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ABSTRACT 

 

Altered lipid metabolism is a hallmark of multiple diseases such as diabetes and 

cancer, so there is a vast interest in the accurate determination of lipid synthesis fluxes. 

However, there is no gold standard for measuring these fluxes. Therefore, the initial goal 

of this project was to develop and validate a novel, non-invasive methodology that could 

be used to measure these fluxes. Here we describe a novel, hybrid 1H/2H nuclear 

magnetic resonance (NMR) analytical technique for the simultaneous determination of 

de novo lipogenesis, elongation, unsaturation, glycerol and cholesterol synthesis fluxes. 

The first chapter of this dissertation will provide the mathematical formulas necessary for 

the determination of these fluxes. In order to confirm that the flux readout obtained from 

the NMR method is actually representative of real metabolic changes, the mathematical 

formulas where validated by using animal models with known changes in those metabolic 

pathways. The NMR method was able to accurately determine the predicted changes in 

metabolic fluxes in all tested animal models.  

One of the key aspects of diabetes is the dysregulation of lipid metabolism, as 

evidenced by the hypertriglyceridemia that occurs in diabetic patients. A feature of type 

2 diabetes is the apparent paradox of selective insulin resistance, i.e., the 

glucoregulatory branch of insulin signaling becomes resistant, but the regulation of lipid 

metabolism remains unchanged or even elevated. However, most studies that analyze 

selective insulin resistance do not perform flux analysis, relying instead on mRNA or 

protein levels of key enzymes to determine if fluxes are changed. Chapter 2 of this 

dissertation will apply the NMR method described in chapter 1 to determine if lipid flux 

was altered in the context of diabetes and insulin resistance. Flux analysis performed in 

high-fat diet induced diabetic mice indicates that DNL is actually decreased in these 

animals, suggesting the possibility that the observed differences in mRNA and protein 

levels in previous studies do not necessarily translate into increased flux through the 

pathway. 

Finally, in chapter 3 of this dissertation the NMR method will be applied to 

determine the effects of the cytosolic form of Phosphoenolpyruvate carboxykinase 

(PEPCK-C) in the regulation of lipid metabolism. PEPCK-C is considered one of the key 

enzymes in the regulation of gluconeogenesis, but a recent study showed that, in fact, 

PEPCK-C has a remarkably low impact in the regulation of hepatic gluconeogenesis. 
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This data raises the question: if PEPCK-C is not important for gluconeogenesis, what is 

its metabolic role? Previous reports have shown that PEPCK-C is associated with proper 

maintenance of lipid homeostasis, as animals that are whole body knockouts for this 

enzyme die within two days of birth, showing remarkable hypertriglyceridemia and 

accumulation of hepatic fat. Here it is shown that PEPCK-C has a higher control over the 

synthesis of fatty acids, both in the fed and fasted state, than it does for the regulation of 

glucose production. The potential mechanisms through which PEPCK-C regulates lipid 

metabolism were also investigated in mice that express varying levels of PEPCK-C, with 

dysregulation of shuttling of metabolites between the mitochondria and the cytosol being 

identified as a potential mechanism for the changes in lipid metabolism. 
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RESUMO 

 

 Alterações do metabolismo dos lípidos é uma das principais características de 

múltiplas doenças tais como cancro e diabetes, como tal, existe muito interesse em 

determinar de forma correta, fluxos de síntese de lípidos. Contudo, não existe nenhum 

“golden standard” para medir estes fluxos. Como tal, o primeiro objetivo deste trabalho 

foi desenvolver e validar uma nova técnica analítica híbrida de 1H/2H de ressonância 

magnética nuclear (RMN) para a determinação simultânea de lipogénese de novo, 

elongação, desaturação de ácidos gordos, assim como a síntese de glicerol e de 

colesterol. No primeiro capítulo desta dissertação serão dadas as fórmulas matemáticas 

necessárias para a determinação destes fluxos. Para ter a certeza absoluta que a 

informação de fluxos providenciada por este método são, em boa verdade, 

representativas de potenciais mudanças em atividade metabólica, as fórmulas 

matemáticas foram validadas usando modelos animais que possuem alterações 

previamente determinadas nessas mesmas vias metabólicas. O método de RMN foi 

capaz de medir com precisão as mudanças metabólicas previstas em todos os modelos 

animais testados. 

Um dos aspetos chave da patologia da diabetes é a desregulação do metabolismo 

dos lípidos como evidenciado pela hipertrigliceridémia que ocorre em pacientes 

diabéticos. Uma particularidade da diabetes tipo 2 é o aparente paradoxo de resistência 

seletiva à insulina, isto é, a atividade da insulina sobre o braço glucoreglatório da 

sinalização torna-se resistente, mas a regulação do metabolismo dos lípidos mantem-

se normal, ou mesmo elevada. Contudo, a maioria dos estudos que analisam a 

resistência seletiva à insulina não fazem análise aos fluxos metabólicos, recorrendo 

antes aos níveis de RNAm e às quantidades de proteína de algumas enzimas chave 

para determinar se os fluxos estão alterados. No capítulo 2 desta tese, o método de 

RMN descrito no capítulo 1 será aplicado para determinar se o fluxo lipogénico está 

verdadeiramente alterado no contexto da diabetes e resistência à insulina. Análise aos 

fluxos efetuada em ratinhos em que a diabetes foi induzida via alimentação de uma dieta 

rica em gordura indicam que a lipogénese está, de facto, diminuída nestes animais, 

sugerindo a possibilidade que as alterações em RNAm e níveis de proteína observadas 

em estudos anteriores não se traduzem necessariamente num aumento do fluxo através 

desta via metabólica. 

Finalmente, no capítulo 3 desta dissertação, o método de RMN será aplicado para 

estudar os efeitos da forma citosólica da enzima fosphoenolpiruvato carboxicinase 
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(PEPCK-C) na regulação do metabolismo dos lípidos. PEPCK-C é considerada uma das 

enzimas chave na regulação da gluconeogénese, mas um estudo recente demonstrou 

que, de facto, a PEPCK-C tem um impacto notavelmente baixo na regulação da 

gluconeogénese hepática. Estes dados levantam uma questão: se a PEPCK-C não é 

importante na regulação da gluconeogénese, qual é o seu papel metabólico? Outros 

estudos indicam que a PEPCK-C é importante para a correta manutenção da 

homeostasia dos lípidos, visto que animais deficientes desta enzima a um nível global 

morrem dois dias depois de nascerem, com marcada hipertrigliceridémia e acumulação 

de lípidos mo fígado. Demonstramos, usando animais que expressam diferentes níveis 

de PEPCK-C que esta enzima tem um maior controlo sobre a síntese de ácidos gordos, 

quer no estado pré- ou pós prandial, do que o controlo que exerce sobre a produção de 

glucose. Os potenciais mecanismos através dos quais a PEPCK-C regula o 

metabolismo dos lípidos também foi investigado em animais que produzem diferentes 

níveis de PEPCK-C, sendo que alterações no transporte de metabolitos entre a 

mitocôndria e o citosol foram identificados como um potencial mecanismo para as 

mudanças no metabolismo dos lípidos. 
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CHAPTER 1 

  

Development of a novel 1H/2H NMR technique to 

measure lipid metabolic fluxes 

1 – Introduction 

Obesity has reached epidemic proportions worldwide, Data from 2009 and 2010 

indicates that 69.2% of United States adults where defined as overweight (BMI between 

25 and 30) and 35.9% where considered obese (BMI≥30) (1). Europe follows the same 

trend, with a study showing that, based on BMI, 28.3% of men and 36.5 of women can 

be classified as obese (2). The trend is for these numbers to increase, with some studies 

predicting that the number of obese people in the United States might increase to almost 

90% by 2030 (3). Obesity has severe consequences on individuals’ health: studies show 

that a BMI≥30 is considered a major risk for cardiovascular diseases (4) and Type 2 

diabetes mellitus (T2DM) (5). It is also an extraordinary financial burden, since studies 

show that about 10% of all United States medical expenses in 2008 derive from the 

treatment of obesity-related complications (6). 

One of the consequences of obesity is increased fat mass and alterations of lipid 

flux and therefore there is interest in determining how these fluxes are changed in 

pathophysiological states. 

 This chapter describes the development of a NMR based technique that allows 

the determination of multiple lipid fluxes, namely, DNL, SCD-1 activity, elongation, 

NADPH synthesis, Cholesterol synthesis and triglycerie-glycerol synthesis. This method 

also provides lipidomic information on the analyzed sample, by determining the amount 

of monounsaturated fatty acids (MUFAS), polyunsaturated fatty acids (PUFAS), 

Saturated FA, ω-3 FA, and two individual fatty acids: linoleic acid and docosahexaenoic 

acid, as well as providing the average chain length of the fatty acids in the sample. 

Afterwards, as detailed in chapter 2 of this dissertation we will apply this method for the 

determination of lipid biosynthetic fluxes in High-Fat Diet (HFD)-induced type 2 diabetes. 

The introduction of this chapter will briefly explain the pathways involved in lipid 

metabolism, followed by a review of existing methodology used to measure fatty acid 

metabolism. Next, in order to better understand the NMR method development, we will 

analyze the metabolic origin of protons and carbons of lipid moieties, cholesterol and 

glycerol.  
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2 - Lipid metabolism 

2.1 – De novo lipogenesis 

De novo lipogenesis (DNL) is the process through which Acetyl-CoA is converted 

to palmitate. The overall reaction of lipogenesis is: 

 

8 Acetyl CoA + 7 ATP + 14 NADPH → Palmitate + 8 CoA + 7 ADP + 14 NADP+ 

+ 6 H2O 

 

There are two enzymes in DNL: Acetyl-CoA carboxylase (ACC) and Fatty acid 

synthase (FAS). 

 

2.1.1 – Acetyl-CoA carboxylase (ACC) 

ACC is a biotin dependent enzyme that catalyzes the conversion of acetyl-CoA into 

malonyl-CoA. Figure 1 shows this enzyme’s mechanism of action 

 

 

Figure 1:  ACC mechanism of action: The first step in the mechanism is the phosphorylation of 

bicarbonate (1) followed by the transference of the carbamoyl phosphate group into the N-1 site 

of biotin (2) and subsequent transference to the acetyl-CoA unit, restoring the enzyme to its native 

conformation and creating a molecule of malonyl-CoA (3). Figure adapted from (7). 
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There are two isoforms of ACC, each encoded in a distinct gene (8): ACC1 and 

ACC2, located in the cytosol and the outer mitochondrial membrane, respectively (9). 

The fate of the malonyl-CoA produced by these two isoforms is distinct. ACC1-derived 

malonyl-CoA is used mainly as a lipogenic substrate, whereas ACC2-derived malonyl-

CoA is used to regulate fatty acid oxidation by inhibiting carnitine palmitoyltransferase-I 

(CPT-I) (10) an enzyme essential for the entrance of fatty acids into the mitochondria, 

where they are oxidized. ACC1 is mainly expressed in liver, adipose tissue and 

mammary glands, i.e., the tissues where lipogenesis occurs to the highest extent. 

Conversely, ACC2 is mainly expressed in skeletal muscle, heart and liver, where β-

oxidation takes place (11).  

 

2.1.2 – Fatty acid synthase (FAS) 

Fatty acid synthase (FAS) is a multimeric enzyme that catalyzes the condensation 

of the malonyl-CoA units produced by ACC1 to synthesize palmitate. FAS has 6 domains 

that catalyze the reactions necessary for the condensation of malonyl-CoA units (Figure 

2). The malonyl-CoA/acetyl-CoA-ACPT-transacylase (MAT) domain catalyzes the 

binding of acetyl-CoA and malonyl-CoA to the acyl carrier of FAS. Then the β-ketoacyl 

synthase (KS) domain catalyzes the decarboxylative condensation of acetyl-CoA with 

malonyl-CoA, followed by a reduction catalyzed by the β-ketoacyl reductase (KR) 

domain, which uses NADPH as the source of proton for the reaction. The resulting β-

hydroxyacyl undergoes dehydration in the dehydratase domain (DH) forming a β-enoyl 

product which undergoes a second reduction in the β-enoyl reductase (ER) domain. This 

process repeats itself for seven times, with each reaction adding two extra carbon units 

to the nascent fatty acid. After all of the 18 carbons of palmitate have been added, the 

thioesterase (TE) domain, then cleaves the newly made palmitate of the enzyme.  

The mechanism of FAS will be further explored in section 3 of this chapter, in order 

to completely elucidate the origins of protons and carbons in the fatty acid moieties. 
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Figure 2: a) 3D structure of porcine FAS highlighting the position of some of the catalytic domains. 

The white stars represent the possible location of the TE domain b) Chemical reactions catalyzed 

by each of the domains of FAS Adapted from (12). 

 

Each of the domains of FAS has a very precise specificity for different fatty acid 

carbon chains. The MAT domain has a high specificity for malonyl- and acetyl-CoA but 

a low specificity for higher carbon chain lengths, such as C4:0 and C6:0. The KS domain 

has a high specificity for C6:0 to C14:0 but not C16:0 which, coupled with the TE’s 

domain high specificity for C16:0 (13), makes palmitate the predominant product of FAS 

(Figure 3). 

 

 

Figure 3: Chain length specific activities of malonylacyltransferase, thioesterase and ketoacyl 

synthase moieties of FAS. The units for the activities are µmol/min/mg. Figure adapted from (13). 
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2.2 – Desaturation and elongation 

Fatty acids, whether they are formed by DNL or derived from the diet, can undergo 

further alterations, with the two most common ones being desaturation and elongation. 

Fatty acid’s length and degree of saturation are integral in defining their physical and 

chemical properties. For example, the melting temperature of a fatty acid is directly 

proportional to its chain length and inversely proportional to its degree of saturation. The 

melting temperature of fatty acids is extremely important in determining membrane 

fluidity, and thus affecting the physic-chemical properties of cells (14). Long chain and 

unsaturated fatty acids also serve as precursors to other molecules, such as 

prostaglandins thromboxanes and leukotrienes which have important biological functions 

in regulation of inflammatory response (15). Finally, these fatty acids are also involved 

in the transcriptional regulation (16). 

Since palmitate is the major product of fatty acid synthase, it is necessary to be 

able to generate fatty acids that have longer carbon chains and higher degree of 

desaturation. In order to achieve this there are two groups of enzymes – elongases and 

desaturases – that catalyze the fatty acid chain elongation and the introduction of double 

bonds in fatty acids, respectively. 

There are multiple enzymes that catalyze the desaturation of fatty acids. They are 

classified based on the position within the fatty acid chain at which the desaturation 

occurs. Not every position in the fatty acid molecule is readily available to be desaturated 

though, since not all organisms express all the necessary desaturates. Figure 4 shows 

the species distribution of known desaturase enzymes, as well as the positions at which 

the double bond is added. 

 

 

Figure 4: positions at which desaturation occurs in multiple species. Adapted from (17). 
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Animals possess three types of desaturases: Δ9, Δ5 and Δ6. Δ9 desaturases are 

referred to as SCDs (Stearoyl-CoA Desaturase) of which mice possess 4 isoforms: SCD 

-1,-2,-3 and -4, while Δ5 and Δ6 desaturases are designated FADS1 and FADS2, 

respectively (Fatty Acid Desaturases). 

Since animals cannot create double bonds in position Δ12 and Δ15 they rely on 

plants (or insects) to provide them with linoleic and α-linolenic acid, the two major 

precursors of ω-6 and ω-3 fatty acids species, respectively. Hence, these fatty acids are 

essential, since they can only be derived from the diet. 

SCD’s mechanism is the best understood. In animal tissues, SCD desaturates fatty 

acids by a three-component enzyme system involving flavoprotein-NADH-dependent 

cytochrome b5 reductase, cytochrome b5, and the SCD protein itself, in the presence of 

molecular oxygen (Figure 5). 

 

 

Figure 5: The mechanism of SCD action. Adapted from (18). 

 

The distinct isoforms of SCD are differently expressed in rodent tissues. SCD-1 is 

mainly expressed in adipose tissue and liver (19), SCD-2 is abundant in the brain (20), 

SCD-3 is only present in sebaceous glands (21) and SCD-4 is found exclusively in the 

heart (22). SCD-1, -2 and -4 preferentially catalyze the conversion of stearoyl-CoA (18:0) 

to oleyl-CoA (18:1), while SCD-3 preferentially catalyzes the conversion of palmitoyl-CoA 

(16:0) to palmitoleyl-CoA (16:1) (23). 

FADS are involved in the metabolic processing of essential fatty acids linoleic (18:2 

n-6) and α-linolenic (18:3 n-3) acid, in order to generate PUFAS (Figure 7). (24) 

In order to synthesize fatty acid chains longer than 16 carbons, palmitate can 

undergo chain elongation. This is achieved by a series of enzymes that catalyze the 

addition of carbon units in a molecular mechanism that is similar to that of FAS to 
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previously existing fatty acids (whether derived from de novo lipogenesis or from diet). 

There are 4 enzymes associated with elongation of fatty acids (Figure 6). The first step 

is a condensation catalyzed by ELVOL (Elongation of very long chain fatty acids), 

followed a reductase catalyzed by KAR (α-ketoacid reductase), a dehydratase catalyzed 

by HADC (3-hydroxyacyl-CoA dehydratase) and another reductase catalyzed by TER 

(trans-2,3,-enoyl-CoA reductase). 

 

 

Figure 6: Mechanism of fatty acid elongation. Adapted from (18). 

 

There are 7 isoforms of Elovl (1-7), each with distinct substrate preferences and 

tissue distribution (18). There are also 4 isoforms of HADC (HADC 1-4) (25) with are 

expressed in different tissues. 
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Elovl, Scd and Fads enzymes act in tandem to synthesize a plethora of fatty acid 

species. Figure 7 shows the reactions catalyzed by these enzymes in the production of 

long chain polyunsaturated fatty acids from a palmitate precursor (derived from FAS and, 

to a lesser extent, diet) or from essential fatty acids linoleic acid (18:2 n-6) or α-linolenic 

acid (18:3 n-3) (Figure 7). 

 

 

Figure 7: Metabolism of fatty acids, highlighting the desaturation and elongation reactions 

catalyzed by Elovl and Fads. Figure adapted from (18). 
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2.3 – Triglyceride-Glycerol synthesis 

Free fatty acids might have deleterious effects in the development of insulin 

resistance and/or diabetes (26). Therefore it is necessary to store fatty acids in a less 

reactive but still accessible form. Normally this is achieved by esterifying fatty acids. One 

of the possible metabolites used for esterification is glycerol-3-phophate (Gly3P), forming 

glycerolipids. Therefore, an accurate determination of the synthesis rate of Gly3P is also 

important. 

There are three pathways through which Gly3P is synthesized: glycolysis, 

glyceroneogenesis or through the action of glycerol kinase (Figure 8). 

 

 

Figure 8: Differential contributions of pathways of glycerol synthesis towards labeling of the 

glycerol moiety of fatty acids. Italized protons are derived from glyceroneogenesis and bold 

protons are derived from glycolysis Adapted from (27). 

 

Glycolysis produces triose phosphates - glyceraldehyde-3-phosphate and 

dihydroxyacetone phosphate – and the latter can be converted to Gly3P via glycerol-3-

phosphate dehydrogenase (G3PDH). 

Glyceroneogenesis is essentially a truncated from of gluconeogenesis, in which 

the triose-phosphates made in this process do not continue reacting further up the 

gluconeogenic pathway, but are converted to Gly3P via G3PDH.  

Lastly, free glycerol can be directly phosphorylated by glycerol kinase to Gly3P but 

the expression of this enzyme is limited to some tissues – mainly the liver – and is absent 

from the WAT, where Gly3P production plays an important role in lipid homeostasis. 
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All of these pathways are simultaneously active to different extents and their 

relative contributions to the pool of Gly3P are dependent on numerous factors, such as 

pathophysiology. 

 

2.4 – Cholesterol Synthesis 

Cholesterol is another important lipid species that plays an important role in whole 

body homeostasis, serving as a precursor to bile acids and steroid hormones, as well as 

an integral part of the plasma membrane.  

The cholesterol biosynthetic pathway starts with condensation of acetyl-CoA and 

acetoacetyl-CoA to form 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA), followed by its 

reduction to mevalonate by HMG-CoA reductase, which is the committed step of 

cholesterol synthesis. The pathway involves numerous other steps, catalyzed by multiple 

enzymes, which include several phosphorylation, condensation, reduction and 

dehydration reactions, to ultimately form cholesterol (Figure 9). 

 

 

Figure 9: Pathway of Cholesterol biosynthesis, figure adapted from (28).  
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3 - Review of isotope-based techniques for measuring lipid flux 

Due to importance of lipid biosynthetic fluxes to whole body homeostasis, it is 

import to be able to accurately measure them directly. And, for that purpose, multiple 

methodologies using isotopes (stable or otherwise) were developed to track lipid 

synthesis. 

Historically, tracer experiments to measure lipid synthesis were first developed 

using of radioactive tracers, such as 14C labelled acetate, 3H labelled water and 14C and 

3H labeled fatty acids. However, due to the negative effects of radioactivity (even though 

both 14C and 3H undergo β-decay – the least dangerous type of radioactive decay) they 

are not safe for in vivo studies, and require specific facilities and methodologies, which 

significantly raise the cost of studies. Nevertheless, the mathematical models and 

insights created by radioactive tracer research laid the groundwork for stable isotope 

tracer research. 

With stable isotopes, it became possible to perform in vivo experiments while using 

higher amounts of substrate without any of the negative toxicity effects associated with 

radioactivity. 

There are multiple choices for stable isotope tracers capable of measuring lipid 

biosynthetic fluxes, these include: 

 

3.1 – Labeled fatty acids:  

Some studies use either 13C or 2H labeled fatty acids to measure fatty acid uptake, 

esterification and/or SCD1 activity. Using fatty acids as a precursor usually limits the 

number of molecules that will have label incorporated into them as, barring extensive 

recycling of the fatty acid precursor used, it will only be possible to examine the 

enrichment of the same fatty acid used (tracer dilution analysis) or fatty acids directly 

derived from the precursor (for example, fatty acids derived from elongation or 

desaturation of the precursor).  

