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Abstract 

 

Arsenic is an ubiquitous toxic metal present in the environment. Microorganisms have 

co-existed with arsenic for millions of years. This motivated the evolution of arsenic 

resistance determinants that are now widespread among microbial populations. These 

determinants can be chromosomally or plasmid encoded. To study the diversity and 

occurrence of arsenic resistance determinants in the microbial populations of 8 different 

sites in the abandoned Urgeiriça uranium mines a PCR approach was used. Agar 

supplemented with 2mM to 20mM sodium arsenite was used to test for arsenic resistance 

phenotype in isolated strains recovered from mine tailings and surroundings sites. 

Resistance to antimonite was also ascertained as the mechanism for antimonite extrusion 

from the cytoplasm are the same as in arsenite. Primers were used to investigate the 

occurrence of arsB, ACR3 (arsenite pumps), arsC (arsenate reductase), arrA 

(dissimilatory arsenate reduction) and aioB (arsenite oxidase) determinants. Several 

amplifications were obtained regarding determinants ACR3 and arsB. The diversity of 

organisms present in the sampled sites was high as was the diversity of identified resistant 

bacteria. Among the 36 arsenic resistant strains, we found representatives for 13 different 

genera. There were several sites with no uranium or arsenic detected yet arsenic resistance 

determinants were found in those uncontaminated sites. This indicates that arsenic 

resistance determinants are ubiquitous and the absence of arsenicals does not necessarily 

indicate that there are no arsenic resistant bacteria present. Further studies including the 

cloning of arsenic resistance gene amplicons would enable the distinction between several 

determinants of the same strain enabling us to identify if there are multiple structures 

belonging to different ancestors in the same strain or if there is a dominant determinant 

in a specific population. After phylogenetic analysis we observed that HGT of arsenic 
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resistance determinants may have occurred in site A1 and A4. There was no detected 

contamination with uranium in site A1 whereas site A4 had the highest concentration of 

uranium of all the sites. There were other contaminants present in site A1 that can justify 

the stress that led to the possible occurrence of the horizontal gene transfer, also, this can 

also have occurred without the intervention of stress caused by contaminants. 

 

Keywords: arsenic, uranium, horizontal gene transfer, radionuclides, diversity 
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Resumo 

 

O arsénio é um metal amplamente disseminado na crusta terrestre. Os microrganismos 

coexistem com este metal há milhões de anos. Este facto motivou o aparecimento de 

determinantes de resistência a arsénio que estão agora disseminados nas populações 

microbianas. Estes determinantes podem estar inseridos no DNA cromossómico ou em 

plasmídeos. Para estudar a existência e diversidade de determinantes genéticos de 

resistência ao arsénio na população microbiana de 8 locais diferentes nas minas 

abandonadas da Urgeiriça, foi usado um protocolo de reação em cadeia da polimerase. 

Agar suplementado com concentrações de 2mM a 20mM foi usado para testar o fenótipo 

de resistência a arsénio em estirpes recuperadas de efluentes e outros locais na 

proximidade das minas. O fenótipo de resistência a antimónio foi também testado uma 

vez que os mecanismos de extrusão de antimonito do citoplasma são os mesmos que os 

de extrusão de arsénio. Foram utilizados primers para investigar a ocorrência dos 

determinantes arsB, ACR3 (bombas de extrusão de arsenito), arsC (arsenato reductase), 

arrA (redutase de arsenato) e aioB (arsenito oxidase). Houve amplificação em diversas 

estirpes quando testadas para a presença dos determinantes arsB e ACR3. A diversidade 

dos organismos isolados dos locais de amostragem foi elevada assim como a diversidade 

de organismos resistentes a arsénio. Entre as 36 estirpes resistentes encontrámos 

representantes de 13 géneros bacterianos diferentes. Havia vários locais de amostragem 

que não continham contaminação com urânio nem arsénio no entanto, determinantes de 

resistência a arsénio foram encontrados em estirpes desses locais. Esta observação indica 

que os determinantes de resistência a arsénio estão bastante disseminados e que a ausência 

de arsenicais não é sinónimo da não existência de bactérias resistentes a arsénio. Estudos 

suplementares, incluindo a clonagem dos determinantes de resistência a arsénio de uma 
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mesma estirpe, permitiriam a distinção entre diferentes determinantes na estirpe 

permitindo identificar a ocorrência de mais do que um determinante num só organismo 

ou mesmo saber se existe um determinante que é prevalente numa população num 

determinado local. Após análise filogenética observámos que é possível que tenha 

existido transferência horizontal de determinantes de resistência a arsénio no local A1 e 

A4. Não havia contaminação com arsénio nem urânio no local A1. No local A4 foi 

detetada a maior concentração de urânio entre os locais analisados no estudo. Estavam 

presentes outros contaminantes em A1 que podem explicar o stresse que levou à partilha 

dos determinantes, a qual pode também ter ocorrido sem a intervenção do stresse causado 

pelos contaminantes.  

 

Palavras-chave: arsénio, urânio, transferência horizontal de genes, compostos radioativos, 

diversidade 
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 Introduction 

 

1.1 Metals and microorganisms 

 

Heavy metal contamination has been considered an important and serious universal issue. 

Events of environmental metals contamination such as metallurgic industry activity, 

radionuclide contamination derived from nuclear testing in the 50s and 60s of the previous 

century, the Chernobyl meltdown [1] and more recently the Fukushima disaster, 

motivated deep discussions to this particular issue in order to further consolidate our 

understanding of the consequences from heavy metal contamination, in aquifers and soils, 

on the microflora genomic landscape. Microorganisms, being the most abundant and 

diverse group of living organisms on the planet, may provide the needed insight on the 

changes that occur due to  natural and anthropogenic alterations on the concentrations of 

heavy metals in contaminated sites [2]. Microorganisms’ capability to cope with changes 

in the environment coupled with their relative low size (offering the greatest surface to 

volume ratio of any living organism), provide an ample interface with contaminants, thus 

they play an important role in the proper understanding of the consequences of the 

aforementioned contaminations [3]. The knowledge of these events may prove invaluable 

in evaluating the extent of contaminations and provide useful data for bioremediation 

strategies.   

Despite the lack of a consensual definition to what really is a “heavy metal”, it is generally 

accepted a heavy metal characteristically exhibits density of above 5g/cm3 [4, 5]. Some 

metals as calcium, cobalt, copper, iron, potassium, magnesium, manganese, sodium, 

nickel and zinc can be found in several enzymes and play important biological roles in 

catalytic sites of enzymes. Although these metals are biologically relevant in trace 
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amounts, in high concentrations they may become toxic and impair enzyme activity, 

disrupt membrane integrity and damage DNA, severely disrupting biological activity. 

Other metals such as silver, gold, led, uranium and mercury are potentially toxic and have 

no known biological role either in trace or high concentrations [6]. In general, metals may 

permeate the microbe cell and accumulate in the intracellular environment through the 

action of unspecific constitutively expressed transport systems, whereby exerting their 

toxicity [7]. As a consequence, microorganisms have been obligated to develop systems 

to cope with this toxicity[4]. Metal resistance systems may have evolved shortly after the 

beginning of prokaryotic life and are ubiquitous throughout bacteria. They appeared 

because microorganisms existed in an environment that always contained metals [6]. In 

modern times, human activities created environments with high evolutionary pressure for 

selection of metal resistance mechanisms due to the high level concentrations of metallic 

ions [7]. There are several mechanisms that convey cellular resistance to metals: a) efflux 

of the toxic metal through membrane pumps , b) enzymatic conversion, c) intra or 

extracellular sequestration, d) exclusion by permeability barrier and e) reduction in 

sensitivity of cellular targets [7]. Bacterial resistance mechanisms generally involve an 

efflux pump for toxic ion removal from cells [3]. 

 

1.2 Arsenic: origin and distribution 

 

Arsenic (As) is a metalloid with atomic number 33, atomic mass 74.92 and four oxidation 

states: As(-III), As(0), As(III) and As(V) [8]. Despite its low abundance at the surface 

(0,0001%) it is ubiquitously distributed in the Earth’s crust (Table 1). Its main natural 

source is the erosion of igneous rock and it is commonly found in iron (Fe) complexes or 
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associated with ores of copper (Cu) gold (Au) and lead (Pb). The main species of arsenic 

in anaerobic and aerobic environments are arsenite [As(III)] and arsenate [As(V)], 

appearing as [H3AsO3 ; H2AsO3
-] and [AsO4

2-; HAsO4
 -] respectively [8-11]. 

Table 1: Arsenic concentrations (mgKg-1) in the lithosphere and extra-terrestrial objects. [12] 

 

Besides the natural occurrence of arsenic compounds, with varying concentrations as seen 

on table 1, anthropogenic sources also contribute to the overall distribution of the 

metalloid, namely: high energy combustion of coal in power plants, incineration, sewage 

from animal farms, pesticides, disinfectants, medicine for veterinary use, glassware 

production, semiconductor production, ore production and smelting, metal treatment, 

wood preservatives, pigment production for paints, pyrotechnics and the release of 

arsenic from arsenic rich ores originated from mining activity [8, 12].  

Arsenic presence in the environment occurs through the cycling between valence states 

and substitution in organic compounds which is dependent on biotic and abiotic factors. 

These factors are intrinsically connected most of the time. Thus, understanding the 

process of arsenic speciation requires the understanding of both chemical and 
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microbiological inputs in the cycle. This fact motivated several studies in which an 

arsenic global cycle was described by several authors [12-14]. The cycle encompasses 

the contribution of the metabolism of arsenic compounds by microbes and the 

bioaccumulation by higher plants and animals [9]. 

 

Fig. 1: Arsenic global cycle as proposed by Mukhopadhyay et al.  2002 [14]. 

