

Mahdi Dodangeh

WORST CASE COMPLEXITY OF DIRECT SEARCH

UNDER CONVEXITY

Tese de Programa Inter-Universitário de Doutoramento em Matemática, orientada pelo Professor Luís Nunes Vicente e

apresentada ao Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

2014

Mahdi Dodangeh

Worst Case Complexity

of

Direct Search

under Convexity

Coimbra
2014

Mahdi Dodangeh

Worst Case Complexity

of

Direct Search

under Convexity

Tese de Programa Inter-Universitário de
Doutoramento em Matemática, orientada
pelo Professor L. Nunes Vicente e apre-
sentada ao Departamento de Matemática
da Faculdade de Ciências e Tecnologia da
Universidade de Coimbra.

Coimbra
2014

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Luis Nunes Vicente,
for his continued support, guidance, and transfer of knowledge. Keeping up with his stan-
dards for research in mathematics has required from me a great effort but at the end it was
extremely rewarding.

I would also like to thank Dr. Zaikun Zhang who helped us solving the problem of
Chapter 7 and writing parts of this dissertation.

I am pleased to thank the Fundação para a Ciência e a Tecnologia (FCT) for sponsoring
my doctoral fellowship and the Department of Mathematics of the University of Coimbra
for the academic, administrative, and technical support. I would also like to express my
gratitude to the many professors, friends, and classmates for the useful comments, remarks,
and engagement during the learning process over the years.

Words cannot express how grateful I am to my mother, my father, my siblings, and
my parents-in-law, for all of the sacrifices that they made for me. I thank them also for
supporting me throughout the entire process of my PhD education, contributing to my
harmony and balance.

Finally, I express my warmest gratitude to my caring, loving, and supportive wife, So-
mayeh. Her encouragement when times became rough was very important to me. Her
support at home while I completed my work provided me the time and energy to succeed.

v

vi

Abstract

In this thesis we prove that the broad class of direct-search methods of directional type,
based on imposing sufficient decrease to accept new iterates, exhibits the same worst case
complexity bound and global rate of the gradient method for the unconstrained minimization
of a convex and smooth function without using derivatives.

More precisely, it will be shown that the number of iterations needed to reduce the norm
of the gradient of the objective function below a certain threshold is at most proportional
to the inverse of the threshold. It will be also shown that the absolute error in the function
values decay at a sub-linear rate proportional to the inverse of the iteration counter.

In addition, we prove that the sequences of absolute errors of function values and iterates
converge r-linearly in the uniformly/strongly convex case.

A second open problem is solved in this thesis regarding the worst case complexity of
direct search for smooth functions. It is proved that the factor consisting of the dimension of
the problem squared that appears in the bounds for the worst number of function evaluations
is optimal, in the sense that no better power of the problem dimension is attainable.

vii

viii

Resumo

Nesta dissertação, provamos que a abrangente classe de métodos de procura directa do tipo
direccional, que tem por base aceitar novas iteradas recorrendo a uma condição de decréscimo
suficiente, exibe o mesmo limite superior de complexidade, no pior dos casos, que o método
do gradiente para a minimização de uma função convexa e suave sem recurso a derivadas.

Mais precisamente, será demonstrado que o número de iterações necessárias para reduzir
a norma do gradiente da função objectivo abaixo de um determinado valor é, no máximo,
proporcional ao inverso desse valor. Será também mostrado que o erro absoluto nos valores
da função decresce a uma taxa sub-linear, proporcional ao inverso do contador das iterações.

Demonstramos, igualmente, que as sucessões de erros absolutos, no valor da função e nas
iteradas, convergem r-linearmente no caso uniformemente/fortemente convexo.

É resolvido ainda um segundo problema em aberto na complexidade no pior dos casos
da procura directa para funções suaves. É provado que o factor da dimensão do problema
ao quadrado, presente nos limites superiores para o pior número de avaliações da função,
é óptimo no sentido em que não é possível alcançar uma melhor potência na dimensão do
problema.

ix

x

Contents

1 Introduction 1

2 WCC of gradient-type methods 5
2.1 Basic definitions of convexity . 5
2.2 Results for non-convex functions . 10
2.3 Results for convex functions . 11
2.4 Results for strongly convex functions . 11

3 WCC of direct search 15
3.1 Basic definitions and the algorithm . 15
3.2 WCC of direct search . 20

4 WCC of direct search for convex functions 23
4.1 Assumption on the step size . 23
4.2 Assumption on the function . 24
4.3 Global rate on function values . 25
4.4 WCC bounds . 31

5 Global rate of direct search under strong convexity 35

6 Numerical illustration 41
6.1 Description of the experiments . 41
6.2 A numerical study of Assumption 4.2.1 . 42
6.3 Convex v.s. strongly convex . 45
6.4 The Lipschitz constant and the strong convexity constant 46
6.5 Relevance of variable separability . 48

7 Sharpness of the WCC bounds in terms of function evaluations 51

8 Concluding remarks 55

xi

xii CONTENTS

List of Tables

3.1 Summary of an unconstrained problem class for zero order algorithms. In the
table, ν > 0 is the Lipschitz constant of the gradient of the function, xappr∗ is
the approximated solution, and x0 is the starting point given to the method. 21

6.1 Functions in Set 1. 43
6.2 Functions in Set 2. 43
6.3 Number of function evaluations for Set 1. 44
6.4 Number of function evaluations for Set 2. 44
6.5 Functions in Set 3. 45
6.6 Functions in Set 4. 45
6.7 Number of function evaluations for Set 3. 46
6.8 Number of function evaluations for Set 4. 46
6.9 Functions in Set 5. 47
6.10 Functions in Set 6. 47
6.11 Number of function evaluations for Set 5. 48
6.12 Number of function evaluations for Set 6. 48
6.13 Functions in Set 7. 49
6.14 Number of function evaluations for Set 7. 49

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

In this thesis we focus on direct-search methods of directional type applied to the minimiza-
tion of a real-valued, convex, and continuously differentiable objective function f , without
constraints,

min
x∈Rn

f(x). (1.1)

In direct-search methods, the objective function is evaluated, at each iteration, at a
finite number of points. No derivatives are required. The action of declaring an iteration
successful (moving into a point of lower objective function value) or unsuccessful (staying at
the same iterate) is based on objective function value comparisons. Some of these methods
are directional in the sense of moving along predefined directions along which the objective
function will eventually decrease for sufficiently small step sizes ([24], [13, Chapter 9]). Those
of simplicial type (see, e.g., [13, Chapter 8]), such as the Nelder-Mead method [27], are not
considered here. There are essentially two ways of globalizing direct-search methods (of
directional type), meaning making them convergent to stationary points independently of
the starting point: (i) by integer lattices, insisting on generating points in grids or meshes
(which refine only with the decrease of the step size), or (ii) by imposing a sufficient decrease
condition, involving the size of the steps, on the acceptance of new iterates. Although we
derive our results for the latter strategy, we recall that both share the essentials of this
class of direct-search methods: the directional feature for the displacements, and, as in any
other direct-search technique, the fact that decisions in each iteration are taken solely by
comparison of objective function values.

The analyzes of global convergence of algorithms can be complemented or refined by
deriving worst case complexity (WCC) bounds for the number of iterations or number of
function evaluations, an information which becomes valuable in many instances. In terms
of the derivation of WCC bounds, Nesterov [28, Page 29] first showed that the steepest
descent or gradient method for unconstrained optimization takes at most O(ε−2) iterations
(or gradient evaluations) to drive the norm of the gradient of the objective function below ε ∈
(0, 1). Such a bound has been proved sharp or tight by Cartis, Gould, and Toint [10]. There

1

has been quite an amount of research on WCC bounds for several other classes of algorithms
in the non-convex case (see, e.g., [11, 22, 31]).

Derivative-free or zero-order methods have also been recently analyzed with the purpose
of establishing their WCC bounds. It has been shown in [38] a WCC bound of O(ε−2)
for the number of iterations of direct-search methods (of directional type, when imposing
sufficient decrease, and applied to a smooth, possibly non-convex function), which translates
to O(n2ε−2) in terms of the number of function evaluations. Cartis, Gould, and Toint [12]
have derived a WCC bound of O(n2ε−3/2) for their adaptive cubic overestimation algorithm
when using finite differences to approximate derivatives. (By a smooth function we always
mean that the gradient is Lipschitz continuous.) In the non-smooth case, using smoothing
techniques, both Garmanjani and Vicente [20] and Nesterov [30] established a WCC bound
of approximately O(ε−3) iterations (and O(n3ε−3) function evaluations) for their zero-order
methods, where the threshold ε refers now to the gradient of a smoothed version of the
original function. Nesterov [30] random Gaussian approach sees its worst case cost in terms
of function evaluations reduced to O(n2ε−2) in the non-convex smooth case.

Nesterov [28, Section 2.1.5] has also shown that the gradient method achieves an improved
WCC bound of O(ε−1) if the objective function is convex. For derivative-free optimization,
Nesterov [30] proved that his random Gaussian approach also attains theO(ε−1) in the convex
(smooth) case. It is thus natural to ask if one can achieve a similar bound for deterministic
zero-order methods, and direct search offers a simple and instructive setting to answer such a
question. In this thesis, we will show that direct search can indeed achieve a bound of O(ε−1)
under the presence of convexity. The derived WCC bound measures the maximum number
of iterations required to find a point where norm of the gradient of the objective function is
below ε, and, once again, it is proved for directional direct-search methods when a sufficient
decrease condition based on the size of the steps is imposed to accept new iterates. As in
the non-convex case, the corresponding maximum number of objective function evaluations
becomes O(n2ε−1) (matching Nesterov’s random Gaussian derivative-free approach [30]).

In the convex case it is also possible to derive global rates for the absolute error in function
values when the solutions set is non-empty. Such an error is known to decay at a sub-linear
rate of 1/k for the gradient method when the function is convex. The rate is global since
no assumption on the starting point is made. We derive in this thesis a similar rate for
direct search. As in the gradient method, we also go one step further and show that the
absolute error in function values as well as in the iterates converges globally and r-linearly
when the function is uniformly/strongly convex. These results have been reported in a paper
submitted for publication [18]. Such a rate applies to the whole sequence of iterates and
its derivation does not require a monotone non-increase of the step size (as it is the case
of a similar r-linear rate derived for direct search globalized using integer lattices by Dolan,
Lewis, and Torczon [19]).

Our results are derived for convex functions where the longest distance from the initial

2

Chapter 1. Introduction

level set to the solutions set is finite. Such property is satisfied when the solutions set is
bounded (including uniformly/strongly convexity as a particular case), but it is also met in
several instances where the solutions sets are unbounded.

We tested direct-search methods numerically in the context of convex functions. In our
experiments, the computational expense was always well below the WCC bounds derived in
this dissertation, even if the longest distance mentioned above is infinity.

The WCC bounds derived in this dissertation depend on the number of directions used
in each iteration. When the objective function is smooth, such a set of directions is typically
chosen as a positive spanning set (PSS), since PSSs are known to contain at least one descent
direction. In the smooth non-convex case [38], the dependency of the WCC bound O(n2ε−2)
for function evaluations on the usage of PSSs is expressed by the order of n2. Such a result
was obtained using the PSS D⊕ formed by the coordinate vectors and their negatives. In
this dissertation we will prove that indeed D⊕ is optimal in the sense that it minimizes the
order n2 (on the dimension n) in the WCC bounds for the number of function evaluations.

The structure of the thesis is as follows. In Chapter 2, we start by reviewing basic
properties of convex functions and then briefly comment on the worst case complexity (WCC)
bounds and global rates of the gradient or steepest descent method. In Chapter 3, we
describe the class of direct search under consideration and provide the known results (global
asymptotics and WCC bounds) for the smooth and non-convex case. Then, in Chapter 4,
we derive the global rate and WCC bound for such direct-search methods in the also smooth
but now convex case. The uniformly/strongly convex is covered in Chapter 5. Our numerical
experience with direct search in the context of convex functions is reported in Chapter 6.
In Chapter 7, we show that the WCC bounds for the number of function evaluations of
O(n2ε−2) or O(n2ε−1) (respectively, non-convex or convex cases) are optimal in the order of
the power of n. In Chapter 8 we draw some concluding remarks based on the specifics of
the material covered during the thesis.

We note that the notation O(A) has meant and will mean a multiple of A, where the
constant multiplying A does not depend on the iteration counter k of the method under anal-
ysis (thus depending only on f or on algorithmic constants which are set at the initialization
of the method). The dependence of A on the dimension n of the problem will be made
explicit whenever appropriate. The notation Rn will denote the n-dimensional Euclidean
space. When n = 1 we simply write R. The inner product 〈·, ·〉 is also the Euclidean one,
i.e., 〈x, y〉 = x>y, for x, y ∈ Rn. The vector norms will be the `2 ones. The notation |D|
refers to the number of elements in the set D.

3

4

Chapter 2

WCC of gradient-type methods

In this thesis, we make use of the terms sub-linear rate and linear or r-linear rate of con-
vergence. We briefly describe here what we mean by this terminology. Let {xk}k≥0 be a
sequence in Rn converging to x∗. The rate of convergence is linear or q-linear (where the q
stands for quotient [33, Chapter 9]) when there exists θ ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖

≤ θ for all k sufficiently large.

The rate is super-linear when this ratio converges to 0 and sub-linear when it converges to 1.
The rates are prefixed by an r (like r-linear where the r stands for root [33, Chapter 9])
when {xk}k≥0 is bounded by another sequence {yk}k≥0, typically in R, that converges in the
normal or q sense. As examples {1/

√
k}k≥0 and {1/k}k≥0 converge sub-linearly to zero.

In this chapter, we briefly review the worst case complexity of gradient-type methods.
First, in order to be precise, let us define the classes of real functions in Rn that we will
address in this dissertation.

2.1 Basic definitions of convexity

To define a convex function there is no need to assume any kind of smoothness, even conti-
nuity.

Definition 2.1.1 A function f is said to be convex in a convex set Ω if for any x, y ∈ Ω,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1]. (2.1)

If inequality (2.1) always holds strictly unless x = y or λ(1−λ) = 0, we say that the function
is strictly convex.

