Nuclei were 

counterstained with Hoechst 33342 and cell preparations were mounted as previously 

described. Representative fluorescence images were recorded as described above. 

 

3.3.7. Western blot analysis 

Non-treated DG-derived neurosphere cultures were homogenized in RIPA buffer 

containing 150 mM NaCl, 5 mM EGTA, 50 mM Tris, 1% (v/v) Triton X-100, 0.1% SDS and 0.5% 

sodium deoxycholate, supplemented with a protease inhibitor cocktail tablet (Roche). 

Afterwards, cells were centrifuged at 17000 xg for 15 min and protein concentration was 

determined using the Bicinchoninic Acid (BCA) Protein Assay (Thermo Fisher Scientific, 

Northumberland, UK). Then, 50 or 80 µg of protein samples were separated by electrophoresis 

in a 8% or 12% SDS-PAGE, transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore, 

Madrid, Spain) and blocked in 5% non-fat dried milk in PBS-0.5% Tween (PBS-T; Sigma-Aldrich) 

for 1 h. Afterwards, membranes were probed overnight at 4°C with rabbit monoclonal anti-NPY 

(1:1000; Sigma-Aldrich), sheep polyclonal anti-NPY Y1 receptor (1:10,000, AbD Serotec), rabbit 

polyclonal anti-NPY Y2 receptor (1:200; Alomone Labs) or rabbit polyclonal anti-GluN1 (1:500; 

Tocris) antibodies and were re-probed with rabbit anti-β-actin (1:5000; Sigma-Aldrich) overnight 

at 4°C. Membranes were rinsed in PBS-T and incubated for 45 min with alkaline phosphatase-

conjugated secondary antibodies as follows: anti-rabbit IgG, (1:20000, Amersham Biosciences, 

GE Healthcare Europe GmbH) and anti-sheep IgG, (1:1000, Sigma-Aldrich). Densitometric 

analysis was performed using the enhanced chemifluorescence (ECF) reagent (Amersham 

Biosciences) and visualized on the Typhoon 9000 system (GE Healthcare Europe GmbH). Band 

intensities were quantified using the ImageQuant 5.0 software. 

 

3.3.8. High Performance Liquid Chromatography 

Levels of glutamate release from DG-derived neurosphere cultures exposed to 10 nM 

METH during several time points (30 min, 1 h, 6 h or 24 h) in the absence or presence of 1 µM 

NPY were analyzed by high performance liquid chromatography with electrochemical detection 
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(HPLC-EC) using a Gilson instrument (Gilson, Inc., Middleton, WI, USA). For that, samples were 

diluted 1:1 in the following solution: 0.4 mM sodium disulfite, 0.9 mM EDTA and 0.4 N perchloric 

acid. Afterwards, samples were filtered (0.2 µm nylon filter, Costar, Corning, NY) and derivatized 

by adding 100 µl of NaOH 0.1N and 15 µl OPA (10 mg/mL of OPA, 45.4 M sodium sulphite, 4.5% 

absolute ethanol in 327 mM borate buffer at pH 10.4) to 50 µl of sample. Samples were allowed 

to react at room temperature in the dark for a period of 10 min. The mobile phase containing 

0.06 M sodium dihydrogen phosphate, 0.06 mM EDTA and 20 % methanol (pH 4.4) was filtered 

and degassed with an isocratic protocol (0.8 mL/min) passing through a Supercosil LC18 (25 cm x 

4.6 mm x 5 mm, Supelco, Bellefonte, PA, USA) analytical column. The potential was set at 0.85 V 

relative to an Ag/AgCl reference electrode. Concentrations of glutamate were calculated using a 

standard curve generated with a glutamate standard purchased from Sigma (St. Louis, MO, USA).  

 

3.3.9. Data analysis 

Cell quantifications were performed in the border of the neurospheres where migrating 

cells emerged, forming a pseudo-monolayer. All the experimental conditions were performed in 

three different wells obtained from at least two independent cultures. Number of TUNEL, PI, 

BrdU and NeuN were obtained as percentage of total Hoechst-positive cells from the total of five 

independent microscopic fields in each coverslip. Statistical analysis was determined by using an 

analysis of variance (one-way ANOVA) followed by Dunnett’s, Bonferroni’s or Mann Whitney 

post-hoc tests, as indicated in the figure legends. Data are expressed as mean  SEM, and 

statistical significance level was set for P < 0.05. 

 

3.4. Results 

 

3.4.1. Methamphetamine induces dentate gyrus cell death  

It is well established that METH induces neural dysfunction or/and death and that the 

hippocampus is particularly affected by this drug (Thompson et al., 2004; Simões et al., 2007; 

Gonçalves et al., 2010). To determine the toxic effect of METH on DG-derived neurosphere 

cultures, we evaluated total cell death (PI-positive and TUNEL-positive cells), and also 

discriminated between necrotic-like (PI-positive and TUNEL-negative cells) and apoptotic-like cell 

death (TUNEL-positive cells). No significant differences were observed in total cell death when 

cells were exposed to 1 nM METH (Figure 3.1 A; control: 26.18±1.59%; 1 nM: 23.34±2.70%). 

However, total cell death increased in the presence of 10, 100 or 1000 nM METH as follows: 

45.36±6.04%, P < 0.05; 49.95±6.53%, P < 0.001; 59.37±3.73%, P < 0.001, respectively (Figure 3.1 
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A). Moreover, the increase in total cell death was due to an increase in both necrotic- and 

apoptotic-like cell death (Figures 3.1 B and C, respectively). METH at 1 nM had no effect on the 

number of PI-positive cells (12.57±1.40%) when compared to control (11.68±1.02%; Figure 3.1 B) 

but did induce an increase when METH was applied at 10, 100 or 1000 nM (22.45±1.41%, 

29.38±4.94% or 28.14±2.22%, respectively; P < 0.001 for all concentrations; Figure 3.1 B). 

Similarly, the number of TUNEL-positive cells in DG-derived neurosphere cultures exposed to 1 

nM METH (8.19±1.10%) was not significantly different from control (8.12±0.31%; Figure 3.1 C) 

but increased in cultures exposed to 10, 100 or 1000 nM METH (16.67±1.08%, 18.88±2.47% or 

22.94±2.20%, respectively; P < 0.001 for all concentrations; Figure 3.1 C). Furthermore, in order 

to confirm that METH triggers apoptosis, DG-derived neurosphere cultures were co-incubated 

with the pan-caspase inhibitor, Z-VAD (25 µM), which completely prevented METH-induced 

apoptosis (100 nM METH+Z-VAD: 4.00±0.63%; Z-VAD: 3.69±0.59%, P < 0.05; Figure 3.1 C). 

 

 

Figure 3.1 – METH induces cell death to DG-derived neurosphere cultures. (A) METH, at 
concentrations above 10 nM for 24 h, increases total cell death by both necrosis and apoptosis. 
(B and C) METH increases the number of (B) PI-positive cells (necrosis) and (C) TUNEL-positive 
cells (apoptosis). In order to confirm that METH triggers apoptosis, DG cells were incubated with 
the pan-caspase inhibitor, Z-VAD (25 µM), which prevents METH-induced increase of apoptosis. 
Data are expressed as mean percentage of total cells ± SEM, n = 4–14 coverslips. *P < 0.05, ***P 
< 0.001, significantly different from control using Dunnett’s post hoc test. §§§P < 0.001, 
significantly different from 100 nM METH using Bonferroni’s post hoc test. 
 

 

3.4.2. Neuropeptide Y is protective against methamphetamine-induced dentate gyrus cell 

death by inhibiting glutamate release. 

It is well known that NPY is neuroprotective under several pathological conditions 

(Woldbye et al. 2005, Silva et al., 2005b and 2007). Thus, we aimed to evaluate a possible 

protective role of this neuropeptide in DG-derived neurosphere cultures exposed to a toxic 

concentration of METH (10 nM; Figure 1). We concluded that NPY (1 µM), which is itself not 

toxic, completely prevented apoptotic cell death induced by 10 nM METH (control: 8.10±0.32%; 
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NPY: 8.49±0.48%; METH: 16.67±1.08%, P < 0.001; METH+NPY: 8.72± 0.70%, P < 0.001 vs. 10 nM 

METH; Figure 3.2 A). To identify which NPY receptor mediates this protective effect, selective 

antagonists for Y1 and Y2 receptors (1 µM BIBP3226 and 1 µM BIIE0246, respectively) were used. 

We observed that both antagonists were able to block the protective effect induced by 1 µM 

NPY under conditions of METH-induced apoptosis (METH+NPY+Y1 receptor antagonist: 

14.24±1.78%, P < 0.01; METH+NPY+Y2 receptor antagonist: 15.08±1.16%, P < 0.001; Figure 3.2 

A). Accordingly, the selective activation of Y1 or Y2 receptors by the respective agonists (1 µM 

[Leu31,Pro34]NPY or 300 nM NPY13-36, respectively) completely prevented METH-induced 

apoptosis (control: 8.10±0.32%; METH+Y1 receptor agonist: 7.41±0.39%; METH+Y2 receptor 

agonist: 7.84±0.46%, P < 0.001 vs. 10 nM METH; Figure 3.2 B). Moreover, our results 

demonstrate that the Y5 receptor did not play any protective role since the number of TUNEL-

positive cells were similar to the ones observed in the presence of METH alone (METH: 

16.67±1.08%; METH+Y5 receptor agonist: 13.43±0.90%, P < 0.001; Figure 3.2 B). Additionally, the 

Y1, Y2 or Y5 receptor agonists by themselves did not affect apoptotic cell death (control: 

8.43±0.65; Y1 receptor agonist: 6.75±0.79%; Y2 receptor agonist: 7.73±0.63%; Y5 receptor agonist: 

7.59±0.63%; Figure 3.2 B). We further evaluate if NPY could also prevent necrosis induced by 

METH. Interestingly, we observed that NPY (1 µM) did not protect DG-derived neurosphere 

cultures from METH-induced necrosis (Figure 3.2 C). Specifically, the number of PI-positive cells 

in DG-derived neurosphere cultures was as follows: control, 11.68±1.02%; METH, 22.45±1.41%, 

P < 0.001; NPY, 14.74±0.92%; METH+NPY, 23.36±1.31%, P < 0.001 (Figure 3.2 C).   

 

 

Figure 3.2 – NPY prevents METH-induced apoptosis through activation of both Y1 and Y2 
receptors. (A) Pre-incubation with NPY (1 µM; 1 h) followed by co-exposure to METH (10 nM) for 
24 h prevents drug-induced increase of TUNEL-positive cells in DG-derived neurosphere cultures, 
and 1 µM BIBP3226 or 1 µM BIIE0246 (Y1 or Y2 receptor antagonists, respectively) inhibit the 
protective effect of NPY. (B) Pre-incubation (1 h) with 1 µM [Leu31,Pro34]NPY or 300 nM NPY13-
36 (Y1 and Y2 receptor agonists, respectively) followed by co-exposure with METH (10 nM) for 24 
h reduces the increase of apoptotic DG cell death induced by METH. However, NPY Y5 receptor 
agonist (1 µM Gly1,Ser3·22,Gln4·34,Thr6,Arg19,Tyr21,Ala23·31,Aib32)-PP) did not protect DG cells from 
METH-induced cell death. (C) NPY (1 µM) did not prevent the increased number of PI-positive 
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cells induced by 10 nM METH. Data are expressed as mean percentage of total cells ± SEM, n = 
5–14 coverslips. **P < 0.01, ***P < 0.001, significantly different when compared to control using 
Dunnett’s post hoc test. §§§P <0.001, significantly different when compared to 10 nM METH using 
Bonferroni’s post hoc test. ##P < 0.01, ###P < 0.001, significantly different when compared to 10 
nM METH plus 1 µM NPY using Bonferroni’s post hoc test. 
 

