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a b s t r a c t

Although mercury bio-amplifies through the food chain and accumulates in top predators, mercury
concentrations in tissues of the wandering albatross are greater than in any other vertebrate, including
closely related species. In order to explore the alternative explanations for this pattern, we measured
total mercury concentrations in feathers, plasma and blood cells of wandering albatrosses of known age,
sex and breeding status sampled at South Georgia. Mercury concentrations were low in feathers and
blood components of chicks, and higher in the feathers of young pre-breeders than in feathers or blood
of older pre-breeders and breeding adults. There was no effect of sex on mercury concentrations in the
feathers of pre-breeders or breeding adults, whereas levels were significantly higher in blood cells of
breeding females than males. The high feather mercury concentrations of young pre-breeders compared
with older birds suggest an increase in moult frequency as birds approach maturity.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Marine ecosystems provide crucial resources and services for
humans, but have been greatly altered by the effects of fisheries,
climate change and release of hazardous contaminants (Halpern
et al., 2008). Given its toxicity and tendency to bioaccumulate,
contamination by mercury (Hg) is a major concern for environ-
mental agencies and policy makers. Mercury also biomagnifies
through the food web, concentrating in the tissues of top predators,
including marine and freshwater fish, which raises human health
issues (EPA, 2001).

Marine top predators are widely regarded as effective monitors
of ocean health because they integrate processes occurring at lower
trophic levels (Monteiro and Furness, 1995). Also, given their large
foraging ranges, levels of pollutants in their tissues reflect those of a
wide area, including potentially remote regions that would other-
wise be difficult to sample (Thompson et al., 1993; Stewart et al.,
1999; Blévin et al., 2013). Moreover, their distributions change
seasonally (Phillips et al., 2008), permitting a comparison between
pollutant levels in breeding and nonbreeding areas (Ramos and
González-Solís, 2012).
).

All rights reserved.
Antarctica is considered to be one of the most undisturbed areas
of the world. However, mercury is widely distributed as a conse-
quence of long-range atmospheric transport, and wet and dry
deposition processes, and some of the highest organic mercury
concentrations observed in the open ocean were recorded in Ant-
arctic waters (Cossa et al., 2011). Mercury emissions are predicted
to increase (Streets et al., 2009), raising concern about impact on
these remote areas. Previous studies have highlighted an increase
in mercury contamination of several seabird species from South
Georgia and New Zealand over the last few decades (Thompson
et al., 1993; Becker et al., 2002).

The wandering albatross, Diomedea exulans, is a wide-ranging
top predator, and its mercury concentrations reflect contamina-
tion over a huge foraging area that encompasses Antarctic, sub-
antarctic and subtropical waters. Mercury levels measured
previously in this species were much higher than in related taxa
with similar diets from the same localities (Thompson et al., 1993;
Hindell et al., 1999; Stewart et al., 1999; Anderson et al., 2009). Even
more surprising is that these values exceed those in seabirds in the
Northern Hemisphere (e.g. Doi et al., 1984; Monteiro and Furness,
1995; Stewart et al., 1997; Bearhop et al., 2000).

Although several studies have measured mercury levels in al-
batrosses (Thompson et al., 1993; Hindell et al., 1999; Stewart et al.,
1999; Becker et al., 2002; Anderson et al., 2009; Blévin et al., 2013),
none included data from birds ranging in age from chicks to adults,
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despite the potential for elucidating the key factors contributing to
lifetime mercury accumulation. In this study, we measured total
mercury concentration in feathers of chicks, young and old pre-
breeders, and in feathers, blood cells and plasma of breeding
adults, all of known-age, in the wandering albatross at South Geor-
gia.Mercury in feathers is considered tobea reliablemeasureof total
bodyburdenat the timeof feather formation (Monteiro andFurness,
2001). This is because mercury is sequestered in the sulfhydryl
groups of keratin, so concentrations reflect the uptake and storage of
mercurybetweenmoults (Ochoa-acuñaet al., 2002).Mercurybound
in the plumage can account for up to 93% of the accumulated body
burden (Braune and Gaskin, 1987). In adult wandering albatrosses,
feather replacement takes place exclusively during the nonbreeding
period (Weimerskirch, 1991). In chicks, two generations of feathers
are grown post-hatching, an initial down and later pennaceous (or
‘true’) feathers. Down sampled early in development may include a
residual signal of the maternal mercury burden via the egg, but this
is likely to be diluted quickly, as the rate of plumage growth in
procellariiformchicks is rapid (Phillips andHamer, 2000). Theutility
of analysing mercury concentrations in blood is that these largely
reflect accumulation from the time of the previous moult, less any
mercury that has been demethylated from its more toxic methyl, to
less toxic inorganic form and potentially sequestered in internal
tissues (Thompson and Furness, 1989) or, in females, was deposited
in the egg (Lewis et al., 1993). Hence our sampling programme
allowed us to determine mercury dynamics in relation to age, sex
and breeding status, and to determine the key factors underpinning
long-term mercury accumulation.
Table 1
Review of the published data on the Hg levels in a number of albatrosses species (mean

