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Abstract

Although mitochondria are best known for being the eukaryotic cell powerhouses, these organelles participate in various cellular

functions besides ATP production, such as calcium homoeostasis, generation of reactive oxygen species (ROS), the intrinsic apoptotic

pathway and steroid hormone biosynthesis. The aim of this review was to discuss the putative roles of mitochondria in mammalian sperm

function and how they may relate to sperm quality and fertilisation ability, particularly in humans. Although paternal mitochondria are

degraded inside the zygote, sperm mitochondrial functionality seems to be critical for fertilisation. Indeed, changes in mitochondrial

integrity/functionality, namely defects in mitochondrial ultrastructure or in the mitochondrial genome, transcriptome or proteome,

as well as low mitochondrial membrane potential or altered oxygen consumption, have been correlated with loss of sperm function

(particularly with decreased motility). Results from genetically engineered mouse models also confirmed this trend. On the other hand,

increasing evidence suggests that mitochondria derived ATP is not crucial for sperm motility and that glycolysis may be the main

ATP supplier for this particular aspect of sperm function. However, there are contradictory data in the literature regarding sperm

bioenergetics. The relevance of sperm mitochondria may thus be associated with their role in other physiological features, particularly

with the production of ROS, which in controlled levels are needed for proper sperm function. Sperm mitochondria may also serve as

intracellular Ca2C stores, although their role in signalling is still unclear.
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The mitochondrion: a multidimensional organelle

Mitochondria are important and unique organelles, and
ongoing research keeps highlighting novel ways in
which they participate in cellular functions. One main
characteristic that separates the mitochondrion from
other organelles is the presence of its own circular
genome, mitochondrial DNA (mtDNA) and specific
ribosomes, thus allowing for local protein synthesis
(St John et al. 2010). Although mtDNA only codes for
13 mitochondrial proteins (Fig. 1), their expression might
be essential for mitochondrial function. To this extent,
mtDNA defects have been associated with a range of
human disorders (including neurodegenerative diseases
and cancer), as well as with ageing (for recent reviews,
see Greaves et al. (2012) and Schon et al. (2012)). The
development of animal models harbouring mtDNA
mutations corroborated this association and contributed
to the elucidation of mitochondrial disease mechanisms
(Dunn et al. 2012).

In addition, mitochondria feature four defined inter-
connected compartments: the outer mitochondrial
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membrane (OMM) and inner mitochondrial membrane
(IMM), the intermembrane space and the mitochondrial
matrix (Fig. 1). The similarities between the IMM and
the cellular membrane of prokaryotic organisms
(including the presence of the lipid cardiolipin), together
with the existence of mtDNA, stress the possibility that
mitochondria were once symbionts inside the cell,
which progressively lost autonomy as most of their
genome migrated to the nucleus, resulting in a full
integration and control of mitochondria in eukaryotes
(Alberts et al. 2008).

The IMM is usually convoluted, presenting several
invaginations (cristae) but, unlike what is often assumed,
this general arrangement is very variable, and the
number, structure and extension of IMM cristae
may have functional consequences (Bereiter-Hahn &
Jendrach 2010). Furthermore, mitochondrial morpho-
logy itself is also plastic, with components of specific
mitochondrial fission and fusion machineries promoting
reversible changes from ovoid mitochondria to exten-
sive interconnected filamentous organelles (Campello &
Scorrano 2010). Finally, the functional importance of
DOI: 10.1530/REP-13-0178
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Figure 1 The mitochondrial electron transfer chain (ETC) and the production of ATP by oxidative phosphorylation. (A) The structure, composition
and localisation of the ETC complexes is represented. Examples of inhibitors of each of the complexes are also indicated. (B) Proteins constituting
each of the complexes. Adapted from the KEGG Pathway Database (http://www.genome.jp/kegg/pathway.html; Kanehisa et al. 2012). Details: pink
rectangles, proteins described in human sperm proteomic studies (Amaral et al. 2013); green rectangles, proteins likely to be present but that have
not been detected in human sperm proteomic projects; white rectangles, prokaryotic proteins; rectangles with blue frame, proteins encoded by the
mitochondrial genome (all the others are nuclear encoded).
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mitochondrial connections to other organelles (such as
the endoplasmic reticulum) and the cytoskeleton is
gaining attention, as it may help to integrate distinct
cellular functions (Anesti & Scorrano 2006, Rowland &
Voeltz 2012).