 

One of the well-known mechanisms of METH-induced neurotoxicity is the abnormal 

increase of glutamate release (Mark et al., 2004), which leads to the hyperactivation of 

ionotropic glutamate receptors that may culminate in cell death (Schinder et al., 1996; reviewed 

by Riddle et al., 2006). Furthermore, we demonstrated that NPY inhibits glutamate release in rat 

hippocampal cultures (Silva et al., 2001, 2003a). Thus, we hypothesized that the protective role 

of NPY in DG-derived neurosphere cultures could involve the modulation of glutamatergic 

system. To clarify this issue, we started by showing that these cultures express the GluN1 

subunit of the NMDA receptors, since this is an obligatory subunit of these receptors (Figure 3.3 

A). Our results also show that METH (10 nM) did not interfere with GluN1 protein levels (Figure 

3.3 A). Then, we analyzed the involvement of NMDA receptors in METH-induced DG-derived 

neurosphere cultures apoptosis, and we concluded that the blockade of NMDA receptors by MK-

801 (10 µM) completely prevented cell death induced by METH (control: 5.06±0.54%; MK-801: 

5.36±0.42%; METH+MK-801: 5.57±0.60%; Figure 3.3 B). Interestingly, this protective effect was 

very similar to that induced by NPY (METH+NPY: 5.03±0.56%) or in the presence of both MK-

801+NPY (4.94±0.40%; Figure 3.3 B). Thus, since NMDA receptors are involved in METH-induced 

cell death and NPY is able to prevent this toxic effect, we further evaluated the modulation of 

glutamate release by both METH and NPY. In fact, we concluded that 10 nM METH increases 

glutamate release by DG-derived neurosphere cultures at all time points analyzed (30 min: 

134.60±12.76%; 1 h: 121.70±3.30%; 6 h: 157.40±21.33%; 24 h: 124.0±9.89% of control; Figure 

3.3 C). Regarding the effect of NPY, we observed that at 30 min this peptide did not interfere 

with the levels of glutamate release (133.40±5.12% of control; Figure 3.3 C). However, NPY 

prevented METH-induced increase of glutamate release at 1 h, 6 h and 24 h after METH 

exposure (1 h: 84.79±8.62%, P < 0.05; 6 h: 100.10±3.63%, P < 0.01; 24 h: 87.42±9.46%, P < 0.01; 

Figure 3.3 C).  
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Figure 3.3 – METH induces apoptotic cell death through activation of NMDA receptors and 
increases glutamate release, which is prevented by NPY. (A) DG-derived neurosphere cultures 
express the GluN1 subunit (120 kDa) of NMDA receptors, and exposure to METH (10 nM) for 24h 
had no effect on its protein levels. (B) Inhibition of NMDA receptors by MK-801 (10 µM) 
completely prevents METH-induced increase of TUNEL-positive cells. (C) METH (10 nM) increases 
glutamate release at all time points analyzed (30 min, 1 h, 6 h and 24 h), and NPY (1 µM) inhibits 
this increase at 1 h, 6 h and 24 h post-drug exposure. Data are expressed as mean percentage of 
total cells ± SEM or percentage of control ± SEM, n = 4–9. ***P < 0.001, significantly different 
when compared to control using Dunnett’s post hoc test. §P < 0.05, §§ P < 0.01, §§§P < 0.001, 
significantly different when compared to 10 nM METH using Bonferroni’s or Mann Whitney post 
hoc tests. 

 

 

As abovementioned, NPY proved to protect DG-derived neurosphere cultures from 

METH-induced cell death. Thus, we further evaluated the expression of NPY as well as both Y1 

and Y2 receptors by western blot (Figure 3.4 A–C) and immunocytochemistry (Figure 3.4 D–L) in 

DG-derived neurosphere cultures. In fact, NPY-positive cells (green, Figure 3.4 D–F) were found 

in DG cells, including in Tuj1- (Figure 3.4 D), GFAP- (Figure 3.4 E) and O4-positive cells (Figure 3.4 

F), as referring to neurons, astrocytes and oligodendrocytes, respectively (red; Figure 3.4 D–F). 

Furthermore, both Y1 (green, Figure 3.4 G–I) and Y2 receptors (green, Figure 3.4 J–L) are also 

expressed in neurons (Figure 3.4 G and J), astrocytes (Figure 3.4 H and K) and oligodendrocytes 

(Figure 3.4 I and L) from DG-derived neurosphere cultures. 
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Figure 3.4 – Cells from DG-derived neurosphere cultures express (A, D–F) NPY, (B, G–I) Y1 and (C, 
J–L) Y2 receptor subtypes. The expression of (A) NPY (15 kDa), (B) Y1 (44 kDa) and (C) Y2 (50 kDa) 
receptor proteins in DG neurosphere-derived cultures was evaluated by western blot. 
Accordingly, representative fluorescence images of (D–F) NPY, (G–I ) Y1 and (J–L ) Y2 receptors 
(all green) show a clear co-localization with  Tuj1, GFAP and O4 (all red) showing that neurons, 
astrocytes and oligodendrocytes, respectively, express these proteins. Scale bar: 50 µm. 
 

 

3.4.3. Methamphetamine does not affect dentate gyrus cell proliferation 

We have previously shown that METH inhibits SVZ progenitor cell proliferation (Bento et 

al., 2011). Here, we also investigated the concentration-dependent effect of METH (1-1000 nM) 

on proliferation in DG-derived neurosphere cultures by assessing BrdU incorporation. At low 

concentrations, METH had no effect on the number of BrdU-positive cells (control: 4.52±0.18%; 

1 nM: 4.28±0.54%; 10 nM: 4.61±0.44%; Figure 3.5). However, exposure to 100 and 1000 nM 

METH decreased the number of BrdU-positive cells to 2.28± 0.17% (P < 0.001) and 2.63±0.40% 

(P < 0.01), respectively (Figure 3.5). Since METH decreases BrdU-labeled cells at the same 

concentrations that increases cell death (100 and 1000 nM), we further evaluated BrdU 

incorporation under co-exposure to 100 nM METH and Z-VAD (25 µM). In the presence of Z-VAD, 
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the number of BrdU-positive cells was similar to control (Z-VAD: 3.71±0.27%; METH+Z-VAD: 

4.08±0.47%, P < 0.01 vs. 100 nM METH; Figure 3.5) indicating that decrease in BrdU 

incorporation was due to cell death rather than to the inhibition of cell proliferation.  

 

 

Figure 3.5 – METH decreases BrdU incorporation in DG cultures. Bar graph representing BrdU 
incorporation in DG-derived neurosphere cultures treated with METH (1–1000 nM) for 48 h, 
showing a decrease in the number of BrdU-labeled cells in cultures exposed to 100 and 1000 nM 
METH. Co-incubation with Z-VAD (25 µM) prevented METH-induced decrease in the number of 
BrdU-positive cells. Data are expressed as mean percentage of total cells ± SEM, n = 4–12 
coverslips. **P < 0.01, ***P < 0.001, significantly different when compared to control using 
Dunnett’s post hoc test. §§P < 0.01, significantly different when compared to 100 nM METH using 
Bonferroni’s post hoc test. 
 

 

3.4.4. Neuropeptide Y is proproliferative, proneurogenic and prevents methamphetamine-

induced decrease of neuronal differentiation  

Several studies have demonstrated that NPY increases proliferation and neuronal 

differentiation in SGZ (Howell et al., 2003; Decressac et al., 2011) and SVZ (Agasse et al., 2008; 

Decressac et al., 2009) cell cultures. In the present study, we evaluated the proproliferative 

effect of NPY on DG-derived neurosphere cultures and found that NPY (1 µM) increased 

proliferation as assessed by counting BrdU-positive cells (control: 3.64±0.10%; NPY: 5.30±0.25%; 

P < 0.001; Figure 3.6 A–F). Moreover, the proproliferative effect of NPY was completely blocked 

by the Y1 receptor antagonist (3.17±0.40%, P < 0.001 vs. 1 µM NPY; Figure 3.6 F), whereas the Y2 

receptor antagonist had no effect (5.01±0.13%, P < 0.01; Figure 3.6 F). By themselves, the Y1 or 

Y2 receptor antagonists did not affect proliferation (3.29±0.19%, or 3.33±0.24%, respectively; 

Figure 3.6 F).  

We also evaluated the effect of the selective activation of different NPY receptor 

subtypes, and concluded that 1 µM [Leu31,Pro34]NPY increased the number of BrdU-positive cells 

(control: 3.64±0.10%; Y1 R agonist: 6.55±0.66%, P < 0.001; Figure 3.6 G), an effect blocked by the 
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Y1 receptor antagonist (3.69±0.24%, P < 0.001 vs. 1 µM Y1 receptor agonist; Figure 3.6 G). 

Moreover, the selective activation of Y2 or Y5 receptors with 300 nM NPY13-36 or 1 µM 

(Gly1,Ser3·22,Gln4·34,Thr6,Arg19,Tyr21,Ala23·31,Aib32)-PP, respectively, had no effect on the number 

of BrdU-positive cells when compared to control (3.91±0.40% or 4.67±0.21%, respectively; 

Figure 3.6 G). 

Rats administered METH have been reported to show a decrease in neuronal 

differentiation (Mandyam et al., 2008). Consistent with this, our fluorescent images clearly show 

that METH decreased the number of NeuN-labeled cells in DG-derived neurosphere cultures 

(Figure 3.7 A and B). In contrast, NPY proved to be proneurogenic (Figure 3.7 C and H) by 

increasing the number of NeuN-positive cells, and was also able to prevent the decrease in the 

number of NeuN-stained cells induced by 1 nM METH (Figure 3.7 D, J and K). Specifically, DG-

derived neurosphere cultures incubated with 1 µM NPY showed an increase in NeuN-positive 

cells (control: 6.85±0.12%; NPY: 11.64±0.72%, P < 0.001; Figure 3.7 H). Furthermore, the 

proneurogenic effect of NPY was inhibited by the Y1 receptor antagonist (6.34±0.57%, P < 0.001 

vs. 1 µM NPY; Figure 3.7 H), but the blockade of the Y2 receptor had no effect (11.09±0.87%, P < 

0.01 vs. control; Figure 3.7 H). The Y1 and Y2 receptor antagonists by themselves did not interfere 

with the number of NeuN-positive cells (5.52±0.93% or 6.16±0.62%, respectively; Figure 3.7 H). 

In addition, to eliminate the proproliferative effect of NPY in neuronal differentiation, an anti-

mitotic agent (AraC) was used. We first concluded that AraC was not toxic to DG cells since there 

was no effect on PI- and TUNEL-positive cells when compared to the control (Figure 3.8). 

Furthermore, AraC had no effect on the number of NeuN-positive cells relative to control 

(6.38±0.41%, Figure 3.7 H). Moreover, NPY in the presence of AraC, was able to increase the 

number of NeuN-positive cells (10.32±0.72%), which allow us to conclude that NPY increases 

both cell proliferation and neuronal differentiation (Figure 3.7 H). Also, the selective activation 

of Y1 receptors increased the number of NeuN-positive cells (1 µM [Leu31,Pro34]NPY: 

13.07±0.94%, P < 0.001) when compared to control (7.12±0.15%), whereas the activation of Y2 

or Y5 receptors had no significant effect on neuronal differentiation (8.42±0.49% or 7.75±0.62%, 

respectively; Figure 3.7 I). 
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Figure 3.6 – NPY increases DG cell proliferation through the activation of NPY Y1 receptor 
subtype. (A–E) Representative fluorescence images of DG-derived neurosphere cultures 
immunolabeled for BrdU (red) in (A) control conditions or (B–E) in the presence of 1 µM NPY for 
48 h. Nuclei were identified by Hoechst 33342 staining (blue). Scale bars: 50 µm (A and B) and 5 
µm (C–E). (F) The number of BrdU-positive cells in DG-derived neurospheres cultures is 
increased by 1 µM NPY (48 h exposure), which was prevented by the Y1 receptor antagonist (1 
µM BIBP3226). (G) Selective activation of Y1 receptor by [Leu31,Pro34]NPY (1 µM) increases the 
number of BrdU-positive cells, while activation of Y2 or Y5 by NPY13-36 (300 nM) or 
(Gly1,Ser3·22,Gln4·34,Thr6,Arg19,Tyr21,Ala23·31,Aib32)-PP (1 µM), respectively, have no effect on DG 
cell proliferation. Data are expressed as mean percentage of total cells ± SEM, n = 6–12 
coverslips. **P < 0.01 and ***P < 0.001, significantly different when compared to control using 
Dunnett’s post hoc test. §§§P <0.001, significantly different when compared to (B) 1 µM NPY or 
(C) 1 µM Y1 receptor agonist using Bonferroni’s post hoc test. 
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Figure 3.7 – Neuropeptide Y (NPY) increases neuronal differentiation through the activation of 
NPY Y1 receptor subtype and prevents the decrease of neuronal differentiation induced by 
METH. (A–G) Representative fluorescence images of DG cells immunolabeled for NeuN (green) 
and nuclei staining by Hoechst 33342 staining (blue) in (A) control conditions, (B) exposed to 1 
nM METH, (C) 1 µM NPY or (D) exposed to METH plus NPY all for 7 days. (E –G) Higher 
magnification of a (E) NeuN-positive cell (green), (F) stained with Hoechst (blue) and (G) merge 
from cultures exposed to METH plus NPY for 7 days. Scale bar: 50 µm (A–D) and 5 µm (E–G). (H) 
NPY (1 µM) triggers neuronal differentiation through the activation of Y1 receptor subtype, even 
in the presence of the anti-mitotic agent, AraC (10 µM). (I) NPY Y1 receptor subtype activation 
triggers neuronal differentiation in DG-derived neurosphere cultures. (J) METH decreases 
neuronal differentiation in DG-derived neurosphere cultures at all concentrations tested (1–
1000 nM), including the nontoxic concentration of 1 nM. (K) NPY prevents METH-induced 
decrease in neuronal differentiation via activation of Y1 receptor subtype. Data are expressed as 
mean percentage of total cells ± SEM, n = 3–28 coverslips. *P < 0.05, **P < 0.01 and ***P < 
0.001, significantly different when compared to control using Dunnett’s post hoc test. §§§P < 
0.001, significantly different when compared to (H) 1 µM NPY, (I) 1 µM [Leu31,Pro34]NPY or (K) 1 
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nM METH using Bonferroni’s post hoc test.###P < 0.001, significantly different when compared to 
1 µM NPY plus 1 nM METH (K) using Bonferroni’s post hoc test. 
 

