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Abstract 
 

Inflammatory Bowel Diseases (IBD) are a group of chronic inflammatory diseases 

of the gastrointestinal tract with a high degree of incidence worldwide. Nowadays, a 

specific treatment of IBD is still not available and the most currently drugs used in its 

treatment are associated with significant side effects that limit their use. The lack of 

effectiveness and the adverse effects of standard therapies have increased the need 

for searching new treatment strategies that combine efficacy and safety. 

Dietary polyphenols have been shown to exert beneficial effects on human health 

but the underlying mechanism are still a matter of controversy. Initially though to be 

antioxidants in vivo, because of extensive biotransformation and poor bioavailability, 

it is now widely accepted that this is an unlike activity mediating their biological 

impact. 

In fact, it has been shown that the anti-inflammatory effect of polyphenols 

(among others) cannot be merely explained on basis of their antioxidant capacity 

and it is now known that the redox regulation of several signal transduction 

pathways must be implied to explain their cellular effects.  

Red wine is very rich in these phenolic compounds and in the last years numerous 

studies described health-promoting effects of this beverage, including anti-

inflammatory proprieties, but the molecular mechanisms underlying its protective 

role remain largely unknown. A clear understanding of the molecular mechanisms of 

action of polyphenols is crucial in the valuation of these potent molecules as 

potential prophylactic and therapeutic agents in IBD. 

Given the fact that the gastrointestinal tract is a compartment where the dietary 

polyphenols reach high concentrations in a non-modified structure this work 

pretends to evaluate the potential anti-inflammatory effect of a red wine 

polyphenolic extract (RWE) in gastrointestinal inflammation and investigate which 

are the mechanisms involved in its anti-inflammatory action. Particularly, to 

determine if RWE have the capacity to modulate nitric oxide fluxes, activate the Nrf2 

pathway leading to the induced expression of cytoprotective genes and also affect 

the NF-‐κB pathway using cultured intestinal cell models.  

Overall, results suport that RWE have a protective effect against inflammation not 

compromising cell viability. Mechanistically, this conclusion is supported by the 

interference with cellular inflammatory pathways, inhibiting the production of 
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inflammatory mediators. In fact, RWE inhibited IκB degradation induced by TNF-α, 

partially suppressed TNF-α -induced IL-8 overproduction and prevented the iNOS 

protein expression induced by cytokines, thus leading to a significant reduction in 
●NO overproduction. RWE also reduce the levels of tyrosine nitration and alter 

occludin expression and distribution. Furthermore RWE also have an effect in the 

Nrf2 pathway increasing its translocation to the nucleus and the expression of its 

target genes. 

 

Keywords: Inflammatory Bowel Diseases; Red Wine polyphenolic extract; Anti-

inflammatory effects; Nitric Oxide; Nrf2.   
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Resumo 
	  

As Doenças Inflamatórias Intestinais (DII) são um grupo de doenças inflamatórias 

graves do trato gastrointestinal com um elevado grau de incidência na população 

mundial. Atualmente ainda não existe um tratamento específico para DII e os 

fármacos mais frequentemente usados no seu tratamento estão associados a efeitos 

adversos significativos que limitam o seu uso. A falta de efetividade e os efeitos 

adversos das terapias atuais têm aumentado a necessidade de procurar novas 

estratégias terapêuticas que combinem eficácia e segurança. 

Os polifenóis da dieta têm vindo a demonstrar exercer efeitos benéficos para a 

saúde humana mas os mecanismos moleculares subjacentes são ainda tema de 

controvérsia. Inicialmente pensava-se que estes compostos atuassem como 

antioxidantes in vivo mas devido à sua extensa biotransformação e reduzida 

biodisponibilidade é agora aceite que o seu impacto biológico não se deve 

meramente a esta característica.  

De facto, foi provado que os efeitos anti-inflamatórios (entre outros) dos 

polifenóis não podem ser somente explicados pela sua capacidade antioxidante e 

sabe-se agora que a regulação redox de várias vias de transdução de sinal devem 

estar implicadas na explicação dos seus efeitos celulares.  

O vinho tinto é muito rico nestes compostos e nos últimos anos numerosos 

estudos descreveram efeitos benéficos para a saúde tais como propriedades anti-

inflamatórias, no entanto os aspectos fundamentais dos mecanismos de ação 

moleculares subjacentes à sua ação protetora permanecem ainda por  esclarecer. 

Uma clara compreensão dos mecanismos moleculares de ação dos polifenóis é 

crucial na validação destas promissoras moléculas como potenciais agentes 

profiláticos e terapêuticos em DII.  

Dado que o trato gastrointestinal é um compartimento em que os polifenóis da 

dieta atingem concentrações elevadas numa estrutura não-modificada, este trabalho 

pretende avaliar o potencial efeito anti-inflamatório de um extrato polifenólico de 

vinho tinto (EVT) na inflamação gastrointestinal e investigar quais os mecanismos 

envolvidos neste efeito. Particularmente determinar se os EVT possuem a capacidade 

de modular fluxos de óxido nítrico, ativar a via do Nrf2 levando à indução da 

expressão de genes citoprotetivos e também afectar a via do NF-‐κB usando um 

modelo de células intestinais, as células HT-29.  
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Globalmente, os resultados demonstram que os EVT possuem um papel protetor 

contra a inflamação não comprometendo a viabilidade celular. Esta conclsuão é 

mecanisticamente suportada pela intereferência com vias celulares de inflamação. 

De facto, o EVT inibiu a degradação de IκB induzida por TNF-α, suprimiu 

parcialmente a sobreprodução de IL-8 e preveniu a expressão de iNOS induzida por 

citocinas o que levou a uma significativa redução da sobreprodução de ●NO. O EVT 

também diminui os níveis de nitração de tirosina e a expressão de ocludina foi 

reduzida e alterada. Para além disso EVT também afectam a via de sinalização do 

Nrf2 aumentando a sua translocação para o núcleo e aumentando a expressão dos 

seus genes alvo.  

 

Palavras-chave: Doenças inflamatórias intestinais; Extratos polifenólicos de vinho 

tinto; Efeitos anti-inflamatórios; Óxido Nítrico; Nrf2.  
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Chapter 1: Introduction  
 

1.1 - Inflammatory Diseases of the Gastrointestinal 
Tract 
 

Inflammatory diseases of the gastrointestinal (GI) tract comprehend a great 

variety of illnesses with different symptoms and manifestations in the different parts 

of the GI tract. Gastrointestinal inflammation influences the function of the mucosal 

layer that lies closest to the luminal contents and also alters the ability of the mucosa 

to resist injury and its capacity to undergo repair once injury has occurred (Wallace 

J. L. et al, 2001). 

 

1.1.1 - Inflammatory Bowel Diseases  
 

 -Definition and etiology 
 

Inflammatory bowel diseases (IBDs) are a group of chronic inflammatory diseases 

of the gastrointestinal tract which major forms are ulcerative colitis and Crohn’s 

diseases that have been well characterized by clinical, pathological , endoscopic and 

radiological features (Xavier R. J. et al, 2007). These diseases are characterized by a 

deregulated synthesis and release of a variety of proinflammatory mediators, 

including cytokines, reactive oxygen species (ROS) and nitric oxide (●NO), resulting 

in a disruption of epithelial barrier, excessive tissue injury and persistent 

inflammatory state (Scaldaferri F. et al, 2007).  

The etiology of IBD remains unclear but is thought to involve a combination of 

environmental, genetic and imunobiological factors. Both ulcerative colitis and 

Crohn’s diseases are polygenic diseases, genome-wide scans have identified multiple 

genes that contribute to diseases susceptibility. Genetic factors discovered to date 

affect barrier function and innate and adaptive immunity (Xavier R. J. et al, 2007).  

The onset of IBD typically occurs in the second and third decades of life. The 

existent data suggest that the worldwide incidence rate of ulcerative colitis varies 

greatly between 0.5–24.5/100,000 persons, while that of Crohn’s disease varies 

between 0.1–16/100,000 persons worldwide, with the prevalence rate of IBD 
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reaching up to 396/100,000 persons (Lakatos P.L., 2006). This group of diseases 

compromise severely the life quality of patients and could also be a risk factor to the 

development of other pathologies such as colorectal cancer. 

-Major forms 
 

Ulcerative colitis  

Ulcerative colitis is a relapsing, non-transmural inflammatory disease restricted to 

the colon. It is characterized by severe inflammation and concomitant production of 

a complex mixture of inflammatory mediators with the development of extensive 

superficial mucosal ulceration. Histopatological features include the presence of a 

significant number of neutrophils within the lamina propria and the crypts where 

they form micro-abscesses (fig.1). Depletion of goblet cell mucin is also common 

(Baumgart D. C. et al, 2007).  

 

Crohn’s disease 

Crohn’s disease is a relapsing transmural inflammatory disease of the 

gastrointestinal mucosa that can affect the entire gastrointestinal tract. Usual 

presentations include the discontinuous involvement of various portions of the 

gastrointestinal tract and the development of complications including strictures, 

abcesses or fistulas. This disease is characterized by aggregation of macrophages 

that frequently form non-caseating granulomas (fig. 1) (Baumgart D. C. et al, 2007). 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1: “Histologic hallmarks of IBD: clues to immunopathogenesis. Left panel, Crohn’s 
disease—biopsy from a terminal ileum with active disease. The figure illustrates a discrete 
granuloma composed of compact macrophages, giant cells and epithelioid cells. Surrounding 
the nodule there is marked infiltration of lymphoid cells, plasma cells and other inflammatory 
cells, but there is no necrosis. Right panel, Ulcerative colitis—colonic mucosal biopsy taken 
from a patient with active disease. The crypt abscess is composed of transmigrated 
neutrophils and the surrounding epithelium exhibits features of acute mucosal injury” (Xavier 
R. J et al, 2007). 
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1.1.2 - The intestinal barrier in IBD 
 

The intestinal barrier is a dynamic and complex structure that ensures the 

intestinal homeostasis separating the intestinal contents from the host tissues, 

regulating the nutrient absorption and allowing interactions between the resident 

bacterial flora and the mucosal immune system. This barrier is composed by a thick 

mucus layer containing antimicrobial products, intestinal epithelial cells (IECs) and an 

underlying set of cells (mesenchymal cells, dendritic cells, lymphocytes and 

macrophages) (Roda G. et al, 2010). 

 

Mucus layer 
 

The mucus layer is synthesized by goblet cells and it is composed of a large and 

complex variety of molecules. It acts as a chemical barrier preventing pathogen 

invasion. The viscosity of the mucus given by the presence of glycosylated mucins 

and trefoil factors (TFFs) is the most important feature in the protection of the 

mucosa. Other constitutive elements of the mucus are secretory immunoglobulins 

produced by B-lymphocytes, antimicrobial peptides, such as defensins and lectins, 

secreted by Paneth cells, antimicrobial protease inhibitors synthesized by epithelial 

cells and enterocyte hydrophobic phospholipids. In IBD is observed a decrease in the 

mucus viscosity with reduction of TFFs and the thinning of the mucus layer what 

leads to a lessened capability of the mucus layer to limit antigenic traffic and 

bacterial translocation in the lamina propria (Roda G. et al, 2010). 

 

Epithelial junctions 
 

The intestinal permeability is regulated through the epithelial junctions consisted 

by desmosomes, adherent junctions (AJs) and tight junctions (TJs). They are 

necessary for maintenance of intercellular adhesion and regulation of paracellular 

transport being responsible to limit the access of microbes to host tissues and to 

mediate the antigenic traffic from the lumen to the lamina propria where they are 

processed, presented and eliminated (Roda G. et al, 2010).  

Impairment of the tight junctions seems to have higher impact in IBD 

pathogenesis (Clayburgh D. et al, 2004). Tight junctions consist of a complex 

structure composed by different proteins such as transmembrane proteins like 
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occludin and proteins of the claudin family and cytoplasmic peripheral membrane 

proteins like ZO (zonula occludens)-1,2 and 3 (Clayburgh D. et al, 2004). 

Recent studies have showed that elevated levels of proinflammatory cytokines, 

observed in IBD, induce expression alterations of some proteins like claudin and 

ocludin and reorganization of others what leads to an impairment of tight junctions 

and consequently loss of barrier function (Zeissig S. et al 2007; Mankertz J. et al, 

2000).  

 

Defensins  
 

Defensins are antimicrobial peptides produced by the intestinal mucosa that 

contribute to maintaining host immunity and protect from pathological flora. 

Defensins causes micropores in bacterial membranes what leads to the lost of 

pathogen integrity and consequent antimicrobial activity (Clayburgh D. et al, 2004). 

In IBD there is a deficiency in the defensin expression but if it is one of the 

causes or a consequence of the disease is yet to be known (Clayburgh D. et al, 

2004). 

 

Intestinal epithelial cells (IECs) 
 

Intestinal epithelial cells can be considered important immunoeffector cells with 

the capacity to release cytokines, chemokines, and other molecules involved in 

antigen presentation and immune defence.  

It is known that the innate immune system is able to recognize a limited set of 

conserved bacterial and viral motifs, pathogen-associated molecular patterns 

(PAMPs), through pattern recognition receptors (PPRs). The Toll-like receptor (TLR) 

and the nucleotide-binding oligomerization domain (NOD) are families of PPRs. IECs 

express several members of the TLR family (TLR 1,2,3,4,5) which recognize specific 

PAMPs and activate signal transduction through the NF-κβ pathway (Yamamoto-

Furusho J. et al , 2007). 