Mitochondria participate in many crucial processes
in eukaryotic cells, the better known of which is the
production of ATP via oxidative phosphorylation
(OXPHOS), which is preceded by the generation of
reduced electron carriers, both in the cytoplasm (via
glycolysis) and in the mitochondrial matrix (where the
Krebs cycle and the oxidation of most fatty acids take
place, Fig. 2). The IMM includes several complexes that
make up the electron transfer chain (ETC, Fig. 1A), which
Reproduction (2013) 146 163–174
transports electrons obtained from the oxidation of
NADH and the FADH2 moiety of succinate dehydro-
genase, ultimately reducing the final acceptor oxygen to
water. In this process, a quimio-osmotic proton gradient
is generated across the IMM and is subsequently used
by the ATP synthase to phosphorylate ADP to ATP. The
proton gradient has two components, a minor chemical
(pH) component and a major electric component,
which is usually translated into the mitochondrial
membrane potential (MMP). The electric nature of the
MMP (with a negatively charged mitochondrial matrix)
can also be harnessed to sequester calcium ions and
thus participate in calcium homoeostasis (Nichols &
Ferguson 2002).
www.reproduction-online.org
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Figure 2 Overview of the pathways likely to be active in mammalian sperm mitochondria. Energy production by OXPHOS: the Krebs cycle and fatty
acid b-oxidation contribute reducing equivalents to the electron transfer chain (ETC); ATP produced is exported from the matrix and ADP is
imported. The proton (HC) gradient may be dissipated by uncoupling proteins, under certain conditions. OXPHOS-derived ATP seems to be crucial
for sperm function, although it does not seem to have a central role in sperm motility. Reactive oxygen species (ROS) production (which can be
counteracted by antioxidant defences): controlled levels of ROS seem to be needed for sperm function; on the other hand, excessive levels may result
in oxidative stress (and thus in DNA damage and lipid peroxidation). Intrinsic apoptotic pathway: oxidative stress and/or high Ca2C levels can induce
the opening of a permeability transition pore, the extrusion of cytochrome c and the activation of a caspase cascade, ultimately resulting in
apoptosis-like phenomena. These may be stimulated/inhibited by apoptosis regulators (Bak–Bax and Bcl-2/xL respectively). Calcium uptake:
although sperm mitochondria are known to uptake calcium, the role of sperm mitochondria in calcium signalling is unclear. mtDNA transcription
and translation: the mtDNA is organized in protein complexes called nucleoids. Mammalian sperm mitochondria seem to have some protein
synthesis activity. I, II, III, IV and V, ETC complexes; C and Q, electron carriers (cytochrome c and ubiquinone); ACS, acyl-CoA synthase; ANT,
adenosine nucleotide translocator; CPT, carnitine acyltransferase; MCAT, mitochondrial carnitine/acylcarnitine carrier protein; MCU, calcium
uniporter protein; PTP, permeability transition pore; UCP, uncoupling proteins.
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Besides its involvement in ATP synthesis, the
mitochondrial ETC promotes the production of reactive
oxygen species (ROS), which can both function in
signalling pathways and cause oxidative damage, if
produced in an unchecked manner. Remarkably, the
mobile ETC carrier cytochrome c moonlights as an
active participant in the mitochondria-mediated intrinsic
apoptotic pathway. In fact, one of the hallmark
triggers of this process is cytochrome c release into
the cytoplasm.