 

To investigate the effect of METH on neuronal differentiation, DG-derived neurosphere 

cultures were exposed to METH (1–1000 nM). A decrease in the number of NeuN-positive cells 

was observed at all concentrations tested (control: 6.96±0.10%; 1 nM: 3.83±0.18%; 10 nM: 

4.24±0.61%; 100 nM: 3.50±0.31%; 1000 nM: 2.70±0.48%; P < 0.001 for all concentrations; Figure 

3.7 J). It was previously described that METH increases cell death at concentrations above 10 nM 

(Figure 3.1), which suggest that the decrease in the number of NeuN-positive cells observed at 

10, 100 and 1000 nM is probably due to cell death rather than to an inhibition of neuronal 

differentiation. However, at the nontoxic METH concentration (1 nM), there was a significant 

decrease in the number of NeuN-positive cells, which demonstrates that METH also inhibits 

neuronal differentiation in this system (Figure 3.7A, B and J).  

Since NPY has an important protective role under METH exposure (Thiriet et al., 2005), 

we further investigated its effect in preventing the decrease of neuronal differentiation in DG-

derived neurosphere cultures. Interestingly, we demonstrated that NPY prevented METH-

induced decrease in the number of NeuN-positive cells (8.57±0.52%, P < 0.001 vs. 1 nM METH; 

Figure 3.7 K). Also, the Y1 receptor antagonist was able to inhibit the effect mediated by the 

activation of Y1 receptor. 

 

 

Figure 3.8 – AraC does not induce cell death to DG-derived neurosphere cultures. (A) Incubation 
with AraC (10 µM) for 24 h has no effect on total cell death, as well as on the number of (B) PI-
positve (necrosis) or (C) TUNEL-positive (apoptosis) cells. 
 

 

3.5. Discussion 

The present study demonstrates that METH is toxic and decreases neurogenesis in DG-

derived neurosphere cultures without affecting cell proliferation. Furthermore, we also show 
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that NPY displays effective proproliferative, proneurogenic and protective roles against METH-

induced toxicity.  

Several studies have shown that METH is toxic to different cell types, such as striatal 

neurons (Deng et al., 2002), astrocytes (Mandyam et al., 2007), microglia (Tocharus et al., 2010) 

and oligodendrocytes (Genc et al., 2003). The neurogenic niches have been overlooked, but 

recently we showed for the first time that METH triggers SVZ cell death (Bento et al., 2011). 

Accordingly, here we demonstrate that DG cells are highly sensitive to METH since it induced DG 

cell death by both necrosis and apoptosis, even at low concentrations. To clarify the underlying 

mechanisms of METH toxicity in DG-derived neurosphere cultures, we looked for the 

involvement of the glutamatergic system. Glutamate is the major excitatory neurotransmitter in 

the CNS and is responsible for many physiological functions, such as cognition and sensation 

(reviewed by O’Connor et al., 2010), but can also be involved in several pathological conditions. 

This neurotransmitter may act via different receptors, and NMDA ionotropic glutamate 

receptors have been shown to have a crucial role in many brain conditions (Kitayama et al., 

2004; reviewed by Hardingham and Bading, 2010). Thus, in the present work, we demonstrated 

that DG cells express the GluN1 subunit, which is an obligatory subunit of NMDA receptors; 

however, METH did not induce alterations of GluN1 protein levels. Consistent with this, our 

group has also shown no alterations in GluN1 protein levels in the hippocampus of rats acutely 

administrated with 30 mg/kg METH (Simões et al., 2007). Additionally, we concluded that 

inhibition of NMDA receptors in our cultures by MK-801 prevented apoptotic cell death induced 

by METH. Afterwards, we demonstrated that METH increases glutamate release from DG-

derived neurosphere cultures until, at least, 24 h post-drug exposure. In fact, our work 

corroborates other studies showing that METH provokes an increase of extracellular glutamate 

in the rat lateral striatum (Mark et al., 2004; Tata and Yamamoto, 2008) and in the hippocampus 

(Rocher and Gardier, 2001), and that inhibition of NMDA receptors results in blockade of METH-

induced neurotoxicity  (Farfel et al., 1992; Gross et al., 2011). Nevertheless, here we address for 

the first time the involvement of NMDA receptors in METH-induced toxicity in DG-derived 

neurosphere cultures, which may have interesting implications for the understanding of the 

impact of drugs of abuse on brain neurogenic niches. 

Relatively, little is known about the effect of METH on proliferation of neural progenitor 

cells. Tian and collaborators (2009) observed a decreased number of proliferating cells in rat 

hippocampal neural progenitor cell (rhNPC) cultures exposed to METH (300 µM) for 24 h, and 

this effect was due to reactive oxygen species production. Similarly, Venkatesan and colleagues 

(2011) recently showed that METH decreases BrdU-positive cells in a concentration-dependent 
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manner. Moreover, Teuchert-Noodt and co-workers (2000) showed that a single dose of METH 

(25 mg/kg; i.p.) decreases proliferation, in a transient manner, in the SGZ of adult gerbils. On the 

other hand, chronic 1 mg/kg METH (s.c.) administration once daily for 14 days had no effect on 

DG proliferation in mice (Maeda et al., 2007). Concerning self-administration procedures, 0.05 

mg/kg/infusion METH (i.v.) taken 1 h/daily, 2 days per week, increases cell division, whereas 1 

h/day and 6 h/day decreases cell proliferation (Mandyam et al., 2008). Here, we report that 

METH does not affect cell proliferation since at 1 nM (nontoxic concentration) and 10 nM (toxic 

concentration) there were no changes on the number of BrdU-positive cells. Moreover, at higher 

concentrations there was a decrease in the number of BrdU-positive nuclei, but this effect was 

prevented by the caspase inhibitor, Z-VAD. These observations strongly indicate that the 

decreased number of BrdU-stained cells was due to the significant increase of cell death induced 

by METH. In contrast, we previously demonstrated that METH decreases SVZ cell proliferation 

(Bento et al., 2011). Thus, according to the neurogenic niche and METH concentration, this drug 

can have opposite effects on cell proliferation. 

 METH was found to decrease the number of mature neurons in DG-derived neurosphere 

cultures at nontoxic concentrations showing a direct and negative effect of METH on 

neurogenesis. We previously observed the same effects in SVZ cultures (Bento et al., 2011). On 

the other hand, Venkatesan and collaborators (2011) showed no effect in neuronal and glial 

differentiation, which can be justified by the fact that the authors used a dramatically higher 

METH (250 µM) concentration and different experimental conditions (24 h exposure with 

METH). In vivo studies have also demonstrated that 1 h/day (2 days per week) access to METH 

(0.05 mg/kg/infusion, i.v.) for 49 days increases differentiation and maturation of hippocampal 

progenitors, consistent with the increased numbers of proliferating cells (Mandyam et al., 2008). 

However, 1 or 6 h/day access to METH decreased neuronal differentiation, maturation and 

survival of the progenitor cells (Mandyam et al., 2008).  

After identifying that METH is toxic to cells in DG-derived neurosphere cultures, we 

further aimed to look for a possible therapeutic strategy. We showed that NPY prevented METH-

induced apoptotic cell death in DG-derived neurosphere cultures and that this protection is 

mediated via activation of Y1 and Y2 receptors both expressed by DG cells. Interestingly, by 

inhibiting only one of the receptors, NPY completely loses its protective function, suggesting that 

the pathways triggered by Y1 and Y2 receptor activation are similar and both confer cell 

protection. In fact, little is known about the role of NPYergic system against METH-induced 

toxicity, but in accord with our findings, Thiriet and collaborators (2005) observed that NPY (10 

µg, i.c.v.) administered 1 h before, 24 and 48 h after the first METH injection, as well as the 



Chapter 3 

106 
 

selective activation of Y1 or Y2 receptors, decreased the number of TUNEL-positive cells in mice 

striatum administered with METH (4x 10 mg/kg every 2 h, i.p.). Furthermore, we aimed to 

uncover the mechanism(s) responsible for NPY protection in DG-derived neurosphere cultures. 

We clearly show that NPY blocked the glutamate release triggered by METH. NPY’s protective 

effect was not potentiated in the presence of the NMDA receptor antagonist (MK-801), 

suggesting that METH induces DG apoptotic cell death by increasing glutamate release that in 

turn overactivates NMDA receptors. Thus, cell death was completely abolished either by 

inhibiting glutamate release with NPY or directly blocking NMDA receptors. Consistent with this, 

we have previously shown that NPY inhibits KCl-evoked glutamate release in rat hippocampal 

synaptosomes via Y2 receptors (Silva et al., 2003a), and that activation of both Y1 and Y2 

receptors is neuroprotective against rat hippocampal excitotoxicity (Silva et al., 2003b; Xapelli et 

al., 2007). Additionally, our results show that NPY did not prevent the increase in necrosis 

induced by METH. As reviewed by Barros et al. (2001), necrosis involves energy depletion by 

concurrent ATP hydrolysis by ion pumps and defective ATP production, resulting in cell swelling 

and lysis. This metabolic depletion leads to Ca2+ deregulation, which activates degradative 

enzymes occurring mitochondrial disruption. Despite the fact that NPY is able to prevent 

neuronal cell death by both apoptosis and necrosis in other pathological experimental models 

(Silva et al., 2003a; Xapelli et al., 2007), the only paper available in the literature regarding METH 

insult (Thiriet et al., 2005) reports only protection against apoptosis. Thus, in the present work 

we suggest that the pathways that mediate necrosis and apoptosis can be divergent, where we 

observed that NPY had no protective effect on METH-induced necrosis.  

 In addition to its protective, NPY also induces an increase in proliferation and neuronal 

differentiation via Y1 receptors. These findings are consistent with previous studies performed in 

SGZ cell cultures (Howell et al., 2003 and 2005) where incubation with 1 µM NPY for 3 days 

increased cell number, BrdU incorporation, nestin and class III β-tubulin immunoreactive cells. 

Also, NPY (1 µM) is a proproliferative factor for neuroblasts in the DG through the activation of 

ERK1/2 (Howell et al., 2005). Agasse and co-authors (2008) demonstrated that SVZ cells exposed 

to 1 µM NPY for 48 h or 7 days showed an increase in proliferation or neuronal differentiation, 

respectively, via Y1 receptor activation and MAPK pathway. Others verified that administration 

of 2.5 pmol/µl NPY (i.c.v.) for 48 h or 7 days to in C57BL/6 adult mice induces an increase in 

proliferation or neuronal differentiation, respectively, and that this increase is due to the 

activation of Y1 receptor subtype (Decressac et al., 2010).  

