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Abstract 
 

Peroxisomes and mitochondria are known to act in concert, sharing a growing 

number of proteins and cellular functions. This connection includes metabolic 

cooperations and cross-talk (e.g. in fatty acid β-oxidation), a novel putative vesicular 

trafficking pathway from mitochondria to peroxisomes, an overlap in key components of 

their fission machinery as well as in signalling events leading to antiviral defence. 

These findings indicate that these organelles exhibit a closer interrelationship than 

previously expected. Thus, peroxisome alterations in metabolism, biogenesis, 

dynamics and proliferation can potentially influence mitochondrial functions, and vice 

versa, and might contribute to the onset of diseases. 

There is currently great interest in the identification and characterization of other 

proteins shared by peroxisomes and mitochondria. The leading candidates are a class 

of integral membrane proteins with diverse cellular functions, known as tail-anchored 

(TA) proteins. The main focus of this project was thus to identify and characterize novel 

TA proteins that are dually targeted to peroxisomes and mitochondria. For this, an 

antibody/expression-based screening approach was followed which resulted in the 

identification of new shared components. 

Our results show that Miro proteins are not only present on peroxisomes and 

mitochondria but also affect peroxisome motility. This effect is, in principle, due to the 

interaction of Miro proteins with kinesin motors, promoting anterograde transport of 

organelles. Furthermore, mutations in the calcium-binding domains of these proteins 

induce peroxisome aggregation within the cells and near the nucleus, suggesting an 

unknown function for calcium in the regulation of peroxisome dynamics. As organelle 

positioning and transport are crucial for cellular functions, especially in neurons, these 

findings are highly relevant for the study of peroxisome functions in health and disease.  

Additionally, a bioinformatics analysis of the Ustilago maydis proteome was 

initiated in order to identify putative tail-anchored proteins. This model organism shares 

many important processes (e.g. long-distance microtubule transport, polarized growth) 

and high protein sequence similarity with human cells, while providing the technical 

advantages of yeast cells. 

 

 

Key words: peroxisome, tail-anchored protein, mitochondria, organelle dynamics  
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Resumo 
 

Os peroxisomas e as mitocôndrias partilham um número crescente de proteínas 

e funções celulares. As ligações entre estes dois organelos passam por uma 

cooperação metabólica e crosstalk (e.g. na β-oxidação de ácidos gordos), uma nova 

via de transporte de vesículas das mitocôndrias para os peroxisomas e a partilha de 

componentes da maquinaria de fissão e da via de sinalização que promove a defesa 

antiviral. Estas características mostram que os peroxisomas e as mitocôndrias exibem 

uma relação mais próxima do que a prevista. Assim, alterações no metabolismo, 

biogénese, dinâmica e proliferação dos peroxisomas poderão influenciar as funções 

das mitocôndrias, e vice-versa, e contribuir para o desenvolvimento de doenças. 

Actualmente existe um grande interesse na identificação e caracterização de 

novas proteínas partilhadas pelos peroxisomas e mitocôndrias. Os principais 

candidatos são uma classe de proteínas membranares com diversas funções celulares 

conhecidas como proteínas tail-anchored (TA). Desta forma, o principal objectivo deste 

projecto foi a identificação e caracterização de novas proteínas TA presentes em 

ambos os organelos. Para tal, seguiu-se uma abordagem baseada na análise da 

localização destas proteínas com anticorpos ou por expressão destas proteínas, que 

resultou na identificação de novos componentes partilhados por estes dois organelos. 

Os nossos resultados mostram que as proteínas Miro não só estão presentes 

nos peroxisomas e nas mitocôndrias, como também afectam a mobilidade dos 

peroxisomas. Este efeito dever-se-á, em princípio, a uma interacção entre as proteínas 

Miro e as cinesinas, promovendo o transporte anterógrado de organelos. Para além 

disso, mutações destas proteínas nos domínios de ligação a cálcio induziram a 

formação de agregados de peroxisomas na célula, sugerindo uma função até agora 

desconhecida para o cálcio na regulação da dinâmica dos peroxisomas. Tendo em 

conta que a posição e o transporte de organelos são cruciais para as funções 

celulares, especialmente em neurónios, estas descobertas são de elevada importância 

para o estudo dos peroxisomas na saúde e doença. 

Adicionalmente, uma análise bioinformática do proteoma do fungo Ustilago 

maydis foi iniciada de modo a identificar proteínas TA putativas. Este modelo de 

estudo partilha vários processos importantes com as células humanas (e.g. transporte 

de longa distância por microtúbulos, crescimento polarizado) e elevada homologia ao 

nível proteico, permitindo assim tirar partido das várias vantagens técnicas de 

trabalhar com fungos. 

 

Palavras-chave: peroxisoma, mitocôndria, proteína tail-anchored, dinâmica de organelos 
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1.1. Peroxisomes 
 

General overview 
Peroxisomes are virtually present in all eukaryotic cells, ranging from unicellular 

organisms to plants and mammals. They were initially described by Rhodin in 1954 as 

spherical and oval microbodies, found in mouse kidney cells (Rhodin, 1954). Only later, 

in 1966, they were metabolically characterized by Christian de Duve and his group, 

who identified several enzymes responsible for hydrogen peroxide metabolism 

(oxidases and catalase), therefore renaming them as peroxisomes (de Duve, 1965). 

Peroxisomes harbour a wide array of metabolic functions, from lipid metabolism 

to reactive oxygen species (ROS) scavenging. These highly dynamic organelles are 

able to alter their morphology, number and metabolic functions in response to 

alterations in cellular environment (Kaur and Hu, 2009; Schrader and Fahimi, 2008). 

Peroxisomes are delimited by a single lipid membrane that encloses a fine 

granular matrix, devoid of DNA and protein synthesis machinery. All peroxisomal 

proteins are encoded by nuclear genes and most of them are synthesized on free 

polyribosomes in the cytoplasm. Peroxisomes are usually found as spherical or rod-like 

forms (0.1 to 0.5 µm in diameter), but also as elongated tubular structures (up to 5 µm) 

and small tubulo-reticular networks (Schrader et al., 2000). Their number can range 

from just a few peroxisomes in yeast cells to up to several hundreds in mammalian 

hepatocytes. 

The importance of peroxisomes for normal mammalian development and growth 

is underlined by the existence of a group of inherited peroxisomal disorders in humans, 

which are characterized by severe metabolic dysfunctions and neurological and 

developmental defects (reviewed in Baes and Aubourg, 2009; Shimozawa, 2011; 

Steinberg et al., 2006; Wanders et al., 2010). 

 
 

1.1.1. Functions 
Peroxisomes are “multipurpose” organelles whose functions vary according to 

species, cell type, developmental stage and environmental conditions. In most 

organisms they play an essential role in lipid metabolism, ROS generation and H2O2 

metabolism. Moreover, they are also responsible for several anabolic and catabolic 

reactions such as purine catabolism, bile acid synthesis and glycerol synthesis 

(Fig.1.1) (Islinger et al., 2010; Wanders and Waterham, 2006a).  
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In addition to these main activities, peroxisomes carry out other functions such as 

photorespiration and the glyoxylate cycle in plant cells, glycolysis in trypanosomes and 

light emission in fireflies (Gould et al., 1987; Parsons, 2004; Reumann and Weber, 

2006). 

ROS/NOS 
metabolism

Lipid
biosynthesis

Glycerol
bioynthesis

Bile acid
synthesis

Amino acid
metabolism

Purine
catabolism

Fatty acid
β‐oxidation Peroxisome

Thermogenesis

Fatty acid
α‐oxidation

 
 

Figure 1.1 - Major metabolic functions of peroxisomes in mammals 

 

1.1.1.1. Peroxisome lipid metabolism 
Peroxisomes are responsible for three key pathways in lipid metabolism: fatty 

acid β-oxidation, fatty acid α-oxidation, and ether phospholipid biosynthesis.  

In mammalian cells most fatty acids are degraded by means of β-oxidation. This 

process can be performed by both mitochondria and peroxisomes, although each 

organelle is responsible for specific substrates (see section 1.2.1.1) (Poirier et al., 

2006).  

The process of peroxisomal β-oxidation involves four consecutive reactions: (1) 

dehydrogenation, (2) hydration, (3) dehydrogenation again, and (4) thiolytic cleavage. 

After each cycle, fatty acids are shortened by two carbon atoms which are released as 

acetyl-CoA. In contrast to mitochondria, the peroxisomal β-oxidation system is unable 

to completely degrade fatty acids, shuttling its products to mitochondria for full 

oxidation. Due to the lack of a respiratory chain, peroxisomal β-oxidation is an 

obligatorily uncoupled and heat-generating process that, in cooperation with 

mitochondria, plays a major role in thermogenesis (Visser et al., 2007). 

In higher eukaryotes, peroxisomes are the only site of α-oxidation. 3-methyl 

branched-chain fatty acids, such as phytanic acid, cannot undergo β-oxidation without 

first going through a step of α-oxidation. In this reaction, a terminal carboxyl-group is 
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removed as CO2, and the resulting 2-methyl fatty acid is further degraded by 

β-oxidation (Jansen and Wanders, 2006).  

Peroxisomes are also involved in the biosynthesis of ether-phospholipids, namely 

plasmalogens. Plasmalogens are the most abundant phospholipids in myelin, and are 

therefore essential for the development of the nervous system (Gorgas et al., 2006). 

Peroxisomes are responsible for the formation of the ether-bond present in these lipids, 

through the activity of alkyl-dihydroxyacetone phosphate synthase; further biosynthesis 

of these lipids is conducted in the ER.  

 
1.1.1.2. ROS metabolism in peroxisomes 

Many oxidative reactions take place in the peroxisomal lumen leading to the 

production of ROS (Antonenkov et al., 2010; Schrader and Fahimi, 2006b; Titorenko 

and Terlecky, 2011). The main by-product of peroxisomal fatty acid oxidation is H2O2 

which is produced by the transfer of hydrogen to molecular oxygen by oxidases. This 

compound can then be converted into more aggressive oxygen radicals. 

To balance out the production of ROS, peroxisomes also possess several 

antioxidant enzymes that degrade H2O2 to produce water and O2. The most well known 

is catalase which can metabolize, in addition to H2O2, a variety of substrates such as 

ethanol, methanol, phenols and nitrites (Kirkman and Gaetani, 2007). Other enzymes, 

such as manganese and copper-zinc superoxide dismutases are responsible for the 

degradation of superoxide anions and hydroxyl radicals. 

Although ROS have been shown to participate in cellular signalling (Murphy et 

al., 2011), an excess of these compounds can induce oxidative modifications of 

proteins, lipids and nucleic acids, and is associated with several pathological conditions 

such as cancer and neurodegenerative diseases (Bonekamp et al., 2009; Titorenko 

and Terlecky, 2011). 

 
 

1.1.2. Peroxisome Biogenesis 
Peroxisome formation and maintenance is dependent on a unique set of proteins 

called peroxins (Distel et al., 1996). Many of these proteins are conserved from yeast 

to mammals and mutations in their respective genes (PEX genes) are known to cause 

severe human disorders, such as Zellweger syndrome (Ebberink et al., 2011). Peroxins 

are usually grouped by their functions which can vary from the import of either matrix or 

membrane proteins, to membrane biogenesis and the regulation of peroxisome 

proliferation. Nevertheless, the main activity of some of these proteins is still unknown 
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and their proposed role in peroxisome biogenesis is based on the pleiotropic 

phenotypes of mutated cells and organisms. 

Peroxisomes possess two distinct molecular machineries responsible for the 

import of matrix proteins and membrane proteins (reviewed in Ma et al., 2011; 

Rucktaschel et al., 2011). The complex machinery responsible for matrix protein import 

is substantially different from the ones present in other cellular compartments, due to 

its ability to import completely folded, co-factor bound and even oligomeric proteins 

(Meinecke et al., 2010). In this regard, this machinery has recently been compared to 

the ER-associated protein degradation (ERAD) machinery, giving rise to the concept of 

an export-driven import (Schliebs et al., 2010).  

Also, in contrast to other organelles, the mechanism of peroxisome biogenesis is 

still a matter of debate, confronting a classical view of peroxisome generation by 

growth and division and a more recent view of de novo biogenesis from the ER (Mast 

et al., 2010). 

 
1.1.2.1. Peroxisomal matrix protein import 

According to the extended shuttle model, the import of matrix proteins can be 

divided in four steps: (1) receptor-cargo interaction; (2) docking at the peroxisome 

membrane; (3) translocation and release of cargo in the peroxisome lumen; and (4) 

receptor recycling (Rucktaschel et al., 2011).  

Sorting of matrix proteins is mediated by the cytosolic receptors Pex5 and Pex7 

which recognize, respectively, a PTS1 or PTS2 (Peroxisomal Targeting Signal type 1 

and 2) sequence in their target proteins. The PTS1 is composed of a noncleavable 

tripeptide SKL (or conserved variants) located at the very C-terminus of the protein, 

and is used by most peroxisomal matrix proteins (Brocard and Hartig, 2006). On the 

other hand, the PTS2 is a nonapeptide (R/K)(L/V/I/Q)XX(L/V/I/H/Q)(L/S/G/A/K) 

X(H/Q)(L/A/F) near the N-terminus of a smaller subset of proteins, which can be 

cleaved inside the peroxisome lumen (Lazarow, 2006). Some proteins lacking these 

sequences can also be imported by interacting with PTS containing proteins in a 

“piggyback” manner (Islinger et al., 2009). 

These receptors cycle between a soluble cytosolic form and an integral 

membrane-bound state. Upon receptor-cargo binding, the complex docks at the 

peroxisomal membrane with the docking complex, Pex13 and Pex14. The receptor is 

then thought to integrate into the membrane to form a transient cargo-translocation 

channel, releasing the cargo. In the end, the receptor is recycled by an export 

machinery that ubiquitinates the receptor (Pex4, Pex22, Pex2, Pex10 and Pex12) and 

removes it from the membrane (AAA-ATPase complex Pex1, Pex6 and Pex26). All the 
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membrane proteins involved in receptor docking, cargo translocation and receptor 

recycling are collectively termed the importomer (Brown and Baker, 2008; Meinecke et 

al., 2010).  

 
1.1.2.2. Trafficking and insertion of peroxisomal membrane proteins (PMPs) 

The mechanism by which PMPs are transported to and inserted in peroxisomes 

is still poorly understood. While some proteins are thought to be synthesized on free 

ribosomes in the cytosol and then transported to peroxisomes via Pex19 interaction, 

others are supposed to be targeted via ER-derived vesicles (Tabak et al., 2008). 

Pex19 is a cytosolic receptor/chaperone that interacts with an internal targeting 

sequence of PMPs (Pex19 binding site) and delivers them to a docking complex at the 

peroxisome membrane, while preventing their aggregation in the cytosol (Schueller et 

al., 2010; Shibata et al., 2004). At the membrane, Pex19 interacts with Pex3 and, by a 

mechanism that is still unknown, promotes PMP insertion into the membrane (Fang et 

al., 2004). Pex16 is also involved in this process and it has been shown to interact with 

Pex3, but its function remains elusive (Matsuzaki and Fujiki, 2008). These three 

peroxins are essential for peroxisome membrane biogenesis in mammals, and loss of 

either one of them results in the complete loss of peroxisomes and peroxisomal 

membranes (Steinberg et al., 2006).  

Transport of PMPs via the ER has been more recently debated and the transport 

of some peroxins by this pathway has been shown in different organisms (Hoepfner et 

al., 2005; Kim et al., 2006; Kragt et al., 2005). Proteins following this pathway are 

thought to gather in a specialized sub-domain of the ER and bud off in vesicles with the 

aid of Pex19. Recently, two reports have addressed this possibility in yeast (Agrawal et 

al., 2011; Lam et al., 2010). In a cell-free ER-budding assay using yeast cells, both 

articles report on the formation of vesicles containing Pex3 and either Pex15 (Lam et 

al., 2010) or Pex11 (Agrawal et al., 2011), which are formed in the presence of Pex19 

and cytosolic factors. Nevertheless, it is still unknown how this process is regulated, 

which PMPs follow this pathway, and the role of Pex19 in the formation of the ER-

derived vesicles.  