Species Location F

Diomedea exulans Wandering
albatross

South Georgia 2
1
2

Marion Island 2
New Zealand
Southern Pacific and
Indian Oceans

Diomedea dabbenena Tristan albatross Gough Island 2

Diomedea epomophora Royal albatross New Zealand 1

Southern Pacific and
Indian Oceans

Thalassarche melanophris Black-browed
albatross

South Georgia

Chilean coast
Falkland Islands

Thalassarche impavida Campbell
albatross

New Zealand 1

Thalassarche chrysostoma Grey-headed
albatross

New Zealand
South Georgia

Thalassarche steadi White-capped
albatross

New Zealand 1

Southern Pacific and
Indian Oceans

Phoebastria immutabilis Laysan albatross Midway Atoll, Hawaii

British Columbia, Canada
Phoebastria nigripes Black-footed albatross Midway Atoll, Hawaii 1

British Columbia, Canada

a U e unknown.
2. Methodology

Fieldwork was undertaken on Bird Island, South Georgia (54� 000 S, 38� 030 W).
Between January 2005 and February 2010, 6e8 body feathers (selected at random)
were obtained from 20 returning pre-breeders visiting the colony in the early-
midsummer; 7 were young pre-breeders (4e6 years) and 13 were old pre-
breeders (9e15 years). In MayeOctober 2009, blood samples (1 ml blood from the
tarsal vein) and body feathers were collected from 6 breeding adults, also of known
age, each month. Down and blood were also sampled in 4 chicks in May and
September 2009. Feathers were stored dried, and blood was separated into plasma
and cells using a centrifuge (15 min at 3000 rpm) and stored frozen within 2 h of
collection. No bird was sampled more than once, nor a sample taken from both
members of any pair. Birds were sexed using plumage and morphology (Tickell,
1968), and all had been ringed as chicks and so were of known age.

Feathers were cleaned with a chloroform and diethyl ether solution (2:1) and
dried at 50 �C prior to analysis. Repeatability in mercury measurement was assessed
using paired feather samples from the same individuals. Samples of both plasma and
blood cells were subsequently freeze-dried and homogenized, and total mercury
determinations of samples of 0.20e7.62 mg was performed by thermal decompo-
sition atomic absorption spectrometry with gold amalgamation, using a LECO AMA-
254. Accuracy and precisionwere assured by the daily analysis of a certified reference
material (CRM) of similarmatrix to the samples (TORT-2), obtained from theNational
Research Council of Canada. The results for the CRMwere always within the certified
value (0.27 � 0.06 mg kg�1) with a recovery efficiency of 102.8 � 7.85% (n ¼ 49). The
results were corrected for the daily recovery percentage of the CRM analyses.