Recognition by TLRs protects against pathogens and is carefully regulated to shut 

down a proinflammatory response to comensal organisms. Alterations of TLRs 

expression and polymorphisms have been described in IBD causing amplification of 

inappropriated immune responses (Yamamoto-Furusho J. et al , 2007). 
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IEC also secrete proinflammatory cytokines like interleukin-6 and and in the last 

ten years research groups have discovered that they also secrete cytokines that 

regulate inflammation with chemoattractant proprieties for leukocytes and 

neutrophils (chemokines) and more recently have also shown that the cells also 

secrete chemokines for monocytes and lymphocytes (Stadnyk A. W.,2002). 

IECs are also involved in the antigen presentation activating subsets of T-cells 

with regulatory function and they cross talk with mucosal lymphocytes.  

 

In IBD during acute inflammatory episodes, the mucosal lining displays a 

characteristic inflammatory infiltrate of mast cells, lymphocytes, macrophages and 

activated neutrophils. Elevated levels of effector immune cells such as activated 

CD4+ and CD8+ cytotoxic T cells, cytolytic intraepithelial lymphocytes and perforin 

and granzyme-containing T-cells has been linked with damage of the epithelial gut 

mucosa in IBD (Neuman M. G., 2004) The figure below summarizes the alterations 

observed in IBD (fig.2).  

 

 

 

 

 

 

 

 
 

	  

 

	  

 

 

	  

	  

	  

	  

	  

Figure 2: The epithelial barrier 
system. A: Normal epithelial 
barrier; B: Inflammatory bowel 
disease (IBD) epithelial barrier. 
TLR: Toll-like receptors; MyD88: 
myeloid differentiation factor 88; 
TJ: Tight junctions (Roda G. et al, 
2010). 
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1.1.3 - IBD established and evolving therapies  
 

Nowadays, a specific causal treatment of IBD is still not available and the most 

currently drugs used in its treatment, particularly immunosuppressants and 

imunomodulators, are associated with significant side effects. The lack of 

effectiveness and the adverse effects of standard therapies have increased the need 

for the search of a new treatment that combines efficacy and safety. Patients often 

resort to the use of complementary and alternative medicines, particularly herbal 

therapies, with promising results (Rahimi R. et al, 2009). 

During the last years, dietary polyphenols have been a focus of intensive research 

mainly directed to its antioxidant activity in the context of prevention of oxidative 

stress-induced diseases. More recently, alternative pathways for their health-

promoting effects have been proposed, namely the modulation of signalling 

pathways in connection with physiological and pathophysiological conditions such as 

inflammatory processes.  

An important source of polyphenols is wine, particularly red wine. In the last years 

numerous studies described health-promoting effects of polyphenols such as 

antibacterial, antifungal, antiviral, antineoplastic, hepatoprotective, 

immunomodulating and anti-inflammatory proprieties, however fundamental aspects 

of molecular mechanisms underlying their protective role remain unknown. A clear 

understanding of the molecular mechanisms of action of polyphenols is crucial in the 

valuation of these potent molecules as potential prophylactic and therapeutic agents 

in IBD. 
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1.2 – Polyphenols 
 

1.2.1- Overview 
 
Polyphenols are present in a wide variety of fruits, vegetables and beverages like tea 

and wine. They have been regarded as antioxidants, preventing the deleterious 

effects of oxidants and free radicals but more recently they are also recognized as 

modulators of cell signaling and inflammation (Rahman I. et al, 2006, Laranjinha J. 

et al, 2010; Laranjinha J. et al, 2001 ). 

 

There are over 8000 structural variants of polyphenols but all these compounds 

have in common aromatic ring(s) bearing one or more hydroxyl moieties and its 

structure varies from simple molecules, like phenolic acids, to highly polymerized 

compounds, such as condensed tannins. They can be divided into at least 10 

different classes based upon their chemical structure (Bravo L., 1998), being 

flavonoids the most widely distributed group of plant polyphenols The most common 

structure of flavonoids is two aromatic rings linked through three carbons that 

usually form an oxygenated heterocycle (Rahman I. et al, 2006).  

In figure 3 the hydroxyl group in the B ring (R4’ replaced by a H atom) gives the 

polyphenol the capacity to participate in redox reactions by donating the H atom, 

yielding a stable o-semiquinone radical due to the charge delocalization between the 

aromatic rings, particularly when there is a double bond in the position 2:3 of ring C. 

 

 

 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure 3 -General structure and numbering pattern for common food flavonoids. For most 
food flavonoids, R4’=H, R5=OH and R6=H. Exceptions include, biochanin A, R4’=CH3; 
formononetin, R4’=CH3, R5=R6=H; glycitein, R5=H, R6=OH; and hesperitin, R4’=CH3. 
Additional individual flavonoids within each subclass are characterized by unique functional 
groups at R3, R3’, and R5’ (Beecher G., 2003). 
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1.2.2 – Naturally occurring polyphenols in wine 
 

Wine is an alcoholic beverage that contains a large amount of different 

polyphenols extracted from grapes during the process of vinification. In fact, red 

wine is one of the most abundant sources of polyphenols (Medic-Saric M. et al, 

2009). Phenolic compounds in grapes and wines belong to the following major 

classes: stilbenes, flavan-3-ols, flavonols, anthocyanins, hydroxybenzoic acids, 

procyanidins and hydroxycinnamic acids (Rodrigo R. et al, 2010) (table 1). The 

phenolic composition of the wine is not only dependent of the grape variety from 

which is made but also on some external factors such as climate and winemaking 

technology. 

 

Table 1- Wine polyphenolics chemical classification in decreasing content order (Rodrigo R. et 
al, 2010). 
 

Category 
 

Compound 
 

Flavonols 
 

Quercetin 
Myricetin 

Kaempferol 
Isorhamnetin 

Anthocyanins 
 

Cyanidin 
Malvidin 
Petunidin 
Delphindin 
Peonidin 

Pelargonidin 

Hydroxycinnamic acids 
 

Caffeic 
Ferulic 

p-coumaric 
Chlorogenic 

Hydroxybenzoic acids 
 

Gallic 
Ellagic 

Protocatechic 
Vanillic 
Syringic 

3,4-dihydrohybenzoic 
p-hydroxybenzoic 

Flavanols 
(+)-catechin 

(-)-epicathechin 

Stilbenes 

Resveratrol 
Piceid 

Procyanidins 
 Procyanidins A2, B1, B2, B3, B4 
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1.2.3- Absorption, bioavailability and metabolism of 
polyphenols 
 

The biological effects of polyphenols are of course dependent on their 

bioavailability that differs within each and every polyphenol. The chemical structure 

of the compound more than concentration determines the rate and extent of the 

absorption and the nature of the metabolites circulating in the plasma.  

Polyphenols are at least partially absorbed through the gut barrier and the 

quantities of polyphenols found intact in urine vary from one polyphenol to another 

(Scalbert A. et al, 2002). The polyphenol structure has a major impact on intestinal 

absorption.  

Most polyphenols are present in food in the form of esters, glycosides or polymers 

that cannot be absorbed in their native form. Therefore, before absorption they are 

hydrolysed by intestinal enzymes or by colonic microflora (Scalbert A. et al, 2002).  

Once absorbed polyphenols undergo extensive modification; they are conjugated 

by methylation, sulfation and/or glucuronidation (D’Archivio M. et al, 2007). Then the 

metabolites circulate in the blood bound to plasma proteins particularly albumin. 

Additionally, the bioavailability of polyphenols is reported to be low due to their low 

absorption and rapid elimination by urine and bile.  
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1.2.4- Polyphenols and cellular signaling 
 

In the last decades polyphenols have been the subject of an extensive research 

due to their observed biological effects in vitro such as free-radical scavenging, metal 

chelating properties and enzyme modulation abilities. 

Earlier studies on polyphenols have viewed these compounds only from the 

perspective of antioxidants, however many other effects of polyphenols such as anti-

inflammatory, anti-tumor, anti-atherogenic abilities could not be explained solely on 

the basis of their antioxidant properties. The extensive modifications that 

polyphenols undergo compromises their antioxidant properties but not their 

biological effects.  More recent investigations showed that polyphenols may not 

merely exert their effects as free radical scavengers but may also modulate cellular 

signaling processes or may themselves serve as signaling agents (Laranjinha J. et al, 

2010) 
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1.3- Polyphenols and inflammation 
 

1.3.1- Basic tenets of Inflammation 
 

Inflammation is a part of the nonspecific immune response that occurs in reaction 

to any type of bodily injury. It is a protective attempt by the organism to remove the 

injurious stimuli and to initiate the healing process.  

The defining clinical features of inflammation are redness, warmth, swelling and 

pain that can be explained by increased blood flow, elevated cellular metabolism, 

vasodilatation, release of soluble mediators, extravasation of fluids and cellular 

influx. 

Inflammation can be classified as either acute or chronic. In normal conditions 

inflammation is a self-limiting process but in some disorders the inflammatory 

process becomes continuous and consequently chronic inflammatory diseases 

develop. 

The two kinds of inflammation have very specific characteristics: acute 

inflammation is characterized by infiltration of innate immune system cells, 

specifically neutrophils and macrophages while infiltration of T lymphocytes and 

plasma cells are features of chronic inflammation (Ferrero-Milani L. et al, 2007). 

Monocytes/macrophages play a central role in both.  
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1.3.2- Molecular mechanisms of polyphenols as anti-
inflammatory agents 
 

 There is convincing epidemiological and experimental evidence that dietary 

polyphenols have anti-inflammatory activity (Middleton E. et al, 2000). The detailed 

and particular mechanisms by which each polyphenol induces an anti-inflammatory 

action remain to be elucidated. However it is now known that these natural 

compounds can work as modifiers of signal transduction pathways to elicit their 

beneficial effects exerting anti-inflammatory activity by modulation of pro-

inflammatory gene expression such as cyclooxygenase, lipoxygenase, nitric oxide 

synthases and several pivotal cytokines mainly by acting through nuclear factor-

kappa B (NF-‐κB) and mitogen-activated protein kinase (MAPK) signalling (Santangelo 

C. et al, 2007).  

An additional explanation is that polyphenols can modulate the activity of redox 

pathways and its components in a cell during normal and pathophysiological 

conditions, particularly acting on Nrf 2 (Nuclear factor erythroid 2- related factor 2) 

(Rahman I. et al, 2006).  

It is important to note that the gastrointestinal tract is a compartment where the 

concentration of the dietary polyphenols might achieve its higher concentration in 

the body in an unmodified state and, therefore, where it might be expected 

polyphenol-dependent cellular modulatory processes via Nrf2, NF-κB and nitric oxide 

metabolism. 
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1.4- Nitric oxide 
	  

1.4.1- Nitric oxide: characteristics, chemistry and 
biosynthesis  

 

-Characteristics  
	  

In the past few decades the interest and research about nitric oxide (●NO) have 

been growing. It was first discovered in the eighties when several groups of 

researchers were trying to identify the endothelium derived relaxing factor (EDRF) 

(Furchgott R. et al, 1980;  Ignarro et al, 1987; Palmer R. et al, 1987).  

Nowadays, ●NO is recognized as a versatile cellular modulator involved in a wide 

variety of physiological and pathological events such as immunitary response, 

vasodilation and neuromodulation. 
●NO is a peculiar radical species in many aspects, despite its extremely complex 

and diverse biological activity it is a simple molecule containing one nitrogen atom 

covalently bonded to an oxygen atom with one unpaired electron. It is one of the 

few gaseous signaling molecules and being a small hydrophobic molecule it can cross 

cell membranes without the help of channels or receptors as readily as molecular 

oxygen and carbon dioxide. ●NO is capable of penetrate rapidly across cell 

membranes and diffuses through considerable distances which means that it can 

affect a great number of biological processes.  

 

-The chemistry of ●NO  
 

●NO has a very rich chemistry, despite not being a highly reactive compound it 

can react with several chemical species. To better understand its complex chemistry 

we can divide the effects that involve ●NO in direct and indirect (figure 4).  

Direct effects results from direct reactions between ●NO and specific biological 

molecules (metal centers and radical species). These effects predominate at lower 

concentrations. 

The reactions between ●NO and metal complexes can be classified in three types: 

(1) the direct reaction of ●NO with a metal center, (2) ●NO redox reaction with 

dioxygen metal complexes and (3) reduction of oxo-metalic complexes (Wink D. and 

Mitchell J., 1998). The reactions of NO with heme-iron containing proteins are the 
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most physiologically relevant and include the reaction with soluble guanylate cyclase 

(sGC) (Frieb A. et al, 2003), which plays an important role in neuromodulation and 

vasodilation.  
●NO can also react with other radical species like carbon-centered radicals, lipid 

radicals and nitrogen dioxide (Wink D. and Mitchell J., 1998). 

The indirect effects are defined as those resulting from the reactions of RNS, 

derived from ●NO, with various biological targets. These effects predominate at 

higher concentrations and usually result in nitroxidative stress. Usually, this involves 

the reaction of ●NO oxygen or with the superoxide radical (O2
●

−) ultimately forming 

products that are responsible for nitrative and nitroxidative stress with toxic effects 

in the cells.  

In fact, most of the deleterious effects assigned to ●NO are supported  by its 

reaction with O2
●

− to produce peroxynitrite (ONOO
-
) in a diffusion-controlled reaction 

(k=1.9x1010 M-1s-1). ONOO
-
 acts as a powerful oxidant and nitrating agent modifying 

proteins, lipids and nucleic acids. 