 

1.1.2.3. Peroxisome formation: growth and division vs de novo synthesis 
Peroxisomes are now regarded as semi-autonomous organelles that can multiply 

following a model of “growth and division”. Accordingly, peroxisomes grow by importing 

newly synthesized proteins from the cytosol and lipids from the ER, through close 

interactions with this organelle. Subsequently, peroxisomes follow a multistep pathway 
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that leads to their elongation, constriction and fission (Nagotu et al., 2010; Schrader 

and Fahimi, 2006a). 

Recently, however, it has been reported that in mutant cells lacking essential 

peroxins and which are therefore without peroxisomes, reintroduction of these genes 

leads to de novo formation of peroxisomes from the ER (Hoepfner et al., 2005; Nagotu 

et al., 2010). This model of ER-dependent “de novo synthesis” is supported by several 

observations (reviewed in Mast 2010). Some peroxins, namely Pex16, have been 

shown to travel to peroxisomes via the ER (Yonekawa et al., 2011). Nevertheless, 

findings in Saccharomyces cerevisiae indicate that peroxisomes in wild-type cells only 

multiply by growth and division (Motley and Hettema, 2007).  

The physiological significance of this process is still controversial and its 

relevance for the cellular pool of peroxisomes, when compared to the growth and 

division pathway, is still unknown. It might be that the de novo pathway only comes into 

play when, by defects in peroxisome segregation, a cell finds itself without peroxisomes 

(Mast et al., 2010). Overall, this raises the possibility of a semi-autonomous model 

where the ER supplies peroxisomes with some peroxins and lipids, enabling the growth 

and division of this organelle (Fig.1.2) (Hettema and Motley, 2009; Nagotu et al., 2010). 

 

 
Figure 1.2 – Model of peroxisome growth and division. Peroxisome membrane expansion is achieved 
mainly by the import of lipids derived from ER, presumably though both vesicular and non-vesicular 
pathways (i.e. by close interaction of peroxisomal and ER membranes). All matrix proteins and some 
PMPs are acquired by post-translation import from the cytosol after synthesis on free polysomes. In 
contrast, some PMPs are transported from the ER via ER-derived vesicles. Adapted from (Fagarasanu et 
al., 2010) 
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1.1.3. Peroxisome dynamics 
 

1.1.3.1. Proliferation 
Peroxisomes are highly dynamic organelles that adapt their morphology, 

abundance and distribution in response to a wide range of stimuli (Fig.1.3) (Kaur and 

Hu, 2009; Platta and Erdmann, 2007). 

Peroxisomal proliferation can be induced by nutritional and environmental cues 

such as increases in free fatty acid uptake, cold exposure and treatment with fibrates 

(Bagattin et al., 2010; Hoivik et al., 2004; Pollera et al., 1983). These stimuli induce an 

increase in the number and size of peroxisomes and promote the expression of several 

peroxisomal enzymes. In mammalian cells this response is mediated by a family of 

ligand-activated transcription factors, the peroxisome proliferator activated receptors 

(PPARs) (Rakhshandehroo et al., 2010). There are three different PPAR subtypes: 

PPARα, PPARβ/δ and PPARγ, that form heterodimers with the retinoid X receptor to 

bind peroxisome proliferator response elements (PPRE) in target genes. These 

transcription factors are usually activated by lipid-ligands and regulate the expression 

of genes associated with lipid metabolism and adipocyte differentiation (Kliewer et al., 

1992).  

PPARα is a major regulator of hepatic lipid metabolism, promoting the activation 

of genes involved in peroxisomal and mitochondrial β-oxidation. In addition to being 

activated by a wide variety of fatty acids, this receptor also binds synthetic ligands, 

namely fibrates, which can be used for the treatment of dyslipidemia (Staels and 

Fruchart, 2005). 

Peroxisome biogenesis can also be regulated by the PPARγ coativator-1α 

(PGC-1α) in brown fat tissue, in response to cold exposure. PGC-1α specifically affects 

enzymes responsible for β-oxidation, as well as Pex11β which promotes peroxisome 

proliferation. Unexpectedly, this effect is independent of PPARα and it induces genes 

that lack PPRE sites in their promoters (Bagattin et al., 2010). 

Additionally, dysfunction of peroxisomes can potentially promote the proliferation 

of other organelles, such as mitochondria, as a compensatory response. For example, 

impairment of peroxisomal biogenesis or function induces structural and functional 

changes in mitochondria (Baumgart et al., 2001). Conversely, loss of mitochondrial 

respiratory function promotes peroxisome proliferation (Epstein et al., 2001). 
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Figure 1.3 – Effect of several variables on peroxisome morphology, function and dynamics. 

 

1.1.3.2. Division of peroxisomes 
Growth and division of peroxisomes in mammalian cells is a multistep process 

that starts with the formation of elongated peroxisomes, constriction to a “beads-on-a-

string” morphology and final fission and formation of spherical organelles (Schrader 

and Fahimi, 2006a).  

The Pex11 family of proteins is implicated in the elongation of peroxisomal 

membranes in mammals, plants and yeast (Kaur and Hu, 2009; Schrader and Fahimi, 

2006a; Thoms and Erdmann, 2005). In general, an increase in Pex11 protein levels 

induces peroxisome proliferation, while a loss of function leads to fewer, enlarged 

peroxisomes. The three mammalian Pex11 isoforms, designated Pex11α, Pex11β and 

Pex11γ, are integral PMPs and have both their amino and carboxyl termini exposed to 

the cytosol. All Pex11 proteins interact with themselves, and are likely to form homo-

oligomers or homo-dimers (Koch et al., 2010; Thoms and Erdmann, 2005). Pex11α is 

the only isoform to be induced by peroxisome-proliferating agents. Pex11γ is the least 

studied isoform although new data suggests a role for it in the initiation of peroxisome 

elongation by interacting with either Pex11α or Pex11β (Koch et al., 2010). 

In mammals, Pex11β induces the most prominent peroxisome proliferation. 

Overexpression of this protein results in peroxisome tubulation, followed by an increase 

in peroxisome number (Schrader et al., 1998). However, in mutant cells lacking DLP1, 

overexpression of Pex11β induces hypertubulation without an increase in peroxisome 

number, suggesting that Pex11 proteins cannot constrict and divide peroxisomes 

themselves, most likely functioning upstream of DLP1 by promoting peroxisome 

membrane tubulation (Koch et al., 2003). Mice lacking Pex11β display many of 

pathological features of Zellweger syndrome, which include neuronal  migration 

defects, developmental delay, hypotonia and neonatal lethality (Li et al., 2002b). These 
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mice are only mildly affected in peroxisomal protein import and metabolism, suggesting 

that some of the pathological features of Zellweger syndrome are not caused by major 

alterations in metabolism but by compromising peroxisome dynamics. In contrast, mice 

lacking Pex11α are morphologically indistinguishable from wild-type ones (Li et al., 

2002a).  

The exact molecular mechanism by which these proteins promote organelle 

elongation is still a matter of discussion (Thoms and Erdmann, 2005). Recent data has 

shown that Pex11 proteins contain a conserved amphipathic helix at their N-terminus 

that interacts with membranes. This domain has been shown to mediate membrane 

curvature and elongation in vesicles with similar lipid composition to peroxisomal 

membranes (Opalinski et al., 2011). 

Peroxisome elongation also implies a segregation mechanism prior to 

constriction that enables the production of proficient peroxisomes. Recent data from 

our laboratory has shown that, upon inhibition of peroxisome constriction and division 

by a Pex11β-YFP fusion protein, peroxisomal membrane and matrix proteins are 

segregated to different regions of peroxisomal structures by an unknown mechanism 

(Delille et al., 2010). 

In recent years, several proteins of the molecular machinery responsible for 

peroxisome fission have been identified. This process is conserved from yeast to 

mammals and plants, and is mediated by members of the dynamin family of large 

GTPases. In mammals, peroxisome fission requires the dynamin-like protein DLP1 and 

the membrane adaptors Fis1 and Mff. DLP1 is believed to assemble into higher 

ordered ring-like structures in a GTP-dependent manner that wrap around membrane 

tubules to sever the membrane in a GTP hydrolysis-dependent process (Praefcke and 

McMahon, 2004). Fis1 and Mff are both C-tail anchored membrane proteins with 

cytosolic domains that favour protein-protein interaction. Fis1 contains an N-terminal 

tetratricopeptide repeat (TPR) motif, whereas Mff exposes its N-terminal part with a 

central coiled-coil motif into the cytosol (Gandre-Babbe and van der Bliek, 2008; 

Serasinghe and Yoon, 2008). Pex11β has been shown to form a heterocomplex with 

some of these proteins, namely Fis1 and DLP1 (Kobayashi et al., 2007), interacting 

indirectly with DLP1 through Fis1. Interestingly, some of these components are shared 

by both peroxisomes and mitochondria (see section 1.2.3) (Schrader, 2006). 

 

1.1.3.3.  Selective peroxisome degradation  

Upon withdrawal of a peroxisome proliferating stimulus, this process is 

reversed and excess particles are removed by pexophagy. This selective process of 
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degradation through an autophagy-related mechanism can occur by either 

macropexophagy or micropexophagy (Klionsky et al., 2007). 

Autophagy depends on the interplay between the organelle’s proteins with the 

autophagic machinery. In macropexophagy, peroxisomes are selectively surrounded by 

autophagosomal membranes while in micropexophagy one or more peroxisomes are 

engulfed by invaginations of vacuoles/lysosomes. In both processes, peroxisomes are 

degraded by lysosomal hydrolytic enzymes and recycled as free amino acids, lipids, 

and carbohydrates for macromolecular synthesis and/or energy production (Yorimitsu 

and Klionsky, 2005). Up to 30 different genes have been shown to control pexophagy, 

many of which are conserved from yeast to mammals. 

Pexophagy has been mainly studied in the methylotrophic yeast species 

Hansenula polymorpha and Pichia pastoris. In H. polymorpha two peroxins play a 

major role in the recognition of peroxisomes for macropexophagy - Pex3 and Pex14. 

One of the first steps in this process seems to be the removal of Pex3 from the 

peroxisomal membrane and its degradation, followed by recognition of peroxisomes 

containing Pex14 by the macroautophagic machinery (Todde et al., 2009). 

Peroxisome degradation in mammalian cells is not so well characterized. A few 

proteins such as Atg7, Pex14 and p62 have been associated with macropexophagy 

(Todde et al., 2009). Curiously, a second form of peroxisome degradation has been 

described involving peroxisome lysis. This process is mediated by 15-lipoxygenase and 

induces the release of peroxisomal contents that are then degraded by cytosolic 

proteases (Yokota, 2003).  

 
1.1.3.4. Peroxisome motility 

Eukaryotic cells strictly regulate the movement and distribution of their organelles 

in order to guarantee their optimal activity and inheritance to daughter cells. 

Like with other organelles, peroxisome movement through the cell is dependent 

on cytoskeletal tracks. In yeast and plants, peroxisomes move through the actin 

cytoskeleton with the aid of type-V myosins (Fagarasanu et al., 2010; Muench and 

Mullen, 2003), whereas in mammalian cells they have been shown to interact with 

microtubules both in vivo (Schrader et al., 1996) and in vitro (Schrader et al., 2000).  In 

mammals, the majority of peroxisomes (85-90%) exhibit a slow, energy-free and 

microtubule-independent oscillatory movement, while a smaller population (10-15%) 

exhibits a fast, directional movement which is dependent on microtubules. 

Peroxisomes move both towards and away from the cell centre, in a dynein and kinesin 

dependent manner (Kural et al., 2005; Schrader et al., 2003). Strikingly, the proteins 

16 
 



that recruit the translocation machineries to the peroxisomal membrane are yet to be 

found. 

Recently, Bharti et al. (2011) proposed a new role for Pex14 in the regulation of 

peroxisome motility. This peroxin, which is involved in the translocation of peroxisomal 

matrix proteins and has been associated with macropexophagy (de Vries et al., 2006), 

was shown to bind tubulin directly. The authors propose that this interaction is 

necessary to regulate peroxisome motility and suggest that this protein anchors 

peroxisomes to microtubules, promoting their degradation by pexophagy.  

Several microtubule-active drugs have been used to study the importance of 

microtubule-dependent movement for peroxisome dynamics (Schrader et al., 1996; 

Wiemer et al., 1997). Depolymerising agents, such as nocodazole, were shown to 

disrupt the intracellular distribution of peroxisomes while promoting organelle 

elongation. Although these organelles can still constrict and divide, their distribution is 

affected, suggesting that microtubule-dependent movement is important for the correct 

segregation of peroxisomes.  

In addition, cells from patients with peroxisomal disorders possess enlarged and 

less abundant peroxisomes, which tend to cluster and detach from microtubules. 

Overexpression of Pex11β in these cells promotes peroxisome proliferation and 

redistribution throughout the cell, suggesting that control over peroxisome dynamics is 

essential for peroxisome activity (Nguyen et al., 2006).  

 

 

1.1.4. Peroxisomal disorders 

The importance of peroxisomes for human health is demonstrated by a group of 

genetic disorders that promote peroxisome metabolic dysfunction and widespread 

organ pathology (Wanders, 2004). These disorders are characterised by severe 

alterations of neuronal development and by affecting several organs such as the liver 

and kidneys. 

Peroxisomal disorders are usually divided into two groups: peroxisome 

biogenesis disorders (PBDs) and peroxisomal single enzyme deficiencies (PEDs). 

In the case of PBDs, the affected protein is a peroxin, which is involved in the 

biogenesis and maintenance of peroxisomes (reviewed in Steinberg et al., 2006; 

Wanders and Waterham, 2005; Weller et al., 2003). As a result, cells either lack 

peroxisomes or only possess empty and non-functional peroxisomal membrane 

“ghosts”. The PBD group comprises Zellweger spectrum disorders (ZSS) (which 

include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) and infantile 

Refsum disease(IRD)) and rhizomelic chondrodysplasia punctata (RCDP) type I. 
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Patients with ZS usually die within the first year of life and suffer from severe 

neurological abnormalities, neonatal hypotonia, facial dysmorphism, hepatomegaly, 

renal cysts and adrenal atrophy. These diseases are characterized by an accumulation 

of very-long-chain fatty acids (VLCFA), bile acid precursors, pristanic and phytanic 

acid, and a decrease in plasmalogens synthesis. 

Patients with PEDs carry defects in one of several enzymes involved in 

peroxisomal metabolism, altering β-oxidation, ether-lipid synthesis, α-oxidation, 

glyoxylate detoxification and ROS metabolism (reviewed in Wanders et al., 2010; 

Wanders and Waterham, 2006b). The most common of these disorders is X-linked 

Adrenoleukodstrophy where β-oxidation is affected. This disease is caused by a defect 

in the ABCD1 gene which encodes an ABC half-transporter responsible for VLCFA 

transport into peroxisomes. Mutations in this gene inhibit the oxidation of VLCFA and 

thus induce the accumulation of these toxic lipids in the blood.  

The genetic basis of most peroxisomal disorders is now well known but the actual 

translation from the molecular/cellular phenotype to whole organism pathology is still a 

matter of discussion.  

 

 

1.2. The Peroxisome-Mitochondria connection 
 
General overview 

Mitochondria and peroxisomes are ubiquitous subcellular organelles that share 

morphological and functional similarities. They are highly dynamic and exhibit great 

plasticity, adopting a variety of shapes.   

