
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Jahed Naghipoor 
 
 
 

NON-FICKIAN MODELS FOR BIODEGRADABLE 
DRUG ELUTING STENTS 

 
Tese de Programa Inter-Universitário de Doutoramento em Matemática, orientada pelo Professor 
Doutor José Augusto Ferreira e Professora Doutora Paula de Oliveira e apresentada ao 
Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade de 
Coimbra. 

    
2014 
 

 
 
 



University of Coimbra

Doctoral Thesis

Non-Fickian Models for
Biodegradable Drug Eluting

Stents

Author:

Jahed Naghipoor

Supervisors:

Professor José A. Ferreira
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Abstract

Mathematical modeling and numerical simulation of cardiovascular drug de-

livery systems have become an effective tool to gain deeper insights in the phar-

macokinetics of therapeutic agents in cardiovascular diseases like atherosclerosis.

Drug Eluting Stents (DES) which are tiny expandable mesh tubes coated by a

polymer with dispersed drug, represent a major advance in the treatment of ob-

structed artery diseases.

The main objective of this thesis is to study a mathematical model that sim-

ulates ”in vivo” drug delivery from a biodegradable DES. To study the complete

problem of penetration of therapeutic agent from DES into the arterial wall, we

progressively address more complex models.

The first model, presented in Chapter 2, will describe with details, in a simple

two dimensional geometry, the biodegradation of polylactic acid (PLA), a material

of choice in the design of DES, that degrades due to the penetration of plasma

that breaks the polymer chains and reduces its molecular weight.

When drug diffuses from a polymer into a viscoelastic arterial wall, it is observed

that the process can not be completely described by Fick’s law of diffusion which

was proposed by Adolf Fick in 1855. The reason lies in the fact that as drug

diffuses into the arterial wall, it causes a deformation which induces a stress driven

diffusion that act as a barrier to the drug penetration. Thus a modified flux should

be considered, resulting from a sum of the Fickian flux and a non-Fickian flux.

To take into consideration this non-Fickian flux, we add a degree of complexity

to the first model, by introducing in Chapter 3 the stress response of the arterial

wall. It is a memory effect established by Maxwell-Wiechert model or Fung’s

quasilinear viscoelastic model.

To obtain a more realistic model of drug pharmacokinetics, the reversible na-

ture of binding, between the agent and immobilized sites in the arterial wall, is

considered in Chapter 4. The behavior of different families of drugs is compared.

Theoretical results concerning qualitative properties of the solutions and sta-

bility of the models are presented along the dissertation. From the numerical
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viewpoint some aspects of clinical importance such as the influence of elastic mod-

ulus of the arterial wall, the effect of biodegradation of PLA, the permeability of

the stent coating as well as the binding rates in the arterial wall will be addressed

in this thesis.

A software package, to simulate the models in this dissertation, has been de-

veloped using freeFEM++.

Keywords: Non-Fickian coupled model, cardiovascular drug delivery, drug

eluting stents, viscoelastic diffusion coefficient, numerical simulation.
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Resumo

A modelação matemática e a simulação numérica do comportamento de sis-

temas de libertação controlada de fármacos constituem instrumento centrais na

compreensão da farmacocinética de agentes terapêuticos nas doenças cardiovascu-

lares, como por exemplo a aterosclerose. Os ”stents” com libertação controlada

de fármaco1, que são tubos metálicos revestidos por um poĺımero que contem um

fármaco disperso, constituem um tratamento de eleição em caso de obstrução de

vasos.

O objectivo central desta tese é o estudo anaĺıtico e numérico de um mod-

elo matemático que descreva a libertação de fármacos ”in vivo”, a partir de um

”stent” com revestimento biodegradável. Para tal apresentamos ao longo da dis-

sertação modelos progressivamente mais complexos, que culminam num sistema

que descreve a biodegradação do poĺımero mas também propriedades dos tecidos

vasculares como a viscoelasticidade e a ocorrência de afinidades entre o fárrmaco

e o tecido vascular.

O primeiro modelo que estudamos, no Caṕıtulo 2, descreve com detalhe a in-

fluência da biodegradação do ácido poliláctico (PLA), que é um dos poĺımeros

mais usados no revestimento de stents. A degradação ocorre devido à penetração

do plasma no stent com a consequente quebra das cadeias do poĺımero e a redução

do seu peso molecular.

Quando o fármaco se difunde na parede vascular, que é viscoelástica, o processo

não pode ser completamente descrito pela Lei de Fick, proposta por Adolf Fick

em 1855. A razão reside no facto de o fármaco, ao difundir-se na parede vascular,

causar uma deformação, que induz uma resposta do poĺımero sob a forma de uma

resistência à penetração do agente terapêutico. No Caṕıtulo 3 o fluxo Fickiano,

considerado no modelo do Caṕıtulo 2, é então modificado, pela introdução de um

”anti-fluxo” de origem viscoelástica.

Para obter uma descrição mais realista da farmacocinética do agente terapêutico

na parede do vaso inclúımos, no Caṕıtulo 4, a afinidade qúımica entre o agente e o

tecido vivo. O comportamento de fármacos hidrof́ılicos e hidrofóbicos é analisado.

1Drug Eluting Stents (DES) em ĺıngua inglesa
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São apresentados nesta dissertação resultados teóricos relativos às propriedades

qualitativas das soluções e à estabilidade dos modelos estudados. Do ponto de

vista numérico são discutidos diferentes aspectos de importância cĺınica, como a

influência do módulo de Young da parede vascular, as propriedades de degradação,

a permeabilidade do revestimento polimérico e a afinidade do fármaco com a parede

vascular.

Foi desenvolvida uma aplicação computacional, utilizando o ”software” de livre

acesso freeFEM++, para simular o comportamento dos modelos estudados nesta

tese.

Palavras chave: Modelo acoplado não Fickiano, libertação controlada de fármacos

no sistema cardiovascular, ”stents” com libertação controlada de fármaco, coefi-

ciente de difusão viscoelástico, simulação numérica.
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Chapter 1

Introduction and Problem Setting

In this thesis, we address the analytical and numerical study of the diffusion of

a drug from a biodegradable stent and its release into a viscoelastic artery. The

mathematical results established will be used to study the pharmacokinetics of

drug eluting from a stent into the arterial wall.

In Chapter 1, we introduce biomedical concepts concerning the cardiovascular

system and refer some treatments of cardiovascular diseases like atherosclerosis.

We also establish the basic concepts to answer to the following questions:

• How can mathematical modeling clarify the mechanisms underlying the car-

diovascular drug delivery systems?

• Why are drug eluting stents useful medical devices in cardiovascular drug

delivery systems?

• What are the influences of the mechanical properties of the arterial wall and

the affinities drug/vascular tissue, in the process of drug release by drug

eluting stents?

Section 1.1 is devoted to controlled drug delivery and its application in medicine.

In Section 1.2 we review the structure of the arterial system to study possible

treatments of atherosclerosis. In Section 1.3 we investigate the application of

cardiovascular stents (bare metal stents and drug eluting stents), their advantages

1
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and failures for the treatment of the atherosclerosis. Polymer’s degradation and

its application in the cardiovascular stents will be also studied in this section.

Mathematical models are briefly reviewed in Section 1.4.

1.1 Controlled drug delivery

Controlled drug delivery is the release of drug at a specified rate which is

determined by the demand of the living system organ or tissue over a specified

period of time ([43]). Since the sudden delivery of too much drug can be harmful

and the release of too little amount of drug may limit its effectiveness, the control

of the rate of drug release is a crucial issue.

Figure 1.1: Profile of drug concentration in traditional release (red) and con-
trolled release (blue) ([43]).

Traditional delivery systems are characterized by immediate and uncontrolled

drug release kinetics. Accordingly, drug absorption is essentially controlled by

the body’s ability to assimilate the therapeutic molecule and thus, drug concen-

tration in different body tissues, typically undergoes an abrupt increase followed

by a similar decrease. As a consequence, it may happen that drug concentration
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dangerously approaches the toxic threshold to subsequently fall down below the

effective therapeutic level ([18]).

To predefine the performance of drug delivery systems, traditional delivery

systems, as for example simple pills, have been replaced by controlled drug delivery

systems (see Figure 1.1) to maintain drug concentration in target tissues at a

desired value as long as possible and to help to control both under and overdosing

([18, 43]).

In controlled drug delivery systems part of the drug dose is initially released

in order to rapidly get the drug effective therapeutic concentration. Then, drug

release kinetics follows a well defined behavior in order to supply the maintenance

dose, enabling the attainment of the desired drug concentration ([18]).

There is a huge literature in the field of controlled drug delivery. Some of these

studies have an experimental character, others are completed with mathematical

models. We mention without being exhaustive to [10, 12, 18, 22, 24, 35, 43].

1.2 Arterial system: structural compounds and diseases

The vasculature is a complex architecture of vessels that carry blood to and

from the different organs of the body. The blood vessels may be classified based

on their sizes, function and proximity to the heart. A vessel named Artery with

1 mm wall thickness and 4 mm lumen thickness is one of the thickest vessels of

the arterial system which tolerate a pressure profile varying from 80 mmHg to 120

mmHg in each cardiac cycle.

Arteries are roughly subdivided into two types: elastic and muscular. Elas-

tic arteries are located close to the heart, have relatively large diameters and are

regarded as elastic structures. Muscular arteries are smaller, located at the periph-

ery and are regarded as viscoelastic structures. Smaller arteries typically display

more pronounced viscoelastic behavior than arteries with large diameters.

In what follows, we mention a few structural components of the arterial wall

which are bio-mechanically relevant.

• Endothelial cells are cells in the arterial wall in direct contact with blood

flow that have negligible mechanical properties. Its main action is the pre-

vention of thrombosis (the formation of a blood clot) and the entry of blood
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borne bacteria into the vascular wall. It can regenerate itself when it is

injured;

• Elastin is a protein in connective tissue with high elastic properties and

low stiffness. It allows tissues to resume their shape after stretching or

contracting. It can stretch up to 60 percent and remain elastic to bear the

load under physiological conditions;

• Collagen is a tortuous, thick fiber component of vascular wall with high

stiffness. It is responsible for structural integrity of the vessel;

• Smooth muscle cell is a component that is responsible for active properties

of blood vessel wall;

• Ground substance is a component that acts like a glue to keep all arterial

components together.

Figure 1.2: Layers of the arterial wall (http://www.3fx.com/Our-
Work/Medical-Illustration.aspx).

Arterial walls are mainly composed of the three distinct layers named intima,

media and adventitia (see Figure 1.2).

• Intima is the innermost layer of the artery and offers negligible mechanical

strength in the healthy young individuals. It consists of an endothelial cell

mono-layer that prevents blood, including platelets and other elements, from

adhering to the lumenal surface. The mechanical contribution of the intima

may become significant for aged arteries where the intima becomes thicker

and stiffer;

http://www.3fx.com/Our-Work/Medical-Illustration.aspx
http://www.3fx.com/Our-Work/Medical-Illustration.aspx
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• Heterogeneous media, the thickest layer of the artery, is composed by

elastin (24%), vascular smooth muscle cells (33%), collagen (37%) and ground

substances (6%). However, it behaves mechanically as a homogeneous ma-

terial. Due to the high content of smooth muscle cells, it is the media that

is responsible for the viscoelastic behavior of the arterial wall;

• Adventitia is composed of elastin (2%), ground substances (9%), fibroblast

(9%) and collagen fibers (78%). At very high strains, the adventitia changes

to a stiff tube which prevents the artery from overstretching and rupturing.

In the healthy young individuals, only the media and the adventitia are respon-

sible for the strength of the arterial wall and play significant mechanical roles by

carrying most of the stresses. At low strains (physiological pressures), it is chiefly

the media that determines the properties of the arterial wall.

Other layers of arterial wall are as follow.

• Endothelium, a thin layer of cells with thickness 2µm that lines the interior

surface of blood vessel and vessel forming, as an interface between circulating

blood and the rest of the arterial wall;

• Glycocalyx, a thin layer of macromolecules with thickness 100nm to cover

a plasma membrane of a single layer of endothelial cells;

• Internal elastic lamina, a layer of elastic tissue with thickness 2µm that

forms the outermost part of the intima of blood vessels. It separates intima

from media;

• External elastic lamina, a layer of elastic connective tissue lying imme-

diately outside the smooth muscle of the media of the artery. It separates

media from adventitia.

Cardiovascular diseases are among the leading causes of death in the industrialized

world. Although since the 1970s, cardiovascular mortality rates have declined in

many high-income countries, cardiovascular deaths have increased at a fast rate in

low-income and middle-income countries ([40]). Among all cardiovascular diseases,

atherosclerosis is the most common cardiovascular disease wherein some arteries

start thickening until they eventually occlude. This process normally happens

over a period of 50 to 60 years and seems to get particularly severe with age. In

some cases, it begins in early life making primary prevention efforts necessary from

childhood ([40]).



Chapter 1. Introduction and Problem Setting 6

Figure 1.3: Atherosclerosis (http://www.nmihi.com/a/atherosclerosis.htm).

This disease is characterized by intramural deposits of lipids and proliferation of

vascular smooth muscle cells. These changes are accompanied by loss of elasticity

of the vessel wall and narrowing of the vascular lumen. Coronary atherosclerosis

is clinically the most important aspect of atherosclerosis. As coronary arteries are

relatively narrow, atherosclerosis could seriously reduce the blood flow through

them. Initial and advanced atherosclerosis in the coronary artery are depicted in

Figure 1.3.

To face with the pathology of atherosclerosis, different treatments have been

developed during the years. The technology moves from invasive techniques to

more safe and non invasive techniques.

Balloon angioplasty as it is shown in Figure 1.4, is the first technique of me-

chanically widening narrowed or obstructed arteries caused by atherosclerosis. An

empty and collapsed balloon on a guide wire, known as a balloon catheter, is

passed into the narrowed locations and then inflated to a fixed size using water

pressures between 75 to 500 times of normal blood pressure. Inflated balloon di-

lates the blocked segment of the artery by compressing the atherosclerosis plaque

and stretching of the arterial wall.

http://www.nmihi.com/a/atherosclerosis.htm
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Figure 1.4: Balloon angioplasty (http://www.vascular.co.nz/angiogram.htm).

After many years of clinical experience and many catheter designs, angioplasty

is still far from being perfect. A common problem called restenosis, re-narrowing

the blood vessel, is being the main failure of the angioplasty. Restenosis occurs

when blockage returns a few weeks after coronary angioplasty procedure. Although

the initial success rate of the angioplasty for opening the blocked coronary arteries

reached 95%, many studies reported acute blood clots in 3% to 5% and restenosis

rates between 25% to 50% at 3 to 6 months after angioplasty ([39]). In this

case, patient may require another angioplasty or a coronary artery bypass surgery.

This procedure deeply injures the surface of the arterial wall so that deposition of

proteins as well as platelets and inflammatory response stimulates the growing of

a new plaque ([26]).

Problems like abrupt vessel closure and restenosis are being the main reasons

of introducing new techniques like cardiovascular stents to overcome failures of the

angioplasty ([39]).

1.3 Cardiovascular stents

A coronary stent is a tiny expandable mesh tube made by stainless steel which is

delivered on a balloon catheter and implanted in the coronary artery, after balloon

angioplasty, to help keep the artery open.

http://www.vascular.co.nz/angiogram.htm
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After the plaque is compressed against the arterial wall, the stent is fully ex-

panded into position, thereby acting as a scaffold for the artery. The balloon is

then deflated and removed and the coronary stent is left behind in the patient’s

artery. This technique results in a treatment option that requires much less recov-

ery time when compared to balloon angioplasty ([39]).

In general, cardiovascular stents have two distinct and significant chronic fail-

ures:

• Immediately after deployment, thrombosis (acute blood clot) can occur due

to the thrombogenic aspect of the stent promoting a foreign body response.

This phenomena can be promptly treated with drug therapy;

• The other critical failure is in-stent restenosis which is the narrowing of a

stented coronary artery due to the development of neo-intimal hyperplasia

within the stent.

As it is already mentioned in Section 1.2, coronary balloon angioplasty is limited

by abrupt closure and high percent of restenosis. Due to mentioned failures, bare

metal stents (BMS) (Figure 1.5) were proposed to prevent these complications.

However, they are associated with restenosis rates of 25%− 30% and also around

20%−25% of bare metal stented arteries need a second procedure within 6 months.

The other failure of BMS is that due to their microstructural properties, metals

are not feasible materials to act as loadable drug carriers.

Figure 1.5: Bare metal stent (http://www.medgadget.com/2006/01).

All these drawbacks have encouraged significant efforts in the development of

new stent materials, either used in coatings or in stents completely made of poly-

meric materials. Drug eluting stent (DES) is one of these new stent materials.

http://www.medgadget.com/2006/01/bare_metal_sten.html
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A DES is a stent that is coated by a polymer, containing an anti-proliferative

agent, which is released gradually over the course of weeks to months after insertion

of the stent. It will provide sustained inhibition of the neointimal proliferation as

a response of vascular injury.

In 2002− 2003, DES were approved by regulatory bodies in Europe and also in

the USA when initial studies showed a dramatic reduction in rates of restenosis

compared to BMS.

Figure 1.6: Drug eluting stent implanted in the blood artery
(http://www.cxvascular.com/cn-latest-news/).

A DES (Figure 1.6) has three principal components: a stent platform (strut),

a polymer coating and a drug. The drug is contained within the polymer coating

and then diffuses into the arterial wall from the polymer source. The first DESs

were designed with nondegradable polymer coatings; however, some of the newer

DESs are manufactured with biodegradable polymer coatings ([43]).

Some benefits of DES are mentioned bellow:

• If a DES degrades in a controlled manner, the profile of released drug can

be predicted;

• The gradual softening of DES leads to a smooth transfer of the load from

the stent to the healing wall.

