
 

 





 

 

Patrícia Cristina Moura Martins Lopes 

 

 

 

 

 

 

Molecular mechanisms involved in glucose and lipid 

metabolism after immunosuppressive therapy 

 

 

 

 

Doctoral Thesis in Biosciences, specialization in Biochemistry, supervised by 

Doctor Eugénia Carvalho, co-supervised by Professor Doctor Carlos Palmeira and 

presented to the Life Sciences Department of the Faculty of Sciences and Technology of the 

University of Coimbra. 

 

 

Coimbra 2014 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover: Image of adipocytes stained with hematoxylin/eosin. Illustration created by 

Hugo Alves.    



 

 

Patrícia Cristina Moura Martins Lopes 

 

 

 

 

 

 

Mecanismos moleculares envolvidos no metabolismo da 

glucose e dos lípidos após terapia imunossupressora 

 

 

 

Tese de Doutoramento em Biociências, especialização em Bioquímica, orientada 

pela Doutora Eugénia Carvalho e co-orientada pelo Professor Doutor Carlos Palmeira e 

apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia 

da Universidade de Coimbra.  

 

 

Coimbra 2014 

  

 

 

 

  

 



 

 

iv 

 

 

This work was performed at the Center for Neuroscienece and Cell Biology (CNBC), 

University of Coimbra, under the supervision of Doctor Eugénia Carvalho (CNBC, 

University of Coimbra) and co-supervision of Professor Doctor Carlos Palmeira (CNBC and 

Department of Life Sciences, University of Coimbra). Its execution was supported by a PhD 

fellowship from the Portuguese Foundation for Science and Technology 

(SFHR/BD/61405/2009).  

 

Este trabalho foi realizado no Centro de Neurociências e Biologia Celular (CNBC) da 

Universidade de Coimbra, sob a supervisão da Doutora Eugenia Carvalho (CNBC, 

Universidade de Coimbra) e co-supervisão do Professor Doutor Carlos Palmeira (CNBC e 

Departamento de Ciências da Vida, Universidade de Coimbra), ao abrigo de uma bolsa de 

Doutoramento financiada pela Fundação para a Ciência e a Tecnologia 

(SFHR/BD/61405/2009). 

 

 

 

Financial support by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Agradecimentos / Acknowledgments  

 

  
  

Os últimos 4 anos e a realização deste trabalho constituíram um desafio muito grande. Graças 

a Deus, o meu caminho cruzou-se com algumas pessoas às quais pretendo manifestar a 

minha profunda gratidão. 

 

À minha orientadora, Dra. Eugénia Carvalho, pela oportunidade que me deu e por ter sempre 

disponibilizado todas as condições necessárias à realização deste trabalho.  

 

Ao Dr. Carlos Palmeira, pela sua disponibilidade e apoio. 

 

Ao Dr. Flávio Reis, por acompanhar o meu trabalho e demonstrar sempre disponibilidade 

para responder às minhas dúvidas, acompanhado sempre de palavras de encorajamento. 

 

To Dr. John Jones, for the support and help whenever necessary, especially at the conclusion 

of this thesis. 
  

To Dr. Ivana Jarak, for the work we have done together and especially for the help in 

preparing the chapter on NMR. 

  

To Dr. Jan Eriksson, for the support and the scientific contribution to this dissertation and 

papers. Tack så mycket. 

 

À minha querida amiga Maria João, cuja amizade remonta à alguns anos, noutro trabalho, 

noutra cidade, mas sempre com o mesmo companheirismo e partilha. Este doutoramento 

deve-se muito ao teu apoio, quer no seu início mas principalmente no final, com a tua 

contribuição na elaboração da tese e artigos, assim como ajuda incondicional. 

 

Ao José Sereno, um ótimo colega que se tornou um verdadeiro amigo, sempre disponível 

para me ajudar, para tirar dúvidas e participar na parte experimental. Para além disso, sempre 

um ombro amigo e encorajador. 

 

Ao Daniel Espinoza, um amigo e uma ajuda preciosa no início do meu doutoramento, que 

me ensinou muito do que apliquei na realização deste trabalho e pela colaboração na 

elaboração desta tese. 

 

Aos meus colegas e amigos de laboratório, que me acompanharam ao longo desta aventura, 

especialmente Ermelindo, Liane, Marta e Amelia. Obrigada pela partilha de conhecimento, 

amizade, apoio, por terem ouvido os meus desabafos, por me fazerem rir e encorajarem-me 

a ir sempre em frente. 

 

Aos amigos que fiz ao longo destes anos, principalmente Joana, Michelle, Elda, Ângela, Inês 

e Luís, que fizeram com que estes 4 anos fossem mais fáceis, que me proporcionaram 

momentos de diversão, “pausas café”, amizade, apoio e ajuda sempre que necessário.  

 

A todas as pessoas do CNC que em algum momento cruzaram o meu caminho e me 

ajudaram, partilhando a sua experiência comigo. 

 



 

 

vi 

 

 

À FCT, comparticipada pelo Fundo Social Europeu e por fundos nacionais do Ministério da 

Educação e Ciência pela Bolsa de Doutoramento. 

 

A todos os meus amigos e familiares que me apoiaram e incentivaram.  

  

À minha família, que se viu toda envolvida neste projeto, participando e ajudando 

principalmente a minha irmã Carina e os meus pais Paula e Pedro, que sempre me apoiaram, 

incentivaram, aconselharam e ajudaram a levar este projeto até ao fim. Sem o vosso apoio, 

teria sido impossível concretizar este doutoramento. 

 

E finalmente, às duas pessoas mais importantes da minha vida, que passaram por vários 

sacrifícios pessoais para que este doutoramento se concretizasse, o meu marido Jorge e a 

minha filhota Raquel. Obrigada por serem quem são. Obrigada por acreditarem em mim. 

Amo-vos do fundo do meu coração. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

List of Contents 

Agradecimentos /Aknowledgements ………………………………………… v 

List of figures………………………………………………………………… x 

List of tables………………………………………………………………….. xii 

List of acronyms and abbreviations…..……………………………………… xiii 

Abstract………………………………………………………………………. xv 

Resumo……………………………………………………………………….. xviii 

List of publications …………………………………………………………... xxi 

  

Chapter 1 – Introduction  

  

1.1 Diabetes mellitus and its metabolic complications……………………. 1 

1.2 Immunosuppressive agents………………………………………….…. 3 

     1.2.1 - Calcineurin inhibitors ………………………………………………….. 4 

     1.2.2 - mTOR inhibitors…………………………………………………………. 5 

1.3 Long-term metabolic complications due to immunosuppressive 

agents………………………………………….…………………………….. 
7 

     1.3.1– New-onset diabetes after trasnplatation...…………………………..... 7 

     1.3.2 – Dyslipidemia …………………………………………………………….. 8 

1.4 Primary Peripheral tissues affected by immunosuppressive agents… 9 

     1.4.1– Adipose tissue …………………………………………………….. 9 

          1.4.1.1- Different WAT depots………………………………………………. 10 

          1.4.1.2 – Storage function. Lipolysis and lipogenesis…………………… 11 

          1.4.1.3 - Insulin signaling in adipose tissue …....................................... 14 

     1.4.2    – Muscle…………………………………………………………... 15 

          1.4.2.1   – Insulin signaling in muscle……………………………………... 16 

     1.4.3 - Liver …………………………………….………………………... 17 

          1.4.3.1 - Gluconeogenesis ………………………………………………….. 19 

          1.4.3.2- Hepatic de novo lipogenesis..…………………………………….. 20 

          1.4.3.3 – Hepatosteatosis…………………………………………………… 20 

1.5 Nuclear magnetic resonance (NMR) and stable isotopes to monitor 

effects of immunosuppressive agents on glucose and lipid metabolism… 
21 

1.6 Known metabolic effects of calcineurin and mTOR inhibitors on 

peripheral tissues…………………………………………………………… 
22 

     1.6.1 - Effects of calcineurin and mTOR inhibitors on glucose 

metabolism…………………………………………………............................... 
22 

     1.6.2 - Effects of calcineurin and mTOR inhibitors on lipid metabolism.… 23 

1.7 Scope, Aims and Outline of the thesis…………………………………. 25 

  

Chapter 2 – Material and Methods  

  

2.1 - Animals and treatments …..................................................................... 27 

2.2 – Biochemical parameters……………………………………………… 28 

     2.2.1 – Glucose clearance rate in the urine…………………………………... 28 

2.3 - Glucose and insulin tolerance tests…………………………………... 28 

2.4 – Adipocyte isolation and measurement of cell size, weight and 

number………………………………………………………………………. 
29 

     2.4.1 – Insulin-stimulated glucose uptake.................................................... 30 

     2.4.2 – Lipolysis………………………………………………………………….. 30 



 

 

viii 

 

2.5 – Staining……………………………………..………………………….. 31 

2.6 - RNA extraction and cDNA synthesis…………………………………. 31 

     2.6.1 – Real time PCR…………………………………………………………… 31 

2.7 – Protein extraction……………………………………………………... 33 

     2.7.1 – Immunoblotting………………………………………………………….. 33 

2.8 - 2H2O enrichment …................................................................................ 35 

2.9 - Metabolite preparation........................................................................... 35 

     2.9.1 - Hepatic glycogen extraction …......................................................... 35 

     2.9.2 - Derivatization of glucose to monoacetone glucose (MAG).............. 36 

     2.9.3 - Hepatic lipid extraction and purification …..................................... 36 

     2.9.4 - NMR analysis……………………………………………………............. 37 

     2.9.5 - Quantification of direct and indirect pathway contributions to 

hepatic glycogen production........................................................................ 
37 

     2.9.6 - Quantification of fractional de novo lipogenesis and 

glyceroneogenesis………………………………………………………………... 
38 

2.10 - Statistical Analysis …........................................................................... 38 

2.11 – Chemicals…………………………………………………………….. 39 

  

Chapter 3 - Effects of Cyclosporine A and Sirolimus on insulin 

stimulated glucose transport and glucose tolerance in a rat model 
 

  

3.1 Introduction…........................................................................................... 41 

3.2 Results…………………………………………………………………… 43 

     3.2.1 - Effects of CsA and SRL on glucose uptake in isolated rat adipocyte 

- ex vivo........................................................................................................ 
43 

     3.2.2 - Effects of CsA and SRL on glucose uptake in isolated rat 

adipocytes – in vivo...................................................................................... 
44 

     3.2.3 - Drug Blood Concentration............................................................... 44 

     3.2.4 - Effects of CsA and SRL on body weight …....................................... 45 

     3.2.5 - Effects of CsA and SRL on epididymal fat pad weight and 

adipocyte size............................................................................................... 
45 

     3.2.6 Effects of CsA and SRL on glucose and insulin levels ….................... 46 

     3.2.7- Effects of CsA and SRL on serum lipid ….......................................... 47 

     3.2.8- Effects of CsA and SRL on Glucose Tolerance Test …....................... 49 

3.3 Discussion………………………………………………………………... 49 

  

Chapter 4 - Cyclosporine A enhance gluconeogenesis while sirolimus 

impair insulin signaling in peripheral tissues after 3 weeks of treatment 
 

  

4.1 Introduction ….......................................................................................... 53 

4.2 Results…………………………………………………………………… 55 

     4.2.1 - GTT, ITT, as well as glucose, insulin and C-peptide measurements 

in serum …………………………………………………………………………… 
55 

     4.2.2 - Clearance of glucose rate in the urine.............................................. 56 

     4.2.3 - Effect of CsA and SRL on protein and gene expression in liver …... 57 

          4.2.3.1 - Gluconeogenesis is modulated by either CsA or SRL ….......... 57 

          4.2.3.2 - Effect of CsA and SRL on insulin signaling in liver….............. 58 

     4.2.4 - Effect of CsA and SRL on protein and gene expression in muscle… 60 

          4.2.4.1 - SRL decreases PGC1-α in muscle …........................................ 60 

          4.2.4.2 - Effect of CsA and SRL on insulin signaling in muscle …......... 61 



ix 

 

     4.2.5 - Effect of CsA and SRL on protein and gene expression in adipose 

tissue……………………………………………………………………………….. 
63 

          4.2.5.1 - Neither CsA nor SRL affected PTP1B, PGC1-α, or FOXO1 

protein levels in perirenal adipose tissue …........................................... 
63 

          4.2.5.2 - Effects of CsA and SRL on insulin signaling in adipose tissue. 64 

4.3 Discussion………………………………………………………………... 66 

  

Chapter 5 - Short and long Term effects of Cyclosporine A and 

Sirolimus in vivo on genes and proteins involved in lipid metabolism in 

Wistar rats 

 

  

5.1 Introduction ….......................................................................................... 73 

5.2 Results …................................................................................................... 74 

     5.2.1 - Effects of CsA and SRL on lipolysis …............................................. 74 

     5.2.2 - Effects of CsA and SRL on body weight and adipocyte weight and 

diameter…………………………………………………………………………… 
75 

     5.2.3 - Effects of CsA and SRL on NEFA and triglycerides ….................... 76 

     5.2.4 - Effects of CsA and SRL on triglycerides in liver and muscle …....... 77 

     5.2.5 - Gene expression of markers involved in regulating lipolysis …....... 79 

     5.2.6 - Gene expression of lipogenic factors in adipose tissue …................ 79 

     5.2.7 - Protein expression of factors involved in lipolysis and lipogenesis 

in adipose tissue………………………………………………………………….. 
81 

     5.2.8 - Gene expression of IL-6, TNF-α and adiponectin in perirenal 

adipose tissue……………………………………………………………………... 
83 

     5.2.9 - Expression of lipogenic factors involved in liver….......................... 83 

     5.2.10 - Gene expression for IL-6 and TNF-α in liver................................. 84 

5.3 Discussion………………………………………………………………... 85 

  

Chapter 6 - NMR-based metabolic profiling of hepatic response to 

Cyclosporine A 
 

  

6.1 Introduction ….......................................................................................... 91 

6.2 Results …................................................................................................... 93 

     6.2.1 - Effects of CsA treatment on body weight and adipocyte diameter 

and weight………………………………………………………………………… 
93 

     6.2.2 - Effects of CsA on Glucose Tolerance Test ….................................... 94 

     6.2.3 - Effects of CsA on hepatic glycogen sources….................................. 94 

     6.2.4 Effects of CsA on de novo lipogenesis contribution to HTG pool....... 97 

6.3 Discussion………………………………………………………………... 99 

  

Chapter 7 – General Discussion / Conclusions 109 

Future perspectives  

  

Bibliography 115 

 

 

 

 



 

 

x 

 

List of figures 

 

 

Figure                                                                           Page 

1.1 Global Diabetes increase worldwide 2 

1.2 Mechanism of action of CsA for the inhibition of the immune system 5 

1.3 Mechanism of action of SRL for the inhibition of the immune system 6 

1.4 Structure of adipose tissue 10 

1.5 Lipolysis and lipid storage in adipocytes 14 

1.6 The anatomy of the rat leg skeletal muscle 15 

1.7 Insulin signaling pathway 16 

1.8 The anatomy of the rat liver 18 

1.9 Overview of the gluconeogenesis, glycolysis, glycogenesis and glycogenolysis 

pathway 
20 

3.1 Effects of CsA and SRL on glucose uptake in epididymal adipocytes 43 

3.2 Effects of CsA and SRL on glucose uptake in epididymal adipocytes 44 

3.3 Effects of vehicle, CsA and SRL on body weight 45 

3.4 Effects of vehicle, CsA and SRL fat pad weight 46 

3.5 Effects of vehicle, CsA and SRL on glucose tolerance tests after 3 weeks (A) and 

9 weeks (B) 
49 

4.1 Effects of vehicle, CsA, and SRL treatment during a GTT (A) an ITT (B) and 

fasted serum glucose (C), fasted serum insulin (D)  fasted C-peptide (E) 
56 

4.2 Effects of vehicle, CsA, and SRL treatment on glucose clearance rate in the 

urine 
56 

4.3 Gluconeogenic gene and protein expression in liver after 3 week-treatment 

period with CsA and SRL 
58 

4.4 Expression of genes and proteins of the insulin signaling pathway in liver after 3 

week-treatment period with CsA and SRL 
59 

4.5 Expression of proteins of the insulin signaling in liver after 3 week-treatment 

period with CsA and SRL 
60 

4.6 PGC1-α, FOXO1, PTP1B gene and protein expression in muscle after 3 weeks 

treatment period with CsA and SRL 
61 

4.7 Expression of genes and proteins of the insulin signaling in muscle after 3 week-

treatment period with CsA and SRL 
62 

4.8 Expression of proteins of the insulin signaling pathway in muscle after 3 week-

treatment period with CsA and SRL 
63 

4.9 PGC1-α, FOXO1, PTP1B gene and protein expression in perirenal adipose     

tissue after 3 week-treatment period with CsA and SRL 
64 

4.10 Expression of genes and proteins of the insulin signaling in epididymal      

adipose tissue after 3 week-treatment period with CsA and SRL 
65 

4.11 Expression of proteins of the insulin signaling pathway in epididymal adipose 

tissue after 3 week-treatment period with CsA and SRL 
66 



xi 

 

4.12 - . Scheme summarizing the effects of CsA and SRL on the gluconeogenesis 

and insulin signaling in muscle and adipose tissue 
71 

5.1 - Effects of in vivo treatment of Wistar rats with CsA and SRL on lipolysis, in 

isolated adipocytes 
75 

5.2 Evaluation of total body weight (A), adipocyte weight (B) and diameter (C) after 

3 and 9 weeks of treatment with vehicle, CsA and SRL 
76 

5.3 Determination of non-esterified fatty acid (NEFA) (A) and triglycerides (TGs) in 

serum (B) after 3 and 9 weeks of treatment with CsA and SRL 
77 

5.4 Determination of triglycerides (TGs) in liver (A) and muscle (B) tissue (C) after 

3 and 9 weeks of treatment with CsA and SRL. Rat liver and muscle sections were 

stained with Oil Red O for confirmation of lipid deposition (C and D) 

78 

5.5 Expression of lipolytic genes in perirenal adipose tissue by CsA and SRL 79 

5.6 Expression of lipogenic genes in perirenal adipose tissue by CsA and SRL 81 

5.7 Regulation of protein levels of ACC1 (A), FAS (B), SREBP1 (C) and ChREBP 

(D) DGAT1 (E) and HSL (F) by CsA and SRL 
82 

5.8 Regulation of IL-6, TNF- and adiponectin gene expression in perirenal        

adipose tissue by CsA and SRL 
83 

5.9 Regulation of the expression of lipogenic factors in liver tissue by CsA and SRL 84 

5.10 Regulation of IL-6 and TNF- gene expression in liver tissue by CsA and SRL 85 

5.11 Scheme summarizing the effects of CsA and SRL on the crosstalk between liver 

and adipose tissue                                                            
90 

6.1 Effects of vehicle and CsA on body weight (A), adipocyte diameter and weight 

(B) 
93 

6.2 Effects of vehicle and CsA on GTT 94 

6.3 2H NMR spectra of MAG prepared from liver glycogen 95 

6.4 1H and 2H NMR spectra of extracted hepatic TGs 97 

6.5 Effects of vehicle and CsA on total blood plasma TG concentrations after 

Pluronic F-124 injection 
99 

6.6 Incorporation of 2H from deuterated water into triosephosphate Precursors and 

glycerol 
104 

6.7 Possible mechanism of 2H incorporation into acetyl – CoA: methyl hidrogens 

enriched 
105 

6.8 Incorporation of 2H into glucose molecule through the labeled substrates 106 

6.9 Incorporation  of 
2
H into glycerol and fatty acid components of triglycerides 107 

 

 

 

 

 

 

 

 



 

 

xii 

 

List of tables 

 

Table                                               Page 

2.1 Forward and Reverse primers sequences used for RT-PCR 32 

2.2 List of antibodies used for Western blot, source and dilution 34 

3.1 Acute (3 weeks) and chronic (9 weeks) effects of CSA and SRL 48 

6.1 Liver glycogen and body water 2H-enrichment for vehicle and 120 CsA- treated 

rats 
95 

6.2 Liver glycogen synthesis parameters for vehicle and CsA treated rats 96 

6.3 2H enrichments of triglyceride CH3 (fatty acid) and CH2 (glycerol)    moieties 

for vehicle and CsA treated rats 
97 

6.4 24 h hepatic triglyceride (HTG) fractional synthetic rates (FSR)    (liponeogenic 

and glyceroneogenic fractions) for vehicle or CsA-treated rats 
98 

6.5 Influence of CsA on hepatic and blood plasma TG content and hepatic VLDL 

production 
98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

List of acronyms and abbreviations 

 
 

ACC  Acetyl-CoA carboxylase 

Akt  Protein kinase B 

Apo  Alipoprotein  

AS160  Protein kinase B substrate of 160 kDa 

ATGL  Adipose triacylglycerol lipase 

ChREBP         Carbohydrate-responsive element-binding protein 

CNI  Calcineurin inhibitor 

CPN  Cyclophilin 

Ct  Threshold cycle 

CsA  Cyclosporine A 

DG  Diglyceride 

DGAT            Diglyceride acyltransferase   

DNL  De novo lipogenesis 

ELISA            Enzyme –Linked Immuno-Sorbent-Assay 

FKBP12         FK506-binding protein (12-kD) 

FAS  Fatty acid synthase 

FA  Fatty acid 

FFA  Free Fatty acid 

FOX  Forkhead box  

GK  Glucokinase 

GLUT  Glucose transporter 

GTT  Glucose tolerance test 

G6P  Glucose-6 phosphate 

G6Pase Glucose-6-phosphatase 

HDL  High-density lipoprotein 

HSL  Hormone-sensitive lipase 

IA  Immunosuppressive agent 

IL-6  Interleukin-6 

IR  Insulin receptor 

IRS  Insulin receptor substrate 

ITT  Insulin tolerance test 



 

 

xiv 

 

LDL  Low-density lipoprotein 

LPL  Lipoprotein lipase 

mTOR  Mammalian target of rapamycin 

mTORC1 Mammalian target of rapamycin complex 1 

mTORC2 Mammalian target of rapamycin complex 2  

MG  Monoacylglycerol 

NEFA  Non-esterified fatty acid 

NFAT  Nuclear factor of activated T cells 

NODAT New onset diabetes after transplantation 

NMR  Nuclear magnetic ressonance 

p70S6K p70 ribosomal S6 kinase 

PCR  Polymerase chain reaction 

PDK1  Phosphoinositide-dependent kinase 1 

PEPCK Phosphoenolpyruvate carboykinase 

PI3K  Phosphatidylinositol 3-kinase 

PGC1-α Peroxisome proliferator-activated receptor- coactivator  

PKA  Protein kinase A 

PKC  Protein kinase C 

PPARγ             Peroxisome proliferator-activated receptor γ 

PTP1B  Protein-tyrosine phosphatase 1B 

SREBP Sterol regulatory element-binding proteins 

SRL  Sirolimus 

Tac  Tacrolimus 

TG  Triglyceride 

TNF-α             Tumor necrosis factor - α 

VLDL  Very low density lipoprotein 

WAT  White adipose tissue 

 

 

 

 

 

 



xv 

 

 

Abstract  

 

Diabetes mellitus is a widespread and growing public health problem due mainly to 

the aging of the population and changes in diet and life style. The clinical diagnosis of 

diabetes has increased worldwide, including in Portugal. About one third of the population 

is pre-diabetic and/or undiagnosed diabetic. Diabetes is associated with the metabolic 

syndrome, which is characterized by several risk factors, including insulin resistance and 

dyslipidemia. These are two of the main metabolic complications that may also appear after 

transplantation. Organ transplant is a therapeutic measure of last resort for patients with end-

stage diseases who have exhausted all other available treatments without improvement. The 

most important issue in organ transplantation is to ensure the graft versus host survival; in 

the last decades, advances in immunosuppressive therapy have led to an important 

improvement. Calcineurin inhibitors, such as cyclosporine A (CsA), are cornerstones of 

immunosuppressive therapy; however recently other agents, like sirolimus (SRL), a 

mammalian target of rapamycin (mTOR) inhibitor, have been developed in order to produce 

protocols that able to minimize the use of calcineurin inhibitors. Although very effective in 

their functions as immunossupressors, both agents are associated with new onset diabetes 

after transplantation (NODAT) and dyslipidemia. Development of these metabolic 

complications increases the risk for graft failure and patient death. However, the molecular 

mechanisms underlying these metabolic effects are not fully elucidated and animal’s studies 

are important to clarify these aspects. In this thesis we aimed to understand the effects of 

therapeutic doses of CsA (5 mg/kg/day) and SRL (1 mg/Kg/day) in glucose and lipid 

metabolism in peripheral insulin sensitive tissues, such as adipose tissue, muscle and liver 

in an in vivo rat model, after short and long treatments.  

The CsA-treated group presented an impaired response to glucose during a glucose 

tolerance test, particularly at the 15 min time point. The glucose excursion curve for SRL 

was also impaired, as the recovery kinetics of blood glucose levels were slower, compared 

to the vehicle group. Furthermore, during an ITT, the decrease in blood glucose levels in the 

CsA-treated group was delayed 60 min, compared to the vehicle group. Interestingly, after 

9 weeks, SRL-treated animals were hyperinsulinemic while CsA-treated animals presented 

lower insulin values, suggesting glucose intolerance and insulin resistance in both treated 

groups. 



 

 

xvi 

 

Moreover, a significant reduction in the insulin-stimulated glucose uptake over basal 

was observed in isolated adipocytes, whether treated ex vivo or in vivo with CsA and SRL. 

Phosphorylation of the main proteins in the insulin cascade, namely IR (insulin receptor) at 

Tyr1146, IRS-1 (insulin receptor substrate-1) at Tyr612, Akt/PKB (protein kinase B) at both 

Ser473 and Thr308 was suppressed in the SRL group, which could explain the observed 

reduction in glucose uptake. In fact, impaired Akt/PKB activation leads to a decrease in 

phosphorylation of the substrate, AS160, which might block the insulin-stimulated 

translocation of glucose transporters to the cell membrane and therefore, the glucose uptake. 

Although none of the proteins involved in the insulin cascade were significantly affected by 

the CsA treatment, effects on key enzymes for hepatic gluconeogenesis suggest that CsA 

stimulates this mechanism. In fact, CsA increased protein levels of two of the enzymes 

involved in gluconeogenesis, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate 

carboxykinase (PEPCK) in the liver as well as the transcription factors peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) and forkhead box 

protein O1 (FOXO1), which may contribute to enhanced gluconeogenesis. We also observed 

a significant increase in protein-tyrosine phosphatase 1B (PTP1B), a negative regulator of 

insulin, in the CsA-treated group in the liver, indicating increased insulin resistance.  

CsA-treated animals presented an increase in serum non-esterified fatty acid (NEFA) 

and triglycerides (TGs) after 9 weeks of treatment. Moreover, CsA and SRL treatments of 

rats for 3 and 9 weeks increased isoproterenol-stimulated lipolysis in isolated adipocytes by 

5-9 fold and 4-6 fold, respectively. The increase in lipolysis might have been due to the 

observed increase in the expression of the main lipolytic protein, hormone-sensitive lipase 

(HSL). SRL treatment also caused ectopic deposition of TGs in liver and muscle after 3 

weeks. Additionally, SRL treatment reduced the expression of lipogenic genes, including 

acetyl-CoA carboxylase 1 (ACC1), lipin 1, peroxisome proliferator-activated receptor 

gamma (PPAR-γ) and stearoyl-CoA desaturase (SCD1) in adipose tissue. The reduced 

expression of lipogenic factors in adipose tissue might have impaired lipid storage on this 

tissue, and contributed to the observed ectopic deposition of fat in liver and muscle.  

