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Abstract Contaminant driven genetic erosion reported

through the inspection of selectable traits can be underes-

timated using neutral markers. This divergence was pre-

viously reported in the aquatic system of an abandoned

pyrite mine. The most sensitive genotypes of the micro-

crustacean cladoceran Daphnia longispina were found to

be lacking in the impacted reservoir near the entrance of

the metal rich acid mine drainage (AMD). Since that

divergence could be, at least partially, accounted for by

mutagenicity and genotoxicity of the AMD, the present

study aimed at providing such a characterization. The

Allium cepa chromosomal aberration assay, using root

meristematic cells, was carried out, by exposing seeds to

100, 10, 1, and 0.1 % of the local AMD. Chromosomal

aberrations, cell division phases and cell death were

quantified after the AMD exposure and after 24 and 48 h

recovery periods. The AMD revealed to be mutagenic and

genotoxic, even after diluting it to 1 and 0.1 %. Dilutions

within this range were previously found to be below the

lethality threshold and to elicit sublethal effects on repro-

duction of locally collected D. longispina clonal lineages

Significant mutagenic effects (micronuclei and chromo-

somal breaks) were also found at 0.1 % AMD, supporting

that exposure may induce permanent genetic alterations.

Recovery tests showed that AMD genotoxic effects per-

sisted after the exposure.

Keywords Chromosomal aberrations � Micronuclei �
Allium cepa � Acid mine drainage � Recovery

Introduction

The loss of genetic diversity by contaminant driven

directional selection has been reported through the

inspection of adequate selectable traits (Ribeiro and Lopes

2013). In large populations, where genetic drift is negli-

gible, this loss would be undetected through the use of

neutral markers, which are suited to evaluate microevolu-

tionary events other than directional selection (Pfrender

et al. 2000; Ribeiro and Lopes 2013). Furthermore, if

contaminant induced mutations occur then genetic diver-

sity could be increased and/or overestimated. Ribeiro et al.

(2012) reviewed a case-study of contaminant driven

genetic erosion of a zooplankton population—the crusta-

cean cladoceran Daphnia longispina—impacted with a

metal rich acid mine drainage (AMD), using tolerance to

lethal levels of AMD and of copper as the selectable

markers (Lopes et al. 2005; Agra et al. 2011). This genetic

diversity loss was undetected using neutral markers, with

some results pointing to the opposite direction (Martins

et al. 2005, 2009; Silva et al. 2010). This could have been

due to an ineffective genetic drift, possibly masked with

the incursion of new alleles by gene flow, and/or by the

increase of profiles diversity due to an increased mutation

rate (Ribeiro et al. 2012). Therefore, the present study

aimed at evaluating the mutagenicity and genotoxicity of

that particular AMD effluent. The median effective dilu-

tion, using artificial pond water, of this AMD effluent on D.
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longispina reproduction was previously found to range

between 0.1 and 1.1 % (Saro et al. 2012). An exposure to a

3 % dilution would reduce the population size down to at

least 10 %, with a median survival time lower than 24 h

(Lopes et al. 2005; Martins et al. 2007). Therefore, muta-

genic effects of this AMD would only be relevant for

microevolution of the population at the impacted site if

occurring at percentages close to or lower than around 1 %.

Houk (1992) considered three classes of DNA damage:

point mutations on DNA sequence, loss or gain of chro-

mosome fragments (clastogenesis), and alterations on

chromosome number by loss or gain of whole chromo-

somes (aneugenesis). Genotoxicity includes a wide range

of effects such as lesions in the DNA strand, DNA adducts,

sister chromatide exchange, additional DNA synthesis, and

also effects on cellular components related with the cellular

cycle, such as protein growth factors, spindle fibers and

enzymes (e.g. topoisomerase) (Dearfield et al. 2002;

Whysner et al. 2004). Repair mechanisms can recuperate

temporary genotoxic effects, but mutagenic effects are

persistent (Dearfield et al. 2002). With cytogenetic assays,

it is possible to identify harmful effects of a stressor at

different concentrations and exposure times (Au et al.