 

Arsenate (the prevalent form in marine environments) is taken up by marine organisms, 

in their quest for phosphate, and either reduced or converted in organic compounds (these 

organisms are able to produce organoarsenicals like methylarsonic acid and 

dimethylarsinic acid, from inorganic arsenic) which are then secreted from the organism. 

It is assumed that the conversion to methylated arsenic is a form of protection [8]. Some 

arsenate is also converted into complex organic molecules like arsenolipids. The 

association with complex lipid soluble molecules can be an adaptation mechanism to the 

lack of nitrate, since it has been established that arsenic can substitute nitrogen in choline 
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for structural lipid formation [14]. Phytoplankton and macroalgae are the primary 

producers of organoarsenicals in marine environments whereas fish and invertebrates 

retain 99% of accumulated arsenic in organic form. In spite of the high accumulation by 

both fish and invertebrates the concentration of arsenic in the previous is lower. The main 

organoarsenical compound found in higher marine organisms is arsenobetaine. The 

mechanism through which these organisms convert arsenic in arsenobetaine is still 

unknown. Arsenobetaine is finally converted in methylated arsenic or inorganic arsenic 

by microorganisms, thus completing the arsenic cycle. [9, 13-15] 

Another factor to take into account when studying the cycling of arsenic in nature is the 

inorganic speciation of arsenic. Complexation with metals and adsorption phenomena 

play an important role in arsenic bioavailability. Fe, Ca, Mn, Mg, and Al-arsenate salts 

are usually too soluble to regulate activity of arsenate in soils and natural waters; this 

activity is more commonly regulated by surface complexation (sorption) with Fe 

hydroxides and also with Al and Mn hydroxides although to a smaller extent [12, 16]. 

Arsenite, in contrast, is very selective and exhibits a strong preference for Fe hydroxides. 

Generally, arsenate has greater sorption capacity than arsenite with the aforementioned 

metals though arsenite has an equivalent or greater sorption capacity with ferrihydrite 

(Fe2O3.H2O) and goethite (FeO(OH)) [16]. One must note that arsenite sorption is very 

pH dependant, and the dissolved phase is partially unaffected by the sorption phenomena, 

contrasting with this property, arsenate adsorption to Al(OH)3 has a low pH dependence 

and arsenate is completely removed from solution in the pH range of 4-10 [16-18]. 

Briefly, arsenic sorption phenomena play a crucial role in arsenic mobility and therefore 

in its availability in soils and waters, in acidic mine tailings, the low pH contributes to the 

mobilization of arsenic to the solid phase, whereas in regions where the pH rises above 8 

arsenic is removed from complexes increasing its bioavailability. 
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1.3 Toxicity of arsenic compounds 

 

Since antiquity, arsenic has been known to be an effective poison, arsenite trioxide 

(As2O3) was called the “heritage powder”, due to its use as a potent poison, that is, until 

Marsh et al developed the first test to detect arsenic in tissues [8]. Nowadays arsenic 

trioxide is used as a chemotherapeutic agent in some cases of leukaemia [19]. Besides 

this compound  there are more forms of arsenic which are toxic [9].  

Methylated forms of arsenic, such as monomethylarsonous acid (MMAAIII), 

methylarsonic (MMAAV) acid and dimethylarsenic acid (DMAAV) are produced by algae 

and animals and are excretory products of the latter [8, 9]. They occur in low 

concentrations in the environment and have a variable degree of toxicity which depends 

on  the valence state of the incorporated arsenic [20]. 

Arsines occur as highly toxic gases, such as H3As and (CH3)3As, however very little is 

known about the natural cycle of these substances because of their scarcity in the 

environment [20]. 

Organoarsenicals are naturally occurring compounds commonly found in marine animals. 

They are not toxic to animals, and there are reports of their intervention in metabolism 

like choline nitrate substitution for arsenic in structural lipid metabolism [10, 13, 20, 21].  

Arsenate [As(V)] can exist ionized in four different forms depending on the hydrogen 

potential of the solution. It has three pKa values (2.2; 7.0; 11.50) which are very close to 

those of phosphate (2.1; 7.2; 12.7) resulting in approximately similar quantities of 

HAsO4
2- and H2AsO4

- at physiological pH [13, 22]. This property is determinant in 

arsenate toxicity, which acts as an analogue to inorganic phosphate in phosphorylation 

activities, resulting in disruption or reduction of the overall efficiency of the reactions. Its 

ability to penetrate the intracellular space is also related to its similarities to phosphate. It 
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enters the cell through specific phosphate transporters, namely the Pit and Pst systems 

found in the prokaryote E. coli and several phosphate transporters in eukaryote cells, as 

reported for Saccharomyces cerevisiae (Fig. 2) [10, 13, 23-25]. 

Arsenite [As(III)] is another oxanion of arsenic. It appears mostly in its unionized 

[As(OH)3] form at neutral pH [13, 14] . In this form it resembles an inorganic analogue 

to glycerol and it is believed to enter the intracellular space through aqua-glyceroporins 

in bacteria, yeast and mammals [10, 14, 26]. The glycerol facilitator protein GlpF of E. 

coli was reported to allow translocation of antimonite Sb(OH)3, an ion which is very 

similar to As(OH)3. Furthermore, deletion of the gene Fps1 of S. cerevisiae, an analog of 

GlpF, confers some resistance to arsenite which leads to believe that this channel may be 

a facilitator to arsenite entry [10, 14, 24]. Upon entry in the cytoplasm, arsenite readily 

reacts with thiol residues of cysteine which may inhibit function of proteins like pyruvate 

dehydrogenase and ultimately lead to cell death [8, 9, 20, 27, 28]. There is a difference in 

the degree of toxicity between arsenite and arsenate. Because arsenite’s mechanism of 

action interferes in a non selective way with the action of enzymes, by binding to thiol 

groups, whereas arsenate is similar to phosphate and its toxicity is more dependant of the 

pathways in which phosphate intervenes, arsenite has a higher degree of toxicity than 

arsenate. It is also believed that some of the effects of arsenate toxicity derive from its 

conversion into arsenite within the cell[29]. 
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Fig. 2: Schematical representation of proposed  arsenite and arsenate uptake and 

detoxification mechanisms in E. coli and S. cerevisiae.[10] 

 

1.4 Arsenic resistance genes and enzymes 

 

Due to arsenic toxicity, several organisms have evolved various resistance strategies to 

cope with the presence of this metalloid such as, reduction, extrusion or methylation of 

arsenic. Genes for bacterial resistance to arsenic present in plasmids were first reported 

in a group of β-lactamase plasmids from Staphylococcus aureus that determine resistance 

to heavy metals and antibiotics [10, 14, 30]. After these initial studies, a huge number of 

arsenic resistance related genes have been found in a diversity of organisms. There are 

several configurations for operons of arsenic resistance genes [23], however the most 

thoroughly studied is E. coli plasmid R773. It features five genes: arsA, arsB, arsC, arsD 

and arsR [8, 31].  The gene arsA codes for an ATPase, which binds to an 

arsenite/antimonite efflux pump, ArsB. This transmembrane efflux pump removes 

arsenite and antimonite from the cytoplasm and is coded by the gene arsB [24, 32]. When 
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ArsA protein is not present, the energy for arsenite extrusion is provided by the membrane 

potential [33]. In general, there is great similarity among ArsB proteins.  ArsB from E. 

coli pR773 and S. aureus pI258 share 58% identity in amino acid sequence [34] and they 

are part of the arsenite transporter ArsB protein family, which is prevalent in Firmicutes 

and γ-proteobacteria. Other family of arsenite transporters, the ACR3 carrier protein 

family, are found mainly in Actinobacteria, α-proteobacteria and also in S. cerevisiae.[8, 

14, 23, 35, 36]. This protein is a member of the BART superfamily 

(bile/arsenite/riboflavin transporters) and is more widely distributed than the members of 

ArsB family [36, 37]. The first identified member of this family was found in the ars 

operon of the skin element K of Bacillus subtilis [38] and has since been found in several 

organisms such as plants (Pteris vitata) and animals (Danio rerio). 

The gene arsC codes for the cytoplasmatic arsenate reductase protein responsible for 

arsenate reduction to arsenite. There are three distinct unrelated families of ArsC 

reductases: the E. coli plasmid R773 family, the S. aureus plasmid pI258 family and the 

ACR2p reductase family from S. cerevisiae [14]. They share mechanisms based on 

cysteine thiol redox cycling. These mechanisms are either coupled to Glutaredoxin (Grx) 

or Thioredoxin (Trx), though their sequences allow their subdivision in the 

aforementioned families [14, 23, 35]. The R773 reductase family needs Grx and 

glutathione (GSH) in the arsenate reduction. The pI258 family couples to Trx in the 

reduction of arsenate and also needs GSH. The S. cerevisiae family of reductases has a 

similar catalysis mechanism to the R773 reductases [14, 39-41]. The existence of these 

three distinct families with similar function but unrelated in sequence suggests that it is a 

case of convergent evolution. 

A small chaperone, previously reported as being an upper level transcription regulatory 

protein [27], is coded by the gene arsD. Recent studies have shown that the product of 
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arsD acts as a metallochaperone protein that facilitates the binding of arsenite to the 

ArsAB complex increasing the affinity of ArsA for As(III) thus increasing the rate of 

extrusion [42, 43].  

ArsR is a dimeric regulatory repressor coded by the gene arsR. The variety of ars operons 

usually start with an arsR gene and are regulated by the As(III)/Sb(III) responsive 

regulator ArsR [44]. ArsR proteins are part of a dimeric helix-turn-helix repressor family 

and are closely related to each other and to repressors of other metal resistance clusters 

including those of Pb(II) and Zn(II) [45].  