Furthermore, we used a higher dose of CsA (15mg/kg/day) in vivo for 15 days, in 

order to evaluate CsA effects in glucose and lipid metabolism. This was done through 

quantification of 2H-enrichment of glucose, glycogen and TG after 2H2O administration by 

2H NMR. Although we determine that CsA at this dose affects body weight and glucose 
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tolerance, we could not see differences in glycogen synthesis or de novo lipogenesis, under 

these conditions. 

In conclusion, the molecular and metabolic changes observed in this work 

contributes to a better understanding of the mechanisms involved in the development of 

NODAT and dyslipidemia after immunosuppressive therapy, thus opening new possibilities 

for prevent these serious side-effects and improve grafts and patients survival. 
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Resumo 

 

Diabetes mellitus é uma doença que tem vindo a aumentar em todo o Mundo, devido 

ao envelhecimento da população e à alteração do estilo de vida, tendo-se tornado num 

problema de saúde pública. Um terço da população encontra-se num estado de pré-diabetes 

ou diabetes não diagnosticada. A diabetes está associada à síndrome metabólica, que é 

caracterizada por diversos fatores de risco, nomeadamente resistência à insulina e 

dislipidemia. Estas duas complicações metabólicas podem ocorrer após um transplante de 

órgãos, que é o último recurso terapêutico para pacientes com doença em estádio terminal. 

A questão mais importante é garantir a prevenção da rejeição do transplante pelo hospedeiro; 

recentes avanços na terapia imunossupressora têm vindo a aumentar a taxa de sucesso. Os 

inibidores de calcineurina, como a ciclosporina A (CsA), são um marco terapêutico, no 

entanto, nos últimos anos outros fármacos como o Sirolimus (SRL), um inibidor do alvo da 

rapamicina nos mamíferos (mTOR), foram desenvolvidos. De facto, apesar de muito 

eficazes, estes dois fármacos estão associados a efeitos secundários, incluindo diabetes pós-

transplante e dislipidemia, que aumentam o risco de rejeição do transplante e morte de 

paciente. Como os mecanismos moleculares subjacentes a estes efeitos metabólicos não 

estão totalmente elucidados, é da maior importância utilizar modelos animais para os estudar 

in vivo. O principal objetivo deste estudo foi avaliar, em ratos Wistar, os efeitos de doses 

terapêuticas de CsA (5 mg/kg peso/dia) e SRL (1 mg/Kg peso/dia) administradas de forma 

aguda (3 semanas) e crónica (9 semanas) no metabolismo da glucose e de lípidos, nos tecidos 

periféricos sensíveis à insulina – fígado, músculo e tecido adiposo.  

Os animais tratados com CsA apresentaram uma resposta insuficiente no teste de 

tolerância à glucose, uma vez que a concentração de glucose era mais elevada 15 minutos 

depois de a glucose ser administrada comparativamente ao grupo veículo. Nos animais 

tratados com SRL, verificou-se também alteração da curva de concentração de glucose, pois 

a cinética de recuperação da concentração de glucose no sangue foi mais lenta. Durante o 

teste de tolerância à insulina em animais tratados com CsA, a concentração de glucose 

diminuiu ao fim de 60 minutos, requerendo mais tempo que os animais do grupo veículo. 

Após 9 semanas de tratamento os animais tratados com SRL estavam hiperinsulinémicos, 

enquanto os animais tratados com CsA apresentavam concentrações mais baixas de insulina, 

comparativamente aos animais do grupo veículo, sugerindo intolerância à glucose e 

resistência à insulina em ambos os grupos.  
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Verificou-se uma redução significativa na captação da glucose por adipócitos 

isolados estimulados por insulina, em comparação com o nível basal, quer para os adipócitos 

tratados ex vivo com CsA e SRL, quer para aqueles provenientes dos estudos in vivo. 

Também, se observou, nos animais tratados com SRL, a inibição da fosforilação das 

principais proteínas da via de sinalização de insulina, nomeadamente no resíduo Tyr1146 do 

recetor de insulina (IR), no resíduo Tyr612 do substrato do recetor de insulina (IRS-1) e dos 

resíduos Ser473 e Thr308 da proteína quinase B (Akt), o que pode explicar a redução 

observada na captação da glucose. De facto, a diminuição da ativação da Akt conduz à 

diminuição na fosforilação do substrato AS160, o que pode levar ao bloqueio da translocação 

dos transportadores de glucose para a membrana plasmática das células e consequentemente 

a captação da glucose. Em contraste, o tratamento com CsA não afetou a fosforilação de 

nenhuma das proteínas desta via de sinalização. No entanto, o tratamento com CsA induziu 

a gliconeogénese dado o aumento da expressão proteica de duas enzimas envolvidas neste 

processo – G6Pase e PEPCK, assim como dos fatores de transcrição PGC1-α e FOXO1. 

Também se observou, no fígado dos animais tratados com CsA, um aumento do PTP1B, 

regulador negativo da insulina, indicando resistência de insulina. 

Os animais tratados com CsA apresentaram, após 9 semanas de tratamento, um 

aumento da concentração de NEFA e TGs em circulação. Verificou-se também o aumento 

significativo da lipólise em adipócitos isolados, estimulados com isoproterenol, em ambas 

as durações do tratamento e com ambos os fármacos, quando comparada com a lipólise em 

adipócitos do grupo veículo. A indução da lipólise pode dever-se ao aumento observado na 

expressão de uma das mais importantes proteínas lipolíticas, a HSL. Estes resultados 

sugerem que o aumento da lipolise in vivo com CsA e o SRL pode contribuir para a 

dislipidemia observada durante a terapia imunossupressora. O tratamento com SRL durante 

3 semanas causou deposição ectópica de TG no músculo e fígado e reduziu a expressão de 

genes lipogénicos no tecido adiposo, nomeadamente ACC1, lipin-1, PPAR-γ e SCD1. Esta 

redução pode levar a uma diminuição no armazenamento da gordura no tecido adiposo e 

contribuir para a deposição de gordura observada no fígado e músculo.  

Para avaliar os efeitos no metabolismo da glucose e lípidos através da identificação 

de metabolitos por 2H NMR foi administrada uma dose mais elevada de CsA (15mg/kg 

peso/dia) durante 2 semanas. Foi feita a determinação da glucose, do glicogénio e dos TG, 

que incorporaram 2H proveniente de água deuterada (2H2O). Embora tenha sido observado 

que nesta dose a CsA diminui o peso dos animais e a tolerância à glucose, não foram 

detetadas diferenças significativas na síntese de glicogénio nem na lipogénese de novo.  
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Em conclusão, as alterações metabólicas encontradas neste trabalho podem ajudar a 

revelar a origem do desenvolvimento da diabetes pós-transplante e dislipidemia depois da 

terapia imunossupressora, abrindo assim novas possibilidades de prevenção destes efeitos 

secundários, como forma de melhorar a sobrevivência dos enxertos e dos doentes 

transplantados. 
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CHAPTER 1  

 

Introduction 
 

 

 

 

 

 

 

 

1.1 Diabetes mellitus and its metabolic complications 

Diabetes mellitus is a widespread and growing public health problem due mainly to the 

aging of the population and changes in the life style (Shaw et al., 2010). Diabetes is 

associated with the metabolic syndrome, which is characterized by several risk factors, such 

as insulin resistance, abdominal obesity, atherogenic dyslipidemia, hypertension, 

hyperuricemia, a prothrombotic state, and a pro-inflammatory state (Grundy et al., 2004; 

Petersen et al., 2007 ; Reaven, 1988). Clinical diagnosis of diabetes has been increasing 

worldwide and currently, about 150 million people suffer from type 2 diabetes; the 

prediction is that by 2030 over 439 million people worldwide will suffer from type 2 diabetes 

with a severe socioeconomic impact (Shaw et al., 2010). In fact, about 16 to 17 million 

people are pre-diabetic, having early symptoms but not yet the full manifestation of the 

disease. In Portugal, about one third of the population (34.9%) aged 20-70 years is pre-

diabetic and a high percentage of the population is undiagnosed (43.6%) (Gardete-Correia 

et al., 2010). Genetic predisposition is also important to the development of type 2 diabetes. 

Healthy individuals, who have two first-degree relatives with Diabetes mellitus, have a 

three-to five-fold greater risk of developing the disease than those without a family history 

of diabetes (Carvalho et al., 1999; Elbein et al., 1991). In developed countries the prevalence 

of diabetes is higher than in the rest of the world, however, in near future, the major increase 

in people with diabetes will occur in developing countries (Badaru et al., 2012), mostly due 
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to the improvement in living conditions, longer life expectancy and changes in life style 

(Figure 1.1).  

 

 

Figure 1.1 - Diabetes increase worldwide. 

The major increase in people with diabetes will occur in developing countries, namely South 

America, Africa, India, China and Southern Asia. 

 

 

Etiologically, diabetes is a disease that can be divided in four main types: type 1, type 

2, gestational diabetes and secondary diabetes. Type 1 diabetes, which usually appears in 

childhood and represent about 10% of all cases of diabetes, is caused by autoimmune 

destruction of pancreatic β-cells with consequent deficiency in insulin production (ADA, 

2004). On the other hand, type 2 diabetes is more common and is considered a heterogeneous 

disease, caused by multiple factors and the result of peripheral insulin resistance and/or a β-

cell secretory defect. Gestational diabetes is diagnosed after glucose intolerance is identified 

during pregnancy and usually reverses after delivery. The last type – secondary diabetes, 

which is our focus, can be caused by  genetic defects that affect β-cells function (like 

maturity onset diabetes), diseases of exocrine pancreas, endocrinopathies and pancreatic 

dysfunction and/ or insulin resistance caused by drugs, like immunosuppressive agents 

(ADA, 2004).  

In fact, insulin resistance or diabetes is one of the metabolic complications that may 

appear after transplantation. Organ transplant is the medical procedure used when all the 

other treatments are exhausted, and is applied at the end stage of organ failure. In the USA 

alone, 28.051 people received organ transplants, while in Portugal 681 people were 

transplanted, in 2012 (Instituto Português de Sangue e Transplantação; organdonor.gov). 



Introduction 

3 

 

The one-year graft survival rates for kidney, liver and heart transplantations are reported 

between 82% and 95% (Burket et al., 2008). However, in order to totally accomplish a 

successful transplant, allograft rejection must be prevented and for this purpose 

immunosuppressive therapy is essential. 

 

1.2 Immunosuppressive agents 

Over the past decades, advances in immunosuppressive therapy led to an important 

improvement in graft survival. The constant research and development of new 

pharmaceutical agents, allows the transplant community to create regimens that can improve 

graft survival rates. This success is linked to the reduction of side effects, including new 

onset diabetes after transplantation (NODAT), dyslipidemia, cardiovascular disease, 

nephrotoxicity, malignancy and cosmetic effects, such as acne and gingival hyperplasia (Da 

Silva et al., 2012; Momin et al., 2010; Smith et al., 2003).  

Protocols for immunosuppression normally include different agents in order to 

achieve the maximum efficiency in preventing organ rejection. Glucocorticoids, which 

already exist naturally in our body as endogenous cortisol, are commonly used in 

immunosuppression protocols, in the form of exogenous therapeutic agents such as 

prednisone, methylprednisolone and dexamethasone. These agents have been used in the 

clinic since 1920s and was one of the first classes of medications used to prevent rejection 

after solid organ transplantation. In fact, glucocorticoids are very successful on interrupting 

several steps in immune activation, inhibiting cytokine production, proliferation of 

lymphocytes and promoting changes in cell trafficking (Baxter, 1992; Steiner et al., 2011). 

Another class of agent is calcineurin inhibitors (CNI), which includes cyclosporine A (CsA) 

and tacrolimus (Tac), also cornerstones of immunosuppressive therapy. More recently, other 

immunosuppressive agents (IA) have become available such as anti-proliferative agents like 

mycophenolate mofetil and inhibitors of mammalian target of rapamycin (mTOR), like 

sirolimus (SRL, also known as rapamycin) and everolimus (Smith et al., 2003). These new 

agents allowed the development of new protocols in order to minimize the usage of 

calcineurin inhibitors or glucocorticoids, which presented severe side effects in spite of their 

good outcome on preventing allograft rejection. Although these protocols are center-

specific, a higher immunosuppressive load is commonly used at an early phase of the 

transplant (induction phase). The induction phase includes an antibody therapy in 

combination with calcineurin inhibitors, glucocorticoids and an anti-proliferative agent 

(Scherer et al., 2007). On the other hand, in the maintenance phase, protocols with CNI, 
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glucocorticoids minimization or withdrawal and conversion to mTOR inhibitor and/or other 

anti-proliferative agents are applied. These protocols are dependent of the type of 

transplanted organ and pre-existing conditions in the patient, and focused on “individual 

tailored immunosuppressive protocol” (Beckebaum et al., 2013; Scherer et al., 2007). 

 The use of CsA and SRL is mentioned with more detail in the next section, since 

they are the focus of this thesis.  

 

1.2.1 Calcineurin inhibitors  

Calcineurin is a Ca2+/calmodulin dependent serine/threonine phosphatase (Klee et 

al., 1979; Klee et al., 1998; Stewart et al., 1982). It is present in different tissues and is 

responsible for different cellular functions, that include control of intracellular Ca2+ 

signaling, gene regulation and external signal-mediated biological responses (Crabtree, 

1999; Stankunas et al., 1999). It is also responsible for the regulation of transcription of the 

T-cell growth factor, interleukin-2 (Schreiber et al., 1992). The dephosphorylation of the 

transcription factor NF-AT (nuclear factor of activated T cells) is required for its 

translocation from the cytoplasm to the nucleus, in response to an increased intracellular 

Ca2+ level (Bandyopadhyay et al., 2002 ). In order to suppress the immune system a 

particular class of drugs that inhibit calcineurin and the translocation of NF-AT have been 

developed, which includes CsA. 

CsA was discovered at the Sandoz Laboratories (now Novartis) in the 1970s. It is a 

cyclic peptide of fungal origin (Tolypocladium inflatum) that binds to cyclophilins (a family 

of cellular proteins), to form a complex that inhibits calcineurin. Consequently, NF-AT 

dephosphorylation and its translocation into the nucleus are prevented, blocking interleukin-

2 gene expression, decreasing proliferation and differentiation of T-cells and overall the 

suppression of the immune response (Sarwal et al., 2001; Smith et al., 2003) (Figure 1.2). 
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Figure 1.2. Mechanism of action of CsA for the inhibition of the immune system.  

Cyclosporine A (CsA); Ciclophilin (CpN); calcineurin (CaN); nuclear factor of activated T cells 

(NF-AT); calcium (Ca2+) 

 

   

As a suppressor of the immune system, CsA was approved by the US Food and Drugs 

Administration (FDA) in 1983, to be used in the prevention of organ rejection in kidney, 

liver and heart transplant recipients (Lindenfeld et al., 2004). The introduction of CsA led to 

improvement and success in the transplantation field (Heusler et al., 2001). The clinical 

recommended oral doses for CsA in the early post-transplant phase is between 12 to 15 

mg/kg/day and generally, steady state trough concentrations are measured every day for the 

first 2 weeks after transplantation or until the patient is stable. Thereafter, concentrations are 

measured once a week for the first month and then monthly for the first 12 months after 

transplantation and the maintenance dose varies from 4 to 8 mg/kg/day (Harmon et al., 1993; 

Lindenfeld et al., 2004; Smith et al., 2003).  

Although, very successful in its function, CsA is associated with several side effects, 

including nephrotoxicity, hypertension, dyslipidemia and NODAT (Subramanian et al., 

2007). Nonetheless, it is still not clear if the relative diabetogenicity of calcineurin inhibitors 

is due to β-cells dysfunction, systemic insulin resistance or both.  

 

1.2.2 – mTOR inhibitors 

The mammalian target of rapamycin (mTOR) is a kinase that integrates inputs from 

many nutrients, growth factors and insulin. It transmits the signal to downstream targets to 

adjust cell growth and proliferation as well as metabolic homeostasis (Hay et al., 2004).  



Chapter 1 

6 

 

mTOR exists as two physically and functionally distinct multiprotein complexes located in 

the cytoplasm, termed the mTOR complex 1 (mTORC1, mTOR-raptor) and the mTOR 

complex 2 (mTORC2, mTOR-rictor) (Dowling et al., 2010; Rosner et al., 2008). 

Functionally, mTORC1 is sensitive to nutrients, especially amino acids, whereas mTORC2 

regulates cell proliferation and survival, as well as cytoskeletal reorganization (Madke, 

2013).  

SRL (or rapamycin) is an antifungal macrolide produced by the bacterium 

Streptomyces hygroscopicus, isolated in 1970, and approved by the FDA in 1999 to be used 

as an immunosuppressive agent (Sehgal et al., 1975). SRL binds to the 12-kD FK506-

binding protein (FKBP12) and this complex inhibits the target of rapamycin (TOR) Ser/Thr 

kinase. As mTOR regulates mRNA translation initiation and progression from the G1 to S 

phase of the cell cycle, its inhibition will prevent the T-cell proliferation (Chung et al., 1992) 

(Figure 1.3).  

 

 

Figure 1.3: Mechanism of action of SRL for the inhibition of the immune system. 

Sirolimus - SRL; FK506-binding protein 12kDa (FKBP12); phosphoinositide 3-kinase (PI3K); 

Protein kinase B (Akt/PKB); mammalian target of mTOR (mTOR) 

 

 

SRL can be an alternative to calcineurin inhibitors following transplantation, due to 

its antiproliferative properties and consequently antitumoral or antiatherogenic activity, and 

higher safety against renal toxicity (Cravedi P, 2010; Mehrabi A, 2006). It can be used alone, 

or in conjunction with other agents namely calcineurin inhibitors and/or mycophenolate 

mofetil, to provide steroid-free immunosuppression regimens. SRL is primarily used in renal 

transplantation and patients are given an initial loading dose of 12 to 20 mg/kg/day, followed 
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by a reduction of 4 to 8 mg /kg/day until day 5-7, and then the dose is adjusted in order to 

achieve steady-state circulatory trough levels of approximately 8 to 20 ng/ml in the 

maintenance phase. The sirolimus oral solution is normally administered once daily in the 

morning after dilution with water or orange juice (Schena et al., 2009).  

Although most of the time, SRL is chosen for renal transplants as it is associated to 

a low rate of nephrotoxicity, the use of this immunosuppressive agent is not consensual 

between transplant centers as to the right moment to use it and the duration of treatment. Its 

use has been associated with an increased risk of acute rejections and worse graft function 

as compared with CsA or Tac (Cravedi et al., 2010; Ekberg et al., 2007).  

 

1.3 Long-term metabolic complications due to immunosuppressive agents  

As already mentioned, one of the most concerning side effects related to the use of 

immunosuppressive agents (IAs) after transplantation is the development of metabolic 

complications, including an impairment of glucose tolerance and insulin secretion, as well 

as an increase in circulating lipids, leading to a diagnosis of diabetes. As an increasing 

problem in public health, several medications have been developed to control many aspects 

of diabetes. Nonetheless, macrovascular and microvascular complications continue to be 

manifested, affecting not only the vascular system, but also the kidney and peripheral nerves, 

with severe consequences, that affect the longevity and quality of life of patients that have 

been submitted to organ transplantation (ADA, 2004).  

 

1.3.1 -New-onset diabetes after transplantation (NODAT)   

The main characteristics of NODAT are similar to type 2 diabetes; i.e. decreased 

insulin secretion and peripheral insulin resistance (Hagen M, 2003; Hur et al., 2007). 

Hyperglycemia occurs due to the imbalance between insulin production by the β-cells and 

the target tissue insulin demand (Chow et al., 2008). In accordance, the diagnosis of NODAT 

is based on the American Diabetes Association criteria for the diagnosis of type 2 diabetes 

(ADA, 2004; Chow et al., 2008; Markell, 2004) as endorsed by the published international 

consensus guidelines (Davidson et al., 2003). Nonetheless, some factors that lead to this 

outcome might be present before the transplant. In fact, some patients that eventually 

developed NODAT had previous glucose intolerance or insulin resistance (Chow et al., 

2008). It is believed that the main risk factors for developing NODAT are familial history of 

diabetes, genetic predisposition, pre-transplant fasting hypertriglyceridemia, obesity, older 

recipient age at the time of transplant and non-white ethnicity (African Americans and 
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Hispanics) (Guerra et al., 2012; Luan et al., 2008; Montori et al., 2002; Vincenti et al., 2007). 

NODAT is usually manifested in the first few months post-transplantation, being the 

incidence rate variable due to the type of transplant, the target population or the kind of 

therapy used. According to Montori et al. (2002), 74% of the differences encountered in 

NODAT incidence between the different studies is due to the IA regimen used. Nonetheless, 

NODAT incidence varies from 15 to 78% for renal transplant patients in the first year, while 

it is about 45% for liver recipients. NODAT may not necessarily be permanent as it has long 

been recognized that it may resolve within weeks or months with changes in the regiment of 

the immunosuppressive agents used or with antidiabetic agents (Chow et al., 2008; Rossetto 

et al., 2010; Sulanc et al., 2005; Woodward RS, 2003). We also have to take in consideration, 

that as a result of a better quality of life post-transplant, an increase in caloric intake and 

weight gain is expected (Luan et al., 2008). However, complete remission from diabetes is 

difficult to predict as some patients that undergo apparent remission may later on develop 

persistent hyperglycemia (Sulanc et al., 2005).  

Whereas glucocorticoids, CsA and Tac have been the major agents responsible for 

affecting glucose homeostasis after solid organ transplantation (Subramanian et al., 2007). 

SRL is mostly associated with dyslipidemia, and to a lesser extent with NODAT, being this 

matter still a question of debate in the field. In fact, SRL has been associated with higher 

risk of developing NODAT in large North American and European cohorts and with lesser 

risk in other centers. The risk is particularly high when SRL is associated with calcineurin 

inhibitors (Cravedi P, 2010; Flechner et al., 2011; Ghisdal et al., 2012; Johnston et al., 2008; 

Morrisett et al., 2002; Veroux et al., 2008).   

 

1.3.2 Dyslipidemia 

After glucocorticoids, CsA and SRL are the most common cause for the development 

of post-transplant dyslipidemia, and it appears to be dose and duration of treatment-related 

(Subramanian et al., 2007), with an incidence of 20 to 80% in the first year (Kesten et al., 

1997; Parekh et al., 2012). In liver transplant, hypertriglyceridemia seems to be mainly 

related with CsA, although this idea is not consensual. Renal transplanted patients under 

SRL therapy developed dyslipidemia, with an increase in cholesterol and triglycerides 

(TGs), and more precisely low-density lipoprotein (LDL), very low-density lipoprotein 

(VLDL) and non-High-density lipoprotein cholesterol (non-HDL-C) (Claes et al., 2012; 

Morrisett et al., 2002). Approximately 60% of patients treated with mTOR inhibitors in 

clinical trials had to receive lipid-lowering therapy (Kasiske et al., 2008). Moreover, 
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combination of calcineurin inhibitors with m-TOR inhibitors increases the risk of developing 

dislipidemia (Anastacio et al., 2010).  

 

The main issue is that NODAT and dyslipidemia are associated with an increased 

risk of graft failure (60%) or even more, with an increased risk of patient death (90%) (Chow 

et al., 2008; Kasiske et al., 2003). In fact, elevated glucose levels, and dyslipidemia are 

conditions associated with an increased risk of cardiovascular disease in transplant recipients 

and also with decreased rates of allograft and patients survival (Del Castillo et al., 2004).   

In order to elucidate the molecular mechanisms behind the development of both 

NODAT and dyslipidemia after immunosuppressive therapy, the main peripheral tissues 

must be address. Adipose tissue, muscle and liver seem to be the most critical in this sense, 

and are the object of the present thesis. 

 

1.4 Primary peripheral tissues affected by immunosuppressive agents 

 

1.4.1 Adipose tissue 

Adipose tissue has been viewed for many years as an inert organ, functioning as a 

TG store. Nonetheless, this notion has changed and the adipocyte has now gained a new 

“status” among researchers. Adipose tissue play a critical role in energy homeostasis, 

interacting with neural/sympathetic (e.g. adrenergic) or hormonal stimulus (e.g. insulin), 

responding rapidly to changes in nutritional levels and also secreting cytokines (e.g. 

adiponectin and leptin) (Ahima, 2006; Bjorndal et al., 2011). Different types of adipose 

tissue have been described according to their location and function (Gesta et al., 2007). 

White adipose tissue (WAT) is the predominant type of adipose tissue in mammals. This 

tissue is composed of adipocytes, surrounded by loose connective tissue, highly vascularized 

and innervated, containing various cell types such as macrophages, fibroblasts and adipocyte 

precursors (Figure 1.4). The capacity for WAT to store triglycerides is believed to be almost 

unlimited, however expansion of adipose tissue has a limit, that when reached can cause the 

body to store fat in non-adipose tissues, such as liver, heart, muscle and pancreas, developing 

a toxic response known as lipotoxicity (Ahima, 2006; Medina-Gomez et al., 2007; Stephens, 

2012). 
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Figure 1.4. Structure of adipose tissue.  

White adipose tissue is composed of adipocytes and various cell types such as macrophages and 

adipocyte precursors and is highly vascularized. 

 

 

1.4.1.1 Different WAT depots 

It is also of importance to acknowledge that WAT is divided into specific regional 

depots with different biological function and consequently differences in structural 

organization and cellular size (Fruhbeck, 2008; Gesta et al., 2007; Giorgino et al., 2005). It 

is thought, that the total adipose tissue mass is less important for the risk of developing 

obesity-associated diseases than the distribution of fat between these depots (Bjorndal et al., 

2011; Giorgino et al., 2005). Although the subcutaneous and visceral adipose tissues are the 

largest depots in humans, retroperitoneal and epididymal fat are the largest in rodents and 

for this reason we chose to focus our study on them. Retroperitoneal adipose tissue in rats is 

located along the dorsal wall of the abdomen, surrounding the kidney. This tissue is known 

to express high amounts of the lipogenic transcription factors peroxisome proliferator-

activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1 

(SREBP1c), lipolysis-related genes and a lower levels of fatty-acid oxidation-related genes 

compared to mesenteric and subcutaneous adipose tissue (Palou et al., 2009). Epididymal 

fat is found around the testis in males and around ovaries in females. This depot has also 

been shown to express more of some lipogenic transcription factors and differences exist 

between genders (Bjorndal et al., 2011).  

 

 



Introduction 

11 

 

1.4.1.2 Storage function, lipolysis and lipogenesis 

 TG storage is the most important function of adipose tissue as it is vital for survival, 

particularly in the fasting state. After a meal, energy storage occur in liver and WAT, via 

esterification of free fatty acid (FFA) and lipogenesis, when levels of insulin, glucose and 

lipids rise. On the other hand, in the fasted state, glycogen breakdown occurs, lipolysis is 

stimulated, intracellular lipases activated and adipocytes release FFA and glycerol (Large et 

al., 2004; Viscarra et al., 2013) (Figure 1.5).  