1990; Heddle et al. 1991; Ulsh et al. 2004; Pérez-Cadahı́a

et al. 2008). There are hundreds of short-term cytogenetic

assays, using a wide range of test organisms (from pro-

karyotic to mammal cells), which can be applied to study

potential mutagenicity and genotoxicity. Assays with

plants can be used to assess genotoxicity, providing accu-

rate information and being easier than with animal cells or

embryos (Fiskesjö 1985, 1993; Rank and Nielsen 1993;

Grant 1994, 1998; Chauhan et al. 1999; Grant 1999; Patra

and Sharma 2002; Ma et al. 2005; Leme and Marin-Mor-

ales 2009; Mazzeo et al. 2011). In the present study, the

Allium cepa chromosomal aberration assay, using root

meristematic cells, was carried out to evaluate the possi-

bility of AMD induced mutations.

Materials and methods

Acid mine drainage

The AMD effluent was collected in the water system of a

copper mine located in southern Portugal (São Domingos,

37037�N, 07�300W). Even though being abandoned since

1967, the effluent is highly acidic (pH &2) and contami-

nated with metals (Table 1) as the result of continuous

oxidation of mine tailings (Pereira et al. 1995; Lopes et al.

1999, 2000; De Bisthoven et al. 2004; Moreira-Santos et al.

2004; Gerhardt et al. 2005; Lopes et al. 2005; Moreira-

Santos et al. 2008; Agra et al. 2010). No other sources of

contamination are present in this system, neither agriculture

and industrial activities nor urban runoff (Ribeiro et al.

2012).

Citotoxicity, mutagenicity and genotoxicity testing

Seeds of A. cepa (2n = 16 chromosomes) from a same

strain and variety (baia periform) were used to evaluate

genotoxic and mutagenic effects of the effluent. The AMD

effluent was serially diluted with milli-Q water and 100,

10, 1, 0.1, and 0 % AMD were tested, the latter being the

negative control. Conductivity of AMD dilutions was 4780,

849, 149, and 18.9 lS/cm, respectively, and pH was 1.8,

2.3, 2.9, and 4.1, respectively.

Metal concentrations were quantified by graphite furnace

atomic absorption (Cd, Co, Ni, and Pb), by inductively

coupled plasma atomic emission (Al, Cu, Fe, Mn, and Zn),

and by hydride generation atomic absorption (As), in a

certified laboratory (Instituto Superior Técnico, Lisbon,

Portugal). Two positive controls were used: methyl meth-

anesulfonate (MMS, CAS 66-27-3) at 4 9 10-4 M, as a

clastogenic agent, and trifluralin (2,6-dinitro-N,N-dipropyl-

4-trifluoro-methylaniline) (CAS 1582-09-8) at 0.84 ppm as

an aneugenic agent (Fernandes et al. 2007).

Onion seeds were germinated at 19–21 �C in Petri

plates, internally covered with filter paper wetted with the

respective treatment. Four replicates per treatment, each

one with 100 seeds were used. The test ended when roots

from the negative control were 1-cm long, which took

4–5 days. Then, a third of the germinated seeds was col-

lected and fixed in Carnoy I (3:1 alcohol:acetic acid; v:v)

from 6 to 24 h. The remaining germinated seeds were

transferred to other Petri plates wetted with milli-Q water.

This recovery treatment was used to assess the conduct of

the injured cells after some cycles of mitotic division. After

24 and 48 h, one third of the seeds was fixed as described

above. Fixed roots were hydrolyzed in HCl 1 N, in a bath

at 60 �C for 8–11 min, stained with Schiff’s reagent for 2 h

in the dark, and then washed with distilled water. To pre-

pare the slides, the meristematic regions were cut onto a

slide into a drop of 2 % acetic carmine solution to increase

cytoplasm contrast, covered with a cover slip and carefully

squashed. The cover slip was removed with liquid nitrogen

and the slides mounted in synthetic resin (Enthellan�,

Merck) to further analysis.