 It is well accepted that memory deficits are closely related to neuronal dysfunction 

or/and loss (Simon et al., 2000; Thompson et al., 2004). In fact, our group has previously 
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evaluated the effect of METH on working memory and revealed mnemonic deficits in Sprague-

Dawley rats injected with an acute subcutaneous dose of 30 mg/kg METH (Simões et al., 2007). 

Likewise, Simon and collaborators (2000) verified that METH abusers display cognitive deficits, 

which was correlated with a significant decrease in hippocampal volume (Thompson et al., 

2004). Furthermore, it is known that deficits in brain adult neurogenesis can contribute to 

cognitive deficits. In fact, Madsen et al. (2003) verified that the impairment of neurogenesis in 

rats subjected to fractionated brain irradiation, lead to cognitive deficits. Thus, to prevent the 

impairment of neurogenesis induced by METH, we also challenged DG-derived neurosphere 

cultures with NPY and we observed that it completely prevented the decrease of neurogenesis 

induced by METH. Also, we observed that the selective activation of Y1 receptor completely 

prevented this effect. Importantly, taking into consideration the results reported here and by 

others showing that NPY is a protective, proneurogenic and proproliferative factor, we still 

cannot unambiguously determine if this preventive effect under conditions of METH-induced 

decrease of neuronal cells is due to mechanisms of protection, proliferation or/and neuronal 

differentiation. However, it is clear that NPY, via Y1 receptors, is able to prevent the toxic effect 

of METH on DG cells. 

Taken together, the present work allows us to better understand how METH affects the 

cell dynamics in hippocampal neurogenesis. Moreover, it was also demonstrated that the 

NPYergic system plays an important protective role against the destructive effects of this drug of 

abuse on hippocampal neurogenesis. 
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4.1. Abstract 

Some studies have suggested that methamphetamine (METH) is harmful to DG neurons 

and neuronal development, which can in part justify memory deficits observed in METH abusers. 

Moreover, changes in synaptic strength originating from the entorhinal cortex seem to underlie 

cognitive deficits, similar to those seen by METH abuse. However, little is known about the 

effects of METH on synaptic plasticity of the dentate gyrus (DG). Here, we investigate the impact 

of METH on neurogenesis and synaptic plasticity. To do so, we used a transgenic mouse (GAD67-

GFP, line G42), in which GFP is transiently expressed in maturing newborn neurons, and has 

been previously used as a model of adult neurogenesis. In this mouse line, GFP
+
 cells show 

different firing profile as follows: group 1 cells fire a single action potential (AP), group 2 cells fire 

few APs, and group 3 fire APs repeatedly, similarly to mature neurons. Accordingly, dendrites 

complexity increased from group 1 to group 3. Also, group 1 GFP
+
 cells does not produce 

excitatory postsynaptic currents (EPSCs) upon medial perforant pathway (MPP) fiber stimulation, 

in contrast to group 2 and group 3 cells, whose EPSCs can undergo potentiation. Taking this into 

consideration, mice were administered with 2 mg/kg METH (i.p.), once a day for 7 days, and we 

found that METH enhanced the differentiation of GFP+ cells shifting from DCX- to a more mature 

NeuN-expressing GFP+ cells, without changing the number of GFP+ cells. However, METH had no 

effect on either AP firing or passive membrane properties. Interestingly, METH induced LTP in 

group 3 cells in contrast to the control group (saline-treated), in which only a medium-term 

potentiation could be observed. In mature (GFP
-
) cells, METH generated a stronger long-term 

potentiation (LTP) in comparison to control. In conclusion, METH promotes the differentiation of 

immature neurons, induces LTP in group 3 GFP+ cells and strengthens LTP in mature DG neurons. 

These effects of METH can justify the enhancement of memory performance during short-term 

administration.  

 

 

4.2. Introduction 

 Methamphetamine (METH) is a psychostimulant drug of abuse, highly addictive and 

toxic to the human brain (reviewed by Silva et al., 2010; Gonçalves et al., 2014). Many studies 

indicated that METH abuse induces cognitive deficits, specifically by reducing the rate of 

psychomotor speed, attention capacity, lower ability to manipulate information, and deficits in 

working memory (Simon et al., 2000). METH abusers under abstinence exhibit poorer 

performance in attention and psychomotor speed, learning and memory, or in fluency tests 

(Kalechstein et al., 2003). Indeed, Thompson and collaborators (2004) associated memory 
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performance with alterations in tissue volume and observed that the hippocampus is the most 

affected region, showing a correlation between hippocampal tissue atrophy with poorer word-

recall test. In rodents, hippocampal-dependent memory performance may depend on the dose 

of METH administered where a high dose (30 mg/kg, i.p.) induces hippocampal neuronal 

dysfunction (Gonçalves et al., 2010) and memory deficits (Simões et al., 2007; Gonçalves et al., 

2012b), whereas a lower dose (1 mg/kg, i.p.) improved spatial memory consolidation (Cao et al., 

2013). Nevertheless, it is noteworthy that METH (Desoxyn®) is FDA approved to the treatment of 

Attention Deficit Disorder with Hyperactivity (ADHD). 

 Adult neurogenesis occurs throughout life and subgranular zone of the dentate gyrus 

(DG) and subventricular zone are the main neurogenic niches (Lledo et al., 2006). Moreover, a 

link between hippocampal neurogenesis and memory performance was observed by Kee and 

colleagues (2007) where they show that immature DG neurons are preferentially activated and 

recruited into spatial memory networks. In contrast, long-term ablation of neurogenesis induces 

memory and learning impairments and spatial flexibility deficits (Garthe et al., 2009). These 

authors also observed reduced long-term potentiation (LTP) in the DG after ablation of 

neurogenesis (Garthe et al., 2009). Interestingly, Green and collaborators (1990) demonstrated 

that exploratory behavior (learning) is linked with an increase in evoked field excitatory 

postsynaptic potential (EPSP) in the DG, suggesting a role of LTP in acquisition of new memories. 

 It is well known that neurogenesis is affected by several insults, and drugs of abuse are 

not an exception. Indeed, METH can induce alterations in hippocampal neurogenesis, which 

depends on the dose and frequency of exposure. One single injection of METH (50 mg/kg) 

decreased cell proliferation in gerbils (Hildebrandt et al., 1999), whereas a smaller dose (25 

mg/kg) transiently decreased proliferation (Teuchert-Noodt et al., 2000). On the other hand, a 

low dose of METH (1 mg/kg, i.p.) chronically administered to mice had no effect in the number 

of proliferating cells (Maeda et al., 2007). Interestingly, a study that relates self-administration 

protocol with human patterns of METH abuse (recreational, chronic and dependence) revealed 

that intermittent access (recreational) to METH (0.05 mg/kg/infusion, 2x/week for 28 days) 

displayed an increase in DG cell proliferation as well as in neuronal differentiation. On the other 

hand, both short (1 h/day, chronic) and long (6 h/day, dependence) access decreased 

proliferation and differentiation followed by a reduced number of DG granule cell neurons 

(Mandyam et al., 2008). Moreover, DG cells react differently to METH as demonstrated by Yuan 

and colleagues (2011), where METH self-administration (6 h/day for 4 or 13 days) increased the 

number of radial glia-like cells (type 1 cells), but decreased the population of type 2a cells, which 

suggests that METH impairs the transition from type 1 to type 2a cells.  
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 Overall, METH can improve or impair neurogenesis depending on the dose and 

frequency of exposure, but whether METH affects functional properties of immature and mature 

DG cells remains unknown. In the present work, we explored the effects of chronic METH 

administration in DG neurogenesis and its influence in synaptic plasticity of both newborn and 

mature neurons. Here, we show that METH enhances maturation of immature neurons, but 

neither affects passive membrane properties nor action potential kinetics. However, METH 

induces LTP in immature neurons and strengthened LTP in mature DGCs. In conclusion, we 

predict that chronic administration with a low dose of METH may result in improved memory 

performance.  

 

 

4.3. Materials and methods 

 

4.3.1. G42 transgenic (GAD67-GFP) mice 

 We used G42 (GAD67-GFP) mice, which were designed to express GFP in inhibitory 

GABAergic neurons. Indeed, GFP is present in parvalbumin-expressing, fast-spiking interneurons 

in the neocortex (Chattopadhyaya et al., 2004). In the hippocampus, however, GFP is sparsely 

expressed by inhibitory interneurons, and in the DG immature granule cells in the DG is 

selectively labeled (Cabezas et al., 2012, 2013). Indeed, these cells are postmitotic immature 

neurons, showing a transient GABAergic phenotype and expressing specific markers related to 

neuronal development: DCX, a microfilament protein that is specifically expressed in postmitotic 

neurons and used as a marker for immature neurons; calretinin, a calcium-binding protein that is 

transiently expressed in immature DGCs; some cells express NeuN, a marker for mature DGCs; 

and Prox1, a marker that specifically identifies DGCs (Cabezas et al., 2013). 

 G42 mice were continuously backcrossed on a C57BL/6 background, were weaned at 

postnatal day 21 (P21) and only males were used for the experiments. Although hydrocephaly 

has been described in this mouse strain (http://jaxmice.jax.com/007677.html), all hydrocephalus 

animals were discarded from experiments. 

 Animals were housed on a 12-h light/dark cycle in a temperature-controlled room with 

access to food and water ad libitum. All procedures were performed in accordance with the 

European Communities Council Directive (2010/63/EU) for care and use of experimental 

animals. All efforts were made to minimize suffering and reduce the number of animals. 

 

 

http://jaxmice.jax.com/007677.html
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4.3.2. Methamphetamine injection protocol 

 Methamphetamine hydrochloride was provided by Profs Nuno Milhazes from the 

Institute of Health Sciences-North, Gandra PRD, Portugal, and Fernanda Borges from the Faculty 

of Sciences, University of Porto, Portugal. METH was dissolved in 0.9% NaCl in a concentration of 

0.8 mg/ml and P20-24 G42 mice were injected chronically with 2 mg/kg METH (i.p.), or saline 

solution (control, vehicle animals), once a day for 7 days. Afterwards, both 

immunohistochemical, morphological and electrophysiological experiments were performed 24 

h after the last injection (Figure 4.1). The dose was chosen based on previous works showing 

that one administration of 2 mg/kg METH (i.p.) reduces GABABR-GIRK slow inhibitory 

postsynaptic currents in GABAergic neurons of the ventral tegmental area 24 h or 7 days after 

METH injection (Padgett et al., 2012).  

 

 

Figure 4.1 – METH injection protocol. G42 mice were injected with 2 mg/kg METH (i.p.) once a 
day for 7 consecutive days. Immunohistochemical, electrophysiological and DG cell morphology 
experiments were performed 24 h after the last METH administration.  
 

 

4.3.3. Immunohistochemistry 

 G42 mice were anesthetized with a solution consisting of ketamine (80 mg/kg, i.p.) and 

xylazine (20 mg/kg, i.p.) and were transcardially perfused with 4% (w/v) paraformaldehyde (PFA, 

Sigma-Aldrich, Saint-Quentin Fallavier, France) in phosphate-buffer saline solution (PBS; Sigma-

Aldrich). Afterwards, brains were post-fixed overnight in 4% PFA, rinsed with PBS and 

cryoprotected in 30% sucrose (Sigma-Aldrich) in PBS for 48 h. Then, brains were horizontally cut 

in 40-µm thick slices in a cryotome (Microm HM450). Slices were rinsed in PBS (3x 10 min) and 

were incubated in a blocking solution consisting of 10% bovine serum albumin (BSA) and 0.3% 

Triton (both from Sigma-Aldrich) in PBS for 2 h at room temperature. Slices were then incubated 

overnight at 4°C with 0.1% normal donkey serum (Sigma-Aldrich), 0.3% Triton in PBS and primary 

antibodies as follows: chicken anti-green fluorescent protein (1:1000; Millipore), rabbit anti-

doublecortin (DCX; 1:2000; Cell Signaling, Danvers, MA) and mouse anti-NeuN (1:250; Millipore). 
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Slices were rinsed in PBS (3x 10 min) and incubated with the respective secondary antibodies in 

0.3% Triton for 3.5 h at room temperature as follows: donkey anti-mouse IgG Cy3 (1:400), 

donkey anti-chicken IgG Cy2 (1:500), donkey anti-rabbit IgG Cy3 (1:600) and Alexa Fluor® 647 

donkey anti-mouse (1:400; all from Jackson ImmunoResearch Laboratories, Suffolk, England). 