Mitochondria are generally seen as the powerhouse of the cell, generating most 

of the energy derived from the breakdown of lipids and carbohydrates. They have an 

unusual structure organized by two membranes, in which the inner membrane is highly 

folded into cristae and is the main site of ATP synthesis (McBride et al., 2006). 

Most peroxisomal and mitochondrial proteins are synthesized on free 

polyribosomes on the cytoplasm and are directed to each organelle by specific 

targeting sequences. The import of proteins to each organelle is selective and depends 

on the presence of targeting factors, receptors and different translocation machineries.   

Peroxisomes and mitochondria have long been shown to share some metabolic 

functions, such as β-oxidation and ROS degradation (see section 1.2.1), but it was only 

recently that other interconnections became evident (Schrader and Yoon, 2007). For 

instance, peroxisomes and mitochondria share components of their division machinery, 
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coordinate antiviral response and may communicate through a mitochondria-to-

peroxisome vesicle pathway (Fig.1.4) (Dixit et al., 2010; Neuspiel et al., 2008; 

Schrader, 2006). In line with this, as the basic components of these pathways are 

shared by both organelles, dysfunction of these components is likely to affect both 

organelles and lead to combined diseases (Camões et al., 2009).  

 
 

1.2.1. Metabolic cross-functions 
1.2.1.1. Beta oxidation 

In animals, both peroxisomes and mitochondria perform fatty acid β-oxidation, 

while in plant cells and eukaryotic microorganisms, peroxisomes are thought to be the 

only site of fatty acid β-oxidation, which makes them essential for the use of fatty acids 

in these organisms (Poirier et al., 2006).  

Although the steps of fatty acid β-oxidation in mitochondria and peroxisomes are 

identical, each organelle possesses its own set of enzymes, which differ in their 

molecular and catalytic properties. Furthermore, each organelle is responsible for the 

breakdown of different substrates, as peroxisomes oxidize more complex compounds 

such as VLCFA, dicarboxylic acids, bile acid precursors, prostanglandins, leukotrienes 

and mono- and polyunsaturated fatty acids, whereas mitochondria degrade the majority 

of long-chain fatty acids (LCFA) such as palmitate, oleate and linoleate, supplying 

acetyl-CoA for ATP production and anabolic reactions (Schrader and Yoon, 2007).  

In contrast to mitochondria, the peroxisomal β-oxidation system is unable to 

completely degrade fatty acids, thus shuttling its products to mitochondria for full 

oxidation. This process involves a coordinated regulation of both organelles’ lipid 

metabolism, as well as metabolite transfer through a mechanism that is still not well 

understood (Visser et al., 2007).  

Furthermore, the PPARγ coactivator-1α (PGC-1α) has been recently identified as 

a common regulator of peroxisome and mitochondria remodelling and biogenesis, in 

brown fat tissue (Bagattin et al., 2010). PGC-1α plays a central role in the regulation of 

energy homeostasis and is strongly induced in response to cold exposure, linking this 

environmental stimulus to adaptive thermogenesis.  
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Figure 1.4 – Schematic view of peroxisomal and mitochondrial cooperation and cross-talk. MDV, 
mitochondrial derived vesicle; ROS, reactive oxygen species; VLCFA, very long-chain fatty acids; LCFA, 
long-chain fatty acids; MCFA, medium-chain fatty acids; β-OX, fatty acid β-oxidation; CAT, catalase; RC, 
respiratory chain; ATPsyn; ATP synthetase. Adapted from (Schrader and Yoon, 2007) 

 

1.2.1.2. ROS metabolism 
ROS are on the one hand critical regulators of multiple cellular signalling 

pathways but on the other, they can act as negative counterparts of metabolic activity, 

damaging lipids, proteins and nucleic acids.  

In mammalian cells, peroxisomes and mitochondria are two major sources of 

ROS and have a key role in the maintenance of the cellular redox balance. Thus, 

dysfunction in either organelle that leads to ROS generation is prone to promote 

pathological conditions such as cancer and neurodegenerative disordes, and has been 

associated with ageing (Beal, 2005; Bonekamp et al., 2009; Titorenko and Terlecky, 

2011).  

Peroxisomes contain several enzymes responsible for the production of H2O2, O-
2 

and NO, as metabolic by-products. They also contain several anti-oxidant enzymes 

such as catalase, Cu/Zn-superoxide dismutase and peroxiredoxin V (Schrader and 

Fahimi, 2006b). Mitochondria produce superoxide radicals mainly through complex I 
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and complex III of the respiratory chain, which can be decomposed by several 

enzymes such as manganese superoxide dismutase, glutathione dismutase and 

glutathione peroxidase.  

How each organelle contributes to the cellular pool of ROS is still a matter of 

debate. The concept that mitochondria are the main source of cellular ROS has been 

recently disputed (Brown and Borutaite). Meanwhile, a recent paper regarding the 

effects of ROS on different cellular compartments has extended the understanding of 

the redox connection between peroxisomes and mitochondria (Ivashchenko et al., 

2011). Interestingly, it was reported that an increase in ROS generation inside 

peroxisomes disturbs the mitochondrial redox state. Also, in catalase-deficient cells, 

peroxisomes maintain their redox balance while the mitochondrial membrane potential 

is significantly altered. This suggests that peroxisomes hold a mechanism to cope with 

alterations in their redox state, while signalling a mitochondrial stress response. In line 

with this, previous reports have shown that increasing peroxisomal catalase levels 

restore mitochondrial integrity in late-passage human cells (Koepke et al., 2007), while 

reducing catalase activity affects mitochondrial membrane potential and stimulates the 

cell’s ageing process (Koepke et al., 2008; Titorenko and Terlecky, 2011).  

 

1.2.1.3. Biotin synthesis 
Biotin, also known as vitamin B7, is a cofactor essential for many cellular 

carboxylation and decarboxylation reactions, fatty acid biosynthesis, gluconeogenesis 

and amino acid metabolism (Streit and Entcheva, 2003). In plants and fungi part of the 

biosynthesis of this compound takes place in mitochondria, whereas the initial steps 

that lead to its production remain largely unknown. 

Recently, a new role for peroxisomes in the synthesis of biotin was described by 

Tanabe et al. (2011) in plants and fungi. The authors show that BioF, a protein 

responsible for one of the early steps of biotin synthesis, has a PTS1 sequence both in 

plants and fungi. Moreover, the targeting of this protein to peroxisomes in required for 

biotin biosynthesis. This finding reinforces the stance of peroxisomes as a multipurpose 

organelle and strengthens the metabolic connection between peroxisomes and 

mitochondria. 
 
 

1.2.2. Cooperative antiviral signalling 
The cellular antiviral response is usually triggered by the recognition of viral 

components in the cytoplasm. Viral genomes can be detected by soluble RNA 

helicases, such as RIG-I and MDA5, which interact with the mitochondrial TA protein 
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MAVS, triggering a signalling pathway that promotes antiviral defence (Kumar et al., 

2011).  

Recently, it has been shown that MAVS also localizes to peroxisomes, and that 

peroxisomes in concert with mitochondria serve as signalling platforms in antiviral 

defence. This new peroxisomal function highlights the important role of this organelle in 

health and disease. Both peroxisomal and mitochondrial MAVS are required for a 

strong antiviral response (Dixit et al., 2010): peroxisomal MAVS promotes an early 

response through the induction of interferon-stimulating genes (ISGs), providing short-

term protection, whereas mitochondrial MAVS induces a delayed response through the 

induction of ISGs and type I interferons, amplifying and stabilizing the antiviral 

response. Interestingly, activation of the MAVS pathway induces mitochondrial 

elongation, which, in turn, modulates antiviral signalling downstream from MAVS 

(Castanier et al., 2010). In line with this, viral stimulation also induces the formation of 

peroxisomal tubules (Dixit et al., 2010), suggesting that a change on this organelle’s 

morphology might also contribute to the antiviral response. 

 
 

1.2.3. Organelle division by DLP1, Fis1 and Mff 
It is now evident that mitochondria and peroxisomes share components of their 

fission machinery, following a similar division strategy for mammals, yeast and plants 

(Fig.1.5) (Delille et al., 2009). The first protein discovered to be involved in this process 

in both organelles was the dynamin-like protein DLP1 (Dnm1 in yeast), a large GTPase 

that is involved in the tubulation and fission of cellular membranes (Li and Gould, 

2003). Although DLP1 is cytosolic, fractions of this protein are recruited to the organelle 

membrane at sites of constriction. DLP1 oligomers form a ring-like structure that wraps 

around constricted membranes, inducing final membrane fission in a GTP hydrolysis-

dependent manner. In line with this, inhibition of DLP1 function leads to the formation 

of highly elongated peroxisomes and mitochondria (Koch et al., 2003). Even though 

they are unable to divide, these peroxisomes still display a constricted morphology, 

which indicates that DLP1 is necessary for fission but not for constriction (Koch et al., 

2004).  

Recruitment of DLP1 to mitochondria and peroxisomes requires adaptor proteins 

present at the organelle membrane. The TA adaptor protein Fis1 is present on both 

organelles, and in yeast it interacts with Mdv1 and Caf4 in order to anchor Dnm1 to the 

membrane (Koch et al., 2005; Motley et al., 2008). In mammals, Fis1 has been shown 

to affect organelle division: inhibition of Fis1 results in the elongation of mitochondria 

and peroxisomes while its overexpression promotes organelle division/fragmentation 
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(Koch et al., 2005). However, the role of this protein in DLP1-dependent fission in 

mammalian cells is still a matter of discussion. Fis1 localizes throughout the membrane 

in contrast to the punctate localization of DLP1, and the downregulation of Fis1 only 

partially inhibits the recruitment of DLP1 to the membrane. Also, knockout of this gene 

in a carcinoma cell culture model did not hamper mitochondrial fission (Otera et al., 

2010). Accordingly, another protein has been proposed to anchor DLP1 to the 

mitochondrial membrane. Mff (mitochondrial fission factor) is the most recent 

component of the fission machinery to be found on both organelles (Gandre-Babbe and 

van der Bliek, 2008). This protein has been shown to recruit DLP1 to mitochondria and 

promote mitochondrial fission. Furthermore, knockdown of Mff promotes peroxisome 

and mitochondrion elongation, similar to that observed after DLP1 silencing.  

It is probable that more components of the fission machinery, which are yet to be 

identified, are shared by both organelles. 

As a matter of fact, two new proteins have recently been identified as part of the 

mitochondrial division machinery (Fig.1.5). The N-tail anchored membrane proteins 

Mid49 and Mid51 were shown to form foci and rings at the mitochondrial membrane, 

suggesting a role for these proteins in the recruitment of DLP1 for mitochondrial fission 

(Palmer et al., 2011). Interestingly, Zhao et al. (2011) has also shown that Mid51 

recruits DLP1 to the mitochondrial membrane but proposes that this protein sequesters 

DLP1, inhibiting mitochondrial fission. Furthermore, this report also shows an 

interaction between Fis1 and Mid51, that it is mutually exclusive from its interaction 

with DLP1. Subsequently, a new model for the regulation of mitochondrial fission/fusion 

has been proposed (Dikov and Reichert, 2011)  

Peroxisome Mitochondrion
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Fis1 DLP1

Mff
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MiD49 MiD51

DLP1

 
Figure 1.5 – Peroxisomal and mitochondrial fission. Organelle division requires the TA protein Mff, 
which is thought to recruit DLP1 to the membrane to promote organelle fission. Fis1 also contributes to 
organelle fission although its function in mammals is still a matter of discussion. In peroxisomes, Fis1 has 
been shown to interact with the elongation factor Pex11β. In contrast, in mitochondria two new factors – 
MiD49 and MiD51 – have also been associated with the regulation of mitochondrial fission/fusion. The 
interaction of these proteins with Fis1 suggests a regulatory function for Fis1 in mitochondria. 
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1.2.4. Peroxisome to mitochondria vesicular trafficking 
Recently, McBride and colleagues proposed a novel vesicular transport pathway 

from mitochondria to peroxisomes in mammalian cells (Neuspiel et al., 2008). The 

authors identified a new mitochondrial-anchored protein ligase (MAPL), which is a 

small ubiquitin-like modifier (SUMO) E3 ligase that positively regulates the fission 

GTPase DLP1. This protein is incorporated into a set of mitochondria-derived vesicles 

(MDVs) that form by lateral segregation of the mitochondrial membrane in a DLP1-

independent manner. Through live-cell imaging experiments, MAPL-positive MDVs 

were observed to fuse with a small subpopulation of peroxisomes. It was also 

demonstrated that MAPL is found in a complex with Vps35 and Vps26 (Braschi et al., 

2010). These two proteins are part of the retromer complex which is responsible for the 

vesicle transport from endosomes to the Golgi apparatus. Silencing of these two 

proteins inhibited the formation of MAPL-positive MDVs and their delivery to the 

peroxisome, confirming the function of the retromer complex in the modulation of MDV 

formation and transport to the peroxisome. 

Although the physiological function of this pathway is still unknown, it may act as 

a new means for the transport of proteins, lipids or metabolites to a subpopulation of 

peroxisomes. This pathway might also retrieve peroxisomal proteins which have been 

mistargeted to mitochondria due to some overlap in the targeting sequences of 

peroxisomal and mitochondrial proteins (Schrader and Fahimi, 2008). 

 
 

1.2.5. Organelle dynamics and disease 
Due to their important roles in cellular metabolism, peroxisomal and mitochondrial 

dysfunction can lead to severe neurological and developmental disorders (Camoes et 

al., 2009). 

Mitochondrial disorders are a heterogeneous group of diseases associated with 

severe muscular and neuronal dysfunction (DiMauro, 2004). Defects in mitochondrial 

fission/fusion proteins affect the number, shape and distribution of mitochondria in the 

cell, altering several pathways such as calcium signalling, neuronal plasticity and 

apoptosis. Mitochondrial networks are thought to promote rapid membrane potential 

transmission and offer a pathway for defective mitochondria to regain their lacking 

components through fusion with other mitochondria (Detmer and Chan, 2007). 

Furthermore, elongated mitochondria are able to escape autophagic degradation and 

maintain ATP production, sustaining cell viability (Gomes et al., 2011). The advantages 

of fission are not yet clear, but this process enables the transport of mitochondria to 

24 
 



different cellular locations and is thought to allow mitophagy by segregation of defective 

mitochondria. 

Owing to the importance of mitochondrial dynamics in cell function and its effect 

on disease, alterations in peroxisomal dynamics may as well have a major role in 

cellular dysfunction. Since the basic components of the fission machinery are shared 

by both organelles, it is likely that defects in these proteins affect both organelles and 

lead to combined diseases.  

In line with this, the first case of a newborn with a defect in the division machinery 

of both organelles has been recently reported (Waterham et al., 2007). The patient, 

who died few weeks after birth, showed signs of both mitochondrial and peroxisomal 

dysfunction, such as defects in lipid metabolism and mitochondrial respiration. A close 

analysis of the patient’s genotype revealed a dominant-negative mutation in the middle 

domain of the DLP1 protein, which interfered with the ability of DLP1 to form oligomers 

(Chang et al., 2010). Furthermore, skin fibroblasts from the patient showed elongated 

peroxisomes and mitochondria, which indicate a block in DLP1-dependent fission.  

Moreover, a DLP1 knockout mouse has been generated which shows 

developmental abnormalities that result on embryonic lethality (Ishihara et al., 2009). 

Cells from these mice show elongated peroxisomes and mitochondria, confirming the 

results obtained with siRNA and mutational studies in cell culture.  

At present, it is unclear to what extent defects in mitochondrial or in peroxisomal 

function contribute to the clinical phenotype of the patient and to the pathological 

alterations observed in the knockout models.  

Moreover, since peroxisomes and mitochondria are involved in ROS metabolism, 

alterations in the production and scavenging of ROS are thought to promote the onset 

of several disorders such as Type 2 diabetes, inflammation, cancer and 

neurodegenerative conditions such as Parkinson’s disease and Alzheimer’s disease 

(Kou et al., 2011). Additionally, they have also been associated with ageing (Beal, 

2005; Titorenko and Terlecky, 2011).  