The five ars genes (functionally organized as arsRDABC) have been found in several 

plasmids of gram-negative bacteria like E. coli R773 and R46 [46], Acidophulus 

multivurum AIU301 and pKW301 among others and are greatly distributed among 

several phylogenetic divisions [47]. Besides the well studied ars operon of plasmid R773, 

there is the widely found arsenic resistance arsRBC operon. This operon can be found in 

plasmid pI258 of S. aureus [34, 46] and in the genome of several other bacteria [23, 32, 

46]. This operon contains only the genes that code for regulatory, transmembrane 

antiporter and reductase proteins. In the numerous of ars operons existent in bacteria there 

are also those containing the gene arsH, like those of Acidithiobacillus ferrooxidans 

(arsHB, arsRC). ArsH function is still unknown, though recent studies place it in the 

family of the NADPH-dependent FMN (flavin mononucleotide) reductases [48-50]. 

When considering the different ars operons it seems clear that the efflux pumps and 

reductases have evolved more than once. Different genes evolved convergently to provide 

similar function and protection against environmental arsenic [14]. First resistance 

probably appeared in the primitive anaerobic environment of primordial earth where the 

main species of arsenic would be arsenite. With the gradual change of the atmosphere to 

an oxidative nature, arsenate became the prevalent species of arsenic ion which explains 
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why the cell machinery first reduces arsenate in order to use available arsenite extrusion 

pumps [27]. Initially ArsB would be sufficient to confer resistance to trivalent metalloids, 

and the operons would probably be composed of only the regulator protein ArsR and the 

extrusion pump, a pair which is prevalent in almost every operon [14, 27]. With the shift 

in redox nature of the atmosphere an extra gene is required, the arsC, in order to provide 

resistance to arsenate. Acquisition of either of the arsC genes would provide evolutionary 

advantage. The fact that there are different families of arsenate reductases indicates 

convergent evolution of these families of genes [27].  

The arsA and arsD genes are probably a recent addition to the ars operons. The three 

gene chromosomal ars operon of E. coli is more closely related to the R773 ars operon 

than to the three gene operon of S. aureus, suggesting that the acquisition of the arsAD 

genes was posterior.  

 

Fig 3: (a) Original resistance genes, extrusion pump and regulator (b) Acquisition of arsC 

also provided response to pentavalent metals (c) acquisition of arsAD transformed arsB in a high 

efficiency active transport channel for arsenite. (figure adapted from [27]). 

One question arises, though, about the appearance of arsAD genes: Was the addition 

sequential or synchronous? One clue to the answer may lie in the pNRC100 megaplasmid 

of archaeon Halobacterium sp. strain NRC-1. There are four genes corresponding to ars 

genes in a cluster, arsAD in one orientation and arsRC transcribed divergently. The 
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presence of both arsA and arsD in a two gene cluster suggests that they were acquired 

simultaneously and not sequentially [27, 51]. 

1.5 Arsenate, beyond the ars operon 

 

Several bacteria isolated from mine tailings, river sediments, geothermal springs and soils 

have shown arsenate oxidizing activity [23, 52-56]. In most of the reported cases the 

oxidation did not appear to yield energy, nevertheless there are several organisms that are 

able to utilize arsenate as an electron acceptor in anaerobic autotrophic metabolism [57-

60]. A hypothetical electron transport chain was proposed by Santini and collaborators 

2004 [57] for the energy yielding aerobic microbial arsenite oxidation. This oxidation is 

thermodynamically favoured and the conversion of arsenite to arsenate in aerobic 

conditions has a high equilibrium constant when pe+pH*1 > 9 [61]. 

Up to date, the arsenite oxidases already studied are made of a pair number of two 

subunits, subunit A and subunit B coded by the genes aioA and aioB respectively (Fig. 5) 

[14, 62].  AioA is the biggest subunit with approximately 90 kDa, and exhibits a 

heterodimeric structure with a molybdenium-pterin. It is part of a new subgroup of DMSO 

reductases, an evolutionary superfamily of proteins that vary in substrate, midpoint 

electric potential and reaction course since some function as oxidases and others function 

as reductases [14, 52]. The aioB genes code for the small subunit with a Rieske 2Fe-2S 

centre which probably serves as an electron shuttle accepting the electrons of the large 

subunit subsequent to arsenite oxidation and then transferring the electrons to an acceptor, 

probably cytochrome c or azurin [14, 55, 57]. In addition to reduction of arsenate 

                                                 
1 pe is the negative logarithm of electron activity and is obtained by dividing the reduction potential Eh by 59.2. pe+pH 

represent redox conditions of a system. 
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catalyzed by the proteins coded by the well known ars operon, some microorganisms can 

also respire arsenate. It is believed that arsenate respiring are spread through several 

phylogenetic groups [20, 23] and the acronym DARPs, dissimilatory arsenate respiring 

prokaryotes, refers to prokaryotes with the ability to utilize arsenate as an electron 

acceptor in respiratory metabolism [63, 64]. Microorganisms with this ability can utilize 

either solved or sorbed arsenate, which is very important in arsenic speciation in the 

environment because they are able to mobilize solid state arsenate and convert it to the 

soluble ion arsenite. 

 

 

Fig. 4: Structure and hypothetical reaction cycle of arsenite oxidase. Steps: (1) Binding of 

arsenite to the enzyme, (2) two electron transfer to Mo, oxidizing As(III) to As(V), (3) release of 

arsenate, (4) two electron transfer from Mo(IV) to 3Fe-4S centre, regenerating Mo(IV) reaction 

centre to Mo(VI), (5) two electron transfer from 3Fe-4S centre in AioA subunit to 2Fe-2S Rieske 

centre of AioB subunit, electron transfer from the Rieske centre of the oxidase to the respiratory 

chain [14].  

The ability to mobilize arsenate from solid state possibly arose from the localization in 

the periplasmic membrane of the respiratory arsenate reductase [64, 65]. The respiratory 

reductase is coded by a two gene cluster, the arrA and arrB genes. The Arr protein is a 

heterodimeric periplasmic protein composed of two subunits, the ArrB and ArrA subunits 
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(Fig. 7) [56, 63]. ArrB is a 29 kDa protein that possesses a Fe-S centre that is not 

homologous to the Rieske subunit of AioB. The ArrA subunit, with approximately 87 

KDa, is part of the same DMSO reductase superfamily as AioA though it belongs to a 

different branch [56, 63].  

 

Fig. 5: Schematic representation of the respiratory arsenate reductase as found in [56] 

Catalysis performed by these enzymes appears to be of great importance in arsenic 

speciation in anaerobic conditions. 

1.6 HGT events in heavy metal contaminated environments 

 

Horizontal gene transfer of determinants encoded in mobile genetic elements rapidly 

alters the genetic landscape of contaminated sites, contributing to genome diversification. 

This diversification may alter the physiology of microorganisms changing their 

metabolism, pathogenicity and ecological role. Thus, mobile genetic elements give 
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microbial communities a great adaptation capacity and enable them to survive in rapidly 

changing environments and explore new ecological niches [66]. Metals and radionuclides 

often pose a challenge for the survival of microbial communities as they cannot be 

transformed or broken down as a strategy for detoxification as happens with organic 

xenobiotic contaminants as such microbes need a strategy to cope with the presence of 

these contaminants. Metal resistance genes were first detected in plasmids occurring in 

diverse bacteria, plasmid ars operons of E. coli and S. aureus were described in 1980. 

(Silver et al) [67]. These elements often co-occur with antibiotic resistance determinants. 

This suggests that some determinants may be transmitted horizontally in tandem, which 

poses an interesting perspective for the work at hand as the sampled environment has 

multiple contaminants, mostly of anthropogenic origin as is the case of uranium derived 

from mining [66].  
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2 Objective 

 

The overall objective of this study was to competently describe microbial diversity of 

arsenic resistance genes in an area partially contaminated with radioisotopes derived from 

anthropogenic sources, namely mining activities to extract uranium in the Urgeiriça 

mines, as this environment exhibits a widely distributed degree of uranium 

concentrations, which is an very interesting environment to test the hypothesis that 

contamination with metals, in this particular case radionuclides, promotes horizontal gene 

transfers in microbial populations. In depth, we set out to evaluate the dispersion of 

arsenite resistance genes in the microflora, relate it with the strains phylogeny, and try to 

relate its distribution with the presence of radioisotopes. This should enable us to infer if 

the stress caused by the presence of radioisotopes is sufficient to promote horizontal gene 

transfer among the microbial population, namely, arsenic resistance genes.  
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3 Materials and Methods 

 

3.1 Sampling 

The samples were collected in the vicinity of the abandoned Urgeiriça uranium mines and 

its water treatment plant. The sampling spots were divided in eight distinct areas: 

A1, A2, A3, A4, A5, A6, 7A e 7B (Fig. 8). This work was performed by Marques, 

João [68]. 

 

Fig. 6: Sampling places in “Minas de Urânio da Urgeiriça”. p1) “”Barragem velha”; p2) 

“Poço das Cobras”; p3) Water treatment plant; p4) creek : 

A1) Sampling area A1: untreated mine tailing without biofilms; pH 6.0. The water was 

collected from the efflux of a tube, in this point the water is treated with barium and 

calcium. The collection was made pre-treatment. 
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A2) Sampling area A2: well with three different water influx sources; pH 5.0. Water was 

collected from the well which is constantly filled by mine tailings and exsurgences.  

A3) Sampling area A3: Sedimentation pool sludge, pH 7.0-8.0. Sludge was gathered from 

the sedimentation pool. 

A4) Sampling area A4: Water from the sedimentation pool; pH 9.0. Water was collected 

from the sedimentation pool in the influx area from the first step of the water treatment. 

A5) Sampling area A5: Water and sludge collected from the stream; pH 6.0. The water 

was collected from the creek near the exit from the mine. 

A6) Sampling Area A6: Water and sludge collected from the stream; pH 6.0. The water 

was collected from the creek before the mine. 

A7) Divided in two sampling sites 7A and 7B: 

  7A: Water collected from the well in 7A; pH 6.0. Water was collected from 

the surface of the well; water with some suspended particles.  

  7B: Water collected from the well in 7B; pH 6.0. Water and sediments 

collected from greater depth than 7A. 