At the end of the test, the germination index, in %, was

calculated as the proportion of seeds with visible radicle

protrusion. Over 40 randomly picked roots from each

treatment were measured. Ten slides of each treatment

were observed at an optical microscope (10009) and a

minimum of 500 intact cells per slide (5000 per treatment)

were counted, distinguishing the number of cells in each

stage of mitosis, interphase and cell death. Chromosome

aberrations and micronuclei were recorded in all phases of
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the cell cycle. Cytotoxic effects were analyzed by quanti-

fying both mitotic cells and cells in death process. Cell

death was identified by morphological alterations of the

nucleus and/or cell (Kroemer et al. 2009). Mainly at the

undiluted AMD, fragmented cells with loss of cellular and

nuclear contents were observed, but these cells were not

counted due to the difficulty of distinguishing cytotoxic

effects (cell in death process) from technique effects (cell

rupture during slide preparation). Despite the soft squash of

the root tip being identical in all treatments, cells exposed

to 100 % AMD were less resistant. Dead cells were those

showing vacuolated and swollen cytoplasm or heteropyc-

notic, condensed and/or fragmented nuclei (Majno and

Joris 1995). Four types of morphological change of the

nucleus were here considered: (i) reduction of the nuclear

volume (pyknosis), (ii) nuclear fragmentation (karyor-

rhexis), (iii) vacuolated cytoplasm and nucleus displaced to

a peripheral position, and (iv) chromatin dispersion (kar-

yolysis) (Kroemer et al. 2009). Genotoxic effects were

quantified by micronuclei and chromosomal aberrations,

such as C-metaphases, multipolar anaphases and telopha-

ses, chromosome adherences, chromosome bridges, poly-

ploidy, bi-nucleated cells, and chromosome losses and

breaks. Mutagenicity was quantified by micronuclei and

chromosome breaks.

Data analysis

Interphase, mitotic, cellular death, micronuclei, and chro-

mosomal aberrations indexes were normalized by calcu-

lating the number of cells in each category if exactly 500

cells would have been observed per slide. These indexes

are the proportion of cells in each category relatively to the

total number of intact cells (500).

Root length values were log transformed and propor-

tional data were arcsine transformed using the Freeman and

Tukey modification (Zar 2010). Significant differences

against the negative control were checked with one-way

ANOVA, followed by the one-tailed Dunnett’s multiple

comparisons test. A back transformation with correction

(Zar 2010) was applied to estimate means of proportional

data. Assays were validated through the comparison of the

three controls using a one-way ANOVA. The software

STATISTICA 8.0 was used.

Results

The germination rate per Petri plate ranged between 64 and

99 % with no significant differences among treatments

(p = 0.209) (Fig. 1). The 10 and 100 % AMD reduced root

growth (p \ 0.0001) (Fig. 2). Interphase, mitotic, chro-

mosomal aberrations, and cellular death indexes were

significantly altered by AMD dilutions (Fig. 3). The 0.1 %

AMD presented significantly less cells in mitosis and more

cells with chromosomal aberrations than the negative

control (Fig. 3). The undiluted AMD showed a compara-

tively low number of chromosomal aberrations, which was

due to the very low number of live cells in mitosis and

interphase (Fig. 3). Results on chromosomal aberrations,

nuclear abnormalities and cellular death types are shown in

Table 2. The frequency of multipolarity, C-metaphase and

adherence after the exposure to 1 % AMD was signifi-

cantly higher than in the negative control; adherence being
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Fig. 1 Box-and-whiskers plot of the Allium cepa seed germination

index after an exposure to 100, 10, 1, and 0.1 % acid mine drainage.

The abbreviations NC, MMS and Trif indicate the negative control

and the positive controls with methyl methanesulfonate and trifluralin,

respectively

Table 1 Metal concentrations in the tested dilutions of the acid mine drainage (AMD) used in the Allium cepa genotoxicity test

Metal (lgL-1)

AMD Al Fe Cu Mn Zn Co Ni Cd Pb As

100 % 440 9 103 353 9 103 41 9 103 28 9 103 21 9 103 2.5 9 103 800 308 24 1.5

10 % 46 9 103 33 9 103 4.0 9 103 2.9 9 103 2.1 9 103 250 72 7.3 3 \1.0

1 % 4.7 9 103 3.3 9 103 410 280 220 24 7 \1.0 \3 \1.0

0.10 % 450 300 \50 28 \50 3 \5 \1.0 \3 \1.0
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also significantly higher in the 0.1 % AMD. Mutagenicity

was found for 0.1 % AMD (Fig. 4).