The primary pathophysiological mechanism of restenosis involves an exagger-

ated healing response of smooth muscle to vascular injury. In fact the injury made

by angioplasty induces smooth muscle cells to proliferate and migrate to subinti-

mal layer where the smooth muscle continue to migrate. These processes cause

neointimal mass to expand and gradually encroach on the coronary artery.

http://www.cxvascular.com/cn-latest-news/cardiovascular-news---latest-news/primus-drug-coated-balloon-shows-efficacy-in-patients-with-in-stent-restenosis-of-drug-eluting-stents-
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It has been observed that smooth muscle cell derived from injuries of angio-

plasty show a higher migratory activity than cells made from primary injuries.

Injuries with higher aggressive smooth muscle cells will develop more restenosis

than an injury without such aggressive cells. Endothelial cells normally have some

inhibitors like nitric oxide and heparin sulfate to inhibit smooth muscle cell pro-

liferation. Their removal by angioplasty procedure contributes to a proliferative

environment leading to restenosis.

As it is mentioned earlier, new generation DES are made of biodegradable

polymers. A polymer is a large molecule made from many smaller units called

monomers. The mechanical properties of a polymer are determined by many

factors in addition to the monomer from which it is made. Properties such as

stiffness, strength and degradation time are affected by the number of monomers

within the chain (molecular weight) and the arrangement of the monomers. In

general, the greater the molecular weight (longer chain of monomers), the greater

strength and greater absorption time the polymer will have.

In DES, a polymeric material is used to coat the metallic struts, to serve as a

drug carrier and to regulate and control the elution of the drug. Numerous poly-

mers and co-polymers such as polylactic acid (PLA) and polylactic-co-glycolic acid

(PLGA) have been studied experimentally and empirical models of drug release

have been developed ([6, 8, 9]).

Studies to identify families of polymers that degrade predictably and disappear

over time have become increasingly important. In the case of polymers used in drug

eluting stents this aspect is crucial because the safe and predictable disappearance

is one of the key factors in evaluating their performance.

Biodegradable polymers have hydrolysable bonds, making hydrolysis the most

important mode of degradation. In biodegradable polymeric devices, the drug is

released by the degradation and dissolution of the polymeric matrix, or by the

cleavage of a covalent bond that binds the drug within the polymeric matrix.

Biodegradable polymers, however, are designed to slowly dissolve following im-

plantation. Biodegradable polymers used in drug delivery must induce no undesir-

able or harmful tissue responses, and the degradation products must be nontoxic.

PLA is the polymer most commonly used for the production of biodegradable

stents. Molecular weight of PLA is controlled by the quality of lactide used. The

less water the lactide contains, the purer the PLA, with a higher molecular weight.
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Pharmacological agents like dexamethasone, heparin, nitric oxide, paclitaxel

and sirolimus have been investigated to inhibit restenosis by angioplasty proce-

dure. These pharmacological agents have been used in stent coating in a number

of commercial drug eluting stents. Recently, two more drugs, everolimus and zo-

tarolimus, were added to the list of smooth muscle cell proliferation inhibitors used

in drug eluting stents. Everolimus is being clinically investigated by Abbott Vas-

cular, Santa Clara, CA, USA, with the XIENCE V TM everolimus eluting coronary

stent. The interesting fact about this drug is that it is used in conjunction with

a new biodegradable polymer coating and give promising results in initial clinical

studies.

In this dissertation, information from XIENCE V TM everolimus eluting coro-

nary stent investigated by Abbott Vascular is used to study the coronary drug

eluting stent.

1.4 Mathematical models for coupled cardiovascular drug

delivery

Mathematical modeling and numerical simulations of drug transport inside the

arterial wall help to understand the efficacy of the treatment and can provide

manufacturers with guidelines to optimize delivery from DES. During the last

years, a number of studies have proposed mathematical models for coupled drug

delivery in the cardiovascular tissues. We refer without being exhaustive to [2, 5,

24, 26, 33, 40, 43, 44, 46]. Most of these studies address the release of drug and

its numerical behavior in one dimension, while the viscoelasticity of the arterial

wall and the behavior of the biodegradable polymer are disregarded.

Pontrelli and de Monte ([31–33]) developed mathematical models for drug re-

lease through a DES in contact with the arterial wall as a coupled cardiovascular

drug delivery system. They analyzed numerically and analytically the drug release

from the coating into both a homogeneous mono-layer wall ([32]) and a heteroge-

neous multi-layered wall ([33]) in one dimension. Despite their interesting results,

the biodegradation process of the carrier polymer, the penetration of the biological

fluid into the coating and absorption of degraded polymer by the arterial wall have

not been taken into account.

Prabhu and Hossainy ([34]) developed a mathematical model to predict the

transport of drug with simultaneous degradation of the biodegradable polymer
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in the aqueous media. They have used a simplified wall-free condition, in which

the influence of the arterial wall is modeled through the coupling with a Robin

boundary condition. An important feature of this model, which differentiates it

from other models, is the reaction equations used to represent the polymer degra-

dation. It is assumed that a set of oligomers can be identified as one compartment,

characterized by a certain molecular weight range, for which their diffusion char-

acteristics and degradation kinetics can be considered to be identical. The authors

in [34] also consider that the diffusion coefficients depend on the concentration of

PLA.

The model presented in Chapter 2 extends to two dimensions the one dimen-

sional model proposed by Prabhu and Hossainy, and furthermore it uses a coupled

stent-wall system instead of a simplified wall-free condition. The model is based

on two sets of PDE’s: one represents the kinetics of the drug and the degradation

process in the stent and the other the kinetics of drug in the vessel wall. These

equations are based on Fick’s law and are described by{
∂CS
∂t

+∇ · JS = FS,
∂CV
∂t

+∇ · JV = 0,
(1.1)

where CS denotes a concentration (drug, PLA, oligomers, lactic acid and fluid) in

the stent coating, while CV represents the drug concentration in the arterial wall.

In system (1.1), Jj, j = S, V, represent Fickian mass fluxes in the stent and

in the arterial wall, respectively, whereas FS describes the degradation reactions.

The system is coupled with the initial, boundary and interface conditions.

The results presented in Chapter 2 are extensions of the results included in the

works:

• J. A. Ferreira, J. Naghipoor and P. de Oliveira, Numerical simulation of a

coupled cardiovascular drug delivery model, Proceedings of the 13th Interna-

tional Conference on Computational and Mathematical Methods in Science

and Engineering, CMMSE2013 (II), I. P. Hamilton and J. Vigo-Aguiar (ed-

itors), 642–653, 2013.

• J. A. Ferreira, J. Naghipoor and P. de Oliveira, Analytical and numerical

study of a coupled cardiovascular drug delivery model, Journal of Computa-

tional and Applied Mathematics, 275 (2015) 433–446.
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Arterial walls of the cardiovascular system are known to display a complex

mechanical response under physiological conditions. The coronary artery has dif-

ferent portions of the layers, which mainly consist of elastin that is responsible

for elasticity and smooth muscle cell and collagen in the media, which exhibit the

viscoelastic behavior of the artery ([27, 29]).

Experiments like creep tests have demonstrated that the vascular tissue is vis-

coelastic ([16, 27, 41]). It is accepted that in the presence of small vascular de-

formations, linear viscoelastic models will adequately predict the process of drug

penetration from stent into the arterial wall ([29]).

Classical Fickian diffusion equation does not account for the influence of vis-

coelasticity in the transport of molecules ([6, 10, 15, 16, 29]). From a mathematical

viewpoint, a non-Fickian reaction-diffusion equation characterized by a modified

flux could be an appropriate equation to simulate drug release.

The model presented in Chapter 3 is based on two sets of PDE’s: one represents

the kinetics of drug and degradation process in the stent and the other the kinetics

of drug in the arterial wall. Equations in the stent are based on Fick’s law while

equations in the arterial wall are based on non-Fickian diffusion and are described

by {
∂CS
∂t

+∇ · JS = FS,
∂CV
∂t

+∇ · J̃V = FV ,
(1.2)

where CS denotes a concentration (drug, PLA, oligomers, lactic acid and water)

in the stent coating, while CV represents the concentration of drug, lactic acid and

water in the arterial wall. In equation (1.2), JS represents a Fickian mass flux in

the stent, while J̃V denotes a non-Fickian mass flux in the arterial wall. This flux

describes the stress response of the vessel wall to the strain caused by the incoming

drug. We assume that the transport of the drug and other available molecules, in

the arterial tissue, takes place by non-Fickian diffusion and convection. Convection

of molecules through the arterial wall is caused by the high pressure difference

between the blood flow and the outer vascular tissue, adventitia, which results in

blood plasma filtration across the arterial wall.

FS and FV in (1.2) describe the degradation reactions in the stent and in the

arterial wall respectively. The velocities that define the convection terms are com-

puted by Darcy’s law. The system is coupled with initial, boundary and interface

conditions. The results presented in Chapter 3 are generalizations of the results

included in the work:
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• J. A. Ferreira, J. Naghipoor and P. de Oliveira, A coupled non-Fickian model

of a cardiovascular drug delivery system, Preprint of Department of Mathe-

matics of University of Coimbra, No. 14-13 (submitted).

In Chapter 4, we improve the model proposed in Chapter 3 to take into account

the reversible nature of the binding between the drug and specific sites inside the

arterial wall ([5, 26, 43, 44]).

The coupled non-Fickian nonlinear reaction-diffusion-convection model that de-

scribes the evolution of PLA and its compounds, the free drug and activated drug-

binding site, is defined by 
∂CS
∂t

+∇ · JS = FS,
∂CV
∂t

+∇ · J̃V = FV ,
∂CV
∂t

= GV ,

(1.3)

where CS denotes a concentration (drug, PLA, oligomers, lactic acid and water)

in the stent coating, CV represents the concentration of lactic acid and water in

the arterial wall while CV represents the concentration of free and bounded drugs

in the arterial wall. In system (1.3), fluxes JS and J̃V are defined as in Chapter 3

and GV stand for the reversible binding reactions.

The original results presented in Chapter 4 are a generalization of the following

accepted paper:

• J. A. Ferreira, J. Naghipoor and P. de Oliveira, The effect of reversible

binding sites on the drug release from drug eluting stent, Proceeding of 14th

International Conference on Computational and Mathematical Methods in

Science and Engineering, CMMSE2014 (II), I. P. Hamilton and J. Vigo-

Aguiar (editors), 519-530, 2014.

Finally in Chapter 5 we summarize our conclusions and describe future works.



Chapter 2

A Nonlinear Coupled Model

In this chapter, we present an extension of the one dimensional model proposed

by Prabhu and Hossainy in [34] whose aim was the study of drug release from a

DES into the arterial wall. The main differences between our model and the model

proposed in [34] are the fact that we consider a two dimensional domain and also

the conditions that are used to couple the coated stent and the arterial wall. The

main drawback of [34] is that the authors have considered that the coated stent

was the only region of interest for studying the model and they represented the

interaction between the arterial wall and the lumen by simple wall-free boundary

conditions. An important feature of the model in [34], which differentiates it from

previous similar models ([2, 5, 33, 46]) is the detailed equations that are used

to represent the polymer degradation. Despite the accurate description of the

phenomena in the coated stent, the authors have not studied the model from the

theoretical and phenomenological viewpoints.

The main objectives of this chapter are studying the structure of the inter-

face conditions in the coupling of two different physical domains as well as the

biodegradation of the polylactic acid (PLA). Also the study of the two dimen-

sional nonlinear coupled cardiovascular drug delivery system, from the numerical

and theoretical viewpoints, will deserve our attention.

The chapter is organized as follows. Section 2.1 is devoted to the description

of the model and its initial, boundary and interface conditions. In Section 2.2, we

briefly explain the mass behavior of molecules in the phenomenological approach.

In Section 2.3, we present the variational formulation of the model and an energy

estimate is established. The stability of the proposed model is studied in Section

15
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2.4 and by using an implicit explicit finite element method, we establish a semi-

discrete variational form in Section 2.5 and a full discrete variational form in

Section 2.6. Numerical simulations of the model and a sensitivity analysis of the

parameters are discussed in Section 2.7.

2.1 Description of the model

We consider a stent S coated by PLA where the drug is dispersed and in contact

with the arterial wall V . The stent will be slowly absorbed by the arterial wall as

time evolves. In Figure 2.1 we represent a simplified physical model.

In the study of the model, the following assumptions are taken into account:

1. Despite the heterogeneity of the arterial wall (see Section 1.2), we assume

that it is a homogeneous medium under a macroscopic view point;

2. The geometrical and mechanical effects of the stent strut (the metallic part of

the stent) on the degradation of PLA and release of the drug are considered

negligible;

3. The penetration of the oligomers and lactic acid into the arterial wall is

considered negligible;

4. As the transport properties of the glycocalyx (the coverage of endothelium)

are not clearly studied in the literature, we have considered its values in the

endothelium layer.

Figure 2.1: Polymeric stent S in contact with the vessel wall V.

In the stent S, Γ1 is the boundary between the coated stent and the metallic part

of the stent (stent strut) while Γ2 and Γ3 are the boundaries which separate the
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coated stent and the arterial lumen. Γ4 is an interface boundary which separates

the coated stent from the arterial wall, V . Γ5 and Γ6 are the boundaries between

the arterial wall and the arterial lumen while Γ7 is the boundary between the

arterial wall and the tissue (outer part of the arterial wall). Γ8 and Γ9 are virtual

boundaries where conditions will be imposed.

Figure 2.2: Schematic of the mathematical model for predicting degradation
of PLA and drug release ([34]).

Mathematical modeling of drug delivery from a biodegradable coating into the

arterial wall is relatively complex compared with modeling of drug release from

a non-degradable polymer. In the case of a biodegradable coating, in addition

to the physical mass transport process responsible for the drug release from the

coating, the model has to account for the chemical processes responsible for the

biodegradation.

In this thesis, we assume that two main reactions are responsible for the degra-

dation of PLA into smaller molecules. As it is illustrated schematically in Figure

2.2, the first reaction is the hydrolyzing of the PLA producing oligomers which

have smaller molecular weights MW , 2× 104 g/mol ≤ MW ≤ 1.2× 105 g/mol. It

is assumed that all of these oligomers have similar diffusivities when they diffuse

through the coated stent. The second reaction is the hydrolyzing of the oligomers

giving lactic acid with the molecular weight MW ≤ 2 × 104 g/mol. The lactic

acid generated by this reaction is assumed to have a catalytic effect on further

degradation of the PLA, which is represented by α and β in (2.4). These reactions

are schematically represented by

C1,S + C2,S

κ1,S−−−→ C3,S + C4,S,

C1,S + C3,S

κ2,S−−−→ C4,S,
(2.1)
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where C1,S, C2,S, C3,S and C4,S represent the concentrations of the water, PLA,

oligomers and lactic acid in the coated stent, respectively (see Table 2.1). The

constants κ1,S and κ2,S stand for the reaction rates of the first and second reactions

respectively.

Molecule Coated stent (S) Vessel wall (V)

Water C1,S -

PLA C2,S -

Oligomers C3,S -

Lactic acid C4,S -

Drug C5,S CV

Table 2.1: Notation for the concentrations.

It should be noted that the effect of the extracellular enzymes in the degradation

process is neglected in this model. As it is mentioned in [37], the degradation rates

measured ”in vitro” are essentially the same as that measured ”in vivo”. So the

major route of degradation for PLA is most likely via non-enzymatic hydrolysis.

It is also assumed that the drug does not react with PLA and its products.

Considering the notation C∗ =
(
Cm,S

)
m=1,...,4

, the behaviour of the concen-

trations Cm,S, m = 1, . . . , 5, in the coated stent is described by the following

nonlinear reaction diffusion equations

∂Cm,S
∂t

= ∇ ·
(
Dm,S∇Cm,S

)
+ Fm,S(C∗) in S × IR+, m = 1, . . . , 5, (2.2)

where C5,S denotes the concentration of the drug in the coated stent. The reaction

terms Fm,S, m = 1, . . . , 5, are defined by

Fm,S(C∗) =



−
∑
i=1,2

Fi,S(C∗), m=1,

−F1,S(C∗), m=2,∑
i=1,2

(−1)i−1Fi,S(C∗), m=3,∑
i=1,2

Fi,S(C∗), m=4,

0, m=5.

(2.3)

In (2.3), F1,S and F2,S are given by

F1,S(C∗) = κ1,SC1,SC2,S

(
1 + αC4,S

)
,

F2,S(C∗) = κ2,SC1,SC3,S

(
1 + βC4,S

)
,

(2.4)
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where α and β are positive dimensional constants. The negative signs in (2.3)

indicate the consumption of molecules while the positive signs indicate the pro-

duction of molecules. For instance, the reaction term for the water is represented

by

−κ1,SC1,SC2,S − κ1,SαC1,SC2,SC4,S − κ2,SC1,SC3,S − κ2,SβC1,SC3,SC4,S. (2.5)

The reaction term (2.5) indicates that PLA degrades into oligomers and lactic

acid and also oligomers hydrolyze producing lactic acid. The negative signs in

(2.5) indicate that the water is consumed during the time (see (2.1)). The other

reaction terms in (2.3) have similar interpretations.

The diffusivities of the water, oligomers, lactic acid and drug will evolve with

time. This variation occurs due to the progressive degradation of the polymer

as well as due to the swelling of the polymer. It is therefore assumed that the

diffusion coefficients increase exponentially with the extent of the hydrolysis of

PLA ([34, 38]). The diffusivity coefficients in the coated stent are represented by

Dm,S = D0
m,Se

αm,S
C0

2,S−C2,S

C0
2,S in S̄ × IR+, m = 1, . . . , 5, (2.6)

where D0
m,S, m = 1, . . . , 5, are the diffusivity of the respective species in the

unhydrolyzed PLA and C0
2,S is the unhydrolyzed polymer concentration at the

initial time.