Of all the sampled places A2, A4 and A7 were the only that exhibited arsenic though it 

was in concentrations below 0.03 g/L. All the remaining sites did not exhibited arsenic 

contamination. Uranium was the more pressing contaminant detected with concentrations 

of up to 381ppm which is a significant enough amount to cause variations in microbial 

populations[69]. 
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3.2 Strain collection 

The prokaryote strains used in this work were obtained through isolation and purification 

from the samples collected in the different mine sites and water treatment plant at 

Urgeiriça. The isolated strains were then stored at -80ºC in medium “Luria Broth” 

supplemented with 15% glycerol and sterile glass beads. This work was performed by 

Marques, João [68]. 

 

3.3 Culture of isolated strains  

All strains were defrosen and cultured on R2A agar (Difco R2A Agar®: yeast extract 

0.05%, protease peptone nº3, casaminoacids 0.05%, dextrose 0.05%, soluble starch 

0.05%, dipotassium phosphate 0.03%, magnesium sulfate 0.05% and agar 1.5%) and 

incubated at 30 º C for 48 h. This work was performed by Marques, João [68]. 

 

3.4 16 rRNA amplification of isolated strains. 

DNA was extracted from cultured strains and rRNA 16S was amplified and sequenced. 

This work was performed by Marques, João [68]. 

 

3.5 Sterilization conditions 

The sterilization of culture media was accomplished through autoclaving at 121ºC for 15 

minutes. The stock metallic solutions used were prepared as: 1 M of sodium arsenite 

(NaHAsO2, Merck), 100 mM of potassium antimony tartarate (C4H4KO7Sb, Sigma) and 

were sterilized by filtration with cellulose acetate membranes through 0.45µm pores 

(VWR) and then added to the media. 
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3.6 Metalloid resistance and phenotype tests: 

 

3.6.1 Arsenite resistance 

The arsenic resistance of the isolated strains was tested through their cultivation in R2A 

agar supplied with increasing concentrations of arsenite of 2, 5, 10, 15 and 20 mM. The 

strains were then incubated at 30 ºC and the growth was assessed at 72 h and 120 h of 

incubation time. 

3.6.2 Antimonite resistance 

The antimonite resistance assays were performed by cultivation of the isolates in R2A 

medium with 1, 3, and 5 mM of antimonite. Then, the strains were incubated at 30 ºC and 

the growth was assessed at 120 h and 168 h incubation time. 

3.6.3 Arsenite oxidation test 

A phenotypic test to verify the strain’s ability to oxidize arsenite was performed 

cultivating selected strains in a chemically defined medium (CDM). The medium was 

prepared containing agar (20 g/l), yeast extract (0,05%), NaHCO3 (10 ml/l) and arsenite 

(1 mM). The results were obtained by submerging the culture in an AgNO3 (0,1M) that 

forms a silver sulphate in the presence of arsenate yielding a dark brown colour. In the 

case of arsenite it yields a yellow color due to the formation of silver sulphite. The strain 

Ochrobactrum tritrici was used as positive control [55]. 

 

3.7 Genetic screening for arsenite detoxification determinants 

3.7.1 DNA extraction from isolated cultures 

DNA extraction and purification was performed by the method described by Pitcher and 

colleagues [70]. Briefly, cells were gathered from isolated cultures with a sterile 

inoculation loop and placed in a 1.5 ml Eppendorf type tube with 100 µl of TE with 
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lysozime for an overnight incubation at 37 ºC. After adding 500 µl of GES the resulting 

solution was incubated 10 min on ice followed a brief agitation of the solution and 250 

µl of ammonium acetate, NH4Ac (7,5M) were added to improve separation between DNA 

and cellular components. The solution was then agitated and incubated on ice for 10 min 

and 500 µl of a 24:1 (v/v) chloroform/isoamyl alcohol was added followed by 

homogenization of the solution by tube inversion. The solution was then centrifuged and 

the supernatant was collected with a 1 ml micropipette. The chloroform/isoamyl alcohol 

extraction was repeated. The DNA was then precipitated by adding 0.54 volumes of 

isopropyl alcohol (Merck) and then carefully agitated. The solution was then centrifuged 

at 13200 rpm for 10 min, the isopropyl alcohol was discarded and the DNA was rinsed in 

150 µl ethanol (Merck) 70% (v/v) and re-centrifuged for 5 min. Ethanol was discarded 

and the DNA was dried in an incubator at 70 ºC for 20 min. DNA was ressuspended in 

30 µl TE buffer supplemented with RNase to a concentration of 20 µg/ml (tables 1 to 6). 

Table 1: TE solution (100x)  

Tris/HCL 121 g 

EDTA solution  (0.5 M; pH 8.0) 20 0ml 

ultrapure H2O up to 1000 ml 

 

Table 2: EDTA solution 

EDTA(Sigma) 186 g 

ultrapure H2O 1000 ml 

pH 8.0 

 

Table 3: Lysozime solution 

Lysozime 500 mg 

TE buffer 500 ml 
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Table 4: GES reagent 

Guanidine isothiocianate (Sigma) 60 g 

EDTA solution (0.5M ; pH8)  20 ml 

N-laurilsarcosine (Sigma) 1 g 

ultrapure H2O 100 ml 

 

Table 5: NH4Ac solution 

NH4CH3COO 121 g 

ultrapure H2O 100 ml 

 

Table 6: RNase solution 

RNase 50 mg 

ultrapure H2O 4 ml 

 

3.7.2 arsB and ACR3 gene amplification through a Polymerase Chain Reaction 

(PCR ) approach 

The arsB and ACR3 gene amplifications were performed in 200 µl eppendorf type tubes 

with a final volume of 50 µl of the reaction mixture described in Table 7. The primers 

used in PCR amplifications are listed in Table 8. 

Table 7: PCR reaction mixture for the amplification of arsB and ACR3 genes   

ultrapure H2O 26.75 µl 

Buffer 10X Mg2+ free (DyNAzyme) 5 µl 

MgCl2 50mM 1.5 µl 

dNTP’s (1mM) 10 µl 

Primer “forward”* 2 µl 

Primer “reverse”* 2 µl 

DNA sample 2 µl 

DNA polimerase (DyNAzyme II) 0.75 µl 
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Table 8: Primers for the amplification of arsB and ACR3 genes 

*Primers for the amplification were constructed based on the method described in [71]  

 

The arsB PCR reactions were performed in a Biorad’s “MyCycler Thermal Cycler” with 

the following program: 94 ºC for 5 min (initial denaturation) followed by 30 cycles with 

90 ºC for 1 min (denaturation), 54 ºC for 1 min (primer annealing) and 72 ºC for 1 min 

(extension). The final step consisted of 72 ºC for 5 min to assure that the extension of 

PCR products was complete. A negative control was performed simultaneously to detect 

an eventual DNA contamination of the master mixture. A positive control consisting of 

DNA from bacterium Ochrobactrum tritici was used to ascertain if the reaction was 

successful and to establish a reference size for amplified fragments. The ACR3 PCR 

reactions were performed in a Biorad’s “MyCycler Thermal Cycler” with the following 

program: 94 ºC for 5 min (initial denaturation) followed by 35 cycles with 90 ºC for 45s 

(denaturation), 57-52 ºC for 30s with the first ten cycles with -0,5ºC touchdown (primer 

annealing) and 72 ºC for 30s (extension). The final step consisted of 72 ºC for 5 min to 

assure that the extension of PCR products was complete. A negative control was 

performed simultaneously to detect an eventual DNA contamination of the master 

mixture. A positive control consisting of DNA from bacterium Ochrobactrum tritici was 

Primer Sequence 

arsBf 5’ – GTSATYTGGCARCCSAARGG – 3’ 

arsBr 5’ – GTSGGCATRTTRTTCATRAT – 3’ 

ACR31f 5’ – GTSGGBTGYGGMTAYCABGYCTA – 3’ 

ACR31r 5’ – TTGTASGCBGGMCGRTTRTGRAT – 3’ 

ACR32f 5’ – GTSATYTGGCARCCSAARGG – 3’ 

ACR32r 5’ – GTSATYTGGCARCCSAARGG – 3’ 
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used to ascertain if the reaction was successful and to establish a reference size for 

amplified fragments.  

 

3.7.3 arsC gene amplification through a PCR approach 

The arsC gene amplifications were performed in 200 µl eppendorf type tubes with a final 

volume of 50 µl with a mixture equal to the one used in 3.7.2. The program was performed 

with the same values as the arsB program found in 3.7.2. The used primers are listed in 

Table 9. 

Table 9: Primers for the amplification of arsC gene 

*Primers for the amplification were constructed based on the method described in [71]  

 

3.7.4 aioB gene amplification through a PCR approach 

aioB gene amplification was performed in 200 µl eppendorf type tubes with a final 

volume of 50 µl and the reaction mixture is described in Table 10. The primers used in 

PCR amplifications are listed in Table 11. 

Table 10: PCR reaction mixture for the amplification of aioB gene  

ultrapure H2O 23.8 µl 

Buffer 10X Mg2+ free (DyNAzyme) 5 µl 

MgCl2 50mM 1 µl 

dNTP’s (1mM) 5 µl 

Primer “forward” 4 µl 

Primer “reverse” 4 µl 

DNA sample 7 µl 

DNA polymerase (Invitrogene Taq polymerase Platinum) 0,2 µl 

 

Primer Sequence 

arsCf 5’ – ATYACYATYTAYCACAACCC – 3’ 

arsCr 5’ – TCACCRTCYTCYTTSGTGAA– 3’ 
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Table 11: Primers for the amplification of aioB gene 

 

The partial arsenite oxidase gene was amplified in Biorad’s “MyCycler Thermal Cycler” 

using the following program: 94ºC for 4min (initial denaturation) followed by 9 cycles 

with 90ºC for 45s (denaturation), 50º-0.5ºC “touchdown” (per cycle) for 45s 

(“annealing”) and 72ºC for 50s (extension). The first 9 cycles were followed by 25 cycles 

with 95ºC for 45s (denaturation), 46ºC for 45s (“annealing”) and 72ºC for 50s (extension). 