Importantly, for reproductive biology, mitochondria
are also the starting point for steroid hormone bio-
synthesis (Ramalho-Santos & Amaral 2013). Indeed, the
www.reproduction-online.org
conversion of cholesterol to pregnenolone (a common
precursor for all steroid hormones) is catalysed by
the cytochrome P450 side-chain cleavage enzyme
(P450scc) on the IMM (Stocco & McPhaul 2006).
Moreover, mitochondrial ATP synthesis seems to be
required for steroid biosynthesis in Leydig cells (Midzak
et al. 2011). More recently, mitochondria and mito-
chondrial processes have been identified as participating
in many other events, stressing its role in the integration
of metabolism, cell signalling, cell proliferation, epi-
genetic regulation, cell cycle control, cell differentiation
and cell death (Nunnari & Suomalainen 2012). Through-
out this article, we will touch on several aspects of
Reproduction (2013) 146 163–174
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mitochondrial functionality, specifically as they pertain
to sperm function, and notably to human sperm, with
brief mentions of research carried out in other species,
as appropriate.
Sperm mitochondria

Germ cell mitochondria change throughout spermato-
genesis: while spermatogonia and early spermatocytes
harbour orthodox mitochondria, late spermatocytes,
spermatids and sperm have more condensed (and
metabolically more efficient) forms (see Ramalho-Santos
et al. 2009). Additionally, concurrent to the loss of the
majority of the cytoplasm occurring during spermio-
genesis (the differentiation of spermatids into sperm),
some mitochondria are lost in residual bodies. The
22–75 remaining mitochondria rearrange in tubular
structures that are helically anchored around the anterior
portion of the nine outer dense fibres (ODFs) and of the
axoneme, constituting the midpiece (Otani et al. 1988,
Ho & Wey 2007; Fig. 3). The anchorage of the
mitochondrial sheath is sustained by a complex of
filaments called sub-mitochondrial reticulum (Olson &
Winfrey 1990) and seems to depend on the expression of
Figure 3 The human sperm midpiece. Three dimensional rendering of
confocal microscopy images acquired with human sperm stained with
an antibody against the mitochondrial protein TFAM, clearly showing
the localisation and organisation of the sperm midpiece (green). DAPI
was used as a DNA counterstain for the sperm nucleus (blue).
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kinesin light chain 3 (KLC3), a protein that may bind both
ODF1 and a mitochondrial outer membrane porin,
creating a bridge between them. Indeed, transgenic male
mice expressing a KLC3 mutant protein that cannot bind
ODF1 have abnormal sperm midpiece formation, low
sperm quality and reduced fertility (Zhang et al. 2012).
On the other hand, the sperm OMMs are covered by a
keratinous structure formed by disulfide bonds between
cysteine- and proline-rich selenoproteins (Ursini et al.
1999). This structure, the so-called mitochondrial
capsule, may confer protection to sperm mitochondria
(and mtDNA) and certainly contributes to the impracti-
cality of fully isolating these organelles. Logically, the
number of mitochondrial proteins and of mtDNA
molecules per cell is also reduced during spermiogenesis
(Hecht et al. 1984, Larsson et al. 1997). However, given
that most of the cytoplasm is lost during this differen-
tiation process (thus greatly reducing cell volume), this
may be paralleled by an increase in mtDNA copy
number per volume unit (Diez-Sanchez et al. 2003).

Interestingly, sperm from a few non-mammalian
animal species that live in habitats with very low oxygen
levels lack mitochondria (Balsamo et al. 2007),
suggesting that nature has a way of getting rid of needless
mitochondria during spermiogenesis. On the contrary,
mammalian sperm preserves a number of mitochondria
in a specific subcellular compartment, indicating
that the functionality of these organelles might be
crucial. In addition, and at least in rodent species, it
seems that sperm mitochondria become polarised, and
thus functional, after epididymal maturation (without
which sperm is unable to achieve in vivo fertilisation;
Aitken et al. (2007)). Likewise, a remarkable change in
human sperm mitochondria towards a more loosely
wrapped morphology, possibly resulting from an
increase in mitochondrial volume, was associated with
capacitation (a second maturation process usually
occurring in the female reproductive tract and without
which in vivo fertilisation is not possible; Vorup-Jensen
et al. (1999)). These observations suggest that active
sperm mitochondria are required for fertilisation. From
an evolutionary point of view, having more mito-
chondria may be advantageous, as sperm from primate
species with multiple partners (and thus with stronger
sperm competition) have a greater midpiece volume
than sperm from monogamous species (Anderson &
Dixson 2002).