For the arterial wall, the following simplified model

∂CV
∂t

= ∇ ·
(
DV∇CV

)
in V × IR+, (2.7)

with constant diffusion coefficient, DV is assumed where CV stands for the con-

centration of drug in the arterial wall.

Since the degradation starts at t = 0, we assume that there are no initial

oligomers and lactic acid in the coating. The drug and PLA are distributed uni-

formly. In the coated stent and the arterial wall, the initial conditions are defined

by {
C1,S(0) = C3,S(0) = C4,S(0) = 0, C2,S(0) = C5,S(0) = 1 in S,

CV (0) = 0 in V.
(2.8)

Here and in what follows we denote by v(t) a function that depends on x, y and t,

that is for each t, v(t) : Ω̄ −→ IR, where Ω̄ represents S̄ or V̄ .
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We also assume that the boundary Γ1, interface between the coating and the

stent structure, is impermeable to the molecules present in the coated stent which

means that no mass flux crosses it, that is

Dm,S∇Cm,S · ηS = 0 on Γ1 × IR+, m = 1, . . . , 5, (2.9)

where ηS is the unit exterior normal to Γ1.

We assume that the blood flow in the arterial lumen does not significantly in-

fluence the drug release in the arterial wall. In Γ2 and Γ3, the boundary conditions

are defined by{
D1,S∇C1,S · ηS = γ1,S(1− C1,S) on (Γ2 ∪ Γ3)× IR+,

Dm,S∇Cm,S · ηS = −γm,SCm,S on (Γ2 ∪ Γ3)× IR+, m = 2, . . . , 5,
(2.10)

where γm,S, m = 1, . . . , 5, represent transference coefficients.

We consider now the issue of finding effective coupling conditions across the

interface Γ4 which separates the coated stent and the arterial wall. The obvi-

ous condition to assign, at a permeable interface, is the continuity of the drug

concentration and the other condition is the continuity of its flux, that is{
D5,S∇C5,S · ηS = −DV∇CV · ηV on Γ4 × IR+,

C5,S = CV on Γ4 × IR+,
(2.11)

where ηS = −ηV on Γ4. It is also assumed that Γ4 is impermeable to PLA, lactic

acid and oligomers.

In what concerns the interface boundary between intima and media, a Robin

boundary condition of type

DV∇CV · ηV = −γvCV on Γ7 × IR+, (2.12)

is considered for the drug. The boundary condition (2.12) means that the drug

can pass from intima to media.

A homogeneous Neumann boundary condition

DV∇CV · ηV = 0 on (Γ8 ∪ Γ9)× IR+, (2.13)

is assumed for the virtual boundaries Γ8 ∪ Γ9.
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The flux of drug from the arterial wall to the blood is given by

DV∇CV · ηV = −γbCV on (Γ5 ∪ Γ6)× IR+, (2.14)

where γb is such that the endothelium layer offers a small resistance to the drug

transport.

Summarizing, the boundary and interface conditions are defined by

Dm,S∇Cm,S · ηS = 0 on Γ1 × IR+, m = 1, . . . , 5,

D1,S∇C1,S · ηS = γ1,S(1− C1,S) on (Γ2 ∪ Γ3)× IR+,

Dm,S∇Cm,S · ηS = −γm,SCm,S on (Γ2 ∪ Γ3)× IR+, m = 2, . . . , 5,

Dm,S∇Cm,S · ηS = 0 on Γ4 × IR+, m = 1, . . . , 4,

C5,S = CV on Γ4 × IR+,

D5,S∇C5,S · ηS = −DV∇CV · ηV on Γ4 × IR+,

DV∇CV · ηV = −γbCV on (Γ5 ∪ Γ6)× IR+,

DV∇CV · ηV = −γvCV on Γ7 × IR+,

DV∇CV · ηV = 0 on (Γ8 ∪ Γ9)× IR+.

(2.15)

2.2 Qualitative behavior of the total mass

In what follows we analyze the time behavior of the total mass

M(t) =

5∑
m=1

∫
S

Cm,S(t)dS +

∫
V

CV (t)dV, (2.16)

where the notations have been presented in Table 2.1.

Replacing (2.2) and (2.7) in

M′(t) =
5∑

m=1

∫
S

∂Cm,S
∂t

(t)dS +

∫
V

∂CV
∂t

(t)dV, (2.17)

we obtain

M′(t) =

5∑
m=1

∫
S

(
∇ ·
(
Dm,S(t)∇Cm,S(t)

)
+ Fm,S(C∗(t))

)
dS +

∫
V

∇ ·
(
DV∇CV (t)

)
dV.(2.18)

Using Gauss’s theorem ([11]), taking into account the boundary conditions

(2.9), (2.10), (2.12), (2.13) and (2.14), and reaction terms (2.3) and (2.4), we
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deduce

M′(t) = γ1,S

∫
Γ2∪Γ3

(1− C1,S(t))ds−
4∑

m=2

γm,S

∫
Γ2∪Γ3

Cm,S(t)ds− γb
∫

Γ5∪Γ6

CV (t)ds

+

∫
Γ4

D5,S(t)∇C5,S(t) · ηSds+

∫
Γ4

DV∇CV (t) · ηV ds− γ5,S

∫
Γ2∪Γ3

C5,S(t)ds

−γv
∫

Γ7

CV (t)ds−
∫
S

κ2,SC1,S(t)C3,S(t)
(
1 + βC4,S(t)

)
dS.

(2.19)

Replacing the coupling conditions (2.11) in (2.19), we have

M′(t) = −∆MΓ(t)−∆MH(t) + γ1,S

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣, (2.20)

where

∆MΓ(t) =
5∑

m=1

γm,S

∫
Γ2∪Γ3

Cm,S(t)ds+ γv

∫
Γ7

CV (t)ds+ γb

∫
Γ5∪Γ6

CV (t)ds, (2.21)

and the mass of hydrolyzed oligomers is given by

∆MH(t) =

∫
S

κ2,SC1,S(t)C3,S(t)
(
1 + βC4,S(t)

)
dS, (2.22)

and

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣ represents the length of the boundary segment Γ2 ∪ Γ3.

We note that ∆MΓ(t) represents the mass of molecules that enters, per unit

time, in the lumen; ∆MH(t) stands for the mass of lactic acid produced by unit

time, and resulting from the hydrolysis of oligomers.

Finally, by integrating in time we deduce

M(t) =M(0) + γ1,S

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣t−
∫ t

0

∆MH(µ) dµ−
∫ t

0

∆MΓ(µ) dµ. (2.23)

The equality (2.23) means that the total mass of the system at time t is given

by the difference between the initial mass added to the mass of water that enters

in the system until time t, and the mass of hydrolyzed oligomers until time t, the

mass of the components that are on the boundary until time t.



Chapter 2. A Nonlinear Coupled Model 23

2.3 Weak formulation of the coupled problems

In this section, we introduce a variational problem associated with the initial

boundary value problem (IBVP) (2.2)− (2.7) and (2.15).

Let Ω be a bounded domain in IR2 with boundary ∂Ω. We denote by L2(Ω)

and H1(Ω) the usual Sobolev spaces endowed with the usual inner products (., .)

and (., .)1 and norms ‖.‖L2(Ω) and ‖.‖H1(Ω) respectively (see [3]).

The space of functions v : (0, T ) −→ H1(Ω) such that∫ T

0

∥∥v(t)
∥∥2

H1(Ω)
dt <∞, (2.24)

will be denoted by L2(0, T ;H1(Ω)). By L∞(0, T ;L∞(Ω)) we represent the space

of functions v : (0, T ) −→ L∞(Ω) such that

ess sup
(0,T )

∥∥v(t)
∥∥
L∞(Ω)

<∞. (2.25)

Let ΩS,V = S ∪ V ∪ Γ4 and let C, γ and D be defined by

C =

{
C5,S in S̄ × (0, T ],

CV in V̄ × (0, T ],
(2.26)

γ =


γ5,S on Γ2 ∪ Γ3,

γb on Γ5 ∪ Γ6,

γv on Γ7,

(2.27)

and

D =

 D0
5,Se

α5,S

C0
2,S−C2,S

C0
2,S in S̄ × (0, T ],

DV in V̄ × (0, T ].
(2.28)

We remark that C5,S = CV on S̄ ∩ V̄ .

The weak solution of the IBVP (2.2)−(2.7) and (2.15) is defined by the following

variational problem:
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VP1: Find (C∗, C) ∈
(
L2(0, T ;H1(S))

)4

× L2(0, T ;H1(ΩS,V )) such that(
∂C∗

∂t
, ∂C
∂t

)
∈
(
L2(0, T ;L2(S))

)4

× L2(0, T ;L2(ΩS,V )) and



4∑
m=1

(
∂Cm,S
∂t (t), vm

)
S

+

(
∂C
∂t (t), w

)
ΩS,V

= −
4∑

m=1

(
Dm,S∇Cm,S(t),∇vm

)
S

−
(
D∇C(t),∇w

)
ΩS,V

+

4∑
m=1

(
Fm,S(C∗(t)), vm

)
S

+γ1,S

(
1− C1,S(t), v1

)
Γ2∪Γ3

−
4∑

m=2

γm,S

(
Cm,S(t), vm

)
Γ2∪Γ3

−
(
γC(t), w

)
Γ

,

a.e. in (0, T ), for all vm ∈ H1(S), m = 1, . . . , 4, and w ∈ H1(ΩS,V ),

C∗(0) = (0, 1, 0, 0),

C(0) = χS ,

(2.29)

where χS =

{
1 in S,

0 in V,
and Γ = Γ2 ∪ Γ3 ∪ Γ5 ∪ Γ6 ∪ Γ7.

In what follows we study the behavior of the solution of the variational problem

VP1 assuming that the diffusion coefficients Dm,S, m = 1, . . . , 5, are constants.

We represent by L∞(L∞) the space L∞(0, T ;L∞(Ω)). Let the energy functional

E∇(t) be defined by

E∇(t) =

4∑
m=1

(∥∥∥∥Cm,S(t)

∥∥∥∥2

L2(S)

+ 2

∫ t

0

∥∥∥∥√Dm,S∇Cm,S(s)

∥∥∥∥2

L2(S)

ds

)
+

∥∥∥∥C(t)

∥∥∥∥2

L2(ΩS,V )

+2

∫ t

0

∥∥∥∥√D∇C(s)

∥∥∥∥2

L2(ΩS,V )

ds, t ∈ [0, T ],

(2.30)

where E∇(0) is the initial energy that depends only on PLA and drug.

Theorem 2.3.1. If (C∗, C) is a solution of the variational problem VP1 such that

Cm,S(t) ∈ H2(S), m = 1, . . . , 4, then there exists a positive constant K depending

on ‖C∗‖L∞(L∞) = max
m=1,...,4

∥∥Cm,S∥∥L∞(L∞)
, such that the following holds

E∇(t) ≤ e2KtE∇(0) +
γ1,S

2K

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣(e2Kt − 1
)
, t ∈ [0, T ], (2.31)

where

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣ is the length of the boundary layer Γ2 ∪ Γ3.
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Proof. We take in (2.29), vm = Cm,S(t), m = 1, . . . , 4, and w = C(t). It is not

difficult to check that(
dCm,S
dt

(t), Cm,S(t)

)
S

=

∫
S

dCm,S
dt

(t)Cm,S(t)dS

=
1

2

d

dt

∫
S

C2
m,S(t)dS =

1

2

d

dt

∥∥∥∥Cm,S(t)

∥∥∥∥2

L2(S)

,
(2.32)

for m = 1, . . . , 4.

With the same approach we have(
dC

dt
(t), C(t)

)
ΩS,V

=
1

2

d

dt

∥∥∥∥C(t)

∥∥∥∥2

L2(ΩS,V )

. (2.33)

We also have(
Dm,S∇Cm,S(t),∇Cm,S(t)

)
S

=
d

dt

∫ t

0

∥∥∥∥√Dm,S∇Cm,S(s)

∥∥∥∥2

L2(S)

ds, m = 1, . . . , 4,(
D∇C(t),∇C(t)

)
ΩS,V

=
d

dt

∫ t

0

∥∥∥∥√D∇C(s)

∥∥∥∥2

L2(ΩS,V )

ds.

(2.34)

Summing up (2.32), (2.33) and (2.34) and taking into account (2.30), we obtain

1

2

d

dt
E∇(t) =

4∑
m=1

(
Fm,S(C∗(t)), Cm,S(t)

)
S

+ γ1,S

(
1− C1,S(t), C1,S(t)

)
Γ2∪Γ3

−
4∑

m=2

γm,S

∥∥∥∥Cm,S(t)

∥∥∥∥2

L2(Γ2∪Γ3)

− γ
∥∥∥∥C(t)

∥∥∥∥2

L2(Γ)

.

(2.35)

By Cauchy inequality ([11]) with ε = 1
2
, we have(

1− C1,S(t), C1,S(t)

)
Γ2∪Γ3

=

∫
Γ2∪Γ3

(
C1,S(t)− C2

1,S(t)

)
ds ≤ 1

4

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣ (2.36)

Consequently the inequality (2.35) leads to

1

2

d

dt
E∇(t) ≤

4∑
m=1

(
Fm,S(C∗(t)), Cm,S(t)

)
S

+
γ1,S

4

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣. (2.37)

As H2(S) is embedded in the space of continuous bounded functions in S

([3]), it can be shown that there exists a positive constant K that depends on
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∥∥C∗∥∥L∞(L∞)
= max

m=1,...,4

∥∥Cm,S∥∥L∞(L∞)
, such that

4∑
m=1

(
Fm,S(C∗(t)), Cm,S(t)

)
S

≤ K
4∑

m=1

∥∥∥∥Cm,S(t)

∥∥∥∥2

L2(S)

. (2.38)

Inequality (2.37) leads to the differential inequality

d

dt
E∇(t) ≤ 2KE∇(t) +

γ1,S

2

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣. (2.39)

By multiplying both sides of (2.39) by e−Kt and integrating over time, we finally

deduce (2.31).

2.4 Stability analysis

We consider in what follows two solutions C(t) = (C∗(t), C(t)) and C̃(t) =

(C̃∗(t), C̃(t)) with different initial conditions C(0) and C̃(0), respectively. We recall

that C∗(t) =
(
Cm,S(t)

)
m=1,...,4

, where Cm,S, m = 1, . . . , 4, are defined in Table 2.1.

To study the stability of the IBVP (2.2)-(2.7) and (2.15), we should verify that∥∥∥∥C∗(t)− C̃∗(t)∥∥∥∥2

L2(S)

+

∥∥∥∥C(t)− C̃(t)

∥∥∥∥2

L2(ΩS,V )

≤ B(t)
(∥∥∥∥C∗(0)− C̃∗(0)

∥∥∥∥2

L2(S)

+

∥∥∥∥C(0)− C̃(0)

∥∥∥∥2

L2(ΩS,V )

)
,

(2.40)

for t ∈ [0, T ], where

∥∥∥∥C∗(t)− C̃∗(t)∥∥∥∥
L2(S)

=
4∑

m=1

∥∥∥∥Cm,S(t)− C̃m,S(t)

∥∥∥∥
L2(S)

and B(t)

is bounded in time.

To establish the inequality (2.40) it is sufficient to assume that the reaction

terms have bounded partial derivatives. As reaction terms (2.3) are nonlinear

functions without bounded partial derivatives, it is not possible in this case to

establish (2.40). To gain some insights on the stability behavior of the initial

value problem VP1, we study in what follows the stability of a linearization of

VP1 in the neighborhood of a solution C(t).
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We recall that C and D are defined by (2.26) and (2.28) respectively. Then the

system of equations (2.2) and (2.7) can be rewritten in the following form
dC
dt

(t) = F(C(t)), t > 0,

C(0) is given,
(2.41)

with C(t) =
(
C∗(t), C(t)

)
and F(C(t)) =

(
Fm(C(t))

)
m=1,...,5

is represented by

{
Fm(C(t)) = ∇ ·

(
Dm,S∇Cm,S(t)

)
+ Fm,S(C∗(t)), m = 1, . . . , 4,

F5(C(t)) = ∇ ·
(
D∇C(t)

)
,

(2.42)

and Fm,S(C∗(t)), m = 1, . . . , 4, are defined by (2.3) and (2.4). We also assume

that conditions (2.15) hold.

The linearization of the initial value problem (2.41) in C(t) can be written in

the following form 
dC̃
dt

(t) = LC̃(t) , t > 0,

C̃(0) is given,
(2.43)

where LC̃(t) =

(
LmC̃(t)

)
m=1,...,5

is defined by

{
LmC̃(t) = ∇ ·

(
Dm,S∇C̃m,S(t)

)
+ FJ,m(C(t))C̃(t), m = 1, . . . , 4,

L5C̃(t) = ∇ ·
(
D∇C̃(t)

)
,

(2.44)

C̃(t) = (C̃∗(t), C̃(t)), C̃∗(t) =

(
C̃m,S(t)

)
m=1,...,4

and

FJ,m(C(t))C̃(t) =



−
∑
i=1,2

FJ,i(C(t))C̃(t), m=1,

−FJ,1(C(t))C̃(t), m=2,∑
i=1,2

(−1)i−1FJ,i(C(t))C̃(t), m=3,∑
i=1,2

FJ,i(C(t))C̃(t), m=4.

(2.45)
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In (2.45), FJ,i(C(t))C̃(t), i = 1, 2, represent Fréchet derivatives given by
FJ,1(C(t))C̃(t) = κ1,SC2,S(t)(1 + αC4,S(t))C̃1,S(t) + κ1,SC1,S(t)(1 + αC4,S(t))C̃2,S(t)

+κ1,SαC1,S(t)C2,S(t)C̃4,S(t),

FJ,2(C(t))C̃(t) = κ2,SC3,S(t)(1 + βC4,S(t))C̃1,S(t) + κ2,SC1,S(t)(1 + βC4,S(t))C̃3,S(t)

+κ2,SβC1,S(t)C3,S(t)C̃4,S(t).