Tracer dilution analysis of labeled fatty acids is a common methodology to measure 

the incorporation of exogenous fatty acids into the pools of interest, allowing, for 

example, the determination of the contribution of dietary fatty acids, adipose tissue 

derived fatty acids and hepatic lipogenesis to hepatic triglyceride pools in human 

subjects with NAFLD (29). Another study used a similar technique to determine the 

uptake of FA into muscle and WAT in human subjects (30).  

Similarly, multiple studies have used labeled fatty acids to probe specific pathways, 

such as the oxidation and desaturation of stearate using either D5-18:0 or D7-18:0 in rats 

(31). Another study analyzed the activity of SCD1 over palmitate in human macrophages 
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and dendritic cells using D3-16:0 (32). These techniques can be applied to multiple 

systems, as exemplified by Mosley et al. who used 13C-18:1n-7 (vaccenic acid) to 

measure the synthesis of conjugated linoleic acid in lactating cows (33). 

However, these precursors do not directly provide information about de novo 

lipogenesis and, even though it is possible to determine fluxes through specific pathways 

(such as desaturation) these are normally constrained to analyzing fatty acids that are 

direct products of the labelled fatty acid chosen as tracer, therefore narrowing the amount 

of obtainable data.  

Another important fact to consider is that specifically labeled fatty acids are 

expensive, significantly increasing the costs of studies, especially in when studying large 

biosystems, such as humans or large animals. 

 

3.2 – Labeled fatty acid precursors  

Another possible class of stable isotope tracers used to measure lipid biosynthetic 

fluxes are fatty acid precursors. Essentially, since the most basic building block for fatty 

acid synthesis is acetyl-CoA it is possible to use any metabolite that gives rise to labeled 

acetyl-CoA as tracers, such as, acetate, glucose, glutamine and pyruvate, among others. 

Using this type of tracers it is possible to measure the incorporation of label into a 

plethora of fatty acids, significantly increasing the possible analyzable pathways. An 

additional layer of information can be added as the simultaneous use of different tracers 

with distinct labeling patterns can be used to determine the specific contribution of 

specific pathways to lipid biosynthetic fluxes. 

As an example, Collin et al. (34) determined the contributions of acetate, glucose, 

pyruvate and glutamine to lipogenesis in human differentiated adipocytes using 1-13C 

acetate, U-13C glucose, U-13C pyruvate and U-13C glutamine and found the percent 

contributions were 16.6, 42.4, 12.3 and 10.4, respectively. 

There are some issues with using labeled acetate as a tracer. Namely, in some 

tissues, like the liver, zonation across can cause a gradient in precursor enrichment, 

potentially leading to an underestimation of trace/tracer ratios (35). Another factor to bear 

in mind, is selective uptake of acetate by specific tissues. When given orally, acetate is 

readily taken up by the liver, and thus, the enrichment of acetate in the peripheral blood 

is much smaller than that of the portal blood, which become an issue where the goal of 

the experiment is to study extra-hepatic lipid metabolism (35).  

Other tracers that originate acetate or acetyl-CoA, such as glucose or glutamine 

also have some issues, in the sense that they undergo extensive metabolic cycling, 

causing an effective dilution of label and the appearance of distinct acetate isotopomers, 

which must be accounted for in the calculations. Therefore, additional experiments need 
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to be made in order to determine how much of the label from the tracer actually gets to 

acetate and how it is distributed. Since these parameters are affected by numerous 

metabolic pathways it is difficult to rely on tabled values and/or previously published data, 

as a simple change in one pathway might cause a completely distinct acetate isotopomer 

pattern. 

Finally, as with labeled fatty acids, an experiment using labeled acetate or glucose 

in large amounts can become prohibitively expensive, especially if there is a need for a 

long exposure to the tracer (for example, to measure DNL in human adipose tissue). 

 

3.3 – Labeled water 

Water is a ubiquitous presence in many metabolic reactions and, therefore, has 

the potential to trace several metabolic fluxes simultaneously. Deuterium labeled water 

(D2O) can easily be administered either in an oral bolus or via i.p. injection, where it 

rapidly equilibrates with the organism’s body water, achieving complete equilibration in 

about 10 min (36). With an estimate of the body water percentage of the organism it is 

easy to calculate the necessary amount of D2O that needs to be administered in order to 

achieve a certain enrichment. For example, the body water pool has been estimated 

between 60 and 70% in rodents (27, 36-38). Once the D2O bolus is administered, it is 

possible to supplement drinking water so that it is enriched to the bolus’ goal. Using this 

protocol, it is possible to maintain the deuterium enrichment of body water as long as 

necessary, with the caveat that, presumably due to the production of metabolic unlabeled 

water by the organisms, there will be a slight dilution of the final body water enrichment 

(39).  

D2O freely and uniformly distributes itself across any tissue and, therefore, there 

are no issues with enrichment zonation or selective uptake which, couple to its low cost 

and ease of continued administration, make it an excellent tracer to determine whole 

body lipogenesis. 

Labelled D2O will be incorporated into both acetyl-CoA and NADPH but the extent 

to which this exchange occurs depends on several factors. NADPH can be derived from 

two sources in mammals: the malic enzyme pathway or the pentose phosphate pathway, 

the former being in equilibrium with body water, but the latter not (40). It has been 

estimated that the maximal contribution of pentose phosphate pathway to NADPH 

synthesis in the mouse adipose tissue is about 60% (41). Acetyl-CoA enrichment also 

depends on its source (40), but under the assumption that pyruvate is the main source 

of acetyl-CoA, and that the exchange of the methyl protons of pyruvate with body water 

is 80-95% complete (42, 43) it’s enrichment will approach that of body water. 
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The major caveat of using D2O comes from the fact that the majority of stable 

isotope methods commonly used employ gas- or liquid- chromatography mass 

spectroscopy (MS) to analyze the incorporation of label. Since MS techniques are unable 

to determine the positional enrichment within the fatty acid moieties, there are several 

assumptions that need to be made when analyzing labeling patterns. Since the 

enrichment ratio of tracer/trace is one of the most important parameters that needs to be 

to measure metabolic flux, the fact that, for all intents and purposes, when using D2O to 

trace lipogenesis, there are multiple sources of label incorporation (Acetyl-CoA, Body 

water and NADPH), severely impairs the MS-based techniques’ ability to determine the 

“true” precursor enrichment. 

In order to circumvent issues that arise from incorrect determination of the true 

precursor enrichment, a statistical analysis method entitled Mass Isotopomer Distribution 

Analysis (MIDA) was developed by Hellerstein et al. in 1992 (44). Essentially, MIDA 

considers that, in the synthesis of polymers (fatty acids can be considered a polymer of 

acetyl-CoA) the enrichment of the final polymer follows a binomial distribution which is a 

function of the enrichment of the monomers (the p value) and the number of monomers 

that constitute the polymer (the n value). Therefore, if both the p and the n value are 

known, the synthesis rate of the polymer can be determined based on the polymer’s 

enrichment ratio. 

Lee et al. applied MIDA to determine the synthesis rate of palmitate in isolated Hep 

G2 cells (45) and in vivo in several rat tissues (37) and determined the n value to be 17 

and 20 respectively. Another study by Diraison (46) found this value to be 22 for rat 

plasma palmitate. Showing that the true precursor enrichment is prone to variability and 

should be calculated for every new experiment. 

Correct determination of the n value becomes more complicated for fatty acids that 

have undergone chain elongation as those fatty acids can be generated from palmitate 

that was previously labeled or unlabeled palmitate. Each of these two pools will have a 

distinct n value associated with them and, furthermore, the presence of two distinct 

precursor pools makes it so that the incorporation of deuterium label into long-chain fatty 

acids can no longer be approximated as a binomial distribution. In order to circumvent 

this issue, Ajie et al. (47) essentially assume that the n value for palmitate is 21 and that 

each subsequent two-carbon unit added to palmitate has an n value of 3. This 

approximation is predicated on both the complete equilibration of body water enrichment 

with NAPDH and no significant acetyl-CoA enrichment. If these assumptions are made, 

it is possible to plot the theoretical mass isotopomer distributions that would be obtained 

in the most extreme cases, i.e. all long chain fatty acids being synthesized de novo or all 

fatty acids being synthesized by chain elongation and then perform linear regression 
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analysis to fit the isotopomer distributions to the biologically calculated values, therefore 

determining the percentage contribution of both DNL or elongation. Additionally, fatty 

acid elongation also occurs, to a lesser extent, in mitochondria (48) and the carbon 

source for this pathway is acetyl-CoA as opposed to the more prevalent elongation that 

occurs in the endoplasmic reticulum and uses malonyl-CoA as a source of carbons. 

Another important component of lipid metabolism, as highlighted above, is the 

synthesis of Gly3P. MIDA has also been applied to probe not only the changes in total 

Gly3P production but also the relative contributions of glyceroneogenesis and glycolysis 

to its synthesis. Essentially, the math associated with the calculation of total Gly3P 

synthesis is the same as for the calculation of the synthesis of fatty acids: the n value is 

calculated from the mass isotopomer ratios and is then compared with the number of 

deuteriums in the Gly3P molecule (36). 

Once the n value of Gly3P is known it is possible to determine the contribution of 

glyceroneogenesis and glycolysis to its synthesis. This is only possible in tissues where 

the contribution of glycerol kinase to the synthesis of Gly3P is negligible, such as the 

adipose tissue. In order to perform this calculation it is first assumed that the number of 

incorporated deuteriums in the Gly3P molecule is 3.5 or 5, if the source is glycolysis or 

glyceroneogenesis, respectively (27, 49). Therefore, the contribution of each of these 

pathways to the n number is given by: 

𝑛 = 5𝑥 + 3.5(1 − 𝑥)     𝐸𝑞 (1) 

Where 𝑥 is the fraction of Gly3P derived from glyceroneogenesis. Solving Eq. 1 for 

x we have: 

𝑥 =
𝑛 − 3.5

1.5
    𝐸𝑞(2) 

 

Finally, MIDA can also be applied to determine the synthesis of cholesterol, in a 

fashion similar to that of palmitate, as described in (37, 45-47, 50). 

In order to perform MIDA analysis it is necessary to make multiple assumptions 

about n values and, since previous papers show the great variability of the n value, 

assuming any integer value for this variable is somewhat misleading and might lead to 

an incorrect determination of lipid flux. 

In this chapter we will describe and validate a novel methodology for measuring 

lipid biosynthetic fluxes that overcomes these issues by the use of NMR-based 

isotopomer detection, since NMR is able to provide some information about not only the 

deuterium enrichment value, but also the deuterium enrichment position. Namely, since 

both the terminal methyl group and the α2 protons of fatty acids appear as a discrete 

peaks in the NMR spectra it is possible, by comparing the deuterium enrichment at both 
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ends of the molecule, to determine not only de novo lipogenesis but also elongation with 

less need for assumptions about the number of exchanging protons. This method also 

allows the determination of glycerol and cholesterol synthesis, as will be described later 

in this chapter.  

Since the positional information at which deuterium incorporation occurs is of 

extraordinary importance to the analysis of the data, the following section discusses the 

pathways through which each of the protons in fatty acids, cholesterol and glycerol-3-

phosphate might become labeled. 
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4 - Analysis of the chemical origin of protons and carbons within the 

fatty acid moieties 

In order to develop a novel stable isotope technique to determine fatty acid flux it 

is imperative to understand the origin of protons and carbons in the moieties to be 

analyzed. Figure 10 shows the mechanism of FAS. During DNL malonyl-CoA and acetyl-

CoA bind to FAS and a condensation reaction occurs. This condensation happens in 

such a way that the terminal methyl group of fatty acids is derived from acetyl-CoA, with 

all the other carbons being derived from malonyl-CoA. All the protons in the terminal 

methyl group are derived from acetyl-CoA, the even numbered carbons have one proton 

derived from water and one proton derived from malonyl-CoA and the odd numbered 

carbons  have both of their protons derived from NADPH (41, 51). 

 

 

Figure 10: Mechanism of action of fatty acid synthase, highlighting the origin of each proton and 

carbon in the nascent fatty acid moiety.  

 

During fatty acid desaturation there are no new protons incorporated into fatty acids 

either as part of the reaction or via any enzymatic intermediate and, therefore, there is 

no incorporation of label during this reaction. 

Fatty acid elongation can occur in either the endoplasmic reticulum or the 

mitochondria. The former is the most active prevalent and uses malonyl-CoA as a 
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substrate, while the latter uses acetyl-CoA as a precursor (48). As previously mentioned 

the mechanism for elongation is exactly the same as that of de novo fatty acid synthesis, 

with the substrate being added to the carboxyl terminal of the preexisting fatty acid chain. 

Therefore protons attached to carbons closer to the carboxyl terminal of fatty acids are 

labeled through both DNL and elongation, while the terminal methyl group of fatty acids 

can only be labeled via DNL. 

It is also important to understand the origin of the protons in the glycerol moiety of 

fatty acids. Figure 11 indicates the protons that are derived from the three possible 

pathways of glycerol synthesis, i.e., glyceroneogenesis, which labels all protons, 

glycolysis, which labels protons 1, 2, 3 and either 4 or 5. If glycerol kinase is the source 

of Gly3P, there is a rapid equilibrium of this newly formed glycerol with the triose 

phosphate pool, leading to the appearance of label in protons 1, 2 and 3. 

 

 

Figure 11: Contributions of glyceroneogenesis and glycolysis to the incorporation of deuterium in 

the glycerol-3-phosphate molecule. Adapted from (27). 

 

It is also possible to track the incorporation of deuterium into cholesterol during its 

synthesis. As for fatty acids, there are three possible sources for each proton in the 

cholesterol molecule: acetyl-CoA, NADPH and water (52). Figure 12 shows the origin of 

each proton in the cholesterol molecule. 
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Figure 12: Origin of each individual proton in the cholesterol molecule. Circled protons are derived 

from NADPH, squared protons are derived from water and the remaining are derived from acetyl-

CoA. Adapted from (52). 

 

As previously stated, one of the biggest advantages of NMR techniques is its ability 

to provide positional enrichment information. For some molecules, different 

protons/deuteriums are observable in NMR spectra as distinct resonances based on their 

chemical environment and therefore it is possible to determine the deuterium enrichment 

in specific position of the molecule. As we detailed in this section there are multiple 

pathways through which specific protons are incorporated and multiple origins for those 

particular protons. This information will be used in the next section to develop a NMR 

method for measuring synthesis fluxes in all the lipid moieties referred to in this section. 
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5 - Development of a novel nuclear magnetic resonance technique 

for measurement of lipid flux 

Delgado et al. published (53) a method that uses deuterated water and NMR 

spectroscopy in order to determine the percentage of hepatic lipids that were de novo 

synthesized during the labeling period. Here we expand and validate that method, using 

it to calculate not only de novo lipogenic flux but also elongation flux, SCD-1 activity, 

triglyceride-bound glycerol (TG-gly) synthesis and. This method can also be used to 

perform a limited lipidomic analysis, allowing the calculation of ω-3 FA, saturated FA, 

MUFAS and PUFAS well as two specific fatty acids: linoleic acid and docosahexaenoic 

acid. Finally the expanded method allows the determination of average fatty acid chain 

length and molecular weight. 

The basic premise of this method is the analysis of the deuterium labeling patterns 

that are generated after mice are injected with D2O. Post-injection, these mice are 

returned to their cages and given ad libitum access to water which has been enriched 

with D2O, in order to maintain the body water enrichment achieved by the injection. 

Figure 13 shows a typical 1H and 2H NMR spectra of a mouse’s hepatic purified 

triglyceride fraction according to the method of Hamilton and Comai (54). 

 

 

Figure 13: 1H (upper) and 2H (lower) NMR spectra of a purified triglyceride fraction. A: Non ω-3 

methyl; B: Partial ω-6 methyl; C: ω-3 methyl; D: Aliphatic chain; E: α3 aliphatic; F: Protons 
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adjacent to monounsaturated olefinic; G: protons adjacent to polyunsaturated olefinic; H: α2 

aliphatic; DHA α2 and α3 ally; J: Linoleic acid bisallylic; K: Other bisallylic; L: sn1,sn3 of esterified 

glycerol; M: sn2 of esterified glycerol; N: Olefinic; O: Chloroform; P:Pyrazine standard. 

 

As mentioned in the previous section, the incorporation of deuterium into each 

specific position of the fatty acid moieties is dependent on the activity of lipid synthesis 

pathways. Therefore is possible to determine, based on deuterium enrichment, the lipid 

synthesis fluxes. 

As mentioned in section 4 of this chapter, acetyl-CoA is the precursor for the 

synthesis of both fatty acids and cholesterol. Providing the carbon backbone and most 

of the protons for these molecules and, therefore, knowing its enrichment is extremely 

important. However, there are some issues with sampling acetyl-CoA, namely its low 

tissue concentration and its instability. Under the assumption that pyruvate is the main 

source of acetyl-CoA, and that the exchange of the methyl protons of pyruvate with body 

water is 80-95% complete (42, 43) the enrichment of body water – which is easier to 

measure (55) – can be used as a proxy for acetyl-CoA enrichment. Bearing that in mind, 

the paper by Delgado et al. (53) defined the % of newly synthesized fatty acids as: 

 

% 𝐷𝑁𝐿 = 100 ×
% 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑚𝑒𝑡ℎ𝑦𝑙

% 𝑏𝑜𝑑𝑦 𝑤𝑎𝑡𝑒𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡
 𝐸𝑞. 3  

 

Even though the assumptions are sound, the measurement of this flux wasn’t, 

however, validated using a model known to have high lipogenic activity. Furthermore, 

the incorporation of deuterium label into other positions of the fatty acid moieties can be 

explored to extract further flux information from the 2H NMR spectra. The following 

sections of this chapter will expand this method to determine additional lipid biosynthetic 

fluxes as well as perform a partial lipidomic analysis of the fatty acid moieties. All of these 

flux measurements will be validated using different animal models. 

 

5.1 – Validation of body water enrichment as surrogate precursor enrichment 

As previously mentioned, in order to be able to extract flux information from a tracer 

experiment it is imperative to be able to determine the tracer to tracee ratio, i.e. the 

enrichment in the administered substance and the enrichment in the native substance. 

Since acetyl-CoA – i.e. the direct precursor to fatty acid synthesis – is hard to sample, 

the use assumption that body water enrichment can be used as a surrogate to the true 

precursor enrichment needs to be validated.  
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In order to confirm that acetyl-CoA enrichment is equivalent to body water a 

chemical biopsy method was used. In this method a xenobiotic that forms an adduct with 

the metabolite of interest is administered. The adduct is then usually excreted (for 

example in urine) making subsequent analysis easier. In the particular case of acetyl-

CoA we used para-aminobenzoic acid, which is acetylated to N-acetyl-para-

aminobenzoic acid (Figure 14C) and excreted in urine.  

Six male C57/Bl6 mice were individually housed and received para-amino benzoic 

acid (PABA) to sample hepatic acetyl-CoA and determine its enrichment. D2O was 

administered as described above. Drinking water was enriched to 3% and supplemented 

with 2.5mg/L of PABA for 3 days to allow the animals to adapt to the compound. One 

day prior to urine collection the drinking water was replaced with 3% D2O and 2.5mg/L 

PABA (2% PABA-d4). Overnight urine was collected and stored at 4º until further 

processing. N-Acetyl-PABA was purified and processed and analyzed via 1H and 2H 

NMR as previously described (56). The total 2H-enrichment of carbon 2 from the acetyl 

moiety of N-acetyl PABA were calculated by comparing the area of N-Ac-PABA CH3 (2.1 

ppm) signal with the mean areas of the pair of aromatic PABA-d4 (2.0% 2H) signals at 7-

8 ppm, which serve as internal standard. Body water enrichment was calculated using 

2H NMR as previously reported (55). Briefly, 10 µl of plasma was added to 190 µl of 

acetone and a 2H NMR spectrum was acquired. Enrichments were calculated by 

comparing the ratio of the deuterium signal of acetone and water in biological samples 

with those of  of standards with a known enrichment. 

Analysis of N-Acetyl-PABA purified from mouse urine was used to determine the 

acetyl-CoA moiety’s enrichment. Typical 1H and 2H NMR spectra of the purified N-Acetyl-

PABA are shown in figure 15A and Figure 14B, respectively. There was no significant 

difference in the enrichment of the acetyl moiety of N-Acetyl-PABA when compared to 

that of body water (Figure 14D). 

These results indicate that, under these conditions, the deuteriums in water and 

acetyl-CoA are completely interchangeable, and, therefore, it is possible to directly use 

body water enrichment as a surrogate for acetyl-CoA, which greatly facilitates flux 

calculations. 
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Figure 14: Xenobiotic sampling of liver acetyl-CoA indicates equal 2H enrichment with body water.  

A) 1H NMR spectra of N-Acetyl-PABA. B) 2H NMR spectra of N-Acetyl-PABA. C) N-Acetyl-PABA 

molecule. D) Deuterium enrichment in N-Acetyl-PABA and in body water of mice injected with 

D2O. 

 

5.2 – General D2O administration and tissue processing protocol for lipid 

biosynthesis analysis. 

Mice were anesthetized with isoflurane and given a D2O I.P. injection (27 µl/g) in 

order to achieve a total body enrichment of approximately 4%. If mice were treated with 

an agent by oral gavage (see below) they were injected with D2O  within 5 minutes of the 

last gavage. Mice were then returned to their cages and given ad libitum access to food 

and 4% D2O drinking water for a period of 1 to 2 days. Mice were then anesthetized with 

isoflurane gas and blood was collected from the hepatic portal vein. Liver and adipose 

tissue were removed, immediately freeze clamped in liquid nitrogen and stored at -80ºC 

until further analysis. Tissues were homogenized and lipids were extracted via Folch 

extraction (57). 
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5.3 – General protocol for Nuclear Magnetic Resonance (NMR) analysis 

Lipids were reconstituted in chloroform containing a pyrazine standard (4% D5-

pyrazine/ 96% pyrazine, 2 mg/ml). Spectra were obtained at 25°C with a Varian Inova 

14.1 T spectrometer equipped with a standard 3 mm broadband probe. Proton NMR 

spectra were acquired using a 90º pulse, and a sweep width of 6000 Hz digitized into 

1300 points, 2s acquisition time and 2s delay (4s repetition). Spectra were collected with 

100 acquisitions (~6 minutes) and were processed by zero-filling the free-induction 

decay to 66000 points and applying 0.3 Hz of exponential multiplication. Proton-

decoupled 2H NMR spectra at 92.1 MHz were acquired with a 90° pulse and a sweep 

width of 920 Hz digitized into 1800 points, resulting in an acquisition time of 2 sec. A 

pulse delay of 2 sec was used between acquisitions (4 sec repetition time). Spectra were 

collected for 1 to 24 hours and were processed by zero-filling the free-induction decay to 

8000 points and applying 0.5 Hz of exponential multiplication. Peak areas were analyzed 

using the curve-fitting routine supplied with the ACDLabs 1D NMR processor software. 