Nevertheless, it is important to note that, although
mitochondria are present in the male gamete, paternal
mtDNA is generally not transmitted to the embryo in
mammalian intraspecific crosses. However, despite what
is depicted in many scientific textbooks, the reason for
this maternal-only mtDNA transmission is not that the
sperm tail is discarded outside the oocyte at fertilisation
but rather that paternal mitochondria are degraded
inside the zygote, following penetration of the entire
male gamete into the oocyte (Ramalho-Santos 2011).
www.reproduction-online.org
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Having said this, the time frame during which sperm
mitochondria functionality is physiologically relevant
and needs to be maintained comprises the period
between epididymal storage, ejaculation, travelling
between the female reproductive tract and sperm–
oocyte interactions. Any alteration in the mitochondrial
genome, transcriptome, proteome or metabolome, or
any cellular event resulting in compromised sperm
mitochondrial functionality during this time may poten-
tially affect sperm function, as will be discussed in detail
(Table 1).
Mitochondrial functionality and sperm quality

First of all, defects in sperm mitochondrial ultrastructure
seem to associate with decreased sperm motility in
humans (Mundy et al. 1995, Pelliccione et al. 2011).
At the molecular level, previous work has shown that
deletions and other changes to mtDNA that influence
cellular homoeostasis can result in reduced sperm
functionality and male infertility, both in human patients
(for review see St John et al. (2005)) and in mice
engineered to harbour a mutant mtDNA with a
pathogenic 4696-bp deletion (Nakada et al. 2006).
Likewise, microarray analysis suggested that sperm
from asthenozoospermic samples have altered levels of
specific mtRNAs, as well as of nuclear-encoded
transcripts encoding mitochondrial proteins (Jodar
et al. 2012). However, and at least for some mtRNAs,
this putative difference could not be corroborated
by quantitative real-time PCR. Moving beyond the
mitochondrial genome/transcriptome, the expression
of mitochondrial proteins, and notably ETC subunits, is
associated with sperm quality (Amaral et al. 2007).
In fact, comparative proteomic outcomes suggest that
the expression of several sperm mitochondrial proteins
may be altered in asthenozoospermic patients (Zhao
et al. 2007, Martinez-Heredia et al. 2008, Chan et al.
2009, Siva et al. 2010, Parte et al. 2012). Furthermore,
the activity of sperm mitochondrial enzymes, including
ETC complexes, also correlates with sperm para-
meters, including concentration, vitality and motility
(Ruiz-Pesini et al. 1998, 2000a), although it should be
noted that the highest correlations found were for the
activities of citrate synthase and ETC Complex II
(succinate dehydrogenase), which are nuclear-encoded
proteins that are part of the Krebs cycle. In addition, the
normalisation of other activities to citrate synthase (often
used as a marker for mitochondrial content) suggested
that the main explanation for these correlations might be
mitochondrial volume, not distinct enzymatic activities
in samples of varying quality (Ruiz-Pesini et al. 1998).
Additionally, mice lacking the testis-specific form of
cytochrome c also have impaired sperm function
(Narisawa et al. 2002). Furthermore, oxygen consump-
tion in sperm mitochondria and mitochondrial respir-
atory efficiency also correlate with motility (Stendardi
www.reproduction-online.org
et al. 2011, Ferramosca et al. 2012), and many different
ETC inhibitors (Fig. 1) have been shown to negatively
affect sperm motility (Ruiz-Pesini et al. 2000b, St John
et al. 2005). Given that these results depend on an
organized ETC (rather than on the activity of individual
components), the data suggest that a functional organelle
is important for sperm function. In accordance with this
notion, the same should be valid for mitochondrial
parameters that depend on intact mitochondria, namely
the MMP.