One important modification of proteins induced by ONOO
-
 is the formation of 

nitrotyrosine. The nitration of protein tyrosine residues to 3-nitrotyrosine is one of 

the molecular footprints left by the reactions of RNS with biomolecules (Radi R., 

2004). This post-translational modification can alter protein function and it´s being 

associated with acute and chronic diseases and can be a predictor of disease risk 

(Radi R., 2004). Despite the existence of repair mechanisms and the presence of in 

vivo reductants like GSH and the small fraction of nitrated proteins when compared 

to the total tissue protein, nitration can be focused on specific tyrosines resulting in 

modifications, encompassing loss or gain of protein function (Radi R., 2004). One 

example of the biological significance of protein tyrosine nitration is the loss of 

enzyme activity of the manganese superoxide dismutase (MnSOD) when nitrated by 

peroxynitrite in Tyr-34. Nitrated and inactivated MnSOD is found in both acute and 

chronic inflammatory processes (MacMillan-Crow L. et al, 1996). 
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Figure 4- Chemical biology of nitric oxide: direct and indirect effects. Adapted from Wink D. 
and Mitchlell J., 2001.  
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-●NO Biosynthesis 
 

The biosynthesis of nitric oxide can occur in two different ways: enzymatic and 

non-enzymatic. 

 Nitric oxide synthase (NOS) had been considerate the primary source of ●NO in 

biological systems but there is also the contribution of enzyme-independent ●NO 

generation. 

 

Enzymatic ●NO biosynthesis 

 

Three distinct isoforms of NOS have been identified: inducible NOS (iNOS), 

endothelial NOS (eNOS) and neuronal NOS (nNOS). They are products of three 

distinct genes with different localization, regulation, catalytic proprieties and inhibitor 

sensitivity (Alderton W. et al, 2001). eNOS and nNOS are constitutively expressed 

and their activities are regulated by intracellular calcium concentrations via 

calmodulin. The function of iNOS is not affected by intracellular calcium 

concentrations because iNOS is bound to calmodulin even under resting intracellular 

calcium concentration. While eNOS and nNOS produce low fluxes of ●NO for short 

periods of time, iNOS produces higher ●NO levels for long periods of time. 

 

Structure of the NOS 

In their active form NOS are dimeric and each monomer is associated with a 

calmodulin (CaM), they also contain relatively tightly-bound cofactors like (6R)-

5,6,7,8-tetrahydrobiopterin (BH4), FAD, FMN and iron protoporphyrin IX (haem) 

(Alderton W. et al, 2001). 

The NOS structure can be divided in two distinct domains: oxygenase domain and 

reductase domain. 

The N-terminal oxygenase domain contains biding sites for haem, BH4 and L-

arginine and it’s linked by a CAM-recognition site to a C-terminal reductase domain 

that has binding sites for FAD, FMN and NADPH (Alderton W. et al, 2001).  

 

Reactions catalysed by NOS 

The synthesis of ●NO requires L-arginine, NADPH and oxygen as substrates and 

the presence of other coenzymes/cofactors, as well as the presence of CaM. 
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Citrulline, NADP and ●NO are the products of the overall reaction (Knowles R. et al, 

1994). 

In this reaction electrons are donated by NADPH to the reductase domain of the 

enzyme and proceed via FAD and FMN redox carriers to the oxygenase domain. In 

this domain they interact with the haem iron and BH4 at the active site to catalyse 

the reaction of oxygen with L-arginine, generating citrulline and ●NO as products. 

The electron flow through the reductase domain requires the presence of bound 

Ca2+/CaM (figure 5).  

 

 

 

 

 
 
 
 

 

 

Figure 5-Overall reaction catalysed and cofactors of NOS (Alderton W. 2001). 
 

Regulation of NOS 

NOSs are probably one of the more regulated enzymes in nature. Due to the wide 

variety of physiological roles of these enzymes regulation is complex. Activity, 

expression and localization are regulated by protein-protein interactions, alternative 

mRNA splicing and covalent modifications (Alderton W. et al, 2001). 

The regulation of NOS activity is done by CaM, calcium, phosphorylation, protein 

inhibitor of NOS (PIN) and heat-shock protein 90 (Hsp90).  

 
 
Table 2- Regulation of NOS (adapted from Alderton W. et al, 2001 ). 
 

 

  

Type of regulation 
 

nNOS eNOS iNOS 

Alternate mRNA splicing Yes Not reported Yes 
Protein-protein 
interactions 

CaM/Ca2+, PDZ 
domains, PIN, caveolin-
1, Hsp90 

CaM/Ca2+, caveolin-1 
and -3, Hsp90, ENAP-1 

CaM/Ca2+, kalirin 

Covalent modifications Phosphorylation Myristoylation, 
palmitoylation, 
phosphorylation 

Not yet reported 
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Non-enzymatic ●NO biosynthesis 
 
A few years ago the inorganic anions nitrate (NO3 -) and nitrite (NO2 -) were 

thought to be inert and products of endogenous nitric oxide metabolism. However it 

is now known that they can be an alternative source of ●NO to the classical L-

arginine- ●NO - synthase pathway particularly in hypoxic states (Lundberg J. et al, 

2008).	  
Nitrate is present in several dietary sources like green leafy vegetables (lettuce, 

spinach) and nitrite appears majorly in cured meat and cereals, but the major source 

of nitrite is the reduction of nitrate in the oral cavity by commensal bacteria 

(Lundberg J. et al, 2008).	  
Under highly acidic conditions, which occur in the stomach, nitrite yields ●NO and 

other reactive nitrogen species (Zweir J. et al, 1999). 	  

	  

This equilibrium can be represented by the following reactions:	  
NO2

– + H+ ⇆ HNO2      (1) 
2HNO2⇆•NO +•NO2 + H2O    (2) 
•NO + •NO2 ⇆ N2O3

-    (3) 
 
 	  
●NO will leave the aqueous phase of the stomach being present in the expelled 

air. Measurements of ●NO in the expelled air can be used as a non-invasive method 

for estimation of gastric acidity (Lundberg J. et al, 1994).	  
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1.4.2- ●NO and inflammation 
	  
●NO is called a “double-edge-sword” or “Jekyll and Hide” because it can trigger 

pro- or anti-inflammatory effects. The apparent inconsistence could be explained by 

the multiple cellular actions of this molecule and the level and site of ●NO production. 

Products based in ●NO and not ●NO directly are responsible for the opposite effects.  

 

- Anti-inflammatory effects 
	  

In small amounts ●NO have been shown to exert anti-inflammatory activities. 

Several studies demonstrate that this molecule confers anti-adhesive proprieties to 

the endothelium inhibiting the adhesion of leucocytes (Kubes P. et al, 1991), 

decrease P-selectin expression by platelets, platelet adhesion, aggregation and 

microvascular thrombosis, reduce mast cell degranulation, lymphocyte proliferation 

and oxidant production by phagocytes and also can down-regulate macrophage 

cytokine production. All this effects reduce the inflammatory response and inhibit its 

progression (Clancy R.et al, 1998). 

 

- Pro-inflammatory effects 
	  

An excessive inflammatory cytokine production is responsible for the induction of 

iNOS, which produces large amounts of ●NO (Clancy R. et al, 1998). An increased 

production of ●NO has been implicated in diseases such as sepsis (Petros A. et al, 

1991) and ulcerative colitis (Middleton S. et al, 1993). For that reason increased ●NO 

overproduction is a reflection of an immune-activated state in which inflammatory 

cytokines and other mediators have up-regulated iNOS in diverse tissues. 

Large amounts of ●NO produced by cells in response to cytokines can destroy host 

tissues and impair cellular responses. The indirect effects of ●NO, described 

previously, are specially implicated in these pro-inflammatory effects: the formation 

of reactive nitrogen species such as peroxynitrite triggers toxic events that culminate 

in citotoxicity and nitration and nitrosation of several residues in diverse 

proteins,affecting their function (ex. iron-sulfur containing enzymes, disruption of 

mitochondrial respiration) (Clancy R. et al, 1998).  
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1.4.3 - ●NO in the gastrointestinal tract 
 

Besides the cellular effects in the inflammation this radical also have tissue effects 

in the gastrointestinal tract. ●NO has an effect on gastrointestinal secretion, 

permeability and blood flow (Lanas A., 2008). 

Mucus and epithelial cell fluid contribute to gastrointestinal defense by acting as a 

physical barrier to damage caused by microbes, toxins and irritants and contributing 

to the protection of the epithelium from damage caused by acid and pepsin.  The 

production of these fluids is enhanced by ●NO (Sharma J. et al, 2007). 
●NO , acting as a vasodilator, actuate in the microcirculation increasing mucosal 

blood flow. This fact results in the buffering of acid, dilution of toxins and stimulation 

of angiogenesis, all this effects are critical in mucosal protection (Bjorne H. et al, 

2004). 
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1.5 - Nuclear factor-kappa B (NF-κB) 
 

1.5.1- Overview 
 

NF-‐κB is a pleiotropic transcription factor that plays a critical role in diverse 

cellular processes associated with proliferation, cell death, inflammation, as well as 

innate and adaptative immune responses. The NF-‐κB signalling pathway has been 

implicated in the pathogenesis of several inflammatory diseases including IBD 

(Rogler G. et al, 1998). It was first identified twenty years ago regulator of 

expression of the κΒ light chain in B cells and target of vast research ever since.  

In mammals the NF-‐κB family is constituted by five members, these include p65 

(also called RelA), c-Rel, RelB, p50 and p52. These subunits only exist as homo or 

heterodimers in resting cells and all of them have a Rel homology domain (RHD) 

containing a nuclear localization sequence (NLS) involved in dimerization, sequence-

specific DNA binding and interaction with the inhibitory IκB proteins (Hayden M. et 

al, 2008).  

A large number of physiological stimuli are known to activate NF-‐κB (e.g. bacterial 

and viral products, pro-inflammatory cytokines, cellular receptors and ligands), which 

in turn activates an equally large number of target genes (e.g. chemokines, immune 

receptors, adhesion molecules).  

 

1.5.2- Cascade and key molecules 
 

In resting conditions the majority of NF-‐κB dimers are maintained in a latent 

cytoplasmic form through binding to a member of the inhibitor of NF-‐κB (IκB) 

protein family (Verma I. et al, 1995), which includes IκBα, IκBβ, IκBε, the p100 and 

p105 precursor proteins and the atypical members Bcl-3, IκBNS and IκBς.  

The rate-limiting step in the activation of the NF-‐κB pathway is the release of the 

DNA binding subunits from de IκB proteins that act as chaperones sequestering the 

NF-‐κB into the cytoplasm. After receiving relevant stimulation that activates NF-‐κB, 

the IκB proteins are degraded and NF-‐κB is translocated to the nucleus where it acts 

as a transcription factor by binding to regulatory DNA sequences known as κB sites 

(Wan F. et al, 2010).  
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Currently there are three distinct ways by which stimuli lead to generation of free 

NF-‐κB and NF-‐κB dependent transcription: the canonical, non-canonical and the 

atypical NF-‐κB activation pathways. The majority of inducers of NF-‐κB are known to 

operate via the canonical mechanism, the non canonical is crucial for lymphoid 

organogenesis and activated by very few inducers and the atypical mechanism is 

described as a response to DNA damage by agents that cause lesions in DNA such 

UV radiation and doxorubicin (Wan F. et al, 2010). 

 

-The canonical pathway 
 

Being activated by proinflammatory signals such as cytokines, pathogen-

associated molecular patterns (PAMPs) and some danger-associated molecular 

patterns (DAMPs) the canonical pathways is particularly interesting in inflammatory 

conditions such as IBD. This signals work through different receptors belonging to 

the tumor necrosis factor (TNF) receptor (TNFR) and Toll-like receptor (TLR)-

interleukin-1(IL-1) receptor (IL-1R) superfamilies (Shih V. et al, 2011) . 

Upon receiving relevant stimulation that warrants activation of NF-κB, the IκB 

kinase (IKK) complex is activated by upstream kinases, like NIK, MEKK-1 and RIP 

through phosphorylation of specific serine residues in the activation domain of each 

IKK subunits. The IKK complex contains at least two kinases subunits (IKK1 and 

IKK2) and a non-catalytical associated modulator (called IKKγ ,NEMO or IKKAP) 

(Karin M., 1999). 

The canonical pathway is defined as being mediated by a NEMO-dependent IKK, 

in contrast with the noncanonical which doesn´t requires NEMO. 

Then the activated IKK complex phosphorylates IkB proteins on specific serine 

residues, triggering their ubiquitination and proteosomal degradation, which allows 

NF-kB translocation to the nucleus and activation of gene transcription (Wan F. et al, 

2010) (figure 6).  

  



	   35	  

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 - NF-‐κB Signaling pathways (canonical pathway) (Hayden M. et al, 2004). 

 

1.5.3- NF-kB target genes 
 

NF-‐B dimers bind to a set of related10 bp DNA sites, collectively called κB sites, to 

regulate the expression of many genes. The major classes of NF-‐κB target genes are 

cytokines and chemokines, immune receptors, adhesion molecules, stress response 

genes, regulators of apoptosis, transcription factors, growth factors, enzymes (e.g. 

collagenase and lysozyme) and cell cycle regulators (Pahl H., 1999). 
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1.6 - Nuclear factor erythroid 2- related factor 2 
(Nrf2) 
 

1.6.1- Overview 
 

Nrf2 was originally identified in 1994 during a screen for proteins that bind to the 

control region of the β- globin gene (Moi P. et al, 1994).   