Peak assignment was performed by comparing to previously reported assignments in 

the literature (58, 59). 

 

 

5.4 – Lipidomic profiling by 1H nuclear magnetic resonance 

Since the proton NMR spectra has different signals for the distinct moieties of fatty 

acids it is possible to determine the percentage of several fatty acid species within the 

samples. 

 

5.4.1 – ω-3 fatty acids 

It is possible to determine the % of ω-3 fatty acids since the terminal methyl group 

of the ω-3 fatty acids is slightly downfield of all the other terminal methyl groups (peak B 

in Figure 13). Therefore, the % of ω-3 fatty acids was determined as: 

 

% of ω − 3 fatty acids = 100 ×
𝐵1𝐻𝑎

𝐵1𝐻𝑎 + 𝐴1𝐻𝑎
 (𝑒𝑞. 4) 

 

Where B1Ha is the 1H area of ω-3 fatty acids and A1Ha is the 1H area of non-ω-3 fatty 

acids. 
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5.4.2 – Poly- and mono-unsaturated fatty acids  

The % of mono- and polyunsaturated fatty acids is given by: 

 

% 𝑃𝑈𝐹𝐴 = 100 ×
(𝐹1𝐻𝑎 + 𝐻1𝐻𝑎)

(2 × 𝐺1𝐻𝑎) + 𝐻1𝐻𝑎
 (𝑒𝑞. 5) 

 

Where F1Ha and H1Ha are the 1H areas of all polyunsaturated fatty acids, G1Ha is the 

1H area of all fatty acid α2 protons and H1Ha is the 1H area of DHA α2 and α3 protons. 

Conjugated fatty acids, whose allylic protons appear between 5 and 6.5 ppm were not 

detected in these experiments. However, if conjugated fatty acids are present in the 

sample to a high extent, these extra resonances must be accounted in order to 

accurately determine total %PUFAS. 

 

The percentage of MUFAS is given by: 

 

% 𝑀𝑈𝐹𝐴 = 100 ×
𝐸1𝐻𝑎

(2 × 𝐺1𝐻𝑎) + 𝐻1𝐻𝑎
 (𝑒𝑞. 6) 

 

Where E1Ha is the 1H area of all monounsaturated fatty acids, G1Ha is the 1H area 

of all fatty acid α2 protons and H1Ha is the 1H area of DHA α2 and α3 protons. The % of 

unsaturated fatty acids is therefore: 

 

% 𝑢𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 = % 𝑃𝑈𝐹𝐴𝑆 + % 𝑀𝑈𝐹𝐴𝑆(𝑒𝑞. 7) 

 

And the amount of saturated fatty acids is then: 

 

% 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 = 100 −  % 𝑢𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 (𝑒𝑞. 8) 
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5.4.3 – Calculation of average chain length and molecular weight 

In order to calculate average fatty acid chain length, all fatty acids were considered 

polymers of a methylenic (CH2) and/or an olefinic (HC=CH) subunit, i.e.: -OOC-(CH2)x-

(HC=CH)y-CH3. Therefore, the average number of protons (ANP) is given by: 

 

𝐴𝑁𝑃 =  𝑥 × 2 + 𝑦 × 2 + 3 (𝑒𝑞. 9) 

 

And the total number of carbons (ANC) is given by: 

 

𝐴𝑁𝐶 =  𝑥 + 𝑦 × 2 + 2 (𝑒𝑞. 10) 

 

Since all olefinic protons are represented in peak N (Figure 13), the number of 

olefinic protons (y) is: 

 

𝑦 =  
𝑁1𝐻𝑎

𝐺1𝐻𝑎
4 +

𝐻1𝐻𝑎
8

 (𝑒𝑞. 11) 

 

Where N1Ha is the 1H area of all olefinic protons. Additionally: 

 

𝐴𝑁𝑃 =  
∑ (𝑥1𝐻𝑎)𝐾

𝐴

𝐺1𝐻𝑎
2

+
𝐻1𝐻𝑎

4

 (𝑒𝑞. 12) 

 

Where ∑ (𝑥1𝐻𝑎)𝐾
𝐴  is the sum of all corrected areas of peaks arising from the fatty acyl 

moieties, G1Ha is the 1H area of all fatty acid α2 protons and H1Ha is the 1H area of DHA 

α2 and α3 protons. 

Using eq. 11 and eq. 12, eq. 9 for solves for x: 

 

𝑥 =
∑ (𝑥1𝐻𝑎)𝐾

𝐴

𝐺1𝐻𝑎
4 +

𝐻1𝐻𝑎
8

−
𝑁1𝐻𝑎

𝐺1𝐻𝑎
4 +

𝐻1𝐻𝑎
8

−
3

2
 (𝑒𝑞. 13) 

 

Where ∑ (𝑥1𝐻𝑎)𝐾
𝐴  is the sum of all corrected areas of peaks arising from the fatty acyl 

moieties, N1Ha is the 1H area of all olefinic protons, G1Ha is the 1H area of all fatty acid α2 

protons and H1Ha is the 1H area of DHA α2 and α3 protons. The x and y factors calculated 

in eq. 8 and 10 can then be applied in eq. 7 to yield the ANC. 
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These two calculations allow the determination of the average molecular weight 

(AMW) of the fatty acyl moieties: 

 

𝐴𝑀𝑊 =  𝐴𝑁𝑃 × 1,00794 + 𝐴𝑁𝐶 × 12,0107 + 2 × 15,9994 (𝑒𝑞. 14) 

 

5.4.4 – Linoleic and docosahexaenoic acid 

Linoleic acid (18:2 n-6) and DHA (22:6 n-3) have resolved 1H resonances. DHA α2 

and α3 protons overlap and appear slightly upfield of the other α2 protons (peak H in 

Figure 13). Therefore, the % of DHA is given by: 

 

% 𝐷𝐻𝐴 =  

𝐻1𝐻𝑎
2

𝐺1𝐻𝑎 +
𝐻1𝐻𝑎

2

 (𝑒𝑞. 15)  

 

Where G1Ha is the 1H area of all fatty acid α2 protons and H1Ha is the 1H area of DHA α2 

and α3 protons. 

 

The bisallylic peaks arising from linoleic acid appear as a clearly defined triplet at 

around 2.76 ppm (peak J in Figure 13). Hence, the % of linoleic acid is given by: 

 

% 𝑙𝑖𝑛𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑 =  
𝐾1𝐻𝑎

𝐺1𝐻𝑎 +
𝐻1𝐻𝑎

2

 (𝑒𝑞. 16) 

 

Where K1Ha is the 1H area of oleic acids bisallylic protons, G1Ha is the 1H area of all fatty 

acid α2 protons and H1Ha is the 1H area of DHA α2 and α3 protons. 

 

 

5.4.5 – Mass of lipid species 

In order to convert the percentages referred to above into masses, an aliquot of 

tissue extract was assayed using a commercially available triglyceride detection kit 

(Sigma, St. Louis Mo). A calibration curve was prepared from various concentrations of 

triolein. Since the kit detects the TG-glycerol in solution, it is possible to convert the 

amount of each triolein sample used into its TG-glycerol equivalent, on the basis that the 

mass ratio of triolein:glycerol is 885.432:92.09. After calculating the amount of TG-

glycerol in each sample, the amount of fatty acids (FA) per TG-glycerol is given by: 
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FA/TG glycerol =
𝐻1𝐻𝑎 + 2 × 𝐺1𝐻𝑎

𝐿1𝐻𝑎
 (𝑒𝑞. 17) 

 

Where L1Ha is the 1H area of triglyceride-glycerol C1 and C3 protons, G1Ha is the 1H area 

of all fatty acid α2 protons and H1Ha is the 1H area of DHA α2 and α3 protons. If a sample 

contains only triglycerides the theoretical value for FA/TG glycerol is 3. If there are free 

fatty acids present the value may be higher, and if diacyl- or monoacyl- glycerols are 

present the value may be lower. 

  

The mass (in grams) of TG-FA present in the tissue was calculated by: 

 

FA (g) = FA/TG glyerol × AMW ×
TG glycerol amount (g)

92,09
 (𝑒𝑞. 18) 

 

The percentages of species calculated above may then be converted into their 

respective masses by multiplying the total fatty acid amounts. For example: 

 

𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑 (𝑔) = 𝐹𝐴(𝑔) × % 𝑙𝑖𝑛𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑 (𝑒𝑞. 19) 

 

5.5 – Calculation of lipid biosynthetic fluxes. 

 

5.5.1 –Determination of lipid methyl 2H enrichment: 

Peak A represents the methyl hydrogens of non-ω-3 fatty acids. This signal is 

corrected for linoleic acid contribution, an essential fatty acid in mammals (60) which 

does not get labeled with deuterium and would otherwise lead to an underestimation of 

lipogenic flux. Since the % of linoleic acid present in the samples is calculated via eq. 1 

the corrected methyl enrichment (AeC) is given by: 

 

𝐴𝑒𝐶

= 100

×
𝐴2𝐻𝑎 × % 2𝐻𝑆 × 𝑃1𝐻𝑎

(𝐴2𝐻𝑎 × %2𝐻𝑆 × 𝑃1𝐻𝑎) + (𝐴1𝐻𝑎 × [1 −×
% 𝑙𝑖𝑛𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑

100 ] × %1𝐻𝑆 × 𝑃2𝐻𝑎)
 (𝑒𝑞. 20) 

 

Where A1Ha is the 1H area of non ω-3 fatty acids terminal methyl, A2Ha is the 2H 

area of non ω-3 fatty acids terminal methyl, %2HS is the percentage of deuterium labeled 

standard (pyrazine), %1HS is the percentage of deuterium unlabeled standard 
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(pyrazine), P1Ha is the 1H area of the pyrazine standard and P2Ha is the 2H area of the 

pyrazine standard. 

 

5.5.2 – De novo lipogenesis (DNL) 

Fractional DNL is calculated as: 

% 𝐷𝑁𝐿 = 100 ×
𝐴𝑒𝐶

% 𝑏𝑜𝑑𝑦 𝑤𝑎𝑡𝑒𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡
 (𝑒𝑞. 21) 

 

Where AeC is the corrected methyl enrichment calculated above. 

 

The total mass of nonessential fatty acids is determined as: 

 

𝑁𝑜𝑛𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝐴 (𝑔/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒 )

= 𝐴𝑙𝑙 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 (𝑔/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒 ) −  𝜔3 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 (𝑔/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒 )

− 𝑙𝑖𝑛𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑 (𝑔/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒 ) (𝑒𝑞. 22) 

 

 The mass of lipids originating from DNL in 1 day of D2O exposure is given by: 

 

𝑚𝑎𝑠𝑠 𝐷𝑁𝐿 (𝑔/𝑑𝑎𝑦/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒) =
%𝐷𝑁𝐿

100
×  𝑁𝑜𝑛𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 (𝑔) (𝑒𝑞. 23) 

 

5.5.3 – Fatty acid elongation:  

The α2 protons are enriched during either DNL or chain elongation. The first 

pathway involves the complete synthesis of a new fatty acid chain starting from acetyl-

CoA while the second adds acetyl-CoA to preexisting fatty acid chains. Medium chain 

fatty acids pre-existing the treatment with D2O will be unlabeled, but if these fatty acids 

are elongated during tracer exposure, the subsequently added methylene hydrogens will 

be labeled. Comparison of deuterium area at the terminal methyl end of the fatty acyl 

moieties with that of the α2 protons reports the percentage contribution of elongation to 

total lipid synthesis: 

 

% 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑙𝑖𝑝𝑖𝑑 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 = 100 × (1 −
 𝐴2𝐻 × 2

 𝐻2𝐻 × 3
) (𝑒𝑞. 24) 

 

Where A2H is the deuterium area of the terminal methyl group of fatty acids and H2H is 

the deuterium area of the α2 protons of fatty acids.  
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After the % contribution of elongation to lipid synthesis is determined, the total 

percentage of elongation can be calculated via the equation: 

 

% 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛

=
% 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑙𝑖𝑝𝑖𝑑 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 × % 𝐷𝑁𝐿

100 −  % 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑙𝑖𝑝𝑖𝑑 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠
(𝑒𝑞. 25) 

 

5.5.4 – Fatty acid desaturation: 

Desaturase activity was determined in a similar fashion as lipogenic flux: 

 

% 𝐷𝑒𝑠𝑎𝑡. 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 100 ×
𝐹𝑒

% 𝑏𝑜𝑑𝑦 𝑤𝑎𝑡𝑒𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡
 (𝑒𝑞. 26) 

 

Where Fe is the deuterium enrichment of the monounsaturated fatty acids’ allylic protons.  

 

The total mass of newly desaturated lipid which accumulated in during D2O 

exposure is given by: 

 

𝐷𝑒𝑠𝑎𝑡 𝑚𝑎𝑠𝑠 (𝑔/𝑑𝑎𝑦/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒)

=
%𝑆𝐶𝐷1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

100
× 𝑈𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑𝑠 (𝑔) (𝑒𝑞. 27) 

 

5.5.5. – Triglyceride bound glycerol synthesis: 

The percentage of newly synthesized glycerol in triglyceride is given by: 

 

% 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 = 100 ×
𝐿𝑒

% 𝑏𝑜𝑑𝑦 𝑤𝑎𝑡𝑒𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡
 (𝑒𝑞. 28) 

 

Where Le is the deuterium enrichment of glycerol’s C1 and C3 protons 

  

The mass of newly synthesized glycerol in triglyceride formed during D2O exposure 

is given by: 

 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑛𝑒𝑤 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 (𝑔/𝑑𝑎𝑦/𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒)

=
% 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

100
× 𝑇𝐺 − 𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙 (𝑒𝑞. 29) 
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5.5.6 – Cholesterol Synthesis. 

It is also possible to simultaneously determine the synthesis flux of cholesterol, as 

the protons of the methyl group attached to carbon 18 of the cholesterol molecule are 

sufficiently separated from the methyl groups of fatty acids to allow the accurate 

measurement of its peak area. Figure 15 shows a typical 1H and 2H NMR spectra of 

cholesterol. For this particular sample, cholesterol was purified using the method by 

Hamilton and Comai (54) before NMR analysis. 

 

Figure 15: partial proton and deuterium NMR spectra of cholesterol, highlighting the position of 

the protons attached to carbon 18 of the molecule. 

 

 

As previously mentioned the protons from the C18 methyl group of cholesterol are 

directly derived from acetyl-CoA (Figure 12) and, therefore, the same assumptions that 

were made for using the methyl group of fatty acids for the measurement can be used. 
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Therefore, assuming a complete equilibrium of acetyl-CoA enrichment with that of body 

water, the % cholesterol synthesis is calculated as: 

 

% 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 = 100 ×
% 𝐶18 𝑑𝑒𝑢𝑡𝑒𝑟𝑖𝑢𝑚 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡

𝐵𝑜𝑑𝑦 𝑤𝑎𝑡𝑒𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 
 𝑒𝑞. (30) 

 

And the total mass of newly made cholesterol is calculated as:  

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑛𝑒𝑤 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 

= 𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 ×
% 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

100 
 𝑒𝑞. (31) 
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5.6– Validation of measurement of de novo lipogenesis, cholesterol synthesis 

and triglyceride-glycerol synthesis using SREBP1a –TG mice 

In order to validate the method’s ability to measure DNL flux, this was measured 

in mice overexpressing a truncated and constitutively active form of SREBP-1a. As 

previously reported, these mice are incapable of downregulating lipogenic genes and 

therefore have elevated lipid synthesis (61). A robust increase in deuterium incorporation 

of all fatty acyl moieties was detected in the liver of SREBP-1a transgenic mice compared 

to controls (Figure 16). 

 

  

Figure 16: Comparison of key 1H NMR peaks (left) and 2H NMR spectra (right) of the triglyceride 

moieties of control and SREBP-1a transgenic animals. The peaks marked as * are natural 

abundance 13C satellites of peak A. 

 

This increased deuterium incorporation in SREBP-1a transgenic mice translated 

into a 2-fold increase in the % de novo lipogenesis and a 21-fold increase in the amount 

of newly synthesized lipids present in the liver (Table 1). Thus, NMR detection of 2H 

incorporation in lipids detected fold changes in lipogenesis that were similar to values 

obtained by 3H incorporation in these same mice (61). In conjunction with increased fatty 

acid synthesis, the amount of newly synthesized triglyceride-bound glycerol was also 

increased in SREBP-1a mice.  
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Table 1: Percent and mass of newly synthesis in SREBP1-a transgenic animals and respective 

controls. 

 % Fluxes mg new lipids 

 control SREBP1-a 

transgenic 

p 

value 

control SREBP1-a 

transgenic 

p 

value 

% De novo 

lipogenesis 

14±1 32±1 <0.001 1.3±0.1 28±17 <0.001 

Fraction of 

elongated lipid 

0.25±0.04 0±0.02 <0.001 NA NA  

% Total lipid 

elongation 

4.6±0.7 0.7±0.7 <0.05 NA NA  

% desaturation 3±1 14.1±0.5 <0.001 0.17±0.03 8.0±0.3 <0.001 

% glycerol 

synthesis 

31±3 27±2 NS 0.50±0.08 2.8±0.2 <0.001 

SCD/DNL ratio  13±3 31.2±0.3 <0.001 

Data are represented as the mean ± SE (n=5).   

 

 

As expected SREBP-1a TG mice had significantly higher hepatic triglyceride 

content compared to controls, but they also had a substantially different lipid species 

profile (Figure 16). Transgenic mice had increased percent and total amount of 

unsaturated fatty acids, due largely to increased MUFA concentration (Table 2). In 

contrast, these mice had a decreased percentage of essential (linoleic acid), and 

conditionally essential fatty acids (ω-3 fatty acids and DHA) in triglycerides. This 

decrease probably occurs due to dilution by the larger pool of endogenously synthesized 

fatty acids. 
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Table 2: Percent and total amount of hepatic fatty acids types in SREBP1-a transgenic animals 

and respective controls. 

 % fatty acids Total fatty acids 

 control 

SREBP1-

a 

transgenic 

p 

value control 

SREBP1-

a 

transgenic 

p 

value 

ω-3 fatty acids 2.2±0.2 0.9±0.1 <0.001 0.3±0.1 0.8±0.1 <0.01 

Other ω 71±1 79±1 <0.001 10±1 71±1 <0.001 

Saturated 27±1 20±1 <0.001 4±1 18±1 <0.001 

Monounsaturated 39±2 63±1 <0.001 5±1 57±2 <0.001 

Polyunsaturated 34±1 17.3±0.4 <0.001 5±1 16±1 <0.001 

Linoleic acid 26±1 9.9±0.2 <0.001 4±1 8.9±0.5 <0.001 

Docohexaenoic acid 1.4±0.2 0.8±0.1 <0.05 0.20±0.04 0.70±0.07 <0.001 

Average number of 

carbons per fatty acid 17.2±0.4 17.2±0.1 NS 

 

Average molecular 

weight of fatty acids 270±5 270±2 NS 

Data are represented as the mean ± SE (n=x5).   

 

 

5.7 – Validation of SCD-1 activity measurement using an SCD-1 inhibitor 

In addition to increased amounts of unsaturated lipids, SREBP-1a transgenic 

mice had increased deuterium incorporation at monounsaturated olefinic hydrogens. 

This finding indicates a ~3-fold increase in the percent of hepatic lipids undergoing 

desaturation and a ~40-fold increase in the mass of desaturated lipids formed during 

D2O exposure (Table 1). These findings are consistent with a massive increase in the 

expression of sterol-CoA desaturase 1 (SCD-1) expression in the livers of these mice 

(61). To more explicitly confirm the method’s ability to measure desaturation flux, we 

gavaged mice with the SCD-1 inhibitor A939572 (62, 63) in DMSO (5 mg/µl) at a dose 

of 10 mg/kg or with DMSO alone. 

Although there was no substantial change in the concentration of unsaturated 

lipids over the course of the experiment, deuterium enrichment in olefinic protons was 

completely suppressed after treatment with the inhibitor (Figure 17), indicating a near 

absence of SCD-1 activity and desaturation flux.  
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Figure 17: A) 1H NMR of hepatic lipids from an animal gavaged with DMSO vehicle or B) DMSO 

plus SCD-1 inhibitor C) 2H NMR of hepatic lipids from an animal gavaged with DMSO vehicle or 

D) DMSO plus SCD-1 inhibitor. Animals treated with inhibitor show no deuterium incorporation 

above natural abundance in their fatty acid olefinic protons (peak F), even though there is no 

change in the concentration of unsaturated lipid by 1H NMR. 

 

5.8 – Validation of measurement of fatty acid elongation using coconut oil 

SREBP-1a livers had a near 2-fold increase in the percent of lipids that were 

elongated during D2O exposure, consistent with the role of SREBP in the positive 

regulation of elongases (64). To examine whether the NMR method is able to discern 

more subtle activation of elongation flux, we treated mice with coconut oil, which 

reportedly contains a high amount of medium chain fatty acids. The composition of 

coconut oil was confirmed by MS/MS. Coconut oil was diluted 1:2000 in DCM:MeOH:IPA 

(1:1:1) with 10mM ammonium acetate. 300 µl of solution was injected on the AbSciex 

5600 TripleTOF and data was collected for 5.5 minutes. TOF data was collected for 

1.5min and MS/MS of all data was collected for 4 minutes. The elution solvent was 

DCM:MeOH:IPA (1:1:1). The MS/MS of all scan rate was 0.16 sec for the range of 200 

amu to 1200 amu. The source temperature was set at 350 with a collision energy of 80. 

MS/MS of all data was analyzed using Multiquant (Ab Sciex).  
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MS-based analysis proves that the coconut oil contained a 59-fold medium chain 

to long chain free fatty acid ratio and a 1.5 fold medium chain to long chain triglyceride-

fatty acid ratio (Figure 18A, Figure 18B). Despite a large dose of medium chain fatty 

acids, treated mice did not have a lower average chain length (rather it was very modestly 

increased from 18.01±0.04 to 18.40±0.11 carbons), which must have been facilitated by 

elongation of some of the exogenous medium chain fatty acids (Figure 18C). 