(2.46)

Let C̃ and ˜̃C be solutions of the variational problem associated with the IBVP

defined by (2.43) and conditions (2.15), with initial conditions C̃(0) and ˜̃C(0) in

which C̃(t), ˜̃C(t) ∈
(
H2(S)

)4

.

We establish in what follows an upper bound for the functional EW(t) defined

by

EW(t) =

4∑
m=1

∥∥∥∥Wm,S(t)

∥∥∥∥2

L2(S)

+

∥∥∥∥W (t)

∥∥∥∥2

L2(ΩS,V )

, t ∈ [0, T ], (2.47)

where Wm,S = C̃m,S − ˜̃Cm,S, m = 1, . . . , 4, and

W =

{
C̃5,S − ˜̃C5,S in S,

C̃V − ˜̃CV in V.
(2.48)

It can be shown that

1

2

d

dt
EW(t) ≤ −

4∑
m=1

∥∥∥∥√Dm,S∇Wm,S(t)

∥∥∥∥2

L2(S)

−
∥∥∥∥√D∇W (t)

∥∥∥∥2

L2(ΩS,V )

+
4∑

m=1

(
FJ,m(C(t))Wm,S(t),Wm,S(t)

)
S
.

(2.49)

Consequently, there exists a positive constant K′ depending on
∥∥C∗∥∥L∞(L∞)

such that

d

dt
EW(t) ≤ 2K′EW(t), t > 0. (2.50)

This inequality leads to

EW(t) ≤ e2K′tEW(0), (2.51)
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which allow us to conclude the stability of the linearization of VP1 for short

periods of time.

2.5 Finite dimensional approximation

To define a finite dimensional approximation for the solution of VP1, we fix

h > 0 and introduce in ΩS,V an admissible triangulation Th such that the corre-

spondent admissible triangulations induced in S and V, respectively ThS and ThV ,

are compatible on Γ4 (see Figure 2.3).

Let C∗h =

(
Cm,S,h

)
m=1,...,4

, stand for an approximation of C∗ and

Ch =

{
C5,S,h in S̄ × (0, T ],

CV,h in V̄ × (0, T ],
(2.52)

where C5,S,h = CV,h on Γ4, represent an approximation of C.

To compute the semi-discrete Ritz-Galerkin approximation Ch = (C∗h, Ch) for

the weak solution C = (C∗, C) defined by VP1, we introduce in what follows the

finite dimensional spaces

PrΩ =

{
u ∈ C0(Ω̄) : u

∣∣
∆

= Pr, ∆ ∈ ThΩ

}
, (2.53)

where Ω = S,ΩS,V and Pr denotes a polynomial in the space variables with degree

at most r and C0(Ω̄) denotes the space of continuous functions in Ω̄.

The Ritz-Galerkin approximation Ch is then computed by solving the following

variational problem:

FEVP1: Find (C∗h(t), Ch(t)) ∈
(
PrS
)4 × PrΩS,V such that



4∑
m=1

(
∂Cm,S,h

∂t (t), vm,h

)
S

+

(
∂Ch
∂t (t), wh

)
ΩS,V

= −
4∑

m=1

(
Dm,S,h∇Cm,S,h(t),∇vm,h

)
S

−
(
Dh∇Ch(t),∇wh

)
ΩS,V

+

4∑
m=1

(
Fm,S(C∗h(t)), vm,h

)
S

+γ1,S

(
1− C1,S,h(t), v1,h

)
Γ2∪Γ3

−
(
γCh(t), wh

)
Γ

−
4∑

m=2

γm,S

(
Cm,S,h(t), vm,h

)
Γ2∪Γ3

in (0, T ], for all vm,h ∈ PrS , m = 1, . . . , 4, and wh ∈ PrΩS,V ,
C∗h(0) = (0, 1, 0, 0),

Ch(0) = χS .

(2.54)
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In (2.54), Dm,S,h = D0
m,Se

αm,S
C0

2,S−C2,S,h

C0
2,S in S̄ × (0, T ], m = 1, . . . , 4, and

Dh =

 D0
5,Se

α5,S

C0
2,S−C2,S,h

C0
2,S in S̄ × (0, T ],

DV in V̄ × (0, T ].

Following the proof of Theorem 2.3.1, it can be shown that a semi-discrete

version of E∇(t), defined by the Ritz-Galerkin approximation Ch, satisfies an in-

equality analogous to (2.31). Moreover, for the linearization of FEVP1 around

Ch, it can be shown an inequality analogous to (2.51).

2.6 Full discrete IMEX problem

We introduce in [0, T ] a uniform grid

{
tn;n = 0, . . . , N

}
with t0 = 0, tN = T ,

tn − tn−1 = ∆t. By D−t we denote the backward finite difference operator with

respect to time variable t. The weak solution of the problem in the full discrete

case is the solution of the following finite dimensional variational formulation:

Find (C∗,n+1
h , Cn+1

h ) ∈
(
PrS
)4 × PrΩS,V such that



4∑
m=1

(
D−t(C

∗,n+1
h ), vm,h

)
S

+

(
D−t(C

n+1
h ), wh

)
ΩS,V

= −
4∑

m=1

(
Dn
m,S,h∇C

n+1
m,S,h,∇vm,h

)
S

−
(
Dn
h∇C

n+1
h ,∇wh

)
ΩS,V

+

4∑
m=1

(
Fm,S(Cn

∗

h ), vm,h

)
S

+γ1,S

(
1− Cn+1

1,S,h, v1,h

)
Γ2∪Γ3

−
(
γCn+1

h , wh

)
Γ

−
4∑

m=2

γm,S

(
Cn+1
m,S,h, vm,h

)
Γ2∪Γ3

,

for all vm,h ∈ PrS , m = 1, . . . , 4, and wh ∈ PrΩS,V ,
C∗,0h = (0, 1, 0, 0),

C0
h = χS ,

(2.55)

for n = 0, . . . , N , where

Fm,S(Cn
∗

h ) =



−κ1,SC
n+1
1,S,hC

n
2,S,h

(
1 + αCn4,S,h

)
− κ2,SC

n+1
1,S,hC

n
3,S,h

(
1 + βCn4,S,h

)
, m=1,

−κ1,SC
n+1
1,S,hC

n+1
2,S,h

(
1 + αCn4,S,h

)
, m=2,

κ1,SC
n+1
1,S,hC

n+1
2,S,h

(
1 + αCn4,S,h

)
− κ2,SC

n+1
1,S,hC

n+1
3,S,h

(
1 + βCn4,S,h

)
, m=3,

κ1,SC
n+1
1,S,hC

n+1
2,S,h

(
1 + αCn+1

4,S,h

)
+ κ2,SC

n+1
1,S,hC

n+1
3,S,h

(
1 + βCn+1

4,S,h

)
, m=4,

0, m=5,

(2.56)

are reaction functions of the problem in the implicit-explicit (IMEX) form.
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2.7 Numerical experiments

In this section we illustrate the behaviour of the numerical solution defined by

(2.55) as well as the influence of the parameters of the model in the release rate. All

experiments have been done with open source partial differential equation solver

freeFEM++ ([19]) with 10096 elements (5224 vertices) for ΩS,V and 3250 elements

(1751 vertices) for the stent S, and using IMEX backward integrator with time

step size ∆t = 10−3.

Figure 2.3: Triangulation in the stent and in the arterial wall.

The following parameters have been used for the modeling of the drug release

from the drug eluting stent into the arterial wall:

γm,S = 105 cm/s, m = 1, . . . , 5, γv = 105 cm/s, γb = 1010 cm/s, αm,S = 9, m =

1, . . . , 4, α5,S = 0.9, κ1,S = 10−6 cm2/g.s, κ2,S = 10−8 cm2/g.s, α = 1 s/cm2,

β = 10 s/cm2, D0
1,S = 5×10−7 cm2/s, D0

2,S = 10−15 cm2/s, D0
3,S = 5×10−12 cm2/s,

D0
4,S = 3× 10−12 cm2/s, D0

5,S = 2× 10−8 cm2/s, DV = 5× 10−8 cm2/s.

Several choices of finite element spaces can be made, but we consider here the

piecewise linear finite element space P1 ([36]).

In Figures 2.4-2.6, we plot the drug distribution in the stent and in the arterial

wall after 1 day, 7 and 14 days. When the drug reaches Γ4 (see Figure 2.1), it

crosses this interface boundary to the arterial wall as mathematically described by

(2.11). When the drug reaches the boundary Γ7, it enters the media as described

by Robin boundary condition (2.12).
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Figure 2.4: Drug distribution in the coating and the arterial wall after 1 day.

Figure 2.5: Drug distribution in the coating and the arterial wall after 7 days.

Figure 2.6: Drug distribution in the coating and the arterial wall after 14
days.
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In Figures 2.7-2.9, we exhibit the penetration of the water into the coated stent.

We observe that the water penetrates into the PLA until it reaches a steady state

level.

Figure 2.7: Concentration of water in the coating after 1 day.

Figure 2.8: Concentration of water in the coating after 7 days.

Figure 2.9: Concentration of water in the coating after 14 days.
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Figure 2.10: Concentration of PLA in the coating after 1 day.

Figure 2.11: Concentration of PLA in the coating after 7 days.

Figure 2.12: Concentration of PLA in the coating after 14 days.
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In Figures 2.10-2.12, the degradation of PLA into smaller molecules which are

released into the lumen is shown. It is assumed that the penetration of the PLA

and also its products, oligomers and lactic acid, into the arterial wall are negligible.

The evolution of PLA concentration is compatible with erosion during degradation.

In Figure 2.13, we see that the hydrolysis rate κ1,S of PLA has an effect on

the diffusion coefficient of the drug in the stent (D5,S). It is observed that if the

reaction rate κ1,S increases, the diffusion coefficient of the drug from the stent will

increase.
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Figure 2.13: Diffusion coefficient of the drug in the stent for different reaction
rates κ1,S .

Increasing the parameter α will also increases the diffusion of the drug from

the stent in an exponential manner (see Figure 2.14).
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Figure 2.14: Diffusion coefficient of the drug in the stent for different values
of α.

We define the mass of species in the coated stent and the mass of drug in the

arterial wall by

Mm,S,h(tn) =

∫
S

Cm,S,h(tn)dS, m = 1, . . . , 5, MV,h(tn) =

∫
V

CV,h(tn)dV, (2.57)

respectively, where Mm,S,h(tn) and MV,h(tn) are the numerical approximations for

masses at time level tn.

In Figures 2.15-2.18, we exhibit the mass of drug as well as the mass of the

water, PLA and lactic acid in the coated stent during the first 2 weeks after stent

implantation using different diffusion coefficients of drug in the stent.
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Figure 2.15: Mass of water in the stent for different values of D0
1,S .
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Figure 2.16: Mass of drug in the stent for different values of D0
1,S .
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Figure 2.17: Mass of lactic acid in the stent for different values of D0
1,S .
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Figure 2.18: Mass of PLA in the stent for different values of D0
1,S .

In Figures 2.15-2.18, we observe that small diffusion coefficients will decrease

the accumulation of drug and PLA degradation in the stent. It will also decrease

the mass of water and lactic acid in the stent.
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Figures 2.19-2.22 illustrate the influence of reaction rates on the release process.

In Figure 2.19 we observe that when the reaction rate κ1,S decreases, more water

enters to the stent. A little increment will also occur when κ2,S decreases.
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Figure 2.19: Mass of water in the stent for different reaction rates.

We see in Figure 2.20 that if both values of the reaction rates κ1,S and κ2,S

are decreasing, some reduction in lactic acid production is observed. However we

observe that κ1,S, the PLA hydrolysis rate (2.1), has a primary role. The rate κ2,S

of the subsequent reactions plays a minor role.
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Figure 2.20: Mass of lactic acid in the stent for different reaction rates.

Figures 2.21 and 2.22 indicate that a decrement in κ1,S will decelerate the speed

of drug release and PLA degradation in the stent.
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Figure 2.21: Mass of drug in the stent for different reaction rates.
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Figure 2.22: Mass of PLA in the stent for different reaction rates.

In this chapter we focused on the influence of polymer degradation parameters

on the drug release from a DES into an arterial wall. The numerical results

obtained are physically sound. The clarification of degradation mechanisms and

the quantification of that influence can provide useful guidelines to manufacturers.

The model proposed in this chapter simulates ”in vivo” drug release. However the

viscoelastic properties of the vessel walls were not taken into account. A detailed

description of their rheological properties will be introduced in Chapter 3.





Chapter 3

A Non-Fickian Coupled Model

In this chapter, we will address to a more complex coupled model than the

one introduced in Chapter 2. We evolve from the model introduced in Section

2.1, where the transport of drug in the stent coating and in the arterial wall

is dominated by diffusion, to a model where convective transport of the drug

is considered and the viscoelastic properties of the arterial wall are taken into

account.

Experiments like creep test ([16, 29, 41]) have clearly demonstrated that the

vascular tissue is viscoelastic. Thus when a constant force is exerted on an artery

over an extended period of time, it will first deform like an elastic body and then

continue to deform or flow for a finite period of time.

Arterial stiffness is considered as an excellent indicator of cardiovascular mor-

bidity and mortality in a large percentage of the population as referenced in [20].

Taking into consideration the arterial stiffness in the mathematical modeling of

drug release from the stent into the arterial wall can help to understand the phar-

macokinetic effects of the drug in atherosclerosis.

During the last years, a number of studies have proposed mathematical models

for coupled drug delivery in the cardiovascular tissues. We refer without being

exhaustive to [2, 5, 18, 25, 28, 34, 46] and also [35] as a review paper. Most

of these studies address the release of drug and its numerical behavior while the

viscoelasticity of the arterial wall is disregarded.

In this chapter, we propose a non-Fickian coupled model for predicting the

biodegradation of PLA, as a drug carrier in the coated stent, and the simultaneous

release of the drug from the stent coating into the arterial wall. The effect of

43
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viscoelasticity of the arterial wall in the drug release is investigated using Maxwell-

Wiechert model ([6]) and Fung’s quasilinear viscoelastic model ([16]).

The chapter is organized as follows. Section 3.1 is devoted to the description

of the model and its initial, boundary and interface conditions. In Section 3.2, we

explain the mass behavior of molecules from the viewpoint of a phenomenological

approach. In Section 3.3, we present a variational formulation and establish an

energy estimate for the continuous model. The stability of a linearized problem

is also studied. Using an implicit-explicit finite element method, we establish a

semi-discrete variational form in Section 3.4 and a full discrete variational form

in Section 3.5. Numerical simulations as well as a sensitivity analysis of the vis-

coelastic parameters are discussed in Section 3.6.

3.1 Description of the model

Let us consider a two dimensional domain obtained as a section of a three

dimensional realistic geometry. Due to the symmetry of the geometry, we consider

only a part of the section. We introduce the two dimensional domain S ⊂ IR2

which represents the polymeric coating of the stent and V ⊂ IR2 which represents

the arterial wall. A schematic representation of the two dimensional domain used

in this model is shown in Figure 3.1.

Figure 3.1: DES inside of the arterial wall (left: http://www.ibmt.med.uni-
rostock.de/nachwuchsgruppe.html).

In Figure 3.1, for the sake of simplicity we have assumed that the DES is com-

pletely embedded in the arterial wall. This is a reasonable assumption because

http://www.ibmt.med.uni-rostock.de/nachwuchsgruppe.html
http://www.ibmt.med.uni-rostock.de/nachwuchsgruppe.html
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of the complex dynamics of tissue healing and regrowth which takes place imme-

diately after DES implantation in the arterial wall. The evolution of neo-intima

around the stent is considered negligible ([26, 46]).

In addition to assumptions 2 and 4 in Section 2.1, the following assumptions

are also taken into consideration in the mathematical model:

1. Viscoelastic properties of the polymeric part of the stent is considered neg-

ligible;

2. The arterial wall is considered as an homogeneous porous medium with the

main properties of media;

3. Permeability and viscosity of the stent and arterial wall are considered con-

stants.

Chemical reactions, convection and non-Fickian diffusion are three main phe-

nomena which explain the kinetics of the drug and the biodegradable polymer.

3.1.1 Chemical reactions

The chemical reactions responsible for the degradation of PLA into oligomers

and lactic acid in the stent coating were presented in Section 2.1. We introduce

now the degradation of oligomers into lactic acid that occurs in the arterial wall.

Let C1,V denotes the concentration of water in the arterial wall. The concen-

tration of oligomers in the arterial wall is denoted by C3,V . By C4,V we denote the

concentration of lactic acid in the arterial wall. Finally, by C5,V we represent the

concentration of drug in the arterial wall (see Table 3.1).

Molecule Coated stent (S) Vessel wall (V)

Water C1,S C1,V

PLA C2,S -

Oligomers C3,S C3,V

Lactic acid C4,S C4,V

Drug C5,S C5,V

Table 3.1: Notation for the concentrations.

Reactions for the degradation of PLA in the stent are defined by (2.1). The

only reaction in the arterial wall is the hydrolysis of the oligomers resulting in
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lactic acid. This reaction is schematically represented by

C1,V + C3,V

κ1,V−−−→ C4,V , (3.1)

where κ1,V denotes the reaction rate of the hydrolysis of oligomers in the arterial

wall.

The evolution in time and space of each concentration depends on the type of

chemical reaction involved: production or consumption reaction. To simplify the

presentation of the reaction terms that affect the behavior of each concentration,

we introduce the notations:

CS =

(
Cm,S

)
m=1,...,5

, CV =

(
Cm,V

)
m=1,...,5,
m 6=2

, and C =
(
CS, CV

)
. (3.2)

Let Fm,S(CS), m = 1, . . . , 5, be defined by (2.3) and (2.4). In the arterial wall

we define the following reaction terms

Fm,V (CV ) =


−F1,V (CV ), m=1,

−F1,V (CV ), m=3,

F1,V (CV ), m=4,

0, m=5,

(3.3)

where F1,V (CV ) is given by

F1,V (CV ) = κ1,VC1,VC3,V

(
1 + γC4,V

)
. (3.4)

In (3.4) γ is a positive dimensional constant.