5

2.1. Basic definitions of convexity

A convex function f is uniformly convex in Rn (with constant µ) if there exists a constant
µ > 0 such that, for any x, y ∈ Rn and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
λ(1− λ)µ‖x− y‖2. (2.2)

We use the notation F(Ω) to represent the set of convex functions defined in a convex
set Ω and Fµ(Rn) to denote the sub-class of uniformly convex functions.

Note that all the uniformly convex functions are strictly convex. But, there exist strictly
convex functions which are not uniformly convex. For instance, the exponential function
exp(x) (x ∈ R).

Convex functions are interesting in optimization since any local minimizer of a convex
function is also a global minimizer (see, e.g., [23, Theorem VI.2.2.1]). Also, a strictly convex
function has at most one global minimizer (see, e.g., [23, Proposition VI.6.1.3]). Existence of
a minimizer is assured by uniform convexity. In fact, a continuous uniformly convex function
has a unique minimizer in a convex and closed set (see, e.g., [25, Corollary 8.4.12]).

The class of continuously differentiable functions (notation C1(Ω), where Ω is an open
subset of Rn) is present nearly everywhere in this dissertation. We refer to the sub-class of
continuously differentiable convex functions by F1(Ω), where Ω is open and convex. The
following theorem characterizes the functions in F1(Ω).

Theorem 2.1.1 ([23, Theorems IV.4.1.1 and IV.4.1.4]) A function f belongs to F1(Ω) if
and only if it is continuously differentiable and for all x, y ∈ Ω,

f(y) ≥ f(x) + 〈∇f(x), y − x〉, (2.3)

or, equivalently,
〈∇f(x)−∇f(y), x− y〉 ≥ 0. (2.4)

Moreover, the inequalities above hold strictly for distinct x and y if and only if f is strictly
convex.

Strongly convex functions (defined below) guarantee a reasonable rate of convergence to
a unique minimizer to most first order algorithms.

Definition 2.1.2 A continuously differentiable function f is said to be strongly convex in
Rn (with constant µ, notation f ∈ F1

µ(Rn)) if there exists a constant µ > 0 such that, for
any x, y ∈ Rn,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2. (2.5)

The inequality above strengthens inequality (2.3) in Theorem 2.1.1. It has an equivalent
version that strengthens, in turn, inequality (2.4). When f is continuously differentiable,
strong convexity and uniform convexity are equivalent.

6

Chapter 2. WCC of gradient-type methods

Theorem 2.1.2 ([28, Theorem 2.1.9]) A function f belongs to F1
µ(Rn) if and only if it is

continuously differentiable and equation (2.2) holds for any x, y ∈ Rn and λ ∈ [0, 1].

Since our functions will always be assumed continuously differentiable, uniform and
strong convexity are thus equivalent notions, and from now on we will talk only about
strongly convex functions. Strongly convex functions are continuous and uniformly convex
and thus have a unique minimizer in Rn (see, again, [25, Corollary 8.4.12]).

Theorem 2.1.3 ([28, Theorem 2.1.9]) A function f is in F1
µ(Rn) if and only if it is con-

tinuously differentiable and for x, y ∈ Rn,

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2. (2.6)

The following theorem introduces two more inequalities which hold for strongly convex
functions.

Theorem 2.1.4 ([28, Theorem 2.1.10]) If f ∈ F1
µ(Rn), then for any x and y in Rn one has

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
1

2µ
‖∇f(x)−∇f(y)‖2 (2.7)

and
〈∇f(x)−∇f(y), x− y〉 ≤ 1

µ
‖∇f(x)−∇f(y)‖2. (2.8)

Proof. The proof is given since the result will be used later in our theory. Given x ∈ Rn,
the function

h(y) = f(y)− 〈∇f(x), y〉

belongs also to F1
µ(Rn) (see [28, Lemma 2.1.4]). Note that ∇h(x) = 0. Hence the unique

minimizer of h is x.

Now, using inequality (2.5) for any y = v ∈ Rn, we have that

h(x) = min
v∈Rn

h(v) ≥ min
v∈Rn

{
h(y) + 〈∇h(y), v − y〉+

µ

2
‖v − y‖2

}
= h(y)− 1

2µ
‖∇h(y)‖2,

which is exactly (2.7) (recall the definition of h). By adding two copies of (2.7) with x and
y interchanged, we obtain (2.8). �

In Chapter 5, with the help of inequality (2.7), we will derive an r-linear convergence
rate for direct search.

7

2.1. Basic definitions of convexity

Given an open subset Ω of Rn, we denote by C1
ν(Ω) the set of continuously differentiable

functions in Ω with Lipschitz continuous gradient in Ω, where ν is the Lipschitz constant of
the gradient. The intersection of F1(Ω) and C1

ν(Ω) is denoted by F1
ν (Ω), where Ω is open

and convex. The following theorem is important in convex optimization, and it characterizes
functions in F1

ν (Ω).

Theorem 2.1.5 ([28, Theorem 2.1.5]) Let f ∈ C1(Ω), where Ω is open and convex. Then
each of the following conditions, holding for all x, y ∈ Ω, are equivalent to the fact that
f ∈ F1

ν (Ω) (in other words to the fact that f is convex with Lipschitz continuous gradient),

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ ν

2
‖x− y‖2, (2.9)

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2ν
‖∇f(x)−∇f(y)‖2, (2.10)

〈∇f(x)−∇f(y), x− y〉 ≥ 1

ν
‖∇f(x)−∇f(y)‖2. (2.11)

Proof. The proof is given since the result will be used later in our theory. If we suppose
that f ∈ F1

ν (Ω) (and thus convex), then for any x, y ∈ Ω we have (see Theorem 2.1.1),

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉.

Now, by the integral form of the Mean Value Theorem we obtain

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 =

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt

≤
∫ 1

0

|〈∇f(x+ t(y − x))−∇f(x), y − x〉| dt

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖‖y − x‖ dt

≤ ν‖y − x‖2

∫ 1

0

t dt =
ν

2
‖y − x‖2, (2.12)

where the last inequality follows from Lipschitz continuity of the gradient of f . So, (2.9)
holds for any x, y in Ω when f ∈ F1

ν (Ω).

Now, let (2.9) hold for any x, y in Ω. By adding two copies of (2.9) with x and y
interchanged, we obtain that

〈∇f(x)−∇f(y), x− y〉 ≤ ν‖x− y‖2, ∀x, y ∈ Ω. (2.13)

From Theorem 2.1.1, one knows that f is convex. Given x ∈ Ω, define

h(y) = f(y)− 〈∇f(x), y〉, y ∈ Ω.

8

Chapter 2. WCC of gradient-type methods

It is obvious that h is convex and in C1(Ω). One can then use (2.13) to rederive (2.12)
and prove that h also satisfies (2.9). Note that x∗ = x is a minimizer of h (see, e.g., [28,
Theorem 2.1.1]). Then, by re-writing (2.9) in terms of h for the pair y, y − 1/ν∇h(y), we
have

h(x) ≤ h(y − 1/ν∇h(y))

≤ h(y) + 〈∇h(y),−1

ν
∇h(y)〉+

ν

2

∥∥∥∥1

ν
∇h(y)

∥∥∥∥2

= h(y)− 1

2ν
‖∇h(y)‖2.

Taking into account the definition of h, the above inequality implies

f(x)− 〈∇f(x), x〉 = h(x)

≤ f(y)− 〈∇f(x), y〉 − 1

2ν
‖∇h(y)‖2

= f(y)− 〈∇f(x), y〉 − 1

2ν
‖∇f(y)−∇f(x)‖2,

which is (2.10).

Now, let (2.10) hold for any x, y ∈ Ω. Then, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2ν
‖∇f(x)−∇f(y)‖2

and
f(x) ≥ f(y) + 〈∇f(y), x− y〉+

1

2ν
‖∇f(y)−∇f(x)‖2.

By summing up these two inequalities, we obtain

f(y) + f(x) ≥ f(x) + f(y) + 〈∇f(x)−∇f(y), y − x〉+
1

ν
‖∇f(x)−∇f(y)‖2,

which is equivalent to (2.11).

Finally, due to Theorem 2.1.1, from (2.11) we conclude that f is convex. Using Cauchy-
Schwartz, inequality (2.11) implies Lipschitz continuity of the gradient of f . So, (2.11)
implies f ∈ F1

ν (Ω). The proof is then completed. �

Note that equations (2.10) and (2.11) strengthen equations (2.3) and (2.4) in Theo-
rem 2.1.1, respectively.

The notation F1
ν,µ(Ω) will denote the intersection of C1

ν(Ω) and F1
µ(Ω). For functions

in F1
ν,µ(Ω), we have an inequality stronger than both (2.6) and (2.11) as presented in the

following theorem.

9

2.2. Results for non-convex functions

Theorem 2.1.6 ([28, Theorem 2.1.12]) Let f ∈ F1
ν,µ(Rn). Then for any x, y ∈ Rn one has

〈∇f(x)−∇f(y), x− y〉 ≥ µν

µ+ ν
‖x− y‖2 +

1

µ+ ν
‖∇f(x)−∇f(y)‖2. (2.14)

Due to the strong convexity of f (Theorem 2.1.3) and the Lipschitz continuity of ∇f(x),
we have

‖∇f(x)−∇f(y)‖ ≥ µ‖x− y‖

and
‖x− y‖ ≥ ν−1‖∇f(x)−∇f(y)‖

respectively. Hence it is easy to see that (2.14) implies both (2.6) and (2.11).

The last theorem is important for deriving an r-linear convergence rate of gradient-type
methods for functions in F1

ν,µ(Ω).

2.2 Results for non-convex functions
Given a starting point x0 ∈ Rn, the gradient or steepest descent method takes the form

xk+1 = xk − hk∇f(xk),

where hk > 0 defines the step size. The algorithm can be applied whenever the function f
is continuously differentiable, and the well-known fact that −∇f(xk) is a descent direction
provides the basis for the convergence properties of the method. The update of the step
size hk is also a crucial point in this class of minimization algorithms. There are improper
choices of the step size that make such gradient-type algorithms diverge [32, Chapter 3].
The proper update of the step size is thus central in achieving global convergence (see,
e.g., [28, 32]).

For a number of the well-known strategies to update the step size, it is possible to prove
that, when f ∈ C1

ν(Rn), there is a constant C = C(ν) > 0 such

f(xk)− f(xk+1) ≥ C(ν)‖∇f(xk)‖2, (2.15)

where C(ν) is essentially a multiple of 1/ν, with ν the Lipschitz constant of the gradient
of f , (being the multiple dependent on the parameters involved in the update of the step
size; in [28, Page 26], for instance, C(ν) = 1/(2ν) for hk = 1/ν). In such cases, assuming
that f is also bounded from below in Rn, one can easily see from (2.15) that the gradient
method takes at most O(ε−2) iterations to reduce the gradient below ε ∈ (0, 1) (see [28,
Page 29]), to be more specific (

f(x0)− flow
C(ν)

)
1

ε2
.

10

Chapter 2. WCC of gradient-type methods

The constant multiplying ε−2 depends thus only on ν, on the parameters involved in the
update of the step size, and on the lower bound flow for f in

Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

It is also easy to prove from (2.15) that the gradient decays at a sub-linear rate of 1/
√
k.

2.3 Results for convex functions
If, additionally, f is assumed convex, i.e., f ∈ F1

ν (Rn), then Nesterov [28, Section 2.1.5]
showed that one can achieve a better WCC bound in terms of the negative power of ε. First,
based on the geometric properties of smooth convex functions (essentially equation (2.10)),
he proved, for simplicity using hk = 1/ν, that the absolute error in function values decays
at a sub-linear rate of 1/k

f(xk)− f∗ ≤
2ν‖x0 − x∗‖2

k + 4
, (2.16)

where f∗ is the value of the function at a (global) minimizer (see [28, Corollary 2.1.2]),
assumed to exist. But then one can easily see, by repeatedly applying (2.15), that

2ν‖x0 − x∗‖2

k + 4
≥ C(ν)

2k∑
`=k

‖∇f(x`)‖2.

The gradient method is then proved to only take at most O(ε−1) iterations to achieve a
threshold of ε on the norm of the gradient. The constant multiplying ε−1 is essentially a
multiple of ν‖x0 − x∗‖.

Note that assuming hk = 1/ν was just for convenience. This result can be extended to
the general case of 0 < hk ≤ 2/ν (see [28, Theorem 2.1.14]). In practice we do not have
any knowledge about the Lipschitz constant of the gradient, and hence the constant step
size strategy in gradient-type methods is not practical. A workaround is to approximate
the Lipschitz constant by a back-tracking procedure in the course of algorithm and improve
the approximation at each iteration. It is possible to prove that gradient-type methods with
back-tracking strategies comply with the same global rate and WCC bound (see, e.g., [4, 29]).

2.4 Results for strongly convex functions
For an objective function f ∈ F1

µ,ν , Nesterov [28, Theorem 2.1.14] shows that the gradient-
type method with constant step size hk = h ≤ 2/(µ + ν) generates a sequence {xk} such
that

‖xk − x∗‖2 ≤
(

1− 2hµν

µ+ ν

)k
‖x0 − x∗‖2,

11

2.4. Results for strongly convex functions

where x∗ is the minimizer of function f .

The proof of above inequality is based on ∇f(x∗) = 0 and inequality (2.14). In fact,

‖xk+1 − x∗‖2 = ‖xk − x∗ − h∇f(xk)‖2

= ‖xk − x∗‖2 − 2h〈∇f(xk), xk − x∗〉+ h2‖∇f(xk)‖2

≤ ‖xk − x∗‖2 − 2hµν

µ+ ν
‖xk − x∗‖2 − 2h

µ+ ν
‖∇f(xk)‖2 + h2‖∇f(xk)‖2

=

(
1− 2hµν

µ+ ν

)
‖xk − x∗‖2 + h

(
h− 2

µ+ ν

)
‖∇f(xk)‖2

≤
(

1− 2hµν

µ+ ν

)
‖xk − x∗‖2,

where the first inequality follows from inequality (2.14) and ∇f(x∗) = 0, and the last one is
due to the assumption that h ≤ 2/(µ+ ν).