Comparison of deuterium incorporation at the terminal methyl of the fatty acyl moieties 

with that of the α2 protons confirmed that the % contribution of elongation to lipid 

synthesis was significantly increased in mice gavaged with oil (Figure 18D). These data 

indicate that the NMR approach was able to detect chain elongation. 

 

 

Figure 18: Short and medium chain length composition of hepatic (A) free fatty acids, (B) 

triglycerides, (C) chain length and (D) elongation in mice gavaged with vehicle or coconut oil. 

 

5.9 – Validation of measurement of cholesterol synthesis. 

SREBP-1a transgenic animals have markedly increased cholesterol synthesis and, 

therefore were also used to validate the NMR method’s ability to accurately measure 

differences in the determination of cholesterol biosynthetic flux. Figure 19 shows that, 

even though there was no detectable change in the % new cholesterol synthesis in 
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control vs. SREBP-1a mice Figure 19A, there was a significant increase in the total 

amount of newly synthesized cholesterol Figure 19B, validating the NMR methods 

capacity to measure changes in cholesterol flux. 

 

Figure 19: A) percentage of newly synthesized cholesterol and B) total mass of newly synthesized 

cholesterol in control vs. SREBP-1a transgenic mice. 
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6 – Discussion 

It is the fact that both the source and position of the protons added in fatty acids 

are known that facilitates the determination of flux from positional enrichments of 

hydrogen isotopes (39). These different functional groups can be observed by 1H NMR 

allowing an abbreviated lipodomic profile to be obtained. When deuterated water is 

administered, deuterium enrichment occurs proportionally to the synthesis rate, which 

2H NMR detects as stoichiometric peak intensities in the various functional groups of the 

lipid molecule. In other words, deuterium enrichment in the α2 position represents all lipid 

synthesis (including elongation), the methyl position represents only de novo lipogenesis 

and allylic positions represent new lipids that were also desaturated. The positional 

enrichment information provided by 2H NMR eliminates the need to know the exact 

number of exchanging hydrogens in the entire fatty acid, and allows the straightforward 

determination of relative rates of desaturation, elongation and de novo lipogenesis. 

Although we focus this study on triglycerides of the liver and WAT, the methodology is 

equally applicable to any lipid species (e.g. cholesterol, bile acids, phospholipids) or any 

tissue which provides enough sample for analysis. 

There are no gold standards for flux measurements. Therefore we tested the 

validity of the approach against model systems with known or predictable perturbations 

of de novo lipogenesis, desaturation and elongation. Mice expressing a constitutively 

active form of SREBP-1a were chosen because they have elevated lipid synthesis 

across all of these pathways. The massive increases of flux through these pathways in 

SREBP-1a TG mice were easily detected and consistent with rates reported earlier using 

3H2O methods (61). The SCD-1 inhibitor has not been used extensively in vivo, but based 

on its in vitro efficacy (63), we predicted that it would suppress desaturation activity. 

Remarkably, this inhibitor rendered desaturase activity undetectable. Effects of in vivo 

SCD-1 inhibition are not known, but this result is consistent with the reduced adiposity, 

decreased lipogenesis and protection from hepatic steatosis in SCD-1 knockout mice 

(65, 66). Testing elongation was more difficult since inhibitors are not readily available 

or widely characterized. Genetic interventions, were excluded because manipulation of 

genes of elongation of very long chain (Elovl) fatty acids has broad effects on lipogenesis 

and related signaling pathways (64, 67, 68). We chose to administer coconut oil/myristic 

acid which is abundant in medium chain fatty acids. An increase in elongation was 

observed following coconut oil administration, although somewhat modestly, probably 

due to the propensity of medium chain fatty acids for oxidation. These results indicate 

that the novel methodology is capable of detecting changes in lipid synthesis flux. 
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We first consider several methodological issues related to measurements of 

lipogenesis. Previous studies measured either total increases in mass isotopes of select 

lipids following D2O exposure or the mass isotopomer distribution analysis (MIDA) 

following 13C-acetate exposure. Mass isotopomers M+1, M+2, M+3 incorporated into 

lipids following D2O and these mass isotopomers can be used to determine new lipid 

synthesis, provided the number of exchangeable hydrogens are known for each lipid 

species of interest. For example the number of exchangeable hydrogens on palmitate 

varies between 17-22. While sometimes measured directly, more frequently it is set to a 

constant. This assumption is unnecessary for NMR analysis of positional deuterium 

enrichments since the methyl position arises from acetyl-CoA and its enrichment can be 

measured directly. The assumption that acetyl-CoA enrichment is the same as body 

water enrichment applies to both methods and this was verified here using xenobiotic 

conjugates of acetyl-CoA. MIDA approaches require a similar assumption regarding the 

homogeneity of acetate enrichment across the liver sinusoid.  

Mass isotopomer analysis and NMR positional isotopomer analysis place slightly 

different constraints on the detection of lipogenesis versus chain elongation, and this 

could lead to interpretational differences about the extent of lipid synthesis. Elongation 

of fatty acids (C16) to very long chain fatty acids (C18 or longer) occurs through ELOVL 

mediated chain elongation. Mass detection distinguishes between de novo lipogenesis 

and elongation of C16 to C18 by fitting isotopomer pools to 3 distinct populations; 

unlabeled (i.e. preexisting lipids), label distributed equally (but not uniformly) across the 

16 or 18 carbons (i.e. de novo lipogenesis) or label distributed only on 2 carbons (i.e. 

elongation of one acetyl unit). However, elongation may also include partially catabolized 

fatty acids that are recycled into the lipogenic pathway (69). The extent of such a futile 

cycle and whether it is effected by HFD or insulin resistance is unclear but would likely 

be detected as de novo lipogenesis by mass isotopomer analysis if elongation begins at 

carbons significantly lower than C16. On the other hand, NMR positional isotopomer 

analysis very strictly constrains de novo lipogenesis to the enrichment of the methyl 

hydrogens and detects elongation whenever the methyl enrichment is lower than the α2 

carbon enrichment (which represents all forms of lipid synthesis). Thus, any degree of 

elongation, whether ELOVL mediated C16 to C18 elongation or a less conventional 

elongation, for instance C12 to C16 elongation, it would be detected separately from 

DNL.. However, since the α2 deuterium enrichment (total lipid synthesis, DNL + 

elongation) was still much lower, all forms of lipogenesis were reduced in mice on a HFD. 

Therefore we conclude that reduced versus increased lipogenesis after HFD is not 

caused by methodological differences.  
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7 – Conclusion 

In summary, we have developed and validated a novel NMR-based method to 

calculate lipid biosynthetic flux as well as perform a partial lipidomic analysis. This 

method will be applied to multiple biological models, namely to study the effects of HFD-

Induced obesity and diabetes on lipid metabolism (chapter 2 of this dissertation) and the 

effects of phosphoenolypyruvate carboxykinase (PEPCK) in the regulation of lipid 

metabolism (Chapter 3 of this dissertation). 
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CHAPTER 2 

Lipid fluxes in a rodent model of type 2 diabetes model 

 

1 – Introduction  

In his review article “What if Minkowski had been ageusic? An alternative angle on 

diabetes” (70) McGarry highlights that, even though, partially due to an historical 

perspective of the disease, diabetes has been analyzed from a glucocentric perspective, 

insulin resistance and diabetes are diseases that not only alter carbohydrate metabolism 

but also have negative effects in lipid metabolism. In fact, though it is hard to provide one 

precise definition for the term “insulin resistance”, all definitions share three common 

metabolic changes: hyperinsulinemia, hyperglycemia and hypertriglyceridemia. 

One key aspect of lipid metabolism in the pathology of insulin resistance is that 

there seems to be an apparent contradiction in the sense that even though insulin-

mediated control of glucose metabolism is dysregulated, insulin-mediated control of lipid 

metabolism either remains responsive or is actually elevated. This is known as selective 

insulin resistance. Some molecular mechanism that explain this apparent contradiction 

in insulin signaling have been suggested. Since most of them are based on differential 

regulation of key molecules of the insulin receptor signaling pathway, this chapter will 

open with a brief introduction of the actions of insulin, focusing on key proteins that have 

been associated with selective insulin resistance. In the second half of this introduction 

some of the theories proposed to explain selective insulin resistance will be reviewed. 

Finally, the methodology described in chapter 1 of this dissertation will be applied to a 

murine model of HFD-induced diabetes to study the changes in whole body lipid fluxes. 
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2 – Insulin regulation of lipid metabolism 

Insulin is arguably the most studied hormone in physiology as it is extremely 

important in metabolic homeostasis, promoting the accumulation of cellular energy by 

upregulating the production of glycogen, increasing lipogenesis and decreasing 

gluconeogenesis and lipolysis. The molecular mechanism of insulin action is complex 

involving numerous protein kinases transcription factors and in order to affect its actions 

in the regulation of glucose and lipid metabolism. Figure 20 shows some of the major 

mechanisms of insulin action, as well as the major metabolic pathways that are regulated 

by the hormone. 

 

Figure 20: Molecular mechanisms of insulin action, highlighting the pathways that are affected in 

different tissues. Adapted from (71). 
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Whenever insulin binds to its receptor, it triggers a signaling cascade that starts 

with the phosphorylation of tyrosine residues in the cytosolic portion of the insulin 

receptor. Several other transcription factors and proteins are then phosphorylated and 

activated or deactivated in order to exert their metabolic function. Though a thorough 

review of these mechanisms of insulin signaling is beyond the scope of this introduction, 

a brief review of the role of some of the proteins that have been put forward as potential 

drivers of the selective insulin resistance will be made. 

 

2.1 – Insulin receptor substrates (IRS) 

The cellular effects of insulin are mediated by a host of protein kinases that work 

together to form the insulin signaling cascade. One of the key effectors of insulin 

signaling is the Insulin Receptor Substrate (IRS) which has 4 isoforms (IRS1-4), with 

IRS1 and IRS2 being the most prevalent. When the insulin receptor is activated by insulin 

and phosphorylated, IRS are recruited to the receptor and are phosphorylated as well. 

Phosphorylated IRS then activates Phosphatidylinositol-4,5-bisphosphate 3-kinase 

(PI3K) which converts Phosphatidylinositol 4,5-bisphosphate (PIP2) to 

Phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 then recruits and activates 

multiple proteins, namely protein kinase B (PKB) (also known as AKT) and 3-

phosphoinositide- dependent protein kinase-1 (PDK1) further expanding the signaling 

cascade (Figure 20). Once activated, Akt phosphorylates targets that function to 

suppress gluconeogenesis and activate lipogenesis in the liver. Actions of Akt include, 

but are not limited to, activation of Foxo1 (which promotes the transcription of 

gluconeogenic genes), inhibition of GSK-3 (which phosphorylates and inactivates 

glycogen synthase), activation of Glut4 (Akt promotes the migration of Glut4 to the 

plasma membrane, promoting the entrance of glucose in the cell) and activation of 

mTOR (which regulates numerous metabolic pathways, such as protein production and 

lipid metabolism). 

How insulin elicits differential effects on glucose and lipid production is an active 

area of research. RS1 and IRS2 have been identified as the main effectors of insulin 

action, as combined knockout of these proteins is a phenocopy of insulin receptor 

knockout in liver or muscle (72-75). Knockout of either IRS1 (76) or IRS2 (77) leads to 

peripheral insulin resistance, but only IRS2 KO mice developed overt diabetes, due to 

defects in β-cell. In a study using shRNA to knockdown either IRS1 or IRS2 it was verified 

that, after insulin stimulation, knockdown of IRS1 mainly increases the mRNA levels of 
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gluconeogenic enzymes (glucose-6 phosphatase and Phosphoenolpyruvate 

Carboxykinase) while mRNA levels of lipogenic enzymes do not differ from controls. In 

the same experiment, of IRS2 mainly increased the expression of SREBP-1c and fatty 

acid synthase without changing the mRNA levels of gluconeogenic enzymes (78). This 

study shows that IRS1 alone is sufficient to maintain the normal function of insulin in the 

regulation of lipid metabolism, while IRS2 alone helps maintain the insulin action on 

glucose metabolism physiological. A more thorough review on IRSs and their roles in 

regulation of metabolism can be found in (79). 

 

2.2 – Mammalian target or rapamycin (mTOR) 

Mammalian target or rapamycin (mTOR) is a serine/threonine kinase that regulates 

multiple metabolic pathways that intersects with many cell signaling pathways that 

include insulin signaling. mTOR forms two different types of multiprotein complexes: 

mTORC1 and mTORC2 (Figure 21). mTORC is a downstream target of Akt, which acts 

on intermediate kinases to activate it. mTORC complexes regulate multiple functions, 

such as protein synthesis, autophagy and nucleotide synthesis and lipogenesis 

(reviewed in (80)). 

 

 

 

Figure 21: the two mTORC complexes. Adapted from (81). 

 

There are two main ways that mTORC activates lipogenesis. mTORC1 can directly 

phosphorylate and inhibit Lipin1, which, under normal circumstances, prevents the 
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nuclear localization of SREBP-1c (82, 83). mTORC1 also directly increases the 

expression of SREBP-1c (84, 85). mTORC2 complex was also found to directly increase 

the expression of SREBP-1c (86, 87). A more thorough review on mTORC and its role 

in regulation of metabolism can be found in (81, 88, 89). 

 

2.3 – Sterol Regulatory Element Binding Proteins (SREBP) 

One of the main transcription factors involved in the translation of insulin signaling 

to lipid metabolism are the Sterol Regulatory Element Binding Proteins (SREBP). There 

are three SREBP isoforms: SREBP-1a, SREBP-1c (which are different transcripts of the 

same gene, but SREBP-1c is the most abundant hepatic isoform) and SREBP-2. 

SREBPs act at the transcriptional level, binding to Sterol Response Element (SRE) sites 

in the promoter of target genes, increasing their transcription. Each of the SREBP 

isoforms has slightly distinct specificity towards their targets, with SREBP-1a and mainly 

promote the translation of genes related to lipid synthesis. SREBP-1a induces the 

highest fold changes in mRNA of lipogenic genes of the two isoforms. SREBP-2a 

promoting the translation of genes related to cholesterol synthesis. Figure 22 

summarizes genes whose transcription is upregulated by SREBP2 and SREBP-1c. 

 

Figure 22: Genes whose translation is upregulated by SREBP-2 or SREBP-1c. Adapted from 

(90). 
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Insulin regulates SREBP through incompletely understood mechanisms but two 

general mechanisms are known. First, insulin activates the transcription of the SREBP 

gene (91). Secondly, insulin also regulates the activation of SREBP by promoting the 

proteolytic cleavage of the inactive SREBP precursor protein by SCAP (SREBP 

Cleavage Activating Protein), allowing the mature, active form SREBP to migrate to the 

nucleus and perform its physiological functions (92). SREBP levels have a direct effect 

in the regulation of metabolic fluxes. Several studies determined the rates of de novo 

lipogenesis and cholesterol synthesis in mice constitutively active forms of SREBP. DNL 

was increased 26 fold and cholesterol synthesis was increased 5 fold in SREB-1a 

transgenic mice (61, 93) and DNL was increased 4 fold in SREBP-1c transgenic mice 

(93, 94) while SREBP-2 transgenic mice showed an 4 fold increase in DNL and a 28 fold 

increase in cholesterol synthesis (93). A more thorough review on SREBPs and their 

roles in regulation of metabolism can be found in (90, 95). 

 

2.4 – NADPH Oxidase (NOX) 

NADPH oxidases (NOX) are enzymes that catalyze the production of superoxide 

ions from NADPH. There are 7 isoforms (NOX1-5 and DUOX1-2) (96). In adipocytes, 

NOX4 in particular is activated by insulin and is associated with the propagation of insulin 

signaling, as the superoxide produced inhibits protein tyrosine phosphatases, such as 

PTEN and PTP1B which normally dephosphorylate the insulin receptor and IRSs, 

terminating the insulin signaling cascade (97-99). A more thorough review on NADPH 

oxidases and their roles in regulation of metabolism can be found in (96, 100). 
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3 – Selective insulin resistance 

Insulin has several actions in different tissues and alters distinct metabolic 

pathways within those same tissues. In the liver, for example, insulin suppresses 

gluconeogenesis, increases glycogen production and stimulates glucose oxidation (101) 

In the muscle and white adipose tissues, it regulates the translocation of GLUT4 to the 

plasma membrane, increasing glucose uptake (102). Insulin also regulates lipid 

metabolism in liver by promoting hepatic DNL, while inhibiting its packaging and release 

in VLDL (101) (Figure 23A). Paradoxically insulin resistance impairs insulin’s actions 

over glucose metabolism, i.e., glucose production is increased and glucose storage as 

glycogen is decreased, but its actions on lipid metabolism remain intact, i.e., lipogenesis 

is elevated. This phenomenon is known as selective or mixed insulin resistance (Figure 

23B). 

Animal models of total hepatic insulin resistance, namely the Liver-Specific Insulin 

Receptor Knockout (LIRKO) mice (73), are hyperglycemic and hyperinulinemic (73), but 

have decreased circulating triglycerides, due, in part, to a decrease in hepatic VLDL 

export (103) (Figure 23C). Thus selective insulin resistance occurs from defects 

downstream of the insulin receptor. Though the precise mechanism is unknown, several 

models have been developed to explain selective insulin resistance, some of which will 

be explored in following section 

 

 

Figure 23: effects of insulin in a physiological state (A), selective insulin resistance (type 

2 diabetes) (B) and partial insulin resistance (LIRKO) mice (C) adapted from (104). 
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3.1 – IRS hypothesis 

One hypothesis to explain the phenotype of selective insulin resistance was 

described by Shimomura et al. (105) using ob/ob mice, which do not produce leptin (a 

satiety hormone produced by adipose tissue) becoming obese due to hyperphagia, 

eventually developing hyperinsulinemia and diabetes. In both ob/ob mice and in 

lipodystrophic mice, the levels of IRS-2 where significantly lower than IRS-1. The authors 

then performed multiple experiments with isolated mouse hepatocytes, discovering that, 

when insulin was added to the culture medium, there was a significant decrease in IRS-

2 mRNA and protein levels, without changes in IRS-1 levels. Indicating that chronic 

hyperinsulinemia, such as observed in diabetes, is capable of selectively alter the 

expression of IRS-2 but not IRS-1 or SREBP-1c which remain active, leading to selective 

insulin resistance (Figure 24).  

 

z  

Figure 24: The IRS-2 model of selective insulin resistance. Adapted from (105). 

 

3.2 – mTORC1 hypothesis 

Li et al (106) have suggested that selective insulin resistance occurs due to a 

bifurcation in the insulin signaling pathways. This model focuses on analysis of the 

expression of multiple transcription factors, namely FoxO1 and SREBP-1c. The general 

idea is that FoxO1 is the one of the main mediators of the insulin regulated increase in 

expression of the PEPCK and glucose-6-phosphate genes and, therefore one of the 

main drivers of insulin-mediated increased gluconeogenesis (107). In the same way, 

SREBP-1c is considered the main driver behind insulin-induced increase in expression 

of hepatic genes related to lipogenesis, namely ACC, FAS and glycerol-3-phophate 

acyltransferase (90, 108). 
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Using specific inhibitors for the kinases of the insulin receptor-mediated signaling 

cascade (Figure 25) in cultured hepatocytes Li et al (106) discovered that inhibition of 

either PI3K or Akt led to both a decrease in the induction of SREBP-1c mRNA levels in 

response to insulin and a failure to reduce PEPCK mRNA levels in the same condition. 

This mimics the complete insulin resistance phenotype and, therefore, if the condition of 

selective insulin resistance is caused by a bifurcation in insulin resistance, it must 

necessarily lie downstream of Akt. This is also supported by other work that shows that 

Akt2 is required for hepatic lipid accumulation in models of insulin resistance (109). When 

these hepatocytes where treated with rapamycin, a selective inhibitor of the mTORC1 

complex, SREBP-1c mRNA levels did not increase in response to insulin but PEPCK 

mRNA levels where decreased, suggesting that mTORC1 is a potential target for the 

point of bifurcation in insulin signaling that leads to the pathology of insulin resistance 

(Figure 25). In this experiment selective inhibitors for GSK3β and MEK where using as 

controls. 

 

Figure 25: Effects of specific protein kinase inhibitors on the expressions of SREBP-1c and 

PEPCK in isolated hepatocytes treated with or without insulin. Adapted from (106). 
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Li et al (106) then performed rapamycin treatments in vivo in rats and analyzed the 

response of mRNA levels in response to a fast-refeeding protocol, showing that the 

increase in SREBP-1c, FAS and SCD-1 mRNA levels was severely blunted in rats 

treated with rapamycin but the reduction in PEPCK mRNA levels remained unchanged. 

This once again suggests that mTORC1 is at least partially responsible for the signaling 

cascade events that lead to the pathology of selective insulin resistance. Figure 26 

shows a simplified version of the proposed signaling cascade model. 

 

 

Figure 26: Map of the insulin activated protein kinase signaling cascade. Adapted from (106). 

 

3.3 – Endoplasmic reticulum stress hypothesis 

Ferré et al. (110) suggest that another possible mechanism for the development of 

selective insulin resistance involves the endoplasmic reticulum (ER). The ER is an 

organelle with multiple roles, such as the synthesis of secretory proteins and the 

maintenance of cell calcium homeostasis. The ER is also capable of initiating a process 

denominated unfolded protein response (UPR) which, through a series of signaling 

cascades, activates the degradation of unfolded proteins. One of the key proteins in 

mediating UPR – XBP1 – has been directly correlated with lipogenesis (111). The 

authors suggest that, in obesity, through mechanisms yet unknown, there is an increase 
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in ER stress that triggers the activation of SREBP-1C independently of insulin action 

(112) (Figure 27). 

 

Figure 27 The ER stress model of selective insulin resistance. Adapted from (112) 

 

3.4 – NOX4 hypothesis 

Another possible mechanism that explains development of selective insulin 

resistance involves NOX4. Wu et al. (113) verified that, in db/db mice (which do not 

express the leptin receptor and have a similar phenotype to ob/ob mice) there was a 

distinct phosphorylation pattern on different positions of Akt, with serine 473 (S473) 

showing impaired phosphorylation capacity in response to insulin, while threonine 308 

(T308) remained fully insulin responsive. These phosphorylation results were 

recapitulated in isolated hepatocytes in which NOX4 had been knocked out using NOX4 

siRNA. Hepatocytes that did not express NOX4 showed significant impairment of FOXO-

1 phosphorylation, while phosphorylation of ACC and GSK3β remained responsive. 