This transcription factor is ubiquitously expressed in a wide range of cell types 

and tissues including liver, lung, intestine and kidney  (Moi P. et al, 1994).  It is part 

of the cap ‘n’ collar family of transcriptions factors that share a highly conserved 

basic region-leucine zipper (bZIP) structure (Moi P. et al, 1994) (figure 7). 

The basic region upstream the leucine zipper is responsible for the DNA binding 

(Jaiswal A., 2004) and the acidic region is required for transcriptional activation. 

ARE-mediated transcriptional activation involves heterodimerization of Nrf2 with 

other bZIP proteins such as Jun and small Maf (Itoh K. et al, 1997; Venugopal R. et 

al, 1998). 

 The Nrf2 binding site is a subset of the antioxidant response elements (ARE), 

ARE’s are regulatory sequences found on promotors of several detoxification genes.  

This transcription factor mediates a broad-based set of adaptive responses to 

intrinsic and extrinsic cellular stress.  

 

1.6.2-Negative regulation of Nrf2 by Keap1 
 

A cytosolic inhibitor of Nrf2 was identified in 1998 and named Keap1 (Kelch-like 

ECH-associated protein 1) (Itoh K. et al, 1999) (figure 7).   

Keap1 has two discrete structural domains. One is the double glycine repeat 

(DGR) moiety (also known as the Kelch motif), and the other is the BTB protein 

interaction domain. The DGR region binds to the Nrf2- ECH homology 2 (Neh) 

domain of the N-terminal portion of Nrf2 whereas the other portion binds with the 

actin cytoskeleton causing Nrf2 sequestration in the cytoplasm and repression of his 

activity (Itoh K. et al, 1999). Keap1 also has three additional domains: the N-terminal 

region, the intervening region that is an especially cysteine-rich region and the C-

terminal region (Jaiswal A., 2004).  
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Keap1 releases Nrf2 from sequestration during periods of oxidative stress or 

following exposure to electrophiles, The alliance between Keap1 and Nrf2 seems to 

function as a cellular redox sensor through which the activation of ARE-dependent 

genes in response to oxidative stress is regulated (Itoh K. et al, 1999). Keap1 

releases Nrf2 from sequestration during periods of oxidative stress or following 

exposure to electrophiles and after dissociation, Nrf2 translocates to the nucleus 

allowing gene transcription.  

 

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Fig. 7- Schematic presentation of various domains of Nrf2 and Keap1: NTR,N-terminal region; 
BTB,broad complex tramtrack bric-a-brac; IVR, intervening/linker region; DGR, Kelch 
domain/diglycine repeats; CTR, C-terminal region. (adapted from Kaspar J. et al, 2009) 
 

-Dissociation 
 

Multiple steps appear to be important in triggering the dissociation of Nrf2 from 

Keap1.  These events include modification of critical cysteine residues within Keap1 

and phosphorylation of Nrf2. 

Modification of Keap1 cysteines by ARE inducers is postulated to directly cause 

dissociation of the Keap1–Neh2 interaction, leading to Nrf2 nuclear accumulation. 

Dinkova-Kostova (Dinkova-Kostova A. et al, 2002) and Wakabayashi (Wakabayashi 

A. et al, 2004) studies have established the widely accepted model that electrophilic 

modification of Keap1 leads directly to dissociation of the Keap1–Nrf2 complex. 

However these studies have been performed using the murine Keap1 – Nrf2 system, 

in humans the direct disruption model is invalid, and the most reactive cysteines of 

human Keap1 are not the same as those reported for mouse Keap1 (Eggler A. et al, 

Hydrophobic	  	  	  Transcriptional	  activation	  	  	  	  	  CNC	  	  	  	  	  	  	  	  	  	  	  	  Basic	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Leucine	  zipper	  

Keap	  1	  binding	  domain	  

Nrf2	  binding	  domain	  

Cul3-‐Rbx	  1	  binding	  domain	  
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2005). Eggler study supports a model whereby electrophilic modification of Keap1 

alone does not disrupt the Keap1–Nrf2 complex (Eggler A. et al, 2005).  

Although somewhat controversial, accumulating evidence suggests that 

phosphorylation of Nrf2 is also important for dissociation of Nrf2 from Keap 1. 

Multiple kinases (ex. MAP kinases) can phosphorylate Nrf2 and alter transcription of 

Nrf2 (Yu R. et al, 2000; Zipper L. et al 2000), however phosphorylation of Nrf2 by 

some protein kinases (ex. protein kinase C (Bloom D. et al, 2003)) does not alter 

transcription but only the dissociation process. Further research is yet required to 

elucidate the mechanistic details of the electrophilic signal transduction mechanism 

of Nrf2 nuclear accumulation. 

 

-Ubiquitination 
 

Nrf2 has a short half-life, approximately 13-20 minutes, due to constitutive 

ubiquitin-proteosomal degradation (McMahon M. et al, 2003; Nguyen T. et al, 2003). 

Keap1 function as an adaptor protein in an ubiquitin-proteosome complex named 

Cul3-based E3 ligase complex. Keap1-Cul3 complexes act as Nrf2-specific E3 

ubiquitin ligases that direct Nrf2 for polyubiquitination and destruction via 

proteasome (Cullinan S. et al, 2004). 

For that reason Keap1 is responsible not only for sequestering Nrf2 but also for its 

normal proteasomal targeting and degradation. 

 

1.6.3 - Other regulatory mediators of Nrf 2 

	  
Apart from Keap1 there are other negative regulatory mediators of Nrf2 namely 

Bach 1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) and 

GSK3β/Fyn. They are very important in repressing Nrf2 downstream genes that are 

induced in response to oxidative/electrophilic stress.  

Bach 1 is a transcription repressor that belongs to the cap'n'collar type of basic 

region leucine zipper factor family (CNC-bZip) (Oyake T. et al, 1996), ubiquitously 

expressed in tissues and distant related to Nrf2.  

Bach 1 forms heterodimers with small Maf (Oyake T. et al, 1996) proteins that 

bind to the ARE (Dhakshinamoorthy S. et al, 2005) repressing gene expression.  
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Bach 1 competes with Nrf2 for binding to the ARE, which leads to the suppression of 

Nrf2 downstream genes (Dhakshinamoorthy S. et al, 2005).  

Nuclear import of Nrf2 is followed by activation of a delayed mechanism involving 

glycogen synthase kinase 3β (GSK3β), a multifunctional serine/threonine kinase, 

which controls the switching off of Nrf2 activation of gene expression. This enzyme 

phosphorylates Fyn at threonine residue(s), phosphorylated Fyn accumulates in the 

nucleus and phosphorylates Nrf2 at tyrosine 568 leading to nuclear export, 

ubiquitination, and degradation of Nrf2 (Jain A. et al, 2006; Jain A. et al, 2007). 

 

1.6.4 - Molecular mechanisms underlying Nrf2 – mediated 
transcription 

 

Into the nucleus Nrf2 can form heterodimers with a variety of transcriptional 

regulatory proteins, the complexes bind to motifs known as antioxidant or 

electrophile response elements (ARE/EpRE) located in the promoter or upstream 

promoter regions of detoxification genes.  

The partners of Nrf2 are commonly members of the activator protein-1 (AP-1) 

family such as Jun and Fos (Venugopal R. et al, 1998) or the small Maf family of 

transcriptional factors (Itoh K. et al, 1997). Jun and Fos bind ARE sequences acting 

as positive and negative regulators, respectively, of ARE gene transcription.  The 

precise role of small Maf proteins in the transactivation of ARE-containing genes 

remains yet controversial. Summarizing we can say that the Nrf2 driven transcription 

is influenced negatively or positively by the identity of the heterodimer partner. 

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Figure.8- Regulation of Nrf2-mediated transcription 
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1.6.5 - Nrf2 regulated genes 
 

The gene families affected by Nrf2, ARE-containing genes, have several 

cytoprotective actions: they can provide direct antioxidants, encode enzymes that 

directly inactivate oxidants, increase levels of glutathione synthesis and regeneration, 

stimulate NADPH synthesis, enhance toxin export through the multidrug-response 

transporters, enhance the recognition, repair, and removal of damaged proteins, 

elevate nucleotide excision repair, regulate expression of other transcription factors, 

growth factors and receptors, and molecular chaperones and inhibit cytokine-

mediated inflammation (Wakabayashi N. et al, 2010). 

 

Table 3 – Examples of Nrf2-responsive genes. Adapted from Aleksunes and Manautou 
(Aleksunes L. et al, 2007) 
 
Cellular Process Nrf2-related genes Function 
Glutathione 
Homeostasis 

Glutamate-cysteine ligase 
(Gcl) 

Catalyze formation of Υ-
glutamylcysteine 

Glutathione synthetase (GS) Catalyze addition of glycine 
to Υ-glutamylcysteine 

Glutathione-S-transferase 
(Gst) 

Conjugate glutathione to 
chemicals 

Glutathione peroxidase –
gastrointestinal (GI-GPx) 

Reduce hydrogen 
peroxidase and alkyl 
hydroperoxides 

Drug metabolism NAD(P)H quinone 
oxidoreductase 1 (Nqo1) 

Reduce quinones and 
endogenous antioxidants, 
scavenge superoxide 

UDP-glucuronosyltransferase 
(Ugt) 

Catalyze addition of 
glucuronic acid to chemicals 

Microsomal epoxide 
hydrolase (mEH) 

Hydrolyze epoxides 

Stress Response Heme oxygenase (Ho-1) Catabolize heme to carbon 
monoxide, biliverdin and 
free iron 

Iron metabolism Ferritin Sequester free iron 
Excretion/Transporters Multidrug resistance-

associated proteins (Mrp) 
Efflux chemicals across cell 
membrane 

Multidrug resistance proteins 
(Mdr) 

Efflux chemicals across cell 
membrane 
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1.6.6 - Nrf2 interactions with additional pathways 
 

Like other signalling pathways the Keap1-Nrf2 pathway does not function isolated, 

some of the protective effects may be mediated indirectly through cross talk with 

additional pathways affecting the cell fate (figure 9). Recent evidences suggest the 

existence of transcriptional cross-talk between Nrf2 and the arylhydrocarbon 

receptor, NF-‐κB , p53 and Notch pathways (Wakabayashi N. et al, 2010).  

The cross talk between Nrf2 and NF-‐κB is an area of extensive research. The NF-‐

κB pathway is involved in several processes such as inflammation, immune response, 

apoptosis and cell growth. Targets of NF-‐κB include genes classified as chemokines, 

cytokines, immunoreceptors, cell-adhesion molecules, stress-response genes, and 

regulators of apoptosis among many others. NF-‐κB was recently shown to prevent 

the transcription of Nrf2 dependent genes by reducing the availability of co-activator 

levels and promoting recruitment of a co-repressor (Liu G.H. et al, 2008).  

 

 

	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 
Fig.9- Possible means for regulation of cell survival and other cell-fate responses through 
interactions of Nrf2 with additional cell-signaling pathways, including AhR, NF-‐κB, p53, and 
Notch1. Adapted from Wakabayashi N. et al, 2010. 
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Objectives  
 

Considering that polyphenols are strong antioxidants but are also known to 

interfere in inflammatory signalling pathways and, on the other hand, Nrf2, NF-‐κB 

and •NO metabolism are potential targets for polyphenols and regulators of 

inflammatory processes, our main goal is to investigate the potential anti-

inflammatory effect of a red wine polyphenolic extract (RWE) against gastrointestinal 

inflammation by using cultured intestinal cell models. This is of biological significance 

for the prevention of chronic inflammation such as the inflammatory bowel disease. 

Confirmation of this hypothesis will provide new directions in the development of 

prevention and new treatments for reducing the extent of gastrointestinal 

inflammation.  

Specifically, we propose to:  

-‐ Evaluate the potential anti-inflammatory effect of a RWE in HT-29 cells 

screening inflammatory parameters  (activation of NF-‐κB, IL-8 production, 

iNOS induction and ●NO production).  

-‐ Evaluate if RWE could have other protective effects, including the protection 

against tyrosine nitration and modification of the occludin distribution in HT-

29 cells stimulated with cytokines. 

-‐ Investigate if RWE could activate the Nrf2 pathway in HT-29 cells and if that 

could be the molecular mechanism involved in their anti-inflammatory action. 
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Chapter 2: Materials and Methods  
 

 

2.1- Materials 
	  

HT-29 cell line was purchased from Sigma-Aldrich (St Louis, MO, USA). Red wine 

extracts were obtained by Prof. Dr. Vítor Freitas (Chemistry Department, Faculty of 

Science, University of Porto, Porto, Portugal) (see annex 1 for detaied composition), 

DMEM- Modified Eagle Medium with Glutamax (GlutamaxTM), foetal bovine serum 

and trypsin were purchased from Gibco (Grand Island, NY, USA). The enzyme-linked 

immunosorbent assay (Quantikine Immunoassay for Human IL-8) was obtained from 

R&D Systems (Minneapolis, MN, USA). Secondary monoclonal antibodies (anti-

mouse, anti-rabbit, anti-goat) conjugated with alkaline phosphatase were purchased 

from abcam (Cambridge, CB, UK), primary monoclonal antibody anti-iNOS was 

purchased from Santa Cruz (Santa Cruz, CA, USA), primary monoclonal antibody 

anti-IκB was obtained from Cell signaling,primary monoclonal antibody anti-Nrf2 was 

obtained from R&D Systems (Minneapolis, MN, USA) and primary monoclonal 

antibody anti-actin was purchased from Sigma-Aldrich (St Louis, MO, USA). Alexa 

Fluor anti-mouse and anti-rabbit IgG were obtained from Invitrogen (Carlsbad, CA, 

USA). Polyvinylidene difluoride membranes and ECF substrate were purchased from 

Amersham/GE Healthcare (Buckinghamshire, BKM, UK). All other chemicals were 

obtained from Sigma-Aldrich (St Louis, MO, USA) with the highest purity available. 
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2.2-Methods 
 

2.2.1- Cell Culture 
 

HT-29 cells are an epithelial cell line derived from human colonic adenocarcinoma 

that is able to express differentiation features characteristic of mature intestinal cells. 