3.1.2 Convection

The transport of oligomers, lactic acid and drug in the coated stent and in the

arterial wall occurs by diffusion and convection. The same phenomena occur in

the transport of PLA in the coated stent. The convection is caused by a pressure

gradient in the fluid. Let uV and pV represent the velocity and the pressure of the

plasma in the arterial wall. We assume that the plasma is incompressible, which

mathematically implies that the divergence of its velocity is zero, ∇·uV = 0. The

behavior of the plasma is described by Darcy’s law.
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To prescribe suitable boundary conditions in the arterial wall, we require that

uV · ηV = 0 on Γwall for symmetry, where ηV represents the exterior unit normal.

Moreover, we observe that the filtration of the plasma inside the arterial wall is

driven by a decreasing pressure gradient from the inner layer of the artery (Γlumen)

to the outer layer of the artery (Γadv). By consequence we require that pV = plumen

on Γlumen and pV = padv on Γadv. We notice that plumen is assumed to be uniform

and independent of space and time variables on Γlumen. The velocity and the

pressure in the arterial wall satisfy the following equations:

uV = − kV
µV
∇pV in V,

∇ · uV = 0 in V,

pV = plumen on Γlumen,

pV = padv on Γadv,

uV · ηV = 0 on Γwall.

(3.5)

We assume in what follows that the incompressible plasma can penetrate inside

the coated stent. Let uS and pS represent the velocity and the pressure of fluid in

the stent. As the metallic part of the stent is rigid we consider no flux of plasma

in Γstrut. So the velocity and the pressure in the coated stent are described by
uS = − kS

µS
∇pS in S,

∇ · uS = 0 in S,

uS · ηS = 0 on Γstrut,

(3.6)

where ηS represents the exterior unit normal.

Systems of equations (3.5) and (3.6) are completed with the matching conditions{
pS = pV on Γcoat,

uS · ηS = −uV · ηV on Γcoat.
(3.7)

The boundaries Γlumen, Γadv, Γwall, Γstrut and Γcoat introduced in (3.5), (3.6)

and (3.7) are defined in Figure 3.1. In (3.5) and (3.6), kS and kV are permeability

coefficients which characterize the capacity of the stent and arterial wall to allow

the flow of small molecules across them. These coefficients depend on the proper-

ties of the medium and also on the concentrations of PLA, oligomers, lactic acid

and drug in the stent and oligomers, lactic acid and drug in the arterial wall. To

simplify the model, we assume that kj, j = S, V, are constants.
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In (3.5) and (3.6), µj, j = S, V, are the viscosities of the fluid in the stent and

the arterial wall respectively, which represents the resistance of the fluid to gradual

deformation. These coefficients depend on the chemical compounds presented in

the stent and in the arterial wall. To simplify, we assume in what follows that the

viscosities µj, j = S, V, are also constants.

3.1.3 Viscoelastic effects

Viscoelasticity is the ability of a material to exhibit both solid-like and fluid-like

behavior. Viscoelastic models have been widely used to characterize mechanistic

properties of the vascular tissues due to their ability to tailor both the viscoelas-

tic relaxation function and the nonlinear elastic stress-strain relation. Numerous

viscoelastic models, derived under different experimental conditions, have been

proposed in the literature. We refer without being exhaustive to [6, 27, 29, 39, 40].

A constitutive equation typically determines the relationship between the stress

(internal force) that a material is subjected and the strain (deformation) response.

A reliable constitutive model for arterial walls is an essential prerequisite for study-

ing mechanical factors of atherosclerosis.

Analogical models are currently used to describe viscoelasticity. The simplest

linear viscoelastic models are attributed to Maxwell, Voigt, and Kelvin ([6]). The

Maxwell fluid model is represented by a dashpot in series with an elastic spring.

The Voigt solid model is represented by a dashpot in parallel with an elastic spring.

The Kelvin model, also called the standard linear solid combines a Maxwell element

in parallel with an elastic spring.

In what follows, we present a linear viscoelastic model (Maxwell-Wiechert model,

[6]). The multiple relaxation times used in this model are well adapted to predict

viscoelastic behavior in living tissues ([29]). We postpone for a later section for

some considerations on the use of a nonlinear viscoelastic model (Fung’s quasilin-

ear viscoelastic model, [16]).

In the Maxwell-Wiechert model (Figure 3.2), the relation between the stress

and the strain is given by the following convolution integral:

σV (t) = −
(
krεV (t) +

∫ t

0

K(t− s)∂εV
∂s

(s)ds

)
, (3.8)
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where σV stands for the stress which is an internal force that represents the re-

sponse to the strain caused by an incoming drug. In (3.8), κr is the Young’s

modulus of the spring arm.

Figure 3.2: Generalized Maxwell-Wiechert linear model ([6]).

It should be noted that the negative sign in (3.8) indicates that σ and ε are of

opposite sign. This represents the fact that the arterial wall acts like a barrier to

the entry of the drug ([13, 14, 23]).

The convolution memory kernel in (3.8) is defined by

K(t− s) =

n∑
i=1

κie
− t−s

τi , (3.9)

where τi = ηi
κi
, i = 1, . . . , n. The constants κi, i = 1, . . . , n, represent the Young

modulus of the Maxwell arms while ηi, i = 1, . . . , n, are their viscosities. For

t = 0 the total Young’s modulus of Maxwell-Wiechert model is κr +
n∑
i=1

κi while,

for t→∞, its value is κr.

Replacing (3.9) in (3.8), we have

σV (t) = −
(
krεV (t) +

n∑
i=1

∫ t

0

κie
− t−s

τi
∂εV
∂s

(s)ds

)
. (3.10)

By integrating by parts, assuming εV (0) = 0, and considering a linear relationship

between strain and concentrations in the arterial wall ([10, 12–15, 22, 23]), εV (t) =
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αmCm,V (t), m = 1, . . . , 5, m 6= 2, we will finally have

σm,V (t) = −αm
(

(κr +

n∑
i=1

κi)Cm,V (t)−
n∑
i=1

κi
τi

∫ t

0

e
− t−s

τi Cm,V (s)ds

)
, (3.11)

for m = 1, . . . , 5, m 6= 2.

Particular attention will be devoted to the case n = 1, that is a mechanical

analog composed by an elastic arm and a Maxwell arm.

Figure 3.3: Maxwell-Wiechert model with n = 1 ([6]).

The following formulation

σm,V (t) = −αm
(

(κr + κ1)Cm,V (t)− κ1

τ1

∫ t

0

e
− t−s

τ1 Cm,V (s)ds

)
, (3.12)

for m = 1, . . . , 5, m 6= 2, is a particular case of (3.11) when n = 1.

3.1.4 A reaction-diffusion-convection problem

The reaction-convection-diffusion processes which take place in the stent are

described by the following system of equations

∂Cm,S
∂t

= ∇ ·
(
Dm,S∇Cm,S − uSCm,S

)
+ Fm,S(CS), (3.13)

in S × IR+, for m = 1, . . . , 5. The diffusion coefficients Dm,S, m = 1, . . . , 5, are

defined by (2.6), being of the variables summarized in Table 3.1.

The transport process that occurs in the arterial wall is due to convective

transport and non-Fickian diffusion driven by the stress. It is described by the



Chapter 3. A Non-Fickian Coupled Model 51

following set of equations

∂Cm,V
∂t

= ∇ ·
(
D̄m,V∇Cm,V − uV Cm,V

)
+∇ ·

(
D̄σ∇σm,V

)
+ Fm,V (CV ), (3.14)

in V × IR+, for m = 1, . . . , 5, m 6= 2.

We recall that the subscript m = 2 refers to PLA. As PLA has a large molecular

weight (MW ≥ 1.2 × 105 g/mol) compared to the other species present in the

process, it will not cross the interface boundary Γcoat to enter the arterial wall. So

(3.14) is not applied for PLA.

It should be noted that the velocities uS and uV in (3.13) and (3.14) are

computed by solving the coupled problem (3.5)-(3.7). The reaction functions

Fm,j(Cj), j = S, V, in (3.13) and (3.14), are defined by (2.3), (2.4), (3.3) and

(3.4). In (3.14), the stress σm,V , m = 1, . . . , 5, m 6= 2, is given by (3.11) and D̄σ

represents the ”weight” of the non-Fickian diffusion whose physical meaning can

be found in [13, 14].

In what follows, particular attention will be devoted to system (3.13) and

(3.14) when the viscoelastic behavior of the arterial wall is described by Maxwell-

Wiechert model with n = 1. The coupled problem (3.13) and (3.14) in this case

takes the form

∂Cm,S
∂t = ∇ ·

(
Dm,S∇Cm,S − uSCm,S

)
+ Fm,S(CS) in S × IR+, m = 1, . . . , 5,

∂Cm,V
∂t = ∇ ·

(
Dm,V∇Cm,V − uV Cm,V

)
+ Fm,V (CV )

+

∫ t

0
e
− t−s

τ1 ∇ ·
(
Dm,σ∇Cm,V (s)

)
ds in V × IR+, m = 1, . . . , 5,m 6= 2,

(3.15)

where Dm,V = D̄m,V −αm(κr +κ1)D̄σ and Dm,σ = αm
κ1

τ1
D̄σ for m = 1, . . . , 5, m 6=

2.

To ensure the positivity of the effective Fickian diffusion coefficient Dm,V , the

diffusion coefficients D̄m,V , the Young modulus κr and κ1, the parameter αm and

the non-Fickian weight coefficient D̄σ should satisfy the relation D̄σ <
D̄m,V

αm(κr+κ1)
.

This assumption guarantees that Fickian diffusion dominates the viscoelastic op-

position, which is a physical condition for the effective penetration of drug in the

arterial wall.

For a sake of simplicity, we assume that the diffusion coefficients in the arterial

wall Dm,V , m = 1, . . . , 5, m 6= 2, are constants.
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To complete the coupled problem (3.15), we define in what follows the initial,

the boundary and the interface conditions. At the initial time, we assume that

the PLA and drug are distributed uniformly in the stent. We also assume that at

the initial time no degradation has occurred and consequently neither oligomers

nor lactic acid are present in the coating. The initial concentrations in the coating

and in the arterial wall are then given by{
Cm,S(0) = 0, m = 1, 3, 4,

Cm,S(0) = 1, m = 2, 5,
(3.16)

and {
C1,V (0) = 1,

Cm,V (0) = 0, m = 3, 4, 5,
(3.17)

respectively.

We represent by Jm,S and Jm,V , the mass fluxes of species in the stent and in

the arterial wall defined respectively by

Jm,S = −
(
Dm,S∇Cm,S − uSCm,S

)
, m = 1, . . . , 5,

Jm,V = −
(
Dm,V∇Cm,V − uVCm,V +Dm,σ

∫ t

0

e
− t−s

τ1 ∇Cm,V (s)ds

)
, m=1,...,5,

m 6=2 .
(3.18)

As the metallic stent strut is impermeable to the drug, fluid and PLA degrada-

tion products, which diffuse from the stent coating, no mass flux passes through

the boundary Γstrut. So

Jm,S · ηS = 0 on Γstrut × IR+, m = 1, . . . , 5. (3.19)

Equations in S and V are coupled by appropriate conditions at the interface

boundary Γcoat. Its formulation depends on the structure of the stent coating. A

possible choice could be the continuity of the concentrations and the continuity of

local fluxes, that is{
Cm,S = Cm,V on Γcoat × IR+,m = 1, . . . , 5, m 6= 2,

Jm,S · ηS = −Jm,V · ηV on Γcoat × IR+, m = 1, . . . , 5, m 6= 2.
(3.20)

A more realistic interface condition considers that the coated stent, loaded with

the drug is covered by a second thin layer, called topcoat. This layer acts like a
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membrane between the transport domains to slow down the release rate from the

stent into the arterial wall. We postpone its mathematical description to a later

section.

We stress that Γcoat is impermeable to PLA due to its large molecular weight,

so J2,S ·ηS = 0 on Γcoat. The symmetric boundaries Γwall of the arterial wall implies

no-flux, that is

Jm,V · ηV = 0 on Γwall × IR+, m = 1, . . . , 5, m 6= 2. (3.21)

We also assume that adventitia is impermeable to all species present in the

arterial wall. So the boundary condition (3.21) also holds for Γadv.

Since the drug, the oligomers and the lactic acid flow directly from the arterial

wall into the blood and are transported fast away from the region of interest, we

consider

Jm,V · ηV = −γm,VCm,V on Γlumen × IR+, m = 3, 4, 5, (3.22)

with a high transference rate γm,V .

As the water penetrates from the blood artery into the arterial wall, we consider

the natural boundary condition

J1,V · ηV = γ1,V (1− C1,V ) on Γlumen × IR+, (3.23)

for the water concentration.

Summarizing boundary and interface conditions, we have:

Jm,S · ηS = 0 on Γstrut × IR+, m = 1, . . . , 5,

J2,S · ηS = 0 on Γcoat × IR+,

Cm,S = Cm,V on Γcoat × IR+, m = 1, . . . , 5, m 6= 2,

Jm,S · ηS = −Jm,V · ηV on Γcoat × IR+, m = 1, . . . , 5, m 6= 2,

J1,V · ηV = γ1,V (1− C1,V ) on Γlumen × IR+,

Jm,V · ηV = −γm,VCm,V on Γlumen × IR+, m = 3, 4, 5,

Jm,V · ηV = 0 on (Γwall ∪ Γadv)× IR+, m = 1, . . . , 5, m 6= 2.

(3.24)
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3.2 Qualitative behavior of the total mass

In what follows we analyze the behavior of the total mass of species in the

model. We consider

M(t) =

∫
S

CS(t)dS +

∫
V

CV (t)dV, (3.25)

where

∫
S

CS(t)dS =
5∑

m=1

∫
S

Cm,S(t)dS,

∫
V

CV (t)dV =
5∑

m=1
m6=2

∫
V

Cm,V (t)dV , where the

concentration variables are defined in Table 3.1.

Replacing (3.15) in

M′(t) =

5∑
m=1

∫
S

∂Cm,S
∂t

(t)dS +

5∑
m=1
m 6=2

∫
V

∂Cm,V
∂t

(t)dV, (3.26)

we obtain

M′(t) =
5∑

m=1

∫
S

∇ ·
(
Dm,S(t)∇Cm,S(t)− uSCm,S(t)

)
dS +

5∑
m=1

∫
S

Fm,S(CS(t))dS

+
5∑

m=1
m 6=2

∫
V

∇ ·
(
Dm,V∇Cm,V (t)− uVCm,V (t)

)
dV +

5∑
m=1
m6=2

∫
V

Fm,V (CV (t))dV

+
5∑

m=1
m 6=2

∫
V

∫ t

0

e
− t−s

τ1 ∇ ·
(
Dm,σ∇Cm,V (s)

)
dsdV.

Using Gauss’s theorem ([11]) and applying the boundary conditions, we have

M′(t) =

5∑
m=1
m6=2

∫
Γcoat

Jm,S(t) · ηSds+

5∑
m=1
m 6=2

∫
Γcoat

Jm,V (t) · ηV ds+

∫
S

5∑
m=1

Fm,S(CS(t))dS

+

∫
V

5∑
m=1
m6=2

Fm,V (CV (t))dV + γ1,V

∫
Γlumen

(1− C1,V (t))ds−
5∑

m=3

γm,V

∫
Γlumen

Cm,V (t)ds,

(3.27)

where Jm,j(t), j = S, V, m = 1, . . . , 5, m 6= 2, are defined by (3.18).
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Let

∆MΓlumen
(t) =

5∑
m=1
m 6=2

γm,V

∫
Γlumen

Cm,V (t)ds,

∆MH(t) =

∫
S
κ2,SC1,S(t)C3,S(t)(1 + βC4,S(t))dS +

∫
V
κ1,V C1,V (t)C3,V (t)

(
1 + γC4,V (t))dV.

(3.28)

We note that ∆MΓlumen
(t) represents the mass per unit time of species (except PLA) that

enters in Γlumen at the instant t, while ∆MH(t) stands for the total mass of hydrolyzed

oligomers that enter per unit time in the stent and the arterial wall at the same instant.

Using (3.28) and replacing the interface condition (3.20) in (3.27), we easily establish

M′(t) = γ1,V

∣∣∣∣Γlumen

∣∣∣∣−∆MH(t)−∆MΓlumen
(t). (3.29)

By integration over time, (3.29) leads to

M(t) =M(0) + γ1,V

∣∣∣∣Γlumen

∣∣∣∣t− ∫ t

0
∆MH(µ)dµ−

∫ t

0
∆MΓlumen

(µ) dµ. (3.30)

The equation (3.30) means that the total mass in the system at a certain time t, t ∈ [0, T ],

is given by the difference between the initial mass added with the mass of plasma that

enters in the system until time t and the cumulative masses of molecules on Γlumen and

in the stent and the arterial wall.

3.3 Weak formulation

In this section, we introduce a variational form of the IBVP (3.15)−(3.17) and (3.24).

3.3.1 Porous media problem

In order to find the pressure drop in the stented arterial wall, as kj and µj , j = S, V,

are constants, it is convenient to rewrite equations (3.5)−(3.7) in terms of pressure drop
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in the following coupled form:

−∇ · ( kVµV ∇pV ) = 0 in V,

−∇ · ( kSµS∇pS) = 0 in S,

pV = plumen on Γlumen,

pV = padv on Γadv,

∇pV · ηV = 0 on Γwall,

pV = pS on Γcoat,
kV
µV
∇pV · ηV = − kS

µS
∇pS · ηS on Γcoat,

∇pS · ηS = 0 on Γstrut.

(3.31)

For a sake of simplicity, we assume padv = 0 and a nonzero pressure plumen = p0

independent of time and space variables (see Section 3.1.2).