When hepatocytes were treated with diphenyleneiodonium (DPI) the insulin response in 

the downregulation of Pepck mRNA levels was blunted (Figure 28A), while SREBP-1C 

levels, though not as responsive to insulin as vehicle treated animals, remained high 

(Figure 28B). It was also observed that glucose uptake by hepatocytes treated with 
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NOX4 siRNA had significantly reduced basal and insulin-stimulated glucose uptake 

Figure 28C, recapitulating the pathology of selective insulin resistance. 

 

Figure 28: Changes in mRNA expression of Peck (A) and Srebp1c (B) in hepatocytes treated with 

an inhibitor of NOX4. (C) Decreased basal and insulin-stimulated glucose uptake in hepatocytes 

treated with either Nox4 siRNA vs. control RNA. Adapted from (113). 

 

3.5 – Flux hypothesis 

One very important point to bear in mind is that analysis of mRNA levels of 

enzymes of a pathway cannot be taken as a definite measure of flux through that 

pathway, as there are multiple post-transcriptional points of regulation of enzymatic 

activity, such as protein degradation, allosteric regulation and substrate availability. In 

fact, Turner et al (114) show that, in an ob/ob mouse model, there as about a 3-fold 

increase in FAS mRNA levels when these mice where treated with leptin compared with 

untreated ob/ob mice, which would suggest that leptin-treated animals had increased 

lipogenesis. However, stable isotope tracer analysis showed that, in fact, lipogenic flux 

was significantly decreased in ob/ob mice treated with leptin. 

Otero et al suggests that selective insulin resistance might occur due to a 

combination of insulin resistance in the glucose metabolism signaling branch which alters 

metabolic fluxes, leading to an increase in lipogenesis that is independent of differential 
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insulin signaling (101). The general idea is that, by selectively decreasing the liver’s 

ability to use produce glycogen, there is a compensatory, insulin independent increase 

in hepatic lipogenesis. This is supported by studies showing that, inhibition of glucose-

6-phosphate translocator (115) or glucose-6-phosphatase (116) or knockout of glycogen 

synthase (117) lead to an increase in DNL. There have also been recent reports of Akt 

independent activation of the lipogenic machinery, namely via mTORC2 (87), which 

could bypass insulin signaling. 

Overall, this data suggests that mRNA levels alone are not enough to inform about 

changed flux through a pathway. In chapter we will apply the NMR based method 

described in chapter 1 of this dissertation to understand the metabolic flux changes that 

occur in the context of high-fat diet induced obesity and diabetes. 

  



63 
 

4 - Methods 

 

HFD studies were performed on BDF1 mice (Charles Rivers) (n=5). Since the 

effect of HFD on lipogenesis in C57Bl6 mice has been previously studied (38, 109, 118, 

119), we examined BDF1 mice, a strain suggested to be more susceptible to diet induced 

diabetes than the C57Bl6 (120, 121). Mice were fed either a control semi-synthetic diet 

(10% fat calories; Teklad diet TD06416; Harlan Laboratories) or a high-fat diet (60% fat 

calories; Teklad diet TD06414; Harlan Laboratories) for a period of 35 weeks. These 

animals were weighted regularly. Fed and fasted blood samples were collected via tail 

vein at several timepoints during the experiment for measurement of plasma glucose 

levels and insulin. Four days before the end of the feeding protocol, animals were 

injected with 27 µl/g of 99.9% D2O saline solution, and returned to their cages with their 

regular drinking water replaced by a 4% D2O solution. At the end of the 35 weeks time 

period mice were anesthetized using isoflurane and sacrificed via exsanguination. Their 

livers and epidydimal fat pads were quickly excised and rapidly frozen in liquid nitrogen. 

Tissues were then stored in -80ºC. Tissues were processed and analyzed for analysis 

of lipid biosynthetic fluxes as described in chapter 1 of this dissertation. 

 

 

5 – Application of 1H/2H hybrid NMR technique for the measurement 

of lipid flux in diabetic animals 

To determine how type 2 diabetes changed lipid metabolism a High Fat Diet (HFD) 

model was studied using the methodology developed in chapter 1. BDF1 mice on a HFD 

were significantly heavier than mice on the low fat diet (LFD) after week 4 (Figure 29A) 

and continued diverging throughout the study period. Fasted glucose concentration was 

slightly elevated after one week (Figure 29E) and fed glucose concentration increased 

after 14 weeks of HFD (Figure 29D). Both fasting and fed hyperglycemia were most 

prominent between 16 and 30 weeks. Fasted insulin was significantly elevated after 1 

week (Figure 29C) and fed state insulin (Figure 29B) concentration was ~30-fold 

increased by 25 weeks of HFD. Although declining insulin (i.e. β-cell dysfunction) was 

previously described in BDF1 mice (120, 121), this condition was not reached by 35 

weeks at which time flux experiments were carried out. 
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Figure 29: HFD-induced insulin resistance in BDF1mice. (A), body weight changes in control and 

HFD mice. (B) and (C), fasted and fed glucose levels throughout the study, respectively. (D) and 

(E), fasted and fed insulin levels of insulin during the duration of the study. Data are presented as 

the mean ± SE (n=5). 

 

As expected, hepatic triglyceride content was increased in HFD mice compare to 

controls (Table 3). Although basal liver fat was lower than previously reported in C57Bl6 

under the same conditions (122), the fold increase in response to HFD was similar. This 

elevated triglyceride content occurred with increased percent polyunsaturated, linoleic 

acid, DHA and ω-3 fatty acids in liver. In contrast there was a decrease in percent 

MUFAS in liver (Table 4). 
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Table 3: Hepatic and WAT triglycerides in HFD and control non-fasted BDF1 mice. 

 Liver White adipose tissue 

 Control High fat diet p 

value 

Control High fat diet p 

value 

Fatty acid per glycerol 

unit 

3.04±0.02 3.05±0.01 NS 3.2±0.3 2.93±0.02 NS 

Hepatic glycerol 

concentration (mg/g liver) 

2.96±0.20 4.65±0.20 <0.05 38±8 46±4 NS 

Fatty acid concentration 

(mg/g tissue) 

27±2 41±2 <0.05 320±63 396±31 NS 

Data are represented as the mean ± SE (n=5).   

 

Table 4: Percentage of fatty acid types in HFD and control BDF1 mice. 

% fatty acids 

 Liver White Adipose tissue 

 Control High fat diet p value Control High fat diet p value 

ω-3 fatty acids 0.8±0.1 1.9±0.3 <0.01 1.04±0.09 0.52±0.04 <0.01 

Other ω 70±1 71±1 NS 75±1 78±1 NS 

Saturated 29±1 27±1 NS 24±1 21±1 NS 

Monounsaturated 58±1 46±1 <0.001 60±1 60.4±0.8 NS 

Polyunsaturated 13±1 28±1 <0.001 16.1±0.2 18.6±0.4 <0.001 

Linoleic acid 10±1 18±1 <0.001 15±1 19.0±0.3 <0.05 

Docohexaenoic acid 0.24±0.03 1.6±0.3 <0.001 0.02±0.01 0.03±0.01 NS 

Average number of 

carbons per FA 17.4±0.4 16.9±0.1 NS 15.7±1 17.1±0.12 NS 

Average molecular 

weight of fatty acids 273±5 267±1 NS 249±13 268.46±1 NS 

Data are represented as the mean ± SE (n=5).   
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Changes in the constituents of adipose triglyceride species were less conspicuous, 

though polyunsaturated and linoleic acids were modestly increased. Differences in 

dietary constituents of the LFD (29% saturated, 37% monounsaturated, 34% 

polyunsaturated) and HFD (HFD - 37% saturated, 47% monounsaturated, 16% 

polyunsaturated) could not account for all changes in tissue lipid species, particularly 

with regard to polyunsaturated lipids. The total amounts of all measured fatty acid 

classes except monounsaturated fatty acids were significantly higher in HFD mice 

compared to control (Table 5). 

 

Table 5: total of fatty acid types in HFD and control BDF1 mice. 

Total fatty acids (mg/g of liver) 

 Liver White adipose tissue 

 Control  p 

value 

Control HFD p 

value 

ω-3 fatty acids 0.21±0.03 0.76±0.08 <0.001 3.3±0.7 2.1±0.2 NS 

Other ω 19±2 29±2 <0.01 316±63 394±31 NS 

Saturated 8±1 11±1 NS 74±13 83±8 NS 

Monounsaturated 15±1 19±1 NS 194±40 240±20 NS 

Polyunsaturated 3.6±0.4 11.4±0.3 <0.001 52±10 74±6 NS 

Linoleic acid 2.6±0.3 7.6±0.3 <0.001 49±11 75±5 NS 

DHA 0.06±0.01 0.64±0.08 <0.001 0.08±0.03 0.14±0.06 NS 

Data are represented as the mean ± SE (n=5) HFD: High Fat Diet. DHA: Docosohexaenoic acid.   

 

To examine the nature of lipid synthesis in diet induced obese BDF1 mice, they 

were given D2O in drinking water so that DNL, desaturation and elongation could be 

measured by the described NMR method (Table 6). A HFD significantly decreased 

percentage (Table 6) and total new mass of lipids and newly desaturated lipids in liver 

(Table 7). Similar findings were made in the white adipose tissue. The desaturated/DNL 

flux ratio was also lower in HFD BDF1 mice, suggesting that the reduction in desaturation 
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was even more severe than the reduction in DNL. The finding of reduced DNL was 

surprising inasmuch as insulin resistance is thought to activate lipid synthesis in liver. 

However, in keeping with this effect, we found that chain elongation was doubled in HFD 

mice. The important distinction in the context of this method is that DNL is detected only 

when the initial 2 carbon unit is synthesized from acetyl-CoA during deuterium exposure 

(i.e. the methyl hydrogens are labeled); while elongation is detected when at least the 

first two carbon unit was pre-existing (i.e. the α2 hydrogens are labeled but the methyl 

hydrogens are not). The mass of newly synthesized glycerol was increased, consistent 

with the expected increase in gluconeogenesis, glyceroneogenesis and re-esterification 

of lipids (38, 122). Thus, these findings indicate that HFD promotes fatty acid elongation 

and esterification but suppresses DNL in BDF1 mice. 

 

Table 6: Percent fluxes in HFD and control BDF1 mice. 

% De novo synthesis 

 Liver White adipose tissue 

 Control High fat 

diet 

p 

value 

Control High fat 

diet 

p 

value 

% De novo 

lipogenesis 

13.8±1.6 2.2±0.4 <0.001 0.8±0.1 0.21±0.04 <0.01 

Fraction of 

elongated lipid 

0.21±0.05 0.62±0.04 <0.001    

% Total lipid 

elongation 

2.9±0.7 2.9±0.8 NS NA NA  

% desaturation 

activity 

6.4±0.8 0.4±0.2 <0.001 0.07±0.02 0±0 <0.05 

% glycerol 

synthesis 

25±2 24±4 NS 7±1 10±0.6 <0.05 

Data are represented as the mean ± SE (n=5).   
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Table 7: mass of new lipids in HFD and control BDF1 mice. 

Amount of new lipids (mg/ g of tissue) 

 Liver White adipose tissue 

 Control High fat 

diet 

p value Control High fat 

diet 

p value 

De novo 

lipogenesis 3.2±0.3 0.7±0.1 <0.001 25±3 7±2 <0.001 

Desaturation 

activity 0.97±0.13 0.07±0.03 <0.001 1.6±0.5 0±0 <0.05 

Desaturation/

DNL ratio 0.30±0.01 0.08±0.03 <0.01 0.06±0.01 0±0 <0.01 

glycerol 

synthesis 0.73±0.05 1.1±0.2 <0.05 26±4 50±5 <0.01 

Data are represented as the mean ± SE (n=5).   
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6 – Discussion  

We tested whether flux through several lipid metabolism pathways were altered by 

high fat diet induced obesity. Obesity causes “mixed insulin resistance” in liver, such that 

insulin’s suppressive actions on gluconeogenesis are impaired but its propensity to 

stimulate SREBP mediated lipid synthesis is paradoxically maintained (106). For 

instance, in agreement with prior studies (38), we observed an increase in the amount 

of new glycerol in liver and adipose triglycerides after HFD. The new synthesis of glycerol 

occurs mainly via glyceroneogenesis from dihydroxyacetone phosphate produced by the 

gluconeogenic pathway, which is increased during insulin resistance. However, studies 

of lipogenic flux in diet induced and genetically obese models have produced variable 

results. Genetically obese rodents have increased lipogenesis (37), but high fat diet 

induced obesity confers changes in lipogenesis that are apparently more complex. 

Studies of rodents on a HFD have revealed increased (119), no change (118) and 

dramatically reduced de novo lipogenesis (38, 53, 119). The variability of these findings 

is relevant to role of mixed insulin resistance in the accumulation of lipid during NAFLD.  

To clarify this issue, we examined BDF1 mice fed a HFD because this strain was 

reported to develop a more severe form of diet induced diabetes than C57Bl6 mice (120, 

121). In previous studies, BDF1 mice fed a 64% HFD became insulin resistant by 8 

weeks and had fed plasma glucose levels of 335 mg/dl after 14 weeks on the diet (121). 

Here we used a 60% fat diet and observed profound hyperinsulinemia but hyperglycemia 

was mild. Overall, the insulin and glycemic phenotype was reminiscent of our experience 

with C57Bl6 mice on this diet (123). However, despite fat accumulation in liver we found 

a dramatic decrease in both the percent lipogenesis and total hepatic fat derived from 

lipogenesis. Inasmuch as this finding contrasts the expectation that insulin resistance 

causes increased lipogenesis, it is worth considering the factors that dictate the 

outcomes of lipogenesis during high fat feeding.  

We first consider several methodological issues related to measurements of 

lipogenesis. Previous studies measured either total increases in mass isotopes of select 

lipids following D2O exposure or the mass isotopomer distribution analysis (MIDA) 

following 13C-acetate exposure. Mass isotopomers M+1, M+2, M+3 etc incorporate into 

lipids following D2O and these mass isotopomers can be used to determine new lipid 

synthesis, provided the number of exchangeable hydrogens are known for each lipid 

species of interest. For example the number of exchangeable hydrogens on palmitate 

varies between 17-22. While sometimes measured directly, more frequently it is set to a 

constant. This assumption is unnecessary for NMR analysis of positional deuterium 

enrichments since the methyl position arises from acetyl-CoA and its enrichment can be 
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measured directly. Multiple approaches have been applied to lipogenesis in HFD mice 

with variable results; MIDA found no change (118), 2H NMR found a decrease (53) and 

2H mass isotopomers reported an increase and decrease in different studies (38, 119). 

Although these methods require unique assumptions, there is no obvious reason why 

they would provide systematically higher or lower flux during a HFD. 

Mass isotopomer analysis and NMR positional isotopomer analysis place slightly 

different constraints on the detection of lipogenesis versus chain elongation, and this 

could lead to interpretational differences about the extent of lipid synthesis. Elongation 

of fatty acids (C16) to very long chain fatty acids (C18 or longer) occurs through ELOVL 

mediated chain elongation. Mass detection distinguishes between de novo lipogenesis 

and elongation of C16 to C18 by fitting isotopomer pools to 3 distinct populations; 

unlabeled (i.e. preexisting lipids), label distributed equally (but not uniformly) across the 

16 or 18 carbons (i.e. de novo lipogenesis) or label distributed only on 2 carbons (i.e. 

elongation of one acetyl unit). HFD induces the expression of ELOVL1, 2, 5 and 6 in 

mice (124) and indeed Oosterveer and colleagues found that a HFD induced the 

elongation of C16 to C18:1 but not de novo synthesis of C16 using mass isotopomers 

(118). However, elongation may also include partially catabolized fatty acids that are 

recycled into the lipogenic pathway (69). The extent of such a futile cycle and whether it 

is effected by HFD or insulin resistance is unclear but would likely be detected as de 

novo lipogenesis by mass isotopomer analysis if elongation begins at carbons 

significantly lower than C16. On the other hand, NMR positional isotopomer analysis very 

strictly constrains de novo lipogenesis to the enrichment of the methyl hydrogens and 

detects elongation whenever the methyl enrichment is lower than the α2 carbon 

enrichment (which represents all forms of lipid synthesis). Thus, any degree of 

elongation, whether ELOVL mediated C16 to C18 elongation or a less conventional 

elongation, for instance C12 to C16 elongation, it would be detected separately from 

DNL. Indeed, compared to LFD mice, HFD mice had double the percentage of hepatic 

lipid derived from chain elongation. However, since the α2 deuterium enrichment (total 

lipid synthesis, DNL + elongation) was still much lower, all forms of lipogenesis were 

reduced in mice on a HFD. Therefore we conclude that reduced versus increased 

lipogenesis after HFD is not caused by methodological differences. 

Next we consider several procedural differences that cause biological variations in 

lipogenesis independent of methodology. Mice in our study were kept on a HFD for a 

longer duration than previous studies, and this could have caused a more complete 

degree of insulin resistance (i.e. nullifying mixed insulin resistance). Although, we did not 

examine the cell signaling pathways necessary to specifically address this possibility, the 

relatively mild hyperglycemia of the model leads us to believe that this is an unlikely 
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factor. Another possibility may relate to the rather wide variety of “high fat” and “control” 

diet formulations used in various studies. For instance, Leavens and colleagues used a 

hydrogenated coconut oil (58 kcal% or 334 g/kg) diet, and found a 2-fold increase in the 

amount of newly synthesized hepatic lipid (109). Oosterveer and colleagues found no 

change in lipogenesis after 6 weeks of a lard diet (344 g/kg) (118). Delgado et al. and 

Lee et al. found a large decrease in lipogenesis, after feeding rats with a lard diet (230 

g/kg) for 5 weeks and (120 g/kg) 2 weeks (37, 53) respectively. In all cases sucrose was 

the major carbohydrate source, and standard laboratory chow was used as the control 

diet. We used a lard based diet (60 kcal% or 330 g/kg from fat) and a semi-synthetic 

control diet (10 kcal% or 40 g/kg from fat) whose carbohydrate component was sucrose 

(i.e. same as the HFD). We observed much lower lipogenesis in the HFD compared to 

control, which is consistent with previous MS studies using similar dietary formulations 

(38, 119). Thus, we cannot rule out macronutrient components of the diets as factors 

determining whether lipogenesis is increased or decreased during high fat diet induced 

obesity, but there is no obvious pattern in the literature.  

The timing of tracer exposure is another procedural factor that affects 

measurements of lipogenesis. Generally, lipogenesis is measured in either the 

postabsorptive state (e.g. 4-5 hours after removal of food) and sample is collected within 

hours of administration, or tracer is given over several days of ad libitum feeding. The 

two approaches have clear physiological consequences, and test two distinct aspects of 

lipid biology. In the first case, lipid synthesis is measured at a time when lipogenesis is 

down-regulated. To the extent that insulin resistance constitutively activates signaling 

pathways that promote lipogenesis, this is a relevant experiment because it tests whether 

lipogenesis has been appropriately suppressed. Indeed, under these conditions, 

Leavens and colleagues found that lipogenesis was increased in mice on a HFD (109). 

In the latter approach, tracer accumulates in lipids over one or more feeding cycles, 

providing an average lipogenesis that includes prandial contributions. Inasmuch as 

lipogenesis predominates in the prandial/postprandial state, this approach provides 

important insight into lipogenic regulation and its impact on lipid accumulation. In the four 

instances discussed here, where animals were exposed to tracer across at least one 

feeding cycle, lipogenesis was reduced following a HFD (37, 38, 53, 119). Thus, the 

effect of insulin resistance to stimulate lipogenesis may be a postabsorptive 

phenomenon inasmuch as dietary fat suppresses lipogenesis even in the setting of 

insulin resistance. 

A complication of providing tracer across meals arises because at long time scales 

other lipid fluxes, such as dietary absorption, triglyceride export and oxidation also 

contribute to lipid homeostasis in liver. Indeed, linoleic acid can only be derived from the 
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diet, accumulated in both tissues of HFD mice. Reasoning that excessive newly 

synthesized lipids could have been diluted by diet and exported, we also examined their 

incorporation into adipose tissue. Mice on the LFD had roughly the same mass of new 

lipid in adipose and liver, but HFD mice had twice as much new lipid in adipose as liver, 

consistent with increased export of new lipid from the liver. However, the total amount of 

new lipid was still 3-fold higher in the adipose of LFD mice, suggesting that dietary 

dilution and export is not masking high DNL in HFD mice.  

 

 

 

 

7 - Conclusion 

We used a novel 1H/2H NMR method to investigate lipid synthesis and applied it in 

mice with HFD induced insulin resistance. Together, our data indicate that lipogenesis is 

suppressed by HFD, even during insulin resistance, when examined across feeding 

periods. However, there is an increase in elongation flux and  
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CHAPTER 3 

 Role of cytosolic Phosphoenolpyruvate Carboxykinase 

(PEPCK-C) in the regulation of lipid metabolism 

 

1 – Introduction: 

 Phosphoenolpyruvate Carboxykinase (PEPCK) is considered an important 

regulatory enzyme of GNG but may also play a lesser understood role in lipid 

metabolism. PEPCK-C catalyzes the conversion of oxaloacetate into 

phosphoenolpyruvate and carbon dioxide, which is the second irreversible enzymatic 

reaction of gluconeogenesis (GNG). There are two isoforms of PEPCK, PEPCK-C and 

PEPCK-M, located in the cytosol and the mitochondria, respectively. Each species 

possesses different ratios of these two isoforms. Humans have about 50% of each form, 

rodents have about 90% PEPCK-C and birds have almost exclusively PEPCK-M. 

PEPCK-C has been assumed to be one of the rate controlling enzymes of GNG since at 

least 1979, when DiTullio et al (125) determined, that the use of mercaptopicolinate, an 

inhibitor of PECK, reduced gluconeogenic output in rat hepatocytes. The acceptance of 

PEPCK-C as the main rate controlling enzyme of GNG has become so well established, 

that PEPCK-C mRNA levels are often used as a surrogate for gluconeogenic capacity. 