 

 

1.3. Dual targeting of TA proteins to peroxisomes and mitochondria 
 

General overview 
As mentioned above, peroxisomes and mitochondria share some components of 

their fission machinery and antiviral responsive elements. Surprisingly, all known 

membrane anchored proteins that are shared by these organelles are TA proteins 
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(Fis1, Mff and MAVS). This feature is quite interesting and it allows us to investigate 

the mechanism through which these proteins are selectively transported to their 

organelles, how they are inserted and, on a broader view, the evolutionary process that 

favoured their function on both organelles.  

Tail-anchored (TA) proteins constitute a heterogeneous group of integral 

membrane proteins that mediate several essential biochemical activities, such as 

vesicular trafficking, apoptosis, signal transduction and redox reactions (Borgese and 

Fasana, 2011). In eukaryotes, these proteins can be found in the mitochondrial and 

chloroplast outer membrane, peroxisomes, and intracellular compartments that are 

connected to the secretory and endocytic pathway. 

TA proteins are characterized by a N-terminal cytosolic region that usually 

contains the functional domains, a single hydrophobic transmembrane domain (TMD) 

located near the C-terminus, that anchors them to the lipid bilayer, and a short C-

terminal polar tail with no more than 30 amino acids, that protrudes into the organelle 

matrix (Fig.1.6) (Borgese et al., 2003). Due to the proximity of the TMD to the C-

terminus, this tail only emerges from the ribosome after complete translation, and thus, 

these proteins are only inserted into membranes post-translationally. 
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Figure 1.6 – Pathways of TA protein targeting and insertion in cellular membranes. After being 
released from a ribosome, a TA protein can insert into the ER, the mitochondrial outer membrane or the 
peroxisomal membrane. Targeting and transport to the ER is promoted by the GET pathway, whereas 
transport and insertion into the peroxisomal membrane is thought to depend on the cytosolic peroxin 
Pex19. No mechanism has yet been unveiled for transport and insertion of mitochondrial TA proteins. The 
structure of a typical TA protein is depicted in the cut out. 
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Upon being released from ribosomes, new proteins are immediately targeted and 

inserted into their respective membrane (Borgese et al., 2007; Rabu et al., 2009). The 

signalling for targeting is usually within the tail region, containing the TMD and flanking 

residues. For example, the TMD and C-terminus of the mammalian TA protein Fis1 are 

sufficient for its targeting to both organelles, while the N-terminal region is necessary 

for its function but not for targeting (Delille and Schrader, 2008). 

 

 

1.3.1. Targeting and insertion of TA proteins  
For some years several mechanisms of targeting and insertion of TA proteins to 

their respective membrane have been debated (reviewed in Borgese and Fasana, 

2011). Early theories proposed a spontaneous insertion of TA proteins into the lipid 

bilayer in the absence of a translocation machinery. However, it is unlikely that all TA 

proteins are inserted by this mechanism, which would inevitably induce the 

mistargeting to several membranes and complicate the regulation of their function. In 

vitro studies revealed that, in fact, some proteins follow an unassisted pathway by 

which proteins with weakly hydrophobic TMDs spontaneously integrate into 

membranes. An example of this is mammalian cytochrome b5, which, in vitro, is 

inserted in the lipid bilayer in the absence of a translocation machinery or cytosolic 

factors (Brambillasca et al., 2005; Colombo et al., 2009). Nevertheless, most TA 

proteins are thought to follow a chaperone-mediated targeting pathway, and assisted 

insertion in the membrane (Fig.1.6). 

Several mechanisms have been proposed for the biogenesis of ER-targeted TA 

proteins (reviewed in Rabu et al., 2009). The best described is the TRC40 or Get3 

pathways in mammals and yeast, respectively (Schuldiner et al., 2008). These proteins 

recognize and selectively bind the TMD of TA proteins in the cytosol and target them to 

ER receptors. There, the protein is released for insertion into the lipid bilayer. This 

pathway is regulated by ATP binding and hydrolysis by the TRC40 and Get3 proteins. 

The pathway followed by mitochondrial and peroxisomal TA proteins is still 

mainly unknown. Mitochondrial TA proteins have a TMD of moderate hydrophobicity 

that can be flanked by positive charges on one or both sides (in mammals). Although 

recent work has excluded the TOM complex for the insertion of some of these proteins 

(Setoguchi et al., 2006), TOM20 and TOM22 have been implicated in the import of 

Bcl-2 and Bax, respectively (Bellot et al., 2007). On the other hand, peroxisomal TA 

proteins also possess moderately hydrophobic TMDs and have a positively charged 

C-terminal polar region. Studies on the targeting of peroxisomal proteins are more 

complicated since there are few known TA proteins in this organelle (i.e. Pex26, Fis1, 
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Mff and MAVS), and there are so far three different mechanisms through which 

peroxisomal membrane proteins are targeted to peroxisomes (Camoes et al., 2009). 

The most likely pathway for these proteins is the Pex19 pathway used by PMPs. In 

fact, Pex26 and Fis1 are both delivered to peroxisomes by a Pex19-dependent 

mechanism (Delille and Schrader, 2008; Halbach et al., 2006), and it is probable that 

other peroxisomal TA proteins are also targeted by this pathway. 

 
 

1.3.2. Other TA proteins on mitochondria 
In this study the intracellular localization and function of the TA proteins Miro and 

monoamine oxidase (up to now identified solely on mitochondria) will be addressed. 

 

1.3.2.1. Monoamine oxidases  
Monoamine oxidases  (MAOs) A and B are mitochondrial TA proteins responsible 

for the oxidative deamination of dietary amines and monoamine neurotransmitters such 

as serotonin, norepinephrine and dopamine (Shih et al., 1999). Both proteins are 

present in most mammalian tissues, but the proportions of each vary among tissues. In 

peripheral tissues such as the intestine and liver, these proteins seem to protect the 

body by oxidizing amines from the blood or preventing their entry into the circulation. In 

the nervous system, MAOs are responsible for the rapid degradation of 

neurotransmitters, ensuring the proper function of synaptic neurotransmission, 

regulating emotional behaviour and other brain functions (Youdim et al., 2006). Due to 

their importance in brain development, several studies have focused on the genetic 

variability that determines the activity of these proteins and their relation to personality 

and addictive behaviours (Shih et al., 1999). In fact, inhibitors of these proteins were 

the first drugs developed to treat depression due to their mood-enhancing activity, 

based on their ability to increase the levels of serotonin and dopamine (Zeller and 

Barsky, 1952). Also, since the by-products of MAO activity (e.g. hydrogen peroxide and 

ammonia) have neurotoxic potential, their excessive activity is associated with 

mitochondrial damage and neurodegenerative conditions. Therefore, MAO inhibitors 

have also been tested in the treatment of several neurodegenerative diseases, with 

positive results in the treatment of Parkinson’s disease (Bortolato et al., 2008; Youdim 

et al., 2006).  

 
1.3.2.2. Miro proteins 

Miro proteins are a subclass of Ras GTPases with key importance for the 

distribution of mitochondria in yeast, plants and animals (Reis et al., 2009). Human 
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Miro1 and Miro2 share 60% homology and contain two GTPase domains flanked by 

two calcium-binding EF-hand motifs (see Fig.3.3). Miro proteins are known to regulate 

mitochondrial transport along microtubules by linking this organelle to kinesin motors in 

a complex with Grif-1 or OIP106 (Liu and Hajnoczky, 2009). Recent studies have 

shown that Miro1 functions as a calcium sensor, promoting mitochondrial anchoring in 

active synapses where glutamate signalling induces high intracellular calcium 

concentrations (Macaskill et al., 2009b). This function is of critical importance for 

synapse formation and neuronal development due to the high energy demands of 

these processes. 

Several reports have shown that the expression of Miro proteins with mutations, 

either in their first GTPase domain or in the calcium binding domains, promotes 

alterations in mitochondrial morphology and distribution (reviewed in Liu and 

Hajnoczky, 2009). Curiously, mutations of the yeast homolog Gem1p and the plant 

homologs of Miro also affect mitochondrial distribution and morphology, even though 

mitochondria are transported via the actin cytoskeleton in these organisms (Koshiba et 

al., 2011).  

Besides forming a complex with Grif-1/OIP106 and kinesin motors, Miro proteins 

have also been shown to interact with Pink1, a kinase associated with Parkinson’s 

disease and HUMMR, a protein sensitive to hypoxic conditions (Li et al., 2009; 

Weihofen et al., 2009). Although the mechanism and functional importance of these 

interactions is still unknown, this data combined with Miro’s activity in yeast and plants, 

reveals a broader activity of this protein in regulating mitochondrial dynamics than 

simply linking this organelle to motor proteins. 
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1.4. Objectives 
 

It is now evident that peroxisomes and mitochondria exhibit a closer 

interrelationship than previously appreciated. This connection includes metabolic 

cooperation/crosstalk, as well as an overlap in key components of their division and 

antiviral machinery. As both organelles are indispensable for human health and 

development, there is currently great interest in the identification and functional 

characterization of novel proteins targeted to both organelles.  

The main objective of this project is thus to identify and characterize novel 

proteins that are dually targeted to peroxisomes and mitochondria. For this, I will study 

the role of TA proteins on the molecular connection between peroxisomes and 

mitochondria, following two mains approaches.  

First, I will perform an antibody/expression-based screening approach to study 

the cellular localization of known mitochondrial TA proteins, specifically of MAO-B, 

Miro1 and Miro2. This will be followed by a functional characterization of the proteins 

which are found to be dually targeted to peroxisomes and mitochondria, through the 

analysis of phenotypic alterations in peroxisome morphology and dynamics.  

Additionally, a bioinformatics analysis of the Ustilago maydis proteome will be 

performed to identify putative TA proteins. This model system, which has been recently 

introduced in our laboratory, shares many important processes (e.g. long-distance 

microtubule transport, polarized growth) with human cells and provides the technical 

advantages of yeast cells. Moreover, a genome-wide comparison of the predicted U. 

maydis, S. cerevisiae and human proteomes revealed that U. maydis shares more 

protein sequence similarity with humans than with yeast (Munsterkotter and Steinberg, 

2007). More importantly, several of the shared proteins have been related to serious 

human diseases and a large portion is of unknown function. This model system is 

therefore a potentially important tool to understand the abnormal developmental 

processes that occur in certain human peroxisome and mitochondrial metabolic 

disorders. 
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2.1. Materials 
 

2.1.1. Reagents 
HEPES sodium salt, para-Formaldehyde, Triton X-100, sodium chloride (NaCl), 

potassium chloride (KCl), sodium phosphatase dibasic (Na2HPO4), potassium 

phosphate dibasic (KH2PO4), ethylenediamine tetraacetic acid (EDTA), sodium dodecyl 

sulfate (SDS), bromophenol blue, dithiothreitol (DTT), β-mercaptoethanol, glycine and 

kanamycin disulphate salt were purchased from Sigma-Aldrich (Steinheim, Germany). 

Ethidium bromide, dextrose and n-propyl-gallate were acquired from Fluka (Steinheim, 

Germany). Acetic acid, sodium hydroxide (NaOH), ethanol and methanol were 

purchased from Merck-Schuchardt (Darmstadt, Germany). Agarose NEEO, bovine 

serum albumin (BSA) fraction V, Tris, potassium acetate (KAc) and glycerol were 

purchased from Roth (Karlsruhe, Germany). Dulbecco’s modified Eagle’s medium 

(DMEM), fetal bovine serum Gold (FBS), penicillin/streptomycin and trypsin-EDTA 

were all purchased from PAA (Pasching, Austria). Trypsin was obtained from Promega 

(Wisconsin, USA) and polyethylenimine (PEI) was acquired from Sigma-Aldrich 

(Missouri, USA). Mowiol 4-88 reagent was purchased from Calbiochem/Merck 

(Darmstadt, Germany). Immersion oil type F was obtained from Olympus (Japan). LB 

broth was purchased from Formedine (Norfolk, UK). AgeI, BglII, Antarctic phosphatase, 

T4-ligase, KOD DNA polymerase and RNase were all purchased from New England 

Biolabs (United Kingdom). TurboFect, O’Gene Ruler DNA ladder mix and 6x Orange 

loading dye were purchased from Fermentas (France). Amersham ECL Advance 

solutions were obtained from GE Healthcare (Buckinghamshire, UK) and Precision 

Plus Protein Dual Color Standart was obtained from Bio-Rad (Munich, Germany). 

 

2.1.2. Antibodies 
 
Table 2.1. Primary and Secondary antibodies.  

Primary Antibodies 
Dilution Source 

IMF WB 

Monoamine oxidase B (pc mouse) 1:100 - Abcam 
Cambridge, England 

RhoT1 (Miro1) (pc rabbit)  - 1:250 Sigma-Aldrich 
Schnelldorf, Germany 

Myc (mc mouse) 1:200 - Santa Cruz Biotechonology, 
Santa Cruz, USA 

Myc (mc rabbit) 1:200 - Cell Signaling Technology 
Massachusetts, USA 
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TOM20 (mc mouse) 1:200 - BD Transduction Laboratories 
San Diego, USA 

Pex14 (pc rabbit) 1:1400 1:4000 Kind gift from D.Crane Griffith 
University, Brisbane, Australia 

Porin (mc mouse) - 1:500 Abcam 
Cambridge, England 

    

Secondary Antibodies 
Dilution 

Source 
IMF WB 

AlexaFluor 488  Donkey anti Rabbit IgG 1:400 - 
Molecular Probes, as part of 
Invitrogen Life Techonologies 

Eugene, USA 

AlexaFluor 488 Donkey anti Mouse IgG 1:400 - 
Molecular Probes, as part of 
Invitrogen Life Techonologies 

Eugene, USA 

TRITC Donkey anti Mouse IgG 1:100 - Dianova 
Hamburg, Germany 

TRITC Donkey anti Rabbit IgG 1:400 - Dianova 
Hamburg, Germany 

HRP Goat anti Mouse IgG - 1:2000 Bio-Rad 
Munich, Germany 

HRP Goat anti Rabbit IgG - 1:2000 Bio-Rad 
Munich, Germany 

Hoechst dye 1:2000 - Polysciences, Inc. 
Eppelheim, Germany 

Abbreviations: IMF, immunofluorescence; WB, western blot; mc, monoclonal; pc, polyclonal; 
HRP, horseradish peroxidase. 

 

2.1.3. Constructs  
Myc-tagged human Miro1 and Miro2 constructs – wild-type, V13, N18, EF 

(K208K328) and ∆TM – have been previously described (Fransson et al., 2006) and 

were generously offered by  Dr. Pontus Aspenström (Karolinska Institute, Sweden). 

The V13 and N18 constructs are mutated in the first GTPase domain: the former is 

constitutively active whereas the latter is dominant negative. The mutations change 

amino acid residue 13 for a valine (V) and 18 for an asparagine (N). The EF construct 

is mutated in the two calcium binding EF-hand domains and is therefore unable to bind 

calcium. This mutation changes amino acid residues 208 and 328 to lysines (K). The 

∆TM mutant lacks the TMD and C-terminal tail. Plasmid DNA was amplified following 

the protocol for E.coli transformation (see section 2.2.3) and subsequently amplified by 

midi preparation (see section 2.2.4).  

For the cloning of Myc-tagged Miro proteins directed to peroxisomes, the pAH26 

vector was used (Halbach et al., 2006), which was a kind gift from Dr. Ralf Erdmann 

(University of Bochum, Germany). The pAH26 vector comprises a GFP protein with an 

artificial tail that directs it to the peroxisomal matrix (Fig.2.1). This tail is composed by 
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the Pex26 tail region, which contains a Pex19 binding site, and two TMDs from the 

adrenoleukodystrophy protein (ALDP). These TMDs are part of the peroxisomal 

membrane protein targeting signal but lack the Pex19 binding site. 