The final step consisted of 72ºC for 5min step to assure that the extension of PCR products 

was complete. A negative control was performed simultaneously to detect a possible 

DNA contamination. A positive control was performed simultaneously to verify the 

consistency of the reaction. 

3.7.5 arrA gene amplification through a PCR approach 

arrA gene amplifications were performed in 200µl eppendorf type tubes with a final 

volume of 50µl and a reaction mixture equal to the one used in 3.7.2 with the primers 

listed in Table 12. 

Table 12: Primers for the amplification of arrA gene 

*Amplification was performed using a protocol adapted from the method described in [64] 

 

Primer Sequence 

aioBf1* 5’ – GTSGGBTGYGGMTAYCABGYCTA– 3’ 

aioBr1* 5’ – TTGTASGCBGGNCGRTTRTGRAT – 3’ 

aioBf2* 5’ – GTCGGYTGYGGMTAYCAYGYYTA – 3’ 

aioBr2* 5’ – YTCDGARTTGTAGGCYGGBCG – 3’ 

Primer Sequence 

arrAf1* 5’ – CARCARGTGTAYGATCC – 3’ 

arrAr1* 5’ – CWTCYCAKGCYACATCACC - 3’ 
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Briefly, DNA was amplified in Biorad’s “MyCycler Thermal Cycler” with the following 

program: 94 ºC for 5 min followed by 35 cycles with 94 ºC for 30s (denaturation), 50 ºC 

for 30s (“annealing”) and 72 ºC for 1 min (extension). The final step consisted of 72 ºC 

for 5 min to assure that the extension of PCR products was complete. A negative control 

was performed simultaneously to detect an eventual DNA contamination of the master 

mixture. A positive control consisting of DNA from bacterium Ochrobactrum tritici was 

used to ascertain if the reaction was successful. 

 

3.7.6 Visualization of the amplified products 

Agarose was hydrated by addition of the TAE solution. In order to increase hydration 

efficiency the solution was heated for 4 minutes in a microwave oven with a power of 

700 W. After the heating step the volume was adjusted to 100 ml with H2O. A cooling 

step followed, always accompanied by slight agitation, then 5µl of ethidium bromide 

solution were added and the mixture was stirred until the ethidium bromide was 

completely dispersed (Table 13). The gel was poured in gel rack and the combs were 

inserted. After polymerization the combs were removed. 

Table 13: 1% agarose gel 

Agarose (Sigma) 1 g 

TAE 1x solution 100 ml 

Ethidium Bromide  5 μl 

 

 

TAE solution (1x) was prepared by dilution of the stock (50x) solution in ultra pure water 

(Table 14).  
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Table 14: Stock TAE solution (50x) 

 

 

 

 

Tris was dissolved in the aqueous EDTA solution and the acetic acid was added. The pH 

value was adjusted to 8.0 with a NaOH (5 M) solution. The volume was then adjusted to 

500 ml with ultra pure water. The stock EDTA solution was stored at room 

temperature.Ethidium bromide was dissolved in water and the resulting solution was 

stored in at 4 ºC in an opaque bottle (Table 15).   

 

Table 15: Ethidium bromide solution (5 mg/ml) 

 

 

3.7.7 Electrophoresis  

After each amplification reaction, to verify the amplified products, an agarose gel 

electrophoresis was undertaken. The 1% agarose gel was prepared and submerged on a 

TAE working buffer solution. The DNA samples (50 µl), with added 5 µl of “loading 

buffer”, were applied in the gel and were separated through differential migration speeds 

through the gel for 45 min at 100 V. The products were visualized using UV light and the 

Tris (Merck) 121 g 

Acetic acid (Merck) 28.55 ml 

Aqueous  EDTA solution(0,5 M) (Sigma) 50 ml 

ultrapure H2O up to 500 ml 

Ethidium bromide 0.5 g 

Ultra pure H2O 100 ml 
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fragments were determined through comparative analysis with the DNA Marker 1 Kb 

Plus DNA Ladder Invitrogen- (0.1 to 12 Kb). 

 

3.8 Sequencing of the obtained PCR products 

3.8.1 Band purification  

After UV visualization of the gel, the bands corresponding to molecular weights of the 

genes being studied were collected. The DNA from the bands was obtained through 

purification with “JETquick Spin Column Technique – PCR Purification Spin Kit” 

(Genomed) according to manufacturer protocol. Briefly: The band was dissolved in 

heated agarose solubilisation solution and the resulting solution was separated through 

chromatography in a silica gel matrix. After several washing steps, the DNA was 

collected by addition of 30 µl of TE to the column and posterior centrifugation at 12000 

rpm for 1.5 min. The resulting DNA was conserved in TE, the Tris-HCl buffer maintains 

the pH of the solution near 8 which is optimum for inhibition of nuclease action, and 

EDTA chelates ions essential for nuclease action, thus increasing the effective 

conservation time of the samples. 

 

3.8.2 Sequence analysis 

The sequences were obtained through the enzymatic method described in [72]. The 

sequencing reaction was prepared in a 200 uL micro tube with 10 uL of the components 

listed in Table 16. 

Table 16: Sequencing reaction mixture 

ultrapure H2O 23.8 µl 

Primer solution 5 µl 

DNA sample 1 µl 

Sequencing solution (Applied Biosystems) 5 µl 
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The reaction mixture was placed in Biorad’s “MyCycler Thermal Cycler” with the 

following program: 96ºC for 1min (initial denaturation) followed by 26 cycles with 90ºC 

for 10s (denaturation), 50ºC for 5s (“annealing”) and 60ºC for 5min (extension). At the 

end of the program temperature was maintained at 4ºC. 

The purified PCR products sequencing, through capillary electrophoresis, was outsourced 

and the corresponding .ab1 files, with the resulting chromatograms, were manually 

analyzed and validated using Applied Biosystems sequence scanner. Obtained sequences 

were compared to the GeneBank nucleotide  data  library  using  the  BLAST  software  

(in  order  to determine  their  closest  phylogenetic  relatives) [73].  Sequences were 

initially aligned  with the CLUSTAL X algorithm [74], visually examined, and relocated 

to allow maximal alignment. The method of Jukes and Cantor (Jukes and Cantor 1969) 

was used to calculate evolutionary distances. This method measures the evolutionary 

distances between  two  or  more  subjects,  based  on  the  sequence  homology  of  the  

compared  sequences. Phylogenetic trees were constructed by the neighbor-joining 

method and unweighted pair group method with arithmetic mean (UPGMA) using the 

MEGA5 package.  Phylogenetic trees allow the reconstruction of the evolutionary history 

of a group of species. With  this  method, it is possible  estimate  and  analyse  the  ancestry 

relationship  between  the  individuals  from  a  group.  The  statistically  significance  and  

the topological  stability  of  the  obtained  groups  are  confirmed  by  the  bootstrap  

analysis  (1000 replicates) in the MEGA 5. With this analysis, there is a parameter that 

reflects the robustness of the produced phylogenetic analysis.  The  bootstrap  is  

generated with  the  creation  of  several  sequences  groups  where  are  randomly  chosen  

columns  of  the multiple  alignment,  and  are  generated  new  analysis  for  each  new  

subgroups [75]. 
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3.9 Genetic screening for oxidase genes in whole samples from soil 

3.9.1 Soil total DNA extraction: 

Total soil/sludge DNA was obtained through extraction with the E.Z.N.A.® Soil DNA 

kit D5626-01 (Omega Bio-Tek) according to the manufacturer’s instructions. Briefly, the 

water/sludge samples were centrifuged with glass beads and then treated in a specially 

formulated buffer containing detergent. Proteins, polysaccharides, and other 

contaminants are subsequently precipitated after a heat-frozen step. Contaminants are 

further removed by extraction steps. Binding conditions were then adjusted and the 

samples were applied to a HiBandTM DNA spin-column. Two rapid wash steps removed 

trace contaminants and pure DNA was eluted in water or low ionic strength buffer. 

 

3.9.2 aioB gene amplification through a PCR approach 

The aioB gene amplification was performed in 200µl eppendorf type tubes with a final 

volume of 50µl with the same mixture and primers as in section 3.7.4. 

 

3.9.3 Electrophoresis and band purification 

Electrophoresis and band purification were achieved through the same methods as the 

ones described in sections 3.7.7 and 3.8.1 respectively. 

 

3.9.4 Cloning of the amplified PCR products 

The purified DNA fragments amplified in the PCR step were cloned in E. coli DH5. 

Cloning was accomplished through the pCR4-TOPO (Invitrogen) kit according to the 
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protocol supplied by the manufacturer. Briefly, the PCR fragments were cloned in the 

plasmid supplied with the kit; cells were then transformed through thermal shock. 

Transformed cells were then spread and incubated overnight at 37 ºC in LB agar 

supplemented with 100µg/ml ampicillin, 100µl IPTG (0.1M) and 20µl X-gal (40mg/ml). 

The positive colonies were selected through blue/white screening and the white colonies 

were transferred to liquid LB supplemented with 100µg/ml ampicillin and allowed to 

grow for 12 hours for posterior collection of the plasmids.  

 

3.9.5 Plasmid DNA extraction from positive selected colonies 

Plasmid DNA extraction from selected colonies was achieved through the use of the 

commercial kit JETSTAR Mini (GENOMED). Briefly: E. coli cells were harvested, 

resuspended in cell resuspending buffer with RNase A, and then lysed with lysis buffer. 

Precipitation buffer was added to the lysate and this was clarified by centrifugation. The 

cleared lysate was passed through a pre-packed anion exchange column. The negatively 

charged phosphates on the backbone of the DNA interact with the positive charges on the 

surface of the resin. The temperature, salt concentration, and pH of the solutions influence 

binding. Under moderate salt conditions, plasmid DNA remains bound to the resin while 

RNA, proteins, carbohydrates and other impurities are washed away with wash buffer. 