 Adipose triglyceride lipase (ATGL), which is the enzyme responsible for the first 

step of lipolysis acts by hydrolyzing triglycerides (TGs) to diacylglycerols (DGs), providing 

substrate for hormone sensitive lipase (HSL). Its importance has been demonstrated in vivo, 

as ATGL knockout mice presented increased fat storage in the form of TGs in different 

tissues, as well as weight gain (Haemmerle et al., 2006). In turn, HSL is responsible for the 

hydrolysis of stored DG to monoacylglycerol (MAG), being the rate limiting step. HSL 

activity is actively regulated by cathecolamines through the lipolytic cascade and negatively 

regulated by insulin. Insulin antagonizes the cathecolamine-induced activation of HSL, a 

process referred to as the anti-lipolytic effect of insulin (Degerman et al., 1990). This 

inhibitory effect of insulin is believed to be physiologically the most important mechanism 

by which the rate of adipocyte lipolysis is reduced/regulated. In this state, perilipin A, the 

protein responsible for coating the fat droplets, protect the energy stores by blocking fat 

hydrolysis. When lipolysis occurs, perilipin A is phosphorylated by protein kinase A (PKA). 

In turn the hyper-phosphorylated perilipin recruits and organizes the activation of the 

lipolytic machinery (Brasaemle et al., 2009; Skinner et al., 2013). When FFAs and TGS 

increase in circulation, they become the major energy source for peripheral tissues (Bjorndal 

et al., 2011). Nonetheless, when this happens in excess, it causes impairment in insulin 

signaling and consequently glucose intolerance and insulin resistance. This will later 

translate into type 2 diabetes, non-alcoholic fatty liver and cardiovascular complications, 

although the molecular mechanisms by which lipids contribute to insulin resistance are not 

well understood (Czech et al., 2013).  

 Maintaining the TG storage capacity of adipocytes is of great importance as it keeps 

lipids away from peripheral tissues, and can promote the release of “good” cytokines, that 

help maintain insulin sensitivity (Czech et al., 2013). In fact, adipose tissue is an important 

endocrine organ, responsible for the production of several hormones and adipokines (e.g. 

leptin and  adiponectin)  but also the pro-inflammatory factors such as Tumor necrosis factor 

alpha (TNF-α) and interleukin-6 (IL-6) (Rosen et al., 2014). These last two have been 
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associated with the development of insulin resistance, vascular disease and other pathologies 

in obese patients (Giorgino et al., 2005). After transplantation, pro-inflammatory cytokines 

are increased and levels of adiponectin decreased in patients suffering from obesity, insulin 

resistance and Diabetes mellitus type 2 (Teplan et al., 2012). On the other hand, adiponectin 

is one of the most important adipokines, and act as an insulin-sensitizing marker. The main 

mechanisms by which this occurs seem to be through increased fatty acid (FA) oxidation 

and inhibition of hepatic glucose production (Kadowaki et al., 2005; Lihn et al., 2005).  

After a meal, when glucose is available, the transcription factor carbohydrate-

responsive element-binding protein (ChREBP) is activated and translocated from the cytosol 

to the nucleus (Dentin et al., 2005; Kawaguchi et al., 2001) binding to carbohydrate 

responsive element (ChRE) present in the promoter regions of glycolytic and lipogenic genes 

(Ishii et al., 2004). Meanwhile, insulin   regulates SREBPs, namely SREBP-1 (isoforms -1a 

and - 1c) responsible for fatty acid metabolism. SREBP-1c is the predominant isoform in 

most adult metabolic tissues such as liver and adipose tissue (Jeon et al., 2012). ChREBP 

and SREBP modulate the expression of genes required to maintain cellular lipid homeostasis 

(Osborne et al., 2009), namely Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2), fatty 

acid synthase (FASN) and Stearoyl-CoA desaturase 1 (sdc1) (Denechaud et al., 2008).   

ACC enzymes also exist in two isoforms; ACC1 is mainly responsible for the 

synthesis of TGs and phospholipids while ACC2 is a potent inhibitor of FA oxidation 

through allosteric binding to carnitine palmitoltransferase (CPT1). ACC1 is expressed at 

higher levels in liver and adipose tissues than in other tissues while ACC2 is more expressed 

in heart and skeletal muscle (Wakil et al., 2009). Fatty acid synthase (FAS) is the next step 

in this pathway. This enzyme is present in most tissues, including adipose tissue and liver 

(Clarke, 1993). FAS and ACC1 act together, to control the lipogenic flux to convert acetyl 

CoA and malony CoA into palmitate (Fernandez-Real et al., 2010; Hillgartner et al., 1995; 

Semenkovich, 1997). In addition, FAS gene expression is also regulated by hormones (e.g. 

insulin) and nutrients. Insulin, in particular, increases its rate of gene transcription in murine 

cell lines and primary human adipocytes (Claycombe et al., 1998; Wang et al., 2004) as well 

as its enzymatic activity, in order to produce TG for storage. However, in the state of insulin 

resistance, FAS is inhibited and the fatty acid pathway is impaired (Fernandez-Real et al., 

2010). Lipin 1 is a phosphatidic acid phosphatase 1 (PAP1) enzyme, responsible for the 

conversion of phosphatidate to diacylglycerol. Lipin 1 mRNA levels in adipose tissue are 

associated with alterations in metabolism, namely its down regulation causes lipodystrophy, 

while its up-regulation causes increased TG content per cell and expression of lipogenic 
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genes. Moreover, lipin levels in adipose tissue influence fat storage capacity of the adipocyte 

(Phan et al., 2005), without changing insulin sensitivity. Another downstream enzyme is 

stearoyl-CoA desaturase 1 (SCD1), from the Delta-9 fatty acid desaturase family that exist 

in the membrane of the endoplasmic reticulum, responsible for the conversion of saturated 

long-chain fatty acids into monounsaturated fatty acids, which are major components of 

TGs. Liver and adipose tissue are the predominant sites of SCD gene expression, that 

respond to diet, hormones and environmental factors (Jones et al., 1998; Kim et al., 2002; 

Liu et al., 2011; Miller et al., 1997; Ntambi, 1992; Waters et al., 1994).  

Moreover the actions of lipoprotein lipase (LPL) are essential to the hydrolysis of the 

TG core of circulating TG-rich lipoproteins, chylomicrons, and VLDL. This multifunctional 

enzyme exists in many tissues, including adipose tissue, cardiac and skeletal muscle, and 

also islets, and macrophages. Furthermore, FA and monoacylglycerols are in part taken up 

by tissues through CD36 (FA translocase). This tissue-specific expression and regulation of 

LPL and CD36 have been shown to have major metabolic consequences on macronutrient 

fuel partitioning, energy homeostasis, insulin action, and lipoprotein metabolism. The 

enzymatic activity of LPL is regulated in a complex manner in response to energy 

requirements and hormonal changes. Increasing evidence suggests that LPL is regulated at 

the transcriptional, posttranscriptional and translational levels in a tissue-specific manner 

(Wang et al., 2009). Moreover, CD36 deletion impaired FA uptake by key metabolic tissues, 

and increases plasma FA and TG (Hajri et al., 2002; Su et al., 2009). The final step of TG 

synthesis is through the conversion of DG to TG in a reaction catalyzed by diacylglycerol 

acyltransferase (DGAT).  DGAT1 is a member of the mammalian ACAT gene family, 

localized in the endoplasmic reticulum  and expressed in adipose tissue, small intestine, 

mammary gland, liver and muscle (Cases et al., 1998; Coleman et al., 2004; Shi et al., 2009). 

The importance of TG synthesis is exemplified by severe insulin resistance in patients with 

lipodystrophy, a genetic condition characterized by defective TG synthesis and storage in 

adipose tissues (Agarwal et al., 2003). Whereas excess TG accumulation in adipose tissue 

leads to obesity, ectopic storage of TG in non-adipose tissues such as liver and skeletal 

muscle is associated with insulin resistance (Shi et al., 2009). 

Peroxisome proliferator-activated receptor (PPAR) is a subfamily of nuclear 

hormone receptors (Desvergne et al., 1999; Lee et al., 2003; Monsalve et al., 2013), whose 

function as  ligand-activated transcription factors is to regulate various biological processes, 

namely the expression of large numbers of genes involved in regulating the intermediary 

metabolism of glucose and lipids, adipogenesis, insulin sensitivity, immune response, cell 
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growth, and differentiation (Desvergne et al., 1999; Fajas et al., 2001; Feige et al., 2006; 

Guan et al., 2001; Monsalve et al., 2013; Willson et al., 2001). PPAR exists in three isoforms 

PPAR-α, PPAR-β/δ, and PPAR-γ (Dreyer et al., 1992), being the last one responsible 

for promoting FFA storage in mature adipocytes and activate glucose transporter 4 (GLUT4) 

transcription, facilitating increased FFA synthesis from glucose (Bjorndal et al., 2011; Boon 

Yin et al., 2008; Wu et al., 1998).  

 

 

Figure 1.5. Lipolysis and lipid storage in adipocytes. 

Free fatty acid (FFA); lipoprotein lipase (LPL); fatty acid translocase (CD36); acetyl-CoA 

carboxylase (ACC); fatty acid synthase (FAS); diacyl-glycerol (DG); diglyceride acyltransferase 1 

(DGAT1); triglycerides (TG); monoacylglycerol (MG); adipose triacylglycerol lipase (ATGL); 

hormone-sensitive lipase (HSL)   

 

 

 

1.4.1.3 Insulin signaling in adipose tissue 

Adipose tissue also has the capacity to respond to insulin and increase glucose 

uptake. This process begins with the binding of insulin to its cell surface receptor (IR), 

activating the intrinsic tyrosine kinase and its auto-phosphorylation. This action generates 

docking sites for insulin receptor substrate proteins (IRS-1 – IRS-4). Several downstream 

signaling pathways are activated, which include p85 regulatory subunit of phosphoinositide 

3-kinase (PI3-kinase), which ultimately activates Akt (also called PKB). This last step 
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triggers numerous pathways that control carbohydrate and lipid homeostasis. But most 

importantly, it activates phosphoinositide-dependent kinase-1(PDK1) and Protein kinase 

C (PKC), phosphorylating intracellular vesicles containing the glucose transporters – 

GLUT4 – that translocate from intracellular membrane vesicles and fuses with the plasma 

membrane. Another AKT substrate is AS160, a 160 kDa protein, which include GTPase-

activating domain for small G-proteins (Rabs), that when phosphorylated have an important 

role in the activation of GLUT4 vesicle exocytosis (Bruss et al., 2005; Sano et al., 2003; 

Zeigerer et al., 2004). Five minutes of exposure to a physiological concentration of insulin 

is enough to stimulate the translocation of GLUT4-containing vesicles. Therefore, glucose 

uptake is the rate-limiting step in glucose utilization and/ or storage and as such has a key 

role in the maintenance of glucose homeostasis (Leto et al., 2012; Summers et al., 2000). 

However, dysregulation of the autonomic nervous activity, catecholamines, adipokines and 

immunosuppressive agents might affect phosphorylation of proteins involved in insulin 

signaling and therefore impair glucose uptake in insulin sensitive tissues (Buren et al., 2005; 

Lundgren et al., 2004) 

 

1.4.2 Muscle 

Skeletal muscle or striated muscle is the muscle attached to the skeleton. It is 

composed of thousands of cylindrical muscle fibers, bound together by connective tissue, 

vascularized and innervate, and its contraction is voluntary (Figure 1.6).  

 

 

 

Figure 1.6. – The anatomy of the rat leg skeletal muscle.  
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Skeletal muscle has two energy depots – glycogen and TGs, both stored in the 

cytoplasm (Langfort et al., 2003). Glycogen can rapidly be converted into glucose, when 

energy is required, through glycolysis, an anaerobic process, which produces three ATP and 

two lactic acid molecules. TGs, stored in lipid droplets, can be mobilized by catecholamines 

and oxidized in the mitochondria. Due to its mass, skeletal muscle is the major contributor 

to whole-body energy metabolism, it accounts for 75% of whole-body insulin stimulated 

glucose uptake and storage (Corcoran et al., 2007; DeFronzo et al., 1981; Roden, 2004; 

Shulman et al., 1990).  

 

 

1.4.2.1 Insulin signaling in muscle 

As mentioned above, skeletal muscle is the main tissue responsible for insulin-

stimulated glucose uptake.  In a process very similar to that  describe for adipose tissue, 

insulin binds to its receptor and activates a cascade that will phosphorylate Akt, the protein 

kinase responsible for the activation of glycogen synthesis, protein synthesis, and GLUT4 

translocation to the cell surface (Figure 1.7), thereby increasing glucose transport (Bruss et 

al., 2005; Czech et al., 1999; Lawlor et al., 2001; Pessin et al., 2000; Whiteman et al., 2002).  

 

 

 
Figure 1.7. – Insulin signaling pathway. 

Insulin receptor substrate 1 (IRS1); phosphoinositide 3-kinase (PI3K); Protein kinase B (Akt/PKB); 

phosphoinositide-dependent kinase 1(PDK1); Akt substrate of 160 kDa (AS160); glucose transporter 

4 (GLUT4). 

 

 

Insulin stimulation is responsible for multiple tyrosine phosphorylation events, 

which are controlled by protein-tyrosine phosphatase (PTP).  One specific PTP is expressed 



Introduction 

17 

 

in all insulin-responsive tissues on the cytoplasmic face of the endoplasmic reticulum – 

PTP1B (Frangioni et al., 1992). It has been reported than in cases of increased PTP activity, 

namely PTP1B, insulin resistance develops through inhibition of insulin-stimulated 

phosphorylation of the IR and IRS-1 (Byon et al., 1998; Goldstein et al., 1998; Klaman et 

al., 2000).  

The development of metabolic complications, like insulin resistance in obesity or 

diabetes, affects the whole-body glucose homeostasis. FFA can directly inhibit glucose 

transport and phosphorylation in skeletal muscle. In fact, Dresner et al. (1999) described the 

inhibition of IRS-1 associated PI3K, when FFA increased in circulation. Moreover, the 

tyrosine phosphorylation of IRS-1 was also impaired, while Akt/PKB phosphorylation was 

maintained intact (Kruszynska et al., 2002; Roden, 2004). On the other hand, insulin 

resistance in muscle can also promote dislipidemia by stimulating the conversion of energy 

derived from ingested carbohydrate into hepatic de novo lipogenesis and increased VLDL 

production. In fact, when the IR gene is inactive in mice, TGs increase in circulation and 

adiposity increases as a consequence of specific insulin resistance.  

 

1.4.3 Liver 

The liver, the largest organ in the body, is structurally and functionally very complex. 

It is responsible for numerous actions like carbohydrate and lipid metabolism, as well as 

protein synthesis; while some of these products are meant for storage, others are released 

into the circulation, to help maintaining homeostasis (Malarkey et al., 2005).  

Mice and rats each have 4 liver lobes: median (or middle), left, right, and caudate 

(Figure 1.8). The rat and human liver have two blood supply sources, i.e. a portal and hepatic 

venous systems (Kogure et al., 1999; Malarkey et al., 2005). The portal vein supplies about 

70% of the blood flow and 40% of the oxygen while the hepatic artery supplies 30% of the 

flow and 60% of the oxygen (Malarkey et al., 2005).  The portal blood come from the 

mesenteric, gastric, splenic, and pancreatic veins and is delivered to the liver, through its 

right and left sides. The gastrointestinal tract and spleen offer an incomplete mixing of blood 

with a variation in delivery of various nutrients, toxins, and other elements to the liver lobes 

(called portal streamlining) (Haywood, 1981; Malarkey et al., 2005).  
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Figure 1.8. – The anatomy of the rat liver.  

 

Hepatic glucose metabolism plays an important role in glucose homeostasis by 

maintaining a balance between the uptake and storage of glucose and the release of glucose 

in response to the nutritional status. 

After a meal, the blood transported through the hepatic portal vein directly from the 

gastrointestinal tract is rich in glucose. This stimulates insulin to bind to its receptor and 

cause the phosphorylation of intracellular substrate such as IRS-1, IRS-2 and Akt. Glucose 

is taken up by the primary hepatic liver transporter, a low affinity, high capacity transporter 

expressed at high levels on the sinusoidal membranes of hepatocytes and non-insulin 

sensitive glucose transporter (GLUT2) (Eisenberg et al., 2005; Leturque et al., 2005). 

Moreover it also activates glucokinase (GK), which occur through the rapid mobilization of 

GK from the nucleus to the cytoplasm and glucose is phosphorylated to Glucose-6 phosphate 

(G6P).  

When the concentration of G6P increases it acts synergistically with glucose, to 

promote the inactivation of glycogen phosphorylase and the activation of glycogen synthase 

leading to an increase in glycogen storage in the liver (Agius, 2008). It has also been reported 

that hyperinsulinemia can increase glycogen synthesis by activating glycogen synthase and 

inhibiting glucagon, the glycogenolytic protein (Cohen et al., 1978). 
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1.4.3.1 Gluconeogenesis 

Gluconeogenesis is the production of glucose from non-carbohydrate substrates (e.g. 

pyruvate, lactate, gluconeogenic amino acids and glycerol) and includes anaplerotic fluxes 

from the tricarboxylic acids (TCA) cycle. It is promoted in the post-absorptive state, as 

insulin and glucose levels decrease and liver produces glucose, converting it to G6P with the 

help of Glucose-6-phosphatase (G6Pase). Gluconeogenesis is directly mediated by insulin, 

that inhibit the expression of key gluconeogenic enzymes, phosphoenolpyruvate 

carboxykinase (PEPCK) and G6Pase, and the upstream transcription factors peroxisome 

proliferator-activated receptor- coactivator (PGC1-α) and Forkhead box O1 (FOXO1), along 

with fructose-1,6-bisphosphatase (F1,6Pase) (Barthel et al., 2003). Furthermore, during 

fasting, glucagon and catecholamines activate PGC1-α, through the cAMP pathway and the 

cAMP response element-binding protein (CREB) transcription factor, which will in turn 

activate FOXO1; or as suggested by Ropelle et al. (2009),  PGC1-α and FOXO1 interact 

with each other and initiate an important signal transduction pathway that promote the 

synthesis of glucose in the liver. In the diabetic state or insulin deficiencies, PGC1-α activity 

is increased and might be the cause of an increase in hepatic glucose production (Liang et 

al., 2006; Yoon et al., 2001). On the contrary, when insulin causes the phosphorylation of 

Akt, FOXO1 is excluded from the nucleus, therefore inhibiting its transcriptional activity 

(Wan et al., 2011), as well as hepatic gluconeogenesis gene expression and glucose output  

(Haeusler et al., 2010; Li et al., 2007; Liu et al., 2008; Matsumoto et al., 2007; Puigserver 

et al., 2003; Qu et al., 2006; Wan et al., 2011). Insulin also directly decreases 

gluconeogenesis by inhibiting adipose tissue lipolysis that reduces both FFA and glycerol 

release and consequently the availability for the gluconeogenesis process (Figure 1.9). 

Insulin also inhibits muscle proteolysis, resulting in a decreased availability of 

gluconeogenic amino acids (Umpleby et al., 1996).  
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Figure 1.9. Overview of the gluconeogenesis, glycolysis, glycogenesis and glycogenolysis pathway.  

 

1.4.3.2 Hepatic de novo lipogenesis 

Substrate supply and hormonal regulation modulates enzyme activity in the liver. In 

the fed state, insulin rise promote hepatic de novo lipogenesis by stimulating FAS and 

activating pyruvate dehydrogenase and ACC to form acetyl-CoA and malonyl-CoA, 

respectively. Moreover, insulin also inactivates pyruvate carboxylase and lactate 

dehydrogenase (Sul et al., 2000; Wang et al., 1998). In addition, after a meal, uptake of 

excess fatty acids occurs from circulation in proportion to their concentration in blood, and 

are re-esterified to TGs within the liver, or exported as constituents of VLDL. In post-

absorptive conditions, FAS decreases, leading to a reduction of hepatic de novo lipogenesis. 

In parallel, in mitochondria, -oxidation of fatty acids increases in order to produce energy 

for the liver (Nguyen et al., 2008).  

 

1.4.3.3 Hepatosteatosis   

The liver has a central role in lipid metabolism, being involved in TG synthesis and 

lipids in circulation. Under normal conditions, the liver receives non-esterified fatty acid 

(NEFA) and dietary fatty acids flow and produces new fatty acids through lipogenesis. After 

the esterification step, TGs can be stored as lipid droplets in the liver, secreted into 

circulation as VLDL and/or be conveyed to the β-oxidation pathway (Postic et al., 2008). 

Nonetheless, if the proper function is altered, accumulation of lipid droplets into the 
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hepatocytes results in hepatic steatosis (Nguyen et al., 2008; Postic et al., 2008). The 

relationship between fatty acids in the liver and insulin resistance is known for a long time, 

nonetheless it remains to be clarified whether it is the insulin resistance that causes the 

accumulation of lipids in excess in the liver or if it is the accumulation of TGs (or their 

intermediates) that causes the hepatic or systemic insulin resistance (Postic et al., 2008). 

Liver steatosis may also be caused by deregulation of lipid metabolism, by some of its 

intervenient factors such PPAR-γ, SREBP1, FAS or ACC in certain conditions. 

 

1.5 Nuclear magnetic resonance (NMR) and stable isotopes to monitor effects of 

immunosuppressive agent on glucose and lipid metabolism 

Understanding how changes in glucose and lipid metabolism can affect the success 

of the transplant and the quality of life of patients is an important objective. Metabonomics 

studies allow the comparison of metabolite profiles among different tissues or body fluids 

by measuring large arrays of metabolites; this approach can be used to assess effects of 

different treatments on metabolic pathways or biomarkers for metabolic diseases (Kim et 

al., 2010). Human metabolom database has 41.514 entries with 4.229 identified in serum 

alone (Psychogios et al., 2011). This technology is promising because changes in metabolite 

profile may be easier to detect at an early phase, well before histologic and pathophysiologic 

changes occur (Christians et al., 2008). Metabolites can be detected by mass spectroscopy 

and by 1H-nuclear magnetic resonance (NMR) spectroscopy (Kim et al., 2010). In rat models 

and human patients, changes in endogenous metabolites have already been observed by these 

techniques in blood and urine after CsA administration (Klawitter et al., 2010). 

In addition to monitoring endogenous metabolites by observing the 1H and 31P nuclei, 

NMR can also be used to study the metabolism and incorporation of stable isotopes such as 

13C and 2H tracers into metabolic intermediates and end-products. Measuring the 

incorporation of 2H from deuterated water (2H2O) and quantifying the 2H-enrichment of 

glucose, glycogen and TG by 2H NMR reflects the activities of gluconeogenesis, 

glycogenesis and de novo lipogenesis, respectively (Delgado et al., 2013; Jones et al., 2001; 

Soares et al., 2009). 
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1.6 Known metabolic effects of calcineurin and mTOR inhibitors on peripheral 

tissues 

As mentioned before, CsA and SRL therapies are associated with NODAT and 

dyslipidemia; what follows is a summary of some of their known effects on the peripheral 

tissues studied, i.e adipose tissue, muscle and liver. 

1.6.1- Effects of calcineurin and m-TOR inhibitors on glucose metabolism 

Calcineurin inhibitors have been associated with deleterious impact on pancreatic β-

cells by decreasing the normal secretion of insulin and inhibiting insulin gene expression 

(Oetjen et al., 2003; Polastri et al., 2002). Moreover reduced β-cell mass, insulin granule 

amount and higher apoptosis in β-cell lines, have been observed in rodent and human islets 

(Ajabnoor et al., 2007; Bugliani et al., 2009; Drachenberg CB, 1999; Hahn et al., 1986; 

Hernandez-Fisac et al., 2007; Lucke et al., 1991). They have also  been shown to impair 

both basal and glucose-stimulated insulin secretion and inhibit calcineurin activity in β-cells 

(Øzbay et al., 2012). Although early data did not link SRL to toxicity in pancreatic β-cells, 

new evidence from in vitro and in vivo experiments, has shown differently (Barlow et al., 

2013). SRL reduce β-cell mass in vivo (Houde et al., 2010) and affect cell survival, 

increasing levels of apoptosis, as well as their function and viability in murine and human 

β-cells (Barlow et al., 2013; Barlow et al., 2012; Bell et al., 2003; Fraenkel et al., 2008; 

Yang et al., 2012). 

Blood glucose concentration and peripheral insulin sensitivity are also affected by 

immunosuppressive agents (Subramanian et al., 2007). 

In rats, CsA promotes glucose intolerance, attributed to low levels of plasma insulin  

and/or impaired insulin action and increased glycogenolysis (Delgado et al., 2012). 

Immunosuppressive agents (IA) studies in humans are usually limited by study design with 

confounding factors, such as the use of other agents. Nonetheless, it has been demonstrated 

that pharmacological doses of CsA impairs the 2nd phase of insulin secretion, without 

changing the 1st phase of secretion (Hjelmesaeth et al., 2007; Robertson et al., 1989). While 

calcineurin inhibitors have been involved in the inhibition of the phosphorylation of the IR, 

it has not been associated with any change in expression or phosphorylation of proximal 

insulin signaling cascade proteins (Pereira et al., unpublished data; Shivaswamy et al., 

2013). 

SRL also causes insulin resistance and severe glucose intolerance attributed not only 

to reduced β-cell mass but mostly to increased hepatic gluconeogenesis (Fraenkel et al., 

2008; Houde et al., 2010; Lamming et al., 2012). In this case, expression of gluconeogenic 
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genes - PEPCK and G6Pase was increased in liver, associated with an impaired pyruvate 

tolerance test, which clearly points to an inability to suppress gluconeogenesis (Houde et al., 

2010; Lamming et al., 2012). Furthermore, other have shown that SRL reduces glucose 

uptake and Akt/PKB phosphorylation in humane mature adipocytes and rat insulin sensitive 

cells (Kumar et al., 2010; Pereira et al., 2012; Sarbassov et al., 2006; Shivaswamy et al., 

2013). Blättler et al. (2012) also observed that SRL reduces insulin resistance, caused by the 

suppression of insulin/IGF signaling, and by other genes associated with this pathway, such 

as IGF1-2, IRS-1-2, and Akt1-3. Alterations in the insulin signaling pathway can affect 

normoglycemia (Rhodes et al., 2002). In contrast, some studies suggest that SRL improves 

insulin-stimulated glucose uptake and Akt/PKB phosphorylation in L-6 muscle cells, 3T3-

L1 cells and in differentiated adipocytes (Berg et al., 2002; Tremblay et al., 2005; Tremblay 

et al., 2001).  