 
 

Figure 2.1 – Structure of Myc-Miro constructs. 
 

 

2.2. Cloning of peroxisome targeted Miro proteins 
 

2.2.1. Amplification and isolation 
Myc-Miro1 and Myc-Miro2, wild-type and EF mutant, were amplified by PCR from 

the pRK5-Myc-Miro constructs described before (Fransson et al., 2006). The following 

primers were used: Myc-forward 5’ GGAACCGGTCACCATGGAGCAGAAGC 

TGATC 3’, Miro1-∆TM-reverse 5’ GGAAGATCTAAACGTGGAGCTCTTGGGGTC 3’ 

and Miro2-∆TM-reverse 5’ GAAGATCTCCGGAGCCAGAAGGAAGAGGG 3’. KOD 

DNA polymerase (Thermococcus kodakaraensis) was used due to its high efficiency 

proof-reading activity, therefore minimizing mutation probability. The same program 

was followed for the 4 PCR reactions: 95°C for 30 seconds (1 cycle); 95°C for 30 

seconds, 64°C for 20 seconds and 70°C for 2 minutes (25 cycles); and 70°C for 10 

minutes (1 cycle). 

DNA electrophoresis was performed in 1x TAE buffer (0.8 mM Tris, 0.4 mM 

acetic acid, 0.02 mM EDTA, in ddH2O, diluted from a 50x stock solution) in an agarose 

gel (0.8-1% agarose in TAE buffer) stained with ethidium bromide (0.5 µg/ml). 

Separation was performed at maximal 5 V per cm electrode distance (60 to 75 V) for 

45 to 90 minutes. DNA samples were mixed with 6x Orange loading dye buffer and 

loaded to individual wells. A DNA ladder was also loaded to one well to compare band 
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sizes. Gel images were taken using the AlphaImager HP system and processed with 

the AlphaImager Software 1.01.10 (Cell Biosciences, USA). Specific DNA bands were 

excised with a scalpel under UV light and transferred to eppendorf tubes. DNA isolation 

and purification was done with the NucleoSpin Extract II kit (Macherey-Nagel, 

Germany), following the manufacturer’s protocol up to the eluting step, in which 30 µl of 

milliQ water were used. 

 

2.2.2. DNA restriction, dephosphorylation and ligation 
Myc-Miro (insert) and pAH26 vector DNAs were digested with the restriction 

enzymes AgeI and BglII (in NEBuffer 2) at 37°C overnight. 

Upon digestion, the vector DNA was desphosphorylated to avoid re-ligation. For 

this, the vector was incubated for 30 minutes at 37°C with Antarctic phosphatase in its 

appropriate buffer, followed by enzyme inactivation for 10 minutes at 65°C. 

Both vector and insert DNAs were subjected to eletrophoresis in an agarose gel 

and the DNA was isolated and purified as described above. 

DNA concentration was determined using the Qubit fluorometer (Invitrogen, USA) 

following the manufacturer’s protocol. 

For ligation, the molecule ratios between vector and insert were 1:1 and 1:3. To 

calculate the exact amount of DNA the following formula was used:  

Mass insert [ng] = (5 x Mass vector [ng] x length insert [kb]) / (length vector [kb]) 

Control ligation was performed in parallel only with the dephosphorylated vector. 

Ligation was performed with the enzyme T4 ligase at 16°C overnight. 

 

2.2.3. Bacterial transformation by heat shock 
For each plasmid, 50 µl of competent XL1-Blue E.coli bacteria were mixed with 

2 µl of ligation mixture and incubated for 30 minutes on ice, followed by a 90 seconds 

heat shock at 42°C, and a short incubation on ice. For recovery, bacteria were 

incubated with 950 µl of LB medium for 45 minutes at 37°C with agitation. Cells were 

centrifuged for 1 minute at 17000 rpm and the pellets were resuspended in 50 µl of LB 

medium. Cells were spread with the aid of glass beads on LB agar plates containing 

kanamycin (30 µg/ml). Plates were incubated overnight at 37°C. 
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2.2.4. Colony selection 
Test colonies were inoculated with 5 ml of LB medium (containing kanamycin) 

overnight. Plasmid isolation was done by a mini preparation protocol based on alkaline 

lysis. 1.5 ml of bacterial cell culture were centrifuged for 2 minutes at 12000 g and the 

supernatant was removed. The pellet was completely resuspended in 100 µl of solution 

I (50 mM glucose, 25 mM Tris-HCl pH8.0, 10 mM EDTA, autoclaved) and lysed with 

200 µl of solution II (0.2 M NaOH, 1% SDS) by inverting the tube a few times leaving it 

on ice for 2 minutes. After, 150 µl of cold solution III (3 M KAc, 11.5% (v/v) glacial 

acetic acid) were added and mixed by inverting the tube a few times, incubating for 5 

minutes on ice. The mix was centrifuged at 17000 g for 10 minutes at 4°C and the 

supernatant was transferred to a new tube. DNA was precipitated by mixing the 

supernatant with 200 µl of cold 100% ethanol and keeping it on ice for 2 minutes 

followed by centrifugation at 17000 g for 5 minutes at 4°C. The supernatant was 

removed and the pellet was washed with 1 ml of 70% ethanol at 17000 g for 5 minutes 

at 4°C. The supernatant was discarded and after air-drying the pellet, the DNA was 

resuspended in 50 µl of water containing RNase (20 µg/ml). 

DNA testing was initially done with one restriction enzyme (either AgeI or BglII). 

After analysis of DNA bands in an agarose gel, one clone for each plasmid was 

selected and digested with both enzymes to confirm the insertion of the correct sized-

insert. 

Selected clones were grown overnight in LB medium and mini preparations were 

performed using the NucleoSpin Plasmid kit  (Macherey-Nagel, Germany) following the 

manufacturer’s protocol. DNA concentration was determined using the Qubit 

fluorometer (Invitrogen, USA) following the manufacturer’s instructions. 

Plasmid DNA was sent for sequencing at Eurofins MWG Operon (Germany). For 

each plasmid, three sequencing reactions were performed with the following primers:  

CMVfor 5’ CGCAAATGGGCGGTAGGCGTG 3’, pEGFPC1rev 5’ CATTTTATGTTT 

CAGGTTCAGGG 3’, and either Miro1-mid-for 5’ GATGGTGTGGCTGACAGTGGG 3’ 

or Miro2-mid-for 5’ GCTCAACGCTTTCCAGAAATCC 3’. Sequencing results were 

analysed with the FinchTV 1.4.0 program (Geospiza) and compared with original 

sequences using the BLAST tool from NCBI. 

DNA from positive clones was isolated from midi preparations (for higher yield) 

using the NucleoBond Xtra Midi kit (Macherey-Nagel, Germany) following the 

manufacturer’s protocol. 
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2.3. Cell Culture and Transfection 
 

2.3.1. Cell Culture  
All transfection and immunofluorescence procedures were performed using either 

COS-7 or HepG2 cell lines. COS-7 cells are derived from kidney cells of Ceropithecus 

aethiops (African green monkey) that were transformed with a mutant SV40 to produce 

large T antigen. This cells are adherent and have a fibroblast morphology. HepG2 cells 

are derived from a human hepatocellular carcinoma (hepatoblastoma) and have an 

adherent epithelial morphology. These cells can form bile canaliculi-like structures in 

culture and secrete most of the serum proteins. 

COS-7 and HepG2 cells were cultured in Dulbecco’s modified Eagle medium 

(DMEM) high glucose (4.5 g/L) supplemented with 10% FBS, 100 U/ml penicillin and 

100 µg/ml streptomycin at 37°C with 5% CO2 and 95% humidity.  

Passaging and splitting of cells was carried out twice per week, after the cells 

reached confluence. Cells were washed once with phosphate buffer saline (PBS) (137 

mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4*2H2O, 1.5 mM KH2PO4, in dH2O, pH 7.35)  and 

incubated for 5 minutes with 2.5 ml trypsin-EDTA at 37°C. Upon resuspension in 7.5 ml 

of medium, cells were centrifuged for 3 minutes at 1000 rpm to remove dead cells and 

debris. The pellet was resuspended in 10 ml medium and cells were seeded at 1:10 

dilution (≈104 cells/ml). Cells were routinely grown on 10ø cm dishes. For 

immunofluorescence, cells were seeded on round 18ø mm glass coverslips in 6ø cm 

dishes 24 hours prior to transfection. To ensure reproducibility between experiments, 

cell number was determined using a Fuchs-Rosenthal counting chamber. 

 

2.3.2. Cell freezing and thawing 
Stocks for each cell line were kept through cryopreservation in liquid nitrogen. 

Cell pellets from confluent dishes were prepared as described above (section 2.3.1) 

and resuspended in freezing medium (DMEM supplemented with 20% FBS and 10% 

DMSO). 1 ml aliquots were prepared in cryovials and frozen overnight at -80°C, before 

being stored in a liquid nitrogen tank. 

For thawing, cells were quickly resuspended with pre-warmed culture medium 

and seeded in a 10ø cm dish. The culture medium was changed after a few hours 

(after cell adhesion) to remove debris and DMSO. 
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2.3.3. Transfection methods 
 

2.3.3.1. PEI (Polyethylenimine) 
PEI solution (0.9-1 mg/ml in water) was prepared fresh for each transfection and 

sterilized by filtration. 10 µg of DNA were diluted in 750 µl of 150 mM NaCl solution, 

while 100 µl of PEI solution were diluted in 650 µl of 150 mM NaCl solution. After 15 

minutes of incubation at room temperature the PEI dilution was added drop-wise to the 

DNA solution and incubated for an additional 15 minutes. During incubation, cell dishes 

were washed with PBS and new medium (without FBS and antibiotics) was added. 

500 µl of the final mixture were added drop-wise to the 6ø cm culture dishes containing 

coverslips. Cells were incubated for 3 to 6 hours at 37 °C, after which they were 

washed with PBS and incubated with fresh complete medium for 24-48 hours before 

fixation for immunofluorescence. 

 

2.3.3.2. TurboFect 
4 µg of DNA and 6 µl of TurboFect were diluted in 400 µl of DMEM medium 

without FBS and antibiotics and incubated for 20 minutes. During incubation, the 

culture dish was washed once with PBS and fresh medium (without FBS or antibiotics) 

was added. The DNA/TurboFect mixture was added drop-wise to the dish and 

incubated for 3 to 6 hours at 37 °C after which the cells were washed with PBS and 

incubated in fresh complete medium for 24-48 hours before fixation for 

immunofluorescence. 

 

2.4. Microscopic techniques 
 

2.4.1. Immunofluorescence (IMF) 
Immunofluorescence is a technique that enables the labelling of a specific protein 

in order to examine its localization in the cell by fluorescence or confocal microscopy. 

For this, a fluorescente dye (fluorophore) is conjugated to either a primary antibody 

(direct IMF) or to a secondary antibody (indirect IMF), which labels the protein of 

interest. The primary antibody binds directly to one (monoclonal) or more (polyclonal) 

epitopes of a specific protein, and can be produced in several different animals. The 

secondary antibody is raised against the Fc domain of the primary antibody and is 

coupled to the fluorophore. The advantages of an indirect IMF lie in the fact that 

several secondary antibodies can bind one single primary antibody, resulting in signal 

amplification, and that it is cost-effective since a small number of fluorophore-coupled 
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secondary antibodies can be used for several different experiments. If no antibody 

against a protein is available, a tagged version (e.g. YFP, Myc, HA) can be introduced 

in the cell by transfection and labelled with an antibody against the tag-region. 

Cells must undergo a series of steps before being labelled with antibodies. First, 

a fixation step is performed in order to preserve the cell’s structure and protein 

conformation. For this, a cross-linking agent such as formaldehyde can be used, since 

it enables the formation of methylene bridges between primary amino groups in 

proteins and nearby nitrogen atoms. Following this, cells must be permeabilized to 

enable the access of antibodies to different cellular compartments and binding to their 

target protein. Several detergents with different strengths and specificities can be used 

to permeabilize cells. The most commonly used one is Triton X-100, which creates 

pores in all cell membranes by removing lipids. Prior to staining, a final blocking step is 

performed to prevent non-specific binding of the primary antibody. For this, a protein 

solution of bovine serum albumin (BSA) can be used to block excessive protein 

epitopes and free aldehyde groups. 

 

Cells grown on glass coverslips were processed for IMF 24-48 hours after 

seeding or transfection. Cells were fixed for 20 minutes with 4% (w/v) para-

Formaldehyde (pH 7.4), permeabilized with 0.2% (w/v) Triton X-100 for 10 minutes and 

blocked with 1% (w/v) BSA for 10 minutes. Cells were incubated with 30 µl of primary 

antibody for 1 hour in a humid chamber. This step was repeated for the secondary 

antibody, protected from light. Regularly, two coverslips per condition were processed 

and one was stained with 30 µl of Hoechst dye for 2 minutes. Coverslips were washed 

with ddH2O to remove PBS and mounted with Mowiol medium on glass slides. Mowiol 

mounting medium was prepared from a 3 to 1 mixture of Mowiol solution (12 g of 

Mowiol 4-88, 20 ml glycerol, 40 ml PBS) and n-propyl-gallate (2.5% (w/v) n-propyl-

gallate, 50% glycerol, in PBS), which is an antifading agent. All immunofluorescence 

steps were performed at room temperature and cells were washed three times with 

PBS in between each individual step. 

 

2.4.2. Fluorescence microscopy 
Fluorescence techniques are based on the use of a fluorescent dye which 

absorbs high energy light (short wavelength), leading to the emission of a lower energy 

light (long wavelength). Fluorophores with different excitation and emission spectra can 

be used in the same preparation to label several proteins.  

In fluorescence microscopy, light passes through an excitation filter that selects 

light of the wavelength that excites the fluorophore. In return, a different light of a lower 
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wavelength is emitted that passes through the dichroic mirror to a second filter (barrier 

filter) which blocks all wavelengths except the one emitted by the fluorophore. This is 

then directed to an emission filter and focused in the ocular. The light source is usually 

a mercury-vapor arc lamp which provides a mixture of wavelength from UV to red.  

For these experiments, cells were observed with an Olympus IX81 microscope, 

100x/1.40 oil objective (Olympus Optical, Hamburg, Germany). Digital images were 

taken with a CCD camera F-View II and selected and adjusted for contrast and 

brightness using the Olympus Soft Imaging Viewer software (Olympus Soft Imaging 

Solutions GmbH) and the Microsoft Power Point Software. 

 

2.4.3. Confocal microscopy 
The convencional fluorescence microscope has some optical limitations that 

affect, in particular, the results obtained for co-localization studies. In this case, the 

signal from above and below the focal plane can lead to false-positive results.  To 

overcome this, a confocal laser scanning microscope (CLSM) can be used, which 

decreases the blurring and background of the images taken.  

The key difference in confocal microscopy is the restriction of emitted 

fluorescence light that has to pass a pinhole before being detected. The illumination is 

achieved using a laser beam that scans point-by-point the specimen. The sequences of 

points of light from the specimen are detected by a photomultiplier through a pinhole, 

and the result is assembled into a digital image. This technique can also be used to 

create 3D images, by stacking consecutive focal planes. 

Cells were observed with a Zeiss LSM 510 confocal microscope, 100x/1.40 oil 

objective (Carl Zeiss, Oberkochen, Germany), using the Zeiss LSM Image Browser 

software (Carl Zeiss MircroImaging GmbH). Two lasers were used: the Argon-ion laser 

(488 nm) for samples stained with TRITC dye and DPSS laser (561 nm) for samples 

stained with Alexa Fluor 488 dye. 