The DNA plasmid was eluted under high salt conditions with the elution buffer.. The 

eluted DNA was desalted and concentrated with an alcohol precipitation step. All these 

solutions were provided by the purchased plasmid extraction system.  

3.10 Sequence analysis 

Sequencing and analysis of the cloned sequences was obtained through the same methods 

as described in 3.8.2.  
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4 Results 

4.1 Phylogeny of partial 16S sequences of As resistant strains 

 

In order to identify the isolated strains the obtained  rRNA 16S sequences  were compared 

to the  EZTaxon nucleotide  data  library using the EZTaxon software (in order to 

determine their closest phylogenetic relatives). Sequences were initially aligned  with the 

CLUSTAL X algorithm [74], visually examined, and relocated to allow maximal 

alignment. Phylogenetic trees were constructed by the neighbor-joining method method 

using the MEGA5 package (Figure 7). 

4.2 Identification and characterization of arsenic resistant isolates 

 

The abundance and diversity of arsenic resistant bacteria was ascertained in all soil 

samples by selection of the bacteria which exhibited growth when cultured in arsenite 

supplemented R2A agar at 30 ºC. Resistance was defined as the ability to grow in a R2A 

agar supplemented with a minimum of 2 mM of arsenite (Table 17). Bacterial isolates 

from the eight sampled areas, were tested for their ability to resist arsenic, as shown on 

figure 8. Strains were considered resistant if significant growth was observed when 

cultured on agar supplemented with 2mM sodium arsenite. There were a total of 36 

arsenic resistant strains in a universe of 78 cultured strains, which amounts to 46% 

resistant bacteria. Among the resistant bacteria, 14 were Gram-positive whereas 25 were 

Gram-negative. 20 mM. 
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Table 17. Arsenite Resistant Bacterial isolate Characteristics 

Isolates 

 

Closest organism when compared to EzTaxon 

database 

Degree of 

similarity 

5 Days resistance to [AsIII] Arsenic resistance genes 

2mM 5mM 10mM 15mM 20mM arsB ACR3 arsC1 arsC2 aio1 arr 

A1 652 
Chryseobacterium indoltheticum LMG 

4025 98,09% 
+++ +++ - - - - - - - - - 

A1 653 Pseudomonas cedrina P515/12 100% +++ +++ +++ +++ +++ + - - - - - 

A1 654 
Chryseobacterium indoltheticum LMG 

4025 98,09% 
+++ +++ - - - + + - - - - 

A1 655 P. cedrina P515/12 100% +++ +++ +++ +++ - multi uns - - - - 

A1 662 P. cedrina P515/12 100% +++ +++ +++ +++ + + + - - - - 

A1 844 P. cedrina P515/12 100% +++ +++ +++ +++ - + + - - - - 

A1 845 P. cedrina P515/12 100% +++ +++ ++ + - + + - - - - 

A1 846 P. cedrina P515/12 100% +++ +++ +++ +++ - - + - - - - 

A1 847 P. cedrina P515/12 100% +++ +++ +++ +++ + + + - - - - 

A1 890 P. cedrina P515/12 100% +++ +++ +++ +++ - + + - - - - 

A1 891 P. cedrina P515/12 100% +++ +++ +++ +++ - + - - - - - 

A1 892 P. cedrina P515/12 100% +++ +++ ++ ++ + + + - - - - 

A1 893 P. cedrina P515/12 100% +++ +++ +++ ++ + + + - - - - 

A1 894 P. cedrina P515/12 100% +++ +++ +++ +++ + + + - - - - 

A1 977 Afipia broomeae ATCC49717 100% +++ +++ - - - + - N.A. N.A. N.A. N.A. 

A1 978 A. broomeae ATCC49717 100% + + - - - - - - - - - 

A3 737 Roseomonas lacus TH-G33 99,75% +++ - - - - - - N.A. N.A. - - 

A3 738a Microbacterium ginsengisoli Gsoil 259 97,83% + - - - - - - N.A. N.A. - - 

A3 742a Cohnella plantaginis YN-83 97,76% +++ - - - - + - N.A. N.A. - - 

A3 881 Bacillus isronensis B3W22 99,39% +++ +++ +++ +++ +++ + - N.A. N.A. - - 

A3 882 B. isronensis B3W22 99,39% +++ +++ +++ - - + - N.A. N.A. N.A. N.A. 

A3 918 Staphylococcus cohnii ATCC49330 100% +++ +++ +++ +++ - + - N.A. N.A. - - 

A4 873 Pseudomonas lurida DSM 15838 99,58% +++ +++ +++ - - + - N.A. N.A. - - 
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A4 874 P. lurida DSM 15838 99,58% +++ +++ +++ - - + - N.A. N.A. - - 

A4 875 P. arsenicoxydans VC-1 99,58% +++ +++ ++ - - + - N.A. N.A. - - 

A5 810 Burkholderia sabiae Br 3407 97,64% +++ - - - - - - N.A. N.A. - - 

A5 852 Rhodococcus globerulus DSM 4954 100% +++ +++ +++ +++ +++ - - N.A. N.A. N.A. N.A. 

A5 925 Simplicispira limi EMB325 96,16% +++ +++ +++ - - - + N.A. N.A. N.A. N.A. 

A5 926 S. limi EMB325 96,16% + - - - - N.A. N.A. N.A. N.A. N.A. N.A. 

A5 930 
Paenibacillus taichungensis BCRC 

17757 99,60% 
++ + - - - - - N.A. N.A. - - 

A5 935 P. agaridevorans DSM 1355 97,17% +++ +++ - - - + + N.A. N.A. N.A. N.A. 

A6 856 Rhodococcus globerulus DSM 4954 100% +++ +++ +++ ++ +++ - - N.A. N.A. - - 

A6 857 R. globerulus DSM 4954 100% +++ +++ +++ + +++ - - N.A. N.A. - - 

A6 863 Acinetobacter indicus A648 98,29% +++ +++ +++ +++ + + - N.A. N.A. - - 

7B 581 Paenibacillus agaridevorans DSM 1355 100% +++ +++ +++ - - + + N.A. N.A. N.A. N.A. 

7B 832 Bacillus drentensis LMG21831 97,04% + ++ ++ + - - - N.A. N.A. - - 

+,++,+++ represent the degree of observed growth, moderate, average and regular respectively when samples were retrieved after being cultured in arsenite supplemented media.  
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Fig. 7 Phylogeny of partial 16S rRNA (450 bp) of resistante isolates found in this study. Bootstrap values 

under 50% are not shown. The scale bars indicate substitutions per site. Identifications were retrieved by 

comparison to the EzTaxon database. Reference closest organisms were added for reference and appear without 

site number in the identification. 
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Fig. 8 The number arsenic resistant strains in each sampling site compared to the total 

number of strains isolated from the site. Strains were considered resistant if significant growth was 

observed when cultured on agar supplemented with 2mM sodium arsenite. 

 

Of the 78 strains tested for arsenite resistance there was a highly variable minimum 

inhibitory concentration (MIC), ranging from 2 mM to 20 mM, with approximately 28% 

of the bacteria exhibiting resistance to the maximum used value of The group of bacteria 

Gram-staining-positive that exhibited resistance to arsenite was diverse and belonged to 

genera Bacillus, Rhodococcus, Staphylococcus, Paenibacillus and Microbacterium. The 

degree of resistance was variable among the cited genera, with Rhodococcus globerulus, 

highly resistant, exhibiting resistance up to 20mM arsenite and Microbacterium 

gisengisoli only exhibited moderate growth at 2mM arsenite exhibiting no growth at 

higher concentrations. Paenibacillus and Saphylococcus strains exhibited resistance up 

to 15mM arsenite. The Gram-staining-negative bacteria belonged to the genera 

Flavobacterium, Chryseobacterium, Pseudomonas, Afipia, Burkholderia, Variovorax 

and Comamonas and also exhibited resistance to arsenite. These Strains showed variable 

degrees of resistance, even in individuals of the same generus, as was the case of the 

Pseudomonas isolates retrieved from area A1. The sampling site with the greatest number 
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of resistant strains was A1, in this site there wasn’t a detectable concentration of arsenic 

ions. In this area, 88% of the strains exhibited resistance to arsenite. Though no arsenic 

was detected the area was treated with barium and calcium. Despite of the presence of 

arsenic, in the area A2, no resistant strains were found in the soil samples tested. In area 

A3, only 30% of the tested strains were resistant to arsenite. In area A4, though the 

number of cultivated strains was limited, all of the strains belonged to the genus 

Pseudomonas and exhibited resistance to concentrations of 15 mM of arsenite . In area 

A5, more than 50% of the strains exhibited resistance to arsenic, with one of the 

representatives of the genus Rhodococcus exhibiting resistance up to 20 mM of arsenite 

when cultivated in supplemented R2A agar. All of the cultivated strains from area A6 

exhibited resistance to arsenite. Finally, none of the strains isolated from area 7A 

exhibited arsenite resistance while, 25% of the bacteria from area 7B exhibited arsenic 

resistance as seen on figure 9. 

 

Fig. 9 Percentage of resistant strains in each individual sampling site compared to the total 

number of isolates. Values are expressed as a percentage where 100% is the total number of isolates 

retrieved in the experiment. 
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4.3 Identification of Antimonite resistance isolates 

 

Arsenic resistant isolates were tested for antimonite resistance since anionic pumps 

involved in arsenite resistance also confer some degree of resistance to antimonite [35]. 