 Despite the canonical view that PEPCK-C is the rate controlling enzyme of GNG, 

metabolic studies indicate it plays a subtle, if not sophisticated, role in metabolism. First, 

the control coefficient for every enzyme of the gluconeogenic pathway has been 

determined (126). Pyruvate carboxylase (PCX) had the highest influence on 

gluconeogenic activity with a control coefficient over GNG that was approximately ten-

fold higher than that of PEPCK-C. Second, a more recent study by Burgess et al. (127) 

proved, using a mouse genetics and a tracer approach that the metabolic control 

coefficient of PEPCK-C over GNG was just 0.18 out of a maximal value of 1, Hence 

PEPCK-C seems to have a smaller role in regulating GNG flux than typically assumed. 

 Faced with the array of control mechanisms for PEPCK-C transcription (reviewed 

in (128)) one question arises: if PEPCK-C is not the main rate controlling enzyme of 

GNG, what is its metabolic role? It seems unlikely that such comprehensive regulation 

mechanisms would be in place to regulate an enzyme with a negligible role in metabolic 

activity. 

 The fact that both isoforms of PEPCK are present in non-gluconeogenic tissues 

such as adipose tissue, brain, muscle and muscle further underscore the notion that this 
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enzyme must have other important roles besides GNG. Importantly, brown adipose 

tissue has higher PEPCK activity per gram of protein than liver (129), suggesting that 

PEPCK-C might have an important effect in the regulation of lipid metabolism. One such 

proposed role of PEPCK is the regulation of glycerol production via the pathway known 

as glyceroneogenesis (GlyNG), a truncated form of GNG that produces glycerol-3-

phosphate necessary for the synthesis of triacylglycerides as well as diversity of 

structural and signaling lipids. PEPCK-C also regulates cataplerosis, i.e., the removal of 

TCA cycle intermediates from the mitochondria. Since the lipogeneic enzymes are 

located in the cytosol, it is important to export citrate from the mitochondria to the cytosol, 

where it is converted by ATP-citrate lyase to oxaloacetate and acetyl-CoA, the latter then 

used for the synthesis of fatty acids. Few studies have analyzed the direct role of PEPCK-

C on lipid metabolism, but mice with a liver specific deletion of PEPCK show pronounced 

steatosis after an overnight fast (130), suggesting that this enzyme might also play a role 

in the regulation of hepatic lipid metabolism. 

 In this chapter, the methodological approaches described in chapter 1 where 

applied to mice expressing different levels of PEPCK-C in order to determine the 

influence of this enzyme in lipid homeostasis, focusing on the liver and adipose tissue. 

The rates of triglyceride disposal from the liver, either as release of VLDL-bound 

triglycerides or via hepatic β-oxidation were measured. Since one of the key steps of 

lipogenesis is the export of citrate from the mitochondria into the cytosol where lipogenic 

enzymes are located, functional shuttling of metabolites and reducing equivalents 

between mitochondria and cytosol is mandatory. To determine if alterations in 

intracellular metabolite distributions secondary to manipulation of PEPCK-C expression 

informed the lipid phenotype, a partial metabolomics analysis on isolated hepatic 

cytosolic and mitochondrial fractions was also performed. 
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2 –Glyceroneogenesis 

 

 As mentioned in chapter 1 of this dissertation, the glycerol-3-phosphate precursor 

for the synthesis of triacylglycerides can be synthesized via 3 distinct pathways: 1) 

glycolysis, 2) glycerol kinase and 3) glyceroneogenesis. Glyceroneogenesis (GlyNG) is 

essentially a truncated form of gluconeogenesis (GNG), in the sense that they share the 

same enzymatic reactions but glyceraldehyde phosphate is converted to glycerol-3-

phosphate by glycerol phosphate dehydrogenase. This pathway is of particular 

importance in adipose tissue, as it only has residual glycerol kinase activity (131). In the 

post prandial state, when meal lipid absorption and insulin are high, the liver produces 

and exports triglycerides in the form of Very Low Density Lipoproteins (VLDL). When 

VLDL reaches target tissues, such as the adipose tissue, extracellular lipoprotein lipase 

(LPL) cleaves triglycerides into free glycerol and fatty acids. Due to the low activity of 

glycerol kinase in adipose tissue, the majority of free glycerol is returned to the circulation 

and metabolized by the other tissues. Thus, in order to esterify the absorbed free fatty 

acids into triacylglycerols, glycerol-3-phosphate needs to be synthesized in situ. 

 Several studies have attempted to determine the relative contribution of GlyNG 

to glycerol-3-phosphate production both in the liver and in the adipose tissue. Chen et 

al. (27) determined the relative contributions of GlyNG and in adipose tissue of mice that 

were fed either a high-carbohydrate, low carbohydrate or high-carbohydrate 

supplemented with rosiglitazone were 17%, 50% and 53%, respectively. However, this 

study assumes that the circulating glucose contributing to Gly3P is unlabeled. To the 

extent that this glucose pool is previously labeled with deuterium, for example via 

gluconeogenesis, it would cause an artificial increase in the contribution of glycolysis to 

Gly3P. This was addressed by Bederman et al. (132) who, using a double tracer 

approach determined the contributions of GlyNG to Gly3P synthesis to be 31% and 72% 

in mice fed a high-carbohydrate and carbohydrate-free diet, respectively. Another study 

by Nye et al. (133) determined that, in the epididymal adipose tissue GlyNG contributed 

to about 90% to Gly3P production in fed rats and almost 100% in 48h fasted rats. In rats 

fed with fructose GlyNG was approximately 86% of total Gly3P production. This study 

also determined that GlyNG accounts for almost 100% and 60% liver and muscle, 

respectively. 

Glyceroneogenesis is also an active metabolic pathway in the liver. Martins-

Santos et al.(134) determined the contributions of glucose, pyruvate and glycerol to 

glycerol-3-phosphate production in liver slices of fed, fasted and STZ-induced diabetic 
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rats, via administration of radioactive-labeled substrates. Since the different labeled 

substrates were not administered simultaneously it was not possible to determine the 

relative contribution of each pathway for a given metabolic state, but it was possible to 

determine how these states altered the absolute contributions of each substrate to Gly3P 

production. When the animals were fasted, the contribution of glucose to Gly3P was 

decreased by about 26%, the contribution of pyruvate increased by about 70% while the 

contribution of glycerol remained constant. A similar result was observed in STZ-induced 

diabetic mice, where the contribution of glucose was reduced by about 36%, the 

contribution of pyruvate increased by 36% and the contribution of free glycerol remained 

unchanged. GlyNG is also important in humans, as exemplified in a study by Kalham et 

al. (135) where the contribution of GlyNG to plasma VLDL-derived triglycerides in 

patients with type 2 diabetes was determined to be approximately 54%, a value that 

remained constant even after the patient underwent diet and behavior modifications that 

led to an increase in their insulin sensitivity. 

 These studies highlight the importance of GlyNG as the major source of glycerol-

3-phosphate synthesis, but a questions remains: what exactly is the role of PEPCK in 

the regulation of GlyNG in any of these tissues? Franckhauser et al.(136) overexpressed 

PEPCK-C in the adipose tissue of mice, leading to about a 12-fold and 5-fold increase in 

PEPCK-C mRNA expression in white and brown adipose tissue, respectively. These 

mice had an increase in the incorporation of label from 14C labeled pyruvate into glycerol 

as well as an increased rate of fatty acid reesterification, leading to an increase in 

adipocyte weight and size. However, these mice did not show any of the negative effects 

associated with increased adiposity, such as impaired glucose tolerance. Another study, 

by Olswang et al.(137) determined that animals where PEPCK-C expression had been 

ablated in adipose tissue had reduced adiposity and some of the animals even became 

lipodystrophic. In order to indirectly determine the role of GlyNG, adipocytes from these 

animals were incubated with or without pyruvate and the amount of free fatty acids 

released to the media was analyzed. In control animals, when pyruvate was added to 

the media, there was a significant decrease in the amount of fatty acids released to the 

media, but, for PEPCK-C knockout adipocytes, there was a higher basal release of fatty 

acids and there was no response when pyruvate was added to the media. These data, 

though not a direct measurement of GlyNG, highlights the importance of PEPCK-C in 

the maintenance of regular adipose tissue homeostasis. 

 The direct role of PEPCK-C in the regulation of hepatic glyceroneogenesis and 

lipid metabolism is not well studied, as most studies have hitherto focused on the 

gluconeogenic role of hepatic PEPCK. One study demonstrated that liver specific 
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PEPCK KO mice (130) developed severe hepatosteatosis in response to an overnight 

fast even though the expression of enzymes related to the degradation of fatty acids 

were significantly elevated. This suggests that hepatic PEPCK-C is required for proper 

homeostasis of hepatic lipid metabolism. In this chapter the methodology described in 

chapter 1 of this dissertation will be applied to mice expressing varying levels of PEPCK-

C in order to determine the influence of this enzyme in overall lipid metabolism, focusing 

on the liver and the adipose tissue. 
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3 – Cataplerosis 

 

 Lipid synthesis occurs in the cytosol and requires acetyl-CoA as an obligatory 

substrate. Since there are no acetyl-CoA transporters in the mitochondria, mitochondrial 

acetyl-CoA is first converted to citrate which can be transferred to the mitochondria via 

the citrate carrier (CIC), encoded by the SLC25A1 gene, where it can be converted to 

oxaloacetate and acetyl-CoA by ATP-citrate lyase (ACL). The oxaloacetate formed this 

way can then be converted to malate by malate dehydrogenase which transported back 

to the mitochondria via the dicarboxylate carrier or can be further converted to pyruvate 

by malic enzyme, generating NADPH in the process. Cytosolic pyruvate can then be 

transported back to the mitochondria via the mitochondrial pyruvate transporter. This 

process is known as the citrate/malate/pyruvate cycle (Figure 30). An alternative shuttle 

involves the exchange of cytosolic malate with mitochondrial isocitrate. The cytosolic 

isocitrate can then be converted to oxaloacetate (with production of NADPH) and this 

oxaloacetate exchanges with mitochondrial malate via the Oxoglutarate Carrier protein 

(OGC). These cycles allow the transfer of acetyl-CoA and NADPH from the cytosol to 

the mitochondria, allowing lipogenesis to occur.  

 

Figure 30 Hepatic mitochondrial shuttles and their involvement in lipogenesis. Adapted from (138) 
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Citrate is also a metabolite of the tricarboxylic acid (TCA) cycle, which is one of 

the central mitochondrial metabolic pathways that exists in all cells (with the exception 

of red blood cells, which do not possess mitochondria). Citrate is, therefore a metabolite 

at the intersection of mitochondrial energy metabolism and cytosolic lipogenesis and, 

therefore, it is important to maintain its concentration (and, consequently, the 

concentration of other TCA cycle metabolites) balanced. In order to achieve this balance, 

there are chemical reactions that increase the concentration of TCA cycle intermediates 

(anaplerotic reactions) to balance reactions that decrease their concentration 

(cataplerotic reactions). The major anaplerotic reaction is catalyzed by pyruvate 

carboxylase, which converts pyruvate to oxaloacetate, while the major cataplerotic 

reaction is catalyzed by PEPCK. There are other enzymes that can function as 

cataplerotic or anaplerotic reactions, by virtue of being reversible. These include 

glutamate dehydrogenase (which converts glutamate to α-ketoglutarate) and aspartate 

transaminase (that converts aspartate and α-ketoglutarate to oxaloacetate and 

glutamate) (Figure 31) 

 

Figure 31: Anaplerotic and cataplerotic reactions of the TCA cycle. Adapted from (139) 
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 PEPCK-C, being the major irreversible cataplerotic reaction, plays a significant 

role in the maintenance of TCA cycle activity. In fact, animals with whole-body knockout 

of PEPCK-C die two days after birth through a yet unknown mechanism (140). These 

animals are hypoglycemic and have elevated levels of plasma triglycerides, ammonia, 

lactate and β-hydroxybutyrate as well as increased levels of hepatic triglyceride, lactate 

and malate (140). The lethality of PEPCK-C whole body KO makes it difficult to probe its 

metabolic role. However, liver-specific KO mice have been created using Flox/Cre 

technology and these mice are viable (130). Surprisingly, they are able to maintain 

normal glucose and insulin levels, even after an overnight fast. However, after a 24h fast 

they have increased plasma FFA and triglycerides as well as increased hepatic 

triglyceride and malate levels. Since liver-specific PEPCK-KO mice have little to no 

glycogen after a 24h fast (130) there is significant interest in determining exactly how 

glycaemia is maintained. Another study (141) used 13C and 2H NMR isotope based 

techniques to show that liver-specific PEPCK-C KO mice only slightly decreased total 

production of glucose from TCA cycle intermediates. These data suggest that there is a 

compensatory increase in gluconeogenesis in extra-hepatic tissues, such as the kidney. 

Lastly, in a study where13C and 2H NMR isotope based flux analysis was performed in 

isolated perfused liver of liver-specific PEPCK-C KO mice (127) PEPCK-C was found to 

have a bigger influence in regulating TCA cycle activity than in the regulation of 

gluconeogenesis, with TCA cycle activity being robustly suppressed possibly due to the 

disruption of GNG and cataplerosis. These data further highlight the role of PEPCK-C in 

the control of cataplerosis and maintenance of mitochondrial metabolism and, therefore, 

partially determines the concentration of TCA cycle intermediates as evidenced by the 

increased malate concentration in PEPCK-C KO mice. If PEPCK-C expression also 

induces changes in other TCA cycle intermediates, those changes could lead to a 

dysregulated mitochondrial metabolic shuttling and, therefore, with decreased 

lipogenesis. To test this hypothesis, the hepatic cytosolic and mitochondrial fractions of 

mice expressing different levels of PEPCK-C were isolated and the concentration of TCA 

cycle intermediates was determined in both fractions. 
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4 – Methods 

4.1 – Lipid metabolism 

In order to determine the influence of PEPCK-C on lipid metabolism the methods 

described in chapter 1 of this dissertation were applied to mice expressing different levels 

of hepatic PEPCK-C. Briefly, 4 mice types were used 1) pckflox/flox mice that express 

normal levels of 2) PEPCK-C, pcklox/neo mice with about 30% of normal hepatic PEPCK-

C expression, 3) pcklox+ neo/del mice, with about 10% of normal hepatic PEPCK-C 

expression and 4) pckflox/flox +Alb-cre mice which do not express PEPCK-C in the liver. 

For simplicity, these mice lines will be referred to as Lox/Lox, Neo/Neo, Neo/Del and 

LKO for the remainder of this chapter. 

 Three different protocols were applied in the measurement of lipid metabolism in 

these mice. In all experiments, animals were I.P. injected with 27 µl/g body weight of 

99.9% D2O-saline and returned to their respective cages. Their drinking water was then 

supplemented with D2O to match the target loading dose enrichment of 4%. 

In the first protocol, mice were maintained on the deuterium enriched water for 4 

days, having been given ad libitum access to food. These mice were then sacrificed in 

the morning of the 5th day. The goal of this experiment was to determine the role of 

PEPCK-C in the regulation of lipid metabolism on a whole body level. Since the lipid pool 

is much larger in adipose tissue compared to liver, the WAT lipid pool has a slower 

turnover and, therefore, a longer exposure time is required to be sure there is adequate 

incorporation of deuterium label in both lipid pools. In the second labeling protocol the 

deuterium labeling period was about 16h, and mice had ad libitum access to food. This 

shorter labeling period allows the determination of hepatic lipogenic flux without much 

influence from the adipose tissue. In the third protocol, mice were fasted for four hours 

prior to the bolus injection of D2O, after which time they were returned to cages without 

food and with false bottoms to trap feces and prevent coprophagia. The labeling period 

for these mice was also 16h, for a total fasting period of about 20h. This protocol was 

used to study the effects of PEPCK-C on lipid synthesis in the fasted state, when the 

steatotic phenotype is more pronounced. In all protocols, at the end of the labeling 

period, mice were anesthetized and their livers and adipose tissue were quickly excised 

and snap frozen in liquid nitrogen until further analysis. The livers were processed for 

lipid analysis as described in chapter 1 of this dissertation. 
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4.2 – Determination of metabolic control coefficients 

 The flux control coefficient (FCC) of an enzyme over a pathway is, essentially a 

measure of the relative importance of flux through that enzyme relative to the overall 

pathway flux. FCC values range from 0 to 1, the former indicates that the enzyme has 

no influence on the pathway in question while the latter informs that a small change in 

the activity of the enzyme leads to significant changes in whole pathway flux. FCC was 

determined by plotting the total pathway flux versus the activity of the enzyme in question 

as previously described (127). If the graph thus obtained is an exponential function, the 

FCC can be determined by taking the natural logarithm of both variables and performing 

a linear regression analysis. The slope is defined as the FCC.  

 

4.3 – Determination of metabolite concentrations 

 Metabolite concentrations were determined using commercially available 

enzymatic detection kits. Mouse ultrasensitive insulin kit was purchased from Alpco 

Diagnostics, Salem, NH. Triglyceride and glycerol assay kits were purchased from 

Cayman Chemicals, Ann Arbor, MI. FFA and ketone kits were purchased from WAKO 

diagnostics, Richmond, Va. Free cholesterol and cholesterol ester assay kits were 

purchased from Abcam, Cambridge, MA. Glucose levels were monitored using an Accu-

Chek Aviva glucometer. 

 

4.4 – Determination of tissue glycerol and fatty acid content. 

 Tissues were weighed and lipid were extracted using a modified version of the 

Folch extraction protocol (57). Briefly, 20ml of a mixture of 2:1 chloroform/methanol was 

added per gram of tissue (WAT or liver). Tissues were homogenized and shaken for 

approximately 30 min to promote the extraction of lipids. Saline was then added to the 

samples at a ratio of 4 ml per gram of tissue initially used. Samples were thoroughly 

mixed and then centrifuged at 1000 rpm for 10 min to promote phase separation. The 

lower phase containing the lipid fraction was collected into a 5ml volumetric flask and the 

total volume was adjusted to 5 ml with pure chloroform. After at least 4h, the remaining 

aqueous fraction was removed from the volumetric flasks and the volume once again 

adjusted to 5 ml with pure chloroform. 200 µl were collected for the determination of 

tissue triglyceride levels with the rest of the solution being dried down for NMR analysis, 
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as described in chapter 1. To determine hepatic glycerol and triglycerides, the aliquoted 

samples were dried down and reconstituted in 120µl of tert-butanol and 80µl of a 1:1 mix 

of triton X-100/methanol. 20µl of this mix were then used with a commercially available 

kit (Sigma-Aldrich) to determine the tissue contents of glycerol and triglycerides. 

 

4.5 – Triglyceride export experiments 

 In order to determine the effects of PEPCK-C on hepatic triglyceride clearance, 

mice were fasted for either 4h or 16h, after which they were I.P. injected with poloxamer 

407 (142), at a dose of 1 mg/g body weight as described. Blood samples were collected 

before the injection and at 1h, 2h, 4h, 6h and 20h post injection. Plasma triglycerides 

were assayed in plasma samples using a commercially available enzymatic detection kit 

(Cayman Chemical). Poloxamer 407 inactivates capillary lipoprotein lipase preventing 

triglycerides released as VLDL from being absorbed by extrahepatic tissues. VLDL 

production rate can be measured as the rate of appearance of triglycerides in plasma 

over time after the administration of Poloxamer 407. 

 

 4.6 –Ex vivo hepatic β-oxidation 

 In vitro oxidation of palmitate was performed as described by Dohm et al. (143) 

with few modifications. Briefly, overnight (16 h) fasted animals were anesthetized by 

Isoflourane and blood was collected by cardiac puncture into syringes containing EDTA. 

Liver was excised and submerged into ice cold reaction buffer (2 mM ATP,  0.05 mM 

CoASH, 1 mM dithiotreitol, 0.1 mM NAD+, 1 mM DL-carnitine, 0.1 mM malate, 1 mM 

MgCl2, 0.072 mM fatty acid free BSA, 100 mM sucrose, 10 mM K2HPO4, 80 mM KCl, 0.1 

mM EDTA,  100 mM HEPES pH 7.3). ~500 mg of liver was homogenized in 2.5 ml of 

reaction buffer by 11 strokes of hand-operated Potter-Elvehjem homogenizer. Reaction 

was started by adding 3 ml of [1-14C] palmitate (0.3 mCi, final 25 mM; PerkinElmer, 

Waltham, MA) to 200 ml of homogenate and the tube was immediately inserted into a 

vial with silicone septa containing filter paper soaked in hyamine hydroxide to capture 

14CO2. Reactions were incubated at 37°C for 4, 5, 6, and 7 min (duplicate for each time 

point) and terminated by injecting 100 ml of 7% (v/v) HClO4. To ensure complete capture 

of 14CO2, vials were left at 4°C overnight. Next day, reaction tube was centrifuged at 

15,000 x g for 10 min. 200 ml of supernatant as well as filter paper were counted for 

incorporation of 14C into acid soluble molecules and 14CO2 in 6 ml of scintillation liquid. 
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After conversion to DPM and correction for scintillation counter efficiency, oxidation rate 

was calculated as picomoles of oxidized palmitate per minute per milligram of tissue. 

 

 4.7 – Metabolomic analysis of mitochondrial and cytosolic extracts 

 In order to determine if PEPCK-C knockdown dysregulates the equilibrium of 

mitochondrial shuttle mechanisms, mitochondria were isolated from livers of Lox/Lox, 

Neo/Neo, Neo/Del and LKO mice. Briefly, mice where either sacrificed after an overnight 

(16h fast) or with ad libitum access to food. Livers were quickly removed and a portion 

was cut and placed in an ice-cold solution of mitochondrial isolation buffer (25. mM 

sucrose, 10 mM Tris-HCl and 1 mM EGTA, pH 7.4), livers were washed 3 times to 

remove blood and weighed. The samples were then transferred to a Potter-Elvehjem 

homogenizer containing mitochondrial isolation buffer (1 ml/100 mg of tissue used). 