 

2.5. Electrophoresis and Immunoblotting 
 

In order to study Miro1 localization in cells, subcellular fractions of rat liver cells 

were analysed by western blot. The following fractions were used: highly purified 

peroxisomal fraction (PO), heavy mitochondrial fraction (HM) and a microsomal and 

cytosolic fraction (MC) (kindly provided by Dr.Markus Islinger). 20 µg of protein from 

each fraction were diluted in SDS-containing loading buffer (60 mM Tris pH-6.8, 2% 
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(w/v) SDS, 10% (v/v) glycerol, 0.005% (w/v) bromophenol blue, 20 mM DTT, 5% (v/v) 

β-Mercaptoethanol), and denatured at 95°C for 5 minutes. 

Standard 1D-SDS PolyAcrylamide Gel-Elecrophoresis (SDS-PAGE) was 

performed with 12.5% separating gels and 4% stacking gels (Tab.2.2). Gel 

electrophoresis in mini slap gel chambers was conducted for approximately 30 minutes 

at 80 V until the proteins entered the separating gel and continued at 130 V for 

approximately 90 minutes. The gel chambers were filled with 1x SDS running buffer (25 

mM Tris, 190 mM glycine, 0.1% (w/v) SDS). To mark protein size a pre-stained 

molecular weight marker (Precision Plus) was used and the sample running front was 

visualized by bromophenol blue added to the loading buffer. 

Protein transfer to the membrane was performed by semi-dry Western blotting. 

The nitrocellulose membrane and two Whatman filter papers (3 mm) were soaked with 

semidry blotting buffer (48 mM Tris, 39 mM glycine, 0.4% (w/v) SDS, 20% (v/v) 

methanol) and a stack of Whatman filter, membrane, gel, and Whatman filter was 

formed. Air bubbles were removed to guarantee complete transfer. The stack was put 

into a semidry transfer chamber and the proteins were blotted for 50 minutes at 12 V. 

After protein transfer, the membrane was blocked by incubation with 5% low fat 

powdered milk in PBS for 1 hour. Membrane incubation with the primary antibody was 

performed in a sealed plastic bag with the respective antibody dilution in PBS and 

incubated with shaking overnight at 4°C. After incubation, the membrane was washed 

three times for 10 minutes with PBS. Incubation with the secondary antibody was 

performed for 90 minutes at room temperature, after which the membrane was washed 

three times for 10 minutes with PBS.  

For the enhanced chemiluminescence (ECL) reaction, ECL 1 (containing luminol) 

and ECL 2 (phenol-containing enhancer) solutions were mixed (ratio 1:1) and the 

membrane was incubated for 2 minutes. Film exposition (2 to 15 minutes), 

development and fixation were performed in a light protected environment. For 

presentation the films were scanned with a Bio-Rad GS-710 Calibrated Imaging 

Densitometer. 
 

Table 2.2 – Gel solutions for SDS-PAGE 
 12.5% Separating Gel 4% Stacking Gel 
30% Polyacrylamide 3.33 ml 0.83 ml 
2 M Tris pH 8.8 1.86 ml - 
1 M Tris pH 6.8 - 0.63 ml 
20% SDS (0.1%) 50 µl 25 µl 
dH2O 4.73 ml 3.43 ml 
10% APS 30 µl 40 µl 
TEMED 5 µl 5 µl 
Total volume 10 ml 5 ml 
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2.6. Statistics 
 

For the quantitive analysis of the effect of Myc-Miro expression on peroxisome 

morphology and distribution, 150 cells were examined at the fluorescence microscope, 

in 3 independent experiments (50 cells per coverslip). For each cell, peroxisome 

distribution (scattered or centered) and aggregation (in the cell periphery or in the 

cytoplasm) were accounted. Statistical analyses were performed using Microsoft Excel 

2007 and GraphPad Prism 5 software. Data are presented as means ± standard 

deviation (SD). An unpaired t-test was used to determine statistical differences 

between experimental groups. P values < 0.05 are considered as significant and P 

values < 0.01 are considered as highly significant. 

 

2.7. Bioinformatics 
 

Identification of putative TA proteins from the U. maydis model system was made 

with the help of several bioinformatic tools available online. 

Selection of proteins with a single predicted TMD was done via the Pedant 3 

database (Walter et al., 2009), which automatically categorizes all know protein 

sequences from an organism according to several characteristics, namely, protein 

structure. A single file containing all U.maydis protein sequences with one TMD was 

exported in FASTA (467 proteins).  

Subsequently, this file was fed to the TMHMM server v. 2.0 (Krogh et al., 2001) to 

identify the sequences with a TMD near the C-terminus of the protein and a tail with no 

more than 30 amino acids. A new file with the sequences that followed these criteria 

was created, containing 85 proteins. This list was further filtered with the Signal P 

program (Bendtsen et al., 2004) to exclude those proteins predicted to have a signal 

sequence for import through the ER translocon. The hidden Markov model was used 

and all sequences were automatically truncated to their first 70 amino acids. Proteins 

with a Sprob higher than 0.750 were excluded, which reduced the list to 65 proteins. A 

FASTA file with only the first 70 amino acids of each protein was created and fed to the 

MitoProt program (Claros and Vincens, 1996), where the probability of import to 

mitochondria was calculated. Proteins with a probability higher than 0.850 were 

excluded and the final list contained 58 proteins. 

Each one of the 58 predicted TA proteins was analysed for its putative function 

and homology to other organisms. A first analysis was carried out using the MIPS 

Ustilago maydis Database (Mewes et al., 2004) that automatically searches for 
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U.maydis homologs using the SIMAP server (Rattei et al., 2010). A file was created 

containing information on predicted human homologs for each protein and the 

percentage of homology. Each protein was also analysed using the PhyloBuilder 

program (Glanville et al., 2007) that gathers several bioinformatic tools to identify 

protein homologs and create phylogenetic trees. Protein function was predicted, when 

possible, by frequency of similar hits and sequence alignment comparison. 
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3.1. Screening of known TA proteins for dual localization to 
peroxisomes and mitochondria 

 

3.1.1. Miro proteins are dually targeted to peroxisomes and mitochondria 
Miro proteins have been previously shown to localize to the outer mitochondrial 

membrane and to regulate mitochondrial transport, functioning as a linker to motor 

proteins. To verify if Miro1 and Miro2 are targeted to peroxisomes, Myc-tagged wild-

type and mutant proteins were expressed in COS-7 cells. For each protein (Miro1 and 

Miro2) five different constructs were expressed: wild-type, V13, N18, EF and ∆TM. The 

V13 mutant is constitutively active at the first GTPase domain whereas the N18 mutant 

is dominant negative for the same domain. The EF mutant as two mutations at the 

calcium-binding EF-hands is unable to bind calcium. Lastly, the ∆TM mutant lacks the 

TMD and the C-terminal tail. The cell transfections were performed using 

polyethylenimine (PEI), unless stated otherwise, and cells were subjected to 

immunofluorescence using antibodies raised against Myc and Pex14.  

As previously described by Fransson et al. (2006), the expression of Myc-Miro1-

wt and Myc-Miro2-wt resulted in the formation of perinuclear aggregations of 

mitochondria. Furthermore, expression of both constructs induced the formation of 

interconnected thread-like mitochondrial networks (Fig.3.1). This last phenotype had 

only been described for the expression of Myc-Miro1 constructs and therefore, the 

different results might be due to the transfection method used and the DNA 

concentration. 

Overexpression of Myc-Miro1-wt and Myc-Miro2-wt induced a strong 

mitochondrial signal, hampering the visualization of their potential localization to 

smaller organelles such as peroxisomes. In order to circumvent this problem, zoomed 

images where taken where the signal was amplified; thus it was possible to observe a 

clear co-localization between Myc-Miro1-wt and Myc-Miro2-wt and the peroxisome 

marker Pex14 (Fig.3.1 D,H). A preliminary statistical analysis of the morphology and 

distribution of peroxisomes in transfected cells showed that up to 45 ± 5.0% of COS-7 

cells expressing Myc-Miro1-wt exhibit peroxisome aggregates in the cell periphery 

(Fig.3.1B, arrows; Fig.3.4). Furthermore, in cells with aggregated mitochondrial 

networks, peroxisomes were frequently seen closer to the cell nucleus (Fig.3.3B; 

Fig.3.4). No significant differences were seen in peroxisome morphology. 
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Figure 3.1 – Myc-Miro1-wt and Myc-Miro2-wt are targeted to both peroxisomes and mitochondria in 
COS-7 cells. COS-7 cells were transfected with Myc-Miro1-wt (A-D) and Myc-Miro2-wt (E-H), using PEI. 
Fixed cells were labeled with anti-Pex14 and anti-Myc. Magnifications from C and G are shown in D and H, 
respectively. Arrows – aggregated peroxisomes. The images were obtained by confocal microscopy. Scale 
bars: 10 µm (A-C, E-G), 5 µm (D, H). 
 

In order to confirm that the peroxisomal localization of Miro proteins is not an 

artifact induced by protein overexpression, the endogenous expression of Miro1 was 

analysed by immunobloting of highly purified peroxisome fractions from rat liver (kindly 

provided by Dr.Markus Islinger). The results presented in Fig.3.2 show a high level of 

Miro1 in the mitochondrial fraction (HM), as well as a lower but significant level of Miro1 

in the peroxisomal fraction (PO). Low levels of Miro1 were also present in the 

microsomal and cytosolic fraction (MC) due to a probable contamination with 

mitochondria. To assess the level of purity of each sample, the membrane was 

reprobed with antibodies against the proteins Pex14 (peroxisome membrane marker) 

and Porin (mitochondria outer membrane marker). As we can, Miro1 is enriched in the 

peroxisomes when compared with Porin, excluding the possibility of a contamination of 

the highly purified peroxisomal fraction with mitochondrial membranes. 

 

Figure 3.2 – Miro1 localises to highly purified 
peroxisome fractions from rat liver. Subcellular 
fractions of rat liver cells were analysed by Western 
Blot. The membrane was probed for endogenous 
Miro1 and reprobed with antibodies against Pex14 
(peroxisome marker) and Porin (mitochondrion 
marker). All pictures were obtained from the same 
blot. Three different fractions were analysed: 
microsomal and cytosolic fraction (MC), highly 
purified peroxisomal fraction (PO) and heavy 
mitochondrial fraction (HM)  Purified fractions from 
rat liver were kindly provided by Dr.Markus Islinger. 

Miro1

Pex14

Porin

MC PO HM

48 
 



Miro1 and Miro2 share 60% sequence identity and have an identical domain 

structure, with two GTPase domains flanked by two calcium binding EF-hands, and a 

C-terminal TMD. To determine if peroxisomal dynamics are also disturbed by mutations 

in the functional domains of Miro, four mutants of Miro1 and Miro2 were expressed in 

COS-7 cells (Fig.3.3). As previously described (Fransson et al., 2006), the expression 

of Myc-Miro1-V13, Myc-Miro1-N18 and Myc-Miro1-EF induced the formation of 

perinuclear aggregations of mitochondria (Fig.3.3 A, I), albeit to a higher degree than in 

cells expressing Myc-Miro1-wt. Additionally, expression of the constitutively active Myc-

Miro1-V13 mutant induced the formation of thread-like mitochondrial networks 

(Fig.3.3A, arrow). This effect was not seem in cells expressing either the Myc-Miro1-

N18 mutant (Fig.3.3E-H) or the Myc-Miro1-EF mutant (Fig.3.3I-L). Expression of Myc-

Miro2 mutants induced the formation of clustered mitochondria to a similar extent as 

that seen with the Myc-Miro2-wt (not shown). Cells expressing Myc-Miro1-∆TM and 

Myc-Miro2-∆TM showed a cytoplasmic distribution of this protein and had no effect on 

the mitochondrial network (not shown).  

Surprisingly, even though all mutated proteins co-localized with peroxisomes, 

expression of Myc-Miro mutants had no substantial effect on peroxisome morphology 

and distribution. Nevertheless, a careful examination showed that in cells with a 

collapsed mitochondrial network, peroxisomes tended to concentrate together with 

mitochondria near the nucleus (Fig.3.4 A-D). 

  

3.1.2. Expression of peroxisome targeted Miro alters peroxisome 
distribution 
As shown before, wild-type and mutant forms of Myc-Miro1 and Myc-Miro2 are 

dually targeted to mitochondria and peroxisomes. Moreover, the expression of wild-

type proteins revealed the formation of some peroxisome aggregates in the cell 

periphery, whereas the formation of collapsed mitochondrial networks induced 

alterations in peroxisome distribution. To clarify the effect of Myc-Miro proteins on 

peroxisomes we created a fusion protein that is solely directed to peroxisomes. For 

this, the tail and TMD of Miro were replaced with a previously described fusion 

Pex26/ALDP construct (Halbach et al., 2006). This strategy was used to create four 

fusion proteins: Myc-Miro1-wt-Pex, Myc-Miro1-EF-Pex, Myc-Miro2-wt-Pex and Myc-

Miro2-wt-EF-Pex, corresponding to the respective previously described plasmids. 

While the first three constructs were successfully created, the last had mutations and 

the cloning process is currently being repeated. 
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Figure 3.3 – Myc-Miro1 mutants co-localize with peroxisomes. Schematic representation of Miro and 
its mutants. COS-7 cells were transfected using PEI with Myc-Miro1-V13 (A-D), Myc–Miro1-N18 (E-H), 
Myc-Miro1-EF (I-J) and Myc-Miro1-∆TM (M-O). Fixed cells were labeled with anti-Pex14 and anti-Myc. 
Magnifications from C, G and K are shown in D, H and L, respectively. Arrow – elongated mitochondria. 
Images were obtained by confocal microscopy. Scale bars: 10 µm (A-C, E-G, I-K, M-O), 5 µm (D, H, L). 

 

Expression of the Myc-Miro1-wt-Pex and Myc-Miro1-EF-Pex constructs in COS-7 

cells revealed an exclusively peroxisomal localisation thus confirming the success of 

the cloning strategy (Fig.3.5). Similarly to the cells expressing Myc-Miro1-wt, 

observation of cells transfected with Myc-Miro1-wt-Pex at the fluorescence microscope 

showed no alterations on peroxisome morphology. A preliminary analysis of the cells 

demonstrated that up to 52 ± 2% of cells exhibit peroxisome aggregates in the cell 
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periphery (Fig.3.4; Fig.3.5A-D). The magnified area shown in Fig.3.5 D reveals the 

presence of several spherical and rod-shaped peroxisomes in these aggregates. 

Furthermore, there were less cells with peroxisomes closer to the nucleus in those 

transfected with Myc-Miro1-wt-Pex than in cells expressing Myc-Miro1-wt and 

untransfected cells (10 ± 2,3% to 45 ± 5,0% and 27 ± 3,1%, respectively) (Fig.3.4). The 

expression of Myc-Miro1-wt-Pex had no obvious effect on mitochondrial morphology 

and distribution (Fig.3.5 H-J). 

 

 

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f t
ot

al

Center

Aggre. Periph.

Aggre. Cyto.

**

**

** *

Figure 3.4 – Quantitative analysis of peroxisomal distribution in cells expressing different Myc-Miro 
contructs. COS-7 cells were transfected with Myc-Miro1-wt, Myc-Miro1-wt-Pex, Myc-Miro1-EF-Pex, Myc-
Miro2-wt-Pex or not transfected (Control) using PEI. Cells were fixed at 24h and categorized as cell with 
scattered or centered peroxisomes (only centered is shown since both categories sum to 100%). The 
formation of peroxisome aggregates was also analysed in each cell (in the periphery or distributed in the 
cytoplasm). Data are expressed as means ± SD (** p<0.01, * p<0.05; distribution compared to control and 
aggregates to Myc-Miro1-wt ) 

 

Expression of Myc-Miro1-EF-Pex revealed a mixed phenotype of peroxisomes in 

cells of the same preparations. Whereas many cells had a peroxisome distribution as 

that seen in the control cells (Fig.3.6 E-G), others had peroxisome aggregates not on 

the cell periphery, but dispersed through the cytoplasm or closer to the nucleus (Fig.3.6 

A-D). These aggregates were present in 44 ± 7,2% of the cells (Fig.3.4) and were only 

seem upon the expression of this construct. 