After checking for normality, data were analysed using parametric procedures
after logarithmic transformation of mercury concentrations. ANOVAs were used to
evaluate the effects of age, sex and breeding status on tissue Hg concentrations,
followed by unequal N Tukey HSD post-hoc test (given the unequal group sizes).
Pearson correlations or ANCOVAwere used to assess relationships betweenmercury
concentrations, age and sex. Differences in mercury levels between chicks and
breeding adults were examined using unpaired t-tests. Consistency in mercury
levels measured in two different feathers sampled from the same individual was
examined using intraclass correlation. Significant levels were set at p < 0.05.
� SD in mg kg�1 dry wt).

eathers Blood Liver n Source

0.1 � 7.6 9.6 � 4.3 31 Present study
9.6 � 10.1 66 Thompson et al. (1993)
7.4 � 8.1 11.2 � 3.4 14 Anderson et al. (2009)
4.8 � 12.4 29 Thompson et al. (1993)

360.0 � 183.0 9 Stewart et al. (1999)
482.3 � 120.7 22 Hindell et al. (1999)

8.0 � 14.3 27 Thompson et al. (1993)
1343 � U 2 Thompson and Furness

(1989)
1.5 � 13.9 22 Thompson et al. (1993)

449.3 � 490.1 4 Stewart et al. (1999)
108.6 � 35.8 9 Hindell et al. (1999)

4.6 � 1.9 20 Thompson et al. (1993)
5.4 � 2.0 16 Becker et al. (2002)
8.3 � 2.6 4.4 � 1.1 16 Anderson et al. (2009)
2.7 � 0.8 4 Ochoa-acuña et al. (2002)
2.7 � 1.2 30 Thompson et al. (1993)
0.1 � 4.4 35 Thompson et al. (1993)

124.6 � 74.6 6 Stewart et al. (1999)
6.9 � 2.4 36 Thompson et al. (1993)
4.2 � 2.3 34 Thompson et al. (1993)
8.9 � 2.9 19 Becker et al. (2002)
9.5 � 2.8 6.6 � 1.1 15 Anderson et al. (2009)
0.9 � 4.6 20 Thompson et al. (1993)

35.0 � 17.6 42 Stewart et al. (1999)
39.6 � 4.6 29 Hindell et al. (1999)

3.5 � 0.4 13 Burger and Gochfeld
(2000)

11.9 � Ua 11 Elliott (2005)
9.6 � 1.8 17 Burger and Gochfeld

(2000)
121 � Ua 12 Elliott (2005)



Table 2
Mercury concentration in feathers and chick down of the wandering albatross ac-
cording to breeding status and sex (mean � SD and range, mg kg�1 dry wt).

n Mean value SD Range

Chicks 8 6.14 1.91 4.25e9.91
Young pre-breeders
Males 2 45.81 4.28 42.78e48.84
Females 4 49.69 8.16 41.25e57.18
Pooled data 7 48.13 6.34 41.25e57.18
Old pre-breeders
Males 7 23.93 5.64 16.77e33.20
Females 3 20.22 8.10 10.89e25.46
Pooled data 13 21.20 6.32 10.89e33.20
Adults
Males 16 18.90 7.41 8.09e36.58
Females 16 21.43 8.18 13.18e39.82
Pooled data 34 20.14 7.64 8.09e39.82
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3. Results and discussion

The observed levels in feathers and blood confirm that mercury
concentrations in wandering albatrosses are much higher than
those of several other albatrosses, including those from South
Georgia (Table 1). Such high values have been attributed to the high
rate of mercury intake from their upper trophic level diet combined
with a slow moult cycle, biennial breeding and a physiological
capability to demethylate mercury and sequester the inorganic
form with selenium (Thompson et al., 1993; Stewart et al., 1999;
Xavier et al., 2004). The low moult frequency is a contributing
factor, but not the complete explanation as other albatrosses moult
almost as infrequently (Weimerskirch, 1991; Prince et al., 1993). At
South Georgia, wandering albatrosses tend tomaintain a consistent
feeding preference for fish and squid, whereas other albatrosses eat
more lower trophic level prey such as Antarctic krill Euphausia
superba during the austral summer (Xavier et al., 2003, 2004;
Phillips et al., 2009, 2011).