Samples were homogenized by hand with an average of 20-25 strokes per sample. The 

homogenizer was placed in an ice-filled container throughout the process to keep the 

sample chilled. The homogenate was placed in a chilled centrifuge tube and centrifuged 

at 700g for 5 minutes. The pellet was discarded and the supernatant was placed in a 

new pre-chilled centrifuge tube and centrifuged at 7500g for 10 minutes. The 

supernatant, which contains the cytosolic fraction of the liver was collected and stored at 

-80ºC until further analysis. The pellet, which contains the mitochondrial fraction, was 

resuspended in 10 ml of mitochondrial isolation buffer and centrifuged at 7500 for 10 

min, and the supernatant was discarded. In order to minimize cross contamination of 

mitochondrial and cytosolic metabolites, mitochondria were once again resuspended in 

10 ml of mitochondrial isolation buffer and centrifuged at 7500 for 10 min, with the 

supernatant being discarded. The remaining mitochondrial fraction was then 

resuspended in water (150 µl/g of initial tissue used) and sonicated to lyze mitochondrial 

membranes and release intramitochondrial metabolites to solution. The mitochondrial 

fraction was then stored in -80º C until further analysis. 

 

 4.8 – GC/MS determination of organic acid concentrations 

 Determination of the concentrations of organic acids was performed based on the 

method described by Des Rosiers et al (144) with some changes. Briefly, 20µL internal 

standard mix (U-13C, U-2H labeled lactate, pyruvate succinate, fumarate, citrate and α-

ketoglutarate), 350 µL of 8% sulfosalicylic acid and 50 µL of 5M hydroxylamine-HCl were 
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added to the 50 µl isolated cytosolic or mitochondrial fraction. Samples were then 

centrifuged at 3000 RPM for 15 minutes at 4ºC and the supernatant was collected. The 

supernatant was then neutralized to pH 6-7 using 2N KOH and incubated for 60 minutes 

at 65 ºC. The sample was then acidified to pH 2.0 with 1M HCl. 250 mg of NaCl was then 

added to the solution. The solution was extracted twice with 2 ml of ethyl acetate. The 

ethylacetate phase was then evaporated to dryness and reacted with 80ul of mixture of 

N-methyl-N-(t-butyldimethylsilyl)trifluoroacetamide and acetonitrile (1:1 ratio) at 60 ºC for 

60 minutes. 

Analysis of organic acids was performed via GC/MS (Agilent 5975C), using a HP-

5MS capillary column (non-polar) with 0.25 mm ID, 30m length and 0.25 µm film 

thickness. The temperature gradient used was as follows: Initial temperature 150 ºC, 

increase to 205 at 5 ºC/min, followed by increase to 250 ºC at 50 ºC/min for 1 minute 

and increase to 275 ºC at 25 ºC/min for 2 minutes. 

Ions monitored were m/z 261-264 (lactate and labeled lactate I.S), 274-277 

(pyruvate and labeled pyruvate I.S), 289-293 (succinate and labeled succinate I.S), 287-

291 (fumarate and labeled fumarate I.S), 419 (malate), 432-436 (oxaloacetate), 446-450 

(α-ketoglutarate and labeled α-ketoglutarate I.S), and 459-465 (citrate and labeled citrate 

I.S). 

 

4.9 – Gene expression analysis 

Total RNA was extracted from tissues with RNA Stat-60 reagent (Tel-Test, 

Friendswood, TX). cDNA was synthesized from 4 µg of RNA treated with 0.2 U DNase 

(Qaigen, Valencia, CA) using High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Carlsbad, CA). Quantitative real-time PCR was run in triplicates using SYBR 

GreenER™ qPCR SuperMix for ABI PRISM® instrument (Invitrogen, Carlsbad, CA) and 

ABI PRISM 7900HT Fast Real-Time PCR System (Applied Biosystems). Gene 

expression was normalized to cyclophilin b (Ppib). 
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5 – Results 

 

 5.1 – Plasma metabolite levels in fed PEPCK-C KD mice 

 Plasma metabolite profiles of fed PEPCK-C KD mice (Table 8) show that Neo/Del 

mice have 20% higher levels of blood glucose and 47% higher insulin levels compared 

to controls, suggesting the that these mice were more  insulin resistant than controls. 

Triglyceride levels were significantly decreased 32% and 48% in Neo/Del and LKO 

animals, respectively and glycerol levels were reduced by 38% in LKO mice. This was 

accompanied by a significant decrease in free fatty acids in all PEPCK-C KD mice (38%, 

33% and 25% in Neo/Neo, Neo/Del and LKO mice, respectively). There were no changes 

in ketones and free cholesterol but cholesterol esters were significantly increased by 

53% in LKO mice (Table 8). 

 

Table 8: Plasma metabolite levels of mice expressing different levels of PEPCK-

C. * p value < 0.05 vs Lox/Lox. Data is presented as average ± SEM. 

Plasma metabolites Lox/Lox Neo/Neo Neo/Del LKO 

Glucose (mg/dl) 126±9 130±4 154±5* 141±7 

Insulin (ng/ml) 0.16±0.02 0.21±0.05 0.33±0.05* 0.21±0.05 

Triglycerides (mg/dl) 47±6 37±4 32±3* 25±3* 

Glycerol (mg/L) 3.1±0.4 2.7±0.3 2.7±0.5 1.9±0.3* 

Free fatty acids (mEq/L) 0.62±0.04 0.39±0.07* 0.41±0.03* 0.47±0.05* 

Total ketones (µmol/L) 212±41 204±30 225±24 223±52 

Free cholesterol (mg/dl) 17±3 12±2 14±1 16±1 

Cholesterol esters (mg/dl) 48±4 32±7 52±5 71±3* 
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 5.2 – Tissue triglyceride levels. 

 To determine the effects of PEPCK-C on tissue lipids, the levels of glycerol and 

triglycerides in both the white adipose tissue and the liver of ad libitum fed PEPCK-C 

animals were measured (Figure 32). In the fed state, there were no significant differences 

in either triglyceride associated glycerol (TG-Gly) or fatty acids (TG-FA) in either liver 

(Figure 32A-B) or white adipose tissue (Figure 32C-D), even though the amount of WAT 

TG-Gly and TG-FA tended to be higher in LKO mice (p value = 0.06 and 0.07 vs control, 

respectively). 

 

Figure 32. Levels of A) hepatic Tg-Glycerol, B) hepatic Tg-FA, C) WAT Tg-Glycerol and D) WAT 

Tg-FA in control and PEPCK-C transgenic mice. Error bars represent SEM.  
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5.3 – VLDL export 

To verify if triglyceride export from the liver was altered in PEPCK-C KD mice, 

these animals were treated with poloxamer 407. Up to 6h post injection there is no 

significant difference in VLDL release to the bloodstream in all 4 genotypes. (Figure 33). 

 

Figure 33: Rates of VLDL excursion in Lox/Lox, Neo/Neo, Neo/Del and LKO mice 4 hours after 

injection of poloxamer 407. 

 To further investigate the effects of fasting time on VLDL export a second 

poloxamer experiment was performed. In this experiment, mice were fasted overnight 

for 16h before injection of poloxamer 407. This experiment also serves the purpose of 

measuring VLDL export in a metabolic condition where LKO mice are overtly 

hepatosteatotic. In this experiment blood was collected before the injection and 1h, 2h, 

4h and 6h later, and the samples were treated as described above. Under these 

conditions, there are no differences in VLDL release in any of the PEPCK-C KD mice 

(Figure 34). 
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Figure 34: Rates of VLDL excursion in Lox/Lox, Neo/Neo, Neo/Del and LKO mice injected with 

poloxamer after a 16h fast 

 

5.4 – Hepatic β-oxidation 

 In order to test whether the β-oxidation pathway in livers of PEPCK-C mice 

remained responsive, [1-14C]palmitate was administered to liver homogenates from 

PEPCK-C mice. When this tracer undergoes β-oxidation, it forms [1-14C] acetyl-CoA, 

which can enter the TCA cycle. In the second turn of the cycle, the labelled carbon is 

released as CO2 during the conversion of isocitrate to α-ketoglutarate (catalyzed by 

isocitrate dehydrogenase). Another possible fate for the acetyl-CoA is the synthesis of 

ketone bodies, which will remain in the homogenate fraction. The total amount of 

detected radioactivity was significantly decreased in Neo/Neo and Neo/Del animals, but 

unchanged in LKO animals (Figure 35). When analyzing the different sources of 

radioactivity, it becomes clear that, in all PEPCK-C animals there is a clear reduction in 

the contribution of CO2 to total detected radioactivity. Radioactivity in the acid soluble 

fraction was significantly elevated in LKO mice, but unchanged in Neo/Neo or Neo/Del 

mice (Figure 35). These data suggest that β-oxidation is decreased in Neo/Neo and 

Neo/Del mice while LKO mice have normal β-oxidation. This data also informs about the 

fate of the acetyl-CoA generated through oxidation of the labeled fatty acids. In all 

PEPCK-C mice there was a significant decrease in the total amount of radioactivity 

detected as CO2. This correlates well with previous reports (127) where PEPCK-C levels 

were found to positively correlate with hepatic TCA cycle, as decreased TCA cycle 

activity would reduce the amount of CO2 released. The radioactive activity detected in 

the acid soluble fraction in Neo/Neo and Neo/Del mice was not different from control, 
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albeit being increased in LKO mice, which could be suggestive of an accumulation of 

radioactive label in TCA cycle intermediates or other compounds such as ketone bodies 

(Figure 35).  

 

 

 

Figure 35: Relative radioactive counts in CO2 and acid soluble fraction of liver homogenates of 

PEPCK-C mice per mg of tissue used. Error bar represent SEM. * p<0.05 for radioactivity in acid 

soluble fraction vs Lox/Lox. § p<0.05 for radioactivity in CO2 fraction vs Lox/Lox. † p<0.05 for total 

radioactivity. 

 

 5.5- Whole body lipid biosynthetic fluxes in PEPCK-C transgenic mice: 4 

day D2O exposure 

 In order to determine the effect of liver knockdown on liver and adipose PEPCK-

C, mRNA was quantified in both tissues. PEPCK-C mRNA was significantly decreased 

in the livers of all PEPCK-C KD mice, and in the adipose of Neo/Neo and Neo/Del mice 

(Figure 36). PEPCK-C levels were not different from control mice in the adipose tissue 

of LKO mice. 
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Figure 36: PEPCK-C mRNA levels in A) Liver and B) White adipose tissue of ad libitum fed mice. 

Dashed line represents the relative amount of mRNA in control mice. Bars are SEM. * p<0.05 vs 

Lox/Lox mice. 

 

 To measure lipid metabolism in these animals, lipid synthesis was determined in 

Lox/Lox, Neo/Neo Neo/Del and LKO mice. After 4 days of D2O exposure, a significant 

decrease in hepatic FA synthesis was observed in the livers of Neo/Neo and Neo/Del 

mice (both in relative contribution and mass of new lipids made during the labeling 

period). However, there was no significant difference in LKO mice compared to controls 

(Figure 37A-B). The differences in total glycerol synthesis were less striking, as only 

Neo/Del mice showed a significant decrease in glycerol production (Figure 37C-D). 

Hepatic unsaturated fatty acid production was significantly reduced in both Neo/Neo and 

Neo/Del mice but unchanged in LKO mice (Figure 37E-F). There was an increase in the 

contribution of fatty acid elongation to total fatty acid synthesis in all knockdown mice 

(Figure 37G). The total amount of elongated fatty acids also followed this trend, but there 

was no statistical power to reach significance in any of the 3 transgenic mice. This data 

indicates that PEPCK-C knockdown in the liver significantly changes hepatic lipid fluxes, 

but animals with complete liver-specific knockdown of this enzyme were not different 

from controls. 
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Figure 37: Hepatic lipid biosynthetic fluxes in fed mice: A) percent contribution of DNL to total fatty 

acid synthesis. B) Percent of newly made triglyceride-associated fatty acids during the labeling 

period. C) Percent contribution of de novo synthesis to glycerol production D) Total mass of newly 

made glycerol. E) Percent contribution of desaturation to the synthesis of unsaturated fatty acids. 

F) Total mass of newly made unsaturated fatty acids during the labeling period. G) Fraction and 

H) mass of lipids that underwent chain elongation. Error bars represent SEM. * p value < 0.05 vs 

Lox/Lox mice. 
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 In white adipose tissue, both the contribution of DNL to fatty acid synthesis and 

the amount of newly made fatty acids were significantly increased in the white adipose 

tissue (Figure 38A-B). Though the relative contribution of DNL to FA synthesis in 

Neo/Neo and Neo/Del mice was not statistically different, the total amount of newly made 

lipid was significantly reduced in both of these animals while LKO mice a compensatory 

increase in DNL º (Figure 38A-B). The same pattern was found for the synthesis of 

unsaturated fatty acids, with LKO animals showing increased percent synthesis and 

mass of newly made lipids, while Neo/Neo and Neo/Del animals had a decreased total 

mass of newly made lipids. Only LKO animals had a difference in glycerol synthesis, 

having significantly increased % and total new glycerol (Figure 38C-D). There was no 

detectable elongation in the WAT of any of the four groups of mice (data not shown). 

This data suggests that PEPCK-C also plays an important role in the maintenance of 

adipose tissue lipid homeostasis, with a reduction in PEPCK-C levels leading to a 

reduction in fatty acid synthesis. Also, liver-specific knockout animals have significantly 

higher production of fatty acids in their adipose tissue, possibly in order to compensate 

for deficient hepatic lipid synthesis. 
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Figure 38: WAT lipid biosynthetic fluxes in fed mice: A) percent contribution of DNL to total fatty 

acid synthesis. B) Percent of newly made triglyceride-associated fatty acids during the labeling 

period. C) Percent contribution of de novo synthesis to glycerol production D) Total mass of newly 

made glycerol. E) Percent contribution of desaturation to the synthesis of unsaturated fatty acids. 

F) Total mass of newly made unsaturated fatty acids during the labeling period. Error bars 

represent SEM. * p value < 0.05 vs Lox/Lox mice. 

 

 To further understand how PEPCK-C acts on lipid metabolism, mRNA levels of 

enzymes related to lipid synthesis were measured. Neo/Neo, Neo/Del and LKO mice 

had decreased mRNA levels of Acl (ATP-citrate lyase), Acc1 (acetyl-CoA carboxylase), 
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Fasn (fatty acid synthase) and Scd-1 (stearoyl-CoA desaturase) in animals, concomitant 

with the reduction of hepatic fatty acid synthesis in these animals. In contrast, Elovl5 

mRNA was significantly increased in the liver of Neo/Neo and Neo/Del animals while 

Elvol6 mRNA was significantly decreased in Neo/Del and LKO animals. Elvol5 mainly 

elongates essential fatty acids derived from the diet, while Elovl6 uses palmitate as the 

preferred substrate, suggesting that detected increase in hepatic elongation flux might 

be due the preferential elongation of diet-derived fatty acids. There were no significant 

differences in the mRNA levels of Acl, Acc1, Fasn and Scd-1 in the adipose tissue of 

Neo/Neo or Neo/Del mice, but were all of these enzymes were significantly upregulated 

in the WAT in LKO animals, helping to bolster the idea that there is a compensatory 

increase in fatty acid production in these animals to compensate the decrease in fatty 

acid synthesis of the liver. 

 

Figure 39: Relative mRNA levels of genes related to lipid metabolism in A) Liver and B) White 

adipose tissue of ad libitum fed mice. Dashed line represents the relative amount of mRNA in 

control mice. Bars are SEM. * p<0.05 vs Lox/Lox mice. Acl, ATP citrate lyase; ACC1, acetyl-CoA 

carboxylase 1; Fasn, Fatty acid synthase; SCD-1: Stearoyl-CoA Desaturase 1; ELOVL, 

Elongation of very long chain fatty acids. 

 

 5.5- Hepatic lipid biosynthetic fluxes in PEPCK-C KD mice: overnight D2O 

exposure 

 To more specifically target the rates of hepatic lipid biosynthetic fluxes, PEPCK-

C transgenic mice were administered with D2O for a period of approximately 16h. Mice 

had ad libitum access to food or where fasted overnight. There were no observable 

differences in the fed state but, as previously reported (130), there was a significant 

increase in the amount of hepatic glycerol in livers of fasted LKO mice. A similar trend 
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was observed for hepatic fatty acids, with a significant increase being observed in the 

livers of fasted LKO mice (Figure 40). 

 

Figure 40: Hepatic glycerol levels in fed mice (A) and fasted mice (B). Hepatic fatty acids in fed 

mice (C) and fasted mice (D). 

 

 Contributions of de novo lipogenesis to the hepatic fatty acid pool were reduced 

in Neo/Neo mice but were not in Neo/Del and LKO mice (Figure 41A). The total amount 

of newly made fatty acids follows a pattern similar to that observed in the livers of fed 

mice administered D2O for 4 days, as there was a tendency for all the genotypes to have 

a decreased amount of newly made fatty acids, (Figure 41B). The same trend was 

observed for glycerol synthesis, with both Neo/Neo and LKO mice having a significantly 

reduced contribution of de novo synthesis to the glycerol pool (Figure 41C), and a 

tendency for the total amount of newly made glycerol to be reduced (Figure 41D). The 

percentage contribution of new synthesis to unsaturated fatty acids was similar in all 

animals (Figure 41E) but the total amount of newly made unsaturated fatty acids tended 

to be lower in both Neo/Neo and Neo/Del animals. Finally, though all mice had a 

significant increase in the ratio of lipids that underwent elongation (Figure 41F), the total 

mass of elongated lipids wasn’t different between the genotypes (Figure 41G). 
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Figure 41: lipid biosynthetic fluxes in fed mice after overnight exposure to D2O: A) percentage 

contribution of DNL to total fatty acid synthesis. B) Percentage of newly made triglyceride-

associated fatty acids during the labeling period. C) Percentage contribution of de novo synthesis 

to glycerol production D) Total mass of newly made glycerol. E) Percentage contribution of 

desaturation to the synthesis of unsaturated fatty acids. F) Total mass of newly made unsaturated 

fatty acids during the labeling period. Error bars represent SEM. * p value < 0.05 vs Lox/Lox mice. 
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 Since LKO animals develop hepatic steatosis after an overnight fast, we 

examined if defective regulation of fasting lipid metabolism could be a contributing factor 

to the steatotic phenotype by measuring lipid fluxes in fasted PEPCK-C KD animals. 

There was a significant increase in the contribution of DNL to FA (Figure 42A) and the 

total amount (Figure 42B) of newly made fatty acids, with the latter being elevated by 

approximately 50% and 400% in Neo/Del and LKO mice, respectively. There was a 

tendency for this value to be higher in Neo/Neo mice as well. The contribution of new 

synthesis to the total glycerol pool was unchanged in Neo/Neo and Neo/Del mice, but 

was reduced by nearly half in LKO animals (Figure 42C). However, there was no 

differences in the total amount of newly made glycerol (Figure 42D). Synthesis of new 

unsaturated fatty acids tended to be elevated in Neo/Neo mice, while in LKO mice there 

was approximately a 300% increase in this value (Figure 42E). The total mass of newly 

made unsaturated fatty acids was similar, with Neo/Neo mice showing a tendency for 

this value to be elevated and LKO mice have almost 800% more newly made 

unsaturated fatty acids (Figure 42F). Finally, though the fraction of elongated lipids was 

similar in all animals (Figure 42G), the mass of lipids that underwent elongation was 

elevated by 200% and 300% in Neo/Del and LKO mice, respectively. These data suggest 

that PEPCK-C is an important enzyme in the regulation of the metabolic changes that 

occur in the transition from the fed to the fasted state. It also suggests that increased 

fatty acid synthesis in the fasted state is a contributing factor for the development of 

hepatic steatosis in LKO mice which, surprisingly, produce more hepatic fatty acids 

during in the fasted state than in the fed state. 
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Figure 42: lipid biosynthetic fluxes in fasted mice after overnight exposure to D2O: A) percent 

contribution of DNL to total fatty acid synthesis. B) Percent of newly made triglyceride-associated 

fatty acids during the labeling period. C) Percent contribution of de novo synthesis to glycerol 

production D) Total mass of newly made glycerol. E) Percent contribution of desaturation to the 

synthesis of unsaturated fatty acids. F) Total mass of newly made unsaturated fatty acids during 

the labeling period. Error bars represent SEM. * p value < 0.05 vs Lox/Lox mice. 
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5.6 – Flux control coefficient determination 

 For each experiment where lipid fluxes were calculated in the liver, the Flux 

Control Coefficient (FCC) was calculated by plotting the total mass of newly made lipids 

vs the total amount of hepatic PEPCK-C protein. It was assumed that PEPCK-C protein 

amounts followed the trend described by Burgess et al.  (127). Table 9 shows the 

calculated values of FCC for each of the fluxes, as well as the goodness-of-fit, indicated 

by the R2 value of the slope. 

 

Table 9: Calculated slope and R2 of the linear regression for the effects of PEPCK-C on lipid biosynthetic 

fluxes in each of the D2O labeling protocols. Grey shades indicate experiments with an R2 above 0.85. 

 4 day experiment 16h experiment 

Fed 

metabolites 

Liver - Fed Liver - Fed Liver- Fasted 

FCC R2 FCC R2 FCC R2 

Fatty acids -0.33 0.9035 0.14 0.2204 0.37 0.9053 

Glycerol -0.25 0.8739 0.1 0.1267 0.01 0.0398 

Unsat Fatty 

acids 
-0.46 0.7672 0.51 0.6525 0.17 0.0491 

Elongation 0.19 0.7914 -0.08 0.3753 0.47 0.8751 

 

 5.7 – Hepatic mitochondrial and cytosolic metabolite levels. 

 The maintenance of a concentration gradient between cytosol and mitochondria 

is essential for metabolic shuttling between the two compartments. A key point in the 

synthesis of lipids involves the export of citrate from the mitochondria into the cytosol, 

where all the lipogenic enzymes are located. In order to determine if the observed lipid 

phenotypes could be attributed to dysregulation of the of metabolite shuttling between 

the cytosol and the mitochondria of PEPCK-C mice, hepatic mitochondria and their 

respective cytosolic fraction were isolated and a partial metabolomics analysis was 

performed on these fractions, focusing on the determination of the concentration of 

organic acids. Table 10 shows the concentrations of organic acids in mitochondria and 

cytosol of mice with ad libitum access to food and Table 11 shows the same 
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measurements performed in mice that had been fasted overnight for 16h prior to the 

livers being collected. 

 

Table 10: Metabolite concentration of hepatic cytosol and mitochondria from fed PEPCK-C mice. 

Data is expressed as average±SEM. * p<0.05 vs Lox/Lox. † 0.05 < p < 0.08. 