 

1.6.2 - Effects of calcineurin and mTOR inhibitors on lipid metabolism  

The association of calcineurin and m-TOR inhibitors with dyslipidemia is well 

known. In rodents, the administration of CsA increases the plasma levels of cholesterol, TG, 

VLDL and LDL cholesterol, as well as ratios of total cholesterol/ HDL, apolipoprotein B 

(apoB) and LDL /HDL (Espino et al., 1995; López-Miranda J, 1992). The increase in TG 

and cholesterol in circulation was associated with a decrease in plasma LPL activity (Espino 

et al., 1995; López-Miranda J, 1992) and LPL abundance in skeletal muscle and adipose 

tissue (Vaziri et al., 2000). Moreover, the inhibition of hepatic 26-hydroxylase and the down 

regulation of hepatic cholesterol 7 α-hydrolase, the rate limiting enzymes that allow the 

reduction of the level of cholesterol in hepatocytes by converting them to bile acids, result 

in increased serum levels of cholesterol (Hulzebos et al., 2004; Vaziri et al., 2000; Watt, 

2011). Furthermore, the ability of CsA to bind to LDL cholesterol receptors may contribute 

to the dyslipidemia observed in rodents and humans (Munoz, 1995; Watt, 2011). In addition, 

CsA effects on hepatic mRNA levels for a number of key genes involved in cholesterol and 

fatty acid biosynthesis pathways, such as HMG-CoA reductase, LDL receptor, SCD1, 

squalene synthase, transcriptional factors SREBP 1 and 2, FAS and ACC1 and ACC2 

mRNA, may also contribute to increased hepatic TG secretion (Delgado et al., 2012; Wu et 

al., 1999).  

In addition, SRL has also been associated with dyslipidemia after renal transplant, 

which might result in increased hepatic production of TG rich lipoproteins and/or decreased 

clearance of them, as well as a reduction in the fractional catabolic rate of apoB-100-
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containing lipoproteins (Hoogeveen et al., 2001; Morrisett et al., 2002). SRL also caused a 

significant increase in cholesterol and TGs, which might be due to increased activity of HSL 

and inhibition of LPL (Morrisett et al., 2002). As a consequence, lipids are not stored 

efficiently in adipocytes and FFAs are released into the circulation resulting in increased 

VLDL. In addition, SRL decreases FFA oxidation, increasing their availability in blood 

(Morrisett et al., 2002). Lipid metabolism might also be altered at the gene level, with 

overstimulation of SREBP-1c mRNA and down regulation of PEPCK (Li et al., 2010). Tory 

R (2008) suggested that increase in cholesteryl ester transfer protein (CETP) activity  and 

suppression of LPL  activity after CsA and SRL treatment could be associated with elevated 

LDL cholesterol levels and hypertriglyceridemia observed in patients (Kontush A, 2006; 

Zeljkovic A, 2011). 

 

The main goal of post-transplant immunosuppressive therapy is the induction of 

tolerance to allografts (Smith et al., 2003), which have been successfully accomplished by 

all the agents referred. However, and despite the fact that CsA and SRL have been used for 

years in clinic settings, many of their biomolecular mechanisms of action at the tissue and 

cellular levels are still poorly understood. As long as the precise molecular mechanisms 

underlying the effects of IAs on glucose and lipid metabolism remain to be elucidated, the 

most proper immunosuppressive protocols for each specific condition will remain deficient 

and long-term outcomes may not improve significantly. The clinical follow-up data is yet 

insufficient, and animal studies focusing on clinically relevant doses of the agents are 

advisory. Since organ transplantation is increasing and it is happening at younger ages, it is 

greatly important that the scientific community devotes more resources in trying to 

understand these molecular mechanisms so that better agents, with fewer side effects, can be 

developed. 
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1.7 Scope, aims and outline of the thesis  

 

 

The overall aim of this thesis was to study the in vivo effect of two of the most used 

IAs, namely cyclosporine A and sirolimus, on glucose and lipid metabolism, in a rat model, 

in order to understand the molecular mechanism, involved in the development of insulin 

resistance and dyslipidemia.  

 

The specific aims were to: 

 

 Investigate the effects of CsA and SRL on insulin-stimulated glucose uptake in 

isolated epididymal adipocytes after either ex-vivo or in vivo treatment in Wistar rats 

(Chapter 3).  

 

 Investigate the effects of CsA and SRL on the insulin signaling pathway and on genes 

and proteins involved in glucose metabolism in liver, muscle and adipose tissue after 

3 weeks of treatment, in Wistar rats (Chapter 4).   

 

 Investigate the effects of CsA and SRL on lipolysis and expression of genes and 

proteins involved in lipid metabolism in liver and adipose tissue in Wistar rat after 3 

and 9 weeks treatment, in Wistar rats (Chapter 5).  

 

 Investigate the influence of CsA on hepatic de novo lipogenesis and its 

gluconeogenic contributions to hepatic glycogen by measuring triglyceride and 

glycogen deuterium enrichment from 2H2O enriched body water using 2H-NMR 

analysis (Chapter 6).  
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Diabetes mellitus is a widespread and growing public health problem due mainly to 

the aging of the population and changes in the life style. It is associated with the metabolic 

syndrome, and consequently with insulin resistance and dyslipidemia; both conditions have 

also been linked with the use of immunosuppressive therapy. CsA and SRL are two of the 

immunosuppressive agents used after organ transplantation. The success rate of transplants 

depend on how both these agents affect glucose and lipid metabolism on peripheral tissues, 

such as, adipose tissue, muscle and liver. Although used regularly, the molecular 

mechanisms underlying the effects of these agents remain to be fully elucidated.  

Chapter 3 and 4 focus on glucose metabolism. First we evaluate the influence of 

immunosuppressive agents - CsA and SRL - on glucose metabolism, through the 

measurement of insulin-stimulated glucose uptake in isolated primary adipocytes. We then 

studied gene and protein expression levels of factors involved on glucose metabolism as well 

as the insulin signaling in liver, muscle and adipose tissue. 

In chapter 5, we focus on lipid metabolism in adipose tissue and liver, and how it is 

altered after either short or long-term treatment with CsA and SRL. 

Chapter 6 elucidates a novel approach using 2H-NMR analysis to determine the 

influence of CsA in lipid and glucose metabolism  

The chapter 7 includes the major conclusions that may be addressed from the 

developed work as well as future perspectives. 
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CHAPTER 2  

 

Material and Methods 

 

 

 

 

 

 

 

2.1 Animals and treatments 

Male Wistar rats (Charles River Lab. Inc., Barcelona, Spain) 10 weeks old, weighing 

≈300 g, were housed two animals per cage, kept at a constant temperature (21°C) and light 

(06:30–18:30 h) / dark (18:30–06.30 h) cycle. They were given standard laboratory chow 

(IPM-R20, Letica, Barcelona, Spain) and free access to tap water. All animal care and 

experimental procedures were conducted according to the National and European 

Communities Council Directives on Animal Care (86/609/EEC). 

For experiments in chapter 3, 4 and 5, animals were randomly divided into 3 groups: 

Vehicle (10% orange juice), CsA – 5 mg/Kg body weight (BW)/day of Sandimmune 

Neoral® and SRL – 1 mg/kg BW/day of Rapamune® dissolved in orange juice. Treatments 

were performed daily by oesophageal gavage for 3 or 9 weeks, and body weight was 

monitored weekly throughout the study.  

For experiments in chapter 6, animals were randomly divided into two groups 

(n=8/group): Vehicle (orange juice) and CsA – 15 mg/Kg body weight (BW)/day of 

Sandimmune Neoral® (Novartis Pharma, Lisbon, Portugal) and treatments were performed 

daily by oesophageal gavage for 2 weeks.  

At the end of treatments, rats were anesthetised i.p. with 2mg/Kg BW of a 2:1 (v:v) 

Ketamine (50mg/ml) (Ketalar®, Parke-Davis, Pfizer Labs Lda, Seixal, Portugal) solution in 

2.5% chlorpromazine (Largatil®, Rhône-Poulenc Rorer, Vitória labs, Amadora, Portugal).  
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For experiments in chapter 4, in each group, 8 animals received a bolus of insulin - 

Actrapid (i.p 10 U/kg) and were sacrificed 10 minutes later, in order to study insulin action 

in vivo, in the insulin sensitive tissues. The other 8 animals received saline as a control. 

Blood samples were collected by venepuncture from the jugular vein using needles 

with no anticoagulant, for serum sample collection or with appropriate anticoagulant 

(ethylenediamine tetraacid – EDTA) for plasma samples for further analysis. Liver, muscle, 

perirenal and epididymal fat were harvested and frozen in liquid nitrogen for further 

analyses.  

 

2.2 Biochemical parameters 

Glucose, TG and total-cholesterol levels were measured in serum through automatic 

validated methods and equipment (Hitachi 717 analyser, Roche Diagnostics Inc., Holliston, 

MA, USA). NEFAs were measured using a FFA kit (NEFA C-test Wako, Wako Pure 

Chemicals, Neuss, Germany). Serum insulin and C-peptide were determined using an 

enzyme-linked immunoadsorbent assay (ELISA) kit (Mercodia, Uppsala, Sweden). Insulin 

resistance was estimated by the homeostasis model assessment–insulin resistance (HOMA-

IR), using the formula: (fasting insulin [µU/ml] X fasting glucose [mmol/L])/22,5 (Mari et 

al., 2001). CsA and SRL trough blood concentrations were assessed by automatic methods 

(Flex reagent, Dimension®RxL, Siemens, Germany). 

TGs in liver and muscle were measured using a Triglyceride Colorimetric Assay Kit 

(Cayman Chemical, Ann Arbor, MI, USA) after Folch extraction. Lipid mass was 

normalized to tissue weight.  

 

2.2.1 – Glucose clearance rate in the urine 

Animals (n=6/group) were housed in metabolic cages during 24 hours and received 

tap water and food ad libitum. The 24 hour urine was collected, volume was measured and 

glucose was assessed in Cobas Integra® 400 plus (Roche Diagnostics Inc, MA, USA), in 

order to calculate the glucose clearance rate. 

 

2.3 Glucose and insulin tolerance tests 

Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed at the 

end of treatments. A glucose solution was injected (i.p. 2 g/kg BW) after a 16h fast for the 

GTT and for the ITT, a solution of insulin (i.p 1 U/kg BW; Actrapid) diluted in saline 0.9% 

(w/v) after 6h of food removal. Blood was collected from the tail vein prior to (0 min) and 
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at the various times after injection. Glucose blood levels were measured using a glucometer 

(AccuChek Active, Roche Diagnostics®, Indiana, USA).  

 

2.4 Adipocyte isolation and measurement of cell size, weight and number  

Adipocytes were isolated from adipose tissue according to methods previously 

reported (Carvalho et al., 2000; Hirsch et al., 1968; Smith, 1971). After sacrifice epididymal 

adipose tissue was harvested, cut in small pieces and  was digested with collagenase type II 

(from Clostridium histolyticum) in Krebs Ringer HEPES (KRH) buffer supplemented with 

6 mM glucose, 0.15 μM adenosine, pH 7.4 in a gently shaking water-bath at 37ºC for 30 

min. KRH buffer was prepared with 4% Bovine Serum Albumin (BSA), 140 mM Sodium 

Chloride (NaCl), 4.7 mM Potassium Chloride (KCl), 1.25 mM Magnesium Sulfate (MgSO4), 

1.26 mM Calcium Chloride (CaCl), 5.8 mM Sodium Phosphate (NaH2PO), 200 nM 

adenosine deaminase and 25mM Hepes  (Sigma Chemical Co). Isolated adipocytes were 

filtered through a 250 μm nylon mesh, washed four times and suspended in KRH buffer 

(without glucose).  

After obtaining the final cell solution (1:10), 500 µl of cell suspension was pipetted 

into glass tubes with triglyceride extraction solution containing a 2.8 µl stock solution (780 

ml isopropanol, 200 ml n-heptane, 20 ml H2SO4 0,5M), 1.8 ml heptane and 1ml of pure H2O. 

Tubes were shaken vigorously and left for 2h at room temperature before centrifuging for 5 

min at 3000g. The upper phase was placed in previously weighed vials and allowed to dry 

in the hood. Afterwards the final weight obtained represents the TG mass in 500 µl cell 

suspension. Experiments were performed in triplicates. 

Moreover, the average diameter of 100 adipocytes isolated from the animals was 

measured using a B1 series microscope (System Microscopes-Motic) with a 40X ocular with 

an internal ruler. About 150-200 µl of cell solution (1:10) was placed on previously prepared 

slides (fixed with Silicon Oil and heated to 100 ° C for 1 hour).  

 The weight of adipocytes was calculated based on the assumption that fat cells are 

spherical and their density is that of triolein (0.95 g/cm3), using the formula: V= π/6(3σ2+ 

X2)X (V= volume; σ= variance of mean cell size ; X=mean cell size ). 

Finally, the cell number per 500µl of solution was calculate using the formula: [(2.45 

x TG mass)/cell weight] x 106. 
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2.4.1 Insulin-stimulated glucose uptake  

Insulin-stimulated 14C-glucose uptake in the isolated rat adipocytes was assessed as 

previously reported (Carvalho et al., 2000). Adipocytes were isolated as mentioned above, 

and for the ex vivo experiments, adipocytes were pre-incubated for 30 min in the presence 

or absence of CsA (0.5-30 µM) and SRL (1-250 µM). After this time, adipocytes were 

incubated for further 10 min with or without 10 nM of insulin. Finally, D-[U-14C] glucose 

(0.30 mCi/L, final concentration 0.86 µM) was added  for another 30 min. Cell suspension 

was then transferred to pre-chilled tubes, containing silicone oil, in order to promote the 

separation of the cells from the buffer by centrifugation for 5 min at 3000g. Cell-associated 

radioactivity was analyzed by liquid scintillation counting in a Tri-Carb 2900TR Liquid 

Scintillation Analyzer (Perkin Elmer Life, Shelton, CT, USA), to determinate the rate of 

trans-membrane glucose transport (Kashiwagi et al., 1983). Experiments were performed in 

triplicates. Finally, the rate of trans-membrane glucose transport was calculated according 

to the following formula: cellular clearance of medium glucose = (c.p.m. cells x 

volume)/(c.p.m. medium x cell number x time) (c.p.m.- counts per minute) (Yu et al., 1997).  

 

2.4.2 Lipolysis 

Lipolysis was performed as previously described (Pereira et al., 2013). Adipocytes 

were isolated in a similar way as mentioned above but always using KRH buffer 

supplemented with 6 mM glucose, 0.15 μM adenosine, pH 7.4. The diluted (1:10) suspension 

of isolated adipocytes from CsA and SRL-treated rats was supplemented with isoproterenol 

(1 μM) and insulin (1000 μU/ml) and incubate in a gentle shaking water bath at 37ºC for 1 

h. Cell suspension was then transferred to pre-chilled tubes, containing silicone oil, in order 

to promote the separation of the cells from the buffer by centrifugation for 5 min at 2000 

rpm 15ºC. The medium was separated from the adipocytes, and glycerol levels were 

measured in the extracellular medium using a colorimetric absorbance Adipocyte Lipolysis 

Assay Kit (Glycerol Detection – Zen Bio, NC, USA) and used for estimations of the effects 

of CsA and SRL on lipolysis. 
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  2.5 Staining 

Perirenal adipose tissue samples were also fixed in 10% phosphate buffered formalin 

and embedded in paraffin. Thin sections (3 µm) were mounted on glass slides and dyed with 

hematoxylin/eosin. Digital images of tissue slices were captured using a microscope 

Axioskop 2 plus with Digital Camera Axiocam HRC (Zeiss, Jena, Germany). 

Oil Red O staining was performed on frozen liver and muscle sections (10 µm) 

previously fixed in 10% formalin for 5 min as previously described (Kumar et al., 2010). 

Briefly, slides were rinsed 3 times with propylene glycol (85%) and then placed in 0.5% Oil 

Red O stain solution in propylene glycol for 30 min before being rinsed with 85% propylene 

glycol for 1 min and counterstained with hematoxylin. Thereafter, the slides were washed 

with distilled water and mounted with aqua mounting medium (Sigma, St. Louis, MO, USA). 

Sections were observed with an Axioskop 2 plus microscope fitted with an Axiocam HRC 

digital camera. 

 

2.6 RNA extraction and cDNA synthesis 

RNA from perirenal adipose tissue, liver and muscle was extracted according to the 

manufacturer’s instructions using RNeasy Mini Kit (QIAGEN Sciences, Germantown, MD, 

USA). The extracted RNA was quantified at 260 nm in a Nanodrop spectrophotometer 

(Thermo Scientific, USA) and cDNA was synthesized using the High Capacity cDNA 

Reverse Transcriptase kit (Applied Biosystems; Forest City, CA, USA) as follow: 2µl of 

10X RT Buffer, 0.8 µl of 25X dNTP Mix, 2 µl of 10X RT random primers, 1 µl of 

MultiscribeTM Reverse Transcriptase and 4.2 µl of nuclease free H2O to 10 µl of RNA (1 

µg) sample.  

  

2.6.1 Real-time PCR  

To analyse genes of interest in different tissues, real-time polymerase chain reaction 

(PCR) was performed. For each reaction 10 µl volume was used containing 2.5 µl cDNA, 5 

µl 2X Syber Green Supermix, 1  µl of each primer (250 nM) and 0.5 µl of H2O PCR grade 

were added. Primer sequences are given in Table 2.1. Relative mRNA levels changes were 

measure with a CFX Manager TM version 2.0 Real-Time PCR detection system (Bio-Rad 

laboratories, Hercules, CA, USA). The measured fluorescent reflects the amount of 

amplified product in each cycle. The cycle number at which enough amplified product 

accumulates to yield a detectable fluorescent signal, is called the threshold cycle (Ct). Ct 
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value is measured in the exponential phase when reagents are not limiting. Final calculations 

were based on the delta CT values. Relative mRNA levels for the different genes were 

normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and TATA –binding 

protein (TBP) mRNA levels for each sample,  that were selected based on our previous 

results demonstrating that it does not changed under these conditions. 

 

Table 2.1 – Forward and Reverse primers sequences used for RT-PCR 

 

 

Primer 5' – 3' sequence (foward; reverse) 

Acetyl CoA Carboxylase  

(ACC1) 

F:AAGGCTATGTGAAGGATGTGG 

R: GAGGTTAGGGAAGTCATCTGC 

Fatty acid synthase 

(FASN) 

F:CTAAGACTGAAGCATCTG 

R: ATACAGAGAACGGATGAG 

Lipoprotein lipase  

(LPL) 

F: CAGCAACATTATCCAGTG 

R: GTAGTTAAATTCTTCCTCCAA 

Peroxisome proliferator-activated receptor 

gamma (PPARG)  

F: CCACACTATGAAGACATC 

R: CTACTTTGATCGCACTTT 

Hormone sensitive lipase  

(HSL) 

F: GGGCAGAAGGATGAAACC 

R: GACACAGAGGTAGAACTTGG 

Perilipin A  

(PLIN) 

F: GACCATCACAGTCAGGTT 

R: ATGAGAGATTCAGCCCAC 

Lipin 1 

(LPIN1) 

F: ATGAGGACACAGCACTGA 

R: TTAGGAATATCATCTTGGAATGGT 

Fatty acid translocase –  

(CD36) 

F: TTACACATACAGAGTTCGTTA 

R: AGTGAAGGCTCAAAGATG 

Adipose triglyceride lípase 

 (PNPLA2) 

F: ATTTCAGACAACTTGCCACTT 

R: AGATGTCACTCTCGCCTG 

Stearoyl-Coenzyme A desaturase 1 

(scd1) 

F: GCTATCGGAATGTTAATGAT 

R: ATGGTTAATCCTGGCTAAT 

Sterol Regulatory Element-Binding 

Protein 1 (SREBF1) 

F:CGCTACCGTTCCTCTATCAATG 

R: TCAGCGTTTCTACCACTTCAG 

Carbohydrate-responsive element-binding 

protein (MLXIPL) 

F: CTTATGTTGGCAATGCTG 

R: GGCGATAATTGGTGAAGA 

Diacylglycerol O-Acyltransferase 

 (DGAT 1) 

F: GACAGCGGTTTCAGCAATTAC 

R: GGGTCCTTCAGAAACAGAGAC 

Interleukin 6  

(IL-6) 

F: CTGGAGTTCCGTTTCTACCTG 

R: CCTTCTGTGACTCTAACTTCTCC 

Tumor necrosis factor  

(TNF- α) 

F: CTTCTCATTCCTGCTCGTGG 

R: TGATCTGAGTGTGAGGGTCTG 

Adiponectin  

(ADIPOQ) 

F: AAGTCTGGCTCCAAGTGTATG 

R: AGCAATACAATCAACCTCTCAAAC 

Forkhead box o1 

 (FOXO1) 

F: GGATAAGGGCGACAGCAACA 

R: TGAGCATCCACCAAGAACT 

Peroxisome proliferator-activated receptor 

coactivator 1 (PPARGC1A) 

F: TGTTCCCGATCACCATATTCC 

R: CTTCATAGCTGTCATACCTGGG 
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Table 2.1 – Forward and Reverse primers sequences used for RT-PCR (cont.) 

 

 

2.7 Protein extraction 

Perirenal and epididymal adipose tissue (200mg), liver (25 mg) and muscle (50 mg) 

were cut and placed in ice-cold buffer, prepared with 20 mM Tris HCl pH 7.4, 25 mM NaCl, 

1% NP-40 (Nonidet P-40), 5 mM EDTA, 10 mM Sodium diphosphate (Na4P2O7), 10 mM 

Sodium fluoride (NaF), 2 mM Sodium Vanadate, 10 µg/ml Aprotinin from bovine lung, 1 

mM Benzamidine and 1 mM Phenylmethylsulfonyl fluoride (PMSF), (Sigma-Aldrich, St. 

Louise, MO, USA). Samples were then homogenised and lysed at 4ºC in Tissue Lyser. The 

insoluble substances were sedimented through centrifugation (14000RPM for 10 min) and 

stored at -80ºC. 

 

2.7.1 Immunoblotting 

Protein concentration was determined using the bicinchoninic acid method (Pierce® 

BCA, Thermo Scientific, Rockford, IL, USA).  and lysates were denatured at 95ºC, for 5 

min, in sample buffer (0.125 mM Tris pH 6.8; 2% w/v SDS; 100 mM DTT; 10% glycerol 

and bromophenol blue) for its use in western blot analysis. Equal amount of protein from 

Primer 5' – 3' sequence (foward; reverse) 

Protein tyrosine phosphatase 1b  

(PTPN1) 

F: CCTATTCAAAGTCCGAGAGTC 

R: GCATCTCCAACAGCACTTTC 

Glucose-6-phosphatase 

 (G6PC) 

F: GTGAATTACGAAGACTCCCAGG 

R:TGTTTTATCAGAGGCAVGGAG 

Phosphoenolpyruvate carboxykinase 

 (Pck2) 

F: ATCACCAACCCCGCAGGGAAAA 

R:TTGGATGCGCACAGGGTTCCTT 

Glucokinase 

 (GCK) 

F:TCAGGAGTCAGGAACATC 

R: TTGTAGTATCCATAGCCATCT 

Insulin receptor  

(Insr) 

F:CACAACCTCACGATCACTCAG 

R: AGAACAGCATGAATCCCAGG 

Insulin receptor substrate 1  

(IRS1) 

F: ACGCTCCAGTGAGGATTTAAG 

R: CCTGGTTGTGAATCGTGAAAG 

Glucose transporter 1 

 (GLUT1) 

F: CCCACAGAGAAGGAACCAATC 

R: TGCAGTTCGGCTATAACACC 

Glucose transporter 2  

(SLC2A2) 

F: AAGACAAGATCACCGGAACC 

R: GACAGAGACCAGAGCATA 

Glucose transporter 4  

(GLUT4) 

F: CTTTAGACTCTTTCGGGCAGG 

R: CGTCATTGGCATTCTGGTTG 

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 

F: AACGACCCCTTCATTGACC 

R: CACGACATACTCAGCACCAG 

TATA –binding protein 

 (TBP) 

F: ACCCCACAACTCTTCCATTC 

R: CAAGTTTACAGCCAAGATTCACG 
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each sample were loaded in polyacrylamide gels and proteins were separated according to 

their electrophoretic mobility using SDS-PAGE. Proteins were then transferred to a PVDF 

membrane. The membranes were blocked with 5% (w/v) fat-free dry milk in Tris-buffered 

saline containing 0.1% (v/v) Tween 20 (TBS-T), for 1 h, at room temperature. After washing, 

membranes were incubated overnight at 4ºC with the primary antibodies against the different 

proteins of interest (Table 2.2). After incubation, membranes were washed and incubated for 

1 h at room temperature, with alkaline phosphatase-conjugated anti-rabbit antibody 

(1:5000), anti-mouse antibody (1:5000) or anti-goat antibody (1:5000) (Santa Cruz 

Biotechnology, Inc, CA, USA). The membranes were exposed to ECF reagent followed by 

scanning for blue excited fluorescence on the VersaDoc (Bio-Rad Laboratories, Amadora, 

Portugal). The generated signals were analyzed using the Image-Quant TL software.   

 

Table 2.2 - List of antibodies used for Western blot, source and dilution. 

 

 

Antibody Dilution Company 

SREBP 1:1000 Santa Cruz Biotechnology 

ChREBP 1:500 Santa Cruz Biotechnology 

ACC1 1:1000 Cell Signaling Technologies 

FAS 1:1000 Cell Signaling Technologies 

HSL 1:1000 Abcam Inc. 

DGAT1 1:200 Santa Cruz Biotechnology 

G6Pase 1:2000 Santa Cruz Biotechnology 

PEPCK 1:2000 Santa Cruz Biotechnology 

GK 1:1000 Santa Cruz Biotechnology 

FOXO1 1:1000 Cell Signaling Technologies 

PGC1-α 1:1000 Santa Cruz Biotechnology 

IR 1:1000 Santa Cruz Biotechnology 

IR Tyr1146 1:500 Cell Signaling Technologies 

IRS-1 1:1000 Cell Signaling Technologies 

IRS-1 Tyr612 1:500 Invitrogen 

PI3Kp85 1:500 Cell Signaling Technologies 

Akt Ser473 1:1000 Cell Signaling Technologies 

Akt Thr308 1:500 Santa Cruz Biotechnology 

Akt 1:500 Cell Signaling Technologies 

Akt 2/β 1:1000 Millipore 

http://en.wikipedia.org/wiki/Electrophoresis
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Table 2.2 - List of antibodies used for Western blot, source and dilution (Cont.) 

 

 

2.8 - 2H2O enrichment  

A loading dose of 99% 2H2O in saline was administrated by injection to the 

intraperitoneal cavity in all animals 72 h before the sacrifice. Assuming 70% body weight 

as water, the dose was designed to aim at 5% body water enrichment. After the bolus 

injection, the drinking water was kept at 5% 2H2O enrichment to ensure steady body water 

enrichment until the end of the experiment. The animals were fasted overnight and on the 

day of sacrifice, the animals were given intraperitoneal injection of non-ionic detergent 

Pluronic F-124 (1000 mg/kg). In order to estimate hepatic VLDL production blood samples 

were collected before, and 2 and 4 h after the detergent injection. 

 

2.9 - Metabolite preparation 

 

2.9.1 - Hepatic glycogen extraction. 