Similar to what was seen with Myc-Miro1-wt-Pex, expression of Myc-Miro2-wt-

Pex also induced the formation of peroxisome aggregates in the cell periphery (Fig.3.6 

H-K). Surprisingly, even though the Myc-Miro1-Pex proteins were targeted exclusively 

to peroxisomes, the Myc-Miro2-wt-Pex was frequently targeted to the ER (Fig.3.6 L-N) 

and, very rarely, even to mitochondria (Fig.3.6 O-Q). 
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Figure 3.5 – Myc-Miro1-wt-Pex mutant is exclusively targeted to peroxisomes and alters 
peroxisome distribution. Schematic representation of the construct expressed. COS-7 cells were 
transfected using PEI with Myc-Miro1-wt-Pex(A-D). Fixed cells were labeled with anti-Pex14 (B, F) or anti-
TOM20 (I) and anti-Myc. Magnification from C is shown in D. The images were obtained by fluorescence 
microscopy. Scale bars: 20 µm (A-C, E-J), 10 µm (D). 
 

3.1.3. Monoamine oxidase B is only localized to mitochondria 
Monoamine oxidases have a crucial role in brain function and development. 

Although they have been previously shown to localize to the outer mitochondrial 

membrane, a report from (Mann et al., 1992) described their presence on mouse liver 

peroxisomes. Furthermore, studies in lower eukaryotes such as the fungus Aspergillus 

niger propose a peroxisomal localization of the homologs protein MAO-N (Schilling and 

Lerch, 1995). To investigate the cellular localization of MAO-B, HepG2 cells were 

subjected to immunofluorescence with antibodies raised against MAO-B and Pex14 

(used as a peroxisomal marker) and visualized at the confocal microscope. As 

demonstrated in Fig.3.7, MAO-B localizes to worm-like structures that correspond to 

the mitochondrial network, similar to those observed in control cells stained with an 

anti-TOM20 antibody (used as a mitochondrial marker). A higher magnification view 
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(Fig.3.7D) clearly does not show any co-localisation indicating absence of MAO-B on 

peroxisomes. Similar results were obtained in HeLa cells (not shown). 
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Figure 3.6 – Myc-Miro1-EF-Pex and Myc-Miro2-wt-Pex mutants are targeted to peroxisomes and, 
exceptionally to the ER and mitochondria. COS-7 cells were transfected with Myc-Miro1-EF-Pex(A-G) 
and Myc-Miro2-wt-Pex (H-Q) using PEI. Fixed cells were labeled with anti-Pex14 (B, F, I, M) or anti-
TOM20 (P) and anti-Myc. Magnification from C and J are shown in D and K, respectively. The images 
were obtained by fluorescence microscopy. Scale bars: 20 µm (A-C, E-J, L-Q), 10 µm (D, K). 
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Figure 3.7 – MAO-B does not localise to peroxisomes. Fixed HepG2 cells were subjected to 
immunofluorescence with anti-MAO-B (A) or anti-TOM20 (E), and anti-Pex14 (B, F). Magnifications from C 
and G are shown in D and H, respectively. The images were obtained by confocal microscopy. Scale bars: 
10 µm (A-C, E-G), 5 µm (D, H). 
 

 

3.2. Ustilago maydis – a new model system to study 
peroxisomes  

 

Recently, the basidomycete Ustilago maydis has been introduced as a new 

model for the study of cell biological processes (Steinberg and Perez-Martin, 2008). 

This model brings numerous advantages for the study of the peroxisome-mitochondria 

relationship. There is strong evidence that, as in humans, U. maydis possesses fatty 

acid β-oxidation in both organelles and, as a result, metabolic cooperation in lipid 

metabolism (unpublished data). Moreover, U. maydis is capable of organelle long-

distance transport through microtubules and polarized growth, which are valuable 

features for the study of peroxisome and mitochondrion transport in neurons. 

Furthermore, a genome-wide comparison of the proteomes of U. maydis, S. cerevisiae 

and H. sapiens has shown that U. maydis is more closely related to H. sapiens than to 

S. cerevisiae (Munsterkotter and Steinberg, 2007).  
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With the objective to identify putative TA proteins and analyzing U.maydis 

homologs of human TA proteins, a bioinformatics analysis of the U. maydis proteome 

was performed. 

 

 

3.2.1. Identification of putative tail-anchored proteins in the Ustilago 

maydis model system 
The identification of putative TA proteins from the U.maydis proteome was 

performed initially by pre-selection of proteins with a single TMD, using the Pedant 3 

database. This list was further filtered by removing proteins with N-terminal TMDs, 

luminal tails with more than thirty amino acids, and signal peptides (both for the ER and 

mitochondria) (Fig.3.8). The final list obtained contained a total of 58 proteins. 

 A first analysis of the 58 sequences was performed by searching the MIPS 

U.maydis database for functions already attributed to each protein (Fig.3.9). As a 

result, one protein was identified as dolichyl-phosphate beta-D-mannosyltransferase. 

Although thirty three proteins were of unknown function/homology (i.e. hypothetical and 

putative proteins), twenty-four were identified as “probable” or “related” to known 

proteins (Tab.3.1). Of these, fourteen are related to TA proteins already described in 

mammals, of which ten are members of the SNARE family of proteins, two are part of 

the ER translocon and two are homologs of Fis1 and cytochrome b5. Of the remaining 

ten proteins, a further comparison was made with a list of bioinformatically predicted 

human TA proteins (Kalbfleisch et al., 2007), which resulted in the identification of 

cytochrome-c oxidase subunit VII as a homolog to a human TA protein.  
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Figure 3.8 – Schematic view of the bioinformatics approach followed for the identification of TA 
proteins in U. maydis. 
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Table 3.1 – Putative TA proteins identified in U.maydis with identified or probable function. 

 Known function H. Hs 

um06329 dolichyl-phosphate beta-D-mannosyltransferase 28.5% 

K
no

w
n 

TA
 p

ro
te

in
s 

SNARE family  

um00284 
um00340 
um12108 
um11669 
um02338 
um11485 
um10441 
um05645 
um11027 
um11219 

related to vesicle-associated membrane protein 7 
related to syntaxin 18 
probable syntaxin, vesicular transport protein 
related to syntaxin family member TLG1 
related to PEP12 syntaxin (T-SNARE), vacuolar 
related to SNARE protein of Golgi compartment 
probable synaptobrevin (v-SNARE) homolog present on post-Golgi vesicles 
related to VTI1 - v-SNARE: involved in Golgi retrograde protein traffic 
probable SEC22 - synaptobrevin (V-SNARE) 
related to TLG2 - member of the syntaxin family of t-SNAREs 

30.5% 
18.6% 
39.4% 
27% 
27.3% 
30.6% 
30.9% 
34.4% 
42,1% 
26.4% 

ER translocon  

um10035 
um11624.2 

probable protein transport protein sec61 beta subunit 
related to SSS1 - ER protein-translocase complex subunit 

38.6% 
51.4% 

Other  

um10232 
um03919 

probable cytochrome b5 
related to FIS1 - protein involved in mitochondrial division 

34.9% 
30.2% 

 Other proteins  

um00053 
um11614 
um01150 
um11696 
um01869 
um06284 
um11097 
um03933 
um04210 
um05065     

probable 3-dehydroquinate dehydratase 
related to TOM5 - mitochondrial outer membrane protein 
related to COX7 - cytochrome-c oxidase, subunit VII 
related to SCS2 - required for inositol metabolism 
related to NADH oxidase 
related to Cutl1 or CASP protein 
related to QCR10 - ubiquinol--cytochrome-c reductase 8.5 kDa subunit 
related to WWM1 - WW domain containing protein interacting with Metacaspase 
probable phytoene dehydrogenase 
related to SPT23 - suppressor of TY retrotransposon 

17.9% 
2.6% 
20.9% 
20.7% 
10.5% 
30.2% 
2.8% 
11.9% 
21.1% 
10.2% 

Abbreviations: H. Hs, Homology to Homo sapiens proteins. 
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Figure 3.9 – Graphical representation of putative TA proteins identified in U.maydis.   
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A further examination of the hypothetical/putative proteins was performed using 

the MIPS U.maydis database which automatically searches the SIMAP database for 

homology sequences in several organisms. In parallel, each sequence was run through 

the PhyloBuilder software to create phylogenetic trees. Analysis of the results revealed 

the probable function of 4 proteins. Of these, three were classified as possible SNAREs 

and one is a probable homolog of the stress-associated ER protein 1 (SERP-1) 

(Fig.3.9). 

Furthermore, a list of verified human TA proteins (excluding SNAREs) was 

created from an existing list (Kalbfleisch, 2007) to which data from our laboratory was 

added. These proteins were individually fed to the WUBLAST search tool, available at 

the MIPS U.maydis database to search for possible U.maydis homologs. Since many 

proteins are yet to be characterized in this organism, it was difficult to find credible 

homologs for many of the human TA proteins. Nevertheless, eleven possible homologs 

were identified (Tab.3.2). Of these, three were already identified in the first 

bioinformatics analysis (i.e. Fis1, cytochrome b5 and Sec61). The remaining eight were 

analysed following the same steps described for the selection of putative TA proteins. 

Six proteins were found to lack predictable TMDs, one had a tail which goes beyond 

the defined size limit and one possesses a signal peptide for mitochondria.  

 
Table 3.2 – U.maydis homologs of verified human TA proteins 

Human protein U.maydis probable homolog  

MAO-A/MAO-B um05423 related to Monoamine oxidase A [flavin-
containing] Lacks detectable TMD 

Cytochrome b5 um10232 probable cytochrome b5    Identified 

TOM7 um10037 probable mitochondrial import receptor 
subunit tom7 Lacks detectable TMD 

ACBD5 um02959 conserved hypothetical protein Lacks detectable TMD 

Miro1/Miro2 um02638 conserved hypothetical protein Longer tail – 56a.a. 

Fis1 um03919 related to FIS1 - protein involved in 
mitochondrial division Identified 

HMOX-1 um00783 related to Heme oxygenase Lacks detectable TMD 

Sec61 um10035 probable protein transport protein sec61 
beta subunit Identified 

ALDH3A2 um11241 related to aldehyde dehydrogenase 
[NAD(P)] Lacks detectable TMD 

UBE2J2 um11635 probable UBC6 - E2 ubiquitin-conjugating 
enzyme 

Predicted signal 
peptide for 
mitochondria 

PTPN1 um10534 related to Protein-tyrosine phosphatase, 
receptor type 1 Lacks detectable TMD 
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4.1. The peroxisome-mitochondria connection – the role of 
TA proteins 

 

Peroxisomes and mitochondria are a perfect example of intracellular cooperation 

due to their ability to perform similar and, at the same time, complementary functions, 

from the β-oxidation of several lipids to the metabolism of ROS. The recent discovery 

that these organelles share components of their division machinery and act in concert 

on antiviral defence has led to a closer examination of their interrelationship.  

Most of the membrane proteins known to be shared by these organelles belong 

to the class of TA proteins (e.g. Fis1, Mff and MAVS). This has led us to investigate the 

mechanisms by which these proteins are targeted to different membranes (Delille and 

Schrader, 2008) and the possibility that other proteins are dually targeted to 

peroxisomes and mitochondria. Hence, a list of verified mammalian TA proteins was 

created containing data published by Kalbfleisch et al. (2007) and unpublished data 

from our laboratory.  

In this work I present the results obtained for three of these proteins: monoamine 

oxidase B (MAO-B), Miro1 and Miro2. 

 

4.1.1. Monoamine oxidase – a new role for peroxisomes in the brain? 
Monoamine oxidases are mitochondrial TA proteins which are essential for 

normal brain development due to their ability to degrade several neurotransmiters such 

as serotonin, histamine and catecholamines. Genetic variance that affects the activity 

of these proteins has been related to several personality traits, more specifically the 

development of aggressive and addictive behaviours. Moreover, MAO inhibitors have 

been used for several years for the treatment of depression and, more recently, 

Parkinson’s disease (Youdim et al., 2006). Although MAOs are commonly regarded as 

mitochondrial proteins, a report by Mann et al. (1992) showed that liver peroxisome 

fractions from genetically obese mice (ob/ob and db/db) contain monoamine oxidases. 

However, our analysis of the cellular localization of MAO-B by immunofluorescence 

has shown that this protein is only localized to mitochondria in HepG2 and HeLa cells.  

How is it then that these proteins were identified in liver peroxisome fractions of 

obese mice? One of the proposed explanations in the aforementioned article was that 

the peroxisomal membrane would be altered due to variations in the proportion of 

several fatty acids in obese mice and that this could promote protein mistargeting. 

Whereas at the time the authors considered this hypothesis unlikely, it becomes a 

possible scenario if we consider that the insertion of TA proteins in their target 

61 
 



membranes is affected by the composition of the lipid bilayer. It is then possible that 

MAO is not usually targeted to peroxisomes but is instead mistargeted if the lipid 

composition of their membrane is altered. In fact, this could have a physiological role in 

the determination of protein localization and function in different cellular conditions. 

Moreover, we have only addressed the localization of MAO-B due to antibody 

availability. It is possible that MAO-A has a peroxisomal localization due to some 

variation in the TMD of the protein. Additionally, although it is unlikely that the 

localization of MAOs differs between humans and rodents, we cannot reject the fact 

that initial evidence of peroxisomal MAOs was described in mice. To examine this 

hypothesis, an immuno-localization analysis of this protein was attempted in rat liver 

cell lines but the antibody available did not recognize rat MAOs. 

Curiously, in contrast to the human MAO-A and MAO-B, the MAO-N protein from 

Aspergillus niger is proposed to have a peroxisomal localization. This protein contains 

a conserved PTS1 sequence at the very C-terminus and lacks the helical membrane 

anchor seen in the human counterparts. There has been considerable interest in MAO-

N due to its sequence homology to the two forms of human MAO and due to its 

response to highly selective inhibitors of MAO-A and MAO-B. Moreover, analysis of the 

X-ray structure of these proteins suggests that MAO-N could be an evolutionary 

precursor of vertebrate MAOs. From an evolutionary point of view, it will be interesting 

to see if the U.maydis monoamine oxidase is localised to peroxisomes, the 

mitochondrial outer membrane or to other cellular compartment. The U.maydis MAO 

protein lacks any predicted peroxisome targeting signals but it also lacks a 

transmembrane domain.  

 

4.1.2. Miro proteins – the missing link to peroxisome motility? 
Organelles are transported and actively positioned inside cells to maintain correct 

cellular organization and effective cell functioning. In yeast and plants, peroxisomes are 

known to move through actin filaments whereas in mammalian cells peroxisomes bind 

and move along microtubules (Fagarasanu et al., 2010; Muench and Mullen, 2003). 

Several studies in S.cerevisiae have enabled the identification and 

characterization of the molecular machinery responsible for actin-based movement of 

peroxisomes (reviewed in Fagarasanu et al., 2007; Fagarasanu et al., 2010). In this 

organism, peroxisomes of unbudded cells are static and distributed over the cell cortex. 

As soon as the bud starts to form from the mother cell, peroxisomes are transported to 

the new cell by the class V myosin motor Myo2. This motor interacts with the 

peroxisomal membrane receptor protein Inp2. Conversely, the Inp1 protein anchors 
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peroxisomes to the cell periphery of the mother cell and the bud, enabling an equal 

distribution of this organelle. 