Cell cultures were grown in DMEM medium without antibiotics supplemented with 

foetal bovine serum (10% vol/vol) onto 75 cm2 flasks and maintained at 37ºC, in a 

humidified atmosphere of 5% CO2. Twenty-four hours before any experiment cells 

were deprived meaning that they were washed with phosphate-buffered saline (PBS) 

and cultured in fresh medium without foetal bovine serum.  

 

2.2.2- Analysis of cell viability 
 

Cell viability was assessed using the MTT assay. The MTT assay is a colorimetric 

assay based on the reduction of the yellow dye MTT (3-(4,5 dimethylthiozol-2-yl)-

2,5-diphenyl-tetrazolium bromide) to formazan, an insoluble intracellular blue 

product, by cellular dehydrogenases (Denizot F., and R. Lang. 1986).  

In this assay cells were cultured in 24 wells plates under specific conditions, after 

that the medium was removed and cells were washed twice with PBS. Then MTT was 

added to each well (final concentration of 0,5 mg/ml) and culture plates were 

incubated for 1h at 37ºC. After the incubation, MTT was removed and 1 ml of DMSO 

was added and mixed until the formazan crystals dissolve. The extent of MTT 

reduction was measured spectrofotometrically at 540 nm in a plate reader.	   
 

2.2.3- Interleukin-8 (IL-8) analysis 
	  

Levels of IL-8 protein secreted to the medium by the HT-29 cells were determined 

by enzyme-linked immunosorbent assay (ELISA) following the manufacturer´s 

instructions.  

In this assay a monoclonal antibody against IL-8 was pre-coated onto a 

microplate, then standards and samples were added to the wells and any IL-8 

present bound to the immobilized antibody. After washing away any unbound 

substance an enzyme-linked polyclonal antibody specific for IL-8 was added to the 

wells and another wash to remove any unbound antibody-enzyme reagent was 
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preformed. Afterwards a substrate solution was added to the wells and colour 

develops in proportion to the amount of IL-8 bound in the initial step. Color 

development is then stopped and the intensity of the colour was measured at 450 

nm.  

 

2.2.4- Preparation of whole cell, cytoplasmic and nuclear 
lysates 
	  

To the preparation of whole cell lysates after the incubation under the specified 

conditions, the cells into the plates were washed twice with PBS, ressuspended in ice 

cold lysis buffer [50 mM Hepes pH 7.4, 150 mM NaCl, 2 mM EDTA, 10% (w/v) 

glycerol, 0.5% (w/v) sodium deoxycholate, 1% (v/v) Triton X-100, 1mM NaVO4, 

5mM NaF, 1 mM PMSF, 1/100 (v/v) proteases cocktail inhibitor] and maintained in 

ice for 15 minutes. Lysates were then centrifuged at 14 000 rpm for 10 minutes at 

4°C and supernatants were subsequently collected and stored at −80°C.  

To the preparation of cytoplasmic lysates cells were also washed twice with PBS, 

ressuspended in ice cold cytoplasmic extracts buffer [10mM Tris-HCl pH 7.5, 10 mM 

NaCl, 3mM MgCl2, 0,5%(v/v) Igepal, 1mM NaVO4, 5mM NaF, 1 mM PMSF, 1/100 

(v/v) proteases cocktail inhibitor], maintained in ice for 5 minutes and centrifuged at 

5 000 rpm for 5 minutes at 4ºC and supernatants were subsequently collected. To 

the preparation of nuclear lysates the pellet obtained in the last step was 

ressuspended in ice cold nuclear extracts buffer [20 mM Hepes pH 7.5, 300 mM 

NaCl, 5mM MgCl2, 0,2 mM EDTA, 1 mM DTT, 20%(v/v) glycerol, 1mM NaVO4, 5mM 

NaF, 1 mM PMSF, 1/100 (v/v) proteases cocktail inhibitor], maintained in ice for 5 

minutes and centrifuged at 14 000 rpm for 20 minutes at 4ºC and supernatants were 

subsequently collected. Cytoplasmic and nuclear lysates were stored at -80ºC.   

 

2.2.5- Protein determination 
 

The protein content of the extracts was determined by the Bio-Rad protein assay 

dye, using bovine serum albumin as the standard. This assay is based on the colour 

change of Coomassie Brilliant Blue G-250 dye in response to various concentrations 

of protein (Bradford dye-binding procedure) (Bradford M., 1976). 
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2.2.6- Western Blot 
 

Equal amount of protein present in the lysates were analysed by Western blot. 

Proteins were first denatured and then separated by SDS-PAGE (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis) at 150V The separated proteins were 

electrotransferred to a polyvinylidene difluoride (PVDF) membrane for 2 h at 200 

mA. To avoid non-specific binding, membranes were blocked for 1 h at room 

temperature with 5% (w/v) non-fat dried milk in TBS-T buffer [25 mM Tris–HCl pH 

7.6, 150 mM NaCl, 0.1% (v/v) Tween 20].  

Membranes were then incubated overnight at 4°C with primary monoclonal 

antibody (dilution 1:1 000) (anti-actin, anti-iNOS, anti-IκB, anti-Nrf2). After six 

washes of ten minutes with TBS-T, membranes were incubated with phosphatase 

alkaline-labelled secondary antibody (dilution 1:20 000) for 1.5 h at room 

temperature. Membranes were washed again six times with TBS-T. The bands were 

revealed with ECF and visualized in a Typhoon system. The images were analysed 

with the Quantity One software (BioRad). Β-actin was used as a loading control.   

 

2.2.7- Nitric Oxide production determination 
 

In aqueous solution, nitric oxide rapidly degrades to nitrite, which accumulates in 

the medium. Nitrite in the cell culture supernatants is reduced by an iodide/tri-iodide 

containing reaction mixture to nitric oxide, which is released into the gas phase.  

Then NO was measured by chemiluminescence. By this method NO reacts with 

ozone (O3)to produce nitrogen dioxide in excited state (NO2
*) which returns to the 

ground state emitting light (hv). Light emission is linearly related to the NO content 

of the sample.  

•NO + O3 → NO*
2+ O2 + hv 

 

Gas phase chemiluminescence is highly sensitive to quantify •NO and nitrosated 

compounds in biological samples with low levels of these species.  

The reaction mixture (45 mmol/L potassium iodide (KI) and 10 mmol/L iodine (I2) 

in glacial acetic acid) was kept at 56ºC in a septum-sealed reaction vessel, 

continuously bubbled with nitrogen. The outlet of the gas stream was passed 

through a scrubbing bottle containing sodium hydroxide (1 mol/L; 0°C) in order to 
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trap traces of acid and iodine before transfer into the detector (CLD 88 Eco Medics, 

Switzerland). 

 Sodium nitrite standards and sample aliquots (100 µL) are injected into the 

reaction mixture by Hamilton syringes. •NO signal output was sampled at 2 Hz. Peak 

integration is performed using the EDAQ Power Chrom software.  

 

2.2.8- Immunohistochemistry  

 
HT-29 cells were cultured in twenty-four wells plates onto glass coverslips. After 

incubation under their specified conditions, the cells were washed with PBS, fixed 

with 4% (w/v) paraformaldehyde in PBS during ten minutes and stored if needed at 

4ºC with PBS into the well. Permeabilization and blockage were made incubating the 

glass coverslips into de plates with PBS containing 0,1% of saponin and 5% of fetal 

bovine serum during 30 minutes. Subsequently, cells were incubated with the 

primary antibody, washed twice with PBS for 5 minutes and then incubated with the 

appropriated fluorescent secondary antibody. After another two washes, the glass 

coverslips were mounted in microscope slides using a mounting medium with 

PBS:glycerol (50/50) and Hoescht 33258 (5 mmg/ml).  

The stained cells that remained attached to the plates were visualized using a 

Nikon fluorescence microscope employing a suitable filter.  

 

2.2.9- Glutathione determination 
 

Concentrations of oxidized (GSSG) and reduced (GSH) forms of glutathione were 

determined using a fluorometric method described by Hissin and Hilf (Hilf P. and Hilf 

R., 1976). This method measures both, oxidized (GSSG) and reduced (GSH) 

glutathione using o-phthalaldehyde (OPT) as a fluorescent reagent and takes 

advantage of the reaction of GSH with OPT at pH 8 and GSSG with OPT at pH 12. 

GSH can be complexed to N-ethylmaleimide (NEM) to prevent interferences of GSH 

with measurement of GSSG.  

To the sample preparation, cells were washed twice with ice cold PBS, 

ressuspended in ice cold PBS-EDTA (KH2PO4 100 mM, EDTA 5mM pH 8). Then ice 

cold HClO4 0,6M was added and the mixture was maintained in ice for 5 minutes. 

After vigorous vortex, the suspension was centrifuged at 14 000 rpm for 5 minutes 
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at 4ºC. Supernatants were collected and the pellet was ressuspended in NaOH 1N 

for protein quantification. Samples were stored at -80ºC.  

For GSH measurement, GSH standard solution or sample was added to 

phosphate-EDTA buffer (NaH2PO4 100mM, EDTA 5mM pH = 8) and OPT. The 

mixture was remained at room temperature for 15 min and then fluorescence 

detection was done with excitation and emission at 350 and 420 nm, respectively.  

For GSSG measurement the sample was added to NEM and remained 30 minutes 

and then NaOH 100 mM was added and also OPT. The mixture was remained at 

room temperature for 15 min and then fluorescence detection was performed.  

 

2.2.10- Statistical Analysis 
 

Statistical analysis was performed using GraphPad Prism 5.00 software. All the 

results are representative of at least three independent experiments. Data are 

expressed as mean + SEM. Comparisons between multiple groups were performed 

with a one-way ANOVA or by a Student’s t-test. A value of p lower than 0.05 was 

considered statistically significant.  
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Chapter 3: Experimental Results 
 

3.1- Red Wine Extract does not affect the viability 
of HT-29 cells 

 

Before examining the potential benefit of RWE in intestinal inflammation, we 

tested the cytotoxic profile of a RWE (the phenol content expressed in catechin 

equivalents of the selected RWE is 222 mg/g). For these propose, HT-29 cells were 

incubated with several concentrations of RWE (100, 200, 400 and 600 µg/ml) for 

twenty-four hours and then cell viability was evaluated by the MTT assay which 

principle was presented in the previous section.  

As shown in figure 10 RWE did not affect the viability of HT-29 cells at the 

concentrations tested.  

 

 

  

 
 

 

 

 
	  
	  
	  
	  
Figure 10. - Effect of Red Wine Extract (RWE) on HT-29 cell viability (MTT assay). 
Cells were treated with four different concentrations of RWE (100, 200, 400 and 600 µg/ml) 
for 24 hours. Cell viability was measured by following the extent of MTT reduction. Data 
represent the mean ± S.E.M. of at least four independent experiments run in duplicate and 
are expressed as percentage of control cells (100%). A-control; B-100 µg RWE/ml; C-200 µg 
RWE/ml; D-400 µg RWE/ml; E-600 µg RWE/ml. 
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3.2 - Red Wine Extract inhibits IκB degradation 
induced by TNF-α  in HT-29 cells 
	  

NF-κB signaling pathway has been implicated in the pathogenesis of several 

inflammatory diseases, namely in IBD. IκB’s are a class of inhibitor protein that 

sequester NF-κB dimers in the cytosol, preventing its nuclear translocation. IκB 

degradation lead to the release of NF-κB, which translocates to the nucleus, leading 

to the expression of pro-inflammatory proteins. Therefore, IκB degradation is an 

indirect marker for the activation of NF-κB.  

To investigate the effect of RWE in the NF-κB pathway, HT-29 cells were 

incubated or not with RWE and then stimulated with TNF-α (70 ng/ml) and the levels 

of IκB degradation were determined by Western Blot in the different situations.  

As shown in figure 11, TNF-α induced a rapid degradation (15 min) of the IκB 

protein. However, a pre-incubation with several concentrations of RWE (100, 200, 

400 and 600 mµg/mL) resulted in almost complete inhibition of IκB degradation.  