Resistance was defined as the ability to survive in an LB plate supplemented with 1 mM 

antimonite (Table 18). Of the isolates from area A1, selected for having arsenic resistant 

genes, over 70% exhibited resistance to antimonite (Figure 10). All of the selected isolates 

from areas A3, A4 and A5 exhibited resistance to antimonite. Only one of the selected 

isolates from area A6 exhibited antimonite resistance which represents a percentage of 

33%. All isolates selected from area 7B exhibited resistance to antimonite, although the 

isolate 7B 832 was only resistant to concentrations of 1 mM.  

 

Fig. 10 The number antimonite resistant strains in each sampling site compared to the total 

number of strains isolated from the site. Strains were considered resistant if significant growth was 

observed when cultured on agar supplemented with 1mM potassium antimony tartarate. 
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Table 18 Characteristics of Bacterial isolates with antimonite resistance 

Isolates 
Closest organism when compared to EzTaxon 

database 

Degree of 

similarity 
ID 

7 Days resistance to [SbIII] 

1mM 2mM 4mM 

A1 654 Chryseobacterium indoltheticum LMG 4025 98,09% A1 654 - - - 

A1 655 Pseudomonas cedrina P515/12 100% A1 655 ++ ++ + 

A1 662 P. cedrina P515/12 100% A1 662 ++ ++ ++ 

A1 844 P. cedrina P515/12 100% A1 844 ++ ++ ++ 

A1 845 P. cedrina P515/12 100% A1 845 + + + 

A1 846 P. cedrina P515/12 100% A1 846 ++ ++ ++ 

A1 847 P. cedrina P515/12 100% A1 847 ++ ++ ++ 

A1 890 P. cedrina P515/12 100% A1 890 ++ ++ ++ 

A1 891 P. cedrina P515/12 100% A1 891 ++ ++ ++ 

A1 892 P. cedrina P515/12 100% A1 892 + + + 

A1 893 P. cedrina P515/12 100% A1 893 ++ ++ ++ 

A1 894 P. cedrina P515/12 100% A1 894 ++ ++ ++ 

A3 737 Roseomonas lacus TH-G33 99,75% A3 737 ++ ++ ++ 

A4 873 Pseudomonas lurida DSM 15838 99,58% A4 873 + + + 

A4 874 P.s lurida DSM 15838 99,58% A4 874 + + + 

A4 875 P. arsenicoxydans VC-1 99,58% A4 875 + + + 

A5 852 Rhodococcus globerulus DSM 4954 100% A5 852 ++ ++ + 

A6 856 R. globerulus DSM 4954 100% A6 856 - - - 

A6 857 R. globerulus DSM 4954 100% A6 857 - - - 

A6 863 Acinetobacter indicus A648 98,29% A6 863 ++ + - 

7B 832 Bacillus drentensis LMG21831(T) 97,04% 7B 832 ++ ++ + 
-,+,++, represent the degree of observed growth, absent, average and regular respectively when samples were retrieved after being cultured in antimonite supplemented media. Some samples were absent, we were 

unable to recover the samples for cultivation.
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4.4 Identification of arsenite oxidizing isolates 

 

All isolates exhibiting resistance to arsenite were tested for phenotypical evidence of 

arsenite oxidation. None of the tested isolates exhibited any oxidation of arsenite in 

chemically defined medium. 

 

4.5 Arsenite transporter genes arsB and ACR3 from arsenite resistant 

isolates 

 

For the detection of arsenic transporter genetic traits, arsB, ACR3(1) and ACR3(2) , three 

sets of degenerate primers were used. For the ACR3 gene a pair of primers was used, one 

based on the E. coli operon ACR3 and other based on the Yeast S. cerevisiae ACR3 to 

guarantee the ability to detect the presence of the gene regardless of the form of the gene 

present. As a positive control for the desired sequences Ochrobactrum tritici DNA was 

included in each experiment. Amplification products of the expected size, 1000 bp (arsB), 

and 700 bp (ACR3(1) and 2) were obtained and confirmed through comparison to positive 

controls (data not shown). Of the 78 isolates, 25 strains showed amplification with either 

one or two of the specific primers designed for this step (Figure 11). The presence of arsB 

genes was detected in 22 isolates: (γ-Proteobacteria (15), α-Proteobacteria (1), 

Flavobacteria (1), Actinobacteria (1), Firmicutes (4) (Figure 12). The ACR3 gene was 

found in 14 isolates belonging to the families: (γ-Proteobacteria (9), β-proteobacteria (2), 

Flavobacteria (1), Firmicutes (2). Among of these isolated that exhibited the ACR3 genes, 

11 strains also contained the arsB gene.  
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Fig. 11 Phylogeny of the retrieved sequences (700bp) from ACR3 gene amplifications.  Bootstrap values 

below 50% are not shown. Two reference sequences, Ochrobactrum tritici and Saccharomyces cerevisiae, were 

added as reference representing the targeted ACR3 gene amplified by primer sets ACR31 and ACR32 

respectively. Sequences from this study are identified by closest organism according to the EzTaxon database 

with the study reference number and corresponding gene appearing as prefix  

 

Fig. 12: Phylogeny of retrieved DNA sequences (~950 bp) from arsB amplification. Bootstrap values 

below 50% are not shown. Reference arsB sequences obtained through comparison to the BLAST database were 

used, and are represented by the species name. Sequences from this study are identified by closest organism 

according to the EzTaxon database with the study reference number appearing as prefix. 
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4.6 Comparison of phylogenetic relationships between organisms and their 

arsenic resistance determinants. 

 

After identification and phylogenetic relationship establishment, 16 rRNA phylogenetic 

trees where compared to arsenic resistance determinant phylogenetic trees in order to 

identify horizontal gene transfer events among the isolates tested in this work. Regarding 

ACR3 determinants we can observe the grouping of the ACR3 gene from strain A1-654 

Chryseobacterium in the same cluster as the ACR3 gene found in strains from the 

Pseudomonas genus (Figure 13). Regarding arsB phylogeny, as verified in figure 14, 

strain A1-654 Chryseobacterium indoltheticum had its arsB gene clustered with genes 

detected in Pseudomonas. Also of note is the separation of the arsB determinants from 

same genus strains, namely P. lurida and P. arsenoxydans arsB was on a different branch 

form P. cedrina arsB. 

4.7 Arsenate reductase gene arsC from arsenite resistant isolates. 

 

For the detection of arsenate reductase traits, arsC, one set of degenerate primers was 

used. As a positive control for the desired sequences Ochrobactrum tritici DNA was 

included in each experiment. There was no verified amplification of the desired fragment 

in the designed experiment thus the presence of arsenate reductase genes arsC was not 

confirmed in the selected arsenite resistant isolates. 

4.8 Arsenite respiratory reductase arrA from arsenite resistant isolates. 

 

For the detection of arsenite respiratory reductase genes from arsenite resistant isolates 

one set of degenerate primers was used. The protocol was developed according to the 

work reported in [64]. No positive amplification was detected in any of the samples.
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Fig. 13 Neighbor-joining analysis of (left) 16S rRNA and (right) ACR3 sequences from arsenic resistant samples. Individual ACR3 genes are linked to the 

corresponding organism of origin in the 16S tree. Unique entries were shaded for ease of interpretation. Two reference sequences, Ochrobactrum tritici and 

Saccharomyces cerevisiae, were added as reference representing the targeted ACR3 gene amplified by primer sets ACR31 and ACR32 respectively. Sequences from 

this study are identified by closest organism according to the EzTaxon database with the study reference number and corresponding gene appearing as prefix. 
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Fig. 14 Neighbor-joining analysis of (left) 16S rRNA and (right) arsB sequences from arsenic resistant samples. Individual arsB genes are corresponding to 

organism of origin in the 16S tree. Unique entries were shaded for ease of interpretation. Reference arsB sequences obtained through comparison to the BLAST 

database were used, and are represented by the species name. Sequences from this study are identified by closest organism according to the EzTaxon database with 

the study reference number and corresponding gene appearing as prefix
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4.9 Arsenite oxidase gene aioB from arsenite resistant isolates. 

 

For the detection of arsenite oxidase genes from arsenite resistant isolates two sets of 

degenerate primers were used. The protocol was developed according to the work by Sun 

et al [76]. No positive amplification was achieved in isolated samples. 

 

4.10  Arsenite oxidase gene aioB from whole soil samples. 

 

For the detection of arsenite oxidase genes from arsenite resistant isolates two sets of 

degenerate primers were used in order to increase the spectrum of detected genes. The 

protocol was developed according to the work by Sun et al [76]. In spite of the absence 

of aioB genes in isolated strains, whole DNA from soil samples was also tested. The A1 

and A5 areas had positive hits for the mopterin subunit of the aio protein. These sampled 

amplicons were then cloned in order to be able to recognize different aioB genes after 

sequencing. Identification using a translated nucleotide database, BLAST [77] ensued. 

All sequences obtained were identified as Bradyrhizobium sp. S452 aioB alpha  subunits, 

which indicates that either this was the only organism present that carried the gene or that 

this gene was transmitted horizontally to other individuals in the population.. 
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Chapter 5 Discussion 
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5 Discussion 

 

The overall diversity of the bacteria found in the 8 sampling sites was high; we analysed 

78 bacterial strains belonging to 22 different genera (data not shown); these samples were 

isolated in a previous study [68]. Arsenic resistance tests were performed in the 78 isolates 

and among the resistant bacteria there was also high diversity as the 36 resistant bacterial 

strains found were identified as belonging to 13 genera. Previous studies (Jackson et al 

and Achour et al) demonstrate that arsenic resistant bacteria are phylogeneticaly diverse 

and are highly distributed in the environment so the great diversity found in this study 

was expected [35, 78]. The highest number of resistant strains was found in site A1 which 

had no detectable contamination with arsenic or Uranium. The site was treated with 

barium and calcium, if these contaminants caused stress in the microbial population it is 

possible that this stress motivated the transfer of mobile genetic elements which could 

explain the existence of a bacteria belonging to the genus Chryseobacterium with an arsB 

like gene very similar to the ones found in most Pseudomonas in this site. Most of the 

resistant strains isolated from site A1 belonged to the Pseudomonas genus. This is not 

uncommon and several strains of Pseudomonas have been shown to exhibit arsenic 

resistance traits [79, 80]. Most of the Pseudomonas strains found to be resistant in area 

A1 carry both arsenic resistance genes for pumping arsenite considered in this work, arsB 

and ACR3. At least one of these genes was present in all of the resistant Pseudomonas 

strains from this study which is in accordance with the observed phenotypic resistance 

results.  