In what follows we use the notations

Aj(pj , qj) =
(κj
µj
∇pj ,∇qj

)
j
, j = S, V. (3.32)

As the pressure is nonzero on Γlumen and null on Γadv, we introduce the space

H1
lumen,adv(V ) =

{
ϑ ∈ H1(V ) such that ϑ = 0 on Γlumen ∪ Γadv

}
, (3.33)

and the space

V =

{
(ϑS , ϑV ) ∈ H1(S)×H1

lumen,adv(V ) such that ϑS = ϑV on Γcoat

}
, (3.34)

to couple the pressures in the stent coating and in the arterial wall over Γcoat.

Let w ∈ H1(V ) be such that w = p0 on Γlumen and p∗V = pV − w ∈ H1
lumen,adv(V ).

The weak formulation of problem (3.31) is as follows: Find (pS , p
∗
V ) ∈ V such that

AS(pS , qS) +AV (p∗V , qV ) = −AV (w, qV ), ∀ (qS , qV ) ∈ V. (3.35)

It is obvious that pV can be recovered by pV = p∗V + w. Velocities uS and uV can be

then obtained by Darcy’s law uj = − kj
µj
∇pj , j = S, V .

In the case that kj and µj , j = S, V, depend on the concentration of species, problem

(3.31) needs to be solved simultaneously for each time level coupled with problem for

concentrations. Another approach that can be used to define the variational problem

for the velocities uj , j = S, V, is the so called mixed variational formulation where the

velocities uj , j = S, V, and the pressures pj , j = S, V, are simultaneously computed.
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In this case the numerical approximations for the velocities and the pressures are then

obtained using the mixed finite element methods ([4, 7]).

3.3.2 Convection-diffusion-reaction problem

We assume in what follows that the diffusion coefficients Dm,S , m = 1, . . . , 5, are

constants. We adopt the following notations:

aS
(
vS(t), wS

)
=

5∑
m=1

(
Dm,S∇vm,S(t)− uSvm,S(t),∇wm,S

)
S

,

aV
(
vV (t), wV

)
=

5∑
m=1
m 6=2

(
Dm,V∇vm,V (t)− uV vm,V (t),∇wm,V

)
V

+
5∑

m=1
m 6=2

∫ t

0
e
− t−s

τ1

(
Dm,σ∇vm,V (s),∇wm,V

)
V

ds,

alumen(vV (t), wV ) = γ1,V

(
1− v1,V (t), w1,V

)
Γlumen

−
5∑

m=3

γm,V

(
vm,V (t), wm,V

)
Γlumen

.

(3.36)

To take into account the interface boundary conditions over Γcoat in the variational
problem, we consider the Sobolev spaces

W =

{(
vS , vV

)
∈
(
H1(S)

)5

×
(
H1(V )

)4

such that vm,S = vm,V on Γcoat, m = 1, 3, 4, 5

}
,

(3.37)

where
(
vS, vV

)
=

((
vm,S

)
m=1,...,5

,
(
vm,V

)
m=1,...,5
m6=2

)
and

L2(0, T ;W) =

{
w : (0, T ) −→W such that

∫ T

0

∥∥∥∥w(t)

∥∥∥∥2

W
dt <∞

}
. (3.38)

The weak solution of the problem (3.15) − (3.17) and (3.24) is the solution of

the following variational problem:

VP2: Find
(
CS, CV

)
∈ L2(0, T ;W) such that

(
∂CS
∂t
, ∂CV
∂t

)
∈
(
L2(0, T ;L2(S))

)5

×(
L2(0, T ;L2(V ))

)4

and


∑
j=S,V

((∂Cj
∂t

(t), vj
)
j

+ aj
(
Cj(t), vj

))
=
∑
j=S,V

(
Fj(Cj(t)), vj

)
j

+ alumen(CV (t), vV ),

a.e in (0, T ), for all (vS, vV ) ∈ W ,

CS(0) = (0, 1, 0, 0, 1), CV (0) = (1, 0, 0, 0),

(3.39)
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where Cj, j = S, V, are defined in (3.2) and

(
FS(CS),FV (CV )

)
=

((
Fm,S(CS)

)
m=1,...,5

,
(
Fm,V (CV )

)
m=1,...,5,
m6=2

)
, (3.40)

is defined by (2.3), (2.4), (3.3) and (3.4).

We introduce the energy functional

E1(t) =
∑
j=S,V

(∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+

∫ t

0

∥∥∥∥∇Cj(s)∥∥∥∥2

L2(j)

ds

)
+

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

,

(3.41)

for t ∈ [0, T ], where

∥∥∥∥CS(t)

∥∥∥∥
L2(S)

=
5∑

m=1

∥∥∥∥Cm,S(t)

∥∥∥∥
L2(S)

and

∥∥∥∥CV (t)

∥∥∥∥
L2(V )

=
5∑

m=1
m6=2

∥∥∥∥Cm,V (t)

∥∥∥∥
L2(V )

. (3.42)

An upper bound for the energy functional (3.41) is established in the following

theorem.

Theorem 3.3.1. If (CS, CV ) is a solution of the variational problem VP2, then

assuming
(
CS(t), CV (t)

)
∈
(
H2(S)

)5 ×
(
H2(V )

)4
we have

E1(t) ≤ 1

min
{

1,φ,Dσ
}e2(K+ϕ)tE1(0) +

γ1,V

2(K+ϕ)

∣∣Γlumen

∣∣(e2(K+ϕ)t − 1

)
, (3.43)

where K, φ, ϕ and Dσ are concentration-independent constants while |Γlumen| is the

length of the transition boundary Γlumen.

Proof. Taking in (3.39), vj = Cj(t), j = S, V, in the left side of (3.39) we will have(
∂Cj
∂t

(t), Cj(t)
)
j

=
1

2

d

dt

∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

, j = S, V. (3.44)

It is obvious that

d

dt

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

= 2

(
∂

∂t

∫ t

0
e
− t−s

τ1 ∇CV (s)ds,

∫ t

0
e
− t−s

τ1 ∇CV (s)ds

)
V

.(3.45)

Applying Leibnitz integral theorem to the right hand side of (3.45), we will obtain

d

dt

∥∥∥∥∫ t

0

e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

= 2

∫ t

0

e
− t−s

τ1

(
∇CV (s),∇CV (t)

)
V

ds

− 2
τ1

∥∥∥∥∫ t

0

e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

.

(3.46)
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The inequality(
ujCj(t),∇Cj(t)

)
j

≤
∥∥uj∥∥∞(ε2

j

∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+ 1
4ε2j

∥∥∥∥∇Cj(t)∥∥∥∥2

L2(j)

)
, (3.47)

holds for arbitrary non-zero εj, for j = S, V.

Replacing (3.44), (3.46) and (3.47) in (3.39), we establish the following differ-

ential inequality

1

2

d

dt

∑
j=S,V

(∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+φ

∫ t

0

∥∥∥∥∇Cj(s)∥∥∥∥2

L2(j)

ds+Dσ

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

)
≤
∑
j=S,V

∥∥uj∥∥∞ε2
j

∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

− Dσ
τ1

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

+
∑
j=S,V

(
Fj(Cj(t), Cj(t)

)
j

+ λlumen.

(3.48)

In (3.48), λlumen is given by

λlumen = γ1,V

(
1− C1,V (t), C1,V (t)

)
Γlumen

−
5∑

m=3

γm,V

(
Cm,V (t), Cm,V (t)

)
Γlumen

≤ γ1,V

4

∣∣∣∣Γlumen

∣∣∣∣− 5∑
m=3

γm,V

∥∥∥∥Cm,V (t)

∥∥∥∥2

Γlumen

,

(3.49)

and 

φ = min
j=S,V

{
2Dj −

∥∥uj∥∥∞
2ε2j

}
,

DS = min
m=1,...,5

{
Dm,S

}
,

DV = min
m=1,...,5,
m6=2

{
Dm,V

}
,

Dσ = min
m=1,...,5,
m6=2

{
Dm,σ

}
.

(3.50)

It should be noted that εj in (3.48) should be such that εj >

√∥∥uj∥∥∞
4Dj

, j = S, V .

AsH2(j), j = S, V, are embedded in the space of continuous bounded functions,

([3]), it can be shown that there exist positive constants Kj, j = S, V, depending

on ‖Cj‖L∞(L∞) such that(
Fj(Cj(t), Cj(t)

)
j

≤ Kj
∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

≤ K
∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

, j = S, V, (3.51)
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where K = max
j=S,V

{
Kj
}

.

Replacing (3.51) in (3.48) and taking

ϕ = max
j=S,V

{
ε2
j

∥∥uj∥∥∞}, (3.52)

in the differential inequality (3.48), we will have

1

2

d

dt

∑
j=S,V

(∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+φ

∫ t

0

∥∥∥∥∇Cj(s)∥∥∥∥2

L2(j)

ds+Dσ

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds

∥∥∥∥2

L2(V )

)
≤
∑
j=S,V

(
ϕ+K

)∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+
γ1,V

4

∣∣∣∣Γlumen

∣∣∣∣. (3.53)

Multiplying differential inequality (3.53) by e−(K+ϕ)t and then integrating over time

we deduce

E1(t) ≤ 1

min
{

1,φ,Dσ
}e2(K+ϕ)tE1(0) +

γ1,V

2(K+ϕ)

∣∣∣∣Γlumen

∣∣∣∣(e2(K+ϕ)t − 1

)
. (3.54)

Estimate (3.54) proves a boundness property of the solution of the model for

finite intervals of time.

Corollary 3.3.2. If (CS, CV ) is a solution of the variational problem VP2 and

E2(t) =
∑
j=S,V

(∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+

∫ t

0

∥∥∥∥∇Cj(s)∥∥∥∥2

L2(j)

ds

)
(3.55)

for t ∈ [0, T ], assuming
(
CS(t), CV (t)

)
∈
(
H2(S)

)5 ×
(
H2(V )

)4
then

E2(t) ≤ 1

min
{

1, φ
}e2 max

{
K+ϕ1,ϕ2

}
tE2(0) +

γ1,V

2 max
{
K + ϕ1, ϕ2

}∣∣∣∣Γlumen

∣∣∣∣(e2 max
{
K+ϕ1,ϕ2

}
t − 1

)
,

(3.56)

where ϕ1 and ϕ2 are concentration-independent constants, εj 6= 0, j = S, V, and

φ = min
j=S,V

{
2Dj −

∥∥uj∥∥∞
2ε2j

}
> 0.

Proof. We take into account the inequality

∫ t

0
e
− t−s

τ1

(
∇CV (s),∇CV (t)

)
V

ds ≤ τ1
8ξ2
V

∫ t

0

∥∥∥∥∇CV (s)

∥∥∥∥2

L2(V )

ds+ ξ2
V

∥∥∥∥CV (t)

∥∥∥∥2

L2(V )

,(3.57)

for ξV 6= 0.
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Defining

ϕ1 = max

{
ε2
S‖uS‖∞, ε2

V ‖uV ‖∞ + ξ2
V

}
,

ϕ2 = max
m=1,...,5,
m 6=2

{
D2
m,στ1

16ξ2
V

}
,

(3.58)

where εj 6= 0, j = S, V, the result is easily obtained following the proof of Theorem

3.3.1.

Let

C(t) =

((
Cm,S(t)

)
m=1,...,5

,
(
Cm,V (t)

)
m=1,...,5,
m6=2

)
,

Ĉ(t) =

((
Ĉm,S(t)

)
m=1,...,5

,
(
Ĉm,V (t)

)
m=1,...,5,
m6=2

)
,

(3.59)

be two solutions of the problem (3.15) with different initial conditions

C(0) =

((
Cm,S(0)

)
m=1,...,5

,
(
Cm,V (0)

)
m=1,...,5,
m 6=2

)
,

Ĉ(0) =

((
Ĉm,S(0)

)
m=1,...,5

,
(
Ĉm,V (0)

)
m=1,...,5,
m 6=2

)
.

(3.60)

To analyze the stability of the model, we need to establish

∑
j=S,V

∥∥∥∥Cj(t)− Ĉj(t)∥∥∥∥2

L2(j)

≤ B(t)
∑
j=S,V

∥∥∥∥Cj(0)− Ĉj(0)

∥∥∥∥2

L2(j)

, (3.61)

for t ∈ [0, T ], where B(t) is bounded in time. To prove the last inequality for a

system of quasi-linear diffusion-convection-reaction equations (3.15), it is sufficient

to assume that the reaction terms have bounded partial derivatives. But we can

not use this argument in our case. To gain some insight on the stability behavior

of VP2, we study in what follows the stability of the linearization of VP2 in a

solution C(t).

Let C =
(
CS, CV

)
. System (3.15) can be rewritten in the following form

dC
dt

(t) = F(C(t)), t > 0,

C(0) is given,
(3.62)
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where F(C(t)) =

((
Fm,S(CS(t))

)
m=1,...,5

,
(
Fm,V (CV (t))

)
m=1,...,5,
m6=2

)
is defined by


Fm,S(CS(t)) = ∇ ·

(
Dm,S∇Cm,S(t)− uSCm,S(t)

)
+ Fm,S(CS(t)), m = 1, . . . , 5,

Fm,V (CV (t)) = ∇ ·
(
Dm,V∇Cm,V (t)− uV Cm,V (t)

)
+ Fm,V (CV (t))

+

∫ t

0
e
− t−s

τ1 ∇ ·
(
Dm,σ∇Cm,V (s)

)
ds, m=1,...,5,

m6=2 ,

(3.63)

and Fm,S, m = 1, . . . , 5, and Fm,V , m = 1, . . . , 5, m 6= 2, are given by (2.3), (2.4),

(3.3) and (3.4). We also assume that conditions (3.24) hold.

The linearization of the initial value problem (3.62) can be written in the fol-

lowing form 
dC̃
dt

(t) = LC̃(t) , t > 0,

C̃(0) is given,
(3.64)

where LC̃(t) =

((
Lm,S(C̃S(t))

)
m=1,...,5

,
(
Lm,V (C̃V (t))

)
m=1,...,5,
m6=2

)
is defined by


Lm,S(C̃S(t)) = ∇ ·

(
Dm,S∇C̃m,S(t)− uSC̃m,S(t)

)
+ FJm,S (CS(t))C̃S(t), m = 1, . . . , 5,

Lm,V (C̃V (t)) = ∇ ·
(
Dm,V∇C̃m,V (t)− uV C̃m,V (t)

)
+ FJm,V (CV (t))C̃V (t)

+

∫ t

0

e−
t−s
τ1 ∇ ·

(
Dm,σ∇C̃m,V (s)

)
ds, m=1,...,5,

m6=2 ,

(3.65)

with

FJm,S(CS(t))C̃S(t) =



−
∑
i=1,2

FJ,i(CS(t))C̃S(t), m=1,

−FJ,1(CS(t))C̃S(t), m=2,∑
i=1,2

(−1)i−1FJ,i(CS(t))C̃S(t), m=3,∑
i=1,2

FJ,i(CS(t))C̃S(t), m=4,

0, m=5,

(3.66)

and

FJm,V (CV (t))C̃V (t) =


−FJ,3(CV (t))C̃V (t), m=1,

−FJ,3(CV (t))C̃V (t), m=3,

FJ,3(CV (t))C̃V (t), m=4,

0, m=5.

(3.67)
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In (3.66) and (3.67), FJ,1(CS(t))C̃S(t), FJ,2(CS(t))C̃S(t) and FJ,3(CV (t))C̃V (t)

represent Fréchet derivatives and are defined by

FJ,1(CS(t))C̃S(t) = κ1,SC2,S(t)(1 + αC4,S(t))C̃1,S(t) + κ1,SC1,S(t)(1 + αC4,S(t))C̃2,S(t)

+κ1,SαC1,S(t)C2,S(t)C̃4,S(t),

FJ,2(CS(t))C̃S(t) = κ2,SC3,S(t)(1 + βC4,S(t))C̃1,S(t) + κ2,SC1,S(t)(1 + βC4,S(t))C̃3,S(t)

+κ2,SβC1,S(t)C3,S(t)C̃4,S(t),

FJ,3(CV (t))C̃V (t) = κ1,V C3,V (t)(1 + αC4,V (t))C̃1,V (t) + κ1,V C1,V (t)(1 + γC4,V (t))C̃3,V (t)

+κ1,V γC1,S(t)C3,V (t)C̃4,V (t).

(3.68)

Let C(t) and C̃(t) be solutions of (3.64) satisfying the same boundary conditions

(3.24) with initial conditions C(0) and C̃(0). We define Wj(t) = Cj(t)− C̃j(t), j =

S, V . The influence of the initial perturbation on the solution of the problem

(3.64) is estimated in the following result.

Theorem 3.3.3. Let

EW(t) =
∑
j=S,V

(∥∥∥∥Wj(t)

∥∥∥∥2

L2(j)

+

∫ t

0

∥∥∥∥∇Wj(s)

∥∥∥∥2

L2(j)

ds

)
+

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇WV (s)ds

∥∥∥∥2

L2(V )

,

(3.69)

for t ∈ [0, T ], be the energy functional associated with the perturbation W . Then

EW (t) ≤ 1

min
{

1,φ,Dσ

}e2(K′+ϕ)tEW (0), (3.70)

where K′, φ and ϕ are concentration-independent constants.

Proof. It is readily proved that the following equality holds:∫ t

0

e
− t−s

τ1

(
∇WV (s),∇WV (t)

)
V

ds =
1

2

d

dt

∥∥∥∥∫ t

0

e
− t−s

τ1 ∇WV (s)ds

∥∥∥∥2

L2(V )

+
1

τ1

∥∥∥∥∫ t

0

e
− t−s

τ1 ∇WV (s)ds

∥∥∥∥2

L2(V )

.