Bioaccumulation of mercury with size has been documented in
many species of fish (McArthur et al., 2003) and squid (Bustamante
et al., 2006, 2008; Pierce et al., 2008; Pereira et al., 2009), which are
the major components of albatross diets (Xavier et al., 2003). An
estimated 86% of the mass of cephalopods consumed by wandering
albatrosses is scavenged, and includes large species (Xavier and
Croxall, 2007), and they also consume offal and discards from
commercial fishing, which frequently consist of long-lived, large-
bodied demersal species (Xavier et al., 2004). Hence, wandering
albatrosses are probably more likely than other albatross species to
consume a greater proportion of large prey. Indeed, previous work
has highlighted that variation in mercury burdens in seabirds often
reflects differences in feeding strategies, including the relative
importance of mesopelagic prey (Monteiro et al., 1998; Stewart
et al., 1999; Becker et al., 2002; Anderson et al., 2009).

Mercury levels in feathers from wandering albatrosses ranging
in age from chicks to mature adults showed no evidence of an
overall linear trend (r ¼ 0.143, p ¼ 0.297; Fig. 1). This is consistent
with a number of previous studies that tested in a similar way for
correlations between mercury levels in tissues and bird age
(Thompson et al., 1991, 1993; Becker et al., 2002). However, having
the opportunity to sample young pre-breeders, we detected a
surprisingly steep increase in mercury burden from the time of
fledging to first return at the age of 4e6 years. This was followed by
a decline to a lower level by 9 years which was maintained
Fig. 1. Total mercury concentrations in body feathers of wandering albatrosses of known a
mercury accumulation in males and females.
thereafter in breeding adults. There were also significant differ-
ences in mercury concentrations in feathers of chicks (<1 year),
young pre-breeders (4e6 years old), old pre-breeders (9e15 years
old) and breeding adults (11e33 years old) (F ¼ 51.62, p < 0.001).
Levels were lowest in chicks, intermediate in old pre-breeders and
breeding adults, and greatest in young pre-breeders (Table 2).
Repeatability in mercury concentration between the two feather
samples taken from each individual (n ¼ 55) was high, and sig-
nificant (F ¼ 5.08, p < 0.0001, ri ¼ 0.804).

The highermercury levels measured in the feathers of the young
pre-breeders are probably linked to differences in moulting stra-
tegies. In breeding adults, as in most seabirds, moulting and
breeding tend to be temporally segregated because both are ener-
getically highly demanding (Bridge, 2006). Hence, albatrosses
moult almost exclusively in the nonbreeding period, and must
balance the extent of moult necessary to maintain flight efficiency
and the demands of reproduction to the extent that in several
species, birdsmay ultimately be forced to defer breeding in order to
replace worn plumage (Langston and Rohwer, 1996). In wandering
albatrosses, immature birds and individuals breeding for the first
time possess fewer new feathers than experienced birds, which
seems likely to reflect their greater difficulties in replacing feathers
because of energy allocation constraints associatedwith their lower
foraging skills (Weimerskirch, 1991). Since moult is a crucial
mechanism for mercury excretion, this reduces the opportunities
for pre-breeders and, it would appear from our results, particularly
ge and breeding status (mg kg�1). The dashed line refers to the long-term pattern of



Fig. 2. Mercury levels in blood samples of albatrosses of known age (mg kg�1): (a) blood cells, (b) plasma.
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the very youngest birds, to reduce their body pool of mercury by
excretion into feathers.

Another factor contributing to differences in mercury concen-
trations in feathers of young pre-breeders compared with older
wandering albatrosses could be variation in at-sea distribution or
diet. The plumage of juvenile and immature wandering albatrosses
is easily distinguished, and at sea observations in combinationwith
Fig. 3. Mercury levels in feathers, blood cells and plasma of male and female wandering alb
significant difference.
recent tracking data indicate that young birds are more likely than
adults to feed in subtropical or subantarctic waters, and that a
significant proportion cross the Indian Ocean to wintering grounds
around the southern and eastern coast of Australia (Weimerskirch
et al., 2006).

Mercury concentrations in chick down were significantly lower
than in feathers of pre-breeders or breeding adults probably
atrosses (mg kg�1). Boxes represent interquartile range, and bars � range. * Indicates a
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because their exposure periods were short (chicks were only 1e6
months old when sampled), and also they were rapidly growing a
complete set of plumage. The latter alone would tend to greatly
dilute the levels of mercury excreted into new feathers, certainly by
comparison with an older bird that might replace only half its
plumage once every two years between breeding attempts.