After 24 and 48 h of recovery, in the absence of con-

taminants, cytotoxic and genotoxic effects of AMD on the

meristematic cells were still present (Fig. 5). Among the

interphase, mitotic, chromosomal aberrations, and cellular

death indexes, only the former revealed a recovery. Worth

noting is that the significantly higher amount of cells with

chromosomal aberrations in the 0.1 % AMD, relatively to

the negative control, persisted throughout the recovery per-

iod of 48 h. Mutagenicity was reduced when ended the

exposure to AMD, with AMD dilutions loosing their effects

at 24 h of recovery and the undiluted AMD at 48 h (Fig. 6).

Discussion

Due to the extreme acidity of undiluted AMD (pH 1.8), a

significant inhibition of germination was expectable as
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Fig. 2 Mean and SD of Allium cepa root length (in mm) after an

exposure to 100, 10, 1, and 0.1 % acid mine drainage. The

abbreviations NC, MMS and Trif indicate the negative control and

the positive controls with methyl methanesulfonate and trifluralin,

respectively. Sample size is indicated inside brackets. Asterisks

indicate significant differences relatively to the negative control

(* p B 0.05; ** p B 0.001; *** p B 0.0001)
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Fig. 3 Box-and-whiskers plots of mitotic (MI), interphase (Int),

cellular death (CD), and chromosomal aberrations (CA) indexes

indexes of Allium cepa root meristematic cells after an exposure to

100, 10, 1, and 0.1 % acid mine drainage. The abbreviations NC,

MMS and Trif indicate the negative control and the positive controls

with methyl methanesulfonate and trifluralin, respectively. Asterisks

indicate significant differences relatively to the negative control

(* p B 0.05; ** p B 0.001; *** p B 0.0001). Outliers are represented

by black dots
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reported by other works studying the process of seed ger-

mination under acidic conditions. For instance, Salter and

McIlvaine (1920) promoted the germination of wheat,

corn, soybean, red clover, and alfalfa in culture media with

pH ranging from 2 to 7.5 and found that germination

occurred at pH 3, but at pH 2, although the germination

process started (swelling of the seeds), only two species

had germination rates above 50 % and all seedlings were

dead after 7 days. Turner et al. (1988) exposed Paulownia

tomentosa seeds to pH between 1.5 and 7.0, to address the

possibility to colonize affected soil in charcoal mines and

verified that no sprout take place below pH 4. Shoemaker

and Carlson (1990) only obtained normal levels of germi-

nation at pH 5 when using a filter paper culture. Passiflora

alata seeds showed higher germination rates and initial

normal development at pH 3 (Wagner Jr. et al. 2006).

Pinus contorta and Picea glauca seeds presented normal

germination rates at pH 2.2 (Redmann and Abouguendia

1979). Germination occurrence does not imply that the

remaining steps of root development may proceed without

interference of acidity, as germination and development are

two different processes (Bewley 1997). During root

growth, energetic resources stored in the seed are used and

molecular and physiological processes (DNA synthesis,

protein, cell division) are activated, so growth is affected

by mode of action and/or intensity of stressors over those

processes (Cho et al. 2003; John et al. 2009). Root growth

assays have been considered a good indicator for metal

sensitivity since their design in 1957 by Wilkins (Baker

1987). Growth was inhibited at the two highest AMD

concentrations, agreeing with other studies where seeds of

A. cepa (Fiskesjö 1985; Lerda 1992) and other plant spe-

cies were exposed to metals that are present in the AMD

effluent (Wong and Bradshaw 1982; Symeonidis and

Table 2 Back transformed means and coefficients of variation of

arcsin transformed values (in %, inside brackets) of frequencies of

chromosomal aberrations, nuclear abnormalities and cellular death

types in Allium cepa root meristematic cells after an exposure to 100,

10, 1, and 0.1 % acid mine drainage

NC 0.1 % AMD 1 % AMD 10 % AMD 100 % AMD MMS Trif

Micronuclei 0.128 (3) 0.428 (3) 0.376 (5) 0.879 (6) 2.150 (12)* 4.122 (8)* 2.017 (7)*