Slices were rinsed in PBS (3x 10 min) and then mounted in Fluoromount-G (Southern Biotech, 

Birmingham, USA). 

 

4.3.4. Acquisition and analysis of confocal images 

 To determine GFP cell density in the DG, tiled images were acquired in an inverted 

confocal microscope (SP2 Leica, Germany), using a 40x/1.25 N.A objective from horizontal slices 

marked for NeuN and GFP. The number of GFP cells was counted in each tiled image from one 

DG plan, and the correspondent DG area was determined due to NeuN staining, obtained from 

the combination of all tiled images. Analysis of the total number of GFP cells and DG area was 

performed using Image J from 5 mice each group, 4 horizontal slices per animal. 

The level of neuronal maturation of GFP+ cells was assessed from images obtained from 

horizontal slices that were stained for GFP, DCX and NeuN. Images were obtained from stacks of 

10-17 sections, 2.5 µm apart, using a 63x/1.32 N.A objective. Images were acquired from four 

slices/animal of five saline- or METH-treated mice. Cell counts were determined using Image J 

software. Results are expressed as percentage of total GFP cells expressing DCX and/or NeuN. 

 

4.3.5. Electrophysiology 

 G42 mice were anesthetized with halothane (Sigma-Aldrich) and were immediately 

decapitated. Brains were quickly removed into ice-cold solution containing in mM: 248 sucrose, 

26 NaHCO3, 1 KCl, 1 CaCl2, 5 MgCl2 and 10 glucose (all from Sigma-Aldrich). Then, 350 µm-thick 

horizontal slices were obtained using a vibratome (Leica VT 1200 S, Nanterre, France) and 

transferred to a chamber containing artificial cerebrospinal fluid solution (ACSF; in mM: 126 

NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgCl2 and 16 glucose, all from Sigma-Aldrich), 

bubbled with 95% O2 / 5% CO2 at 34°C for 30 min, followed by incubation at room temperature 

for at least 1 h before recording.  

 Slices were perfused with ACSF containing the GABAAR antagonist gabazine (10 µM; 

Tocris, Lille, France) and the chamber temperature was set for 32-34°C as described by Ge et al. 

(2006, 2007a). For the electrophysiological experiments, slices were transferred to a submerged 

chamber and neurons were visualized using infrared videomicroscopy, with a microscope 

equipped with epifluorescence. GFP+ and mature GFP- cells were characterized by their action 
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potential (AP) firing. Microelectrodes with 3-4 MΩ tip-resistance were pulled from borosilicate 

glass capillaries (World Precision Instruments, WPI, Florida 34240, USA) using a Flaming/Brown 

Micropipette puller P-97 (Sutter Instruments, USA).  

 Intracellular solution consisted in (in mM) 130 potassium gluconate, 10 KCl, 10 HEPES, 2 

MgCl2, 5 Phosphocreatine, 4 MgATP, 0.3 NaGTP and 0.2 EGTA (all from Sigma-Aldrich), pH 7.3, 

with reversal potential set at -70 mV and osmolarity approximately 290 mOsm. DGCs were 

whole-cell patch-clamped and recorded both in current- and voltage-clamp modes as will be 

further indicated in each experiment. 

 

Action potential firing of dentate gyrus neurons 

 GFP
+
 and GFP

-
 cells were characterized in current-clamp mode. AP firing was evoked by 

injecting 1 second-long depolarizing steps of increasing amplitude, starting at -25 pA and with a 

10 pA increment. Cells were recorded both at resting membrane potential and at a holding 

potential of -70 mV, by injecting a holding current. AP peak amplitude, half-width and peak area 

were analyzed off-line. 

 GFP+ cells were identified in terms of their AP firing profile as follows: Group 1: GFP+ 

cells that fire a single AP; Group 2: GFP
+
 cells that fire more than one, but could not sustain 

repetitive firing; and Group 3: GFP+ cells that fired repeatedly. 

 

Synaptic plasticity 

 DGCs (both GFP+ and GFP-) were kept in voltage-clamp mode at a holding potential of -

70 mV. A bipolar stimulating electrode fabricated from a theta capillary (WPI) and filled with 

ACSF was placed in the middle third of the molecular layer in order to orthodromically stimulate 

the MPP (Figure 4.2). EPSCs were evoked by short (0.2 ms) pulses of 5 V. Short-term plasticity 

was assessed by evoking pairs of responses separated by 200-ms inter-pulse intervals (Figure 4.2 

B).  

LTP was induced by applying the theta-burst stimulation (TBS) paradigm consisting of 5 

bursts of extracellular stimulations at 100 Hz, repeated at 5 Hz and paired with postsynaptic 

depolarization at -30 mV. These bursts were delivered 16 times at 0.1 Hz (Figure 4.2 C). 

Recordings were discarded if series resistance was above 30 MΩ or changed more than 20%. 

  Selective MPP stimulation was verified by the presence of paired-pulse depression of 

EPSCs in response to two stimuli, closely separated in time (200 ms), as opposed to paired-pulse 

facilitation, typical of LPP stimulation (Colino and Malenka, 1993). Activation of MPP was further 

confirmed by functional expression of metabotropic glutamate receptor 2 (mGlu2), which are 
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absent at LPP terminals (Macek et al., 1996; Chiu and Castillo, 2008; Shigemoto et al., 1997). 

Indeed, slices were perfused with the mGlu2 agonist (2S,2’R,3’R)-2-(2’,3’)-

dicarboxycyclopropyl)glycine (DCG-IV; 1 µM), 30 min after LTP induction and reduction of EPSC 

amplitude was monitored (Figure 4.11).  

 

 

Figure 4.2 – Evoked EPSCs from GFP
+
 and GFP

-
 cells were recorded through MPP stimulation and 

LTP was induced by TBS. (A) Transmission image from a live horizontal slice showing the 
stimulation pipette at the MPP and the recording patch pipette in the granule cell layer. (B) 

Schematic representation of the protocol to evoke EPSCs in GFP+ (green) and GFP- (blue) cells. 
(C) TBS protocol. DG: Dentate gyrus; LPP: Lateral perforant pathway; MPP: Medial perforant 
pathway. 
 

 

Dentate granule cell morphology 

 Neurobiotin (3 mg/ml; Vector Labs) was dissolved in the intracellular solution and cells 

were filled during recordings. At the end of electrophysiological experiments, pipettes were 

gently pulled and slices fixed overnight in 4% PFA. Slices were then rinsed in PBS followed by 

incubation for 5 min with a solution consisted of 3% H2O2 and 10% methanol in PBS (all from 

Sigma-Aldrich). Slices were then rinsed twice with PBS (10 min each) and were permeabilized in 

2% Triton in PBS for 1 h. Slices were incubated for 2 h with ABC reagent (Avidin and biotinylated 

horseradish peroxidase [HRP] complex, Vector Labs) according to the manufacturer and rinsed in 



Chapter 4 

118 
 

PBS as follows: 2x 10 min, 1x 15 min and 1x 1 h. Slices were reacted with 3,3′-diaminobenzidine 

(DAB, Vector Labs) until the stain was visualized by using a stereotaxic microscope and were 

immediately rinsed twice with PBS. Slices were then mounted in 85% glycerol (Sigma-Aldrich) in 

PBS. Neurons were reconstructed using the Neurolucida software (MicroBrightField) using a 40× 

objective.  

 Differential interference contrast images were acquired with a macroscope (AZ100 

Nikon) from stacks of 11 sections, 2 µm apart, using a 5x objective. 

 

4.3.6. Data analysis 

 AP parameters, passive membrane properties and EPSCs were analyzed in Clampfit 

software (pClamp). LTP magnitude was determined by comparing the mean amplitude of EPSCs 

in the last 5 min of the plasticity in relation to the 5 min of baseline. Dendritic constructions 

were analyzed in Neurolucida explorer. 

Statistical significance was assessed using analysis of variance (one-way ANOVA) 

followed by Bonferroni’s multiple comparison or Mann Whitney post-hoc tests, as indicated in 

the figure legends. Data are expressed as mean ± standard error of the mean (SEM) and 

statistical significance level was set for P < 0.05. 

 

 

4.4. Results 

 

4.4.1. Methamphetamine does not change body weight 

 G42 mice were injected with 2 mg/kg METH or saline (i.p.) once a day for 7 days (Figure 

4.1) and body weight was monitored. Mice were weighted in the first day of injection and then 

every two days, and finally in the day of the experiment. Within the saline group, there was an 

increase of body weight through time as follows: in the first day of injection mice weighted 

10.00 + 0.39 g followed by 11.33 + 0.40 g, 12.76 + 0.43 g, 14.36 + 0.41 g, and in the experimental 

day 14.98 + 0.40 g (n = 24 animals; Figure 4.3). Regarding the METH group, in the first day of 

injection mice weighted 10.03 + 0.40 g followed by 11.05 + 0.45 g, 12.61 + 0.43 g, 14.22 + 0.50 g, 

and at the experimental day 14.61 + 0.49 g (n = 22 animals; Figure 4.3). Our findings show that 

METH did not induce alterations in body weight at each time points when compared to saline-

injected mice (Figure 4.3).  
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Figure 4.3 – Chronic administration of METH has no effect in G42 mice body weight. G42 mice 
were weighted in the first day of injection, every two days afterwards and on the experiment 
day. Data are expressed as mean ± SEM (n = 24 in saline and n = 22 in METH group).  
 

 

4.4.2. Methamphetamine accelerates immature dentate granule cell maturation 

 METH interferes with stem and progenitor cell proliferation and maturation depending 

on the dose and frequency of exposure (Teuchert-Noodt et al 2000; Mandyam et al., 2008; Yuan 

et al., 2011). In the present work, we used G42 mice as a model of DG neurogenesis, whose GFP+ 

expression is transient and specific for immature dentate granule neurons (Cabezas et al., 2012, 

2013). Therefore, we tested if METH treatment changes the density of GFP
+
 cells in the DG of 

G42 mice (Figure 4.4). We observed that chronic administration of METH (2 mg/kg, i.p.) did not 

significantly change the number of GFP
+
 cells over a DG horizontal section as follows: Saline: 

1.09 + 0.35 GFP+ cells/mm2 (Figure 4.4 A and C) and METH: 1.53 + 0.47 GFP+ cells/mm2 (Figure 

4.4 B and C).  

 According to Cabezas and collaborators (2012, 2013), GFP+ cells in this mouse line can 

have different stages of neuronal maturation, as they express only DCX (open arrows), co-

express DCX and NeuN (filled arrows), or only NeuN (arrow heads) (Figure 4.6 A-D). Chronic 

administration of METH decreased the number of GFP+ cells that expressed only DCX (Saline: 

42.59 + 3.33%; METH: 31.24 + 2.17% of total GFP cells; P < 0.05) and increased the number of 

GFP+ cells expressing only NeuN (Saline: 51.58 + 3.88%; METH: 66.78 + 2.55% of total GFP cells; P 

< 0.01), without interfering with GFP+ cells co-expressing DCX and NeuN (Saline:  17.68 + 3.33%; 

METH: 16.59 + 1.56% of total GFP cells) (Figure 4.5 E; n = 5 animals each group).  
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Figure 4.4 – METH does not change the number of GFP+ cells. (A and B) Representative confocal 

images of DG expressing GFP
+
 (green) and NeuN

+
 (blue) cells from G42 mice injected with (A) 

saline or (B) METH. (C) Bar graph depicting the density of GFP cells in the DG from saline- or 

METH-injected mice, showing that METH has no effect in GFP+ cell density. Data are expressed 
as mean + SEM from 5 animals injected with saline or METH, using Mann-Whitney post-hoc test. 
Scale bar: 100 µm. 
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Figure 4.5 – METH triggers differentiation of immature DG neurons. (A–D) Representative 

confocal images exhibiting the different phenotypes of immature cells, GFP+ DGCs. Immature 

neurons were identified as GFP+ cells (B) and different phenotypes were characterized by co-
expression with (C) DCX and/or (D) NeuN. Indeed, at least three different development stages of 

maturation were identified as follows: 1 – a more immature developmental stage, in which GFP+ 

cells express only DCX (open arrows); 2 – an intermediary stage where GFP+ cells express both 

DCX and NeuN (close arrows); and 3 – a more matured stage showing GFP+ cells expressing only 

NeuN, (arrow heads). (E) Chronic injection of METH enhances differentiation of GFP+ cells by 

decreasing the population of GFP+ cells that express DCX (open arrows) while increasing those 

that express NeuN (arrow heads), without changing the number of GFP+ neurons co-expressing 

both DCX and NeuN (close arrows). Data are expressed as percentage of total GFP+ cells + SEM 

from 4 horizontal slices/animal of five animals per condition. *P < 0.05 and **P < 0.01, 
significantly different from saline using Mann-Whitney post hoc test. 