Glycogen was extracted from frozen liver powder by treatment with 30% KOH (2 

ml/g of liver) at 70ºC for 30 minutes. After vigorous vortex, the mixture was treated with 

6% Na2SO4 (1 ml/g of liver) and 99.9% ethanol (to a final concentration of 70%, 7 ml/g of 

liver) and left overnight at 4ºC to precipitate glycogen. After centrifugation, the upper liquid 

phase was discarded and the solid residue dried. The residue was resuspended in acetate 

buffer (0.05 M, pH = 4.5), and 20 µL of an aqueous solution containing 16 U of 

Antibody Dilution Company 

AS160 Ser642 1:500 Santa Cruz Biotechnology 

AS160 1:500 Millipore 

p70S6K Thr421/424 1:1000 Cell Signaling Technologies 

P70S6K 1:1000 Cell Signaling Technologies 

GLUT1 1:1000 Millipore 

GLUT2 1:2000 Millipore 

GLUT4 1:500 Millipore 

mTOR Ser2448 1:500 Millipore 

mTOR 1:1000 Santa Cruz Biotechnology 

β-actin 1:5000 Cell Signaling Technologies 

α-Tubulin 1:5000 Cell Signaling Technologies 
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amyloglucosidase from Aspergillus niger (Glucose-free preparation, Sigma-Aldrich, 

Germany) was added. Samples were incubated overnight at 55ºC and centrifuged. The 

remainder was lyophilized. 

 

2.9.2 - Derivatization of glucose to monoacetone glucose (MAG). 

In order to optimize the signal resolution in the NMR spectra, glucose obtained from 

glycogen isolation and hydrolysis was derivatized to MAG. Glucose was vigorously mixed 

with 5 mL acetone containing 4% sulphuric acid (v/v), both enriched with deuterium to 2%. 

The mixture was stirred overnight at room temperature to yield diacetone glucose. The 

acetonation reaction was quenched by adding 5 mL of water (also enriched with deuterium 

to 2%) and the pH was adjusted to pH 2.0 with 1M HCl. The newly formed diacetone glucose 

was hydrolyzed to MAG by incubation at 40ºC for 5 hours. The solution pH was then 

increased again to 8 with 1M NaHCO3 and the samples were dried by rotary evaporation 

under vacuum. MAG in the residue was extracted with boiling ethyl acetate. Following 

evaporation of ethyl acetate, the residue was dissolved in H2O and purified by solid phase 

extraction on reverse phase prepacked columns (Sigma prepacked 0.5g Discovery DSC-18 

SPE Tubes). 

 

2.9.3- Hepatic lipid extraction and purification.  

Hepatic lipids were extracted from freeze-clamped livers by a Folch extraction. To a 

macerated liver 20 ml of chloroform/methanol mixture (2:1, v/v) per gram of liver was added 

and the mixture stirred at room temperature for 1 h. After centrifugation, collected 

supernatant was washed with 0.9% NaCl solution (4 ml/ gram of liver). After the layers were 

separated by centrifugation, organic layer was collected and evaporated to dryness. 

Triglyceride fraction was separated from the rest of the lipids by column chromatography 

according to the modified procedure described previously (Hamilton et al., 1988).  Lipid 

mixture was dissolved in hexane/methyl-t-buthyl-ether (MTBE) mixture (200:3, v/v) and 

applied to a silica gel prepacked column (Sigma prepacked 2g Discovery DSC-Si SPE 

Tubes). The column was eluted with the hexane/MTBE mixture (200:3, v/v) and the 

fractions containing triglycerides evaporated to dryness. To determine the identity and the 

purity of collected lipid fractions, TLC was carried out on silica gel plates. 

Petrolether/diethylether/acetic acid (7:1:0.1) system was used as mobile phase (triglyceride 

Rf = 0.55). The lipid fractions were visualized by iodine vapours.  
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2.9.4 - NMR analysis 

Plasma body water 2H-enrichments were determined from 10 µL of plasma by 2H 

NMR as described previously (Jones et al., 2001). NMR spectra of triglyceride and MAG 

samples were obtained with a 14.1 T with Agilent 600 system equipped with a 3-mm 

broadband probe. Triglyceride samples were dissolved in chloroform and the internal 

pyrazine standard was added. Fully relaxed 1H and 2H spectra of triglycerides were acquired 

at 25 ºC with a 90º pulse and 8 s of recycling time (3 s of acquisition time and 5 s pulse 

delay). MAG samples were dissolved in 90% acetonitrile / 10% water. 2H MAG spectra were 

acquired at 50 ºC using a 90º pulse and 1.7 s of recycling time (1.6 s of acquisition time and 

0.1 s pulse delay). The summed free induction decays were processed with 1.0 Hz line-

broadening before Fourier transform. Spectra were analyzed with the NUTS PC-based NMR 

spectral analysis software (Acorn NMR Inc., USA). 

 

2.9.5 - Quantification of direct and indirect pathway contributions to hepatic 

glycogen production.  

MAG 2H positional enrichments were estimated from the 2H peak intensities of 

individual positions compared to the enrichment of methyl groups of isopropylidene moiety 

[Eq.1] 

 

[Eq.1]     2Hi (%) = [area 2Hi x acetone (%)] / Δ area 2H CH3, 

 

(2Hi (%) = the enrichment of individual MAG position, area 2Hi the area of individual peak, 

Δ area 2H CH3 the area of CH3 isopropylidene peaks, and acetone (%) acetone enrichment). 

 

The fractional contribution of the indirect pathway to hepatic glycogen production 

was calculated from the ratio of 2H enrichments in positions 5 and 2 of hepatic MAG, as 

previously reported (Jones et al., 2001) [Eq.2]: 

 

[Eq.2] Indirect pathway (%) = 100 x 2H5 (%) / 2H2 (%) 

(2H5 (%) and 2H2 (%) are the enrichments of MAG positions 5 and 2, respectively) 

 

The contribution of the direct pathway to hepatic glycogen production was obtained 

from [Eq.3]:  
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[Eq.3] Direct pathway (%) = 100 x {1 - [2H5 (%) / 2H2 (%)]. 

 

The fraction of glycogen turnover during D2O exposure or the total hepatic glycogen 

that was synthesized by both pathways was calculated as the ratio of 2H enrichment in MAG 

position 2 and body water enrichment [Eq.4]: 

 

[Eq.4] Glycogen turnover (%) = 100 x 2H2 (%) / BW (%). 

 

2.9.6 - Quantification of the fractional de novo lipogenesis and glyceroneogenesis. 

  Triglyceride 2H-enrichments were quantified from the 1H and 2H NMR spectra by 

measuring the 1H and 2H intensities of selected signals relative to the 1H and 2H intensities 

of the pyrazole standard. 

The fraction of hepatic triglyceride derived from DNL over the duration of 2H2O 

administration was calculated as follows [Eq.5] 

 

[Eq.5] DNL fraction (%) = 100 × TG-methyl (%) / BW (%) 

(TG-methyl (%) is the 2H enrichment of the triglyceride methyl groups and BW (%) the 2H 

enrichment of the body water) 

 

The fraction of de novo synthesized glycerol was calculated in a similar fashion from 

the ratio of glycerol positions 1 and 3 (G1,3) 2H enrichment to that of 2H body water 

enrichment [Eq.6]: 

 

[Eq.6] Glyceroneogenesis fraction (%) = 100 × G1,3 (%) / BW (%) 

 

2.10 Statistical analysis  

Results are given as mean  standard error of the mean unless stated otherwise. A p-

value <0.05 was considered statistically significant. The differences between groups were 

tested by performing analysis of variance (ANOVA), followed by the Bonferroni Post’hoc 

test. The unpaired t-test was used for statistical analysis of differences between the same 

treatments at different time point. Statistical analyses were performed using the GraphPad 

Prism software, version 5 (GraphPad Software Inc., La Jolla, CA, USA). 
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 2.11 Chemicals  

Cyclosporine A (Sandimmune Neoral®) was kindly supplied by Novartis Pharma 

(Lisbon, Portugal), while SRL (Rapamune) was provided by Wyeth Europe Ltd (Berkshire, 

UK). Human insulin, Actrapid, 100 U/ml was a kind gift from Novo Nordisk A/S (Paço de 

Arcos, Portugal). Collagenase, type II from Clostridium histolyticum, and glucose strips 

were purchased from Roche (Lisbon, Portugal). D- [U-14C] glucose (specific activity, 200-

300 mCi/mM) was purchased from Scopus Research BV (Wageningen, The Netherlands). 

Diethyl pyrocarbonate (DEPC) was acquired from AppliChem, (Darmstadt, Germany). 

Methanol and isopropanol were obtained from Merck (Darmstadt and ohenbrunn 

rispectively, Germany). All primers were designed by us through the VECTOR NTI 

Advanced 10 software (Life Technologies, Carlsbad, CA, USA) and obtained from IDT-

Integrated DNA Technologies, Inc (Coralville, IA, USA). 30% Acrylamide/BisSolution 

19:1 (5% c) was obtained from Bio-Rad Laboratories, Inc (Hercules, CA, USA) and TEMED 

(“N,N,N’,N’Tetramethylethylene-diamine) from Sigma-Aldrich, Inc (St. Louise, MO, 

USA); the polyvinylidene difluoride (PVDF) membranes from EMD Millipore Corporation 

(Billerica, MA, USA). The enhanced chemifluorescence (ECF) reagent was obtained from 

GE Healthcare (Fairfield, CT, USA). All other reagents were purchased from Sigma 

Chemical Co. 
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3.1 Introduction 

The introduction of calcineurin inhibitors, like cyclosporine A (CsA), has been 

important to save lives and improve the safety of organ transplantation. However, the use of 

these drugs is followed by the emergence of a number of side effects that has an outcome in 

the patient´s quality of live. One of the most important is new-onset diabetes mellitus after 

transplantation (NODAT) (Heisel et al., 2004; Øzbay et al., 2012; Vincenti et al., 2007), 

which is usually associated with an increased risk of cardiovascular diseases and 

consequently decreased patient survival (Cosio et al., 2005 ; Cosio et al., 2002 ; Øzbay et 

al., 2012).  

CsA, a peptide of fungal origin,  forms a complex with cyclophilins, which then 

inhibits calcineurin preventing, the movement of transcription factors into the nucleus, thus 

blocking interleukin (IL)-2 production and, consequently, proliferation and differentiation 

of T-cells (Sarwal et al., 2001; Smith et al., 2003). Studies on purified islets and insulin-

producing beta-cells have proposed different diabetogenic actions for CsA. Therefore, CsA 

decreases insulin content of the β-cell, reversibly inhibiting insulin gene transcription and 

ultimately insulin secretion (Øzbay et al., 2011) although the mechanisms that lead to these 

effects are not well understood. 
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Sirolimus (SRL), a macrolide of anti-fungal origin, inhibits the mammalian target of 

rapamycin (mTOR), is a recent option for immunosuppressive therapy (Mota, 2005). mTOR 

exists in two physically and functionally distinct multi protein complexes located in the 

cytoplasm and in the nucleus; the mTOR complex 1 (mTOR, raptor, mLTS8, deptor and the 

regulatory component PRAS40) and the mTOR complex 2 (mTOR, rictor, stress-activated 

protein kinase interacting protein 1, protor, mLST8 and deptor) (Dowling et al., 2010; 

Pereira et al., 2012; Rosner et al., 2008). SRL has been viewed as an alternative to 

calcineurin inhibitors as its immunosuppressive activity has been reported to be up to 100 

times greater than CsA (Gueguen et al., 2007; Kay et al., 1989). It is associated with several 

side effects, including proteinuria, diabetes and impaired wound healing (Cravedi et al., 

2010; Cutler et al., 1999 ; Pereira et al., 2012). Another well-known side effects of SRL and 

CsA is hyperlipidemia, which is usually associated with increased serum cholesterol and 

triglycerides (TG) values during the first year of treatment (Badiou et al., 2009; Gueguen et 

al., 2007). Nonetheless, SRL is putatively less nephrotoxic than CsA, an advantage that 

could be lost due to the deleterious effects on glucose and lipid metabolism, which would be 

particularly problematic in diabetic and dyslipidaemic patients. As long as the precise 

molecular mechanisms underlying the effects of SRL and CsA on glucose and lipid 

metabolism remain to be elucidated, the most proper immunosuppressive protocols for each 

specific condition are as yet unknown. Long-term outcomes may not improve significantly. 

The clinical follow-up data are yet insufficient; animal studies focusing on clinically relevant 

doses of the drugs are advised. Thus, the aim of this study was to evaluate and compare the 

potential metabolic effects of either CsA or SRL ex vivo treatments of isolated rat adipocytes 

and further to evaluate the long-term in vivo treatment effects of CsA or SRL, on glucose 

and lipid metabolism in Wistar rats.  
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3.2 Results 

 

3.2.1 Effects of CsA and SRL on glucose uptake in isolated rat adipocyte - ex vivo  

 To evaluate the effect of CsA and SRL on glucose uptake, freshly isolated adipocytes 

were incubated ex vivo with different concentrations of these drugs in the presence or absence 

of 10 nM insulin for 10 min. As indicated in Figure 3.1 A and B, incubation of isolated 

adipocytes with a maximal insulin concentration resulted in a 7- to 8- fold increase over basal 

in the insulin-induced glucose uptake rate. In contrast, cells incubated with varying 

concentrations of CsA (0.5 –30 µM) in the presence of 10 nM insulin, showed significant 

inhibition of the insulin-stimulated glucose uptake (Fig. 3.1A). For the lowest CsA 

concentration used (0.5 µM), we already observed a 39% (p<0.05) reduction in the insulin-

stimulated glucose uptake and for 30 µM, 41% (p<0.05). Adipocytes incubated with SRL 

(5-250 µM) in the presence of 10 nM insulin, displayed inhibition of the insulin-stimulated 

glucose uptake, which was nearly significant at 5 µM (p<0.06) and was significant at 250 

µM incubation (77 % reduction, p<0.05) (Fig. 3.1B).  

 

 

 

 

Figure 3.1 – Effects of CsA and SRL on glucose uptake in epididymal adipocytes. D-[U-14C]-

glucose uptake was measured in isolated rat adipocytes, incubated ex vivo for 30 minutes with either 

(A) CsA: 0.5-30 µM, (n=6), (B) SRL: 5-250 µM, (n=9) either in the presence or absence of 10 nM 

Insulin, before D-[U-14C]-glucose was added, and glucose uptake was assessed during the following 

30 min. Data are presented as mean ± SEM. Differences between treatments were assessed with one-

way ANOVA.   

 

 

  

A) B) 
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3.2.2 Effects of CsA and SRL on glucose uptake in isolated rat adipocytes - in vivo 

After 3 and 9 weeks of CsA and SRL treatments, the insulin-stimulated glucose 

uptake response was measured in freshly isolated rat adipocytes. After 3 weeks, the vehicle 

group, showed about a 3-fold increase in insulin-stimulated glucose uptake compared to 

basal (Fig 3.2A), whereas the CsA-treated group displayed a significantly blunted response 

to insulin (47%) compared with the vehicle cohort. In addition, we also observed a 

significant reduction of 27% in glucose uptake in response to insulin in the SRL group 

compared with vehicle (Fig 3.2A). Furthermore, after 9 weeks of treatments, insulin 

stimulated glucose uptake in isolated adipocytes of vehicle-treated animals remained at 

about 3-fold over basal, whereas CsA treatment produced a smaller but significant decrease 

in insulin-stimulated glucose uptake (9%) compared with vehicle (Fig 2.2B). Moreover, after 

9 weeks, the SRL-treated group showed a 24% reduction in insulin-stimulated glucose 

uptake compared with vehicle (Fig 3.2B).  

 

 

Figure 3.2 – Effects of CsA and SRL on glucose uptake in epididymal adipocytes. D-[U-14C]-

glucose uptake after in vivo treatment with either CsA (5 mg/kg/day) or SRL (1 mg/kg/day) for either 

3 (A) or 9 weeks (B). Glucose uptake was measured in, freshly-isolated epididymal adipocytes, that 

were pre-incubated during 10 min with or without insulin (10 nM), before D-[U-14C]-glucose was 

added, and glucose uptake was assessed during the following 30 min. Data are presented as mean ± 

SEM. Differences between treatments were assessed with one-way ANOVA.  

 

 

3.2.3 Drug Blood Concentration 

The trough blood concentration of CsA and SRL obtained using the doses of 5 

mg/kg/day and 1 mg/kg/day, respectively, was 367 ± 45.5 ng/ml and 7.8 ± 1.9 ng/ml, 

respectively.  

 

A) B) 
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3.2.4 Effects of CsA and SRL on body weight   

Alterations in body weight were monitored during in vivo treatment (Fig. 3.3). Wistar 

rats had a mean weight of 310 ± 2.1 g at 10 weeks of age before the beginning of treatments. 

As observed in Fig 3.3, neither treatment for 3 weeks caused significant changes in body 

weight gain compared with vehicle. After 9 weeks, however, both vehicle-treated (412 ± 

10.1 g) and CsA-treated (420.2 ± 6.9 g) animals showed similar body weight, whereas SRL 

treatment caused a smaller body weight gain, already significant compared with CsA-treated 

animals after 5 weeks (352.8 ± 7.0 vs. 388 ± 5.4 g; p < 0.01). These observations were 

maintained until the end of treatments, when the SRL group reached a significant difference 

from vehicle (380.2 ± 8.0 vs. 412 ± 10.8 g; p<0.05) (Fig 3.3). 

 

Figure 3.3. - Effects of vehicle, CsA and SRL on body weight. Weight was monitored every week 

until the end of treatments to evaluate the effects of CsA (5 mg/kg/day) and SRL (1 mg/kg/day). Data 

are presented as mean ± SEM. Differences between treatments were assessed with one-way ANOVA. 
# p<0.05, ## p<0.01, ### p<0,001 vs. vehicle; * p<0.05, ** p<0.01, *** p<0,001 SRL vs. CsA at the 

same time point. 

 

 

3.2.5. Effects of CsA and SRL on epididymal fat pad weight and adipocyte size   

After sacrifice, epididymal fat pads were weighted to calculate fat pad weight/BW 

(Fig 3.4). The SRL-treated group showed a significant decrease in fat pad weight (0.013 ± 

0.0 vs. 0.018 ± 0.0 g; p<0.01) compared with either vehicle or CsA-treated animals (0.013 

± 0.0 vs. 0.019 ± 0.0 g; p<0.01) after 3 weeks, although there were no significant changes in 

fat pad weights after 9 weeks. 

In addition, CsA treatment after 9 weeks significantly increased fat cell diameter 

(106.9 ± 4.5 vs. 83.9 ± 1.7 µm; p<0.01) and weight (0.59 ± 0.08 vs. 0.35 ± 0.04 µg; p<0.05) 
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compared with vehicle and with SRL cell diameter (106.9 ± 4.5 vs. 85.9 ± 2.6 µm; p<0.01) 

and weight (0.59 ± 0.08 vs. 0.32 ± 0.02 µg; p<0.01) (Table 3.1). 

 

 

 

 

 

 

 

 

 

Figure 3.4. - Effects of vehicle, CsA and SRL fat pad weight. Epididymal fat pads were harvested 

and weighted after sacrifice at 3 and 9 weeks to evaluate the effects of CsA (5 mg/kg/day) and SRL 

(1 mg/kg/day). Data are presented as mean ± SEM. Differences between treatments were assessed 

with one-way ANOVA. ### p<0.001 vehicle vs. SRL group; *** p<0.001 CsA vs SRL group.  

 

 

3.2.6. Effects of CsA and SRL on glucose tolerance and insulin levels 

 Fasting serum glucose values were not different between the groups after 3 weeks 

but were significantly different after 9 weeks of treatments between CsA (101.5 ± 3.2) and 

vehicle (95.6 ± 3.1, p<0.01) and SRL (87.1 ± 3.3 mg/dl; p< 0.01; Table 1). Fasting serum 

insulin levels between CsA and SRL-treated animals were also not different after 3 weeks, 

but were significantly different after 9 weeks (58.5 ± 4.5 vs. 134.5 ± 2.2 pmol/L; p<0.05). 

Moreover, HOMA-IR was also calculated based on the fasted glucose and insulin values. 

The SRL group presented a higher value for this index, 2.02 after 3 weeks and 3.08 after 9 

weeks compared to the other groups (Table 3.1). In addition, fed glucose levels were similar 

after 3 weeks, between treatments (Table 3.1). Curiously, fed glucose for vehicle-treated 

animals after 9 weeks was lower compared to 3 weeks (157.5 ± 7.4 vs. 219.5 ± 11.2; p<0.05). 

These values was increased significantly among the CsA-treated group (237 ± 27.8 mg/dl) 

compared with the vehicle-treated group (157.5 ± 7.4 mg/dl, p<0.05).  In addition, glucose 

levels were not different in the SRL-treated group (Table 3.1). Fed insulin levels revealed 

no difference between treatments after 3 weeks. The SRL-treated group, displayed an 
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increase in fed insulin between 3 and 9 weeks (170.7 ± 12 vs. 212.1 ± 10, p<0.05) and a 

significant increase compared with CsA after 9 weeks (212.1 ± 10 vs. 158.4 ± 9.7, p<0.01).   

  

3.2.7 Effects of CsA and SRL on serum lipid  

Serum TG in fed state were not different among treatments after 3 weeks, but were 

increased for vehicle and CsA group after 9 weeks (Table 3.1). TG were significantly 

increased in the vehicle group after 9 weeks as compared with 3 weeks (88 ± 9.5 vs. 118.4 

± 9.1 mg/dl; p<0.05). In addition, TG values were also significantly increased after 9 weeks 

with CsA (184.7 ± 14.6 vs. 93.5 ± 9.2 mg/dl; p<0,001) compared with 3 weeks. No 

significant differences were observed at 3 versus 9 weeks in the SRL-treated group. After 9 

weeks, TGs were also significantly increased in the CsA group (184.7 ± 14.6 vs. 118.4 ± 9.1 

mg/dl; p< 0.001) compared with vehicle and with SRL-treated group (184.7 ± 14.6 vs. 109.1 

± 11.3 mg/dl; p<0.001). Moreover, serum total cholesterol levels in the fed state were 

significantly different after 3 weeks of treatment between vehicle (52.5 ± 2.4) and the SRL-

treated group (64.9 ± 3.2 mg/dl; p<0.01). In addition, after 9 weeks of SRL treatment total 

cholesterol levels were different (51.7 ± 1.5 vs 60.1 ± 3.7; p<0.05) compared with vehicle. 

No significant differences were observed with the CsA treatment (Table 3.1).  
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3.2.8 Effects of CsA and SRL on Glucose Tolerance Test  

GTTs were performed both after 3 (Fig 3.5A) and 9 weeks (Fig 3.5B) of treatments. 

Fifteen minutes after a glucose bolus (2 g/kg BW, i.p.), the CsA-treated group presented 

significantly higher glucose levels (287.8 ± 31.9) when compared to either the vehicle (205.7 

± 24.2 mg/dl, p<0.05) or the SRL (213 ± 27.4; p<0.05) cohorts, after 3 weeks of treatment 

(Fig 3.5A). No significant differences were observed between SRL and vehicle-treated group 

after 3 weeks. Furthermore, after 9 weeks of treatments there were no significant differences 

in the fasted glucose values between the groups. However, with CsA treatment, glucose 

values were significantly increased compared with SRL at 15 minutes (472.6 ± 25.6 vs. 376.3 

± 29.9 mg/dl; p<0.01) and compared with vehicle at 30 minutes (436.8 ± 30.2 vs. 342.4 ± 

16.5 mg/dl; p<0.01) and 60 minutes (295.7 ± 44.3 vs. 197.5 ± 13.5 mg/dl; p<0.01) compared 

to vehicle (Fig. 3.5B). 

 

 

 

 

 

 

 

 

Figure 3.5. - Effects of vehicle, CsA and SRL on glucose tolerance tests after 3 weeks (A) and 9 

weeks (B). Glucose levels at time point 0, and after an i.p. injection of glucose (2 mg/kgBW) at 15, 

30, 60 and 120 min. Data are presented as mean ± SEM. Differences between treatments were 

assessed with one-way ANOVA. # p<0.05, #  # p<0.01 vehicle vs. CsA group; * p<0.05 CsA vs SRL 

group. 

 

 

3.3 Discussion 

Using an animal model that mimics the doses used in clinical practice, CsA was 

shown to promote hyperglycemia, adipocyte insulin resistance, glucose intolerance, 

increased fat cell weight and hypertriglyceridemia. Moreover, CsA impairs insulin 

production/secretion in the fed state, which may contribute to the exacerbated glucose 

A) B) 
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intolerance. SRL also promoted hyperglycemia, adipocyte insulin resistance, preventing 

normal body weight gain.  

Ex vivo short-term treatment of adipocytes with CsA and SRL caused concentration-

depended inhibitory effects on the insulin-stimulated glucose uptake. A recent, ex vivo study 

using therapeutic concentrations of SRL added to human subcutaneous and omental 

adipocytes demonstrates inhibition of basal and insulin glucose uptake by these cells (Pereira 

et al., 2012). When animals were treated with CsA or SRL, the insulin-induced glucose 

uptake, in isolated adipocytes, was impaired after 3 and after 9 weeks by both agents. In fact, 

a previous study in vivo study suggested that different doses and routes of administration of 

CsA reduces both active glucose uptake and passive fatty acid absorption by the intestine 

(Sigalet et al., 1992). Our study suggested that these drugs taken either ex vivo or in vivo 

promote the same effect.  

The doses of 5 mg/kg BW/day of CsA and 1 mg/kg BW/day of SRL in the in vivo 

study, achieved blood concentration mimicking those recommended during 

immunosuppressive therapy. 

The 5 mg/kg/day dose of CsA promoted the same weight gain as the vehicle group, 

consistent with results by Böhmer et al. (2010) using the same dose for 8 weeks of treatment. 

In contrast, the SRL group (1 mg/kg/day) displayed a significantly less body weight gain 

after 5 weeks, similar to the results observed by Houde et al. (2010), who demonstrated 

reduced food intake, decreased food efficiency and increased energy expenditure. SRL 

inhibition of mTOR, which regulates cell proliferation and messenger RNA (mRNA) 

translation (Cutler et al., 2001),  may be one of the reasons for the smaller body weight gain. 

SRL treatment significantly reduced adipocyte cell diameter and weight, confirming 

observations by Chang et al. (2009). Furthermore, this was also reflected in the significantly 

decreased weight of the epididymal fat pads, compared with CsA or vehicle-treated animals, 

already after 3 weeks. However, the difference disappears after 9 weeks. These results seem 

contradictory to those in literature (Chang et al., 2009; Houde et al., 2010), but the 

discrepancy might be explained by our use of a smaller dose of SRL.  

To assess glucose metabolism, fasted glucose and insulin levels were measured. Although 

after 3 weeks, no difference were seen in these two parameters, after 9 weeks treatment CsA 

induced higher fasting glucose levels with lower insulin levels than the other groups, 

reflecting a possible deficiency in insulin secretion/production. In contrast, SRL showed 

values of glucose similar to vehicle, but higher levels of insulin, suggesting insulin 

resistance. Furthermore, HOMA-IR indicated higher IR in older animals, including the 



 Effects of Cyclosporine A and Sirolimus on insulin-stimulated glucose transport and glucose tolerance in a rat 

model  

51 

 

vehicle group (13 vs. 19 weeks old), although, the SRL-treated animals, showed a higher 

value of HOMA-IR, suggesting a greater degree of insulin resistance already after 3 weeks 

that worsened by 9 weeks of treatment. At the time of sacrifice, we assessed fed glucose and 

fed insulin values, which were similar between the groups after 3 weeks of treatments. 