Chromosomal break 0.021 (1) 0.027 (2) 0.020 (1) 0.020 (1) 0.063 (2) 0.139 (3)* 0.000 (0)

Chromosomal loss 0.021 (1) 0.052 (2) 0.042 (2) 0.059 (2) 0.000 (0) 0.133 (2)* 0.076 (2)

Chromosomal bridge 0.000 (0) 0.017 (1) 0.060 (2) 0.120 (3)* 0.000 (0) 0.040 (2) 0.075 (2)*

C-metaphase 0.000 (0) 0.051 (2) 0.115 (3)* 0.020 (1) 0.000 (0) 0.000 (0) 0.593 (6)*

Adherence 0.192 (3) 0.911 (2)* 0.882 (3)* 0.561 (3)* 0.049 (2) 0.403 (4) 0.301 (3)

Multipolarity 0.020 (1) 0.118 (3) 0.256 (2)* 0.235 (4) 0.020 (1) 0.061 (2) 0.300 (3)*

Laggard 0.000 (0) 0.030 (2) 0.028 (2) 0.036 (2) 0.000 (0) 0.041 (2) 0.076 (2)*

Nuclear buds 0.108 (3) 0.010 (1) 0.114 (3) 0.066 (2) 0.063 (2) 0.136 (3) 0.555 (3)*

Lobulated nuclei 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.828 (4)*

Polynucleated cell 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.057 (2)*

Cellular death

Peripherical nuclei 0.000 (0) 0.196 (4) 0.050 (2) 0.734 (7) 3.980 (10)* 0.114 (3) 0.170 (3)*

Karyolysis 0.000 (0) 0.032 (2) 0.029 (2) 0.000 (0) 0.617 (6)* 0.821 (8) 1.847 (7)*

Pyknosis 0.057 (2) 0.861 (8) 1.971 (10) 6.681 (11)* 33.91 (21)* 1.288 (6)* 3.702 (7)*

Karyorrhexis 0.082 (3) 0.263 (4) 1.545 (8) 16.35 (14)* 34.17 (23)* 1.338 (8) 6.471 (13)*

The abbreviations NC, MMS and Trif indicate the negative control and the positive controls with methyl methanesulfonate and trifluralin,

respectively

* Value significantly larger than the negative control (p \ 0.05)
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Fig. 4 Box-and-whiskers plot of the mutagenic index of Allium cepa

root meristematic cells after an exposure to 100, 10, 1, and 0.1 % acid

mine drainage. The abbreviations NC, MMS and Trif indicate the

negative control and the positive controls with methyl methanesul-

fonate and trifluralin, respectively. Asterisks indicate significant

differences relatively to the negative control (*p B 0.05;

**p B 0.001; ***p B 0.0001). Outliers are represented by black dots
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cellular death (CD), and chromosomal aberrations (CA) indexes of

Allium cepa root meristematic cells at 24 and 48 h of recovery after

an exposure to 100, 10, 1, and 0.1 % acid mine drainage. The

abbreviations NC, MMS and Trif indicate the negative control and the

positive controls with methyl methanesulfonate and trifluralin,

respectively. Asterisks indicate significant differences relatively to

the negative control (* p B 0.05; ** p B 0.001; *** p B 0.0001).
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Karataglis 1992; Lin et al. 2003; Liu et al. 2007; Aydinalp

and Marinova 2009; Soudek et al. 2011).

Alterations in the mitotic index have been considered

good evaluators of cytotoxic effects of environmental

contaminants (Smaka-Kincl et al. 1996; Fernandes et al.

2007; Caritá and Marin-Morales 2008; Leme et al. 2008).

Cell division only completes the cycle if all signaling

pathways are functional. If chemical requirements are

disrupted (e.g. the production of cyclins regulators of G1

phase to S phase and G2 to mitosis; activation of cyclin-

dependent protein kinases), cell division check-points are

not transposed, and the process is discontinued. Significant

decreases in the mitotic index mean that external factors

had interfered with the cell division process. In the present

study, even the lowest AMD concentration acted as a

stressor at the cellular level. According to Patra et al.