In Area A2 the diversity was significantly lower and none of the isolated strains exhibited 

resistance to arsenic. The site had a moderately acidic pH (5.0) and vestigial quantities of 

arsenic (<0,03ppm) and uranium (0,212ppm) which were probably insufficient to 
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generate evolutionary pressure towards arsenic resistant organisms. It is likely that there 

is a different contaminant exerting stress in this site and which results in the selection of 

different traits than those being studied in this work. Water from site A1 flows into site 

A2 yet we were unable to find organisms of the same genera as those found in A1, this 

may relate to the aforementioned stress conditions found in A2. 

Area A3 has a great bacterial diversity; 7 distinct genera were identified among the 23 

isolated strains. Interestingly enough, this site had the highest concentration of uranium 

of all the sampled locations which makes this result a very curious find because of the 

diversity found in the presence of significant concentrations (381ppm) of uranium. 

Despite the great number of isolates (the highest number of isolates in all of the areas) 

only seven strains exhibited variable resistance to arsenic.  In this site there were some 

interesting finds. Bacterial strains from the same genus exhibiting different degrees of 

resistance. Strain A3-738 and A3-742a exhibited significant growth only in the medium 

supplemented with 2mM arsenite. Genes ACR3 were not present in these bacteria but 

strain A3-742a had gene arsB. Gram-staining-positive bacteria, were previously reported 

in the literature as being resistant to arsenite despite the absence of the genes arsB and/or 

ACR3. Strain A3-742a is Gram-staining- positive, this indicates that the density of the 

cell wall in Gram-positive-stain bacteria may confer resistance to arsenite [35]. The 

minimum inhibitory concentration of arsenite increased at the least five fold when 

compared to Gram-staining-positive subjects from the same sampling site which 

contained arsenic resistance genes, this indicates that despite not being an essential factor 

in arsenic resistance in Gram positive bacteria, these genes increased the efficiency of the 

detoxification process enabling the organisms to resist to higher concentrations of 

contaminants. 
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All of the strains from A4 were resistant and belonged to the pseudomonas genus, which, 

as described above, has been shown to include strains highly resistant to arsenic 

contamination. All of the three strains exhibited the gene arsB. 

From site A5, both resistant strains and non resistant strains were isolated.  The diversity 

was high with representatives from 6 genera present in 11 strains. Strains A5-930 and 

A5-935 both exhibited the same arsenite minimum inhibitory concentration yet genes 

arsB and ACR3 were absent from strain A5-930. It would be interesting to further 

investigate this particular pair of strains in order to fully understand if arsB and ACR3 

were being expressed in strain A5-935 or the mechanism for arsenic resistance was 

similar to the strain A5-930. Furthermore strains A5-810 and A5-852 (belonging to 

genera Burkholderia and Rhodococcus respectively) exhibited resistance. Interestingly 

the minimum inhibitory concentration for strain A5-852 was tenfold higher (20mM) than 

with strain A5-810. This indicates differences in resistance, in this case, may be related 

to the different composition of the cell wall since the Gram positive strain exhibits a 

higher minimum inhibitory concentration than Gram negative. 

In site A6, all the strains were highly resistant to arsenite, a comparable situation to the 

verified results pertaining site 4. The amount of cultured strains in this site was limited to 

3 isolates. 

In site 7A there were no resistant strains, though arsenic resistance traits are ubiquitous 

in the environment. Arsenic concentration in the site was very low, the absence of arsenic 

resistance traits indicates that the stress exerted by the low arsenic concentration in this 

site was insufficient to exert evolutionary pressure in the direction of arsenic resistance 

phenotype selection.  

In site 7B there were two resistant strains, 7B-581 and 7B-832. The minimum inhibitory 

concentration in strain 7B-832 was higher than in strain 7B-581 yet the observed growth 
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under the conditions applied was lower when compared to strain 7B-832. This is in 

accordance with previous results in this work that indicate that the presence of arsenic 

resistance genes improves the ability of the bacteria to cope with the contaminant which 

may explains why strain 7B-581 is able to form larger colonies than 7B-832 when 

exposed to arsenite for the same amount of time. 

Regarding the antimonite resistance tests, all of the tested isolates were resistant (table 

19). These results were, for the most part, expected as the mechanisms for antimonite 

penetration and extrusion in the cell are the same as arsenite. For cell penetration, 

aquaglyceroporins; and for extrusion from the cell, ARSB proteins [24]. The only curious 

cases are strains A5-856, A5-857 and A5-854. These strains were resistant to arsenite yet 

were unable to grow in antimonite supplemented medium. This may happen due to the 

higher degree of toxicity of antimonite. 

Regarding arsenite oxidation, all of the 36 arsenite resistant strains (growth on 2mM 

supplemented agar) were tested for phenotypic traits of arsenite oxidation. None of the 

strains exhibited the ability to oxidise arsenite (data not shown). PCR for the amplification 

of the gene aioB was performed in each of the selected arsenite resistant strains, we were 

unable to observe amplification for the desired gene. A different approach was then taken 

and DNA was extracted from whole soil samples, the resulting DNA was then scanned 

for the presence of aioB genes. There were several positive amplification results in the 

PCR with DNA from sites A1 and A5. Those amplicons were cloned. 25 clones from 

each of those two sites were selected (Xgal blue/white colonies selection approach) and 

plasmid DNA was extracted. After amplification of the selected clones’ plasmid DNA 

the resulting amplicons were sequenced. The resulting 50 sequences where then 

compared to the BLAST database where all of the sequences matched a single aioB gene 

belonging to the strain Bradyrhizobium sp. S452, this gene was first described in this 



Diversity of arsenite transporters of the abandoned Uranium mine in Urgeiriça  

 

  

RUICOSTA 67 

 

organism by M. Sultana et al [81]. Besides arsenite oxidation arsenate reduction traits 

were also investigated with primers for the amplification of arsenate reductase arrA. None 

of the samples exhibited the amplification for the tested gene which indicates that there 

were no dissimilatory arsenate reducing prokaryotes in the tested samples. 

Regarding the phylogeny of the different ACR3 determinants, as seen on figure 13, we 

can observe the grouping of the ACR3 gene from strain A1-654 Chryseobacterium to 

those of the strains from the Pseudomonas genus. This is a strong indicator that horizontal 

gene transfer occurred as these samples were retrieved from the same site A1. This is 

interesting since site A1 was treated with barium and calcium but uranium wasn’t present 

which suggests that the stress was caused by the substances used to treat the water rather 

than uranium. Other than this indicator there was no evidence for horizontal gene transfer 

on other strains analysed regarding ACR3 determinants.  

Regarding arsB phylogeny, as verified in the analysis of ACR3 phylogeny, strain A1-654 

Chryseobacterium indoltheticum had its arsB gene clustered with Pseudomonas genes in 

the phylogenetic tree, which indicates that the transfer of genetic characteristics may have 

happened in tandem transferring both ACR3 and arsB. Other interesting find was that in 

spite of the several species of strains identified pertaining to the genus Pseudomonas not 

all of their resistance genes were clustered in the phylogenetic analysis. A4-873 and A-

874 Pseudomonas lurida and A4-875Pseudomonas arsenicoxidans arsB genes were 

clustered with the arsB gene from another gammaproteobacteria, site A6 Acinetobacter 

indicus A648. This indicates that arsenic resistant organisms are phylogenetically distinct 

and diverse and that the genes for arsenic resistance are genetically distinct even among 

phylogenetically close organisms. The fact that the previously mentioned arsB genes 

from strains from A4 samples were clustered together may also indicate that there was 

effectively horizontal gene transfer of arsenic determinants between both strains since 
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they both belong to the same sampling site and site A4 had the highest concentration of 

uranium in all the sampled sites. The remainder of the strains appear to have vertical gene 

transfers. 
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6 Concluding remarks 

 

The results obtained in this work are in line with previous studies [35, 78, 80]. The 

diversity of arsenic resistant bacteria of the analysed sampling sites in this study was high. 

Among all the resistant strains, 36, we found representatives for 13 different genera. 

There were several sites with no uranium or arsenic detected yet arsenic resistance 

determinants were found in 7 among the 8 sampled sites and all of the sites with no arsenic 

present. This indicates, in accordance with the literature, that arsenic resistance structures 

are ubiquitous and the existence of arsenicals in the sampling sites does not necessarily 

indicate that there are no resistant bacteria present. In order to competently find evidence 

of the sharing in resistance traits one would need further the study of the resistance 

determinants. The used protocol, despite highly specific, was limited. It would have been 

interesting to clone the amplicons of individual strain resistance genes in order to evaluate 

if more than one allele were present. This would enable us to conclude if there was 

effectively horizontal gene transfer between A4-873 and A-874 and A4-875. This would 

also have enabled us to infer whether there was only one copy of the studied structures or 

several, their origin and if they were present in mobile genetic elements or the genome of 

the studied strains. This approach would, however, be very time consuming due to the 

sheer amount of samples to be analysed and would severely extend the period of time 

needed to execute the analysis. Another limitation was the inability to identify all the 

contaminants on the sampling sites. It would have been interesting to have the 

concentration of barium, calcium and other contaminants in area A1 to be able to 

understand what the main contaminant was and if the proposed horizontal gene transfer 

between Pseudomonas present in the site A1 and the Chryseobacterium, also from site 
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A1 can be related to the existence of the contaminants or happened unrelated to stressing 

conditions in the environment. 
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