Indeed, and although accurately monitoring MMP in
sperm may be challenging (Amaral & Ramalho-Santos
2010), this parameter clearly correlates with functional
sperm parameters, including motility (Troiano et al.
1998, Marchetti et al. 2002, 2004, Gallon et al. 2006,
Paoli et al. 2011, Wang et al. 2012), and with fertilisation
ability, monitored both in model systems (Sousa et al.
2011) and in patients undergoing assisted reproduction
(Kasai et al. 2002, Marchetti et al. 2012). Interestingly,
recent data suggest that the sperm motility of patients
with abnormal sperm parameters can be enhanced by
incubation with myoinositol, and this seems to be
paralleled by an increase in the proportion of sperm
with high MMP (Condorelli et al. 2012).

Finally, mitochondrial functionality may also be
required for sperm capacitation. To this extent, a peak
in oxygen consumption was observed during in vitro
capacitation and progesterone-induced acrosome
reaction in bovine and boar sperm (Cordoba et al.
2006, Ramio-Lluch et al. 2011). In addition, it is
well established that several sperm mitochondrial
proteins undergo capacitation-dependent tyrosine
phosphorylation (for a review, see Shivaji et al. (2009)).

The preceding paragraphs seemingly stress that
mitochondrial functionality is important for sperm
activity, or, at the very least, that functional mitochondria
help define a functional male gamete (Table 1). But what
is exactly the role of mitochondria in sperm? Given that
mitochondria are crucial for ATP production in eukary-
otic cells and that ATP, in turn, is needed for sperm
motility, the obvious answer would be to link these two
events. However, the emerging portrait is much more
complex, as will be discussed in the following section.
Sperm metabolism: not a linear story

In fact, the issue of sperm metabolism related to motility
is the subject of an extensive debate (Ramalho-Santos
et al. 2009), and some compelling evidence suggests that
mitochondria-derived ATP is not paramount for motility,
but rather that glycolysis may be the main ATP provider
in this case, with mitochondrial activity at this level
possibly related to other aspects. This hypothesis was first
discussed in terms of compartmentalisation, namely that
ATP produced in the midpiece would take too long to
diffuse (or shuttle) along the flagellum, notably in species
with longer sperm tails, such as rodents, although this
Reproduction (2013) 146 163–174



Table 1 Experimental evidence suggesting an association between mitochondrial functionality and sperm quality.

Mitochondrial feature Main outcomes References

(A) Human sperm studies
Mitochondrial ultrastructure
Midpiece and mitochondrial integrity Sperm from asthenozoospermic patients have shorter

midpieces and fewer mitochondrial gyres, disordered
mitochondria with swollen intermembrane spaces, scat-
tered disorganised cristae or a totally disaggregated inner
structure (comparison with normozoospermic samples)

Mundy et al. (1995) and Pelliccione et al.
(2011)

Mitochondrial genome (mtDNA)
mtDNA rearrangements Although conflicting results concerning specific point

mutations/deletions were published, it seems consensual
that the accumulation of multiple mtDNA rearrangements
is associated with loss of sperm function

Reviewed in St John et al. (2005, 2007)

mtDNA content Low-quality sperm have an abnormal mtDNA copy number Diez-Sanchez et al. (2003), May-Panloup
et al. (2003), Amaral et al. (2007) and
Song & Lewis (2008)

Expression of proteins implicated in
mtDNA maintenance

Low-quality sperm have lower levels of TFAM
(mitochondrial transcription factor A) and POLG
(DNA polymerase gamma)

Amaral et al. (2007)

Mitochondrial transcriptome (mtRNA)
mtRNA levels Sperm from asthenozoospermic patients have altered

levels of specific mtRNAs (note: suggested by
microarrays analysis but could not be corroborated
by RT real-time PCR)

Jodar et al. (2012)

Mitochondrial proteome
Protein levels The expression of several mitochondrial proteins seems

to be altered in sperm with low motility
Amaral et al. (2007), Zhao et al. (2007),

Martinez-Heredia et al. (2008), Chan
et al. (2009), Siva et al. (2010) and Parte
et al. (2012)

Enzymatic activity Correlation between the activity of ETC enzymes and
sperm parameters (note: this may simply mirror the
mitochondrial volume)