However, after 9 weeks, glucose values were higher for rats treated with CsA, supporting 

the hyperglycemic effect of CsA. Similar results were observed in another study, in Sprague 

Dawley rats (Larsen et al., 2006). Accordingly, insulin levels after 9 weeks decreased 

significantly in the CsA group, reflecting a defect in insulin secretion with a consequent 

increase in glucose levels in serum (Table 1).   

Regarding the lipid profile, the CsA-treated group presented similar values of 

cholesterol as the vehicle, as observed also by Böhmer et al. (2010). In contrast, CsA given 

to rats for a longer time (Böhmer et al., 2010; Vaziri et al., 2000) increased TG, which may 

have been due to a significant decrease in plasma lipoprotein lipase activity (Espino et al., 

1995). A recent study suggested that both CsA and tacrolimus enhance lipolysis by 

regulating expression of critical lipogenic genes in human adipocytes.  Increased values of 

lipids were expected in the SRL group because its hyperlipidemic characteristics are well 

known. Both serum cholesterol and TG are increased in humans during the first year of SRL 

therapy, after transplantation (Gueguen et al., 2007; Kahan et al., 1998; MacDonald et al., 

2000).  In our study, TG values were similar to those among the vehicle even after 9 weeks 

of SRL treatment, but cholesterol was significantly increased in this group compared to 

vehicle after 3 and 9 weeks. Although surprisingly, this has also been observed in two recent 

studies with SRL (2 mg/kg/day), where plasma TG and NEFA levels of SRL-treated rats 

were similar to vehicle-treated rats (Chang et al., 2009; Deblon et al., 2012). 

Moreover, during a GTT performed after 3 weeks, CsA cohort displayed 

significantly higher glucose levels after 15 minutes of the glucose bolus. Additionally, after 

9 weeks, the CsA group, showed higher glucose levels at 15, 30 and 60 min with 

consequently a slower glucose excursion rate, reflecting a higher 

hyperglycemic/diabetogenic response. This observation could be the result of the inhibitory 

effects of CsA on β-cell survival therefore, causing the decrease in insulin secretion as 

observed by others (Øzbay et al., 2012; Redmon et al., 1996 ; Uchizono et al., 2004).  SRL 

may have decreased insulin sensitivity, which could explain the glucose excursion curve 

observed in the GTT after 3 weeks, although glucose levels were not as high as values 

observed at 15 minutes using CsA. At the later times during the GTT, however, the SRL 

glucose excursion curve did not return to basal levels as fast as the CsA and the vehicle 
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groups. After 9 weeks of SRL treatment, the glucose excursion curve was not different than 

vehicle. Houde et al. (2010) demonstrated that treatment of rats with SRL affects both 

glucose and insulin homeostasis, which led the authors to suggest that the insulin response 

during the GTT may be due to a possible defect in islet function. 

In conclusion, this study demonstrated that both CsA and SRL promote 

hyperglycaemia, hyperlipidaemia and adipocyte insulin resistance. However, CsA is 

generally more diabetogenic than SRL, although, the SRL group displayed increased insulin 

levels reflecting insulin resistance, despite the observed reduction in body weight. These 

findings might be considered when choosing the proper immunosuppressive therapy for 

diabetic and/or obese individuals. 
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4.1 Introduction  

Immunosuppressive therapy is used in the treatment of autoimmune diseases and after organ 

transplantation, to promote tolerance to allografts (Smith et al., 2003). Two of the main 

immunosuppressive agents are cyclosporine A (CsA), a calcineurin inhibitor and sirolimus 

(SRL), an mTOR inhibitor. Although these immunosuppressive agents are very effective in 

their function, they are also responsible for the development of metabolic complications, 

linked to higher rates of cardiovascular disease and infections, which is the major cause of 

morbidity and mortality after transplantation (Øzbay et al., 2011; Subramanian et al., 2007; 

Watt, 2011). One of the complications is  NODAT,  usually manifested in the first few 

months post-transplantation and varying according to the type of immunosuppressive agent, 

their different combinations and patient demographics (Dirks et al., 2004). NODAT is 

reported in 2.5 to 40% of patients that underwent renal, liver, heart or lung transplant (Pham 

et al., 2011). Similar to type 2 diabetes, NODAT has been associated with impairment in 

glucose tolerance and insulin secretion and dysfunctional hepatic gluconeogenesis (Hecking 

et al., 2013). Insulin directly regulates gluconeogenesis, however in insulin resistance states 

insulin does not properly suppresses gluconeogenesis in the liver, leading to enhanced 

activation of  forkhead box-containing transcription factors of the FOXO subfamily, 

promoting increased  transcription of glucose-6-phosphatase (G6Pase) and 
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phosphoenolpyruvate  carboxykinase (PEPCK),  rate-limiting enzymes in hepatic 

glycogenolysis and gluconeogenesis, respectively (Nakae et al., 2002; Pajvani et al., 2011). 

Moreover, Ropelle et al. (Ropelle et al., 2009) refer that the physical interaction of 

peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α) and FOXO1 promote 

an important signal transduction pathway responsible for the synthesis of glucose by the 

liver. Furthermore, PGC-1α expression is a  tissue-specific regulatory markers activated in 

diabetic states, as well as in the fasted state and perhaps responsible for increased hepatic 

glucose production and consequently hyperglycemia (Herzig et al., 2001; Ropelle et al., 

2009), making it a marker of interest together with its downstream targets.  

On the other hand, insulin is an intervenient in many physiological processes, particularly 

important in maintaining glucose homeostasis. After a meal, glucose increases in circulation, 

stimulating the secretion of C-peptide and insulin, which inhibit glycogenolysis and 

gluconeogenesis and at the same time promoting glycogen synthesis and glucose uptake. 

Insulin binds to its cell surface receptor (IR), activating its intrinsic tyrosine kinase and 

leading to receptor auto-phosphorylation, which in turn leads to the phosphorylation of 

insulin receptor substrates proteins (IRS-1 – IRS-4). As a result, several downstream 

signaling pathways are activated, including p85 regulatory subunit of PI3-kinase and protein 

kinase B (Akt/PKB). This last step activates pyruvate dehydrogenase kinase 1 (PDK1) and 

Protein kinase C (PKC), leading to translocation of the glucose transporter (GLUT4) from 

intracellular vesicles to the plasma membrane (Rhodes et al., 2002). Alterations in these 

signaling pathways may affect glycemia and lead to unwanted metabolic consequences like 

diabetes and dislipidemia (Rhodes et al., 2002).Although CsA and SRL have been linked 

with NODAT, the underlying mechanisms are still not completely understood. SRL has been 

shown to improve insulin-stimulated glucose uptake and Akt/PKB phosphorylation in L-6 

muscle cells, 3T3-L1 cells and in differentiated adipocytes (Berg et al., 2002; Tremblay et 

al., 2005; Tremblay et al., 2001), while other studies have shown reduced glucose uptake 

(Lopes et al., 2013a) and Akt/PKB phosphorylation in human mature adipocytes (Pereira et 

al, 2012). While calcineurin inhibitors have been involved in the inhibition of the 

phosphorylation of the IR, it has not been associated with alterations in expression or 

phosphorylation of proximal insulin signaling cascade proteins (Pereira et al., unpublished; 

Shivaswamy et al., 2013). Therefore, there is still a lack of consensus on regarding the 

underlying mechanism for NODAT caused by both CsA and SRL.  

Recently we and other have reported that treatment with either CsA or and SRL lead to 

metabolic alterations in liver, muscle and adipose tissue possibly contribute to the 
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development of dyslipidemia and insulin resistance associated with immunosuppressive 

therapy however no insulin signaling studies had been performed (Böhmer et al., 2010; 

Fuhrmann et al., 2014; Lopes et al., 2013a; Øzbay et al., 2011; Pereira et al., 2012; 

Shivaswamy et al., 2010),. Therefore, the main aim of this in vivo study is to understand 

how these immunosuppressive agents affect gluconeogenesis and insulin signaling in liver, 

muscle and adipose tissue after 3 weeks of treatment in a rodent model. 

 

4.2 –Results 

4.2.1 GTT, ITT as well as glucose, insulin and C-peptide measurements in serum  

GTTs were performed at the end of the treatments and revealed that glucose tolerance 

was impaired in the CsA-treated animals. The CsA-treated group displayed a peak of glucose 

(18.62 ± 1.80 mmol/l) 15 minutes after the glucose bolus (2 g/kg BW, i.p.), when compared 

to either the vehicle group (11.16 ± 1.56 mmol/l, p<0.001) or the SRL-treated group (10.97 

± 1.68 mmol/l; p<0.001) (Fig 4.1A). However no significant differences were observed in 

the remaining time points during the GTT between the vehicle and the SRL group. The 

glucose excursion curve for SRL was also impaired and the recovery kinetics of blood 

glucose levels was significantly slower. Furthermore, the ITT curve revealed that insulin 

sensitivity was impaired in the CsA treated animals (Fig 4.1B). For the SRL group, a 

significant increase in blood glucose levels during an ITT was only observed at 60 min (3.76 

± 0.08 mmol/l) compared to vehicle group (2.65 ± 0.14 mmol/l, p<0.05). No significant 

differences were found in the glucose or insulin levels in the fasted state between groups, 

but a trend for a decrease in the fasting C-peptide levels was observed in both treated groups 

(Fig. 4.1C, D and E). 
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Figure 4.1. Effects of vehicle, CsA, and SRL treatment during a GTT (A), an ITT (B) and fasted 

serum glucose (C), insulin (D) C-peptide (E). Rats were treated with CsA and SRL for 3 weeks and 

fasted for 16 hours before the glucose tolerance test. Glucose levels were measured at time point 0, 

and after an intraperitoneal injection of glucose (2 g/kg BW) at 15, 30, 60, and 120 minutes. For the 

ITT, rats were fasted for 6 hours and glucose levels were measured at time point 0, and after an 

intraperitoneal injection of insulin (1U/kg BW) at 15, 30, 45, 60 and 90 minutes. Fasting serum 

glucose, insulin and C-peptide levels were measured. Data are presented as mean  SEM (n=6-

8/group) *p<0.05, ** p<0.01***p<0.001 vehicle vs. CsA group; & p<0.05 vehicle vs. SRL group;  
###p<0.001 CsA vs. SRL group.  

 

 

4.2.2 Clearance of glucose rate in the urine  

Animals in the SRL group exhibited a trend to increase glucose clearance rate (0.14 

±0.04 ml/h/rat), compared with the CsA (0.06 ± 0.01 ml/h/rat) and the vehicle group (0.09 

± 0.01 ml/h/rat), which means that an excess of glucose is present in the urine flux and is 

being expelled via the kidneys (Fig. 4.2). 

 

 

 

 

 

 

 

 

Figure 4.2. Effects of vehicle, CsA, and SRL treatment on glucose clearance rate in the urine. Rats 

were treated with CsA and SRL for 3 weeks and urine collection was done 24 h prior to sacrifice. 

Glucose levels was measured with strips (Cobas Integra® 400 plus). Data are presented as mean  

SEM (n=6-8/group). 
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4.2.3 Effect of CsA and SRL on protein and gene expression in liver 

 

4.2.3.1 Gluconeogenesis is modulated by CsA and  SRL 

To evaluate if CsA or SRL treatment affect gluconeogenesis, we evaluated the liver 

expression levels of some of the important key players. Although no significant changes 

were observed in the transcription factors PGC1-α and FOXO1 at the gene level, a tendency 

for an increased in protein expression was observed in the CsA group (Fig. 4.3A). Moreover, 

a significant increase in protein expression for G6Pase was observed in the CsA group (68%, 

p<0.05) compared with vehicle group, while no changes were observed in gene level 

(Fig.4.3B). A trend for an increase in PEPCK both gene and protein expression was observed 

in the same group (Fig. 4.3B). Moreover, glucokinase protein, an important contributor to 

the formation of glycogen, as it is responsible for the phosphorylation of glucose into 

glucose-6-phosphate, was tendentiously decreased in the CsA group, being significantly 

reduced in the SRL group (35%, p<0.05) (Fig. 4.3B). 

Moreover, we evaluated PTP1B expression, an important marker that negatively 

regulates insulin action, and found a significant increase in protein level in the CsA group 

(163%, p< 0.05) when compared to vehicle group (Fig. 4.3A).  
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Figure 4.3. Gluconeogenic gene and protein expression in liver, after a 3 week-treatment period with 

CsA and SRL. Relative mRNA expression levels were determined by Real-time PCR (n=8) and 

protein expression levels determined by western blotting (three to five independent experiments) for 

PGC1-α, FOXO1 and PTP1B (A) and G6Pase, PEPCK and GK (B). Data are presented as mean  

SEM. *p<0.05 vehicle vs. CsA or SRL group; #p<0.05 CsA vs. SRL group.  

 

 

4.2.3.2 Effect of CsA and SRL on insulin signaling in the liver  

 

We also investigated the expression levels of important markers involved in insulin 

signaling in the liver. The IRS-1 protein level was increased in the SRL group (49%, p<0.05), 

while GLUT1 tended to be decreased in the same group (Fig. 4.4). No significant changes 

were observed in gene expression of IRS-1, GLUT1 and GLUT2 in both treated groups (Fig. 

4.4). 
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Figure 4.4. Expression of genes and proteins of the insulin signaling pathway in liver after a 

3 week-treatment period, with CsA and SRL. Relative mRNA expression levels were 

determined by Real-time PCR (n=8) and protein expression levels determined by western 

blotting (three to five independent experiments) for IRS-1, GLUT1 and GLUT2. *p<0.05 

vehicle vs. CsA or SRL group.   
 

 

 

To further elucidate signaling events that might promote the impaired glycemia and 

glucose uptake seen in our previous work (Lopes et al., 2013a), we studied the insulin 

cascade by western blot analysis in the group of animals treated with the insulin bolus (i.p 

10 U/kg BW) 10 min prior to sacrifice. Insulin stimulation significantly increased 

phosphorylation of IRS-1 at Tyr612 and AKT at both Ser473 and Thr308, and a trend to 

increase phosphorylation of IR at Tyr1146, IRS-1 at Tyr612, mTOR at Ser2448 and p70S6K 

at Thr421/424 (Fig 4.5). SRL treatment reduced phosphorylation of all studied insulin 

signaling proteins, while CsA group did not affect phosphorylation of any of the proteins. 

Total proteins were not changed in any of the treatments (Fig.4.5). 
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Figure 4.5. Expression of proteins of the insulin signaling pathway in liver after 3 week-treatment 

period with CsA or SRL. Phosphorylation levels of IR Tyr1146, IRS-1 Tyr612, protein expression 

levels of PI3K p85 subunit and GLUT2 and phosphorylation levels of pAkt Ser473 and Thr308, 

p70S6K Thr412/424, mTOR Ser2448, and AS160 Thr642, after stimulation with insulin (B).  

*p<0.05 vehicle vs. CsA or SRL group; *p<0.05, **p<0.01 basal vs. insulin. 

 

 

 

4.2.4 Effect of CsA and SRL on protein and gene expression in muscle 

 

4.2.4.1 SRL decreases PGC1-α in muscle. 

SRL treatment reduced PGC1-α protein expression in muscle (50%, p<0.05), 

compared to vehicle group (Fig. 4.6A), while CsA had no effect. No changes were found on 

FOXO1 and PTP1B gene and protein expression with both treatments.  
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Figure 4.6. PGC1-α, FOXO1, PTP1B gene and protein expression in muscle after 3 weeks-treatment period 

with CsA or SRL. mRNA relative expression levels were determined by Real-time PCR (n=8) and protein 

expression levels determined by western blotting (three to five independent experiments) for PGC1-α, FOXO1 

and PTPB1. Data are presented as mean  SEM, *p<0.05 vehicle vs. CsA or SRL group; #p<0.05 CsA vs. SRL 

group.  

 

 

4.2.4.2 Effect of CsA and SRL on insulin signaling in muscle  

In muscle, no significant changes were found in gene expression of either IRS-1 or 

GLUT4, while GLUT1 gene expression was increased in the CsA group. However at the 

protein level, there was a trend for an increase in IRS-1 and a decrease in GLUT1 in the SRL 

group, while no changes were observed in GLUT4 protein expression in either treated group 

(Fig. 4.7A). 
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Figure 4.7. Expression of genes and proteins of the insulin signaling in muscle after 3 week-treatment period 

with CsA or SRL. mRNA relative expression levels were determined by Real-time PCR (n=8) and protein 

expression levels determined by western blotting (three to five independent experiments) for IRS-1, GLUT1 

and GLUT4. Data are presented as mean  SEM.  *p<0.05 vehicle vs. CsA group 

 

 

 

To determine whether therapeutic dose of these immunosuppressive agents affects 

insulin signaling in muscle, the phosphorylation of important key players were assessed. 

Insulin stimulation significantly increased phosphorylation of IRS-1 at Tyr612 and Akt at 

both Ser473 and Thr308 (Fig 4.7B). SRL treatment reduced phosphorylation of IRS-1 on 

Tyr612, AKT at Thr308, mTOR at Ser2448 and p70S6K at Thr421/424, compared with the 

vehicle group. On the other hand, while no changes were observed for Akt phosphorylation 

on Ser473, Akt Thr308 phosphorylation was impaired by CsA. Total proteins were not 

changed in any of the treatments (Fig. 4.7B).  
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Figure 4.8. Expression of proteins of the insulin signaling pathway in muscle after 3 week-treatment period 

with CsA or SRL. Phosphorylation levels of IR Tyr1146,  IRS-1 Tyr612, protein expression levels of PI3K 

p85 subunit, GLUT4, and phosphorylation levels of p70S6K Thr421/424, mTOR Ser2448, and AS160 Thr642, 

after stimulation with insulin, were determined by western blotting (three to five independent experiments) 

(B). Data are presented as mean  SEM.  *p<0.05 vehicle vs. CsA group; *p<0.05 basal vs. insulin  
 

 

 

4.2.5 Effect of CsA and SRL on protein and gene expression in adipose tissue 

 

4.2.5.1 Neither CsA nor SRL affected PTP1B, PGC1-α, or FOXO1 protein levels in 

perirenal adipose tissue  

 

In perirenal adipose tissue, although SRL treatment reduced gene expression of 

PGC1-α (61%, p<0.05) compared to vehicle group, the protein levels were similar between 
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the groups. Moreover, no changes were found on either FOXO1 or PTP1B gene or protein 

expression levels in this tissue (Fig. 4.9A).  

 

 

 

 

 

 

 

 

 

 

 

                                                         

 

 

 
 

 

 

 

 

 

 

Figure 4.9. PGC1-α, FOXO1, PTP1B gene and protein expression in perirenal adipose tissue after 3 week-

treatment with CsA or SRL. mRNA relative expression levels were determined by Real-time PCR (n=8) and 

protein expression levels determined by western blotting (three to five independent experiments) for PGC1-α, 

FOXO1 and PTP1B. Data are presented as mean  SEM , *p<0.05 vehicle vs. SRL group. 

 

 

 

4.2.5.2 Effects of CsA and SRL on insulin signaling in adipose tissue 

In perirenal adipose tissue, while no changes were observed in IR and IRS-1 gene 

expression (Fig. 4.10), there was a trend to increase its protein levels in the SRL treated 

group. On the other hand, GLUT1 and GLUT4 had a trend to decrease gene expression, 

while its protein levels were not changed in the SRL group. CsA treatment did not affect 

gene or protein expression of IR, IRS-1, GLUT1 or GLUT4 (Fig. 4.10). 
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Figure 4.10. Expression of genes and proteins of the insulin signaling in epididymal adipose tissue after 3 

week-treatment period with CsA and SRL. mRNA relative expression levels were determined by Real-time 

PCR (n=8) and protein expression levels determined by western blotting (three to five independent 

experiments) for IRS-1, GLUT1 and GLUT4. Data are presented as mean  SEM.  

 

 

In epididymal adipose tissue, insulin stimulation significantly increased 

phosphorylation of IR at Tyr1146, IRS-1 at Tyr612 and AKT at Ser473 (Fig 4.11). 

Treatments with both CsA and SRL significantly impaired phosphorylation of IR Tyr1146 

residue compared to vehicle. On the other hand, SRL treatment reduced AKT 

phosphorylation at Ser473, mTOR at Ser2448 and p70S6K at Thr421/424, compared with 

the vehicle group (Fig. 4.11). Total proteins were not changed in any of the treatments. 
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Figure 4.11. Expression of genes and proteins of the insulin signaling pathway in epididymal adipose tissue 

after 3 week-treatment period with CsA and SRL. Phosphorylation levels of IR Tyr1146,  IRS-1 Tyr612, 

protein expression levels of PI3K p85 subunit, GLUT4 and phosphorylation levels of p70S6K Thr421/424, 

mTOR Ser2448, and AS160 Thr642, after stimulation with insulin, were determined by western blotting (three 

to five independent experiments). Data are presented as mean  SEM, *p<0.05 basal vs. insulin.  
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CsA or SRL impairs glucose metabolism. Treatment with CsA resulted in impaired glucose 

tolerance and insulin sensitivity as demonstrated during a GTT and an ITT, respectively.  
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gluconeogenesis, G6Pase and PEPCK, and the upstream transcription factors PGC1-α and 
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the elevation of glucose on the blood. Moreover, PTP1B protein levels were also increased 

in the liver in the CsA-treated group, which may contribute to impaired insulin sensitivity 

observed during the treatment. Although SRL had no effect on the expression of genes or 

proteins involved in gluconeogenesis in the liver, it significantly decreased GK protein 

expression, an enzyme responsible for the phosphorylation of glucose into glucose-6-

phosphate possibly leading to impaired production of glycogen. In addition, the effect of 

these agents on activation of insulin signaling in the liver, muscle and adipose tissue were 

evaluated. SRL treatment reduced Akt phosphorylation in these tissues, then leading to 

reduced AS160 phosphorylation. These effects combined might impair GLUT4 

translocation, which we did not measured for lack of tissue, explaining the reduction in 

glucose uptake observed previously (Lopes et al., 2013a). Altogether, these results suggest 

that CsA and SRL modulate glucose metabolism and insulin action, although through 

different targets, i.e. while CsA seems to enhance gluconeogenesis, SRL mainly impairs 

insulin signaling in peripheral tissues. These effects might contribute to the development of 

insulin resistance and NODAT observed during immunosuppressive therapy. 

During a GTT, the CsA group presented impaired glucose tolerance when compared 

to either the vehicle or the SRL-treated groups, during a GTT. The latter, also presented an 

impaired glucose excursion curve. As normal insulin action is required for clearing an oral 

glucose load (Ferrannini et al., 1985), this impairment might be due to reduced insulin 

secretion by β-cells and/or a reduction in peripheral insulin sensitivity (Hjelmesaeth et al., 

2007; Øzbay et al., 2011) in the CsA-treated group. This was confirmed after an ITT, as 

even when an exogenous insulin bolus was administered, the glucose levels in the CsA group 

remained higher, and the rate of glucose disposal to reach basal levels was slower. This is 

also true for the SRL group, in particular at the 60 minutes time point where the glucose 

values were significantly higher than vehicle and closer to the CsA group. In fact, the 

presence of higher levels of insulin was not sufficient to decrease glucose levels similar to 

the levels observed in the vehicle group, suggesting marked insulin resistance in both CsA 

and SRL treated groups. Furthermore, to evaluate if this could be due to impaired insulin 

secretion from the β-cells of the islets of Langerhans, after 3 weeks of treatment with 

therapeutic doses, we measured insulin and C-Peptide levels. However, no differences were 

observed for insulin, and even thought C-peptide levels were reduced, it was not significant. 

This condition is usually associated with induced diabetes in rats (Amin et al., 2011) and a 

defect in β-cells (Palmer et al., 2004). 
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SRL is considered to be less nephrotoxic than CsA, and is presently a valid option to 

calcineurin inhibitors for the maintenance of immunosuppression (Klawitter et al., 2009). 

Therefore, we also wanted to evaluate if the clearance of glucose rate in urine was impaired. 

Surprisingly, we found a  tendency for an increase in glucose clearance rate in the SRL 

treated group, which might be related to an increase of glucose in the urine, in greater 

quantities than the renal tubule can absorb (glycosuria), and this condition has already 

observed in patients under SRL therapy (Franz et al., 2010). No difference was observed in 

the CsA group,  but as Yale et al. (1985) have shown, it requires higher doses and duration 

of treatment to cause glycosuria with CsA (10 mg/kg BW/day for 12 weeks). 

Moreover, as the development of insulin resistance has been linked to enhanced 

hepatic gluconeogenesis, we evaluated some of the key markers of this pathway. In our 

model, after 3 weeks of treatment with CsA, G6Pase protein levels were significantly 

increased and were accompanied by a tendency for an increase in protein expression for 

PEPCK and transcription factors PGC1-α and FOXO1, confirming an overstimulated 

hepatic gluconeogenesis. In the SRL group, we did not observe an increase in 

gluconeogenesis, as reported previously by Houde et al. (2010) and Lamming et al. (2012). 

This apparent discrepancy might be dose-related, as the authors used a higher dose of SRL. 

Interestingly, although no change were observed in GK gene expression, an enzyme 

responsible for producing glucose-6-phosphate, its protein level was significantly decreased 

in the SRL group, suggesting the glycogen production was decreased in the SRL-treated 

group. Glycogen storage is usually decreased in patients with type 2 diabetes and might be 

a consequence of insulin resistance (Saltiel, 2001). In addition, GK is controlled at a 

transcriptional level in a TORC1-dependent manner (Dai et al., 2013) and therefore assays 

to determine GK activity should be considered in future studies with SRL treatment. 

Moreover, gene and protein levels for PGC1-α and FOXO1 were also measured in muscle 

and perirenal adipose tissue, where their actions are more linked to their role in 

mitochondrial biogenesis, myogenesis and adipocyte differentiation (Amat et al., 2009; 

Liang et al., 2006). PGC1-α expression is directly related with insulin sensitivity and is down 

regulated in muscle of type 2 diabetic subjects (Liang et al., 2006). Therefore, a reduction in 

PGC1-α expression in the muscle of SRL-treated rats may account for the development of 

insulin resistance. Moreover, muscle specific mTORC1 loss is associated with a decrease in 

PGC1-α and with a reduction the expression of mitochondrial target genes including PGC-

1α itself and in oxidative metabolism (Bentzinger et al., 2008; Cunningham et al., 2007; 

Laplante et al., 2012; Romanino et al., 2011). 
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 Since PTP1B is a negative regulator of insulin signaling, and its deletion has been 

coupled with improved insulin sensitivity, we evaluated how the in vivo treatment with these 

agents could affect its gene and protein expression in the various tissues. Interestingly, 

PTP1B protein level was increased in the CsA group in the liver but not in muscle or adipose 

tissue. Although PTP1B gene expression in the liver was increased by SRL treatment, no 

changes were observed in protein expression in liver, muscle or adipose tissue. To our 

knowledge this is the first report showing alterations on PTP1B protein expression with CsA 

treatment. This increase in PTP1B protein expression may be linked to an increase in insulin 

resistance and gluconeogenesis as liver specific PTP1B -/- mice have been shown to have 

decreased expression of gluconeogenic genes and increased hepatic insulin signaling 

(Delibegovic et al., 2009), and were able to reverse glucose intolerance (Owen et al., 2013). 