By choosing the maximum available step size h = 2/(µ + ν) at each iteration, which is
the greediest, we obtain the following global r-linear convergence rate

‖xk − x∗‖ ≤
(
Qf − 1

Qf + 1

)k
‖x0 − x∗‖.

where Qf = ν/µ. Then, by using (2.9),

f(xk)− f∗ ≤
ν

2

(
Qf − 1

Qf + 1

)2k

‖x0 − x∗‖2.

For gradient-type methods with a back-tracking procedure, it is also possible to establish
an r-linear convergence rate when the objective function is strongly convex (see, e.g., [29]).

One could also choose the step size to be the global minimizer of g(h) = f(xk−h∇f(xk)),
h > 0. The procedure to find this step size is called exact line search (for more details see
[32, Chapter 3]).

Luenberger [26] analyzes the global rate of the gradient-type method with exact line
search when the objective function is quadratic. He also shows an r-linear rate for the
algorithm in this case. To give an idea, let f be the following quadratic function in Rn,

f(x) =
1

2
〈x,Qx〉 − 〈b, x〉, (2.17)

where Q is a symmetric and positive definite matrix. Then, the gradient at the point x is
∇f(x) = Qx− b. Therefore, the unique minimizer of f is x∗ = Q−1b.

12

Chapter 2. WCC of gradient-type methods

In order to find the exact minimizer of f at each iteration of gradient-type methods, we
need to solve exactly the following one-dimensional minimization problem

min
h>0

g(h) = f(xk − h∇f(xk)),

which in the quadratic case is,

min
h>0

g(h) = min
h>0

{
1

2

〈
xk − h∇f(xk), Q(xk − h∇f(xk))

〉
+
〈
b, xk − h∇f(xk)

〉}
.

By differentiating function g respect to h, and setting the derivative to zero, we obtain

hk =

〈
∇f(xk),∇f(xk)

〉〈
∇f(xk), Q∇f(xk)

〉 .
So, the k-th iteration will be

xk+1 = xk − hk∇f(xk). (2.18)

Now, since Qx∗ = b, we have

1

2

〈
x− x∗, Q(x− x∗)

〉
=

1

2

〈
x,Qx

〉
−
〈
x∗, Qx

〉
+

1

2

〈
x∗, Qx∗

〉
=

1

2

〈
x,Qx

〉
−
〈
b, x
〉

+
1

2

〈
x∗, Qx∗

〉
= f(x)−

(1

2

〈
x∗, Qx∗

〉
−
〈
b, x∗

〉)
= f(x)− f(x∗).

Then, the difference between the current objective value and the optimal value is equal to
the distance between xk and x∗ in the Q-norm, which is defined by ‖y‖2

Q =
〈
y,Qy

〉
.

Finally, due to fact that ∇f(xk) = Q(xk − x∗), we have

‖xk+1 − x∗‖2
Q = ‖xk − x∗ − hk∇f(xk)‖2

Q

= ‖xk − x∗‖2
Q − 2hk

〈
xk − x∗, Q∇f(xk)

〉
+ h2

k

〈
∇f(xk), Q∇f(xk)

〉
= ‖xk − x∗‖2

Q − 2hk
〈
∇f(xk),∇f(xk)

〉
+ h2

k

〈
∇f(xk), Q∇f(xk)

〉
= ‖xk − x∗‖2

Q −

[〈
∇f(xk),∇f(xk)

〉]2〈
∇f(xk), Q∇f(xk)

〉
=

1−

[〈
∇f(xk),∇f(xk)

〉]2〈
∇f(xk), Q∇f(xk)

〉〈
∇f(xk), Q−1∇f(xk)

〉
 ‖xk − x∗‖2

Q,

13

2.4. Results for strongly convex functions

where the last equality follows from

‖xk − x∗‖2
Q =

〈
xk − x∗, Q(xk − x∗)

〉
=

〈
xk − x∗,∇f(xk)

〉
=

〈
∇f(xk), Q

−1∇f(xk)
〉
.

To conclude the argument, we need to recall a well-known fact about symmetric positive
definite matrices.

Lemma 2.4.1 (Kantorovich Inequality [26]) Let Q be a symmetric positive definite matrix.
Then for any non-zero vector x, we have(〈

x, x
〉)2〈

x,Qx
〉〈
x,Q−1x

〉 ≥ 4λ1λn
(λ1 + λn)2

, (2.19)

where λ1 and λn are the smallest and largest eigenvalues of Q, respectively.

Now one can see that the following theorem holds.

Theorem 2.4.1 ([26]) Applied to the strongly convex quadratic function (2.17), the gradient-
type method with exact line search (2.18) generates a sequence {xk}k≥0 of iterates such that

‖xk − x∗‖Q ≤
(λn − λ1

λn + λ1

)k
‖x0 − x∗‖Q,

where λ1 and λn are the smallest and largest eigenvalues of Q, respectively.

14

Chapter 3

WCC of direct search

In direct-search methods, the objective function is evaluated, at each iteration, at a finite
number of points. No derivatives or approximation thereof are required. As we mentioned
before, in this dissertation we study direct-search methods of directional type [13]. Those
of simplicial type (see, e.g., [13, Chapter 8]), such as the Nelder-Mead method [27], are not
considered here.

In this chapter, we will start by reviewing some basic concepts of (directional) direct-
search methods for smooth functions. Then we will describe an algorithm based on imposing
the sufficient decrease condition. We will present the global convergence properties of this
algorithm when applied to smooth functions as well as an analysis of worst case complexity.
More detailed explanations can be found in [13, Chapters 2 and 7] and in [38].

3.1 Basic definitions and the algorithm

At each iteration, direct search considers a set of directions which in the smooth case are
required to include a descent one. A direction d is descent at a point x if there exists α > 0
such that

f(x+ αd) < f(x), ∀α ∈ (0, α].

When f is continuously differentiable at a point x, any direction which makes an acute angle
with the negative gradient −∇f(x) at x is a descent direction [32]. So, it is sufficient that
at least one of the directions used at each iteration makes an acute angle with −∇f(x).

To fulfill this condition we recall the concept of a positive spanning set (PSS) introduced
by Davis [17]. By positive span or convex cone of a set of directions we mean the set of all
finite linear combinations of the directions with non-negative coefficients.

Definition 3.1.1 A positive spanning set in Rn is a set of vectors whose positive span is Rn.

15

3.1. Basic definitions and the algorithm

The minimum number of directions to form a PSS in Rn is n+ 1 (see [17, Theorem 3.7]).

It is then well known (see [17, Theorem 3.3] or [13, Theorem 2.3]) that at least one of
the directions in a PSS makes an acute angle with −∇f(x).

To describe PSSs further we recall the definition of positive basis (PB). We say that D
is positively dependent if there exist a direction in D which is in the positive span of other
directions in D; otherwise we say that D is positively independent. A positive basis (PB) in
Rn is a PSS which is positively independent.

It is also known that the minimum number of directions to form a PB in Rn is n + 1
(see [17, Theorem 3.8]), and the maximum is 2n (see [1] and [13]). PBs with n + 1 and 2n
directions are called minimal PBs and maximal PBs, respectively.

If D is a PB and W is an invertible matrix, then WD is also a PB (see [13, Theorem 2.4]
and [36]). It is easy to prove that D = [I −1n] and D⊕ = [I −I] are minimal and maximal
PBs, respectively, where I is the identity matrix and 1n = (1, . . . , 1)> ∈ Rn. Thus [W −W1n]
and [W −W] are also minimal and maximal PBs, respectively, if W is invertible.

The direct-search method under analysis is described in Algorithm 3.1.1, following the
presentation in [13, Chapter 7]. The directional feature is presented in the poll step, where
points of the form xk+αkd, for directions d belonging to the PSS Dk, are tested for sufficient
decrease. For this purpose, following the terminology in [24],

ρ : (0,∞)→ (0,∞)

will represent a forcing function, i.e., a non-decreasing (typically continuous) function satis-
fying

lim
t↓0

ρ(t)

t
= 0.

Typical examples of forcing functions are ρ(t) = Ctp, for p > 1 and C > 0.

The poll step is successful if the value of the objective function is sufficiently decreased
relatively to the step size αk, in the sense of

f(xk + αkdk) < f(xk)− ρ(αk),

in which case the step size is possibly increased.

The algorithm opportunistically moves to the first of such points found. Failure in doing
so defines an unsuccessful iteration, and the step size is decreased by a factor strictly less
than 1 that changes between two bounds which need to be fixed during the course of the
iterations.

The search step is purposely left open since it does not interfere in any of the convergence
properties of the algorithm, and it is solely used to improve the practical performance of the

16

Chapter 3. WCC of direct search

overall algorithm. For the purposes of counting function evaluations, we assume throughout
this thesis that the search step, whenever applied, does not exceed the maximum number of
function evaluations taken by the poll step.

Algorithm 3.1.1 (Directional direct-search method)

Initialization
Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

1. Search step: Try to compute a point with f(x) < f(xk) − ρ(αk) by evaluating
the function f at a finite number of points. If such a point is found, then set
xk+1 = x, declare the iteration and the search step successful, and skip the poll
step.

2. Poll step: Choose a positive spanning set Dk. Order the set of poll points Pk =
{xk + αkd : d ∈ Dk}. Start evaluating f at the poll points following the chosen
order. If a poll point xk + αkdk is found such that f(xk + αkdk) < f(xk)− ρ(αk),
then stop polling, set xk+1 = xk + αkdk, and declare the iteration and the poll
step successful. Otherwise, declare the iteration (and the poll step) unsuccessful
and set xk+1 = xk.

3. Mesh parameter update: If the iteration was successful, then maintain or
increase the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise, decrease the step
size parameter: αk+1 ∈ [β1αk, β2αk].

When the objective function is bounded from below one can prove that there exists a
subsequence of unsuccessful iterates driving the step size parameter to zero (see [24] or [13,
Theorems 7.1 and 7.11 and Corollary 7.2]).

Lemma 3.1.1 Let f be bounded from below on Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}.
Then Algorithm 3.1.1 generates an infinite subsequence K of unsuccessful iterates for which
lim
k∈K

αk = 0.

Note that when the function f is convex and has a minimizer, it is necessarily bounded
from below (see, e.g., [28, Theorem 2.1.1]).

To continue towards the global properties (asymptotic convergence and rates) for this
class of direct search, one must look at the key feature of a positive spanning set, its cosine
measure [24].

17

3.1. Basic definitions and the algorithm

Definition 3.1.2 Given a positive spanning set D (with non-zero vectors), its cosine mea-
sure is given by

cm(D) = min
06=v∈Rn

max
d∈D

〈
v, d
〉

‖v‖‖d‖
.

Due to Definitions 3.1.1 and 3.1.2, any PSS with non-zero vectors has a positive cosine
measure. There are a few PSSs with known cosine measures. Such instances are D⊕ = [I −I]
([36, Lemma 6.2]) and the minimal PB with uniform angles (among all directions), say U
([13, Corollary 2.6 and Exercise 2.7.7]),

cm(D⊕) =
1√
n
, cm(U) =

1

n
.

Given a non-zero vector v ∈ Rn and a PSS D (always assumed here with a finite number
of directions), there exists a direction d̄ in D such that

max
d∈D

〈
v, d
〉

‖v‖‖d‖
=

〈
v, d̄
〉

‖v‖‖d̄‖
.

This fact implies that for any non-zero vector, in particular the negative gradient at a given
point, there is at least one direction in D making an acute angle with it, since

0 < cm(D)‖∇f(x)‖‖d̄‖ ≤ −
〈
∇f(x), d̄

〉
.

Such a property enables us to derive that the norm of the gradient is of the order of
the step size when an unsuccessful iteration occurs [19, 24] (see also [13, Theorem 2.4 and
Equation (7.14)]).

Theorem 3.1.1 ([19, 24]) Let Dk be a positive spanning set and αk > 0 be given. Assume
that ∇f is Lipschitz continuous (with constant ν > 0) in an open set containing all the
poll points in Pk. If f(xk) ≤ f(xk + αkd) + ρ(αk), for all d ∈ Dk, i.e., the iteration k is
unsuccessful, then

‖∇f(xk)‖ ≤ cm(Dk)
−1

ν
2
αk max

d∈Dk
‖d‖+

ρ(αk)

αk min
d∈Dk
‖d‖

 . (3.1)

Proof. The proof is given for completion since we will use this result later in our theory.
Given 0 6= v ∈ Rn, as we said before the theorem, there exists a d̄k in Dk such that

max
d∈Dk

〈
v, d
〉

‖v‖‖d‖
=

〈
v, d̄k

〉
‖v‖‖d̄k‖

.

18

Chapter 3. WCC of direct search

As we also said before, by setting v equal to the negative gradient of f at xk, the vector
d̄k ∈ Dk satisfies

cm(Dk)‖∇f(xk)‖‖d̄k‖ ≤ −
〈
∇f(xk), d̄k

〉
. (3.2)

On the other hand, since f(xk) ≤ f(xk + αkd) + ρ(αk), for all d ∈ Dk, from the integral
form of the Mean Value Theorem we obtain that

0 ≤ f(xk + αkd̄k)− f(xk) + ρ(αk) =

∫ 1

0

〈∇f(x+ tαkd̄k), αkd̄k〉 dt+ ρ(αk).

By multiplying inequality (3.2) by αk and adding it to the above inequality, we arrive at

cm(Dk)‖∇f(xk)‖‖d̄k‖αk ≤
∫ 1

0

〈∇f(x+ tαkd̄k)−∇f(xk), αkd̄k〉 dt+ ρ(αk)

≤
∫ 1

0

‖∇f(x+ tαkd̄k)−∇f(xk)‖‖αkd̄k‖ dt+ ρ(αk)

≤ α2
kν‖d̄k‖2

∫ 1

0

t dt+ ρ(αk) =
1

2
α2
kν‖d̄k‖2 + ρ(αk),

where the second inequality follows from the Cauchy-Schwartz inequality and the last in-
equality follows from the Lipschitz continuity of the gradient. Thus, the following upper
bound holds

‖∇f(xk)‖ ≤ cm(Dk)
−1

(
ν

2
αk‖d̄k‖+

ρ(αk)

αk‖d̄k‖

)
.