Ruiz-Pesini et al. (1998, 2000a)

Mitochondrial metabolism/bioenergetics
ETC functioning and oxidation/pho-
sphorylation coupling

Incubation of sperm with different ETC inhibitors results
in decreased sperm motility

Ruiz-Pesini et al. (2000b) and St John
et al. (2005)

MMP Association between sperm MMP and sperm functional
parameters (including motility) and fertilisation ability

Troiano et al. (1998), Marchetti et al.
(2002, 2004, 2012), Wang et al. (2003,
2012), Gallon et al. (2006), Amaral &
Ramalho-Santos (2010), Paoli et al.
(2011) and Sousa et al. (2011)

Oxygen consumption and respiratory
efficiency

Correlation between oxygen consumption/respiratory
efficiency and sperm motility

Ferramosca et al. (2008, 2012) and
Stendardi et al. (2011)

Others
ROS production Mitochondria are the main source of ROS in sperm Koppers et al. (2008) and Kothari et al.

(2010)
Apoptosis (intrinsic pathway) Mitochondrial-derived ROS may induce an apoptosis-like

phenomenon in sperm
Aitken et al. (2012c)

Ca2C signalling Sperm mitochondria can uptake Ca2C and are possible
intracellular Ca2C stores, but their role in signalling
is unclear

Reviewed in Costello et al. (2009)

(B) Genetically engineered mouse models
Mitochondrial mice models
Testis-specific cytochrome c knock-out Homozygous males were fertile, but presented testicular

atrophy and their sperm were less motile, had lower levels
of ATP and had a lower fertilisation ability compared with
wild-types

Narisawa et al. (2002)

Mitochondrial DNA polymerase
gamma (POLG) knock-in expressing
a proofreading-deficient polymerase

Increased levels of mtDNA point mutations and deletions,
reduced lifespan and premature onset of age-related
phenotypes, including reduced fertility

Trifunovic et al. (2004)

Transmitochondrial (carrying mtDNA
deletions)

Accumulation of pathogenic mtDNA-derived ETC defects;
male infertility

Nakada et al. (2006)

R168 A Amaral and others
notion is disputed (Ford 2006). There are, however,
several lines of evidence that seem to favour glycolysis as
the main ATP source for sperm movement. These
include, for example, the need for glucose to maintain
sperm function, a need that cannot be replaced
Reproduction (2013) 146 163–174
with OXPHOS substrates (Peterson & Freund 1970,
Williams & Ford 2001, Amaral et al. 2011, Hereng et al.
2011). Furthermore, male mouse knock-out models
for the glycolysis-associated enzymes enolase 4
(Nakamura et al. 2013), phosphoglycerate kinase 2
www.reproduction-online.org
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(Danshina et al. 2010), lactate dehydrogenase-C4
(LDHC; Odet et al. 2008) and glyceraldehyde
3-phosphate dehydrogenase-S (Miki et al. 2004) have
impaired sperm function (notably in terms of motility)
and suffer fertility loss, with the latter model maintaining
normal mitochondrial activity. However, recent data
have shown that, at least for LDHC, the severity of the
results depends on the mouse strain, with some strains
relying more on glycolysis than others (Odet et al. 2013).
Using laser tweezers, it was also shown that human
sperm motility was not dependent on MMP (Nascimento
et al. 2008).

Therefore, it seems clear that there are contradictory
data in the literature and that other metabolic pathways
may be involved in sperm motility. Recent data suggest
that the use of endogenous substrates, including the
oxidation of fatty acids (Fig. 2), may be important for this
process (Amaral et al. 2013), which should also be
dependent on what physiological substrates and
conditions the sperm encounters in vivo (Storey 2008).
Other aspects of mitochondrial physiology and
sperm quality