Assays to determine PTP1B activity should be considered in future studies with CsA 

treatment, as in diabetic rats, increased PTP1B levels and activity, decrease glucose uptake 

and insulin signaling (Wu et al., 2005). 

To further elucidate the development of whole body glucose intolerance and the 

previous reported data showing that treatment with CsA or SRL impairs insulin-stimulated 

glucose uptake in epididymal adipose tissue (Fuhrmann et al., 2014; Lopes et al., 2013a), 

we also analyzed protein expression and activation of important insulin signaling markers in 

\muscle, liver and adipose tissue. While IRS-1 protein levels were significantly increased in 

the liver, and tended to be increased in muscle and adipose tissue, a reduction in GLUT1 

protein level was detectable in liver and muscle with the SRL treatment. No changes were 

observed in GLUT2 (liver) or GLUT4 (muscle and adipose tissue), the main insulin-

stimulated transporter (Leto et al., 2012; Pessin et al., 2000), with either treatments. A 

decrease in GLUT1 protein expression with the SRL treatment explain the reduction of the 

basal glucose uptake, observed by Pereira et al. (2012), Fuhrmann et al. (2014) and Deblon 

et al. (2012), while the increase in IRS-1 expression also observed by Takano et al. (2001) 

and Um et al. (2006) might be a compensatory mechanism. In this study we cannot exclude 

the possibility that even though the GLUT4 protein expression was not different, its 

translocation to the membrane could be impaired. This experiment was not performed due 

to the lack of tissue, but should be addressed in future studies. Nonetheless, impaired glucose 

uptake in CsA-treated rats might be related with a reduced amount of GLUT4 in the plasma 

membrane as Pereira et al. (unpublished data) recently demonstrated that CsA treatment 

reduced the insulin-stimulated presence of GLUT4 in the plasma membrane of differentiated 
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human pre-adipocytes and L6 muscle cells. On the other hand, in the SRL group glucose 

uptake might be decreased due to an impairment of the insulin signaling, as already 

demonstrated in human and rat insulin sensitive cells  (Kumar et al., 2010; Pereira et al., 

2012; Sarbassov et al., 2006; Shivaswamy et al., 2013). Moreover, the decrease in PGC1α- 

protein expression in the muscle of the SRL-treated group might also be responsible for a 

decrease in insulin sensitivity, as PGC1-α increases the expression of the insulin-sensitive 

transporter GLUT4 in the muscle (Baar et al., 2002; Michael et al., 2001). Insulin stimulation 

initiates intracellular signaling when it binds to the insulin receptor, phosphorylating its 

tyrosine residues. In our work, phosphorylation of the insulin receptor at Tyr1146 residue 

was decreased in the SRL group both in liver and adipose tissue. Moreover SRL also 

impaired phosphorylation of the key factor, Akt at Ser473 and Thr308 residues in liver and 

adipose tissue, while no alterations were observed by the CsA treatment, previously 

demonstrated both in vitro and in vivo (Bodine et al., 2001; Di Paolo et al., 2006; Lungu et 

al., 2004). Sarbassov et al. (2005) have also shown that mTOR kinase and rictor are essential 

for phosphorylation of Akt Ser473 and SRL reduces insulin phosphorylation of IRS-1 on 

Tyr residues (Danielsson et al., 2005), which is in accordance with our results at least in 

muscle. Moreover, Shivaswamy et al. (2013) observed recently that SRL treatment reduces 

insulin-stimulated phosphorylation of Akt in liver, muscle and fat. On the other hand, insulin 

sensitivity may also be affected by intracellular lipid accumulation, through impairment of 

IRS-1-PI3K-Akt signaling pathways (Di Paolo et al., 2006; Morino et al., 2005), which may 

also be the case, as our group already demonstrated that after 3 weeks of treatment with SRL, 

there is an accumulation of TGs in liver and muscle (Lopes et al., in press). Impaired Akt 

activation leads also to a decrease in phosphorylation of AS160, an important substrates of 

Akt that controls the translocation of glucose transporters to the plasma membrane. These 

data, in accordance with other studies (Deblon et al., 2012; Pereira et al., 2012; Pereira et 

al.; unpublished data) reveal that SRL treatment inhibits activation of Akt in response to 

insulin and affect glucose metabolism in skeletal muscles and adipocytes. As expected, the 

mTOR pathway was blocked by SRL treatment, as evidenced by the lack of phosphorylation 

of its downstream target, the p70S6K.   

Taken together, these data indicate that CsA affects glucose metabolism, by 

increasing gluconeogenesis in liver and SRL mainly by impairing the insulin signaling 

cascade pathway in peripheral tissues, which ultimately can affect glucose uptake (Fig.4.12). 

These effects might contribute to the development of insulin resistance after 
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immunosuppressive therapy, and caution is required when choosing the therapy to apply to 

patients, in order to prevent the development of NODAT. 

 

 

 

Figure 4.12. Scheme summarizing the effects of CsA and SRL on the gluconeogenesis and insulin 

signaling in muscle and adipose tissue.  Red arrows correspond to CsA; Blue arrows correspond to 

SRL. ↑, increase; ↓, decrease.  
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Chapter 5 

 
  

Short and long term effects of cyclosporine A and sirolimus 

in vivo on genes and proteins involved  

in lipid metabolism in Wistar rats 
 

This Chapter comprises the work accepted in  

Metabolism, Clinical and Experimental (2014) by   

Lopes PC, Fuhrmann A, Sereno J, Espinoza DO, Pereira, MJ, Eriksson JW, Reis F, 

Carvalho E 

 

 

 

5.1 Introduction  

Cyclosporine A and sirolimus are immunosuppressive agents used to prevent 

allograft rejection after transplantation and as therapies for autoimmune diseases. Both 

agents are associated with serious long-term complications, including dyslipidemia and new 

onset of diabetes after transplantation (NODAT) (Gueguen et al., 2007; Gueguen Y, 2004; 

Miller, 2002). Dyslipidemia leads to the development of atherogenesis and post-transplant 

coronary artery disease, the most common cause of morbidity and mortality among 

transplant patients (Bumgardner et al., 1995; Markell et al., 1989). Dyslipidemia generally 

appears in the first year post-transplant and persists regardless of dietary modifications, 

occurring in up to 60% of renal (Badiou S, 2009) and 45% of liver transplant patients 

(Rossetto et al., 2010). Immunosuppressive therapy is associated with increased serum levels 

of triglycerides (TG), total cholesterol, low-density lipoprotein (LDL), very-low-density 

lipoprotein (VLDL), free-fatty acids (FFA) and apolipoprotein B, in a dose-dependent 

manner (Ichimaru et al., 2001; Morrisett et al., 2002; Spinelli et al., 2011). Nonetheless, the 

mechanisms that promote these effects of CsA and SRL are not completely known.  

Lipids are stored in adipose tissue, for future utilization, under the control of 

regulatory factors, such as insulin, catecholamines and autonomic nervous system mediators 

(Large et al., 2004). Energy stored in adipocytes is regulated by a balance between TG 

storage, via esterification of FFA and lipogenesis, and release of FFA and glycerol, via 
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lipolysis. In the fed state, increase in blood insulin, glucose and lipid levels promotes 

lipogenesis (Large et al., 2004), while in the fasted state, intracellular lipases are responsible 

for lipolysis (Viscarra et al., 2013). In the presence of low glucose, fatty acids become a 

major energy source for peripheral tissues. In contrast, during glucose availability, lipogenic 

genes are activated, including Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2), fatty 

acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) and, consequently, the 

synthesis of TG through acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. 

Glucose and insulin mediate these processes, whereas ACCs are responsible for catalyzing 

the first step, the synthesis of malonyl-CoA, a substrate for the novo fatty acid synthesis and 

the regulator of fatty acid oxidation. Key transcription factors, like sterol response-elements 

binding proteins 1 and 2 (SREBP1 and SREBP2), liver X receptors (LXR) and carbohydrate-

responsive element-binding protein (ChREBP) are also essential for the maintenance of this 

cascade (Brown et al., 1997; Davies et al., 2008; Dentin et al., 2004; Iizuka et al., 2004; 

Wakil et al., 2009; Yen et al., 2008).  

Determining the influence of immunosuppressive therapy in the balance between 

lipolysis and lipogenesis, is important, since elevated levels of fatty acids in circulation may 

contribute to ectopic fat accumulation in peripheral tissues (Roden et al., 1996). 

Consequently, the functionality of these tissues can be seriously affected, leading to the 

pathogenesis of obesity-related conditions, such as insulin resistance, diabetes and 

cardiovascular diseases. Moreover, we have recently demonstrated that CsA and SRL 

therapies are associated with insulin resistance and dyslipidemia (Lopes et al., 2013b). The 

main aim of the present study was to investigate and compare the in vivo effects of chronic 

administration of CsA and SRL on genes and proteins involved in lipid metabolism in 

adipose tissue and liver, using Wistar rats as a model system.  

 

 

5.2 Results 

5.2.1 Effects of CsA and SRL on lipolysis  

CsA and SRL treatment in vivo significantly enhanced isolated adipocyte lipolysis 

during isoproterenol stimulation (1μM) by 5 (p<0.01) and 9-fold (p<0.001), respectively, 

compared to the vehicle non-stimulated basal, at 3 weeks (Fig. 5.1). In addition, after 9 

weeks, CsA and SRL increased isoproterenol-stimulated lipolysis by 4-fold (p<0.01) and 6-

fold (p<0.01) compared to vehicle non-stimulated, respectively (Fig. 5.1).  However, when 
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the adipocytes were incubated with insulin (1000 µU/mL), CsA or SRL treatment show a 

tendency to revert the insulin´s antilipolytic effects, but this was not significant. Insulin 

caused a non-significant reduction of 34% and 18% at 3 and 9 weeks with CsA treatment, 

and 42% and 30% of reduction at 3 and 9 weeks, respectively, for SRL- treated animals (Fig. 

5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - Effects of in vivo treatment of Wistar rats with CsA and SRL on lipolysis, in isolated 

adipocytes. To test the effect of these drugs on lipolysis and the antilipolytic effect of insulin, 

adipocyte suspension (1:10), was supplemented with isoproterenol (1 μM) and insulin (1000 µU/ml). 

Glycerol released into the medium was measured by colorimetric absorbance in a Glycerol release 

kit (Zen – Bio) and used as an index of lipolysis. Lipolysis rate for each condition was calculated 

relative to basal vehicle for each time point and values are presented as mean ± SEM (n=6/group). 

**p<0.01, **p<0.001 vehicle vs. treated groups, † p<0.01 basal vs. insulin.  

 

 

 

5.2.2 Effects of CsA and SRL on body weight and adipocyte weight and diameter 

There were no changes in body weight gained for either CsA or SRL-treated groups 

compared to vehicle-treated group after 3 weeks. However, after 9 weeks, SRL-treated 

animals showed significantly lower body weight gain when compared to either vehicle or 

CsA-treated animals (p<0.05) (Fig. 5.2A). Between week 3 and week 9 of treatment, the 

body weight of vehicle and CsA treated animals increased significantly from 351.2 ± 3.6 to 

412.0 ± 10.1 g (p<0.001) and from 359.5 ± 5.5 to 420.1 ± 6.9 g (p<0.001), respectively, 

while the body weight of SRL-treated animals increased only from 351.2 ± 5.2 to 380.1 ± 

8.1 g (non-statistically significant). Isolated adipocytes weight  and diameter  were 
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significantly higher after 9 weeks of CsA treatment (0.59 ± 0.10 µg and 97.7 ± 3.4 µm, 

respectively) compared to either vehicle (0.35 ± 0.04 µg, p<0.05; and 84.7 ±3.4 µm p<0.01, 

respectively) or  SRL-treated animals (0.33 ± 0.02 µg, p<0.01; and 84.8 ± 2.2 µm, p<0.01, 

respectively) (Fig. 5.2B and C). Representative images of perirenal adipose tissue from 

vehicle, CsA and SRL treated rats are shown (magnification 40X) (Fig.5.2D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Evaluation of total body weight (A), adipocyte weight (B) and diameter (C) after 3 and 

9 weeks of treatment with vehicle, CsA and SRL. Representative images of perirenal adipose tissue 

from vehicle, CsA and SRL treated rats after 3 and 9 weeks (D) (magnification 40X). Data are 

presented as mean ± SEM (n=8-12/group), *p<0.05, ***p<0.001 Vehicle vs. treated group, ‡p<0.05, 

‡‡p<0.01,‡‡‡ p<0.01 CsA vs. SRL, †p<0.05, †††p<0.001 between treatments at 3 and 9 weeks.  

 

5.2.3 Effects of CsA and SRL on NEFA and triglycerides  

Fed serum NEFA values were increased in the CsA group when compared with the vehicle 

(1.07 ± 0.25 vs. 0.47 ± 0.04 mmol/l; p<0.001) and the SRL-treated group (0.57 ± 0.10 mmol/l; 

p<0.01) (Fig. 5.3A), at 9 weeks. Fed serum TGs, were also increase at 9 weeks for CsA (2.09 ± 0.17 

A) C) B) 
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mmol/l) compared to either vehicle or SRL (1.40 ± 0.09 and 1.38 ± 0.10 mmol/l, p<0.001) treatments 

(Fig. 5.3B). No differences were observed after 3 week for either treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Determination of non-esterified fatty acid (NEFA) (A) and triglycerides (TGs) in serum 

(B) after 3 and 9 weeks of treatment with CsA and SRL. Data are presented as mean ± SEM (n=8-

12/group), ***p<0.001 Vehicle vs. treated group, ‡p<0.05, ‡‡‡ p<0.01 CsA vs. SRL, ††p<0.01, 

†††p<0.001 between treatments at 3 and 9 weeks.  

 

 

5.2.4 Effects of CsA and SRL on triglycerides in liver and muscle 

Moreover, ectopic deposition of TGs was significantly increased in the SRL-treated 

rats compared with the vehicle-treated animals in liver (5.3 ± 0.3 µg/mg of tissue, p<0.05 

vs. 3.3 ± 0.4 µg/mg of tissue) and in muscle (7.3 ± 1.8 µg/mg of tissue, p<0.05 vs. 3.4 ± 0.5 

µg/mg of tissue) after 3 weeks (5.4 A and B). Interestingly, accumulation of ectopic TGs 

decreased after 9 weeks of SRL treatment compared to the same treatment after 3 weeks in 

liver (5.3 ± 0.3 vs. 4.2 ± 0.7 µg/mg of tissue) and in muscle (3.9 ± 0.9 µg/mg of tissue). In 

liver, CsA (4.8 ± 0.6 vs. 4.8 ± 0.3 µg/mg of tissue) and the vehicle groups (3.3 ± 0.4 vs. 3.7 

± 0.9 µg/mg of tissue) maintained their TG levels after 3 and 9 weeks of treatment (Fig. 

5.4C). On the other hand, TG levels in muscle were decreased after 9 weeks for CsA (5.9 ± 

0.9 vs. 3.3 ± 0.9 µg/mg of tissue) and maintained in vehicle group (3.5 ± 0.5 vs. 4.1 ± 0.6 

µg/mg of tissue) (Fig. 5.4 A and B).  

Representative images of oil Red O liver stains are shown as demonstrating levels of 

the triglycerides in the liver and muscle for vehicle, CsA and SRL-treated rats (Fig. 5.4 C 

and D). 
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Figure 5.4 – Determination of triglycerides in liver (A) and muscle (B) tissue after 3 and 9 weeks of 

treatment with CsA and SRL. Rat liver and muscle sections were stained with Oil Red O for 

confirmation of lipid deposition (C and D). TGs in tissue were obtained by the Folch method and 

measured using a triglyceride colorimetric assay kit. Data are presented as mean ± SEM (n=8-

12/group), *p<0.05 vehicle vs. treated group.  
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5.2.5. Gene expression of markers involved in regulating lipolysis  

In order to better understand how immunosuppressive therapy causes 

hyperlipidemia, we studied the expression of lipolytic genes in perirenal adipose tissue of 

Wistar rats, after 3 and 9 weeks of treatment with either CsA or SRL. Hormone sensitive 

lipase (HSL) gene expression was significantly decreased by SRL by about 35% compared 

with CsA (p<0.05). There were no significant differences in HSL after 9 weeks of treatment 

for either group (Fig. 5.5B). No significant differences were observed for either adipose 

triglyceride lipase (ATGL) or perilipin A, between the groups (Fig. 5.5 A, C).  

 

 

 

 

 

 

 

 

 

 
Figure 5.5. Expression of lipolytic genes in perirenal adipose tissue by CsA and SRL. mRNA was 

extracted from perirenal adipose tissue to measure mRNA expression for ATGL (A), HSL (B), 

Perilipin A (C). Data are presented as mean  SEM (n=8-12/group), ‡ p<0.05 CsA vs. SRL.  

 

 

5.2.6 Gene expression of lipogenic factors in adipose tissue 

In addition, we studied the expression of key lipogenic genes in perirenal adipose 

tissue. SRL decreased ACC1 gene expression by 50% compared to vehicle and CsA 

treatment (p<0.05) after 3 weeks (Fig. 5.6C). In addition, after 9 weeks of treatment, ACC1 

expression was decrease by more than 50% in all groups, compared to 3 weeks (Fig. 5.6C). 

Furthermore, SRL also down-regulated Lipin 1 (25%, p<0.05), PPAR-γ (42%, p<0.05), and 

decreased SCD1 gene expression (80%, p<0.001) compared to vehicle at 3 weeks (Fig. 5.6E, 

I and J). Differences were lost after 9 weeks of treatment. On the other hand, SREBP, 

ChREBP, FAS, DGAT1,CD36 and the LPL genes did not change with either treatment 

A) B) C) 
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compared to vehicle (Fig. 5.6A, B, D, F, G and H).  No alterations were observed with CsA 

at either 3 or 9 weeks.   
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Figure 5.6. Expression of lipogenic genes in perirenal adipose tissue by CsA and SRL. mRNA was 

extracted from perirenal adipose tissue to measure mRNA expression for SREBP (A), ChREBP (B), 

ACC1 (C), FAS (D), Lipin 1 (E), DGAT1 (F),  CD36 (G), LPL (H),  PPAR-γ (I) and  SCD1 (J). Data 

are presented as mean  SEM (n=8-12/group), *p<0.05, ***p<0.001 Vehicle vs. treated group, 
‡p<0.05 CsA vs. SRL, †p<0.05, ††p<0.01 between treatments at 3 and 9 weeks.  

 

5.2.7 Protein expression of factors involved in lipolysis and lipogenesis in adipose 

tissue 

ACC1 protein levels were greatly increased in perirenal adipose tissue with CsA 

treatment at 3 weeks compared to vehicle (400%, p<0.01) and to SRL (430%, p<0.01). 

ACC1 was equally decreased for all groups after 9 weeks, in agreement with the gene 

expression results (Fig. 5.7C). In addition, FAS protein expression was increased although 

not significantly for CsA treatment compared to vehicle and to SRL (135%, p<0.05) at 

3weeks, while there were no significant changes after 9 weeks (Fig. 5.7D). Moreover, HSL 

expression was significantly increased after 9 weeks with CsA compared to vehicle (115%, 

p<0.05) and SRL (134%, p<0.01) treatment, although no changes where observed at 3 weeks 

(Fig. 5.7F). However, neither CsA nor SRL significantly changed SREBP, ChREBP or 

DGAT1 protein expression (Fig. 5.7A, B and E).  
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Figure 5.7. Regulation of protein levels of ACC1 (A), FAS (B), SREBP1 (C) and ChREBP (D) 

DGAT1 (E) and HSL (F) by CsA and SRL. Perirenal adipose tissue was collected as indicated in 

materials and methods. Total lysates were analyzed by western blotting and results are presented as 

mean ± SEM of three to five independent experiments. *p<0.05, **p<0.01 Vehicle vs. treated group, 
‡p<0.05, ‡‡ p<0.01 CsA vs. SRL, †p<0.05 between treatments at 3 and 9 weeks.  
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 5.2.8 Gene expression of IL-6, TNF-α and adiponectin in perirenal adipose tissue 

  No significant changes were observed in the IL-6, TNF-α and adiponectin gene 

expression in perirenal adipose tissue (Fig. 5.8A, B and C).  

 

 

 

5.8 

Figure 5.8. Regulation of IL-6 and TNF- gene expression in perirenal adipose tissue by CsA and 

SRL. mRNA was extracted from perirenal adipose tissue to measure mRNA expression for IL-6 (A) 

and TNF-α (B). Data for gene expression are presented as mean  SEM (n=8-12/group).  

5.2.9 Expression of lipogenic factors involved in liver 

The expression of the key lipogenic factors ACC1, SREBP1, ChREBP and DGAT1 

was also assessed in the liver, after 3 or 9 weeks of treatment with either CsA or SRL. We 

found no differences for ACC1, SREBP, ChREBP  and DGAT1 gene and protein expression 

at either time point compared to vehicle (Fig. 5.9A, B, C and D) for either treatment, 

although there was a trend for an increase in ACC1 and SREBP gene expression with CsA 

treatment at 9 weeks (Fig. 5.9A-H).  
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Figure 5.9. Regulation of the expression of lipogenic factors in liver tissue by CsA and SRL.  mRNA 

was extracted from liver tissue to measure mRNA expression for, SREBP1 (A), ChREBP (B), ACC1 

(C) and DGAT1 (D). Total lysates of liver were analyzed by western blotting for SREBP1 (E), 

ChREBP (F), ACC1 (G) and DGAT1 (H) and results are presented as mean ± SEM of three to five 

independent experiments. Data are presented as mean  SEM, (=8-12/group), ‡p<0.05, CsA vs. SRL, 
†p<0.05 between treatments at 3 and 9 weeks. 

 

5.2.10 Gene expression for IL-6 and TNF-α in liver 

IL-6 gene expression in the liver was not increased after either 3 or 9 weeks of 

treatment, compared to vehicle (Fig. 5.10A). On the other hand, TNF-α gene expression in 

liver was significantly increased by (149%, p<.0.05) in the CsA group at 3 weeks compared 

to vehicle, but no differences were observed at 9 weeks (Fig. 5.10B).  
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Figure 5.10. Regulation of IL-6 and TNF- gene expression in liver tissue by CsA and SRL. mRNA 

was extracted from liver tissue to measure mRNA expression for IL-6 (A) and TNF-α (B). Data for 

gene expression are presented as mean  SEM (n=8-12/group), *p<0.05, vehicle vs. CsA.  

 
 

 

5.3 Discussion 

The present study indicates that in vivo treatment of Wistar rats with either CsA or 

SRL for short or longer periods (3 and 9 weeks), impairs lipid metabolism as shown by gene 

and protein expression data, as well as by the biochemical and morphological parameters. 

Treatment with either agents resulted in increased isoproterenol-stimulated lipolysis in 

adipocytes. CsA increased adipocyte weight and diameter, as well as levels of NEFA and 

TGs in circulation after 9 weeks, while liver TGs increased with SRL after 3 weeks of 

treatment. CsA and SRL act on lipogenic and lipolytic pathways differently, affecting them 

at different time points and acting on different specific target. In this study, CsA effects are 

more evident after 9 weeks of treatment on lipolytic factors, directly responsible for the 

increase of lipids in circulation. On the contrary, SRL is more involved in the down-

regulation of lipogenic factors (ACC1, lipin1, SDC1 and PPAR-γ) at an early time point, 

interfering with triglycerides storage in adipocytes. The effects of both IAs suggest that these 

agents influence the pathway of lipids synthesis through different mechanisms, and thus 

might contribute to the dyslipidemia observed in rodents and humans after 

immunosuppressive therapy. 

Our results demonstrate that in vivo CsA or SRL treatment increases lipolysis in 

isolated adipocytes. These results are in agreement with  a recent study, where ex-vivo CsA 

and SRL treatment of isolated human adipocytes increased isoproterenol-stimulated 

lipolysis (Pereira et al., 2013) and another where epididymal fat depots  from calcineurin, a 

target of IAs, knockout mice (CnAβ-/-) exhibited a higher phosphorylation of PKA substrates 

and consequently increased lipolysis under stimulation of isoproterenol (Suk et al., 2013) . 
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The effects promoted by these immunosuppressive agents on lipolysis may be relevant as 

impaired FFA mobilization may contribute to dyslipidemia and insulin resistance. Moreover, 

treatment of rats with either CsA or SRL, at the same doses used here, increased HOMA-IR 

values, hyperinsulinemia and impaired insulin-stimulated glucose uptake (Lopes et al., 

2013b). Lipolysis was only modestly affected by insulin, and even thought CsA or SRL 

treatment show a tendency to revert the insulin´s antilipolytic effects, this was not 

significant. A previous report has shown that SRL treatment impairs the insulin antilipolytic 

effect when insulin is used at lower concentrations (10-100 µU/mL) in human adipocytes 

(Pereira et al., 2013). It should be noticed that we used a supra-physiological insulin 

concentration (1mU/mL), and therefore CsA and SRL effects on the antilipolytic effects of 

insulin at physiological concentrations should be further accessed. 

In our rat model, CsA stimulated lipolysis without changing lipolytic and lipogenic 

genes, while SRL stimulated lipolysis and inhibited expression of lipogenic factors in 

adipose tissue. The increase in lipolysis with the CsA treatment could be related to the 

observed up-regulation of HSL gene level (although not statistically significant) and to the 

increase in its protein expression after 9 weeks. These results correlate with the significantly 

higher levels of NEFA and TGs observed in serum after 9 weeks with the CsA treatment. 

Nonetheless, the authors acknowledge that HSL is regulated at the phosphorylation level, 

which has not been measured in this work. However, similar studies have demonstrated that 

CsA and SRL increase isoproterenol-stimulated phosphorylation of HSL at Ser552 in human 

adipocytes and phosphorylation of HSL at Ser563 in 3T3-L1 adipocytes (Chakrabarti et al., 

2010; Pereira et al., 2013; Soliman et al., 2010). Furthermore perilipin A, responsible for 

coating the surface of intracellular lipid droplets, was not significantly changed with either 

CsA or SRL at these doses, while  ATGL, which is responsible for converting triacylglycerol 

into diacylglycerol, tended to decrease with SRL. Recently, Pereira et al. (2013) observed a 

decrease in perilipin gene expression but no changes in ATGL gene expression with SRL 

treatment in human adipocytes while Chakrabarti et al. (2010) observed a decrease in ATGL 

gene expression in SRL-treated rats. Differences between the present study and others might 

be related to the duration and doses of treatments. 