Now, since mind∈Dk ‖d‖ ≤ ‖d̄k‖ ≤ maxd∈Dk ‖d‖, the proof is completed. �

It becomes then obvious that one needs to avoid degenerate PSSs.

Assumption 3.1.1 All positive spanning sets Dk used for polling (for all k) must satisfy
cm(Dk) ≥ cmmin and dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dk (where cmmin > 0 and 0 < dmin ≤
dmax are constants). The PSSs Dk are all finite and there exists d# > 0 so that |Dk| ≤ d#

for all k.

A first global asymptotic result is then easily obtained by combining Lemma 3.1.1 and
Theorem 3.1.1 (under Assumption 3.1.1), and assures the convergence to zero of the gradient
at a subsequence of unsuccessful iterates. Asymptotic global convergence is not, however, a
topic of this thesis.

19

3.2. WCC of direct search

3.2 WCC of direct search
As promised before, we will briefly review the recent development in the study of the worst
case complexity of direct search for smooth possibly non-convex functions. We know that
each iteration of Algorithm 3.1.1 is either successful or unsuccessful. Therefore, in order to
derive an upper bound on the total number of iterations, it is enough to derive separately
upper bounds on the numbers of successful and unsuccessful iterations.

In this manner, it was presented in [38, Theorem 3.1] an upper bound on the number of
successful iterations after the first unsuccessful iteration. It was also showed that the number
of unsuccessful iterations is proportional to that of successful iterations [38, Theorem 3.2]. In
the last part of the derivation in [38] it is derived an upper bound on the number of successful
iterations to achieve an unsuccessful iteration. It was then concluded the following result.

Theorem 3.2.1 ([38]) Consider the application of Algorithm 3.1.1 when ρ(α) = Cαp, p > 1,
C > 0, and Dk satisfies Assumption 3.1.1. Let f be bounded from below in Lf (x0) and
f ∈ C1

ν(Ω) where Ω is an open set containing Lf (x0).
Under these assumptions, to reduce the gradient below ε ∈ (0, 1), Algorithm 3.1.1 takes

at most

dη1ε
−p̂ + η2e

iterations, and at most

d#dη1ε
−p̂ + η2e

function evaluations, where p̂ = p/min(1, p− 1),

η1 = (1− logβ2(γ))
f(xk0)− flow

Cβp1L
p
1

− logβ2(exp(1)),

η2 = logβ2

(β1L1 exp(1)

αk0

)
+
f(x0)− flow

Cαp0
,

L1 = min
(

1, L
− 1

min(1,p−1)

2

)
, and L2 = cm−1

min(νdmax/2 + d−1
minC).

One can easily see that p = 2 is the optimal choice in the power ε−p̂. When p = 2, the
constant η1 becomes

η1 = (1− logβ2(γ))
f(xk0)− flow

Cβ2
1 min(1, cm2

min(νdmax/2 + d−1
minC)−2)

− logβ2(exp(1)).

In this case, one sees that the maximum number of iterations is O(cm−2
min ε

−2) and the maxi-
mum number of function evaluations is O(d# cm−2

min ε
−2). In [38] it was suggested to use D⊕

at each iteration, which, from cm(D⊕) = 1/
√
n and |D⊕| = 2n, implies an O(n2ε−2) for the

20

Chapter 3. WCC of direct search

Model:
Unconstrained minimization
f ∈ C1

ν(Rn)
f bounded below

Oracle: Zero order oracle (evaluation of f)
ε-solution: f(xappr∗) ≤ f(x0), ‖∇f(xappr∗)‖ ≤ ε

Table 3.1: Summary of an unconstrained problem class for zero order algorithms. In the
table, ν > 0 is the Lipschitz constant of the gradient of the function, xappr∗ is the approximated
solution, and x0 is the starting point given to the method.

number of function evaluations. In Chapter 7 we will show that this upper bound is optimal
with respect to the order of the power of n.

As mentioned in [38], and following what Nesterov [28, Page 29] states for first order
oracles, it is then possible to ensure an upper complexity bound for the problem class given
in Table 3.1, where one can only evaluate the objective function f and not its derivatives
and where f is assumed smooth. The WCC bound described in this section says thus that
the number of calls of the oracle is O(n2ε−2), and thus it establishes an upper complexity
bound for the problem class of Table 3.1. When we later consider convex and strongly convex
functions, similar upper complexity bounds can be derived for the corresponding problem
classes.

21

3.2. WCC of direct search

22

Chapter 4

WCC of direct search for convex
functions

In the previous chapter we reviewed direct-search methods of directional type for smooth
functions and their global asymptotic convergence and worst case complexity properties. In
this chapter, we will analyze the WCC of direct search for a broad class of convex functions.

4.1 Assumption on the step size
How the step size αk is updated impacts in several ways the WCC bounds given in Chapter 3
for Algorithm 3.1.1. In fact, the choice of C in the forcing function and the choice of the
parameters β1, β2, and γ in the step size updating formulas influence the constant in the
bound (3.1). Increasing C, for instance, will decrease the number of successful iterations [38,
Theorem 3.1], possibly leading to more unnecessary unsuccessful iterations and consequently
more unnecessary function evaluations.

Increasing the value of the expansion factor γ ≥ 1 will increase the maximum number
of unsuccessful iterations compared to the number of successful ones (see Theorem 3.2.1),
again possibly leading to more unnecessary unsuccessful iterations and consequently more
unnecessary function evaluations. Setting γ = 1 leads to an optimal choice in this respect.
One practical strategy to accommodate γ > 1 is by considering an upper bound for the step
size itself.

Assumption 4.1.1 There is a positive constant M such that αk ≤M for ∀k ≥ 0.

Under this assumption Theorem 3.1.1 simplifies to the following:

Corollary 4.1.1 Consider ρ(αk) = Cαpk, p > 1, C > 0. Under the assumptions of Theo-
rem 3.1.1 and Assumptions 3.1.1 and 4.1.1, if f(xk) ≤ f(xk + αkd) + ρ(αk), for all d ∈ Dk,

23

4.2. Assumption on the function

i.e., the iteration k is unsuccessful, then

‖∇f(xk)‖ ≤ cm−1
min

ν
2
dmaxM + Cd−1

minM
p−1

Mmin(1,p−1)
αk

min(1,p−1). (4.1)

The step size upper bound M will appear thus in the upper bound for the gradient in
unsuccessful iterations. When p = 2, the upper bound on the gradient does not depends
on M ,

‖∇f(xk)‖ ≤ cm−1
min

(ν
2
dmax + Cd−1

min

)
αk.

The analysis of worst case complexity for the convex case when p 6= 2 (the non-optimal case)
will, however, depend on the upper bound M for the step size.

4.2 Assumption on the function

We will derive a global rate and a WCC bound when the objective function is smooth and
convex under the following additional assumption.

Assumption 4.2.1 The solutions set Xf
∗ = {x∗ ∈ Rn : x∗ is a minimizer of f} for prob-

lem (1.1) is non-empty. The level set Lf (x) = {y ∈ Rn : f(y) ≤ f(x)} is bounded for some x
or, if that is not the case, supy∈Lf (x0) dist(y,Xf

∗) is still finite.

If Lf (x0) is bounded, then supy∈Lf (x0) dist(y,Xf
∗) is trivially finite.

Furthermore, it is known that for a (proper and closed or semi-continuous) convex func-
tion (see [34, Corollary 8.7.1]) that if {x ∈ Rn : f(x) ≤ α} is non-empty and bounded for
some α, then it is bounded for all α. In particular, since we assume that Xf

∗ is non-empty,
Xf
∗ = Lf (x∗) for some x∗, and if Xf

∗ is bounded so is Lf (x0). Moreover, a (finite, thus
continuous) strongly convex function in Rn has a unique minimizer x∗, which then makes
Xf
∗ non-empty and bounded.

In conclusion, and generally speaking, strong convexity of f and boundedness of either
Xf
∗ or Lf (x0) fulfill the above assumption and make supy∈Lf (x0) dist(y,Xf

∗) finite. For what
comes next, let

R = sup
y∈Lf (x0)

dist(y,Xf
∗).

Note that there are convex functions f such that supy∈Lf (x0) dist(y,Xf
∗) is finite but

neither f is strongly convex nor Lf (x) is bounded for any x, being such an instance the
two-dimensional function f(x, y) = y2.

24

Chapter 4. WCC of direct search for convex functions

There are however some rare pathological instances where Assumption 4.2.1 does not
hold. An example is the following two-dimensional convex function

f(x, y) =
√
x2 + y2 − x.

The minimum of f is equal to zero and the solutions set is Xf
∗ = {(x, 0) : x ≥ 0}. Let

ς = f(x0, y0) > 0 be given for some (x0, y0). Then

f−1({ς}) = {z ∈ R2 : f(z) = ς} = {(t2 − ς2)/2ς, t)}t∈R.

Thus, for z = ((t2 − ς2)/2ς, t) ∈ f−1({ς}), one has dist(z,Xf
∗) ≥ |t|, which implies

sup
z∈Lf (x0,y0)

dist(z,Xf
∗) ≥ sup

z∈f−1({ς})
dist(z,Xf

∗) ≥ sup
t∈R
|t| = +∞.

Notice that this function is not continuously differentiable at the origin but an alternative,
smoothed version (by squaring it) could be instead considered.

Note also that assuming finiteness of the longest distance from the initial level set to the
solutions set is unnecessary in the gradient method since it can be proved that for a constant
step size smaller than 2/ν the iterates satisfy ‖xk − x∗‖ ≤ ‖x0 − x∗‖ (see Nesterov [28,
Theorem 2.1.13]). As we mentioned before, in the context of gradient-type methods, the
constant step size is not practical and the Lipschitz constant has to be approximated by a
back-tracking procedure in the course of algorithm. It is possible to prove that gradient-type
methods with back-tracking strategies generate iterations such that the first iterate has the
largest distance to the solutions set (see, e.g., [4, 29]). The lack of knowledge of the gradient
makes the control of the longest distance to the solutions set harder in direct search.

To avoid repeating the several assumptions in the statements of the results of this chapter
we will combine them in the following one.

Assumption 4.2.2 Consider the application of Algorithm 3.1.1 when ρ(t) = C tp, p > 1,
C > 0, and Dk satisfies Assumption 3.1.1. Let f ∈ F1

ν (Ω), where Ω is an open and convex
set containing Lf (x0). Let Assumption 4.1.1 (when p 6= 2) and Assumption 4.2.1 also hold.

We will make extensive use of the sets S(k0, j) and U(k0, j) to represent the indices of
successful and unsuccessful iterations, respectively, between k0 (including it) and j (excluding
it).

4.3 Global rate on function values
We will start by measuring the decrease obtained in the objective function until a given
iteration as a function of the number of successful iterations occurred until then. Recall that
f∗ = f(x∗) for some x∗ ∈ Xf

∗ and p̂ = p/min(1, p− 1) ≥ 2 for p > 1.

25

4.3. Global rate on function values

Lemma 4.3.1 Let Assumptions 4.2.2 hold. Let k0 be the index of the first unsuccessful
iteration (which must exist from Lemma 3.1.1). Then Algorithm 3.1.1 generates a sequence
{xk}k≥k0 such that

(f(xk)− f∗)p̂−1 <
Rp̂

ω|S(k0, k)|
, (4.2)

where

ω = ωp̂gβ
p
1C, ωg =

2 cmmin M
min(1,p−1)

νdmaxM + 2Cd−1
minM

p−1
, (4.3)

and |S(k0, k)| is the number of successful iterations between k0 (including it) and k.

Proof. Let U(k0, k) = {ki}mi=0 represent the set of unsuccessful iterations which occur
between iteration k0, inclusively, and iteration k. One has |S(k0, k)| = k − k0 −m− 1.

Since all iterations between km and k are successful and km is unsuccessful, we have that

f(xk) < f(xk−1)− Cαpk−1

...

< f(xkm+1)− C
k−1∑

j=km+1

αpj

≤ f(xkm+1)− C(k − km − 1)αpkm+1

≤ f(xkm)− βp1C(k − km − 1)αpkm .

Now, by Corollary 4.1.1,

f(xk) < f(xkm)− (k − km − 1)ω‖∇f(xkm)‖p̂. (4.4)

By applying a similar argument, but now starting from xki , i = m, . . . , 1, we deduce that

f(xki) < f(xki−1
)− (ki − ki−1 − 1)ω‖∇f(xki−1

)‖p̂. (4.5)

Denote ∆fi = f(xki) − f∗, for i = 0, . . . ,m and ∆fm+1 = f(xk) − f∗. Then, using the
property stated in equation (2.11) for f ∈ F1

ν (Ω),

f∗ = f(xi∗)

≥ f(xki) + 〈∇f(xki), x
i
∗ − xki〉+

1

2ν
‖∇f(xi∗)−∇f(xki)‖2

≥ f(xki) + 〈∇f(xki), x
i
∗ − xki〉,

26

Chapter 4. WCC of direct search for convex functions

where, for i = 0, . . . ,m, xi∗ is the projection of xki onto the solutions set Xf
∗ (which is convex

and closed since f is convex and continuous). Thus, using Assumption 4.2.1,

∆fi ≤ 〈∇f(xki), xki − xi∗〉
≤ ‖∇f(xki)‖‖xki − xi∗‖
≤ R‖∇f(xki)‖, i = 0, . . . ,m. (4.6)

By combining inequalities (4.4), (4.5), and (4.6) and setting here for simplicity km+1 = k,
we obtain, for i = 1, . . . ,m,m+ 1,

∆fi ≤ ∆fi−1 −
ω

Rp̂
(ki − ki−1 − 1)∆f p̂i−1 ≤ ∆fi−1. (4.7)

Hence, ∆fi−1/∆fi ≥ 1, i = 1, . . . ,m,m + 1. Now we divide the first inequality in (4.7) by
∆fi∆fi−1, then use p̂ ≥ 2 and ∆fi−1 ≥ ∆fm+1, and later ∆fi−1/∆fi ≥ 1,

1

∆fi
≥ 1

∆fi−1

+
ω

Rp̂
(ki − ki−1 − 1)

∆f p̂−1
i−1

∆fi

≥ 1

∆fi−1

+
ω∆f p̂−2

m+1

Rp̂
(ki − ki−1 − 1)

∆fi−1

∆fi

≥ 1

∆fi−1

+
ω∆f p̂−2

m+1

Rp̂
(ki − ki−1 − 1). (4.8)

By summing the inequality (4.8) for i = 1, . . . ,m,m+ 1, we arrive at

1

∆fm+1

≥ 1

∆f0

+
ω∆f p̂−2

m+1

Rp̂
(km+1 − k0 −m− 1)

≥
ω∆f p̂−2

m+1

Rp̂
(km+1 − k0 −m− 1),

or, equivalently,

(f(xk)− f ∗)p̂−1 = ∆f p̂−1
m+1

≤ Rp̂

ω(km+1 − k0 −m− 1)

=
Rp̂

ω(k − k0 −m− 1)
,

as we wanted to prove (since, remember, |S(k0, k)| = k − k0 −m− 1). �

Following [38, Theorem 3.2], one can also guarantee that the number of unsuccessful
iterations is of the same order as the number of successful ones.