Chapter 4 

122 
 

4.4.3. Methamphetamine treatment neither alters action potential waveform nor membrane 

passive properties of developing dentate gyrus neurons.  

 METH treatment enhances the differentiation of GFP
+
 cells. Therefore, we tested if 

METH alters the functional properties of these cells. GFP
+
 neurons of G42 mice display three 

different patterns of AP firing in response to a depolarizing current pulse (Figure 4.6 A). Group 1 

neurons represent GFP
+
 cells that fire a single AP irrespective of the intensity of stimulation 

(Figure 4.6 B); group 2 includes GFP+ cells that could generate few APs during the depolarizing 

current step. APs of group 2 DG neurons tended to become smaller in amplitude during the step. 

(Figure 4.6 C); group 3 includes GFP+ cells that exhibit AP firing pattern, more similar to mature 

neurons (GFP
-), i.e. multiple APs with little or no changes of spike amplitude during the train 

(Figure 4.6 D). 

 

 

Figure 4.6 – DG immature neurons from G42 mice have different AP firing profiles. (A) Current 
pulses of -25 and 85 pA with 1 s duration were applied to DG cells under current-clamp 

configuration. GFP+ cells present different behavior upon a depolarizing current step: (B) GFP+ 

cells that only exhibit one AP (Group 1), (C) GFP+ cells that do not sustain high frequency firing 

(Group 2), and (D) GFP+ cells that fire during the entire depolarizing step (Group 3). (E) AP firing 

from a GFP- or mature cell.  
 

 

 Accordingly, immature GFP+ cells also differed in dendritic development: group 1 GFP+ 

cells have few and short ramifications, mostly confined in the inner dentate granule layer (Figure 
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4.7 A). Group 2 cells have longer dendrites and more branching points than group 1 cells (Figure 

4.7 B) and complexity is more prominent as GFP
+
 cells matures into group 3 cells (Figure 4.7 C). 

DG neurons belonging to groups 2 and 3 share the same region of the DG, whereas group 1 

neurons tended to localize more internally, at the border with the hilus. Finally, mature neurons 

present the most elaborated dendritic arborization of all cells, with dendrites reaching the outer 

molecular layer (Figure 4.7 D). 

 

 

Figure 4.7 – DG immature neurons have different morphologies. Left panels show neurobiotin-

filled GFP+ and mature cells that were reconstructed for anatomical analysis (right panels). (A) 

Group 1 GFP+ cells present modest dendritic development, whereas development of dendrites 

are more complex in (B) group 2 and (C) group 3 GFP+ cells. (D) Mature neurons show more 

complex dendritic tree when compared to GFP+ cells. DG: Dentate gyrus; ML: Molecular layer. 
 

 

 In electrophysiological experiments the incidence of GFP+ cells of group 3 was the 

highest in both saline and METH groups (Figure 4.8). In particular, 24% of GFP+ patched cells 

were identified as belonging to group 1, 18% to group 2 and 58% to group 3 cells in saline-

injected animals (n = 76 total cells from 24 animals). However, no significant effect was observed 

in METH-injected animals as follows: 19% of GFP+ patched cells belonged to group 1 cells, 26% to 

group 2 and 55% to group 3 (n = 74 total cells from 22 animals; Figure 4.8). 
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Figure 4.8 – Distribution of GFP
+
 cells according to group 1, 2 and 3 in both control (saline) and 

METH condition. Group 3 GFP
+
 cells are more prevalent than groups 1 and 2 cells in both saline 

and METH groups.   
 

 

 We tested whether METH treatment changed AP waveform and/or passive membrane 

properties of GFP+ cells. METH treatment did not change AP amplitude, peak, area, half-width or 

threshold (P > 0.05 in all cases; Figure 4.9, Table 1). Moreover, drug treatment did not alter 

passive membrane properties, such as resting membrane potential, membrane capacitance and 

membrane resistance (P > 0.05 in all cases Figure 4.9, Table 1). Importantly, however, in both 

saline- and METH-treated animals GFP+ DG neurons belonging to groups 1-3 displayed different 

values for AP peak and amplitude as well as for passive membrane properties neurons (Figure 

4.9, Table 1). This was consistent with the functional changes of developing DG neurons, as 

previously described (Mongiat et al., 2009). 
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Figure 4.9 – METH has no effect on AP waveform. Representative single AP traces from (A) group 

1, (B) group 2, (C) group 3 GFP+ cells and mature neurons (D). METH has no effect in (E) AP peak, 
(F) AP amplitude, (G) AP area or (H) AP half-width. Data are expressed as mean + SEM (n = 6 – 
23). *P < 0.05 and ***P < 0.001, significantly different from the corresponding mature group 
using Bonferroni’s multiple comparison post-hoc test. ###P < 0.001, significantly different from 

group 2 GFP+ cells using Bonferroni’s multiple comparison post-hoc test. §§§P < 0.001, 

significantly different from group 3 GFP+ cells using Bonferroni’s multiple comparison post-hoc 
test. 
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Figure 4.10 – METH does not change passive membrane properties in GFP+ and mature cells. 
Data are expressed as mean + SEM (n = 3 – 14). *P < 0.05, **P < 0.01 and ***P < 0.001, 
significantly different from mature cells of the correspondent group using Bonferroni’s multiple 

comparison post-hoc test. #P < 0.05, and ###P < 0.001 significantly different from group 2 GFP+ 
cells using Bonferroni’s multiple comparison post-hoc test. §§§P < 0.001, significantly different 

from group 3 GFP+ cells using Bonferroni’s multiple comparison post-hoc test. 
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4.4.4. Methamphetamine induces LTP in group 3 GFP+ cells and strengthens LTP in mature 

neurons  

 Although some studies have pointed that METH induces cognitive deficits (Simon et al., 

2000; Thompson et al., 2004), other showed that METH can improve memory performance (Cao 

et al., 2013; Silber et al., 2006). Also, learning and memory could be related to changes in 

synaptic strength in the hippocampus (Morris et al., 1986; Green et al., 1990) and integration of 

immature neurons into preexistent DG circuitries has been indicated to participate in memory 

processes (Kee et al., 2007; Garthe et al., 2009), and, immature neurons exhibit enhanced 

synaptic plasticity, depending on the developmental stage (Ge et al., 2007a). We therefore 

aimed to clarify if chronic treatment with METH affects synaptic plasticity of both immature and 

mature DG neurons. For that, evoked EPSCs were recorded from GFP
+
 (groups 1, 2 and 3) and 

GFP
-
 (mature) cells, and LTP was induced by TBS paradigm. MPP stimulation failed to induce 

EPSCs in group 1 GFP+ cells. In contrast, both group 2 (Figure 4.12) and group 3 GFP+ (Figure 

4.13) cells displayed reliable EPSCs following MPP stimulation. Given the paucity of responses of 

group 1 cells, we focused our analysis of synaptic plasticity onto DG neurons belonging to GFP
+
 

neurons of group 2 and 3, and GFP- mature granule cells.  

 MPP stimulation was identified according to the paired-pulse ratio (PPR) and EPSC 

amplitude after wash in with the selective mGlu2 receptor agonist, DCG-IV. Indeed, it has been 

previously reported that MPP and LPP show paired-pulse depression and facilitation, 

respectively (Colino and Malenka 1993). Moreover, MPP, but not LPP, presynaptic terminals 

express mGlu2 receptors (Macek et al., 1996; Chiu and Castillo, 2008; Shigemoto et al., 1997). 

MPP characterization was performed regularly and figure 4.11 represents a mature neuron from 

a saline-treated mouse showing lack of paired-pulse facilitation both in baseline and after TBS 

(Figure 4.11 A). DCG-IV strongly and abruptly decreased EPSC amplitude (Figure 4.11 B), shifting 

PPR towards facilitation, consistent with a presynaptic effect of the drug. 
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Figure 4.11 – Characterization of MPP stimulation. Bipolar electrodes were placed in the middle 
molecular layer to stimulate MPP fiber terminals from the medial EC. (A) Normalized EPSCs from 
paired-pulse responses after MPP stimulation in baseline, 25-30 min after TBS and after DCG-IV 
(1 µM) perfusion. (B) Representative time-course EPSCs in (1) baseline, (2) after LTP induction 
and (3) after DCG-IV perfusion of a mature neuron, from a saline-injected mouse.  
 

 

GFP+ DG neurons identified as group 2 represent a relatively small sample in both animal 

groups (Figure 4.8). At the time of writing the thesis, only few cells from saline- and METH-

treated animals were stable enough to be recorded long-term (n = 3 cells from 3 mice vs. n = 6 

cells from 6 mice, saline vs. METH). However, although these experiments are still ongoing, we 

noticed a trend of a higher LTP magnitude in METH-treated animals (Figure 4.12). Further 

experiments will be fundamental to reach a firm conclusion of METH-induced effects on synaptic 

plasticity in this immature cell population.  
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Figure 4.12 – Group 2 GFP+ cells exhibit LTP. (A and B) Representative EPSCs traces (top) and 
time-course of evoked EPSCs from group 2 cells in (A) saline and (B) METH-injected mice (1) 
before and (2) after TBS stimulation. 
 

 

 Additionally, we found that group 3 cells from saline-treated animals exhibited a 

transient increase in EPSCs in response to TBS. This increase of synaptic strength could not be 

considered an LTP, as it was not sustained for longer than 10-15 min (EPSCs in baseline: 96.21 ± 

11.39 pA; EPSCs in the last 5 min after TBS: 109.80 ± 17.25 pA, paired t test; Figure 4.13 A and C). 

Interestingly, however, METH increased the amplitude of EPSCs immediately after TBS (EPSCs in 

baseline: 64.80 ± 5.69 pA; EPSCs in the last 5 min after TBS: 105.20 ± 9.42 pA, P < 0.001, paired t 

test) and this potentiation lasted throughout the experiment, i.e., METH treatment promoted 

the expression of LTP in group 3 GFP+ cells by METH (Figure 4.13 B and C). LTP magnitude was 

assessed by comparing post-TBS EPSCs in the last 5 min with EPSCs from baseline. No difference 

in synaptic strength was detected in neurons originating from saline-treated mice (EPSCs in 

baseline: 100.00 + 14.06%; EPSCs in the last 5 min after TBS: 123.40 + 12.75% of baseline). By 

contrast, a stronger LTP magnitude was found in group 3 neurons recorded from METH-treated 

animals (EPSCs in baseline: 100.00 + 12.04%; EPSCs in the last 5 min after TBS: 165.40 + 8.97% of 

baseline; P < 0.01; Figure 4.13 D). 
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Figure 4.13 – METH induces LTP in group 3 GFP+ cells. (A and B) Representative traces (top) of 
evoked EPSCs in (1) baseline and (2) after TBS, and time course of EPSCs (bottom) in (A) saline 
and (B) METH. (C) Average time-course of EPSCs from group 3 cells in saline and METH-injected 
mice (1) before and (2) after TBS stimulation. (D) LTP magnitude is higher in group 3 cells from 
mice injected with METH. Data are expressed as mean ± SEM from 13 cells in saline group and 7 
cells from METH group. **P < 0.01, significantly different from respective baseline using Mann 
Whitney post-hoc test. §P < 0.01, significantly different from saline using Mann Whitney post-hoc 
test.  
 