ROS production

Sperm can be affected by ROS produced locally, or by
ROS formed in leucocytes present in semen (Whittington
& Ford 1999). Mitochondria are the main source of
sperm-produced ROS, notably via the formation of
superoxide in the ETC, although NADPH oxidase may
also be an additional source (Koppers et al. 2008, Kothari
et al. 2010). Importantly, controlled ROS levels are
needed for proper sperm function (notably for motility,
capacitation, the acrosome reaction, hyperactivation
and fertilising ability), while ROS can also have a
pathological effect on the male gamete, if in excess, or if
there is an imbalance with available antioxidant
defences, resulting in a decrease in viability, motility,
MMP, and increases in DNA damage, morphology
defects and lipid peroxidation, possibly resulting in
apoptosis-like phenomena, as will be discussed below
(Kothari et al. 2010, Mahfouz et al. 2010, Aitken et al.
2012b). The recent development of specific probes for
mitochondria-produced ROS (mROS) shows that exces-
sive production results in membrane peroxidation and
loss of motility (Koppers et al. 2008, Aitken et al. 2012a).
Additionally, a higher content of unsaturated fatty acid
on sperm is also related to an increase in mROS again
leading to motility loss and DNA damage (Koppers et al.
2010). Interestingly, mROS levels seem to vary in
ejaculates, and when sperm are separated by Percoll
gradients, the low-density fraction has a more prominent
number of positive cells for mROS than the high-density
fraction (Koppers et al. 2008, Aitken et al. 2013). These
results have suggested that both enzymatic and non-
enzymatic antioxidants could be used to control the
www.reproduction-online.org
damage caused by excessive ROS levels in sperm, and
there is some evidence that seems to consubstantiate this
hypothesis, interestingly with antioxidants that speci-
fically target mitochondria (Lamond et al. 2003, Aitken
et al. 2012a).
Apoptosis

Although the capacity of mature sperm to carry out
apoptosis has been questioned due to the paucity of
cytoplasm, it is well known that human sperm can
possess apoptotic markers and that this may influence
sperm function and perhaps be involved in the removal
of DNA-damaged sperm in the female reproductive tract
(Ramalho-Santos et al. 2009, Aitken & Koppers 2011),
or, alternatively, result from leftover apoptotic phenom-
ena in the testis, possibly related to cases of male
infertility (Almeida et al. 2013). It is worth mentioning
that some studies note increases in sperm DNA damage
as evidence for apoptosis, but, while DNA damage is
certainly one of the main consequences of apoptosis,
apoptosis may not be the only possible mechanism
involved (Sousa et al. 2009, Aitken & De Iuliis 2010,
Sakkas & Alvarez 2010), and the notion of DNA damage
directly linked to a canonical apoptosis cascade in
sperm has been questioned (Koppers et al. 2011).
Although the extrinsic apoptotic pathway has been
suggested to be active in sperm (Sakkas et al. 1999),
we will focus on the intrinsic (mitochondria-dependent)
pathway, which involves, for example, both pro- and
anti-apoptotic members of the Bcl family and especially
on general apoptotic features, as there is clearly much
more information at that level. In terms of the intrinsic
pathway, anti-apoptotic Bcl-xL seems more prevalent in
ejaculated abnormal/immature sperm, possibly as a
spermatogenesis remnant (Cayli et al. 2004), while the
presence of both pro- and anti-apoptotic forms of Bcl-x
have been proposed to exist in mature human sperm,
but no correlations with sperm parameters were shown
(Sakkas et al. 2002).