27

4.3. Global rate on function values

Lemma 4.3.2 Let Assumptions 4.2.2 hold. Let k0 be the index of the first unsuccessful
iteration (which must exist from Lemma 3.1.1). Then Algorithm 3.1.1 generates a sequence
{xk}k≥k0 such that

|U(k0, k)| ≤
⌈
ω1|S(k0, k)|+ ω2 +

1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)⌉

, (4.9)

where

ω1 = − logβ2(γ), ω2 = logβ2(β1/αk0), (4.10)

ωg is given in (4.3), and |S(k0, k)| and |U(k0, k)| are the number of successful and unsuccessful
iterations between k0 (including it) and k, respectively.

Proof. Since f ∈ F1
ν (Ω) and Xf

∗ is non-empty, one has for each unsuccessful iteration ki
(with k0 ≤ ki ≤ k)

f(xk)− f∗ ≤ f(xki)− f∗ ≤ 〈∇f(xki), xki − xi∗〉,

where xi∗ is the projection of xki onto the solutions set Xf
∗ (which, again, is convex and closed

since f is convex and continuous). Then, using Assumption 4.2.1,

1

R
(f(xk)− f∗) ≤ ‖∇f(xki)‖. (4.11)

From Corollary 4.1.1 and the definition of ωg in (4.3), we have, for each unsuccessful
iteration ki, that

‖∇f(xki)‖ ≤ ω−1
g α

min(1,p−1)
ki

. (4.12)

As before, we can back-track from any iteration j after k0 to the nearest unsuccessful
iteration (say k`, with k` ≥ k0) and, due to the step size updating rules, (4.12) implies then

αj ≥ β1(ωg‖∇f(xk`)‖)
1

min(1,p−1) , j = k0, k0 + 1, . . . , k

(which holds trivially from (4.12) if j is itself unsuccessful). Combining the above inequality
with (4.11) gives a lower bound for each step size αj

αj ≥ β1

(ωg
R

(f(xk)− f∗)
) 1

min(1,p−1)
, j = k0, k0 + 1, . . . , k.

On the other hand, one knows that either αj ≤ β2αj−1 or αj ≤ γαj−1. Hence, by
induction,

αk ≤ αk0γ
|S(k0,k)|β

|U(k0,k)|
2 .

28

Chapter 4. WCC of direct search for convex functions

In conclusion one has

β1

(ωg
R

(f(xk)− f∗)
) 1

min(1,p−1) ≤ αk ≤ αk0γ
|S(k0,k))|β

|U(k0,k)|
2 ,

from which we conclude,

f(xk)− f∗ ≤
R

ωg

(
αk0
β1

γ|S(k0,k)|β
|U(k0,k)|
2

)min(1,p−1)

.

Now, since β2 < 1, the function logβ2(·) is monotonically decreasing, and one obtains (the
coefficient ω1 is nonnegative due to γ ≥ 1)

|U(k0, k)| ≤ ω1|S(k0, k)|+ ω2 +
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)
.

�

Lemmas 4.3.1 and 4.3.2 lead to a sub-linear global convergence rate for the absolute error
in the function values after the first unsuccessful iteration.

Theorem 4.3.1 Let Assumptions 4.2.2 hold. Let k0 be the index of the first unsuccessful
iteration (which must exist from Lemma 3.1.1). Then Algorithm 3.1.1 generates a sequence
{xk}k≥k0 such that

(f(xk)− f∗)p̂−1 <
κ1

k − κ2

, ∀k > κ2,

where

κ1 = (1− logβ2(γ))
Rp̂

ω
− logβ2(exp(1)),

κ2 =
f(x0)− f∗
Cαp0

+ logβ2

(
β1

αk0

)
+

1

min(1, p− 1)
logβ2

(ωg
R

[f(x0)− f∗]1−(p̂−1) min(1,p−1)
)
,

and ω and ωg are given in (4.3).

Proof. Due to the definition of k0 and the step size updating rules one has

k0Cαp0 ≤
k0−1∑
j=0

Cαpj <

k0−1∑
j=0

f(xj)− f(xj+1) = f(x0)− f(xk0)

and so
k0 <

f(x0)− f∗
Cαp0

. (4.13)

29

4.3. Global rate on function values

By applying Lemmas 4.3.1 and 4.3.2 and inequality (4.13) one has

k − f(x0)− f∗
Cαp0

< k − k0

= |Uk(k0)|+ |Sk(k0)|
≤ (1− logβ2(γ))|Sk(k0)|+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)

≤ (1− logβ2(γ))
Rp̂

ω

1

(f(xk)− f∗)p̂−1
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)

= (1− logβ2(γ))
Rp̂

ω

1

(f(xk0)− f∗)p̂−1
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk0)− f∗)
)

+
1

min(1, p− 1)
logβ2

(
f(xk)− f∗
f(xk0)− f∗

)
. (4.14)

Note that for any p > 1, p̂ is bigger than 2 and so p̂ − 1 ≥ 1. Since 1/min(1, p − 1) is
equal to p̂− 1 when 1 < p ≤ 2 and to 1 when p > 2, it holds 1/min(1, p− 1) ≤ p̂− 1. From
(f(xk) − f∗)/(f(xk0) − f∗) ≤ 1 and β2 < 1, one has logβ2 ((f(xk)− f∗)/(f(xk0)− f∗)) ≥ 0.
So, from (4.14)

k − f(x0)− f∗
Cαp0

< (1− logβ2(γ))
Rp̂

ω

1

(f(xk0)− f∗)p̂−1
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

[f(xk0)− f∗]1−(p̂−1) min(1,p−1)
)

+ (p̂− 1) logβ2 (f(xk)− f∗) . (4.15)

Now, given ε̄ ∈ (0,∞),

(p̂− 1) logβ2(ε̄) = − logβ2(ε̄
(1−p̂))

= − logβ2(exp(1)) log(ε̄(1−p̂))

≤ − logβ2(exp(1))ε̄(1−p̂), (4.16)

where the last inequality follows from log(x) ≤ x, x > 0.

Then, from (4.16) with ε̄ = f(xk)− f∗, one has

(p̂− 1) logβ2 (f(xk)− f∗) ≤ − logβ2(exp(1))
1

(f(xk)− f∗)p̂−1

30

Chapter 4. WCC of direct search for convex functions

and the proof is concluded by plugging this inequality in (4.15) and using k > κ2. �

4.4 WCC bounds
In the following lemma, by using the result of Lemma 4.3.1, we will derive an upper bound
for the number of successful iterations after t he first unsuccessful one needed to achieve an
iterate for which the norm of the gradient is below a given threshold.

Lemma 4.4.1 Let Assumptions 4.2.2 hold. Let k0 be the index of the first unsuccess-
ful iteration (which must exist from Lemma 3.1.1). Given any ε ∈ (0, 1), assume that
‖∇f(xk0)‖ > ε and let k̄ be the first iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to
achieve ‖∇f(xk̄)‖ ≤ ε, starting from k0, Algorithm 3.1.1 takes at most |S(k0, k̄)| successful
iterations, where

|S(k0, k̄)| ≤
⌈

2
R

ω
ε1−p̂ + 1

⌉
(4.17)

and ω is given in (4.3).

Proof. Let l, with k0 < l < k̄, be the index of a successful iteration occurring before k̄,
m = |U(k0, k̄)| be number of unsuccessful iterations between k0 (including it) and k̄, m1 be
the number of unsuccessful iterations between k0 and l, and k1, k2, . . . , km be the sequence
of unsuccessful iterations between k0 and k̄.

| | | | | |
k0 km1

l

km1+1 km

k̄

Let us assume first that there are unsuccessful iterations between l and k̄ (like in the figure
above). Exactly as in the derivation of inequalities (4.4)–(4.5), applying also Corollary 4.1.1
and the step size updating rules, we have

f(xk̄) < f(xkm)− (k̄ − km − 1)ω‖∇f(xkm)‖p̂

and,

f(xki) < f(xki−1
)− (ki − ki−1 − 1)ω‖∇f(xki−1

)‖p̂, m1 + 2 ≤ i ≤ m,

f(xkm1+1) < f(xl)− (km1+1 − l)ω‖∇f(xkm1
)‖p̂.

Summing up these inequalities and considering ‖∇f(xk)‖ > ε for k < k̄ lead us to

f(xl) > f(xk̄) + (k̄ − l −m+m1)ωεp̂.

31

4.4. WCC bounds

If there are no unsuccessful iterations between l and k̄, m = m1 and this inequality is also
true by a similar argument. On the other hand, by Lemma 4.3.1

(f(xl)− f∗)p̂−1 ≤ Rp̂

ω(l − k0 −m1 − 1)
.

So, in conclusion

(k̄ − l −m+m1)ωεp̂ ≤ (k̄ − l −m+m1)ωεp̂ + f(xk̄)− f∗
≤ f(xl)− f∗

≤
(

Rp̂

ω(l − k0 −m1 − 1)

) 1
p̂−1

. (4.18)

Now we choose l such that the number of successful iterations after l is at most one times
higher than the number of successful iterations until l. To explicitly describe l we divide the
number of successful iterations into two parts (k̄ − k0 −m− 1)/2, then add the number m1

of unsuccessful iterations until the middle point, and finally shift by k0. Hence l is given by

l =

⌊
k̄ − k0 −m− 1

2

⌋
+ k0 +m1 + 1.

With such a choice of l, the number κ of successful iterations between k0 and l is

κ = l − k0 −m1 − 1

and a simple argument shows that

κ = l − k0 −m1 − 1 ≤ k̄ − l −m+m1 ≤ κ+ 1, (4.19)

as expected.

Now, from (4.18),

(ωκ)
p̂
p̂−1 ≤ ω(k̄ − l −m+m1)[ω(l − k0 −m1 − 1)]

1
p̂−1

≤ R
p̂
p̂−1 ε−p̂,

and
κ ≤ R

ω
ε1−p̂. (4.20)

But due to equation (4.19), 2κ+1 is bigger than the number of successful iterations between
k0 and k,

2κ+ 1 = κ+ 1 + κ

≥ (k̄ − l −m+m1) + (l − k0 −m1 − 1)

= k̄ − k0 −m− 1,

32

Chapter 4. WCC of direct search for convex functions

which finishes the proof. �

One can also guarantee that the number of unsuccessful iterations is of the same order
as the number of successful ones.

Lemma 4.4.2 Let Assumptions 4.2.2 hold. Let k0 be the index of the first unsuccess-
ful iteration (which must exist from Lemma 3.1.1). Given any ε ∈ (0, 1), assume that
‖∇f(xk0)‖ > ε and let k̄ be the first iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to
achieve ‖∇f(xk̄)‖ ≤ ε, starting from k0, Algorithm 3.1.1 takes at most |U(k0, k̄)| unsuccessful
iterations, where

|U(k0, k̄)| ≤
⌈
ω1|S(k0, k̄)|+ ω2 +

1

min(p− 1, 1)
logβ2(ωgε)

⌉
,

ωg is given in (4.3), and ω1 and ω2 are given in (4.10).

Proof. The proof is similar to the one of Lemma 4.3.2 using k̄− 1 instead of k and ε in-
stead of (f(xk)−f∗)/R. The bound will then be on |U(k0, k̄−1)| but |U(k0, k̄)| = |U(k0, k̄−1)|
since k̄ − 1 is successful (and in the notation U(k0, j) one is not counting j). �

We are finally ready to state the WCC bound for Algorithm 3.1.1 when the objective
function is convex. To do that we combine Lemmas 4.4.1 and 4.4.2 and bound the number of
successful iterations until the first unsuccessful one. By doing so we show below that direct
search takes at most O(ε1−p̂) iterations after the first unsuccessful one to bring the norm of
the gradient below ε ∈ (0, 1).

Theorem 4.4.1 Let Assumptions 4.2.2 hold. To reduce the gradient below ε ∈ (0, 1), Algo-
rithm 3.1.1 takes at most

dκ3ε
1−p̂ + κ4e

iterations, and at most
d#dκ3ε

1−p̂ + κ4e

function evaluations, where p̂ = p/min(1, 1− p),

κ3 = 2(1− logβ2(γ))
R

ω
− logβ2(exp(1)),

κ4 = logβ2

(
β1

αk0

)
+ logβ2

(
β2

γ
ω

1
min(1,p−1)
g

)
+
f(x0)− f∗
Cαp0

,

and ω and ωg are given in (4.3).

33

4.4. WCC bounds

Proof. One can now use Lemmas 4.4.1 and 4.4.2

k̄ − k0 = |S(k0, k̄)|+ |U(k0, k̄)|
≤ (1− logβ2(γ))|S(k0, k̄)|+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2(ωgε)

≤ (1− logβ2(γ))

(
2
R

ω
ε1−p̂ + 1

)
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2(ωgε).