Fed 

metabolites 

Cytosol (µg/g of liver) Mitochondria (µg/g of liver) 

Lox/Lox Neo/Neo Neo/Del LKO Lox/Lox Neo/Neo Neo/Del LKO 

Lactate 125±17 93±10 102±13 111±13 8.8±0.6 7.3±0.4 8.1±0.4 8.5±0.5 

Pyruvate 49±7 47±2 45±4 54±5 7.3±0.5 7.4±0.4 7±1 7.0±0.5 

Succinate 22.8±0.2 23.4±0.3 23.7±0.4 23.3±0.2 3.74±0.04 3.8±0.1 3.66±0.03 3.74±0.06 

Fumarate 18±7 36±0.3 42±7* 31±8 1.9±0.2 2.9±0.2* 3.0±0.2* 2.7±0.5 

Malate 72±10 91±3† 101±7* 89±8 11.2±0.3 11.3±0.3 11.4±0.3 12.6±0.8 

Oxaloacetate 37±15 2158±512* 2426±550* 1801±933 86±5 303±69* 206±72* 205±63* 

α-ketoglutarate 18±6 39±7† 30±6 26±7† 3±1 6±1 4.9±1.3 2.7±0.6 

Citrate 55±1 57±1 55±1 54.4±0.4 8.8±0.1 9.4±0.2* 9.1±0.2* 8.9±0.2 

 

Table 11: Metabolite concentration of hepatic cytosol and mitochondria from fasted PEPCK-C 

mice. Data is expressed as average±SEM. * p<0.05 vs Lox/Lox. 

Fasted 

metabolites 

Cytosol (µg/g of liver) Mitochondria (µg/g of liver) 

Lox/Lox Neo/Neo Neo/Del LKO Lox/Lox Neo/Neo Neo/Del LKO 

Lactate 87±7 58±5* 57±3* 72±3 8.3±0.4 7.2±0.4 7.8±0.3 8.3±0.1 

Pyruvate 41±2 37±1† 37±1* 50±5 6.8±0.2 6.2±0.1* 46.8±0.5 7.1±0.3 

Succinate 22.8±0.1 22.5±0.1 23±3 23.5±0.2* 3.68±0.02 3.64±0.02 3.66±0.02 3.68±0.03 

Fumarate 10.1±0.6 19±3* 27±2* 66±4* 1.53±0.04 2.3±0.2* 2.6±0.1* 3.5±0.3* 

Malate 62.2±0.7 73±2* 82±2* 137±8* 9.8±0.1 10±0.2* 11.0±0.1* 712.1±0.3* 

Oxaloacetate 168±40 517±179 1592±286* 3215±789* 142±29 66±11* 385±9† 348±127 

α-ketoglutarate 19±5 28±8 38±5* 107±4* 4.7±0.4 2.0±0.4* 4.7.±1.0 6.9±0.5* 

Citrate 56.5±0.3 57±1 58±2 58±1 8.6±0.1 9.4±0.1* 9.7±0.4* 9.4±0.3* 

 

 

 Since the ratio between mitochondrial and cytosolic metabolite levels is essential 

in the regulation of mitochondrial shuttling, Figure 43 shows the concentration ratios of 

metabolites in PEPCK-C mice. 
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Figure 43: Ratios of hepatic cytosolic and mitochondrial concentrations of several metabolites in 

the livers of fed (A and B) and fasted mice (C and D). Py, pyruvate; Suc, succinate; Mal, malate; 

Cit, citrate; Lac, lactate; Fum, fumarate; OAA, oxaloacetate; AKG, α-ketoglutarate. * p<0.05 vs 

Lox/Lox mice. † p=0.05 vs Lox/Lox mice. 

 

 In the fed state, fumarate concentrations were almost doubled in the cytosol of 

Neo/Neo, Neo/Del and LKO mice, but only partially increased in the mitochondria of 

these same animals, leading to a big increase in the concentration ratio. Oxaloacetate 

ratios were also vastly increased (about 20-fold) in Neo/Neo, Neo/Del and LKO mice. 

This was mainly driven by an accumulation of oxaloacetate in the cytosol, though the 

concentration of mitochondrial oxaloacetate was also increased. Malate concentrations 

were slightly increased in the cytosol of Neo/Neo and Neo/Del mice but the mitochondrial 

concentrations remained unchanged, leading to a slightly increased concentration ration 

between these two. There was a tendency for an increase in the concentration ratio of 

α-ketoglutarate in LKO mice, but it did not reach statistical significance. 
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 The metabolic differences were more prevalent in the fasted state, where there 

is a significant decrease in lactate concentrations ratios consequence of the decrease of 

cytosolic lactate concentration in Neo/Neo and Neo/Del mice. There also was increased 

fumarate, both in the cytosol and the mitochondria of Neo/Neo, Neo/Del and LKO mice, 

though the increase was more prevalent in the cytosol, leading to an increase in the 

concentration ratio. Malate followed the same trend, being elevated in both the cytosol 

and mitochondria of Neo/Neo, Neo/Del and LKO animals when compared to control, but 

more so in the cytosol, leading to an increase in the concentration ratio. Both 

oxaloacetate and α-ketoglutarate concentration ratios were vastly increased across the 

board, mainly due to an increase in their cytosolic concentrations. 

 To further clarify the molecular mechanisms of the effects of PEPCK-C on 

mitochondrial shuttles, QPCR for several key genes was performed in livers of fed 

PEPCK-C KD mice (Figure 44). Neo/Neo Neo/Del and LKO mice all showed increased 

Mdh1 levels, possibly as compensation for the accumulation of oxaloacetate in the 

cytosol of these animals. Slc25a10, the mitochondrial dicarboxylate channel that 

facilitates the mitochondrial transport of malate was significantly increased in Neo/Del 

mice. Finally, mRNA of Slc25a1, the mitochondrial citrate carrier, was slightly but 

significantly reduced in Neo/Neo and LKO mice, helping to explain the small 

accumulation of citrate in the mitochondria of these animals. Overall both this data 

informs that, either in the fed or fasted state, there is a profound imbalance of the 

concentration of organic acids in liver of PEPCK-C animals, as well as their ability to 

maintain the appropriate concentration gradients between the mitochondria and the 

cytosol, required for mitochondrial shuttles to work properly. 
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Figure 44: Relative mRNA levels of enzymes related to lipid metabolism in A) Liver and B) White 

adipose tissue of ad libitum fed mice. Dashed line represents the relative amount of mRNA in 

control mice. Bars are SEM. * p<0.05 vs Lox/Lox mice. Mdh1, cytosolic malate dehydrogenase; 

Got1, cytosolic aspartate transaminase; Slc25a10, mitochondrial dicarboxylate carrier; Got2 

mitochondrial aspartate transaminase; Slc25a1, mitochondrial citrate carrier. 
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 6 - Discussion 

 

 Our results establish that PEPCK-C has a high control over production of fatty 

acids in the fed and fasted state. In fed mice, PEPCK-C knockdown lead to a decrease 

in hepatic fatty acid production, but complete removal of this enzyme from the liver 

elicited a compensatory response in the adipose tissue which produced more fatty acids. 

In the fasted state, knockdown of PEPCK-C leads to an inability to reduce DNL, with liver 

specific knockout mice being the most affected. PEPCK-C knockdown animals also 

seem to have problems performing complete β-oxidation. PEPCK-C was also shown to 

have a significant impact in the metabolism of glycerol, although it was not possible to 

establish if this involved changes in glyceroneogenesis or other pathways of glycerol 

production. Finally, it was observed that these mice have significant derangements in the 

maintenance of hepatic metabolite distributions between the mitochondria and the 

cytosol, which might reduce the amount of citrate and/or NADPH available for the 

production of lipids in the cytosol. 

 Several studies (127, 130, 140, 141, 145) have demonstrated that PEPCK-C has 

a broader role in the regulation of other key aspects of metabolism besides GNG. 

PEPCK-C has been associated with both dysregulated lipid metabolism and 

cataplerosis. As PEPCK-C liver specific knockout mice develop hepatic steatosis after 

an overnight fast (130) and whole body PEPCK-C KO mice, though only alive for about 

2 days after birth, already show significant accumulation of hepatic lipids (140). The goal 

of this study was to further define the mechanisms through which PEPCK-C impinges on 

lipid metabolism. There are four possible causes for the changes in lipid content: 1) 

Increased production, 2) Decreased oxidation, 3) Decreased export or 4) Increased 

absorption. The first 3 points were analyzed in mice expressing various levels of hepatic 

PEPCK-C in an attempt to better understand the mechanisms through which PEPCK-C 

regulates lipid metabolism 

 In order to see if hepatic steatosis could be partially explained by a defect in 

clearance of triglycerides from the liver, hepatic VLDL production was measured by using 

poloxamer 407 (P407). However, there were no observable differences in VLDL 

production in any of the PEPCK-C KD mice in any of the protocols used, so the 

development of steatosis does not seem to be driven by defects in hepatic triglyceride 

export. 
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 Another possible way for fat accumulation in the liver is by having a reduced rate 

of hepatic β-oxidation. LKO mice were reported to have increased mRNA levels of 

enzymes related to β-oxidation and a 16% increase in β-oxidation of labelled palmitate 

(130). However, the rates of β-oxidation in Neo/Neo and Neo/Del mice were not 

measured. Here both Neo/Neo and Neo/Del mice had a significant decrease in total 

radioactivity detected, suggesting an impairment in the regulation of β-oxidation in these 

animals (Figure 35). Furthermore, the amount of radioactive CO2 detected in Neo/Neo 

and Neo/Del mice was significantly lower than that of control animals. LKO animals, on 

the other hand, had total levels of radioactivity that were similar to those of control mice, 

but the amount of radioactivity in the acid soluble fraction was significantly elevated in 

these animals, while the fraction of radioactive CO2 was the smallest in all of the mice 

models used, being significantly different from that of Lox/Lox mice. This suggests that, 

though β-oxidation seems to remain intact in these animals, the fate of the acetyl-CoA 

units generated during β-oxidation is significantly altered. A likely explanation is that 

these mice have decreased TCA cycle activity (127), which prevents radioactive carbon 

from being released during the isocitrate dehydrogenase complex, leading to the 

accumulation of activity in TCA cycle intermediates and, possibly, ketone bodies. 

In contrast to gluconeogenesis and TCA cycle functions, little is known about the 

role of PEPCK-C in lipid metabolism. In experiments designed to measure global lipid 

synthesis (i.e. 4 days of D2O exposure) PEPCK-C KD mice, but not LKO had significantly 

decreased rates of hepatic fatty acid production (Figure 37). This apparent contradiction 

is in part explained by the fact that LKO mice also had substantially increased fatty acid 

synthesis in their WAT, where PEPCK-C protein levels are unchanged. In contrast, 

Neo/Neo and Neo/Del mice, which are whole body knockdown animals, also had a 

decrease in the synthesis of WAT fatty acids (Figure 38). Thus there is a compensatory 

increase in the production of fatty acids in the WAT of LKO animals. In fact, the amount 

of fatty acids tended to be higher in the WAT of these animals, but did not reach statistical 

significance (Figure 32). LKO mice also had a reduction in plasma levels of free fatty 

acids, triglycerides and glycerol (Table 8), which could be associated with an increase in 

uptake of these metabolites, though more experiments are required to verify this 

hypothesis. The mechanism by which white adipose tissue upregulates lipid synthesis in 

LKO mice is unknown. 

A possible mechanism by which PEPCK-C’s influence on lipid metabolism is 

through the synthesis of glycerol phosphate via the pathway of GlyNG. Total hepatic 

glycerol production remained largely unchanged in Neo/Neo mice (Figure 37). Neo/Del 

animals, however, had a significant reduction in total hepatic glycerol production. Hepatic 
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glycerol production in LKO mice did not differ from control but there was a compensatory 

increase in the amount of total glycerol produced in the adipose tissue, being about twice 

as high as Lox/Lox control animals (Figure 38). WAT production of glycerol was 

unchanged for Neo/Neo and Neo/Del mice (Figure 38). Since the calculated flux control 

coefficient of PEPCK-C over total glycerol production was found to be higher than that 

previously determined for GNG (127) (Table 9) it is clear that PEPCK-C has a bigger role 

in regulating glycerol production than glucose production. This might be due to a 

decrease in GlyNG in PEPCK-C KD mice, though the NMR method we applied cannot 

directly analyze GlyNG. Another possibility is that PEPCK-C might have a flux control 

coefficient over GlyNG similar to that of GNG but PEPCK-C knockdown leads to a 

decrease in the other sources of hepatic glycerol-3-phosphate production (glycolysis and 

glycerol kinase), leading to a synergistic decrease in the total production of glycerol-3-

phosphate. In order to address this question, it is imperative to be able to distinguish the 

contributions of GlyNG, glycolysis and glycerol kinase to the production of glycerol-3-

phosphate. PEPCK-C might also regulate glycerol-3-phosphate via changes in the redox 

state. Glycerol-3-phosphate dehydrogenase (GPD), catalyzes the reversible conversion 

of dihydroxyacetone phosphate to glycerol-3-phosphate and the direction of the reaction 

is partially controlled by the cytosolic NADH/NAD+ ratio. PEPCK-C LKO mice are known 

to have significantly altered ratio of mitochondrial NADH/NAD+ ratio (145) though it is 

unknown if the cytosolic ratio is also altered. If the cytosolic NADH/NAD+ is significantly 

decreased in PEPCK-C mice, it might decrease the amount of glycerol-3-phopshate 

produced by GPD, which would affect the production of glycerol-3-phosphate from both 

GlyNG and glycolysis. Another possibility is that, since GNG has a higher number of 

reactions (including the irreversible dephosphorylation of glucose-6-phosphate) than 

GlyNG, the control of GNG is more dispersed through these extra enzymes, when 

compared to GlyNG, leading to a smaller flux control coefficient of PEPCK-C over GNG. 

 Another important piece of information that relates to glycerol production can be 

derived from the lipid fluxes determined in fasted PEPCK-C KD mice. Neither Neo/Neo 

nor Neo/Del mice showed any differences in the fraction of newly synthesized glycerol 

or the mass of newly synthesized glycerol, with LKO animals having only a slight 

decrease in the fraction of newly made glycerol (about 50% vs. Lox/Lox) but no decrease 

in the total amount of new glycerol produced. Since the pathways of glyceroneogenesis 

and gluconeogenesis share the same enzymes up to the production of triose phosphates 

and it has been previously published that LKO mice have negligible gluconeogenesis 

from TCA cycle intermediates (127), LKO mice must derive their newly made glycerol 

from alternative pathways, such as glycerol kinase or glycolysis. It is also important to 
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note that the absence of changes in Neo/Neo and Neo/Del mice’s glycerol production 

might be due to a combination of compensation by alternative pathways and due to a 

low control of PEPCK-C over gluconeogenic flux (and therefore, potentially, also over 

glyceroneogenic flux) in the fasted state. In order to fully answer this question the 

different sources of glycerol production need to be better resolved. 

 In experiments designed to measure hepatic fatty acid synthesis (i.e. 16h D2O 

exposure), fatty acid synthesis was significantly decreased in Neo/Neo mice and tended 

to be decreased in Neo/Del and LKO mice. Thus, this data indicates that adipose tissue 

might be the main driver of the lipid phenotype observed in the protocol that measured 

global lipid synthesis. When the 16h D2O exposure protocol was applied in fasted mice. 

The contribution of de novo lipogenesis to the total lipid pool was vastly decreased in 

Lox/Lox control mice, when compared to the fed state (~20% vs ~1%, respectively). 

However, PEPCK-C KD mice were unable to shut down lipogenesis to the same extent 

as Lox/Lox mice, with LKO mice having about a 3% production of fatty acids even in the 

fasted state (Figure 42). The mechanism through which PEPCK-C KD animals fail to 

donwnregulate their lipogenic flux is unknown.  

 The combination of fed and fasted experiments indicates that PEPCK-C is 

essential in regulating the transition from fed to fasted state fatty acid metabolism. This 

suggests the possibility of PEPCK-C acting as a metabolic switch that coordinates the 

metabolic changes of the fed-fasted transitions. Furthermore, when analyzing the flux 

control coefficients of PEPCK-C, it is apparent that PEPCK-C strongly controls fatty acid 

synthesis to a similar extent for both fed and fasted states, leading to the surprising 

revelation that PEPCK-C has a higher control over the non-canonical pathway of 

lipogenesis than it does over gluconeogenesis (Table 9). (FCC values of -0.33 in fed 

mice and 0.37 in fasted mice). In the fed state there also was a strong correlation 

between PEPCK-C levels and glycerol production with PEPCK-C KD mice showing a 

marked decrease in total glycerol production, perhaps via regulation of 

glyceroneogenesis. Finally, PEPCK-C had a surprising and strong correlation with fatty 

acid elongation in the fasted state.  

 It is unclear how PEPCK-C could regulate lipogenesis but it might involve 

secondary metabolic effects. In order for lipogenesis to occur, acetyl-CoA and NADPH 

must be present in the cytosol, where lipogenic enzymes are located. This is partly 

achieved by the transport of citrate from the mitochondria via the citrate-malate shuttle. 

Essentially, citrate leaves the mitochondria through the CIC and, once in the cytosol it is 

converted to acetyl-CoA and oxaloacetate. Oxaloacetate is converted to malate via 
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malate dehydrogenase (consuming one NADH molecule), Cytosolic malate has two 

possible fates 1) it is transferred back to the mitochondria via the dicarboxylate 

transporter or 2) is converted to pyruvate via the malic enzyme and the pyruvate then 

enters the mitochondria via the pyruvate transporter. The reaction of malic enzyme also 

produces NADPH, which is an essential cofactor for fatty acid synthesis. Metabolomic 

analysis of hepatic cytosolic and mitochondrial from PEPCK-C KD mice revealed that 

there are significant changes in the concentration of organic acids in both compartments. 

Additionally, the concentration ratios between the cytosol and the mitochondria were also 

significantly altered, suggesting that transport of metabolites from the mitochondria to 

the cytosol and vice versa might be impaired. There are two possible mechanisms 

through which these changes might affect lipid metabolism. First, the excessive 

accumulation of oxaloacetate in the cytosol might impair the activity of ATP-citrate lyase, 

reducing this enzymes ability to produce the necessary acetyl-CoA required for lipid 

synthesis. Alternatively, any potential changes in shuttling efficiency could result in an 

altered NAD(P)H/NAD(P)+ ratio. If NADPH levels are sufficiently low, it might limit the 

rate of lipogenesis. LKO mice have been previously reported to have altered 

NADH/NAD+ balance in their mitochondria (145) so it is possible that the imbalance can 

also occur in the cytosol. 

 

 7 – Conclusion 

 PEPCK-C plays an important role in the regulation of lipid metabolism as mice 

lacking this enzyme in the liver show an increase in extrahepatic production of lipids as 

well as an inability to correctly downregulate their lipogenic flux when fasting. In fact, the 

calculated flux coefficient controls (FCC) of PEPCK-C over the pathways of lipid 

production seem to be higher than FCC of PEPCK-C over gluconeogenesis, where 

PEPCK-C is considered to be the rate controlling enzyme. These mice also show clear 

impairments in the fate of the acetyl-CoA carbons produced during β-oxidation. Though 

the exact mechanism through which PEPCK-C regulates lipid metabolism in not clear, 

mice with a knockdown and knockout of this enzyme in the liver show altered 

concentrations of key TCA cycle intermediates in both their hepatic mitochondrial and 

cytosol fractions. This could impair these mice’s ability to export citrate from the 

mitochondria to the cytosol, which is an essential prerequisite for the synthesis of fatty 

acids via DNL. 
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Final remarks 

 

 In this dissertation a novel hybrid 1H/2H NMR methodology was developed for the 

determination of lipid biosynthetic fluxes. This method allows the simultaneous, non-

destructive analysis of several fluxes: 1) De novo lipogenesis 2) fatty acid desaturation, 

3) fatty acid elongation, 4) glycerol production, 5) cholesterol synthesis. To confirm that 

the method accurately informs biologically relevant changes in these fluxes, several 

validation experiments were made. DNL, glycerol and cholesterol flux were validated 

using mice overexpressing a truncated, constitutively active form of SREBP-1c, which 

have been previously reported to have significantly increased production of fatty acids, 

triglycerides and cholesterol. Validation of fatty acid desaturation flux was performed 

using an inhibitor of SCD-1, one of the main enzymes responsible for the desaturation 

of fatty acids in mammals. Finally, validation of fatty acid elongation flux was performed 

in mice that were administered coconut oil containing a significant amount of short-

medium chain fatty acids, the preferential substrate of ELOVL enzymes. In all cases, the 

NMR method detected the expected changes in metabolic fluxes. The developed NMR 

method also provided a partial lipidomic analysis, allowing the identification of multiple 

lipid classes, such as ω-3 fatty acids, saturated fatty acids, mono- and poly-unsaturated 

fatty acids, average fatty acid length as well as two individual fatty acids: 

docosahexaenoic acid and linoleic acid. 

 One poorly understood aspect of diabetes is the paradox of selective insulin 

resistance, i.e., the state in which insulin’s actions on the glucoregulatory arm of insulin 

signaling are resistant (suppression of glycogen synthesis, increase in gluconeogenesis) 

while the effect of insulin on lipid metabolism (increase in lipogenesis) remain responsive 

or even elevated. In order to elucidate this apparent paradox, the NMR method was 

applied to diabetic mice. Both the % contribution of lipogenesis to total fatty acid 

synthesis and the total amount of newly made fatty acids were significantly reduced in 

HFD-induced diabetic animals, suggesting that, at least under the condition of high fat 

diet induced diabetes, there is no significant selective insulin resistant phenotype. 

 Finally, in order to understand the effects of PEPCK-C in the regulation of lipid 

metabolism, the NMR method was applied to mice that express different levels of 

PEPCK-C. It was found that this enzyme has a higher control over the production of fatty 

acids than over the production of glucose, both in the fed (where lack of PEPCK-C limits 

fatty acid synthesis) and in the fasted state (where lack of PEPCK-C increases fatty acid 
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synthesis). These animals also show significantly impaired ability to dispose of hepatic 

fatty acids, either via β-oxidation or by VLDL export. These mice also had extremely 

altered concentrations of total cytosolic and mitochondrial organic acids, as well as 

severe changes in the ratio of concentrations between these two compartments, 

suggesting the possibility of impaired transport from the mitochondria to the cytosol and 

vice-versa. 
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