 
	  
	  
	  
	  
	  
	  
	  
	   	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure 11. - Effect of Red Wine Extract (RWE) on IκB degradation in TNF-α-
stimulated HT-29 cells. Cells were pretreated with four different concentrations of RWE 
(100, 200, 400 and 600 mg/ml) for 30 min and then stimulated with TNF-α (70 ng/ml) for 15 
min. Cytosolic extracts were analyzed by Western blot using anti-human IκB antibody (Cell 
Signaling). In the bar graph, the relative expression of IkB normalized to the actin level was 
expressed as mean ± SEM from at least five independent experiments. Statistical 
significance: ***p<0.001 as compared to control cells; &&&p<0.001 and &p<0.05 as compared 
to cells stimulated with cytokines. A-Control; B-Cytokines; C-Cytokines +100 µg RWE/ml; D- 
Cytokines +200 µg RWE/ml; E-Cytokines +400 µg RWE/ml; F-Cytokines +600 µg RWE/ml. 
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3.3- Red Wine Extract inhibits IL-8 production by 
TNF-α  -stimulated HT-29 cells 
	  

The NF-κB pathway activation begins gene transcription of inflammatory 

mediators, namely IL-8, a chemokine that plays a major role in mediating the 

inflammatory burst and massive infiltration of the mucosa by polymorphonuclear 

leukocytes. To investigate the effect of RWE in the production of pro-inflammatory 

proteins, the secretion of IL-8 by HT-29 cells was analysed by using enzyme-linked 

immunosorbent assay (Elisa). In the control situation IL-8 production is very reduced 

(3.22 ± 0.2 ng/ml). TNF-α induces IL-8 overproduction (108.42 ± 23.45 ng/ml). As 

shown in figure 12, RWE significantly reduced the TNF-α -induced production of IL-8 

in a dose dependent manner. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12- Effect of Red Wine Extract (RWE) on IL-8 production by TNF-α  -
stimulated HT-29 cells. Cells were pretreated with four different concentrations of RWE 
(100, 200, 400 and 600 µg/ml) for 30 min and then stimulated with TNF-α (70 ng/ml) for 24 
hours. IL-8 protein secretion in culture supernatant was quantified by using an Elisa kit (R&D 
Systems). Data represent the mean ± SEM from at least three independent experiments. 
Statistical significance: ***p<0.001 as compared to control cells; &&p<0.005 and &p<0.05 as 
compared to cells stimulated with cytokines. A-Control; B- TNF-α;; C- TNF-α +100 µg 
RWE/ml; D- TNF-α +200 µg RWE/ml; E- TNF-α +400 µg RWE/ml; F- TNF-α +600 µg 
RWE/ml. 
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3.4 - Red Wine Extract supresses iNOS expression 
and inhibits nitric oxide production induced by 
cytokines in HT-29 cells 
	  
 

Nitric Oxide (●NO) is a molecular mediator of many physiological processes 

including vasodilation, inflammation, immunity and neurotransmission. Large 

amounts of ●NO can destroy host tissues and impair cellular responses. It is known 

that an excessive inflammatory cytokine production can lead to the induction of iNOS 

and consequently to an excessive ●NO production.  

HT-29 cells were incubated with a cocktail of cytokines (20 ng/ml TNF-α; 10 

ng/ml IL-1; 60 ng/ml INF-γ) for one, three, six and sixteen hours and then the iNOS 

levels were determined by Western Blot. As we can see in figure 13 only at six hours 

occurred the iNOS induction.  

	  
	  
	  
 
 
 
 
 
 
Figure 13- iNOS expression induced by cytokines in HT-29 cells. HT-29 cells were 
stimulated with cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 ng/ml INF-γ) for 1, 3, 6 and 16 
h as indicated in figure. Results are representative of three independent experiments.  
 

 

To investigate the effect of RWE in the iNOS expression, HT-29 cells were pre-

treated with four different concentrations of RWE (100, 200, 400 and 600 µg/ml) for 

30 min and then stimulated with cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 

ng/ml INF-γ) for six hours and the iNOS levels were determined by Western Blot.   

As shown in figure 14 A) expression of the iNOS protein was not detectable in 

unstimuled cells, but markedly increased six hours after cytokines treatment. Pre-

treatment with RWE showed a significant concentration-dependent inhibition of iNOS 

protein expression in cytokines- stimulated cells.  

Considering cells only treated with cytokines as 100%, we can observe that pre-

treatment with 100, 200, 400 and 600 µg/ml of RWE decrease iNOS expression to 

38.9, 17.05, 2.9 and 2.55 % respectively.  
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The ●NO production was measured in the supernatants after sixteen hours of 

incubation with cytokines. Results showed an expectable increase of ●NO production 

when cells were only treated with cytokines and a decrease to the control levels 

when cells were pre-treated with RWE (figure 14 B). 

The induction of iNOS was also analyzed by immunohistochemistry (figure 15). 

Cells were also pre-treated with four different concentrations of RWE (100, 200, 400 

and 600 µg/ml) for thirty minutes and then stimulated with cytokines (20 ng/ml TNF-

α; 10 ng/ml IL-1; 60 ng/ml INF-γ) for six hours. Results showed a higher induction of 

iNOS in cells treated only with cytokines and a visible decrease of the induction when 

cells were also pre-treated with RWE, even with lower concentrations of RWE. 
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Figure 14- Effect of Red Wine Extract (RWE) on iNOS expression  induced by 
cytokines in HT-29 cells. Cells were pretreated with four different concentrations of RWE 
(100, 200, 400 and 600 mg/ml) for 30 min and then stimulated with cytokines(20 ng/ml TNF-
α; 10 ng/ml IL-1; 60 ng/ml INF-γ). (A) After 6 hours of incubation, total protein extracts 
were obtained and then analysed by Western blot using anti-iNOS antibody (Santa Cruz). In 
the bar graph, the relative expression of iNOS normalized to the actin level represents the 
mean ± SEM from at least three independent experiments and are expressed as percentage 
of cells incubated with cytokines (100%). Statistical significance: ***p<0.001 as compared to 
control cells; &&&p<0.001 as compared to cells stimulated with cytokines.	  (B) After 16 hours 
of incubation, supernatants were collected and the ●NO production was measured by 
chemiluminescence.  Statistical significance: ***p<0.001 as compared to control cells; 
&&&p<0.001 as compared to cells stimulated with cytokines. 
A-Control; B-Cytokines; C-Cytokines +100 µg RWE/ml; D- Cytokines +200 µg RWE/ml; E-
Cytokines +400 µg RWE/ml; F-Cytokines +600 µg RWE/ml. 
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A	   B	  

C	   D	  

E	   F	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15 - Imunostaining for iNOS: Cells were pre-treated with four different 
concentrations of RWE (100, 200, 400 and 600 µg/ml) for 30 min and then stimulated with 
cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 ng/ml INF-γ) for 6 hours.  
A-Control; B-Cytokines; C-Cytokines +100 µg RWE/ml; D- Cytokines +200 µg RWE/ml; E-
Cytokines +400 µg RWE/ml; F-Cytokines +600 µg RWE/ml. 
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3.5 - Red Wine Extract inhibits tyrosine nitration in 
cytokines-stimulated HT-29 cells	  
	  
 

An increased production of ●NO would, via interaction with superoxide radical, 

yield the inflammatory stressor peroxynitrite, thus promoting a nitroxidative stress.  

One of the major consequences of the peroxynitrite is the selective nitration of 

the tyrosine residues in specific proteins, affecting protein structure and function.  

Therefore, as cytokines induced an overproduction of ●NO by HT-29 cells, we first 

analyzed, by western blot with an antibody anti-nitrotyrosine, if cytokines also 

induced nitration of the tyrosine residues in proteins. As we can see in figure 16 

(lane B), cells incubated with cytokines showed higher levels of nitrated proteins as 

compared with control cells. To determine the effect of RWE in nitrotyrosination, HT-

29 cells were pre-treated with RWE (100, 200, 400 and 600 µg/ml) for thirty minutes 

min and then stimulated with cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 ng/ml 

INF-γ) for sixteen hours. RWE decreased the levels of tyrosine nitration in a dose 

dependent manner. Treatment with dithionite that converts nitrotyrosine in 

aminotyrosine proves that the bands present in figure 16 A) that disappear in figure 

16 B) are really proteins with nitrated tyrosines. 

  

 

Figure 16: Effect of RWE on tyrosine nitration in cytokines-stimulated HT-29 cells: 
HT-29 cells were pre-treated with different concentrations of RWE (100, 200, 400 and 600 
µg/ml) and stimulated with cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 ng/ml INF-γ) for 16 
hours then total extracts were obtained and western blot was performed. A) Without 
treatment with dithionite B) with dithionite treatment. A-control; B-Cytokines; C- Cytokines + 
100 µg RWE/ml; D-Cytokines +200 µg RWE/ml; E-Cytokines +400 µg RWE/ml; F-Cytokines 
+600 µg RWE/ml. 
  

A    B    C     D    E     F A    B    C     D    E     F 

A)	   	   	  	  	  	  	  	  	  	  	  	  (B	  
	  
     Nitrotyrosine 
 
 
 
 
 
 
 
 
 
 Actin 



	   57	  

3.6 - Red Wine Extract modifies occludin 
expression and distribution in TNF-α-stimulated 
HT-29 cells 
	  
 

Intestinal epithelial cells (IECs) regulate the intestinal permeability through the 

epithelial junctions, which can be desmosomes adherent junctions or tight junctions 

(TJs). TJs are complex structures composed of different proteins such as occludins, 

proteins of the zonula occludens and proteins of the claudin family. In IBD we have 

an increase of pro-inflammatory cytokines that could lead to the impairment of tight 

junctions and consequently loss of barrier function.  

To investigate the effect of RWE in the tight junctions the distribution and 

expression of occludin will be studied by immunocytochemistry in cells pre-treated 

with several RWE concentrations and stimulated with TNF-α (70 ng/ml) overnight 

(sixteen hours). 

Immunocytochemistry results (figures 17,18) showed that RWE significatively 

alter de occludin expression and distribution in HT-29 cells, especially when HT-29 

cells were stimulated with TNF-α and pre-treated with the higher concentrations of 

RWE. There is an increase of occludin levels around cells in a dose dependent 

manner. 
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Figure 17 : Imunostaining for occludin: Cells were pre-treated with four different 
concentrations of RWE (100, 200, 400 and 600 µg/ml) for 30 min and then stimulated with 
TNF-α (plus sign) and maintained overnight (16 h). A-control; B-100 µg RWE/ml; C-200 µg 
RWE/ml; D-400 µg RWE/ml; E-600 µg RWE/ml. 
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Figure 18- Imunostaining for occludin: Cells were pre-treated with four different 
concentrations of RWE (100, 200, 400 and 600 µg/ml) for 30 min and then stimulated   with 
TNF-α (plus sign) and maintained overnight. A-TNF-α; B- TNF-α+100 µg RWE/ml; C- TNF-
α+200 µg RWE/ml; D- TNF-α+400 µg RWE/ml; E- TNF-α+600 µg RWE/ml. 
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3.7- Red Wine Extract affects the Nrf2 pathway in 
TNF-α  -stimulated HT-29 cells 
	  
 

3.7.1- Evaluation of Nrf2 translocation to the nucleus 
 
 

At normal conditions, Nrf2 resides in the cytoplasm bound to a cytosolic repressor 

Keap1. However, under nitroxidative stress conditions, Nrf2 breaks free from Keap1 

and translocates into the nucleus enabling gene transcription.  

To investigate if the anti-inflammatory effect of RWE is related with the Nrf2 

pathway activation, we analyse the levels of Nrf2 by Western Blot in the cytoplasm 

and in the nucleus at various times.  

HT-29 cells were pre-treated with four different concentrations of RWE (100, 200, 

400 and 600 µg/ml) for thirty minutes and then stimulated with TNF-α (70 ng/ml) 

for three hours.  

Figure 19 show that treatment with RWE alone enhanced the Nrf2 levels in the 

cytoplasm, in a dose dependent manner. However, only treatment with 200 and 400 

µg/ml of RWE caused an increase in Nrf2 levels in the nuclear extracts (217.7±9.5 

and 141.5±38, respectively). TNF-α increases cytoplasmatic Nrf2 levels (242±17 %) 

and also induced a slightly increase of the nuclear Nrf2 levels (135±56). Cells treated 

with 100, 200 and 400 µg/ml of RWE and then stimulated with TNF-α-also presented 

higher cytoplasmatic Nrf2 levels. RWE (100, 200 and 400 µg/ml) potentiated the 

slightly increase of the nuclear Nrf2 levels induced by TNF-α  

Cells were also stimulated with TNF-α for thirty minutes minutes, one and six 

hours but in these situations the Nrf2 levels in the cytoplasm and nucleus doesn´t 

suffer significant variations (data not shown).  

Results showed that RWE seems to increase the Nrf2 expression levels in the 

cytoplasm and Nrf2 translocation to the nucleus in both, non-stimulated and TNF-α 

stimulated HT-29 cells, being this effect stronger in the later case. 
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Figure 19 -Effect of Red Wine Extract (RWE) on Nrf2 expression levels. Cells were 
pretreated with four different concentrations of RWE (100, 200, 400 and 600 mg/ml) for 30 
min and then stimulated with TNF-α for 3hours. (A) Cytoplasm; (B) Nucleus. After 3 hours 
of incubation, cytoplasmic and nuclear extracts were obtained and then analysed by Western 
blot using anti-Nrf2 antibody (R&D Systems). In the bar graphs, the relative expression of 
Nrf2 normalized to the actin level represents the mean ± SEM from at least three 
independent experiments and are expressed as percentage of control cells (100%).  
A-Control; B-100 µg RWE/ml; C-200 µg REW/ml; D-400 µg RWE/ml; E-600 µg RWE/ml; F- 
TNF-α s; G- TNF-α+100 µg RWE/ml; H-TNF-α+200 µg RWE/ml; I- TNF-α+400 µg RWE/ml; 
J- TNF-α+600 µg RWE/ml. 
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3.7.2- Evaluation of the Red Wine Extract effect in Nrf2 
target genes 
 

Nrf2 regulates numerous genes through the antioxidant response element (ARE), 

such as Hemoxygenase 1 (HO-1) and glutathione related enzymes. 