From 1/min(1, p − 1) ≤ p̂ − 1 (see the proof of Theorem 4.3.1) and the derivation (4.16)
with ε̄ = ε,

1

min(1, p− 1)
logβ2(ωgε) ≤ (p̂− 1) logβ2(ωgε).

The proof is then completed by using 1 − logβ2(γ) = logβ2(β2/γ) and then by applying the
bound (4.13) on k0. �

The optimal choice of p in ε1−p̂ is p = 2. When p = 2, one can see from the expression
for κ3 that the maximum number of iterations is O(cm−2

min ε
−1) and that the maximum

number of function evaluations is O(d# cm−2
min ε

−1), where, recall, cmmin is a lower bound for
the cosine measure of Dk and d# is an upper bound for |Dk| (for all k).

The WCC bound O(d# cm−2
min ε

−1) depends on n only in d# and cmmin. In [38] (see
Theorem 3.2.1 and the discussion afterwards), it was suggested to use D⊕ = [I −I] across
all iterations. Since cm(D⊕) = 1/

√
n and |D⊕| = 2n, the bound O(d# cm−2

min ε
−1) becomes

then O(n2ε−1). In Chapter 7 we will show that D⊕ (or any rotation of D⊕) is an optimal
choice for the WCC bound for the number of function evaluations in terms of the power n2.

For our reference, we summarize in the following corollary the main result of this chapter.

Corollary 4.4.1 Let Assumptions 4.2.2 hold. Let cmmin be at least a multiple of 1/
√
n and

the number of function evaluations per iteration be at most a multiple of n. To reduce the
gradient below ε ∈ (0, 1), Algorithm 3.1.1 takes at most

O
(
n
p̂+2
2 ε1−p̂

)
function evaluations. When p = 2, this number is of O(n2ε−1).

34

Chapter 5

Global rate of direct search under strong
convexity

Let us recall the definition of a strongly convex functions (Definition 2.1.2). From (2.7), one
can see that strong convexity implies

f(x)− f∗ ≤
1

2µ
‖∇f(x)‖2, ∀x ∈ Rn, (5.1)

where f∗ = f(x∗) and x∗ is the unique minimizer of f (and thus ∇f(x∗) = 0). Also due to
∇f(x∗) = 0, inequality (2.5) implies

f(x)− f∗ ≥
1

2
µ‖x− x∗‖2, ∀x ∈ Rn. (5.2)

We will also make use of inequality (2.9) for f ∈ F1
ν,µ(Ω) (meaning when f is strongly convex

and ∇f is Lipschitz continuous with constant ν > 0).

We are thus prepared to prove that the rate of convergence of function values and iterates
for strongly convex functions is linear when p = 2.

To avoid repeating the several assumptions in the statements of the results of this chapter
we will combine them in the following one.

Assumption 5.1.1 Consider the application of Algorithm 3.1.1 when ρ(t) = C t2 (p = 2),
C > 0, and Dk satisfies Assumption 3.1.1. Let f ∈ F1

ν,µ(Rn).

As usual, we will start by considering first the case of the successful iterations.

Lemma 5.1.3 Let Assumptions 5.1.1 hold. Let k0 be the index of the first unsuccessful
iteration (which must exist from Lemma 3.1.1). Then Algorithm 3.1.1 generates a sequence
{xk}k≥k0 such that

f(xk)− f∗ < (1− 2ωµ)|S(k0,k)|(f(xk0)− f∗), (5.3)

35

‖xk − x∗‖ <

√
ν

µ
(1− 2µω)

1
2
|S(k0,k)|‖xk0 − x∗‖, (5.4)

where ω is given in (4.3) and |S(k0, k)| is the number of successful iterations between k0

(including it) and k.

Proof. Let j (with k0 < j ≤ k) be index of a successful iteration generated by Algo-
rithm 3.1.1. Again, we can back-track to nearest unsuccessful iteration k` (with k` ≥ k0),
and using the sufficient decrease condition, the step size updating rules, Corollary 4.1.1, and
the definition of ω in (4.3), we obtain

f(xj)− f(xj+1) > Cα2
j

≥ Cβ2
1α

2
k`

≥ ω‖∇f(xk`)‖2

≥ 2ωµ(f(xk`)− f∗)
> 2ωµ(f(k`)− f∗),

where the fourth inequality follows from inequality (5.1). Hence,

f(xj+1)− f∗ < (1− 2ωµ)(f(xj)− f∗).

A repeatedly application of the above inequality will lead us to (5.3). (From this we also see
that 1− 2ωµ ∈ (0, 1).)

Now, the application of inequalities (5.2), (5.3), and (2.9) with y = xk0 and x = x∗ gives
us

µ

2
‖xk − x∗‖2 ≤ f(xk)− f∗

< (1− 2µω)|S(k0,k)|(f(xk0)− f∗)
≤ (1− 2µω)|S(k0,k)|ν

2
‖xk0 − x∗‖2,

yielding (5.4). �

Note that the inequality

f(xk+1)− f∗ < (1− 2ωµ)(f(xk)− f∗), ∀k ≥ k0 (5.5)

implies that the distance from the current iteration to the minimizer is less than all the
previous iterations up to the constant

√
ν/µ. In fact, from (5.1) and the above inequality

36

Chapter 5. Global rate of direct search under strong convexity

for any j < k we have

µ

2
‖xk+1 − x∗‖2 ≤ f(xk+1)− f∗

< (1− 2µω)|S(J,k+1)|(f(xj)− f∗)
= (1− 2µω)|S(J,k+1)|(f(x)− f∗), ∀x ∈ f−1(f(xj))

≤ (1− 2µω)|S(J,k+1)|ν

2
‖x− x∗‖2, ∀x ∈ f−1(f(xj)),

where |S(J, k+ 1)| is the number of successful iterations from iteration J = max(k0, j) until
iteration k+ 1. Now, since the last inequality is valid for any x ∈ f−1(f(xj)), by minimizing
the right-hand side we will end up with

‖xk+1 − x∗‖2 ≤ ν

µ
(1− 2µω)|S(J,k+1)| min

x∈f−1(f(xj))
‖x− x∗‖2, ∀k ≥ J.

Applying the above argument to the left-hand side of inequality (5.5), we obtain that

max
x∈f−1(f(xk+1))

‖x− x∗‖2 <
ν

µ
(1− 2µω)|S(J,k+1)| min

x∈f−1(f(xj))
‖x− x∗‖2

<
ν

µ
min

x∈f−1(f(xj))
‖x− x∗‖2.

Note that the min and max above are attained since we are optimizing a continuous function
on bounded and closed subsets (see, again, [34, Corollary 8.7.1]).

Now we need to take care of the number of unsuccessful iterations. The assumption of
strongly convexity will lead to a bound better than (4.9).

Lemma 5.1.4 Let Assumptions 5.1.1 hold. Let k0 be the index of the first unsuccessful
iteration (which must exist from Lemma 3.1.1). Then Algorithm 3.1.1 generates a sequence
{xk}k≥k0 such that

|U(k0, k)| ≤
⌈
ω1|S(k0, k)|+ ω2 + logβ2(ωg

√
2µ(f(xk)− f∗))

⌉
, (5.6)

|U(k0, k)| ≤
⌈
ω1|S(k0, k)|+ ω2 + logβ2(µωg‖xk − x∗‖)

⌉
, (5.7)

where ωg is given in (4.3), ω1 and ω2 are given in (4.10), and |S(k0, k)| and |U(k0, k)| are the
number of successful and unsuccessful iterations between k0 (including it) and k, respectively.

Proof. From inequality (5.1), one has for each unsuccessful iteration ki (with k0 ≤ ki ≤
k)

‖∇f(xki)‖2 ≥ 2µ(f(xki)− f∗) ≥ 2µ(f(xk)− f∗).

37

Now, by an argument like in the proof of the Lemma 4.3.2, but using
√

2µ(f(xk)− f∗)
instead of (f(xk)− f∗)/R, one obtains

f(xk)− f∗ ≤
1

2µω2
g

(
αk0
β1

γ|S(k0,k)|β
|U(k0,k)|
2

)2

.

In turn, this inequality and (5.2) imply

‖xk − x∗‖ ≤
1

µωg

(
αk0
β1

γ|S(k0,k)|β
|U(k0,k)|
2

)
,

and the proof can be finished by applying logβ2 and noting that β2 < 1 and ω1 ≥ 0. �

Lemmas 5.1.3 and 5.1.4 result in a (global) linear convergence rate (when p = 2) for the
absolute error in function values and iterates after the first unsuccessful iteration.

Theorem 5.1.2 Let Assumptions 5.1.1 hold. Let k0 be the index of the first unsuccessful
iteration (which must exist from Lemma 3.1.1). Then Algorithm 3.1.1 generates a sequence
{xk}k≥k0 such that

f(xk)− f∗ < β
1
κ5

(k−κ6)
,

‖xk − x∗‖ < β
1

2κ5
(k−κ7)

,

where

κ5 = (1 + ω1) log1−2ωµ(β) + logβ2(
√
β), β = min(β2, 1− 2µω),

κ6 =
f(x0)− f∗
Cα2

0

− (1 + ω1) log1−2ωµ(f(xk0)− f∗) + ω2 + logβ2(ωg
√

2µ),

κ7 =
ν‖x0 − x∗‖2

2Cα2
0

− (1 + ω1) log1−2ωµ

(
ν

µ
‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ),

ω and ωg are given in (4.3), and ω1 and ω2 are given in (4.10).

Proof. From inequalities (5.3) and (5.6) one has

k − k0 = |U(k0, k)|+ |S(k0, k)|

≤ (1 + ω1)|S(k0, k)|+ ω2 + logβ2

(
ωg
√

2µ(f(xk)− f∗)
)

≤ (1 + ω1) log1−2ωµ

(
f(xk)− f∗
f(xk0)− f∗

)
+ ω2 + logβ2

(
ωg
√

2µ(f(xk)− f∗)
)

=
[
(1 + ω1) log1−2ωµ(β) + logβ2(

√
β)
]

logβ(f(xk)− f∗)

− (1 + ω1) log1−2ωµ(f(xk0)− f∗) + ω2 + logβ2(ωg
√

2µ).

38

Chapter 5. Global rate of direct search under strong convexity

Then, from inequality (4.13), one obtains

k −
[
f(x0)− f∗
Cα2

0

− (1 + ω1) log1−2ωµ(f(xk0)− f∗) + ω2 + logβ2(ωg
√

2µ)

]
<

[
(1 + ω1) log1−2ωµ(β) + logβ2(

√
β)
]

logβ(f(xk)− f∗)

which proves the first part of the theorem.

By similar arguments, but using now inequalities (5.4) and (5.7), it results that

k − k0 = |U(k0, k)|+ |S(k0, k)|
≤ (1 + ω1)|S(k0, k)|+ ω2 + logβ2(ωgµ‖xk − x∗‖)

≤ (1 + ω1) log1−2ωµ

(
µ

ν

‖xk − x∗‖2

‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ‖xk − x∗‖)

=
[
2(1 + ω1) log1−2ωµ(β) + logβ2(β)

]
logβ(‖xk − x∗‖)

− (1 + ω1) log1−2ωµ

(
ν

µ
‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ).

Again using inequality (4.13), but now followed by (2.9) with x = x0 and y = x∗, yields

k −
[
ν‖x0 − x∗‖2

2Cα2
0

− (1 + ω1) log1−2ωµ

(
ν

µ
‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ)

]
≤

[
2(1 + ω1) log1−2ωµ(β) + logβ2(β)

]
logβ(‖xk̄ − x∗‖),

which proves the second part. �

The result of Theorem 5.1.2 improves significantly what has been known for direct search.
In fact, it was proved in [19] that the absolute error for unsuccessful iterates exhibits an
r-linear rate of convergence under the following assumptions: αk is monotonically non-
increasing and xk is sufficiently close to a point x∗ for which ∇f(x∗) = 0 and ∇2f(x) is
positive definite around x∗.

Our result is therefore stronger since (i) the r-linear rate is over the all sequence ‖xk−x∗‖,
whether k is successful or not, (ii) only first order continuously differentiability is assumed,
and (iii) αk can be increased at successful iterations.

39

40

Chapter 6

Numerical illustration

In the previous chapters, we have studied the worst case complexity of direct search when
the objective function is convex. Now we apply Algorithm 3.1.1 to convex functions and
observe the numerical behavior of the algorithm. We use the software developed in [14, 15].

Assumption 4.2.1 was convenient for our theoretical analysis. The goal of Section 6.2 is
to find out how direct search may behave if this assumption is not satisfied. We will see that
the performance of Algorithm 3.1.1 is not necessarily severely affected for problems where
Assumption 4.2.1 is not met.

Although only a sub-linear rate is established under convexity (and Assumption 4.2.1),
direct search does achieve an r-linear global rate when the objective function is strongly
convex, as shown in Chapter 5. The purpose of Section 6.3 is to illustrate the performance
of Algorithm 3.1.1 on convex functions with and without strong convexity. We will observe
that the algorithm does not always work more efficiently when the objective function is
strongly convex.

As seen in Corollary 4.4.1 and Theorem 5.1.2, the Lipschitz constant ν and the strong
convexity constant µ (when applicable) appear in the worst case complexity bounds of direct
search. Small values of ν and large values of µ are considered favorable to the performance
of the algorithm in terms of WCC bounds. But this is not always the case in practice, and
we will show this phenomenon by some examples in Section 6.4.

6.1 Description of the experiments
In the experiments of this chapter, we used a fixed maximal positive basis D⊕ = [I −I] as the
set of poll directions. The step size αk was kept unchanged after a successful iteration, and
contracted by a factor of 1/2 after an unsuccessful one. The forcing function ρ(t) was 10−3t2.
Regarding the order of the function evaluations in the poll step, three polling strategies were
tested, namely

41

6.2. A numerical study of Assumption 4.2.1

• Dynamic Polling: moving the poll direction that led to success to the beginning of the
list of directions for the next poll step [2],

• Random: the poll directions are ordered randomly at each iteration,

• Consecutive, Cycling: the poll directions are evaluated at each iteration in the same
consecutive order as originally stored, starting a new poll step in the direction appear-
ing after the last one used (consecutive) and moving from the last one in D⊕ to the
first when necessary (cycling).