(3.71)

From (3.64), taking φ, ϕ and Dσ as in (3.50) and (3.52), we can easily obtain

1

2

d

dt

∑
j=S,V

(∥∥∥∥Wj(t)

∥∥∥∥2

L2(j)

+ φ

∫ t

0

∥∥∥∥∇Wj(s)

∥∥∥∥2

L2(j)

ds

)
+Dσ

∥∥∥∥∫ t

0

e−
t−s
τ1 ∇WV (s)ds

∥∥∥∥2

L2(V )

≤
∑
j=S,V

ϕ

∥∥∥∥Wj(t)

∥∥∥∥2

L2(j)

− Dστ1

∥∥∥∥∫ t

0

e−
t−s
τ1 ∇WV (s)ds

∥∥∥∥2

L2(V )

+
∑
j=S,V

(
FJj (Cj(t))Wj(t),Wj(t)

)
j
,

(3.72)

where FJj(Cj(t))Wj(t), j = S, V, are defined in (3.66)− (3.68).
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As

∑
j=S,V

(
FJj(Cj(t))Wj(t),Wj(t)

)
j
≤ K′

∑
j=S,V

∥∥∥∥Wj(t)

∥∥∥∥2

L2(j)

, (3.73)

we can establish

EW (t) ≤ 1

min
{

1,φ,Dσ

}e2(K′+ϕ)tEW (0). (3.74)

3.4 Finite dimensional approximation

To define a finite dimensional approximation for the solution of (3.15)− (3.17)

and (3.24), we fix h > 0 and define in Ω = S∪V ∪Γcoat (Figure 3.1) an admissible

triangulation Th, depending on h > 0, such that the corresponding admissible

triangulations in S and V , respectively ThS and ThV , are compatible in Γcoat (see

the zoomed part of Figure 3.4). We represent by ∆1 a typical element of ThS and

by ∆2 a typical element of ThV .

Figure 3.4: Triangulations in the stent and in the vessel wall.

Let Sh =
⋃

∆1∈ThS

∆1, Vh =
⋃

∆2∈ThV

∆2 and let AS,h(., .) and AV,h(., .) be defined

as AS(., .) and AV (., .) (see (3.32)) but with the L2 inner product defined on Sh

and Vh, respectively. To define the bilinear form corresponding to alumen(., .) (see

(3.36)), we represent by Γlumen,h and Γadv,h the boundaries of Vh that replace Γlumen

and Γadv respectively.
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3.4.1 Discrete porous media problem

We assume that padv = 0 and plumen = ph0 . Let wh ∈ H1(Vh) is such that

wh = p0,h on Γlumen,h. We define in what follows the space of globally continuous

functions on Sh and Vh whose restrictions to each element ∆1 and ∆2 respectively,

are polynomials of degree at most r, i.e.

Vh =

{
(ϑS,h, ϑV,h) ∈ C0(S̄h)× C0(V̄h) such that ϑS,h = ϑV,h on Γcoat,

ϑV,h = 0 on Γlumen,h ∪ Γadv,h, (ϑS,h, ϑV,h)
∣∣
∆1×∆2

∈ Pr × Pr,

for all ∆1 ∈ ThS ,∆2 ∈ ThV
}
⊂ H1(Sh)×H1

lumen,adv(Vh),

(3.75)

where H1
lumen,adv(Vh) is defined by (3.33) with Γlumen ∪ Γadv replaced by Γlumen,h ∪

Γadv,h. In (3.75), Pr denotes the space of polynomials of degree at most r. The

finite dimensional formulation for system (3.31) is as follows:

Find (pS,h, p
∗
V,h) ∈ Vh such that

AS,h(pS,h, qS,h) +AV,h(p∗V,h, qV,h) = −AV,h(wh, qV,h), ∀ (qS,h, qV,h) ∈ Vh, (3.76)

where p∗V,h = pV,h − wh ∈ H1
lumen,adv(Vh).

Velocities uS,h and uV,h can be then obtained by Darcy’s law uj,h = − kj
µj
∇pj,h,

for j = S, V.

3.4.2 Discrete convection-diffusion-reaction problem

We use in what follows the following notations

(
vS,h, vV,h

)
=

((
vm,S,h

)
m=1,...,5

,
(
vm,V,h

)
m=1,...,5,
m 6=2

)
. (3.77)

To compute the semi-discrete Ritz-Galerkin approximation Ch for the weak

solution of C defined by VP2, we consider the space

Wh =

{(
vS,h, vV,h

)
∈
(
C0(S̄h)

)5 × (C0(V̄h)
)4

such that vm,S,h = vm,V,h on Γcoat,

for m = 1, 3, 4, 5, (vS,h, vV,h)
∣∣
∆1×∆2

∈ (Pq)
5 × (Pq)

4,

∆1 ∈ ThS ,∆2 ∈ ThV
}
⊂
(
H1(Sh)

)5 × (H1(Vh)
)4
,

(3.78)
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where Pq denotes the space of polynomials of degree at most q (not necessarily

equal to r).

By aj,h(., .) we represent the bilinear form defined as aj(., .) ((3.36)) with the

L2 inner products defined on Sh for j = S and Vh for j = V . By alumen,h(., .) we

denote the bilinear form defined as alumen(., .) ((3.36)), considering the boundary

integrals on Γlumen,h.

The weak solution of the problem VP2, in the semi discrete case, is the solution

of the following finite dimensional variational formulation:

FEVP2: Find
(
CS,h, CV,h

)
∈ L2(0, T ;Wh) such that (

∂CS,h
∂t

,
∂CV,h
∂t

) ∈
(
L2(0, T ;L2(Sh))

)5

×(
L2(0, T ;L2(Vh))

)4

and



∑
j=S,V

((∂Cj,h
∂t

(t), vj,h
)
j,h

+ aj,h
(
Cj,h(t), vj,h

))
=
∑
j=S,V

(
Fj(Cj,h(t)), vj,h

)
j,h

+alumen,h(CV,h(t), vV,h),
a.e in (0, T ), for all (vS,h, vV,h) ∈ Wh,

CS,h(0) = (0, 1, 0, 0, 1), CV,h(0) = (1, 0, 0, 0).

(3.79)

To conclude this section, we introduce the semi-discrete energy functional

Eh(t) =
∑
j=S,V

(∥∥∥∥Cj,h(t)

∥∥∥∥2

L2(jh)

+

∫ t

0

∥∥∥∥∇Cj,h(s)

∥∥∥∥2

L2(jh)

ds

)
+

∥∥∥∥∫ t

0

e−
t−s
τ1 ∇CV,h(s)ds

∥∥∥∥2

L2(Vh)

,(3.80)

for t ∈ [0, T ], where
(
CS,h(t), CV,h(t)

)
is the solution of FEVP2. This functional

is the semi-discrete version of the energy functional (3.41). Following a procedure

analogous to the one in Theorem 3.3.1, a discrete version of inequality (3.43) can

be established.

3.5 Full discrete IMEX problem

We introduce in [0, T ] a uniform grid

{
tn;n = 0, . . . , N

}
with t0 = 0, tN = T ,

and tn − tn−1 = ∆t. Let
(
CnS,h, CnV,h

)
be a fully discrete approximations of the



Chapter 3. A Non-Fickian Coupled Model 67

solution of the problem. We adopt in what follows the following notations:

aS,h
(
vn+1
S,h , wS,h

)
=

5∑
m=1

(
Dn
m,S,h∇vn+1

m,S,h − uS,hv
n+1
m,S,h,∇wm,S,h

)
Sh

,

aV,h
(
vn+1
V,h , wV,h

)
=

5∑
m=1
m6=2

(
Dm,V∇vn+1

m,V,h − uV,hv
n+1
m,V,h,∇wm,V,h

)
Vh

+ ∆t
5∑

m=1
m 6=2

Dm,σ

(n∆t∑
i=0

e
− (n−i)∆t

τ1 ∇vn+1
m,V,h(i∆t),∇wm,V,h

)
Vh

,

alumen,h(v
n+1
V,h , wV,h) = γ1,V

(
1− vn+1

1,V,h, w1,V,h

)
Γlumen,h

−
5∑

m=3

γm,V

(
vn+1
m,V,h, wm,V,h

)
Γlumen,h

.

(3.81)

The weak solution of the problem VP2 in the fully discrete case is the solution

of the following finite dimensional variational formulation:

Find
(
Cn+1
S,h , C

n+1
V,h

)
∈ Wh such that

∑
j=S,V

((
D−t(Cn+1

j,h ), wj,h
)
j

+ aj,h
(
Cn+1
j,h , wj,h

))
=
∑
j=S,V

(
Fj(Cn

∗

j,h), wj,h

)
j

+alumen,h(Cn+1
V,h , wV,h),

for all (wS,h, wV,h) ∈ Wh,

C0
S,h = (0, 1, 0, 0, 1), C0

V,h = (1, 0, 0, 0),

(3.82)

for n = 0, . . . , N , where(
FS(Cn∗S,h), FV (Cn∗V,h)

)
=

((
Fm,S(Cn∗S,h)

)
m=1,...,5

,
(
Fm,V (Cn∗V,h)

)
m=1,...,5,
m6=2

)
, (3.83)

and

Fm,S(Cn
∗

S,h) =



−κ1,SC
n+1
1,S,hC

n
2,S,h

(
1 + αCn4,S,h

)
− κ2,SC

n+1
1,S,hC

n
3,S,h

(
1 + βCn4,S,h

)
, m=1,

−κ1,SC
n+1
1,S,hC

n+1
2,S,h

(
1 + αCn4,S,h

)
, m=2,

κ1,SC
n+1
1,S,hC

n+1
2,S,h

(
1 + αCn4,S,h

)
− κ2,SC

n+1
1,S,hC

n+1
3,S,h

(
1 + βCn4,S,h

)
, m=3,

κ1,SC
n+1
1,S,hC

n+1
2,S,h

(
1 + αCn+1

4,S,h

)
+ κ2,SC

n+1
1,S,hC

n+1
3,S,h

(
1 + βCn+1

4,S,h

)
, m=4,

0, m=5,

(3.84)

and

Fm,V (Cn∗V,h) =


−κ2,V C

n+1
1,V,hC

n
3,V,h

(
1 + βCn4,V,h

)
, m=1,

−κ2,V C
n+1
1,V,hC

n+1
3,V,h

(
1 + βCn4,V,h

)
, m=3,

κ2,V C
n+1
1,V,hC

n+1
3,V,h

(
1 + βCn+1

4,V,h

)
, m=4,

0, m=5,

(3.85)
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are IMEX discretizations of the reaction functions.

3.6 Numerical simulations

All numerical experiments have been done with the open source PDE solver

freeFEM++ ([19]) considering the triangulation plotted in Figure 3.4 with 3688

elements (1968 vertices) for the arterial wall and 100 elements (83 vertices) for

each stent the IMEX method (3.82) with time step size ∆t = 10−3.

Several choices of finite element spaces can be made, but we use here the piece-

wise linear finite element space P1 for concentrations and quadratic finite element

space P2 for the pressure ([36]).

We define the mass in the coated stent and in the arterial wall by

Mm,S,h(tn) =

∫
Sh

Cm,S,h(tn)dS, m = 1, . . . , 5,

Mm,V,h(tn) =

∫
Vh

Cm,V,h(tn)dV, m = 1, . . . , 5, m 6= 2,
(3.86)

respectively, where Mm,j,h(tn), j = S, V, are the numerical approximations for

masses at time level tn.

The thickness of media (2 × 10−2cm) and stent coating (5 × 10−4cm) have

been extracted from literature. The following values for the parameters have been

considered in the numerical experiments ([33, 34, 46]):

κ1,S = κ2,V = 10−6 cm2/g.s, κ2,S = 10−7 cm2/g.s, γm,V = 1010 cm/s, D0
1,S =

10−8 cm2/s, D0
2,S = 10−15 cm2/s, D0

3,S = 10−10 cm2/s, D0
4,S = 2×10−10 cm2/s, D0

5,S =

10−8 cm2/s, kS = 2×10−14 cm2, kV = 10−15 cm2, µS = 0.72×10−2 g/cm.s, µV =

0.5×10−2 g/cm.s,D1,V = 10−8 cm2/s, D0
3,V = 10−10 cm2/s, D0

4,V = 2×10−10 cm2/s,

D0
5,V = 5× 10−9 cm2/s, α = 1 s/cm2, β = γ = 10 s/cm2.

We set plumen = 100 mmHg and padv = 0 mmHg, so we impose a pressure

difference between the inner boundary (Γlumen) and the outer boundary (Γadv) of

the arterial wall. A velocity field in the coupled stent-wall system is caused by

this pressure jump.

An approximation for the pressure drop defined by system (3.31) is shown in

Figure 3.5. While pressure on Γcoat is around 76.88 mmHg, it is observed that the

average pressure in the arterial wall and in the stent are 35.93 mmHg and 75.34

mmHg respectively.
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Figure 3.5: Velocity field (top) and pressure drop (bottom) in the stented
arterial wall.

The release of the drug from the stent into the arterial wall is shown in Figure

3.6. As time evolves the concentration of the drug increases in the arterial wall.
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Figure 3.6: Drug distribution in the stented arterial wall during 6 months
(top to bottom: 1 day, 1 month and 6 months).
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Figure 3.7: Drug distribution in the stent after 1 day.

Figure 3.8: The flux of drug in the stent after 1 day.
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The pattern of the drug diffusion and drug flux in the stent is shown in Figures

3.7 and 3.8. We can see that drug starts to be released from the corners and

underneath of the stent. As it is seen in Figure 3.8, due to the washout of the

drug close to the lumen, the flux of drug underneath the stent, is much higher

than other parts of the stent.
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Figure 3.9: Evolution of masses of water, PLA and drug in the stent during
90 days.

The behavior of the mass of drug, the mass of PLA and the amount of water in

the biodegradable stent is shown in Figure 3.9. The drug presents a steep initial

gradient and gradually vanishes after three months. The penetration of water in

the stent presents a steep initial slope and after around 20 days achieves a steady

state. We can also observe in Figure 3.9 that as PLA degrades, the release rate of

drug decreases.
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Figure 3.10: Evolution of the mass of drug in biodegradable stent versus
non-biodegradable stent.

The release of drug from a biodegradable stent and a non-biodegradable stent is

compared in Figure 3.10. We observe that due to the degradation of the polymer,

the drug release from a biodegradable stent is faster than the drug release from a

non-biodegradable stent. The drug release rate directly depends on the reaction

rate κ1,S.

The influence of the stiffness of the vessel wall in the diffusion process of the

drug is shown in Figures 3.11 and 3.12. A healthy coronary artery with Young

modulus κr = 1.2 MPa ([17]) is compared with a highly diseased coronary artery

with Young modulus κr = 4.1 MPa ([30]).

As κr increases due to age or atherosclerosis, the vessel wall is less elastic, that

is more stiff, and less drug penetrates into the coronary wall. We believe this is an

interesting finding from the medical viewpoint, because cardiovascular morbidity

is related with arterial stiffness ([20]). It means that the concentration of drug in

the DES should be tailored to the severity of the arterial disease.
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Figure 3.11: Evolution of the drug mass in the arterial wall for short time,
τ1 = 0.5, κ1 = 1.

The long term influence of stiffness of the coronary wall in the diffusion process

of the drug is shown in Figure 3.12. In the beginning of the treatment, a diseased

coronary wall receives less drug due to its large κr, when compared with a healthy

coronary wall. We observe that a crossing occurs around day 15. This finding

is justified by the fact that the stiffness of the vessel wall imposes a resistance

to the penetration of the drug in the beginning of the process, leading to a drug

accumulation in a long period of time.
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Figure 3.12: Evolution of the drug mass in the arterial wall for long time,
τ1 = 0.5, κ1 = 1.
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The effect of the viscoelastic diffusion coefficient Dσ on the drug release is shown

in Figure 3.13. When Dσ increases, we can expect less accumulation of drug in

the vessel wall in the beginning of the process. This is due to an increasing of the

resistance of the arterial wall to the drug penetration.

When an additional thin layer named topcoat is applied to the PLA matrix,

instead of the interface conditions (3.20), we consider the following interface con-

ditions:{
Jm,S · ηS = Pc(Cm,S − Cm,V ) on Γcoat × IR+, m = 1, . . . , 5, m 6= 2,

Jm,S · ηS = −Jm,V · ηV on Γcoat × IR+, m = 1, . . . , 5, m 6= 2,
(3.87)

where Pc is the permeability of the interface layer Γcoat.
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Figure 3.13: Evolution of the drug mass in the arterial wall for different values
of Dσ.

The first condition in (3.87) is the second Kedem-Katchalsky equation ([33]

and the reference [19] therein). We remark that the topcoat is used to slow down

the release rate of the drug and it gives more controllability of the drug delivery

process.

Figure 3.14 presents the effect of permeability of the interface layer Γcoat on the

drug release when a topcoat is applied to the PLA. The accumulation of drug will

decrease, when a topcoat with smaller permeability is applied to the coated stent.
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Figure 3.14: Evolution of the drug mass in the arterial wall for different values
of Pc.

This means that the release of drug from the stent into an arterial wall can be

controlled by applying topcoats with different permeabilities.

An alternative model to Maxwell-Wiechert model

Fung’s quasilinear viscoelastic model ([16]) is commonly used to describe the

viscoelastic properties of the living tissues. Several authors consider that Fung’s

quasilinear viscoleastic model is a simple method to incorporate nonlinearity and

viscoelasticity and is a good model for living tissues with moderate deformation

([1, 16, 29, 42]). Fung’s quasilinear model assumes that a viscoelastic kernel can

be separated into time-dependent and strain-dependent components.