HO-1 is one of the Nrf2 downstream targets. HO-1 is an essential enzyme in 

heme catabolism. This enzyme is responsible for the heme degradation into iron, 

carbon monoxide and biliverdin, the latter being subsequently converted into 

bilirubin. Several positive biological effects exerted by this enzyme have gained 

attention, as anti-inflammatory,antiapoptotic, angiogenic, and cytoprotective 

functions are attributable to carbon monoxide and/or bilirubin.  

So, as RWE seems to induce Nrf2 translocation to the nucleus, next we 

investigated the effect of RWE in the HO-1 levels by Western Blot. HT-29 cells were 

pre-treated with four different concentrations of RWE (100, 200, 400 and 600 µg/ml) 

for thirty minutes and then stimulated with TNF-α for one hour, three hours and six 

hours. The cytoplasmic extracts were obtained and western Blot was performed. 

At one and three hours of stimulation with TNF-α, there were no significant 

alterations in the HO-1 expression levels (data not shown). At 6 hours of incubation, 

RWE alone, principally 200 µg/ml, increased the levels of HO-1. The levels of HO-1 

of cells pre-treated with 200 and 400 µg/ml RWE and stimulated with TNF-α increase 

significantly when compared to the cells only stimulated with TNF-α (figure 20).  
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Figure 20 -Effect of Red Wine Extract (RWE) on HO-1 expression levels. Cells were 
pretreated with four different concentrations of RWE (100, 200, 400 and 600 mg/ml) for 30 
min and then stimulated with TNF-α for 6 hours. After 6 hours of incubation, cytoplasmic 
extracts were obtained and then analysed by Western blot using anti-HO-1 antibody (Santa 
Cruz). In the bar graphs, the relative expression of HO-1 normalized to the actin level 
represents the mean ± SEM from two independent experiments and are expressed as 
percentage of control cells (100%). Statistical significance: # p<0.05 as compared to cells 
stimulated with TNF-α. 
A-Control; B-100 µg RWE/ml; C-200 µg REW/ml; D-400 µg RWE/ml; E-600 µg RWE/ml; F- 
TNF-α s; G- TNF-α+100 µg RWE/ml; H-TNF-α+200 µg RWE/ml; I- TNF-α+400 µg RWE/ml; 
J- TNF-α+600 µg RWE/ml. 
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Glutathione is one of the most important endogenous antioxidant produced by the 

cells, participating directly in the neutralization of free radicals and reactive oxygen 

compounds, as well as the maintenance of exogenous antioxidants such as vitamins 

C and E in their reduced (active) forms. It is also essential for the immune system to 

exert its full potential, e.g. (1) modulating antigen presentation to lymphocytes, 

thereby influencing cytokine production and the type of response (cellular or 

humoral) that develops, (2) enhancing proliferation of lymphocytes thereby 

increasing magnitude of response, (3) enhancing killing activity of cytotoxic T cells 

and NK cells, and (4) regulating apoptosis, thereby maintaining control of the 

immune response.  

The oxidized and reduced glutathione levels in HT-29 cells pre-treated with four 

different concentrations of RWE (100, 200, 400 and 600 µg/ml) for thirty minutes 

and then stimulated cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 ng/ml INF-γ) for 

six hours or overnight were calculated by a fluorimetric method described by Hissin 

and Hilf. This method measures both oxidized (GSSG) and reduced (GSH) 

glutathione using o-phthalaldehyde (OPT) as a fluorescent reagent and takes 

advantage of the reaction of GSH with OPT at pH 8 and GSSG with OPT at pH 12. 

GSH can be complexed to N-ethylmaleimide (NEM) to prevent interferences of GSH 

with measurement of GSSG. 	  
Results show that with six hours of stimulation reduced glutathione levels suffer a 

significant increase when cells are pre-treated with 200 and 600 µg/ml of RWE but 

non stimulated with cytokines, addition of cytokines without pre-treatment with RWE 

induces a very little increase in the reduced glutathione levels. Pre-treatment with 

RWE in cytokines stimulated cells does not significantly alter the GSH levels when 

compared with cytokines stimulated cells levels although pre-treatment with 200 

µg/ml of RWE seems to increase GSH levels (figure 21 A).  

With cytokines stimulation overnight results are different. In all conditions 

stimulated with cytokines the GSH levels decrease significantly. Pre-treatment with 

RWE extracts does not revert this effect but there are minor increases in GSH levels 

in cells pre-treated with RWE and cytokine stimulated when compared with cytokines 

stimulated cells without RWE pre-treatment (figure 21 B).   

There is no significant impact in the oxidized glutathione levels with pre-treatment 

with RWE and six hours or overnight stimulation with cytokines (data not shown). 
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Figure 21 - Effect of Red Wine Extract (RWE) on GSH levels in cytokines-
stimulated HT-29 cells. Cells were pretreated with four different concentrations of RWE 
(100, 200, 400 and 600 µg/ml) for 30 min and then stimulated with cytokines (20 ng/ml TNF-
α; 10 ng/ml IL-1; 60 ng/ml INF-γ) for (A) 6 hours, (B) Overnight. GSH levels were calculated 
using the fluorimetric method described by Hissin and Hilf. Data represent the mean ± SEM 
from at least three independent experiments. Statistical significance: ***p<0.001 as 
compared to control cells; **p<0.005 and *p<0.05 as compared to control cells. 
A-Control; B-100 µg RWE/ml; C-200 µg REW/ml; D-400 µg RWE/ml; E-600 µg RWE/ml; F- 
TNF-α s; G- TNF-α+100 µg RWE/ml; H-TNF-α+200 µg RWE/ml; I- TNF-α+400 µg RWE/ml; 
J- TNF-α+600 µg RWE/ml. 
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Chapter 4: Discussion  
	  

Although the etiology of IBDs has not been fully elucidated, several studies 

suggested that genetic, environmental, microbial and immunologic factors are 

implicated in the pathogenesis of IBD. As other inflammatory disorders, IBD is 

characterised by a deregulated synthesis and release of a variety of proinflammatory 

mediators, including cytokines, reactive oxygen species (ROS) and nitric oxide (●NO), 

resulting in a disruption of epithelial barrier and excessive tissue injury.  

A specific causal treatment of IBD is still not available and the most currently 

drugs used in its treatment have serious side effects that limit their use. 

Consequently, the development of new drug treatments that combine efficacy and 

safety is an important goal in IBD therapy.  

In recent years, there has been a growing interest supported by a large number 

of experimental and epidemiological studies for the beneficial effects of dietary 

polyphenols in preventing chronic inflammatory conditions. Particularly, the efficacy 

of polyphenols in preventing and treating IBD has been suggested by several 

studies, using rodent models of IBD (Shapiro H. et al, 2007). In these studies acute 

or chronic colitis was induced by intrarectal administration of dinitrobenzene sulphate 

or trinitrobenzene sulphate, addition of dextran sulphate sodium in the drinking 

water or by knockout of the interleukin-2 genes. The administration of polyphenols 

was done orally or intraperitoneally before, during and/or after induction of colitis. 

Then rodents were killed and indices of disease were assessed between 48 h and 6 

weeks after induction of colitis (Shapiro H. et al, 2007). The polyphenols tested 

(resveratrol, EGCG/green tea extract, curcumin,, quercetin and its naturally occurring 

glycones) reduced mortality rates, diminished colonic and extracolonic signs of 

disease, colon macropathology and micropathology and/or indices of inflammation 

and autoimmunity (eg, colonic myeloper-oxidase and NF-kB activity, increased TNF-

α, IL-1b, IL-12, iNOS and reduced IL-10, Crohn’s disease 4+ T cell and neutrophil 

infiltration) (Shapiro H. et al, 2007). 

Additional studies performed in humans with ulcerative colitis or Crohn´s disease 

using curcumin provided promising results, in terms of improved clinical symptoms, 

histopathology and laboratory indices and no serious adverse effects were reported 

(Holt P. et al, 2005; Hanai H. et al, 2006).  
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However a clear understanding of the molecular mechanisms of action of 

polyphenols is crucial in the evaluation of these molecules as potential prophylactic 

and therapeutic agents in IBD.  

In this study, we show that a red wine extract, rich in polyphenols (the phenol 

content expressed in catechin equivalents of the selected RWE is 222 mg/g) may be 

useful in the prevention and/or treatment of intestinal inflammation  

As epithelial cells play an important role in intestinal inflammation, in this study, 

we have used as cellular model, HT-29 cells, a colonic epithelial cell line. HT-29 cells 

are an epithelial cell line derived from human colonic adenocarcinoma that is able to 

express differentiation features characteristic of mature intestinal cells. When 

stimulated with cytokines they can serve as a model of intestinal inflammation. 

In any study using compounds with potential beneficial effects it is important to 

evaluate their effect on cell viability to determine if the compound has a protective 

effect or whether it compromises cell viability, if so there will be not interest in 

proceed with the study. Results show that RWE doesn´t compromise cell viability in 

any of the tested concentrations for twenty-four hours (figure 10). Additionally, 

results obtained by our group show that RWE significantly protect HT-29 cells against 

cytokines-induced cell death in a dose dependent manner, therefore the studies 

were carried on (data not shown). 

Gastrointestinal inflammation is associated with a high production of 

proinflammatory cytokines, including TNF-α. Therefore, initially we tested TNF-α as 

anti-inflammatory stimulus in our cellular model.  In our model of study, TNF-α 

induced IκB degradation (figure 11), leading to the NF-κB translocation to the 

nucleus, a clear sign that induces inflammation and for that reason is a suitable 

inflammatory stimulus for this study.  

Since its discover, NF-κB has been suspected to play a key role in chronic and 

acute inflammatory diseases. NF-κB is clearly one of the most important regulators 

of pro-inflammatory gene expression. Synthesis of cytokines (e.g. TNF- α, IL-1β, IL-

6), chemokines (e.g. IL-8), adhesion molecules and acute phase proteins among 

others is mediated by NF-κB. NF-κB activation has been implicated in diverse 

inflammatory diseases, namely in inflammatory bowel disease. In fact, several 

studies have reported elevated NF-κB levels in intestinal mucosa of IBD patients 

(Ellis R. et al, 1998; Neurath M. et al, 1998; Rogler G. et al, 1998). The inhibition of 

NF-κB is generally considered as a useful strategy for treatment of inflammatory 

disorders, namely IBD, representing an important and very attractive therapeutic 
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target (Karin M. et al, 2004). Several polyphenols have been shown to exert their 

anti-inflammatory activity by modulating NF-κB activation and acting in multiple 

steps of the activation process (Rahman I. et al, 2006). For that reason the effect of 

RWE in IκB degradation was tested to find out whether the polyphenolic extract may 

interefere with the NF-κB pathway. 

Results have shown that RWE inhibits IκB degradation (figure 11), preventing NF-

κB translocation to the nucleus and consequent pro-inflammatory gene expression. 

IκB proteins are associated with the NF-κB in unstimulated cells, sequestering the 

NF-κB in the cytoplasm as an inactive non-DNA-binding form. Upon cell stimulation 

IκB proteins are rapidly phosphorylated by IκB kinase (IKK) complex on two serine 

residues that targets the inhibitor proteins for ubiquitination and subsequent 

degradation by the ubiquitin-proteosome pathway. NF-κB translocates to the nucleus 

inducing expression of various genes above mentioned.  

Polyphenols can act at multiple steps of the NF-κB pathway and, in this particular 

case, RWE inhibit the IκB degradation but it was not studied if this occur as a direct 

effect on IKK or by interfering with the interaction of IKK with IκB. Both hypotheses 

were confirmed in other cellular models of inflammation with other polyphenols 

(Yang F. et al 2001; Mackenzie G. et al, 2004).  

The modulation of the NF-κB cascade by polyphenols can also occur at late 

stages, namely by preventing the binding of NF-κB to DNA (Rasheed Z. et al, 2009), 

this aspect was not tested with RWE.  

As a further development of this study it would be interesting to study exactly 

where RWE modulate the NF-κB cascade.. It is known that polyphenols can act 

simultaneously in both early and late steps of the NF-κB cascade (Rasheed Z. et al, 

2009). RWE are a mixture of various polyphenols so is expectable that they can act 

in various steps of this pathway. Being aromatic compounds polyphenols might also 

affect the aryl hydrocarbon receptor (AhR) that interacts with the NF-κB regulating 

his activity (Potapovich A. et al, 2011) but this particular aspect of the NF-κB 

pathway was also not studied.  

Knowing that NF-κB regulates pro-inflammatory gene expression, the levels of IL-

8 were measured by Elisa. IL-8 is a primary inflammatory cytokine and one of the 

major mediators of inflammation. It is produced by many cells including epithelial 

cells in response to pro-inflammatory stimuli. This cytokine belongs to the CXC 

chemokine family and function as a chemoattractant for neutrophils and T-cells. 
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IL-8 has been implicated in various inflammatory diseases including ulcerative 

colitis (Zimmermann H. et al, 2011; Hauser W. et al, 2011). The inhibition of TNF-α-

induced IL-8 overproduction by RWE in HT-29 (figure 12), suggested that RWE can 

interfere with the recruitment of neutrophils and T-cells and thus may impede 

progression and aggravation of intestinal inflammation. Expression of the IL-8 gene 

is dependent on the activation of transcription factor NF-κB, RWE shown to suppress 

NF-κB activity and consequently IL-8 overproduction.  