(2004), metals, mainly from groups IV and VII, have

implications on the mitotic index (Cd, Cu, Hg, Cr, Co, Ni,

Be [ Zn, Al, Mn, Fe, Se, Sr, Sb, Ca, Ti, Mg [ V, As, Mo,

Ba, Pb) and this AMD have at least 4 metals belonging to

the strongest effectors group (Cu, Ni, Cd, and Cr).

Cell death is also an endpoint for cytotoxicity. Death is

induced when a contaminant promotes permanent damages

in DNA molecules and/or when some other cell processes

occur, such as changes in enzyme activity, osmotic

deregulation and loss of membrane integrity. Cell death

can be identified by morphological alterations of the

nucleus and/or cell (Kroemer et al. 2009). Among the

morphological changes of the nucleus leading to cell death,

AMD induced pyknosis and karyorrhexis with a dose–

response pattern.

The presence of chromosomal aberrations provides a

measure of genotoxicity. They allow the discrimination

between clastogenic and aneugenic effects (Leme and

Marin-Morales 2009), and contribute to understand the cell

death process and effects persistence after exposure to

contaminants (Fernandes et al. 2009; Leme and Marin-

Morales 2009). Even with 0.1 % AMD, an increased fre-

quency of chromosomal aberrations occurred. Only at the

undiluted AMD, no significant differences were found, but

this was most probably due to the low number of live cells

and consequent reduction in the relative occurrence of

chromosomal aberrations.

Chromosomal adherences were observed in all AMD

dilutions, occurring mainly during metaphase with some

chromosomal compression on the equatorial plate (not

complete compression). Chromosomal abnormalities

induced by AMD included also micronuclei and multipolar

anaphases and telophases. Adherences and multipolarity

are considered aneugenic effects, while micronuclei can be

clastogenic or aneugenic, depending if they are originated

by chromosomal breaks or losses of whole chromosomes,

respectively (Fernandes et al. 2007). In the present study,

the frequency of chromosomal breaks and chromosomal

losses was similar, such as bridges and C-metaphases,

disallowing a clear categorization of AMD as clastogenic

or aneugenic. Chromosomal losses are not considered as

mutagenic effects. First, because if nuclei lose a whole

chromosome, cell will be unviable and death process will

begin. Second, because those chromosomes can return to

nuclei, which is the case of synchronous micronuclei

(Huang et al. 2012). These micronuclei will respond to the

cell signaling as the main nuclei and during the cell divi-

sion process they will be incorporated again (Gustavino

et al. 2001). Chromosomal breaks and asynchronous

micronuclei are the chromosomal aberrations used to

evaluate mutagenicity. The significant occurrence of

micronuclei and chromosomal breaks combined revealed

AMD to be mutagenic even at a 0.1 % concentration. At

the highest AMD concentrations, the reduced number of

live cells masked possible dose–response trends which

were undetected in most chromosomal aberrations.

Recovery assays revealed the so-called ‘‘cell cycle

delay’’, which leads to late cell responses; even though

cells are no longer subjected to direct toxic exposure, they

continue to express genotoxic effects (Kirkland 1998;

Komissarova et al. 2005). Longer recovery periods would

be needed to quantify the temporal extension of AMD

genotoxic effects (Aaron et al. 1995; Kirkland 1998;

HERAG 2007).

In conclusion, data gathered in the present study

revealed the AMD effluent of the abandoned São Domin-

gos mine to be mutagenic and genotoxic, even after

diluting it to 1 and 0.1 %. Although transferability of these

laboratory results to the complex field scenario is not

straightforward, dilutions within this range were previously

found to be below the lethality threshold and to elicit

sublethal effects on reproduction of locally collected D.

longispina clonal lineages (Lopes et al., 2005; Martins

et al., 2007; Saro et al., 2012). Therefore, when using

neutral markers, as Martins et al. (2009) and Silva et al.

(2010) did, a possible overestimation and/or increase in

genetic diversity due to mutations cannot be ruled out.
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