Mercury concentrations in blood cells and plasma were signif-
icantly higher in breeding adults than chicks (t ¼ 13.26, p < 0.001
and t ¼ 10.05, p < 0.001, respectively). There was no significant
linear correlation between mercury concentrations in either blood
cells or plasma, and age in breeding adults (r¼ 0.107, p¼ 0.589 and
r ¼ 0.109, p ¼ 0.597, respectively; Fig. 2). However, the pattern of
mercury accumulation in the blood cells with age differed between
sexes, with a higher rate of mercury accumulation in females than
males (ANCOVA, age F ¼ 0.445, p ¼ 0.511; sex F ¼ 13.54, p ¼ 0.001).

Therewas no effect of sex onmercury levels in feathers of young
pre-breeders, old pre-breeders or breeding adults (Two-way
ANOVA, effect of status F ¼ 16.29, p < 0.001, effect of sex F < 0.001,
p¼ 0.985, interaction F¼ 0.836, p¼ 0.441; Fig. 3). Nor was there an
effect of sex on mercury levels in plasma of breeding adults
(t ¼ 1.893, p ¼ 0.185; Table 3). In contrast, mercury levels in blood
cells were significantly higher in female than male breeders
(t ¼ 3.741, p < 0.001; Table 3; Fig. 3). Blood cells presumably reflect
dietary mercury intake since the end of the moult, prior to the
onset of the current breeding attempt. Those concentrations
remain higher in females than males, suggesting they do not
excrete sufficient quantities of mercury into the egg for this to have
a substantial long-term effect. Instead, the difference suggests
some sexual segregation in foraging areas or diet of breeding birds
in the incubation or early to mid chick-rearing period, prior to
sample collection. Male and female wandering albatrosses do show
preferences for different water masses during breeding; males
favour cold, Antarctic waters whereas females mostly use subant-
arctic and subtropical waters (Weimerskirch et al., 1993; Xavier
et al., 2004; Xavier and Croxall, 2005). Moreover, in two years
with differing environmental conditions, males consumed mainly
fish (74% by mass) whereas females consumed mainly cephalopods
(67%) (Xavier et al., 2004). However, differences in distribution or
diet may be less pronounced during the nonbreeding season, given
the lack of a sex effect on mercury levels in feathers. This accords
with previous studies of stable isotope ratios; d13C in feathers was
higher in females than males, but there was no difference in d15N,
indicating that females had a more northerly foraging habitat but
did not feed at a higher trophic level during the nonbreeding period
(Phillips et al., 2009; Ceia et al., 2012).

The high level of mercury contamination in the wandering al-
batross may constitute an additional stress in individuals within a
species that is already facing conservation problems, mainly as a
consequence of unsustainable incidental mortality associated with
long-line fishing (Croxall et al., 1998; Nel et al., 2002; Xavier et al.,
2004). Some degree of health surveillance, including contaminant
monitoring, is advisable, as exposure to mercury may lead to
deleterious effects (organ toxicity and reproductive or
Table 3
Mercury concentration in blood cells and plasma of the wandering albatross ac-
cording to breeding status and sex (mean � SD and range, mg kg�1 dry wt).

Blood cells Plasma

n Mean SD Range n Mean SD Range

Chicks 7 0.84 0.36 0.42e1.40 5 0.11 0.05 0.06e0.17
Adults
Males 14 7.10 2.10 3.69e11.53 14 0.66 0.29 0.32e1.29
Females 14 12.04 4.55 5.83e19.91 12 0.83 0.25 0.49e1.43
Pooled data 28 9.57 4.29 3.69e19.91 26 0.74 0.28 0.32e1.43
neurobehavioral impairment) (Scheuhammer, 1987). Mercury
concentrations of over 0.5 mg kg�1 in eggs and of over 9e
20 mg kg�1 in feathers have been correlated with decreased
reproductive success in some piscivorous birds (Scheuhammer,
1987; Burger and Gochfeld, 1997). Concentrations reported in this
and other studies of wandering albatross are considerably higher,
and so although marine birds are expected to have higher toxicity
thresholds than terrestrial birds (Blévin et al., 2013), we cannot
dismiss the possibility of adverse effects in this already threatened
species.
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