Overproduction of •NO occurs during the progression of various inflammatory 

diseases in the intestinal tract (Keklikoglu N. et al, 2008) due to the induction of the 

iNOS by excessive inflammatory cytokine production. Large amounts of ●NO 

produced by cells in response to cytokines can destroy host tissues and impair 

cellular responses. Compounds able to block iNOS-induced ●NO production by the 

suppression of iNOS induction are very attractive as anti-inflammatory agents.  For 

that reason the effect of RWE in the iNOS induction was studied.  Initially we 

challenged HT-29 cells with different concentrations of TNF-α for several periods of 

time and next we evaluated the iNOS induction by Western blot. TNF-α alone did not 

induce iNOS expression. Therefore, next, we examine the cytokines requirements for 

the iNOS induction in HT-29 cells and we conclude that it is necessary a mix of 

cytokines (20 ng/ml TNF-α; 10 ng/ml IL-1; 60 ng/ml INF-γ) to induce iNOS 

expression.  

Western Blot and immunohistochemistry results showed that RWE inhibits the 

expression of iNOS stimulated by cytokines in a concentration dependent manner 

(figure 14 A). 

This effect is probably mediated by NF-κB inhibition, as reported to other 

polyphenols in previous studies where the expression of iNOS mRNA was reduced 

through prevention of the binding of NF-κB to the iNOS promoter, thereby inhibiting 

the induction of iNOS transcription (Lin Y. et al, 1997).  

To further confirm that the inhibition of iNOS induction has a real effect in the •NO 

production in cytokines-stimulated cells, the ●NO production was measured in the 

supernatants after twenty-four hours of incubation with cytokines. Results show an 

expectable increase of ●NO production when cells were only treated with cytokines 

and a decrease, to the control levels, when cells were pre-treated with RWE (figure 

14 B). Initially, we used the Griess method for ●NO determination, but given its poor 

sensitivity, it could not be used. Therefore, chemiluminescence, a method with a 

high sensitivity and selectivity, was chosen as method for ●NO determination.  
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Indirect reactions of ●NO occur when levels of ●NO are very high and they are 

specially implicated in the pro-inflammatory effects: the formation of reactive 

nitrogen species such as peroxynitrite triggers toxic events that culminate in 

citotoxicity and nitration and nitrosation of several residues in diverse proteins, 

affecting their function (ex. iron-sulfur containing enzymes, disruption of 

mitochondrial respiration) (Clancy R. et al, 1998).  

Nitrotyrosine is a product of tyrosine nitration mediated by reactive nitrogen 

species and it is considered a marker of •NO-dependent, reactive nitrogen species-

induced nitrative stress and an indicator of cell damage and inflammation.  

The effect of RWE in nytrotirosination was also investigated, and Western Blot 

results suggest that the higher concentrations of RWE effectively decrease the levels 

of tyrosine nitration (figure 16).  

Treatment with dithionite, which converts nitrotyrosine in aminotyrosine, was 

used in the samples and Western Blot was performed with non-treated and treated 

samples to confirm that the bands present really correspond to proteins with nitrated 

tyrosines. The results obtained were only preliminary because the experiment could 

not be repeated more times due to the non-disponibility of more antibody, the 

aliquots of antibody could not be used more then one or two times because they lose 

their properties of marking. To further complete the results it would be interesting to 

perform Dot Blot because that technique would provide us a more accurate notion of 

the real quantity of nitrotyrosine in the sample and if in fact RWE protect against 

nitrotyrosination.  

The microscopic observation of the cells into the plates treated with RWE lead to 

the suspicion that RWE could somehow affect the epithelial junctions. In fact, cells 

treated with RWE seems to be more condensate in aggregates then the control cells. 

Also, when cellular extracts were prepared, the suspension of cellular pellets was 

much more difficult.   

Epithelial junctions regulate the intestinal permeability maintaining the 

intercellular adhesion and regulating paracellular transport, they could be 

desmosomes, adherent junctions (AJs) and tight junctions (TJs). Impairment of the 

tight junctions seems to have higher impact in IBD pathogenesis (Clayburgh D. et al, 

2004). Elevated levels of pro-inflammatory cytokines, characteristic of IBD, lead to 

an impairment of tight junctions and consequently loss of barrier function.  

To investigate if RWE could really have an effect in the tight junctions, particularly 

in an IBD situation, the occludin expression and distribution was observed by 
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immunocytochemistry in cells pre-treated with several RWE concentrations and 

stimulated with TNF-α overnight.  

Results show that RWE significantly alter de occludin expression and distribution 

in HT-29 cells, especially when HT-29 cells were stimulated with TNF-α and pre-

treated with the higher concentrations of RWE. There is an increase of occludin 

levels around cells in a dose dependent manner.  

Occludin is an integral membrane protein specifically associated with tight 

junctions which forms a rate-limiting transport structure within the intercellular cleft 

and other studies demonstrate that this protein confers adhesiveness to the cells 

(Van Itallie C. et al, 1997; Kevil C. et al, 1998). In IBD the epithelial barrier is 

disrupted and a certain leakiness is observed in the tight junctions what makes any 

compound capable of revert this aspect very interesting as therapeutic agent.  

The results suggest that RWE could have some effect in the tight junctions 

altering the occludin expression and distribution (figure 17 and 18) but more studies 

are necessary to confirm the results and to investigate the effect of RWE in other 

tight junctions proteins and in transepithelial permeability.  

Nitroxidative stress inevitably accompanies any inflammation, changes the redox 

balance in cells and activates the redox-dependent signalling pathways. The 

transcription factor Nrf2 is the guardian of redox homeostasis and the gene families 

affected by Nrf2, ARE-containing genes, have several anti-inflammatory and 

cytoprotective actions. The role of Nrf2 in inflammatory diseases has gained 

attention in the last years particularly in cellular models like macrophages (Wang H. 

et al, 2003; Itoh K. et al 2004).  

Knowing that dietary polyphenols have shown some beneficial effects in chronic 

inflammatory conditions and in particular having study the effect of RWE in some 

inflammatory parameters it was logical to study the effect of RWE in this particular 

pathway.  

As previously explained, under normal conditions, Nrf2 resides in the cytoplasm 

bound to a cytosolic repressor Keap1. However, under nitroxidative stress conditions, 

Nrf2 breaks free from Keap1 and translocates into the nucleus enabling gene 

transcription. To investigate if the RWE suppress the inflammatory process by 

activating the Nrf2 pathway, the Nrf2 nuclear translocation was evaluated as well as 

the effect in the Nrf2 downstream targets HO-1 and glutathione.  

This investigation had some technical problems. To determine if RWE has some 

effect in the translocation of Nrf2 to the nucleus the determination of the Nrf2 levels 
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in the cytoplasm and nucleus was performed by Western Blot. It is known that the 

molecular weight of Nrf2 is around 68 KDa and it was expectable that the band in 

the membranes would appear around that value. However with the first antibody 

used this didn´t occur. The band occurred in a much lower molecular weight value 

what lead to question the reliability of the results. Other brand of antibody was then 

used, with this one, the band presumably correspondent to Nrf2 occurred at a 

molecular weight approximate of the real molecular weight of Nrf2.  

Other challenge in the investigation was the choice of the assay duration times 

because the complete kinetics of the Nrf2 translocation to the nucleus is not fully 

understood. Choosing a time where the presumable increase of Nrf2 levels in the 

nucleus was visible was not easy. 

In at concerns to the evaluation of Nrf2 translocation to the nucleus, results 

suggested that RWE increases the Nrf2 expression levels in the cytoplasm and Nrf2 

translocation to the nucleus in both, non-stimulated and TNF-α stimulated HT-29 

cells, being this effect stronger in the later case (figure 19). 

However the expectable increase in the nuclear Nrf2 levels is not statistically 

significant (figure 19). It is important to note that every process that regulates gene 

transcription is also closely regulated. The entry of Nrf2 and the time of permanency 

into the nucleus should be no exception.  

We must also take into account that western blot is not the most sensitive 

technique. It would be interesting to use other techniques to determine the levels of 

Nrf2 in the nucleus like ELISA. It was also interesting to determine if RWE really 

relieved Keap1 inhibition of Nrf2, this could be made by determining the Keap1 levels 

of expression by western blot. The ARE/Nrf2 complex could also be studied by 

electrophoretic mobility shift assay (EMSA) to determine if RWE enhances not only 

the Nrf2 translocation into the nucleus but also its binding to the ARE. 

To further confirm the effect of RWE in the Nrf2 pathway, the Nrf2 downstream 

targets HO-1 and glutathione were studied. 

In fact, after six hours of stimulation, RWE alone, principally 200 µg/ml, increased 

the levels of HO-1. The levels of HO-1 in the cells pre-treated with 200 and 400 

µg/ml RWE and then stimulated with TNF-α also increase significantly when 

compared to the cells only stimulated with TNF-α (figure 20). These results are 

according to the results related with Nrf2 nuclear translocation leading to the 

conclusion that RWE enhances HO-1 expression most likely by the Nrf2 pathway.  
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However there were also some difficulties with the determination of the HO-1 

expression levels, the bands in the western blot are not very visible even using 

various strategies in the western blot procedure to improve the quality of the results. 

For that reason and knowing that western blot is not the most accurate technique to 

gene expression determination it would be interesting to perform a quantitative real 

time PCR for HO-1 gene expression.   

It is also important to consider that dietary polyphenols can regulate HO-1 

expression via various transcription factors (Andreadi C. et al, 2006) which include 

AP-1 (via ERK and or JNK), NF-κB (Juan S. et al, 2005) as well as Nrf2 (Balogun E. et 

al, 2003). For that reason the increase in HO-1 expression levels cannot be fully 

attributed to the Nrf2 pathway.  

In at concerns to the glutathione levels it is known that Nrf2 increases glutathione 

biosynthesis. The synthesis of glutathione is achieved by the consecutive action of 

the ATP-dependent enzymes, γ-glutamylcysteine synthetase and glutathione 

synthetase. It was reported that levels of both these key enzymes are affected by 

the activity of Nrf2 (Chan J. and Kwong M., 2000). 

In a non-stimulated situation RWE seems to increase glutathione levels, however 

it does not have a major impact when cells are stimulated with cytokines for six 

hours or overnight (figure 21). Overnight stimulation induces cell death what leads to 

the observed decreases in the glutathione levels (figure 21 B). The fact that RWE 

increases glutathione levels in a non-stimulated situation is an evidence of the 

involvement of the Nrf2 pathway but it was expectable to see the same behaviour in 

a stimulated situation.  

It would be important to also study the γ-glutamylcysteine synthetase and 

glutathione synthetase expression levels to have more informative results because 

the nitroxidative stress itself could lead to major glutathione depletion and even 

though the expression of synthetizing enzymes is increased this is 

not enough to increase total glutathione levels. 

Taking in account all the results regarding the effect of RWE in the Nrf2 pathway 

there are compelling evidences that in fact this pathway is affected but further 

studies are needed to confirm these hypothesis. 
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Conclusion 
	  
	  

The presented work presents strong evidences that RWE can protect against 

intestinal inflammation and identifies  possible molecular mechanisms involved in the 

defence.  

Firstly, it was demonstrated that the viability of cells is not compromised when 

incubated with RWE. Under these conditions, RWE was shown to modulate cellular 

pathways preventing both the trigger and the propagation of critical inflammatory 

cascades. In particular, when incubated with the cellular model under inflammatory 

stimulus RWE prevented IκB degradation, inhibited the NF-κB pathway and 

prevented IL-8 overproduction as well as iNOS induction.  

In addition to the interference with inflammatory cascades we have also searched 

for biomarkers of inflammation-associated nitrosative stress as other possible actions 

of RWE. In this regard it was shown that RWE prevented against tyrosine nitration. 

Additionally RWE interfered with occluding expression in the tight junctions.  

This work also present some evidences that RWE can elicit their beneficial actions 

acting in the Nrf2 pathway but further studies are necessary to complement the 

obtained results.  

All together the mechanistic and regulatory data shown here support that dietary 

compounds rich in polyphenols, particularly red wine, may provide a potential benefit 

for the prevention and treatment of inflammatory diseases such as IBD. 
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Annexes  
	  
Annex 1: Detailed Composition of the Red Wine Extract used in the 
experiments  

 
 
 
 

  

Total proantocianic tannins 4,1 g/L 
Total fenols 222 mg/L 
Procyanidins  
B1 351,36 mg/L 
B2 158,70 mg/L 
B3 6,98 mg/L 
B4 17,02 mg/L 
C1 47,13 mg/L 
B2-gallate 51,66 mg/L 
(+)-catechin 8,21 mg/L 
(-)-epicatechin 3,66 mg/L 
Anthocyanins  
delphinidin 3-glucoside 73,49 mg/L 
cyanidin 3-glucoside 0,00 mg/L 

 
petunidin 3-glucoside  89,75 mg/L 

 
peonidin 3-glucoside  20,89 mg/L 

 
malvidin 3-glucoside  378,91 mg/L 

 
delphinidin 3-acetylglucoside 21,82 mg/L 

 
cyanidin 3-acetylglucoside 10,47 mg/L 

 
petunidin 3-acetylglucoside 15,49 mg/L 

 
peonidin 3-acetylglucoside 17,51 mg/L 

 
delphinidin 3-cumaroilglucoside 116,68 mg/L 

 
malvidin 3-acetylglucoside 4,85 mg/L 

 
malvidin 3-cafeoilglucoside 4,66 mg/L 

 
peonidin 3-cumaroilglucoside 9,53 mg/L 

 
malvidin 3-cumaroilglucoside 83,95 mg/L 
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