The algorithm runs were stopped when the error in terms of function value was less
than 10−6. All the figures reported in the tables of results are averages of 10 runs made
for 10 starting points, randomly generated in the hypercube [−10, 10]4. We use fk̄ and f∗
to denote the function value obtained at the final iteration k̄ and the accurate minimum
function value, respectively.

The objective functions used are reported in tables where the columns are organized as
follows:

• the first column is for problem number, #P,

• the second column is for objective function,

• the third column corresponds to strong convexity, namely to the constant µ,

• the fourth column corresponds to Lipschitz continuity of gradient, namely to the
constant ν.

One knows that calculating the Lipschitz constant ν and the strong convexity constant µ
is very difficult in practice. We approximated these constants based on the initial points. For
each problem, we computed the Hessian of the objective function f at the initial points x0,
and took maximum and minimum eigenvalues of ∇2f(x0) as approximations for ν and µ.

6.2 A numerical study of Assumption 4.2.1
In this section we test Algorithm 3.1.1 with some problems that do not satisfy Assump-
tion 4.2.1.

By convention, let us define the distance between any point and the empty set is as
infinity. Consequently,

sup
y∈Lf (x0)

dist(y,X∗f) =∞ if X∗f = ∅. (6.1)

We then tried Algorithm 3.1.1 on two sets of objective functions in R4:

42

Chapter 6. Numerical illustration

• Set 1, a set of functions without minimizers (because the infimums are not attainable),
as presented in Table 6.1,

• Set 2, a set of functions with minimizers, but for which the supremum in (6.1) is still
infinity, as presented in Table 6.2.

#P objective function constant µ constant ν
01

∑3
i=1(xi + xi+1)2 + exp(x4) - +1.948e+03

02
∑3

i=1(10−
1
2xi + 10

1
2xi+1)2 + exp(x4) - +1.948e+03

03
∑3

i=1(10−1xi + 10xi+1)2 + exp(x4) - +1.948e+03

Table 6.1: Functions in Set 1.

#P objective function constant µ constant ν

04 (
∑4

i=1 x
2
i)

1
2 − x1 - +1.539e-01

05 [(
∑4

i=1 x
2
i)

1
2 − x1]2 - +1.452e+01

06 [(
∑4

i=1 x
2
i)

1
2 − x1]4 - +1.538e+04

Table 6.2: Functions in Set 2.

The results are reported in Tables 6.3–6.4, where the columns are organized as follows:

• the first column is for problem number, #P,

• the second column is for polling strategy, order option,

• the third column is for number of iterations, #iter,

• the fourth column is for number of successful iterations, #isuc,

• the fifth column is for number of function evaluations, #feval,

• the sixth column is for error in terms of function value, fk̄ − f∗,

• the seventh column is for error in terms of norm of gradient, ‖∇f(xk̄)‖.

43

6.2. A numerical study of Assumption 4.2.1

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
01 1773 1759 1960 +9.694e-07 +4.665e-04
02 Dynamic Polling 2750 2736 2941 +8.354e-07 +1.527e-03
03 5282 5267 5477 +5.470e-07 +3.286e-03
01 1557 1543 7007 +9.981e-07 +3.526e-04
02 Random 1860 1846 8356 +9.268e-07 +9.641e-04
03 3683 3668 16590 +7.333e-07 +4.067e-03
01 1557 1543 12330 +9.981e-07 +3.526e-04
02 Consecutive, Cycling 1780 1767 14113 +9.268e-07 +8.616e-04
03 3683 3668 29339 +7.334e-07 +4.067e-03

Table 6.3: Number of function evaluations for Set 1.

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
04 29 20 136 +3.132e-07 +1.849e-04
05 Dynamic Polling 63 53 162 +9.765e-07 +1.199e-05
06 260 249 361 +9.101e-07 +2.213e-06
04 26 17 135 +3.986e-07 +3.201e-04
05 Random 31 22 150 +9.249e-07 +1.852e-05
06 53 43 237 +9.452e-007 +4.002e-06
04 25 16 127 +4.424e-07 +3.606e-04
05 Consecutive, Cycling 26 17 143 +8.716e-07 +1.998e-05
06 58 47 323 +9.866e-07 +4.596e-06

Table 6.4: Number of function evaluations for Set 2.

We observe that, even though Assumption 4.2.1 is not true for the testing functions
here, Algorithm 3.1.1 still drove the function value to a satisfying level using a reasonable
amount of function evaluations. Actually, all the numbers of function evaluations were
below the worst case complexity bound given in Theorem 4.3.1 and Corollary 4.4.1, where
Assumption 4.2.1 is required. Thus Assumption 4.2.1 does not seem critical to the practical
performance of Algorithm 3.1.1. This suggests that it may be possible to extend our theory
to the most general convex case.

44

Chapter 6. Numerical illustration

6.3 Convex v.s. strongly convex

In Chapter 5 we saw that Algorithm 3.1.1 converges r-linearly when the objective func-
tion is strongly convex, while only a sub-linear rate is guaranteed without strong convexity
(see Theorem 4.3.1). So, the theory indicates that Algorithm 3.1.1 should perform better
on strongly convex functions than on general convex functions. But in practice this is not
necessarily always the case. To illustrate this, we tested Algorithm 3.1.1 on the following
two sets of functions:

• Set 3, a set of functions that are convex but not strongly convex, as presented in
Table 6.5,

• Set 4, a set of strongly convex functions as presented in Table 6.6.

#P objective function constant µ constant ν
07

∑4
i=1(xi + xi+1)2 - +6.828e+00

08
∑4

i=1(10−1xi + 10xi+1)2 - +2.028e+02
09

∑4
i=1(10−2xi + 102xi+1)2 - +2.000e+04

Table 6.5: Functions in Set 3.

#P objective function constant µ constant ν
10 (x1 + x2)2 +

∑4
i=2 x

2
i +7.639e-01 +5.236e+00

11 (10−
1
2x1 + 10

1
2x2)2 +

∑4
i=2 x

2
i +1.803e-02 +2.218e+01

12 (10−1x1 + 10x2)2 +
∑4

i=2 x
2
i +1.980e-04 +2.020e+02

Table 6.6: Functions in Set 4.

The results are presented in Tables 6.7–6.8, which are organized in the same way as in
Table 6.3. We observe that, for these testing problems, strong convexity did not lead to a
better performance of Algorithm 3.1.1.

45

6.4. The Lipschitz constant and the strong convexity constant

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
07 36 23 202 +6.166e-07 +2.102e-03
08 Dynamic Polling 104 89 301 +4.073e-07 +1.165e-02
09 6864 6846 7094 +4.970e-07 +1.363e-01
07 36 23 181 +6.461e-07 +2.216e-03
08 Random 60 44 299 +5.425e-07 +1.367e-02
09 2218 2200 10056 +3.801e-07 +1.095e-01
07 35 22 164 +6.246e-07 +2.142e-03
08 Consecutive, Cycling 60 45 352 +6.016e-07 +1.460e-02
09 2218 2199 17595 +3.503e-07 +1.054e-01

Table 6.7: Number of function evaluations for Set 3.

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
10 43 30 234 +5.922e-07 +1.715e-03
11 Dynamic Polling 712 696 1267 +9.788e-07 +6.939e-04
12 61505 61486 65378 +9.994e-07 +5.890e-04
10 38 25 197 +6.362e-07 +1.676e-03
11 Random 480 465 2139 +9.174e-07 +1.316e-03
12 40591 40574 182064 +9.139e-07 +1.282e-03
10 42 29 182 +6.517e-07 +1.730e-03
11 Consecutive, Cycling 484 469 3400 +9.134e-07 +1.271e-03
12 40593 40576 321389 +9.135e-07 +1.273e-03

Table 6.8: Number of function evaluations for Set 4.

6.4 The Lipschitz constant and the strong convexity con-
stant

As shown in Theorems 4.3.1 and 5.1.2 and Corollary 4.4.1, the worst case complexity bounds
are monotonically increasing with respect to the Lipschitz constant ν and monotonically
decreasing with respect to the strong convexity constant µ. Hence, generally speaking, one
may expect direct search to work more efficiently if ν is smaller and if µ (when applicable)

46

Chapter 6. Numerical illustration

is larger. But we noticed in our numerical experiments that the opposite can also happen.
We illustrate this phenomenon by the following two sets of testing functions:

• Set 5, a set of functions with moderate Lipschitz constants and decreasing strong
convexity constants, as presented in Table 6.9,

• Set 6, a set of functions with large Lipschitz constants and decreasing strong convexity
constants, as presented in Table 6.10.

#P objective function constant µ constant ν
13

∑3
i=1(xi + xi+1)2 + x2

4 +2.412e-01 +7.064e+00
14

∑3
i=1(10−

1
8xi + 10

1
8xi+1)2 + 10

1
4x2

4 +3.399e-02 +8.586e+00
15

∑3
i=1(10−

1
4xi + 10

1
4xi+1)2 + 10

1
2x2

4 +2.704e-03 +1.335e+01

Table 6.9: Functions in Set 5.

#P objective function constant µ constant ν

16
∑2

i=1(xi + xi+1)2 + exp([
∑4

i=3 x
2
i + 1]

1
2) +5.049e-01 +6.307e+04

17
∑2

i=1(10−
1
8xi + 10

1
8xi+1)2 + exp([

∑4
i=3 x

2
i + 1]

1
2) +1.188e-01 +6.307e+04

18
∑2

i=1(10−
1
4xi + 10

1
4xi+1)2 + exp([

∑4
i=3 x

2
i + 1]

1
2) +1.944e-02 +6.307e+04

Table 6.10: Functions in Set 6.

The numerical results on these problems are presented in Tables 6.11–6.12, which are
organized in the same way as Table 6.3. One sees clearly from Tables 6.11–6.12 that the
algorithm performed better on Set 6 than on Set 5, even though in the former set the
functions have bigger condition numbers (seen as the ratio ν/µ).

47

6.5. Relevance of variable separability

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
13 99 85 477 +9.026e-07 +1.614e-03
14 Dynamic Polling 727 711 2530 +9.866e-07 +0.000e+00
15 6623 6606 17070 +9.983e-07 +0.000e+00
13 98 84 404 +8.861e-07 +0.000e+00
14 Random 570 554 2162 +9.503e-07 +0.000e+00
15 4533 4516 17845 +9.697e-07 +0.000e+00
13 110 96 362 +8.971e-07 +0.000e+00
14 Consecutive, Cycling 574 558 2419 +9.510e-07 +0.000e+00
15 4538 4521 25411 +9.789e-07 +0.000e+00

Table 6.11: Number of function evaluations for Set 5.

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
16 52 39 275 +6.648e-07 +1.649e-03
17 Dynamic Polling 180 165 683 +9.192e-07 +4.094e-03
18 1033 1016 2740 +9.787e-07 +2.690e-03
16 50 36 236 +6.847e-07 +1.627e-03
17 Random 172 158 733 +9.082e-07 +4.024e-03
18 728 712 3009 +8.267e-07 +2.187e-03
16 54 41 222 +6.243e-07 +1.554e-03
17 Consecutive, Cycling 139 125 643 +7.728e-07 +3.531e-03
18 727 712 4165 +8.377e-07 +2.325e-03

Table 6.12: Number of function evaluations for Set 6.

6.5 Relevance of variable separability

In practice we noticed that the separability of the objective function is one of the key struc-
tures that influences the performance of Algorithm 3.1.1. As an illustration, we tested the
algorithm on Set 7, which is a set of separable functions listed in Table 6.13. The organiza-
tion of Table 6.13 is the same as that of Table 6.1.

48

Chapter 6. Numerical illustration

#P objective function constant µ constant ν

19
∑4

i=1 exp(
√
x2
i + 1) +2.719e+00 +4.164e+04

20
∑4

i=1 i exp(

√
10

1
4x2

i + 1) +4.839e+00 +5.226e+06

21
∑4

i=1 i
2 exp(

√
10

1
2x2

i + 1) +9.938e+00 +5.972e+09

Table 6.13: Functions in Set 7.

In this experiment, the settings of Algorithm 3.1.1 were the same as in Section 6.2,
except that the directions set was set to be D = [Q −Q], where Q was an orthonormal
matrix generated randomly at the beginning of the experiment (see [39]). The initial points
were also generated in the same way as in Section 6.2. The results displayed show that, for
these problems, the performance of Algorithm 3.1.1 did not change significantly when the
Lipschitz constant increased considerably.

#P order option #iter #isuc #fevals fk̄ − f∗ ‖∇f(xk̄)‖
19 40 27 232 +6.181e-07 +1.783e-03
20 Dynamic Polling 49 35 275 +6.686e-07 +4.306e-03
21 59 43 311 +5.931e-07 +8.897e-03
19 40 27 194 +6.364e-07 +1.813e-03
20 Random 47 33 226 +5.843e-07 +3.819e-03
21 56 40 264 +6.366e-07 +8.719e-03
19 40 27 167 +5.657e-07 +1.697e-03
20 Consecutive, Cycling 48 34 189 +6.226e-07 +4.020e-03
21 59 43 234 +5.654e-07 +8.441e-03

Table 6.14: Number of function evaluations for Set 7.

The testing problems in this chapter were chosen as simple illustrations. In any case, the
observations encourage us to do further theoretical research, in order to extend the results to
general convex functions, and also to obtain more specific results for functions with a special
structure.