More general apoptosis hallmarks include the exter-
nalisation of phosphatidylserine (PS) to the outer leaflet
of the plasma membrane and caspase activation. PS
exposure can be monitored using fluorescent Annexin V
in unpermeabilised (live) cells. In fact, Annexin V
staining revealed more viable cells in normozoospermic
patients (Varum et al. 2007) and seemed to correlate
with sperm parameters in other studies (Shen et al. 2002,
Weng et al. 2002). Importantly, the use of magnetic
activated cell sorting (MACS) with Annexin V micro-
beads to select sperm reduced the percentage of altered
cells (Lee et al. 2010, Rawe et al. 2010, Tavalaee et al.
2012). On the other hand, the presence of activated
caspases (the final step in apoptosis) has also been
linked to poor sperm quality and lower fertilisation
potential, possibly by affecting sperm DNA (Weng et al.
2002, Grunewald et al. 2008, Kotwicka et al. 2008,
Reproduction (2013) 146 163–174
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Almeida et al. 2011), both in the case of caspase 9
(activated by the mitochondrial pathway of apoptosis
following cytochrome c release) and caspase 3 (activated
by both apoptotic pathways). Interestingly, caspase
activity seems to be focused in the sperm midpiece
(Weng et al. 2002, Paasch et al. 2004a), and the use of
apoptotic inducers increases the activity of both
caspases, lowering MMP and sperm motility (Paasch
et al. 2004b, Grunewald et al. 2005, Espinoza et al.
2009, Kim et al. 2012). Recent studies have implicated
mitochondrial ROS generation in human sperm apopto-
sis, with resulting ROS-derived DNA damage rather than
DNA cleavage, thus linking both phenomena (Aitken
et al. 2012c). An interconnection between capacitation
and apoptosis signalling pathways has also been
proposed (Grunewald et al. 2009).
Ca2C signalling

Calcium signalling and calcium store mobilisation have
recently been shown to be important in Assisted
Reproductive Technologies (ART) success, as responses
are clearly different when patients are compared with
sperm donors (Alasmari et al. 2013). However, what role
sperm mitochondria have in this process is open to
question, although sperm mitochondria are known to
uptake calcium, and have been hinted as a possible
intracellular calcium store in human sperm (Costello et
al. 2009). In somatic cells, mitochondrial calcium
uptake is undertaken by a mitochondrial calcium
uniporter (MCU; Fig. 2) and is known to control
intracellular calcium signals, cell metabolism and cell
survival (for recent reviews, see Rizzuto et al. (2012) and
Patron et al. (2013)). Proteomic data have confirmed that
human sperm do possess MCU, as well as MCU
regulator 1 (Amaral et al. 2013, Wang et al. 2013).
However, mitochondrial uncoupling does not seem to
significantly affect the calcium oscillations occurring in
either progesterone- or nitric oxide-stimulated human
sperm (Harper et al. 2004, Machado-Oliveira et al.
2008). Likewise, during bull sperm motility hyperactiva-
tion, mitochondrial respiration does not appear to be
up-regulated by the release of calcium to the axoneme
(Ho & Suarez 2003). Taken together, these data suggest
that direct roles of mitochondrial calcium uptake in the
control of intracellular calcium signals or in cell
metabolism in mammalian sperm are unlikely. Mito-
chondrial calcium signalling may be involved in the
sperm intrinsic apoptotic pathway, but further studies are
needed to better clarify this aspect.
Conclusions and future perspectives

Although mitochondria functionality seems to be crucial
for mammalian sperm, and while functional mito-
chondrial parameters clearly correlate with human
Reproduction (2013) 146 163–174
sperm functionality and fertilisation ability, its exact
role in the male gamete is not completely clear (Fig. 2).
At any rate, it seems that the specific and evolutionarily
conserved mitochondrial concentration at the sperm
midpiece of all mammalian species studied so far does
not currently contribute towards centralising ATP
production for sperm movement, as is often assumed in
many Cell Biology textbooks (Alberts et al. 2008). Thus,
the role of mitochondria in sperm function might be
predominantly related to other physiological aspects. To
this extent, on the one hand, the controlled production of
mROS (balanced by effective antioxidant defences)
seems to be required for sperm motility, capacitation
and fertilising ability. On the other hand, the
mitochondrial apoptotic pathway might prevent
DNA-damaged sperm from participating in fertilisation
and may also be linked to the removal of sperm from the
female reproductive tract post-coitum (Aitken & Koppers
2011). Moreover, sperm mitochondria are putatively
involved in Ca2C homoeostasis, as these organelles may
function as intracellular Ca2C stores (Costello et al.
2009), but more studies are required to better understand
this topic. Additionally, similar to what seems to happen
in other cells (Lu & Thompson 2012), a crosstalk between
mitochondrial metabolism and sperm epigenetics
may exist. This is especially relevant given the recent
finding that the sperm chromatin may transfer acquired
epigenetic states across generations (Puri et al. 2010).
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