In what follows we show that the effect of the rheological properties of the vessel

wall, on drug permeation, are described analogously by Maxwell-Wiechert model

and Fung’s model.
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In the framework of Fung’s model, the relation between stress and strain is

given by the following convolution integral

σV (t) = −
∫ t

0

K̃(t− s) ∂
∂s
σe(εV (s))ds, (3.88)

where

K̃(t− s) =

1 + c

∫ τ2

τ1

1
τ
e−

t−s
τ dτ

1 + c ln( τ2
τ1

)
(3.89)

and

σe(εV (t)) = λ1

(
eλ2εV (t) − 1

)
' λ1λ2εV (t). (3.90)

In (3.89), K̃(t−s) is a special case of the more general convolution kernel proposed

by Fung ([16]),

K̃(t− s) =

1 +

∫ ∞
0

S(ζ)e−
t−s
ζ dζ

1 +

∫ ∞
0

S(ζ)dζ

. (3.91)

Fung’s model is quasi-linear because the dependence of the response on the

loading history can be obtained from a linear convolution integral which preserves

the benefits of the linearity in the study of the model and simplify the model

predictions. Nonlinearity appears in the viscoelastic constitutive law where the

strain εV is replaced by a nonlinear function of the strain σe(εV ). The main

feature of the model is that the stress and the strain are related by an intermediate

variable, the so called elastic stress σe(εV ), that separates the nonlinearity from

the viscoelasticity.

In (3.89), c > 0 represents the degree of viscous effects, τ1 and τ2 represent the

short-term and long-term time constants respectively. In (3.90), σe(εV ) represents

the instantaneous nonlinear elastic strain, λ1 > 0 is the elastic stress constant and

λ2 is a non-dimensional parameter representing the nonlinearity of instantaneous

elastic response.
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Replacing (3.89) and (3.90) into (3.88), we obtain

σV (t) = − λ1λ2

1 + c ln( τ2
τ1

)

(
εV (t) + c

∫ t

0

∫ τ2

τ1

1

τ
e−

t−s
τ dτ

∂εV
∂s

(s)ds

)
. (3.92)

In this section we consider equation (3.92) as an alternative to equation (3.11)

to compute the stress in the arterial wall.

The quasilinear viscoelastic model has five material parameters (three for the

reduced relaxation function (3.89) and two for the elastic response (3.90)) which

must be determined experimentally. Although some estimations are available in

the literature for ligaments ([21]), femur-MCL-tibia complexes ([1]) and spinal

tissue ([42]), to the best knowledge of the authors, physiological values of these

five parameters are not available in the case of coronary walls.

Due to the lack of appropriate information, we fix four parameters λ1 = 0.2

Mpa, λ2 = 25, τ1 = 0.5 s and τ2 = 1800 s and choose c = 0.37 to have κ̃r = 1.2

Mpa for healthy arterial wall ([17]) and c = 0.02 to have κ̃r = 4.1 Mpa for highly

diseased arterial wall ([30]).
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Figure 3.15: Evolution of the drug mass in the arterial wall for different values
of κ̃r for short time (Fung’s model).
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Figure 3.16: Evolution of the drug mass in the arterial wall for different values
of κ̃r for long time (Fung’s model).

The plots in Figures 3.15 and 3.16 show that the profile of drug release exhibits

the same qualitative behavior as before. We conclude that the barrier to drug

permeation in stiff vessel walls, in the first period of drug delivery, is a clinical

finding suggested by Fung’s and Maxwell-Wiechert mechanistic models.

In these last years a great emphasis has been placed on the importance of

arterial stiffness in cardiovascular diseases. As a consequence the evaluation of

vessels stiffness is being used in the clinical assessment of patients. For this reason

our primary focus in this chapter was the study of the influence of the rheological

properties of arterial walls on the drug release from a DES. These drug delivery

devices are used in the case of patients with severe diseased arteries, characterized

by large Young modules. Our numerical results show the difference between drug

distribution in healthy and diseased arterial walls. We believe these results have

clinical importance and provide manufacturers with useful information to produce

tailored DES tuned to specific needs of patients.





Chapter 4

The Effect of Reversible Binding

Hydrophilic drugs, like heparin, are known to be ineffective because they are

rapidly cleared. Nowadays they have been practically discarded from clinical use

in favour of the more persistent hydrophobic drugs such as paclitaxel, sirolimus

and everolimus. Comparing heparin and paclitaxel illustrates the role of reversible

binding process between drug and binding sites, in maintaining the drug in the

arterial wall for a longer period of time. This comparison could help to construct

much effective drug eluting stents in the future.

In this chapter, we extend the model proposed in Chapter 3 to take into account

the reversible nature of the bindings between the hydrophilic and the hydrophobic

drugs and specific sites inside the arterial wall ([26, 43]).

The chapter is organized as follows. Section 4.1 is devoted to the description

of reversible binding reactions. In Section 4.2 we set up the model and its initial,

boundary and interface conditions. The effect of reversible binding sites in the

presence of drug in the arterial wall as well as numerical simulations of different

drugs, with different reversible binding properties, in the healthy and diseased

arterial wall are discussed in Section 4.3.

4.1 Reversible binding reactions

Receptors are gateways where physiological responses of cells are produced and

are often the target of drugs. Drug, as a natural ligand in the arterial wall, binds

to target binding sites to which it has high affinity. The concentration of drug in
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the arterial wall depends on the rate at which it diffuses through the tissue and

their propensity to bind with immobilized binding sites in the arterial wall.

Figure 4.1: Schematic representation of a free drug molecule, binding to a
specific binding site and a specific drug-binding site complex ([43]).

Bindings occur when a ligand (drug) and a receptor (binding site) collide due

to diffusion forces and when the collision has the correct orientation and enough

energy. When binding has occurred, drug and binding site remain bound together

for an amount of time, depending on the degree of affinity between them ([26]).

After dissociation, the drug and the binding site keep the same properties as before

binding. The drug-binding site reaction is schematically represented by

Drug + Binding sites
association−−−−−−−→←−−−−−−−
dissociation

Drug-binding complex. (4.1)

To define the mathematical kinetic model associated to (4.1), the following

assumptions are made:

• All the binding sites are equally accessible to drug;

• All the binding sites are either free or bound to drug, this means that there

are not states of partial binding;

• Neither drug nor binding sites are altered by binding.

The concentration of free drug in the arterial wall is represented by C5,V with

initial concentration C0
5,V = 0, while C6,V represents the density of free binding

sites in the arterial wall with initial density C0
6,V 6= 0. The concentration of

activated drug-binding sites is represented by C7,V , and we assume that its initial

concentration is null. The drug-binding reaction is schematically represented by

C5,V + C6,V

κb,V−−−→←−−−
κu,V

C7,V , (4.2)
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where κb,V is the association rate between the drug and the binding sites and κu,V

is the dissociation rate. It should be noted that Kb =
C0

6,V κb,V

κu,V
� 1 corresponds to

drugs that have high affinity for their target binding sites.

The drug assumes two different states: the dissolved state where drug moves

by convection and non-Fickian diffusion and the bound state where drug attaches

reversibly to specific sites inside the arterial wall and no longer diffuses or is

transported by water.

4.2 Non-Fickian reaction-diffusion-convection system

Under the previous assumptions the coupled non-Fickian nonlinear reaction-

diffusion-convection model used in Chapter 3 is modified. The following system

of non-linear equations is obtained:
∂Cm,S
∂t

= −∇ · Jm,S(CS) + Fm,S(CS) in S × IR+, m = 1, . . . , 5,
∂Cm,V
∂t

= −∇ · Jm,V (CV ) + Fm,V (CV ) in V × IR+, m = 1, . . . , 5, m 6= 2,
∂C6,V

∂t
= F6,V (CV ) in V × IR+,

∂C7,V

∂t
= F7,V (CV ) in V × IR+,

(4.3)

where CS is defined by (3.2) and CV =

(
Cm,V

)
m=1,...,7,
m6=2

and the mass fluxes in the

stent, Jm,S(CS), and in the arterial wall, Jm,V (CV ), are defined by (3.18).

The equation (2.6) is used for the diffusion coefficients of species in the stent.

For a sake of simplicity, we assume that the diffusion coefficients in the vessel wall

Dm,V , m = 1, . . . , 5, m 6= 2, are constants.

In (4.3), Fm,S, m = 1, . . . , 5, are reaction terms that are defined by (2.3) and

(2.4). In the arterial wall we assume that the degradation of oligomers and also the

binding and unbinding of the drug take place. The reaction functions are defined

by (3.3) for m = 1, 3, 4, and

Fm,V (CV ) =


−F2,V (CV ), m=5,

−F2,V (CV ), m=6,

F2,V (CV ), m=7,

(4.4)

. In (4.4), F2,V (CV ) is defined by

F2,V (CV ) = κb,VC5,VC6,V − κu,VC7,V . (4.5)
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To complete the coupled problem (4.3), we specify in what follows the initial,

the boundary and the interface conditions. The initial conditions in the coating

and in the arterial wall are given by{
Cm,S(0) = 0, m = 1, 3, 4, Cm,S(0) = C0

mS
, m = 2, 5,

Cm,V (0) = C0
mV
, m = 1, 6, Cm,V (0) = 0, m = 3, 4, 5, 7.

(4.6)

The boundary and interface conditions are defined by (3.24).

4.3 Numerical experiments

To simulate numerically the IBVP (4.3), (4.6) and (3.24), we consider a finite

element method analogous to the one presented in Chapter 3. The method is

defined considering the variational formulations of the last IBVP which can easily

be stated following Section 3.3 in Chapter 3. The fully discrete finite element

method for the IBVP is analogous to the method presented in Section 3.5 with

the convenient modifications, that are induced by the presence of the two last

equations in (4.3) and by the new reaction terms in the equation for the drug

concentration in the arterial wall (see (4.3)).

The finite element approximations that we present were obtained considering

the data used in the numerical simulations of Chapter 3. We also consider in our

experiments C0
6,V = 10−5 cm2/s and the parameters in Table 4.1 for a hydrophilic

drug (heparin) and a hydrophobic drug (paclitaxel) ([5, 43, 45])

Drug D0
5,S[cm2/s] D5,V [cm2/s] kb,V [g/cm2s] ku,V [1/s] Kb

Heparin 10−10 7.7× 10−8 9.2× 104 15× 10−3 60

Paclitaxel 5.7× 10−9 2.6× 10−8 3.6× 106 9× 10−2 400

Table 4.1: Properties of heparin and paclitaxel.
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Figure 4.2: Distribution of heparin in the arterial wall in the models without
binding sites (top) and with binding sites (bottom) after 30 days.

Distribution of heparin in the arterial wall, with and without binding, after 30

days is plotted in Figure 4.2. Figure 4.3 illustrates the evolution of the mass of

heparin mass with and without binding. We remark that when binding occurs

the drug has a longer residence time in the arterial wall. We observe that the

concentration of drug in the arterial wall, when affinity between drug and living

tissue occurs, is higher than in the case of non affinity.

TaxusTM paclitaxel eluting stent from Boston Scientific, Natick, MA, USA,

applies paclitaxel, a fairly hyrophobic drug (Kb = 400), as a therapeutic agent
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Figure 4.3: Evolution of the mass of heparin in the arterial wall with and
without binding sites during 30 days.

to control migration of smooth muscle cells from endothelium caused by in-stent

restenosis. Heparin, a hydrophobic drug (Kb = 60), is used in Carmeda BioActive

Surface (CBAS) heparin coating made by Carmeda, Upplands Vasby, Stockholm,

Sweden.

It should be noted that drugs like sirolimus (Kb = 1700), known also as

rapamycin, which is loaded in sirolimus eluting stent from Cordis, Johnson &

Johnson, Miami Lake, FL, USA, and also everolimus (Kb = 1700) loaded in

XIENCE V TM everolimus eluting stent manufactured by Abbott Vascular, Santa

Clara, CA, USA, are more hydrophobic than paclitaxel and are used to remain in

the arterial wall for a longer period.

Distribution of heparin and paclitaxel in the arterial wall after 30 days are illus-

trated in Figure 4.4, while the evolution of the masses of heparin and paclitaxel,

released from drug eluting stents in the arterial wall are compared in Figure 4.5.

We observe that resident time of paclitaxel is higher than of the heparin. This

means that heparin leaves the arterial wall faster than the paclitaxel.
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Figure 4.4: Distribution of heparin (top) and paclitaxel (bottom) in the arte-
rial wall after 30 days.

Evolution of paclitaxel in a healthy coronary artery with Young modulus κr =

1.2 MPa ([17]) is compared with a highly diseased coronary artery with Young

modulus κr = 4.1 MPa ([30]) in Figure 4.6. When κr increases due to age or

atherosclerosis, less drug penetrates to the coronary wall in the beginning of the

process. A crossing occurs around day 7. This result is justified by the fact that

the stiffness of the arterial wall imposes a resistance to the penetration of the drug

in the beginning of the process and leads to a drug accumulation in the long time.
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Figure 4.5: Evolution of masses of heparin and paclitaxel in the arterial wall
during 30 days.
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Figure 4.6: Evolution of the mass of free paclitaxel in the healthy and diseased
arterial wall during 30 days.

Figure 4.7 shows that the amount of bounded paclitaxel in the healthy artery

is larger than in the diseased artery.
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Figure 4.7: Evolution of the mass of bound paclitaxel in the healthy and
diseased arterial wall during 30 days.

In this chapter we studied the influence of reversible binding sites on the drug

release from a DES to an arterial wall. The mathematical model and the time

discrete finite element method used in the numerical simulations were obtained

modifying the mathematical model and the method of Chapter 3 to include binding

and unbinding effects. The numerical results highlight the difference between

the behaviour of a hydrophilic drug like heparin and a hydrophobic drug like

paclitaxel.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we presented some coupled models to simulate the release of a

therapeutic agent from a drug eluting stent into the arterial wall. Different types

of interface and natural boundary conditions are taken into consideration based on

the physiological assumptions of the problem. The coating of the stent is assumed

to be biodegradable, viscoelastic properties of the arterial wall and affinity between

drug and vessel walls are considered in the complete model studied in Chapters

3 and 4 . From a theoretical viewpoint, appropriate variational formulations for

mathematical models have been introduced and energy estimates for the contin-

uous and fully discrete models have been established. We have introduced IMEX

finite element methods to solve the initial boundary value problems associated to

the system of equations of the models.

From the numerical viewpoint some particular aspects of clinical importance

such as sensitivity to the effective parameters that characterize the biodegradable

polymeric stent, the influence of the viscoelasticity of the arterial wall, the effect

of permeability of the stent coating and the effect of reversible binding reaction in

the release of different drugs are addressed in the thesis.

Regarding the biodegradable polymer, it is illustrated that the drug release from

a biodegradable stent is faster than the release of drug from a non-biodegradable

stent. This finding, which was obviously expected, has been quantified. We believe

that this quantification should be taken into consideration in the design of stents,

that is in the selection of the polymer and the initial concentration of drug.

91



Chapter 5. Conclusions and Future Work 92

Concerning the second clinical aspect, we showed that during an initial period

of time the permeation of the drug in the arterial wall is affected by its stiffness

i.e. the total mass of drug that enters into the arterial wall is a decreasing function

of the Young modulus. Patients who need a cardiovascular stent generally have

atherosclerosis and consequently stiffer arterial walls, that is they have higher

Young modulus. To prevent an inflammatory response and the smooth muscle

cell growth, a correct concentration of the drug must penetrate into the arterial

wall from the moment that the stent is implanted. Our findings suggest that the

initial concentration of the drug in the stent should be tailored to the rheological

properties of the arterial wall.

The third clinical aspect that we want to stress is the control of the release

profile according to the permeability of the coating: release can be speeded up or

delayed as different polymers are used. Application of different topcoats may alter

the penetration rate of the drug from the stent into the arterial wall.

Our last clinical finding is the effect of reversible binding reaction in the release

of different drugs. We observed that a hydrophobic drug such as paclitaxel stays

longer than a hydrophilic drug like heparin in the arterial wall. This result can

help to construct more effective drug eluting stents in the future.

Although our numerical results have been validated from a qualitative viewpoint

using data extracted from scientific works, by leading experts in the cardiovascular

drug delivery field, a comparison of the model with experimental results would

open new routes of research.

5.2 Future work

Viscoelastic properties of the polymeric stent

It is known that polymers like PLA exhibit viscoelastic properties influenced

by the degradation of the polymer into smaller molecules. In recent years several

models have been proposed to describe non-Fickian diffusion in polymers by in-

troducing viscoelastic properties ([6]). Much less attention has been devoted to

the mathematical modeling of viscoelasticity of the polymeric coating of the stent

in drug release.
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We plan to address this problem in the near future by using appropriate linear

viscoelastic model such as Maxwell-Viechert Model. We believe this will open a

new research line to develop optimal design for drug eluting stents.

Bioabsorbable drug eluting stents

Recently some leading companies in the design of cardiovascular stents, such

as Abbott Vascular, Santa Clara, CA, USA, and Boston Scientific, Natick, MA,

USA, have started to design a new generation of drug eluting stents named bioab-

sorbable stents. This type of stent is mostly made by completely bioabsorbable

polymers with stent strut made by biocompatible metals like magnesium, iron or

other alloys. These metals are resorbed from the body after around three months,

which corresponds to the most critical period after stent implantation. In current

biodegradable DES, manufacturers use metals like titanium or chromium which

are not metabolized by the body. This fact have several drawbacks as for example

causing a late stent thrombosis.

ABSORB which has been recently launched by Abbott Vascular is a biore-

sorbable vascular scaffold system that elutes everolimus in a similar way to the

drug eluting stent XIENCE V TM and then is naturally resorbed leaving no perma-

nent scaffold. ABSORB is composed of four key design elements: a bioresorbable

scaffold (Poly (L-lactide)), a bioresorbable coating (poly (D,L lactide)), everolimus

and the XIENCE V TM delivery system.

To model this next generation of stents, new reaction equations and modified

interface and boundary conditions are needed. To the best of our knowledge,

mathematical modeling, numerical and theoretical studies of this kind of stents

have not been yet in the literature. We plan to model, in the time coming, drug

delivery from ABSORB into a viscoelastic vessel.
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