49

6.5. Relevance of variable separability

50

Chapter 7

Sharpness of the WCC bounds in terms
of function evaluations

The worst case complexity (WCC) bounds derived for direct search depend on the properties
of the positive spanning sets (PSSs) used in the poll step. Let us consider Algorithm 3.1.1
with a search step empty and a forcing function using p = 2. In fact, the bound derived
in [38] for the smooth and non-convex case is of the O(cm−2

min ν
2ε−2) (for iterations) and

of the O(d# cm−2
min ν

2ε−2) (for function evaluations), where d# is the maximum number of
directions in any PSS used during the course of the iterations and cmmin is a lower bound on
their cosine measures (see the discussion after Theorem 3.2.1). For the smooth and convex
case, we have shown in Chapter 4 a similar dependence, being the difference just the order
of ε: O(cm−2

min ν
2ε−1) (for iterations) and O(d# cm−2

min ν
2ε−1) (for function evaluations), see

the discussion after Theorem 4.4.1. As we have also mentioned, if in all iterations we use the
positive basis D⊕ (formed by the coordinate vectors and their negatives for which |D⊕| = 2n
and cm(D⊕) = 1/

√
n), one has cm−2

min = n and d# = 2n and thus d# cm−2
min = 2n2. In this

chapter we will prove that such an order of n2 is indeed optimal in the WCC bounds for the
number of function evaluations.

It is obvious that adding directions to a PSS will increase its cosine measure (see Def-
inition 3.1.2). So, by using more polling directions, one can increase the cosine measure,
which is favorable in terms of number of iterations. However, such a strategy will increase
the number of function evaluations in each iteration. So, there is a trade-off in the number
of directions to use in the PSSs when we consider the bound for the number of function
evaluations.

Let us clarify this trade-off with a few examples. We know that a minimal positive
basis with uniform angles in Rn has n + 1 directions and a cosine measure of 1/n [13,
Corollary 2.6 and Exercise 2.7.7]. If we apply this PSS to Algorithm 3.1.1 (with p = 2 in the
forcing function), then the WCC bound for the number of function evaluations will become
O(n3ε−1). But if we use D⊕, the bound is O(n2ε−1). In this case, increasing the number of

51

directions improves the WCC bound. This is not always true. For example, if we use a PSS
with n4 directions, then the bound will become at least O(n4ε−1).

To find the PSS that leads to the optimal WCC bound for the number of function
evaluations in terms of the power of the n, we need to solve the following problem

min
D∈D

|D|
cm(D)2

, (7.1)

where D is the set of all PSSs in Rn. In two dimensions, problem (7.1) is not difficult. One
can easily prove that the PSSs with five directions and uniform 2π/5 angles are optimal
for problem (7.1). When we go to higher dimensions, determining the optimal PSSs for
problem (7.1) is not that easy. It is not clear what are the solutions to this problem when
n ≥ 3. But we are able to show that D⊕ is ‘almost optimal’ for problem (7.1) in the sense
of that

min
D∈D

|D|
cm(D)2

≥ c
|D⊕|

cm(D⊕)2
, (7.2)

for some constant c > 0 not depending on n or on any specific PSS. In fact, we will prove
the following result.

Theorem 7.1.1 For every PSS D in Rn, there exists a constant C > 0 not depending on n
and D such that

|D|
cm(D)2

≥ C n2.

Inequality (7.2) will then follow directly from Theorem 7.1.1 and the properties of D⊕.

To prove Theorem 7.1.1, we observe first a connection between the cosine measure and
sphere covering, which is presented in Lemma 7.1.1 below. Before stating this result, let us
define

C(x, φ) =
{
y ∈ Sn−1 : d(y, x) ≤ φ

}
, (7.3)

where Sn−1 is the unit sphere in Rn, x is a fixed point on Sn−1, φ is a constant in [0, π], and
d(·, ·) is the geodesic distance on Sn−1. We will call C(x, φ) a spherical cap centered at x
with geodesic radius φ.

Lemma 7.1.1 Suppose that D = [d1 · · · dm] is a PSS in Rn consisting of unit vectors. If
cm(D) = κ, then

Sn−1 ⊆
m⋃
i=1

C(di, arccos(κ)). (7.4)

In other words, Sn−1 is covered by the spherical caps centered at di (i = 1, 2, . . . ,m) with
geodesic radius arccos(κ).

52

Chapter 7. Sharpness of the WCC bounds in terms of function evaluations

Proof. According to Definition 3.1.2, for any v ∈ Sn−1, there exists an i ∈ {1, 2, . . . ,m}
such that

v>di ≥ cm(D) = κ. (7.5)
Since the radius of the sphere is 1, the geodesic distance between v and di is equal to the
angle between them. Hence inequality (7.5) implies that

d(v, di) ≤ arccos(κ), (7.6)

which is equivalent to
v ∈ C(di, arccos(κ)). (7.7)

This is sufficient to conclude the proof as v is arbitrary. �

To prove Theorem 7.1.1, we need an upper bound for the cosine measure cm(D) in terms
of the dimension n and the number of directions in |D|. In light of Lemma 7.1.1, it is
desirable to have a lower bound for φ (or, equivalently, an upper bound for cos(φ)) in terms
of n and m when Sn−1 is covered by m equal spherical caps with geodesic radius φ. Such a
bound is fortunately already established in the research community of Discrete Geometry.
The conclusion of the following lemma is given in Tikhomirov [35] for n+ 1 ≤ m ≤ 2n. The
case m ≥ 2n was established much earlier (for more details see [3], [5, Chapter 6], [7], [8,
Corollary 9.5], [9], [21] and [35])1.

Lemma 7.1.2 ([35]) Any covering of Sn−1 by m ≥ n+ 1 spherical caps of geodesic radius φ
satisfies

cos(φ) ≤ ζ
√
n−1 log(n−1m), (7.8)

for some constant ζ > 0 not depending on n and m.

With the help of Lemmas 7.1.1 and 7.1.2, we obtain the desired upper bound for the
cosine measure.

Lemma 7.1.3 Any PSS D in Rn satisfies

cm(D) ≤ ζ
√
n−1 log(n−1|D|), (7.9)

for the same constant ζ as in Lemma 7.1.2.

Proof. Without loss of generality, we assume that all the directions in D are normalized.
Then inequality (7.9) follows immediately from Lemmas 7.1.1 and 7.1.2. �

Then, Theorem 7.1.1 is a straightforward consequence of this bound, since√
n−1 log(n−1|D|) ≤

√
n−1(n−1|D| − 1) ≤ n−1|D|

1
2 . (7.10)

From Theorem 7.1.1, the WCC bounds of O(n2ε−2) (derived in [38] for smooth, non-convex
functions) and of O(n2ε−1) (derived in Chapter 4 for smooth, convex functions) are optimal
in the power of n2, in the sense that no PSS will provide a better power than D⊕.

1We are grateful to Professor Károly Böröczky, Jr. for drawing our attention to these references.

53

54

Chapter 8

Concluding remarks

To our knowledge it is the second time that a derivative-free method is shown to exhibit
a worst case complexity (WCC) bound of O(ε−1) in the convex case, following the random
Gaussian approach [30], but the first time for a deterministic approach. In fact we have
proved that a maximum of O(ε−1) iterations and O(n2ε−1) function evaluations are required
to compute a point for which the norm of the gradient of the objective function f is smaller
than ε ∈ (0, 1) (see Theorem 4.4.1 and Corollary 4.4.1 when p = 2 in the forcing function).

In addition we proved that the absolute error f(xk) − f∗ decreases at a sub-linear rate
of 1/k (see Theorem 4.3.1). Such results are global in the sense of not depending on the
proximity of the initial iterate to the solutions set.

These WCC bounds and global rates were proved when the solutions set is bounded or,
when that is not the case, when the longest distance from the initial level set to the solutions
set is bounded (Assumption 4.2.1). A particular case is strong convexity where the solution
set is a singleton. In such a case, we went a step further (when p = 2 in the forcing function)
and showed that f(xk)− f∗ decreases r-linearly and so does ‖xk − x∗‖ (see Theorem 5.1.2).

In Chapter 6 we tested Algorithm 3.1.1 on some specific convex examples. In our ex-
periments, the actual number of function evaluations was far below the theoretical WCC
bound when Assumption 4.2.1 was violated. This encourages us to extend the results of this
dissertation to an even weaker version of Assumption 4.2.1, possibly by controlling the step
size in the algorithm so that the distance of the current iterate to the starting point is better
monitored.

We also observed that although the WCC bounds become worse by changing some prob-
lem parameters, the actual performance of the algorithm does not follow the same trend. In
fact the structure of the objective function does influence the performance of the algorithm
heavily. This observation suggests that we could refine the theory for problems with special
structure like separability or partial separability.

55

In Chapter 7, we proved the optimality of D⊕ in the sense of minimizing the order n2 in
the WCC bound for the number of function evaluations. We did this by establishing a lower
bound for the value of problem (7.1), but this problem is itself still open. A closely related
problem is

max
D∈D(m)

cm(D), (8.1)

where D(m) is the set of all the PSSs consisting of m directions (m ≥ n+ 1). This problem
is also widely open. In the language of sphere covering, problem (8.1) is: find the most
‘economical’ covering of the sphere by m equal spherical caps. In the special case of m = 2n,
it is intuitive to conjecture that D⊕ is the solution to problem (8.1). This is clear when
n = 2, but it becomes non-trivial when n ≥ 3. The optimality of D⊕ for the case m = 2n is
already proved when n = 3 (see [37, Theorem 5.4.1]), and n = 4 (see [16, Theorem 6.7.1]),
but it is open when n ≥ 5 according to [5, Page 194], [6], and [7, Conjecture 1.3].

56

Bibliography

[1] C. Audet, A short proof on the cardinality of maximal positive bases, Optim. Lett., 5
(2011), pp. 191–194.

[2] C. Audet and J. E. Dennis, Jr., Mesh adaptive direct search algorithms for con-
strained optimization, SIAM J. Optim., 17 (2006), pp. 188–217.

[3] I. Bárány and Z. Füredi, Approximation of the sphere by polytopes having few
vertices, Proc. Amer. Math. Soc, 102 (1988), pp. 651–659.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[5] K. Böröczky, Jr, Finite Packing and Covering, Cambridge University Press, New
York, 2004.

[6] K. Böröczky, Jr. private communication, April 25, 2014.

[7] K. Böröczky, Jr and G. Wintsche, Covering the sphere by equal spherical balls,
in Discrete Comput. Geom., B. Aronov, S. Basu, J. Pach, and M. Sharir, eds., vol. 25
of Algorithms and Combinatorics, Springer Berlin, 2003, pp. 235–251.

[8] J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by
zonotopes, Acta Math., 162 (1989), pp. 73–141.

[9] B. Carl and A. Pajor, Gelfand numbers of operators with values in a hilbert space,
Invent. Math., 94 (1988), pp. 479–504.

[10] C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of steepest descent,
Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization,
SIAM J. Optim., 20 (2010), pp. 2833–2852.

[11] , Adaptive cubic regularisation methods for unconstrained optimization. Part II:
Worst-case function- and derivative-evaluation complexity, Math. Program., 130 (2011),
pp. 295–319.

57

[12] , On the oracle complexity of first-order and derivative-free algorithms for smooth
nonconvex minimization, SIAM J. Optim., 22 (2012), pp. 66–86.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free
Optimization, MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2009.

[14] A. L. Custódio, H. Rocha, and L. N. Vicente, Incorporating minimum Frobenius
norm models in direct search, Comput. Optim. Appl., 46 (2010), pp. 265–278.

[15] A. L. Custódio and L. N. Vicente, Using sampling and simplex derivatives in
pattern search methods, SIAM J. Optim., 18 (2007), pp. 537–555.

[16] L. Dalla, D. G. Larman, P. Mani-Levitska, and C. Zong, The blocking numbers
of convex bodies, Discrete Comput. Geom., 24 (2000), pp. 267–278.

[17] C. Davis, Theory of positive linear dependence, Amer. J. Math., 76 (1954), pp. 733–746.

[18] M. Dodangeh and L. N. Vicente, Worst case complexity of direct search under
convexity, Tech. Report 13-10, Dept. Mathematics, Univ. Coimbra, 2013.

[19] E. D. Dolan, R. M. Lewis, and V. Torczon, On the local convergence of pattern
search, SIAM J. Optim., 14 (2003), pp. 567–583.

[20] R. Garmanjani and L. N. Vicente, Smoothing and worst-case complexity for direct-
search methods in nonsmooth optimization, IMA J. Numer. Anal., 33 (2013), pp. 1008–
1028.

[21] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications
to the geometry of banach spaces, Mathematics of the USSR-Sbornik, 64 (1989), pp. 85–
96.

[22] S. Gratton, A. Sartenaer, and P. L. Toint, Recursive trust-region methods for
multiscale nonlinear optimization, SIAM J. Optim., 19 (2008), pp. 414–444.

[23] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization
Algorithms I, Springer-Verlag, Berlin, 1993.

[24] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New
perspectives on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[25] P. Kosmol and D. Müller-Wichards, Optimization in Function Spaces: With
Stability Considerations in Orlicz Spaces, De Gruyter, Berlin, 2011.

[26] D. Luenberger, Introduction to Linear and Nonlinear Programming, Addison Wesley,
Dordrecht, second ed., 1984.

58

Bibliography

[27] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput.
J., 7 (1965), pp. 308–313.

[28] Y. Nesterov, Introductory Lectures on Convex Optimization, Kluwer Academic Pub-
lishers, Dordrecht, 2004.

[29] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE
Discussion Papers 2007076, Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE), 2007.

[30] Y. Nesterov, Random gradient-free minimization of convex functions, Tech. Report
2011/1, CORE, 2011.

[31] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton’s method and its
global performance, Math. Program., 108 (2006), pp. 177–205.

[32] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, Berlin,
second ed., 2006.

[33] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, New York, 1970.

[34] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[35] K. E. Tikhomirov, On the distance of polytopes with few vertices to the Euclidean
ball, tech. report, 2014.

[36] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7
(1997), pp. 1–25.

[37] L. F. Tóth, Regular Figures, Pergman Press, London, 1964.

[38] L. N. Vicente, Worst case complexity of direct search, Euro J. Comput. Optim., 1
(2013), pp. 143–153.

[39] L. N. Vicente and A. L. Custódio, Analysis of direct searches for discontinuous
functions, Math. Program., 133 (2012), pp. 299–325.

59