 

 In GFP- mature neurons, TBS application increased EPSC amplitude in both saline (EPSCs 

in baseline: 138.90 ± 18.44 pA; EPSCs in the last 5 min after TBS: 191.10 ± 28.50 pA, P < 0.05, 

paired t test; Figure 4.14 A) and METH group (EPSCs in baseline: 128.20 ± 15.75 pA; EPSCs in the 

last 5 min after TBS: 234.90 ± 23.35 pA, P < 0.001, paired t test; Figure 4.14 B). Remarkably, 

however, METH induced a significantly stronger LTP (EPSCs in baseline: 100.00 + 6.62%; EPSCs in 
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the last 5 min after TBS: 193.60 + 14.69% of baseline; Figure 4.14 C) in comparison to saline 

group (EPSCs in baseline: 100.00 + 16.82%; EPSCs in the last 5 min after TBS: 142.40 + 13.66% of 

baseline; P < 0.001; Figure 4.14 D).  

 

 

Figure 4.14 – METH increases LTP in DG mature cells. (A and B) Representative traces (top) of 
evoked EPSCs in (1) baseline and (2) after TBS, and time course of EPSCs (bottom) in (A) saline 
and (B) METH. (C) Average time-course of EPSCs from mature cells in saline and METH-injected 
mice (1) before and (2) after TBS stimulation. (D) LTP magnitude obtained between 25 and 30 
min after TBS is higher in mature cells from mice injected with METH. Data are expressed as 
mean ± SEM from 12 cells in saline group and 10 cells from METH group. *P < 0.05 and ***P < 
0.001, significantly different from respective baseline using Mann Whitney post-hoc test. §P < 
0.05, significantly different from saline using Mann Whitney post-hoc test.  
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 Overall, GFP
+
 cells responded differently to extracellular stimulation of the MPP as well 

as after the application of TBS. In detail, group 1 GFP+ cells did not display at all, or displayed 

very small and unreliable evoked EPSCs, whereas group 2 cells exhibited evoked EPSCs and LTP 

(Figure 4.12). Group 3 GFP+ cells exhibited only medium-term potentiation in saline group, but 

not LTP (Figures 4.13 and 4.15). Remarkably, METH treatment induced a large and sustained LTP 

in this cell group. Regarding mature DGCs, METH generated a larger LTP than in saline-treated 

mice (Figures 4.14 and 4.15). Figure 4.15 summarizes LTP magnitude in both group 3 GFP+ cells 

and mature DGCs. 

 

 

Figure 4.15 – METH induces LTP in GFP+ (group 3) and increases LTP strength GFP
-
 (mature) cells. 

Bar graph representing EPSCs and/or LTP magnitude in group 3 and mature cells. Data are 
expressed as mean % of baseline + SEM. *P < 0.05, **P < 0.01 and ***P < 0.001, significantly 
different from respective baseline using Mann Whitney post-hoc test. §P < 0.05 and §§P < 0.01, 
significantly different from respective saline.  
 

 

4.5. Discussion 

In the present study we found that chronic administration of METH (2 mg/kg, once a day 

for 7 days, i.p.) to G42 mice enhanced the differentiation of immature DGCs, without changing 

the number of GFP+ cells. This enhanced differentiation was paralleled by increased synaptic 

plasticity in group 3 GFP
+
 cells and mature neurons (GFP

-
 cells). Chronic METH administration 

neither modified firing nor passive membrane properties in all groups of cells.  

The G42 or GAD67-GFP mouse line has been considered to be a useful tool to study fast-

spiking PV-positive interneurons mainly in the neocortex (Chattopadhyaya et al., 2004). 

Interestingly, GFP+ cells in the DG of the mouse hippocampus are immature DGCs and not PV 

interneurons, as DGCs transiently express a GABAergic phenotype during their development 
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towards a more mature stage (Cabezas et al., 2012, 2013). These GFP+ cells exhibit the typical 

profile of immature neurons presenting only one or few overshooting APs (Figure 4.6; Cabezas et 

al., 2012). Moreover, GFP
+
 cells in the DG are restricted to Prox1, a marker of granule cells, at all 

postnatal ages (P1-P180) as well as DCX (a protein expressed in immature neurons) and/or the 

neuronal marker NeuN at P20-P30 mice (Cabezas et al., 2013). Also, these cells express calretinin 

that is transiently expressed in immature neurons, but not calbindin, confirming their immature 

neuronal identity (Cabezas et al., 2013). Therefore, the GAD67-GFP mouse line can be also used 

as a good model to study hippocampal neurogenesis. So, taking advantage of these mice 

characteristics, we observed that the population of GFP
+
 cells expressing NeuN was more 

prevalent than those that expressed only DCX. GFP+ cells that express both DCX and NeuN are 

fewer when compared to the other two populations, exclusively NeuN
+
 or DCX

+
 DG granule cells 

(≈20% less than DCX-expressing and 40-50% less than NeuN-expressing GFP+ cells). Nonetheless, 

this represents an interesting population with a short-term transitory phenotype. Interestingly, 

7-day treatment of METH decreased the population of GFP+ cells that presented the most 

immature phenotype (DCX), and increased the number of NeuN-expressing GFP cells (Figure 

4.5). Indeed, these results lead us to conclude that METH enhances differentiation of these 

specific immature neurons since it did not change the total number of GFP
+
 cells. Mandyam and 

collaborators (2008) related a human recreational pattern of METH use with a self-

administration protocol in rats (0.05 mg/kg/infusion METH, twice a week for 28 days) and 

observed that differentiation of proliferating cells was enhanced. We suggest that the 

administration protocol used in the present work may be similar to what is considered 

recreational drug intake. 

In the present work, GFP+ cells exhibited a range of firing patterns characteristic of 

immature neurons, indicating at least three different maturational stages: Group 1 – GFP+ cells 

that fire a single AP; Group 2 – GFP+ cells that fired few spikes, but cannot sustain repetitive 

firing of fully-blown APs; and Group 3 – GFP+ cells that fired APs repeatedly, thus resembling 

mature GFP- DGCs. Importantly, AP properties also differ among the 3 groups such as a 

progressive increase in AP peak and AP amplitude from group 1 to group 3 GFP+ cells, without 

changing, however, AP area. Additionally, group 1 cells presented lower Cm and higher Rin that 

increased and decreased, respectively, upon maturation of these cells. Also, these cells 

presented significantly more depolarized RMP than groups 2 and 3 GFP+ cells, and mature 

neurons. Interestingly, we further observed that group 1 GFP+ cells failed to present 

postsynaptic responses upon extracellular stimulation, which we considered as silent neurons. 
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Moreover, group 3 GFP
+
 cells present similar AP kinetics and passive membrane properties as of 

mature GFP- DGCs. Our data is in line with other studies that characterized functionally newborn 

DGCs using both retroviral-mediated expression of GFP (Espósito et al., 2005; Mongiat et al., 

2009; Vivar et al., 2012; Zhao et al., 2006) or transgenic mouse lines (Overstreet-Wadiche et al., 

2006; Spampanato et al., 2012). Specifically, Mongiat and collaborators (2009) revealed that 19 

day-old immature DGCs upon depolarizing steps generate a single AP, present lower Cm and 

have more depolarized membrane potentials than older neurons. Interestingly, these neurons 

presented short dendrites and few dendritic branches, and displayed none or relatively modest 

evoked excitatory currents. This lead us to predict that cells belonging to group 1 are younger 

than 19 days, but older than 15 days since GFP begins to be expressed in 2 week-old neurons 

(Cabezas et al., 2013). Regarding group 2 GFP
+
 cells, we believe that they are around the third 

week of development as they show comparable AP firing and Rin with 22 day-old neurons 

(Mongiat et al., 2009). Accordingly, their dendrites are more complex than group 1 cells (Figure 

4.7 B; Zhao et al., 2006) and they show reliable stimulations in response to MPP stimulation 

(Figure 4.12; Mongiat et al., 2009). Group 3 GFP+ cells present a mature-like AP firing (Figure 4.6) 

and longer dendrites (Figure 4.7 C) that, compared to retroviral-mediated labeling of immature 

neurons, resemble 28 day-old neurons (Zhao et al., 2006; Mongiat et al., 2009). Little is known 

about the effect of METH on the intrinsic properties of immature and mature DGCs, and herein 

we showed that METH does not interfere with AP kinetics or passive membrane properties, 

leading us to conclude that METH accelerates differentiation of GFP
+
 cells (Figure 4.5) without 

changing, however, their intrinsic functional properties (Figure 4.8 and 4.9; Table 1).  

It has been well characterized that DGCs exhibit LTP or synaptic strength in response to 

trains of presynaptic stimulation (Bliss and Lømo, 1973). Importantly, this enhancement of 

synaptic responses is currently considered to be the cellular substrate for learning and memory 

(Morris et al., 1986; Green et al., 1990). To date, no information is available regarding the effect 

of METH on synaptic plasticity of immature neurons, although it has been shown that chronic 

exposure to METH (5 mg/kg, i.p) can decrease LTP in CA1 pyramidal cells (Hori et al., 2010). The 

same effect of decreased LTP in CA1 cells was observed after administration with a higher dose 

of METH (10 mg/kg, twice a day for 5 days, i.p.; Swant et al., 2010). Intriguingly, a higher dose of 

METH (24 mg/kg, i.p.) for 14 days did not induce any effect in LTP of CA1 cells, but there was a 

decrease after 21 days of drug abstinence, which was associated with poorer spatial memory 

performance (North et al., 2013).  

Little is known about the effect of psychostimulants on synaptic plasticity of the DG. 

Interestingly, offspring rats exposed to nicotine from embryonic day 3 until weaning showed 
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increased LTP in the DG, without changes of cell proliferation or survival of proliferating cells 

(Mahar et al., 2012). Importantly, neurogenesis plays an active role in memory processes as 

immature neurons are recruited to integrate circuits responsible for memory formation (Kee et 

al., 2007). Likewise, ablation of neurogenesis induces significant cognitive deficits (Garthe et al., 

2009). Integration of newborn neurons into existent neuronal circuitries is accomplished 

following newborn DG granule neurons’ dendritic and axonal elongation towards the molecular 

layer and the hilus, respectively (Zhao et al., 2006; Toni et al., 2008). As a result, dendritic and 

axonal development allow immature neurons to form synaptic connections, receiving inputs 

from the EC (Mongiat et al., 2009) and send outputs to CA3 pyramidal, interneurons or mossy 

cells, respectively (Toni et al., 2008). In the present study we observed that cells belonging to 

group 2 and group 3 DGCs receive excitatory inputs from MPP fibers generating EPSCs (Figure 

4.12 and 4.13). Moreover, group 2 (Figure 4.12) and group 3 (Figure 4.13) GFP+ cells as well as 

mature neurons (Figure 4.14) were able to undergo LTP in response to TBS at MPP fibers. 

Nevertheless, one disadvantage of using G42 mice in synaptic plasticity studies is that group 2 

and group 3 GFP+ cells are difficult to be distinguished solely based on their fluorescence, as they 

share the same localization within the granule cell layer, in contrast to group 1 cells, which are 

easily identified by their small soma and specific localization in the inner granule cell layer, 

adjacent to the hilus. Moreover, group 2 GFP+ cells are less common than group 3 neurons, thus 

the probability to patch a group 2 cell is much smaller. Therefore, we cannot provide any 

conclusion on this group due to its low sampling. This study will be completed in the next 

following months.  

Importantly, we found that group 3 GFP
+
 cells from saline-injected mice, exhibited a 

transient (10-15 min) potentiation of synaptic transmission in response to TBS (Figure 4.13). 