The first reports on microtubule-dependent movement of mammalian 

peroxisomes were published in 1996 (Rapp, 1996; Schrader, 1996; Wiemer et al., 

1997). Since then, however, only a few groups have succeeded in revealing new 

insights in the molecular machinery responsible for peroxisome transport in mammalian 

cells (Bharti et al., 2011; Schrader et al., 2003). 

Peroxisomes move both towards and away from the cell centre, by a mechanism 

that is likely dependent on kinesin and dynein motors. Although the involvement of 

dynein and its activator complex dynactin has been demonstrated (Schrader et al., 

2000), an interaction of this organelle with kinesins in mammalian cells remains 

circumstantial. Nonetheless, (Kural et al., 2005) showed that peroxisome motility in 

cultured Drosophila S2 cells is also microtubule-dependent and that several motors, 

from kinesins to dyneins, coordinate their actions to promote organelle transport.  

  

In an attempt to identify the molecular link between peroxisomes and motor 

proteins, in particular with kinesins, we decided to test if the mitochondrial Miro proteins 

could also be responsible for the anterograde transport of peroxisomes. 

Miro proteins are a family of RasGTPases which were initially associated with the 

regulation of mitochondrial homeostasis and apoptosis (Fransson et al., 2003). Further 

investigation in Drosophila connected this protein with the anterograde transport of 

mitochondria, in association with another protein – Milton – which is required to link 

Miro and the kinesin heavy chain (KHC) (Guo et al., 2005). More recently, a number of 

publications have reported on the importance of these proteins in the regulation of 

mitochondrial movement in neuronal cells and the importance of their calcium-binding 

domains for the anchoring of mitochondria in active synapses (reviewed in Liu and 

Hajnoczky, 2009; Reis et al., 2009).  

By expressing Miro1 and Miro2 in COS-7 cells, we were able to show that these 

proteins are dually targeted to peroxisomes and mitochondria. Furthermore, analysis of 

highly purified peroxisomal fractions from rat liver confirmed that endogenous Miro1 

protein is in fact present in peroxisomes. Like with other TA proteins that are targeted 

to peroxisomes and mitochondria this raises the question of how these proteins are 

specifically targeted and inserted into each organelle. Interestingly, peroxisomal TA 

proteins appear to use the same sorting machinery as PMPs to target peroxisomes. 

Our group has shown that the targeting of the human TA protein Fis1 is mediated by 

Pex19 (Delille and Schrader, 2008) and similar results have been obtained for the 

targeting of Pex26 and its yeast homolog Pex15 (Halbach et al., 2006). It will be 
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interesting to see if other TA proteins, including Miro1 and Miro2, follow a similar 

pathway. 

The expression of Myc-Miro proteins induced significant alterations of the 

mitochondrial network (Fransson et al., 2006). Curiously, only minor changes were 

observed on peroxisome morphology and distribution. This could be explained by the 

low proportion of peroxisomes in a cell that exhibit microtubule-dependent movement 

(only 10-15%). Although peroxisomes change their motility state with time, a large 

number of peroxisomes is anchored either to the actin or microtubule cytoskeleton at 

any given time. Therefore, overexpression of Miro may not be sufficient to substantially 

increase the microtubule-dependent movement of peroxisomes. Furthermore, 

peroxisome motility has been shown to be tightly regulated in yeast (Fagarasanu et al., 

2010) and, although less studied, some signalling pathways have been associated with 

the regulation of peroxisome motility in mammals (Huber et al., 2000). 

The most prominent alterations in peroxisome distribution were seen in cells 

transfected with either Myc-Miro1-wt or Myc-Miro2-wt, which presented aggregates of 

peroxisomes in the cell periphery. These aggregates are likely the result of an increase 

in the number of binding sites for kinesin motors, favouring therefore anterograde 

transport of peroxisomes. Moreover, in cells with completely aggregated mitochondrial 

networks, peroxisomes were usually found closer to the nucleus. This result is most 

likely an indirect effect of the altered distribution of the mitochondrial network. 

Curiously, no major alterations were seen in peroxisomes of cells transfected with 

either one of the Myc-Miro mutants, except for the concentration of peroxisomes in the 

perinuclear area in cells with collapsed mitochondrial networks. Since most of the cells 

expressing Myc-Miro mutants had an altered mitochondrial network, many times with 

aggregated mitochondria, a possible effect in peroxisome distribution might have been 

masked by the disturbance of the mitochondrial network.  

Overall, the results obtained for cells transfected with either the wild-type or 

mutants forms of both Miro proteins were not conclusive due to the severe alterations 

observed in the mitochondrial network. Owing to this, we created a fusion protein 

exclusively directed to peroxisomes by exchanging Miro’s TMD and tail with an artificial 

Pex26/ALDP construct. This tail, which has been used previously to direct GFP to 

peroxisomes, contains a Pex19 binding site that enables the transport of PMPs to the 

peroxisomal membrane.  

Transfected cells expressed Myc-tagged Miro proteins which were exclusively 

targeted to peroxisomes. Moreover, although expression of these proteins promoted 

alterations in peroxisome distribution in several cells, transfected cells with normal 

peroxisome morphology and distribution were also detected. This could be due to the 

64 
 



expression level of the transfected proteins but also to the intrinsic mechanisms that 

regulate peroxisome motility. Althought little is known about the proteins that regulate 

peroxisome movement in mammalian cells, in S.cerevisiae peroxisome distribution in 

tightly regulated in cell division (Fagarasanu et al., 2010).  

Expression of Myc-Miro1-wt-Pex and Myc-Miro2-wt-Pex induced the formation of 

aggregates in the cell periphery as seen with the regular proteins, but in a higher 

number of cells. This shows that Miro does in fact promote anterograde transport of 

peroxisomes, very likely following the same mechanism used for the transport of 

mitochondria. Additionally, peroxisome morphology was not altered in these cells, 

suggesting that peroxisome motility is not essential for organelle elongation. 

Unexpectedly, even though expressed Myc-Miro2-wt-Pex was targeted to 

peroxisomes, some cells also showed an ER targeting of this protein and, less 

frequently, a mitochondrial targeting. Mislocalization of this protein to the ER was also 

seen in cells transfected with Myc-Miro2-wt, indicating that there might be some type of 

targeting information in the cytoplasmic domain. It is also possible that Miro2 interacts 

with other proteins present at the ER membrane and can therefore be recruited and 

inserted in this membrane. In these cells, unlike those transfected with Myc-Miro1-Pex 

constructs, mitochondrial morphology was frequently altered, although with less severe 

phenotypes when compared to Myc-Miro2-wt transfection.  

In addition to the wild-type Miro-Pex proteins, we cloned the calcium mutants of 

Miro. Although the effect of calcium on the regulation of mitochondrial distribution is 

well described, to the best of our knowledge no effects on peroxisome dynamics have 

yet been reported.  

As seen in the results, expression of Myc-Miro1-EF-Pex induced the formation of 

peroxisome aggregates scattered throughout the cell or closer to the nucleus. This 

result is very interesting if we consider that in neurons, expression of Miro1-EF keeps 

mitochondria from docking at active synapses. It appears that peroxisome distribution 

and transport to the cell periphery might as well be dependent on the capacity of Miro 

to bind calcium. Consequently, it is possible that under normal conditions where Miro is 

able to bind calcium, peroxisome motility might be regulated by shifts in calcium 

concentration. This might have implications for the control of peroxisome function and 

motility in mitosis, as well as in stress conditions. In fact, a plant calcium-dependent 

protein kinase has been shown to target peroxisomes, providing a potential mechanism 

for calcium to regulate several metabolic pathways in this organelle (Dammann et al., 

2003). 

Overall, we can propose a mechanism for the transport of peroxisomes in 

mammalian cells (Fig.4.1), where Miro1 and Miro2 bridge the interaction between 
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peroxisomes and kinesin motors. This interaction is likely regulated by shifts in 

intracellular calcium concentrations, with potential implications for peroxisome function 

and motility, as well as possible new roles for peroxisomes in calcium signalling. 

Furthermore, proteins which have been shown to interact with Miro in mitochondria are 

likely to also form a complex with peroxisomal Miro and regulate peroxisome motility. 

Additionally, peroxisomal proteins such as Pex14 which have been shown to affect this 

organelle’s motility might as well interact with Miro proteins forming a protein complex. 

 

Grif‐1/OIP106
? Pink1
HUMMR

Ca2+

Pex14

?

Kinesin
Microtubule

Other PO
proteins?

(+)

 
Figure 4.1 – Model for microtubule-dependent transport of peroxisomes in mammalian cells.  

 

4.2. Ustilago maydis – a new model to study peroxisomes 
 

The use of unicellular model systems for the study of cell and molecular biology 

has several advantages, such as the ability to easily manipulate genetic information, 

short generation times, simple cultivation methods and the existence of sophisticated 

molecular tools. Nevertheless, some models like the commonly used yeast 

Saccharomyces cerevisiae have their limitations and lack some structures and 

functions present in mammalian cells. 

Recently, the basidomycete Ustilago maydis has been introduced as a new 

model for the study of cell biology processes (Steinberg and Perez-Martin, 2008). This 

organism shares several features common to higher eukaryotes such as long-distance 

organelle transport through microtubules, polarized growth and the removal of the 
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nuclear envelope during mitosis. Moreover, a genome-wide comparison of the 

proteomes of U. maydis, S. cerevisiae and humans revealed that U. maydis shares 

more protein sequence similarity with humans than with S. cerevisiae (Munsterkotter 

and Steinberg, 2007). Indeed, many proteins shared by humans and U.maydis but not 

present in S.cerevisiae, are functionally characterized and can be associated with 

several cellular processes. Also, a set of 42 proteins is related to serious human 

disorders. 

This cell model also brings numerous advantages for the study of the 

peroxisome-mitochondria relationship. There is strong evidence that U. maydis 

possesses β-oxidation in both organelles and, as a result, metabolic cooperation in lipid 

metabolism, like humans (unpublished data). Even more, U. maydis is capable of 

organelle long-distance transport through microtubules and polarized growth, which are 

valuable features for the study of peroxisome and mitochondria transport across 

neurons. 

Given the advantages of this system, the establishment of U. maydis in our 

laboratory will surely prove valuable for the study of peroxisomal functions and 

dynamics, and its interactions with other organelles, namely mitochondria. 

In line with this, a bioinformatics analysis of the U. maydis proteome was 

performed following two main objectives: the identification of putative TA proteins, and 

the analysis of U.maydis homologs of known human TA proteins. 

As described in the results section, a first analysis of the U.maydis proteome 

enabled the identification of 58 putative TA proteins from a total of 6.925 sequences.  

Using several bioinfomatic tools it was possible to identify the function of some of 

these proteins, as well as their human homologs. As expected, members of the 

conserved SNARE family of proteins were found in this list, as well as some members 

of the ER translocon. Nevertheless, many proteins remained as hypothetical/putative 

due to lack or very low homology to other sequences on the used databases. 

 Furthermore, the inverse search of the U.maydis proteome using the list of 

human TA proteins shows an interesting result, since many of the identified proteins 

lack predicted TMDs. In these cases, it will be interesting to see if these proteins are in 

fact cytosolic and to compare each sequence with several homologs from different 

organisms and complexities to see where and when they became tail-anchored.   
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5.1. Conclusion 
 

In this study we have focused on the role of TA proteins in the peroxisome-

mitochondria connection. In order to extend our knowledge about this interesting 

interrelationship, we aimed at identifying new proteins which are dually targeted to both 

peroxisomes and mitochondria and to unveil their functions in peroxisome biology. We 

found that (1) MAO-B is only localized to mitochondria; (2) Miro proteins are targeted to 

both peroxisomes and mitochondria, where they are likely involved in the regulation of 

organelle transport/motility through kinesin motors and the microtubule cytoskeleton; 

(3) peroxisome motility is dependent on the ability of Miro proteins to bind calcium and 

might, therefore, be regulated by shifts in intracellular calcium concentrations. 

Taken together, we were able to identify the missing molecular link between 

peroxisomes and kinesin motors, shedding light on the mechanism that regulates 

anterograde transport of peroxisomes in mammalian cells. Moreover, we also suggest 

a new function for calcium in the regulation of peroxisome motility. Further investigation 

of Miro proteins will certainly lead to a better understanding of peroxisome dynamics 

and its importance for peroxisome biology and cellular vitality. 

Furthermore, we have created new tools (i.e. the Miro-Pex constructs) to study 

peroxisome movement in mammalian cells. These will prove valuable to study the 

importance of motility for peroxisome elongation, division and proliferation, as well as 

its effect on pexophagy. 

We have also started a bioinformatics analysis of the U. maydis proteome. This 

model system will be used, in parallel, to study peroxisome motility as it shows 

microtubule-dependent long distance transport of organelles. Additionally, there is 

strong evidence that, as in humans, U.maydis possesses fatty acid β-oxidation not only 

in peroxisomes but also in mitochondria (unpublished data). Taken together, the use of 

this model system will aid us in the study of peroxisome biology, as well as its 

connection to mitochondria.    

Overall, the discovery of new proteins and functions of peroxisomes will not only 

promote a better understanding of this organelle per se but will also have implications 

in the diagnosis and treatment of patients with peroxisomal disorders.  
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5.2. Future perspectives 
 

Although we have identified the potential molecular link between peroxisomes 
and kinesin motors, we have yet to identify the regulatory mechanisms involved in this 
process. A first step to continue this work would be to confirm that the peroxisome 
distribution phenotypes observed in cells transfected with Myc-Miro-Pex proteins are 
the result of alterations in the microtubule-dependent transport of peroxisomes. In order 
to do this, we will study the effect of depolymerising drugs on peroxisome distribution. 

We will also continue our cloning approach to study the effect of mutations in the 
GTPase domains of Miro on peroxisome motility. It will be interesting to see if the 
constituvely active mutant of Miro (V13) has a similar or enhanced effect compared to 
the wild-type protein. 

Additionally, we will study the effects of Miro expression on peroxisome motility 
by live-cell imaging analysis of the direction and velocity of peroxisomes in transfected 
and non-trasnfected cells. In these studies we will also examine the influence of 
different calcium concentrations on peroxisome movement and the importance of 
Miro’s calcium-binding domains in this mechanism. 

Furthermore, several binding partners of Miro have been identified in 
mitochondria. Specifically, Grif-1 and OIP106 have a key function in linking Miro 
proteins to the kinesin heavy chain, and have been shown to significantly alter 
mitochondrial morphology (MacAskill et al., 2009a). Expression of these proteins and 
analysis of their localization will provide us with more information on the regulation of 
peroxisome motility. Also, it will be interesting to test if Pink1 and HUMMR, two proteins 
which have been found to interact with Miro proteins, are also associated with 
peroxisomal Miro (Li et al., 2009; Weihofen et al., 2009). Pink1 is a kinase that is 
usually targeted to mitochondria and has been associated with Parkinson’s disease, 
whereas HUMMR is a newly identified hypoxia up-regulated mitochondrial movement 
regulator. 

 We will also study a possible interaction of Miro with peroxisomal proteins such 
as Pex14. This peroxin has been recently shown to interact directly with tubulin and to 
affect peroxisome movement in mammalian cells, by possibly anchoring this organelle 
to microtubules. Since peroxisomal mutants in ∆Pex14 cells are immotile, it would be 
interesting to see if the expression of Miro proteins in these cells affects their 
movement and distribution. 

With the aim of identifying the mechanisms of targeting and insertion of Miro 
proteins into peroxisomes, we will also analyse the possible interaction with Pex19, a 
peroxisomal chaperone that has been shown to target Fis1 to the peroxisomal 
membrane (Delille and Schrader, 2008). 
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5.3. Publications resulting from this work 
 

 
Islinger M., Castro I., Almeida M., Bonekamp N. and Schrader M.: Targeting of tail-

anchored proteins to peroxisomes (2011, in preparation). 

 

Castro I., Ribeiro D. and Schrader M.: A role for Miro1 in peroxisomal motility (2011, in 

preparation). 
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