Interestingly, METH treatment switched this transient form of plasticity into a fully-blown LTP. In 

addition, we observed that LTP of glutamatergic synapses onto mature (GFP-) DGCs was strongly 

enhanced by METH exposure (Figures 4.14 and 4.15). Although we cannot provide a mechanism 

for this METH-induced enhancement of synaptic plasticity, but it has been recently shown by 

Padgett and collaborators (2012) that a single dose of METH (2 mg/kg, i.p.) decreased GABAB 

mediated activation of G protein-gated inwardly rectifying potassium channels (GIRK) in 

GABAergic neurons in the ventral tegmental area, both at 24 h and 7 days after METH 

administration. According to the authors this decrease was a result of a METH-induced 

internalization of GABAB receptor-GIRK complex (Padgett et al., 2012). In fact, GABAB receptors 

are present in DGCs dendrites where they control cell excitability (Scanziani, 2000). Therefore, 

we can hypothesize that group 3 GFP+ cells LTP at MPP pathway may be inhibited in normal 
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conditions by GABAB receptor activation. METH probably reduced GABAB receptor-mediated 

currents, resulting in enhanced LTP expression. Likewise, METH induced stronger LTP in mature, 

or GFP- cells, which may also involve a similar mechanism of action. Another possible mechanism 

underlying the enhanced LTP after METH treatment could be a differential expression of specific 

subunits of NMDA receptors. Indeed, it was shown that the same dose of METH used here (2 

mg/kg, i.p), but administered for 14 days, increased hippocampal GluN2 protein levels, a subunit 

of NMDA receptors required for LTP (Yamamoto et al., 2006). Also, proteins important for NMDA 

receptor transport in dendrites, like kinesin family member 17 (Setou et al., 2000), are up-

regulated in the hippocampus after chronic exposure to METH (2 mg/kg for 14 days), suggesting 

that METH enhances integration of NMDA receptors in dendritic membranes (Yamamoto et al., 

2006). Finally, Ge and collaborators (2007a) demonstrated that GluN2B subunits are required for 

enhanced synaptic plasticity in 1 month-old immature neurons. It is therefore possible that 

GluN2B subunits may be less expressed in NMDA receptors at synapses of group 3 GFP+ cells. 

Further experiments are required to prove the role of GABAB and/or NMDA receptors in favoring 

and strengthening synaptic plasticity in group 3 and mature DGCs.  

LTP is the current cellular mechanism proposed to underlie learning and memory. 

Accordingly, moving Fischer rats from their home cages to different environments produced an 

increase of exploratory behavior that resulted in an increase of field EPSP in the DG, which 

suggests a link between enhanced synaptic plasticity with acquisition of new memories (Green 

et al., 1990). Previously, Morris and co-workers (1986) showed that NMDA receptors are crucial 

for DG LTP and for hippocampal-dependent place learning, suggesting that LTP induction is 

important for memory performance. Along with these lines (Morris et al., 1986; Green et al., 

1990) it is tempting to speculate that the enhanced LTP following METH administration will 

result in improved memory learning. Hippocampal-dependent memory experiments, such as 

Morris water maze, should be addressed to confirm this hypothesis directly. Accordingly, mice 

injected once with 1 mg/kg METH exhibited an improvement in memory consolidation (Cao et 

al., 2013). Similarly, 0.42 mg/kg METH given in two sessions, 2 weeks apart, to human volunteers 

showed improved psychomotor ability (Silber et al., 2006). 

In conclusion, the present work shows that chronic administration with a low dose of 

METH favored differentiation of immature neurons and enhanced LTP in group 3 GFP+ immature 

neurons. Also, METH increased LTP amplitude in mature DGCs. Although METH produces a 

“positive” effect on neurogenesis and synaptic plasticity, this drug is highly addictive and it alters 

hippocampal homeostasis, likely converting these “positive” effects into malign and 

dysfunctional effects to cognitive performance.  
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5. General discussion 

 With the present thesis we aimed at studying neurogenesis in the DG as resident stem 

cells generate new neurons that are recruited to integrate the preexistent circuitries 

contributing to cognition (Kee et al., 2007; Garthe et al., 2009). Moreover, it is well known that 

METH enhances or impairs memory performance according to the amount and frequency of 

exposure (Cao et al., 2013; Ito et al., 2007). Thus, we investigated the effect of METH on 

different stages of neuronal development along the neural stem cell lineage: stem cells, 

differentiating cells and immature and mature DGCs.  

Our major findings show that METH can induce DG stem cell death depending on the 

concentration. Importantly, even a single nontoxic concentration of METH was able to decrease 

DG stem cell self-renewal capacities and the number of mature neurons. Additionally, a chronic 

exposure to a low dose of METH accelerated the differentiation of immature neurons as well as 

enhanced LTP. Furthermore, NPY revealed to be a promising therapeutic tool against the 

negative impact of METH on hippocampal neurogenesis.  

 In chapter 2, we suggest the involvement of MAPK pathway, a well-known mediator in 

cell proliferation (Heo et al., 2006), on DG self-renewal impairment induced by METH. Overall, 

we found that METH reduced the activity of EGFR, confirmed by the down-regulation of the 

phosphorylation levels of this receptor, and also decreased pERK1/2 levels. Furthermore, METH 

induced alterations in downstream targets such as mediators of the cell cycle. In fact, we verified 

that METH delayed the transition from G0/G1 to the S phase and increased the number of cells 

in the quiescence state. This effect was confirmed by the down-regulation of cyclin E, a protein 

involved in the progression through G1 phase and initiation of DNA replication, and thereby 

limiting the progression of the cell cycle. On the other hand, METH did not induce any effect in 

p21 or p27, which confirms that METH selectively targets the MAPK pathway. In fact, the only 

evidence available that studies the effect of METH on cell cycle showed that self-administration 

of this drug may arrest cell cycle of DG proliferating cells in the G1 phase (Yuan et al., 2011). As 

METH was able to decrease self-renewal, we further explored its influence in DG stem cell-fate 

division. Indeed, through characterization of the phenotype of cells that derived from the 

division of one stem cell, we verified that METH decreased self-renewal symmetric cell division 

while increased pairs of cells that are committed to differentiate. This last effect resulted from 

the activation of NMDA receptors. In general, these receptors negatively regulate neurogenesis 

by reducing proliferation (Cameron et al., 1995; Nacher et al., 2003), but activation of these 

receptors in radial glia-like cells enhances the expression of NeuroD, a downstream regulator of 

neuronal differentiation, and consequently increases neurogenesis (Deisseroth et al., 2004). In 
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fact, we predict that METH activated NMDA receptors that triggered differentiation of DG stem 

cells. Accordingly, we revealed that METH increased DCX expression in DG neurospheres, an 

effect that correlates with data from cell-fate division. In fact, Mandyam and collaborators 

(2008) verified an increase of DCX+ neurons in rat DG after self-administration with METH that 

mimics the recreational pattern of human use. In summary, METH interferes with DG stem cell 

proliferation due to a delay in cell progression (G0/G1-to-S phase), which involves the down-

regulation of pEGFR, pERK1/2 and cyclin E. In addition, METH impairs DG cell division towards 

self-renewal via NMDA receptor signaling thereby promoting neuronal differentiation (Figure 

5.1).  

 

 

Figure 5.1 – Schematic representation of the effect of METH in DG stem cell properties. METH 
down-regulates the phosphorylation levels of EGFR and ERK1/2, compromising DG cell 
proliferation as observed by down-regulation of cyclin E levels. As a result, METH increases the 
population of quiescent cells and delays the transition from G0/G1 to S phase of the cell cycle. 
These effects may result in the decrease of DG stem cell self-renewal under METH exposure. The 
impairment of self-renewal can lead DG stem cells to differentiate as observed by the cell fate 
division towards differentiation and the increase of DCX expression in neurospheres. 
 

 

 In chapter 3, the toxic effect of METH in DG-derived neurosphere cultures was 

investigated, and we demonstrated that the glutamatergic system is involved in this effect. 

Indeed, METH increased glutamate release in these cultures that in turn activated NMDA 

receptors, resulting in an increased cell death. Moreover, we observed that METH did not have 

any effect on cell proliferation, but decreased the number of mature neurons in these cultures, 

even at a nontoxic concentration. Interestingly, we described above that METH decreased self-

renewal and triggered neuronal differentiation by increasing immature neurons in DG 
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neurospheres. Here, on the other hand, we observed that METH decreased the number of 

mature neurons, so we can deduce that METH may also compromise neuronal survival. In fact, 

DG-derived neurosphere cultures were devoid of EGF and bFGF-2 in contrast to self-renewal 

studies where EGF and FGF were present at low concentration and thereby conferring survival to 

these cells. So, we may predict that neurons from DG-derived neurosphere cultures hardly 

survived against METH due to low paracrine-/autocrine-induced protection. Afterwards, we 

aimed to identify a possible therapeutic target against the noxious effects induced by METH. We 

chose NPY based on previous facts that stated a protective role for NPY against excitotoxicity 

(Silva et al., 2003a) and METH insults (Thiriet et al., 2005; Gonçalves et al., 2012). Herein, NPY 

protected DG cells from the toxicity induced by METH by preventing the increased glutamate 

release and thereby apoptotic events, as well as by preventing the decrease of mature neurons. 

Besides, NPY increased cell proliferation and neuronal differentiation via Y1 receptors, which 

corroborated with previous findings in the SGZ (Howell et al., 2003, 2005; Decressac et al., 2011) 

and SVZ (Agasse et al., 2008; Decressac et al., 2009). With these results, we can also hypothesize 

that NPY could prevent the effects of METH on self-renewal as well, specifically by preventing 

the down-regulation of pERK1/2 as it was verified by others that NPY increases phosphorylation 

of ERK1/2 (Cheung et al., 2012; Howell et al., 2005). In conclusion, NPY revealed to be a 

promising factor in protecting DG cells against the harmful effect induced by METH. 

 

 

Figure 5.2 – Schematic representation of METH-induced toxicity in DG-derived neurosphere 
cultures. METH increases glutamate release that in turn will overactivate NMDA receptors 
leading to apoptosis. In contrast, NPY prevents METH-induced glutamate release and METH-
induced apoptosis via activation of Y1 or Y2 receptors. Also, METH triggers cell death by necrosis. 
The number of mature neurons is reduced by METH and NPY is able to counteract this effect 
through Y1 receptors. 
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 After revealing that METH affects DG cell self-renewal and survival of mature neurons, 

we asked if METH could affect the development on immature neurons, specifically looking to 

their neurogenic and functional properties (Chapter 4). Our major findings show that METH (2 

mg/kg, once a day for 7 days) accelerated maturation of newborn neurons as well as enhanced 

LTP. Indeed, we verify that chronic administration of METH decreased the number of GFP
+
 cells 

that co-express DCX while it increased those that co-expressed NeuN, though accelerating 

differentiation of GFP
+
 neurons (Figure 5.3). Indeed, we were able to confirm that METH 

triggered differentiation of these cells as it did not alter the density of GFP+ cells and was not 

toxic to these immature neurons. These results go in line with our previous data where we show 

that stem cells from DG neurospheres exposed to METH underwent differentiation. We can 

conclude that a nontoxic concentration or dose of METH promotes differentiation of stem cells 

or immature neurons, respectively. Other major finding in the present work was that METH 

induces LTP in group 3 GFP+ cells in contrast to the medium-term potentiation found in saline-

injected mice (Figure 5.3). To explain these observations we suggest that METH may induce 

GluN2 subunit expression alterations in NMDA receptors as they are required for LTP. In fact, the 

same dose of METH was able to increase GluN2 protein levels in the hippocampus (Yamamoto et 

al., 2006), and GluN2B was shown to mediate enhanced synaptic plasticity in 1 month-old 

immature neurons (Ge et al., 2007a). As a result, we suggest that group 3 GFP+ cells may have 

less GluN2B expression in NMDA receptors and METH may increase it. Another mechanism that 

may be involved in METH-induced LTP is the inhibition of GABAB receptors as their main function 

is to regulate neuronal excitability, and METH at the same dose decreased currents mediated by 

this receptor in the ventral tegmental area (Padgett et al., 2012). In contrast to what were 

observed in group 3 cells, mature DGCs were able to sustain LTP and METH increased the 

strength in synaptic plasticity (Figure 5.3). In summary, the enhanced maturation of immature 

neurons and generation of LTP strength suggest that the METH regiment used in the present 

work may improve memory performance. Indeed, it has been demonstrated in both humans 

(Silber et al., 2006) and rodents (Cao et al., 2013) that METH can improve cognitive deficits 

(Figure 5.3).  
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Figure 5.3 – Schematic representation of the effect of a chronic administration of METH in DG 
neurogenesis of G42 mice. METH accelerates differentiation of immature DG neurons. 

Moreover, METH induces and strengths LTP in group 3 GFP+ cells and mature neurons, 
respectively. 
 

 

 

In conclusion, with the present thesis it is possible to conclude that METH is able to decrease 

DG stem cell self-renewal, to promote neuronal differentiation and to enhance LTP in 

immature DGCs. Additionally, NPY seems to be a promising therapeutic tool under conditions 

of METH neurotoxicity. 
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