No change in gene expression for the transcriptions factors ChREBP and SREBP1 

was observed in adipose tissue, although the expression of the SREBP1 gene (both 1a and 

1c isoforms) tended to decrease in adipose tissue of for the SRL-treated rats. A significant 

reduction in SREBP1 gene expression was observed in human adipose tissue treated with 

SRL by Pereira et al. (2013). Moreover, when SRL was administrated in vivo to rats, gene 
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expression data suggests a reduction in lipid flux and uptake into adipocytes, with down 

regulation of  LPL, CD36, PEPCK and lipin1 as well as PPARγ, known to directly regulate 

the expression of a large number of genes involved in lipid metabolism, as observed by 

Houde et al. (2010). These results agree with our data for lipin1 and PPARγ, even though 

we saw no differences in LPL or CD36, which could be dose related. Moreover SRL has 

also been shown to block the expression of SREBP1 target genes, such as ACC, FAS and 

SCD1, which also agrees with our results indicating, a role for mTORC1 in fatty acid 

biosynthesis (Brown et al., 2007; Laplante et al., 2009; Luyimbazi et al., 2010; Peng et al., 

2002; Soliman et al., 2010). On the other hand, no changes were observed in ACC1 and FAS 

gene expression with CsA treatment, in perirenal adipose tissue, in agreement with previous 

studies by Wu et al. (1999) and Jiang et al. (2013) and with a recent study where  calcineurin 

knockout mice (CnAB-/-) developed hyperlipidemia without changes in gene expression of 

ACC, FAS, SDC1 and SREBP (Suk et al., 2013). However, CsA up-regulated ACC1 and 

FAS protein expression after 3 weeks, which could be explain by alterations at the 

transcriptional level. Moreover, CD36 and LPL gene expression tended increase with CsA 

treatment.  These results would suggest an increase in re-esterification of FFA and lipid 

storage (Wakil et al., 2009), helping to maintain body weight and adipocyte diameter in the 

CsA treatment similar to the vehicle group.  

We also observed a reduction in ACC1 and FAS gene expression in all groups in 

adipose tissue, after 9 weeks of treatment. This may be age-related, as others have also 

reported a down-regulation in SREBP-1c, FAS and ACC1 gene expression with age, obesity 

or diabetes in Zucker fatty (ZF; fa/fa) and Zucker diabetic fatty rats (ZDF; fa/fa), indicating 

that these 3 parameters may influence ACC transcript levels (Kreuz et al., 2009; Nogalska 

et al., 2005). 

Furthermore, SRL treatment down-regulated lipin 1 gene expression, another 

downstream target gene of SREBP1, in adipose tissue. Lipin 1 is responsible for directing 

lipids to the appropriate storage site in adipose tissue and for decreasing expression of other 

lipogenic genes, which may cause an impairment in TGs storage (Phan et al., 2005). Lipin1 

gene expression has previously been shown to be reduced by SRL (Houde et al., 2010). In 

addition, SRL treatment has also decrease SCD1 gene and protein expression in breast 

cancer cell lines and in mice with these tumours (Luyimbazi et al., 2010). As this enzyme is 

one of the key players in de novo lipogenic pathway and is involved in lipid storage and a 

reduced SCD1 expression in liver and adipose tissue has been shown to promote a reduced 
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weight gain and increased energy expenditure (Jiang et al., 2005); its down-regulation in 

adipose tissue in our rat model may explain the decrease weight gain and smaller adipocytes 

in SRL-treated rats when compared to vehicle or CsA, in agreement  with  previous studies 

by Houde et al. (2010). This may also be related with the decrease in PPARγ gene expression 

as a reduction of its activity as a transcription factors involved in lipid droplet formation may 

compromise its ability to channel fatty acids into adipose tissue (Anderson et al., 2008; 

Rogue et al., 2010; Staels et al., 2005). Down regulation of these genes by SRL may causes 

decreased TG storage. This reduction, together with the enhanced lipolysis, may potentiate 

lipid accumulation in tissues, such as muscle and liver (Reue, 2007). In our study, we 

observed ectopic lipid accumulation in muscle and liver, with SRL treatment mainly after 3 

weeks, which is also observed after ablation of rictor in mice (Kumar et al., 2010). 

In the liver, although we did not observe significant differences in lipogenic genes or 

protein expression with CsA or SRL at the doses tested, there was a trend for an increase in 

ACC1, SREBP1 and DGAT 1 in the CsA group; This might be time-dose related as an 

effective up regulation has been observed in another study with a higher dose of CsA 

(Delgado et al., 2012). Moreover an up regulation of hepatic ACC, FAS and DGAT 1 has 

been shown to be involved in overproduction of hepatic fatty acids and in the pathogenesis 

of hypertriglyceridemia in rat suffering from hyperlipidemia associated with the nephrotic 

syndrome (Zhou et al., 2008).  

In addition, while there were no significant differences in IL-6 and TNF-α gene 

expression with either CsA or SRL treatments in adipose tissue, in liver TNF-α gene 

expression was significantly increased in the CsA group after 3 weeks. Cytokines such as 

TNF-α and IL-6 have been shown to play a major role in dyslipidemia in rodents 

(Hotamisligil et al., 1993), and TNF-α is also known to increase the expression of the LDL 

receptor in hepatocytes, promoting the accumulation of lipids in the liver and may be one of 

the mechanisms responsible for the accumulation observed in our results.   

Our results are summarized in Table 1 and figure 9. This study shows the effects of 

relatively short and long term CsA and SRL treatments in vivo, using a rat model system. 

We show some physiological and morphological changes, as well as changes at the protein 

and gene expression of factors involved in lipid metabolism in both adipose tissue and liver. 

However, limitations of our study are its descriptive nature and the lack of mechanistic 

analysis that would help to explain some of the alterations observed in the lipolytic and 

lipogenic factors, and this should be addressed in future insulin signaling experiments, as 

the animals in this study were not treated with insulin prior sacrifice. Nonetheless, our model 
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allows us to demonstrate that CsA stimulated lipolysis without changing lipolytic and 

lipogenic genes, while SRL stimulated lipolysis and inhibited expression of lipogenic factors 

in adipose tissue. 

Moreover, dysregulation of fatty acid metabolism, a hallmark of immunosuppressive 

therapy, particularly in adipose tissue, may contribute to the observed elevation of FFA in 

plasma and to the ectopic fat deposition observed in liver. Further studies on the different 

pathways and transcription factors involved in lipid metabolism that are affected by 

immunosuppressive agents, may be beneficial for understanding the pathology of post-

transplant dyslipidemia and the design of immunosupressor with less unwanted side effects. 

In conclusion, we have shown that both CsA and in particular SRL act at the level of 

adipose tissue enhancing lipolysis and down-regulating lipogenic genes, which can in part 

explain the development of dyslipidemia and NODAT during immunosuppressive therapy.  
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Figure 5.11. Scheme summarizing the effects of CsA and SRL on the crosstalk between liver and 

adipose tissue.  Red arrows correspond to CsA; Blue arrows correspond to SRL. ↑, increase; ↓, 

decrease.  
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6.1 Introduction 

Monitoring the function of a transplanted organ and the effects that 

immunosuppressive drugs exerted on the recipient body is fundamental for long term graft 

survival. Metabonomics is a recent instrument available to measure small metabolites that 

exist in tissue and fluids. Metabolites are the product of metabolism and essential in many 

biological function and may work as important biomarkers to identify different diseases 

(Kim et al., 2010). This methodology is promising because changes in the cell biochemistry 

can be detected in an early phase, well before histologic and pathophysiologic changes occur 

(Christians et al., 2008). Metabolites might be detected by mass spectroscopy and 1H-nuclear 

magnetic resonance (NMR) spectroscopy (Kim et al., 2010). In rat models and human 

patients, changes in endogenous metabolites have already been observed by these techniques 

in blood and urine after CsA administration (Klawitter et al., 2010). Transplantation and the 

introduction of calcineurin inhibitors, like Cyclosporine A (CsA) have been important to 

save lives and improve the safety of organ transplants (Heusler et al., 2001). Nonetheless, 

although short-term outcome of organ survival has improved, long-time survival (< 5 years) 

is compromised by the development of chronic side effects such as new onset diabetes 

mellitus after transplantation, dislipidemia or nephrotoxicity (Subramanian et al., 2007). To 

prevent the toxicity of an immunosuppressive drug, early detection must be made and a dose-
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reduction, or regiment switch must be applied (Klawitter et al., 2010). Although 

metabolomic approach gives insight into the changes of total metabolite concentrations it 

gives no information on the contributions of different pathways to the total metabolite pool.  

CsA is associated with increased risk of glucose intolerance however it is still not 

clear if its relative diabetogenicity is due to β-cells dysfunction (Oetjen et al., 2003; Polastri 

et al., 2002), peripheral tissue insulin resistance or both. Moreover, there is limited 

information on its effects on hepatic insulin resistance. In addition, by reducing the 

concentration of adipose tissue lipoprotein lipase (Vaziri et al., 2000), it leads to the 

increased triglyceride plasma levels contributing to insulin resistance.  

Hepatic insulin resistance manifests itself in loss of regulation of several important 

metabolic processes, and results amongst other in decreased glycogen synthesis, increased 

de novo lipogenesis (DNL), and impaired suppression of postprandial hepatic glucose 

production when portal vain glucose and insulin levels are high. Conventional analysis of 

postprandial glucose and insulin appearance does not inform on the contributions of 

absorption and hepatic glucose production to total plasma glucose. These contributions can 

be resolved by the use of glucose load enriched with stable isotope tracers. Recently, 

Delgado et al. (2012) were able to resolve the contributions of glucose load and 

endogenously produced glucose (EGP) to plasma glucose in healthy rats treated with CsA 

during 20 days by applying [U-13C] glucose and 2H2O. The analysis revealed impaired 

suppression of hepatic glucose release by insulin and 60 min after the glucose load the 

increased EGP contributed to the elevated plasma glucose in CsA-treated rats. Although both 

gluconeogenesis and glycogenolysis can contribute to EGP, the increased glycogenolysis 

was found to be responsible for the observed increase of plasma glucose levels. These results 

combined with the analysis of hepatic glycogen levels suggested that the initial glycogen 

levels were higher in CsA-treated animals. However, until now the influence of CsA on the 

contributions of direct and indirect pathways to glycogen synthesis was not determined. 

Although the expression of several lipogenic enzymes was found to be increased, the 

contribution of lipogenic deregulation to the onset of CsA induced insulin resistance was not 

unequivocally confirmed since hepatic DNL was not measured.  

Deuterated water 2H2O as a stable metabolic tracer is increasingly used since it has 

several advantages over other tracers. In addition to the reduced cost it is easily administered, 

either intraperitoneally or orally, over long periods of time and equilibrates easily with the 

total body water pool, which avoids inefficient equilibration with the precursor pools, or 

precursor enrichment gradients. 2H isotopomer distributions in precursor pools and the end 
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products of the particular pathway provide an insight into the fluxes and the activity of 

pathway enzymes that participate in the metabolism of a given precursor. Deuterated water 

has been successfully used in the studies of carbohydrate and lipid metabolism in both 

animal and human studies. 

 

 

6.2 Results 

 

6.2.1 Effects of CsA treatment on body weight and adipocyte diameter and weight 

Alterations in body weight were monitored during treatment and are shown in fig 

6.1A. Wistar rats had a mean weight of 318.8 ± 5.3 g at 8 weeks of age before the beginning 

of treatments. Although no significant change in body weight were seen between vehicle 

and CsA group, there was a clear tendency for a loss in weight for CsA group (Fig. 6.1A), 

as confirmed by the presence of smaller (79,80  ± 3.81 vs. 101.40 ± 6.71, p<0.05) and lighter 

adipocyte cells (0.30 ± 0.04 vs. 0.62 ± 0.12, p< 0.05) (Fig. 6.1B). 

 

 

 

 

 

 

 

 

 

Figure 6.1.  Effects of vehicle and CsA on body weight (A), adipocyte diameter and weight (B). 

Weight was monitored every week until the end of treatments Data are presented as mean ± SEM. 

Differences between treatments were assessed with one-way ANOVA, and unpaired t-test. * p<0.05 

vehicle vs. CsA at the same time point.  

 

 

 

A) B) 
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6.2.2 Effects of CsA on glucose tolerance test  

GTT was performed after the 15 days of treatment and fasted glucose was very 

similar between the two groups. However, 30 minutes after a glucose bolus (2 mg/g, i.p.), 

the CsA-treated group presented significantly higher glucose levels (383.8 ± 54.6) when 

compared to the vehicle (240.5 ± 24.3 mg/dl, p<0.001). After 60 min, glucose was still 

significantly higher in CsA group (357.5 ± 37.49 vs. 159.45 ± 14.64, p<0.001), never 

reaching the basal values in the 2 hours of test (Fig 6.2).  

 

 

 

 

 

 

 

Figure 6.2. Effects of vehicle and CsA on GTT. Glucose levels at time point 0, and after an i.p. 

injection of glucose (2 mg/kg/body weight) at 15, 30, 60 and 120 min. Data are presented as mean ± 

SEM. Differences between treatments were assessed with one-way ANOVA, *** p<0,001 vehicle  

vs CsA at the same time point.  

 

6.2.3 Effects of CsA on hepatic glycogen sources  

Glycogen 2H enrichment was assessed after its hydrolysis to glucose and subsequent 

derivatization to monoacetone glucose (MAG). 2H NMR spectra of MAG consists of well 

resolved singlet peaks that correspond to individual positions of MAG hydrogens (Fig 6.3).  
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Figure 6.3. 2H NMR spectra of MAG prepared from liver glycogen. D1-D6R,S represent the NMR 

signals of 2H enrichments in positions 1-6 of glycogen glucosyl moieties. 

 
 

 

Due to high hepatic concentration of glycogen and high positional 2H enrichments 

(~1%) high quality spectra (S/N~20) were obtained in relatively short times (2h). Using Eq.1 

it was possible to calculate the 2H enrichment on each of MAG carbons (Table 6.1).  

 

Table 6.1. Liver glycogen and body water 2H-enrichment for vehicle and CsA-treated rats 
 

Animals 

2H enrichment of body water (BW) and glycogen hydrogens 1 to 6Sa 

BW 1 2 3 4 5 6R 6S 

Vehicle 

 

 

 

 

 

 

 

Mean ± SE 

 

CsA-treated 

 

 

 

 

 

 

 

Mean ± SE 

2.61 

2.06 

1.91 

2.02 

1.83 

1.86 

2.01 

 

2.04±0.1 

 

2.20 

2.14 

2.00 

1.81 

1.96 

1.95 

2.09 

2.22 

2.05±0.05 

1.06 

1.19 

1.24 

1.02 

1.00 

0.99 

0.98 

 

1.07±0.004 

 

1.28 

1.54 

1.43 

1.15 

1.12 

0.99 

1.41 

1.10 

1.25±0.0* 

2.12 

2.18 

2.09 

1.91 

2.05 

2.02 

1.63 

 

2.00±0.07 

 

2.18 

2.03 

2.20 

2.24 

1.97 

2.02 

2.23 

1.91 

2.10±0.05 

0.93 

0.92 

0.97 

0.76 

0.88 

0.87 

0.75 

 

0.87±0.03 

 

0.94 

1.13 

1.10 

0.94 

0.92 

0.87 

1.09 

1.00 

1.00±0.03* 

1.15 

1.20 

1.25 

1.00 

1.15 

1.08 

0.94 

 

1.11±0.04 

 

1.23 

1.39 

1.35 

1.26 

1.14 

1.08 

1.39 

1.15 

1.25±0.04 

1.26 

1.31  

1.30 

1.06 

1.19 

1.12 

1.05 

 

1.18±0.04 

 

1.17 

1.55 

1.41 

1.19 

1.20 

1.12 

1.42 

1.17 

1.27±0.05 

1.01 

0.99 

1.13 

0.83 

1.00 

0.92 

0.86 

 

0.96±0.04 

 

0.84 

1.28 

1.16 

0.98 

1.00 

0.92 

1.19 

0.89 

1.03±0.06 

0.91 

0.91 

1.02 

0.77 

0.92 

0.85 

0.75 

 

0.87±0.03 

 

0.84 

1.16 

1.08 

0.91 

0.93 

0.85 

1.18 

0.88 

0.98±0.05 
a The means and standard errors (SE) for vehicle and CsA-treated groups are 

shown.*Significantly higher than vehicle value, P = 0.05. 
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Position 2 is the most enriched one and represents glycogen synthesis through both 

direct and indirect pathways and was found to be the same in both vehicle and CsA-treated 

animals. Similar enrichment were measured for positions 4 and 6, including position 5 which 

is characteristic for glycogen synthesized through indirect pathway. Positions 1 and 3 in 

CsA-treated animals exhibit higher 2H enrichment compared to vehicle animals (1.25% and 

1.07%, p=0.042; 1.00% and 0.87%, p=0.016, respectively). Position C-2 was found to be 

completely exchanged with the body water under the given experimental conditions 

(H2/BW) and in both groups all the glycogen was derived from glucose-6-phosphate 

sources. Direct and indirect contributions to hepatic glycogen were estimated for each animal 

from the ratio of H5/H2 2H enrichments as described by the equations 2 and 3 (Table 6.2). 

Direct pathway contributed to the hepatic glycogen with ~ 40% and was found to be the 

same for both groups of animals. Ratio H3/H5 was used as a measure for transaldolase 

activity and was significantly higher in CsA-treated animals. 

 

 

Table 6.2. Liver glycogen synthesis parameters for vehicle and CsA-treated rats 
 

Animals 

Hepatic glycogen synthesis parametersa 

H2/BW Direct pathway 

(%) 

Indirect pathway 

(%) 

H3/H5 

Vehicle 

 

 

 

 

 

 

 

Mean ± SE 

 

CsA treated 

 

 

 

 

 

 

 

Mean ± SE 

0.81 

1.06 

1.09 

0.94 

1.12 

1.08 

0.81 

 

0.99±0.05 

 

0.99 

0.95 

1.10 

1.24 

1.00 

1.03 

1.07 

0.84 

1.03±0.04 

41 

40 

28 

44 

42 

44 

36 

 

41±0.1 

 

46 

24 

36 

47 

39 

44 

37 

38 

39±0.3 

59 

60 

62 

56 

58 

56 

64 

 

59±0.1 

 

54 

76 

64 

53 

61 

56 

63 

62 

61±0.3 

0.74 

0.70 

0.75 

0.71 

0.74 

0.77 

0.72 

 

0.73±0.01 

 

0.8 

0.73 

0.78 

0.79 

0.76 

0.77 

0.77 

0.85 

0.78±0.01* 
aThe means and standard errors (SE) for vehicle and CsA-treated groups are 

shown;*Significantly higher than vehicle value, P = 0.05. 
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6.2.4 Effects of CsA on de novo lipogenesis contribution to HTG pool 

The enrichment of TG methyl hydrogens from 2H2O enriched water provides a 

measure of de novo lipogenic contribution to the total TG hepatic pool while the enrichment 

of glycerol hydrogen provides information on glycogen cycling. As illustrated in figure 6.4 

both 1H and 2H NMR spectra of hepatic TG isolated by Folch extraction provide well 

resolved TG methyl and glycerol methylene peaks.  

 

 

 

 

Figure 6.4. 1H and 2H NMR spectra of extracted hepatic TGs. 

 

 

 
Concentrations of the labeled and non-labeled TGs were determined by comparison 

with standard pyrazine and the extent of 2H enrichment of the TG methyl fatty acid and 

methylene glycerol positions calculated as described by Eq.5 and Eq.6 (Table 6.3). 

 

 

Table 6.3. 2H enrichments of triglyceride CH3 (fatty acid) and CH2 (glycerol) moieties for 

vehicle and CsA-treated rats 
 Vehicle CsA 

2H triglyceride CH3 enrichment (%) 

2H glycerol CH2 enrichment (%) 

0.18±0.06 

0.85±0.12 

0.19±0.09 

1.16±0.10 

Data are presented as mean ± SEM. Differences between treatments are indicated by * (t-

test, *P<0.05, **P<0.01 and ***P<0.001). 
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Ratio of obtained positional and body water enrichments gives the fraction of de novo 

lipogenesis and glycerol cycling to hepatic TG pool (Table 6.4). In both groups of animals 

de novo lipogenic contribution to the hepatic TG over 72h was found to be the same (3%). 

Although tendency towards increased glycerol cycling has been observed in CsA-treated 

animals (18.52% compared to 13.46% in vehicle group) statistically significant difference 

was not observed. 

 

Table 6.4. 24 h hepatic triglyceride (HTG) fractional synthetic rates (FSR) (liponeogenic 

and glyceroneogenic fractions) for vehicle or CsA-treated rats  
 Vehicle CsA 

HTG liponeogenic FSR (%) 

HTG glyceroneogenic FSR (%) 

2.79±0.75 

13.46±1.81 

3.01±1.25 

18.52±1.58 

Data are presented as mean ± SEM. Differences between treatments are indicated by * (t-

test, *P<0.05). 

 

 

CsA treatment considerably increased blood plasma TG concentration (Table 6.5). 

However the same trend was not observed in the increased amounts of hepatic TG, which 

exhibited the same amounts of TG per gram of tissue in both groups. Hepatic VLDL 

production rate was estimated from total TG blood plasma concentrations 4 h after the 

inhibition of lipoprotein lipase activity with non-ionic detergent Pluronic F-124 (Table 6.5 

and Figure 6.5). Despite of the tendency towards increased VLDL in CsA-treated rats (6.07 

mg/h/kg compared to 4.46 mg/h/kg in vehicle group) the values were not statistically higher. 

 

 

Table 6.5. Influence of CsA on hepatic and blood plasma TG content and hepatic VLDL      

production.  
 Vehicle CsA 

Blood plasma triglycerides (mg/dl) 

Hepatic triglycerides (mg/dl)a 

Hepatic VLDL production rate (mg/h/kg)b 

94.22±5.79 

1.50±0.19 

4.46±0.84 

127.55±10.67* 

1.62±0.17 

6.07±0.64 

Data are presented as mean ± SEM; a Concentrations expressed per mg of liver tissue; b Data are 

expressed as mg/h/kg using a plasma volume of 35 ml/kg body weight; differences between 

treatments are indicated by * (t-test, *P<0.05). 
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Figure 6.5. Effects of vehicle and CsA on total blood plasma TG concentrations after Pluronic F-

124 injection. TG levels increased significantly at time point 0, 2h but not after 4h. Data are presented 

as mean ± SEM. Differences between treatments were assessed with unpaired t-test, * p<0,05 vehicle  

vs. CsA.  

 

6.3 Discussion 

In this in vivo study, the dose of 15 mg/kg BW/day of CsA was chosen since it mimics 

the recommended CsA oral dose in the early post-transplant phase (12 to 15 mg/kg/day) in 

humans. At these doses and for a short period of time, CsA seems to cause weight loss and 

an impaired response to GTT. Moreover, no changes were seen in direct/indirect pathway 

fluxes of hepatic glycogen synthesis and de novo lipogenesis between CsA and vehicle. 

Significant differences were observed in the enrichment of positions 1, 3, and 4 of glycogen 

labeling, suggesting that there were some alterations in hydrogen exchange reactions 

between sugar phosphate metabolites and body water, but these do not directly translate to 

changes in glycogen synthesis fluxes.   

CsA at this dose seems to promote a weight loss compared with the vehicle group, in 

accordance with results by Böhmer et al. (2010), which was clearly seen in the decreased 

adipocyte weight and diameter. Moreover, during the GTT performed, CsA presented 

significantly higher glucose levels after 30 and 60 min of the glucose bolus and consequently 

a slower glucose excursion rate, reflecting a higher hyperglycemic/diabetogenic response. 

This could be the result of the inhibitory effects of CsA on β-cell survival, and therefore, 

causing a decrease in insulin secretion as observed by others (Øzbay et al., 2012; Redmon 

et al., 1996 ; Uchizono et al., 2004).   

Incorporation of 3H or 2H label from enriched water into glucose allows not only the 

estimation of rates of glucose and glycogen synthesis but gives valuable insight into the 

substrates from which they are formed. The NMR analysis of MAG derivative described by 

Delgado et al. (2012) is based on comparison of positional enrichments of MAG with that 
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of body water which is the precursor of label. Body water enrichment is easily determined 

by analyzing blood plasma, while MAG derivative enables good resolution of glucose NMR 

signals. As described previously (Delgado, unpublished data) after the intraperitoneal bolus 

of 2H2O total body water 2H enrichment reaches isotopic steady state within 10 minutes. 

After the administration of initial bolus of 2H2O the body water enrichment is maintained by 

2H enriched drinking water. Due to the short wash-in period of the tracer the enrichment of 

the body water measured at the end of the experiment (72 h) represents the precursor 2H 

enrichment over the entire experiment period. The final body water enrichment (2% for both 

CsA-treated and vehicle group) was significantly lower than the aimed enrichment (5%). 

However as described by Murphy (2006), measured body water enrichment is expected to 

be lower than the aimed one due to dilution of enriched body water from water that originates 

from food or respiration and under the experimental conditions of prolonged 2H2O exposure 

(72 h) these effects on tracer dilution were found to be considerable. 

As described by Rognstad et al. (1974) in their experiment with 3HHO the pattern of 

tritium incorporated into glucose depends on the type of glucogenic substrate. Thus, the 

incorporation of tritium 3H or deuterium 2H from labeled water can provide valuable 

information not only about gluconeogenic substrates but also about the enzyme activities or 

futile cycles.  

As observed in 3HHO experiments when lactate or pyruvate is the substrate, glucose 

hydrogens at the position C-6 are extensively labeled. This labeling can be traced back to 

the incorporation of 3H into two positions of C-3 of malate (Fig. 6.6). Position C-3R of 

malate will be labeled as the result of reversible fumarase reaction. Cycling through the 

Krebs cycle will introduce 2H from the labeled medium in the positions C-2 and C-3S of 

malate and due to the symmetricity of fumarate these labeling will be randomized by 

fumarase. Additional enrichment in positions C-2 and C-3 of malate is possible through the 

labeled acetyl-CoA that enters citric acid cycle. Methyl hydrogens of acetyl-CoA originate 

from C-3 hydrogens of pyruvate that are enriched in the pyruvate futile cycle (pyruvate-

oxaloacetate-phosphoenolpyruvate-pyruvate) through pyruvate kinase catalysed reaction 

(Fig. 6.7). In turn, labeling in position C-2 of malate is the source of labeling for NADH that 

is used as reducing equivalent in the reactions of gluconeogenesis and glyceroneogenesis. 

Mitochondrial NADH can also be labeled from the medium through the pyruvate 

dehydrogenase and α-ketoglutarate dehydrogenase reactions (Fig. 6.6 and 6.7). Alternative 

source of NADH (and NADPH needed for FA synthesis) labeling is the glutamate 

dehydrogenase reaction since labeling in C-2 position of glutamate is possible due to 
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transaminase exchange. The other possibility for the labeling to appear in the C-6 position 

of glucose is via labeling the position C-1R of unlabeled fructose-6-phosphate in glucose-

phosphate isomerase exchange reaction between glucose-6-phosphate and fructose-6-

phosphate during glucose futile cycling (Fig. 6.8). Through subsequent aldolase and triose-

phosphate isomerase exchange reactions glyceraldehyde-3-phosphate will be labeled in C-3 

position. As a result of described futile glucose cycling glucose will be labeled in only one 

of two C-6 glucose positions. Labeling in position C-1 of glucose is related to the labeling 

of C-3R position of malate and was found to be about the same as the average enrichment 

incorporation in the position C-6 in 3H2O experiment. This would suggest that, at least in the 

case of isolated rat liver parenchymal cells, the most significant incorporation mechanisms 

are similar. However, the NMR based analysis of glycogen derived MAG reveals significant 

difference between C-1 and C-6 enrichment, as well as significant increase of enrichment in 

C-1 position of CsA-treated rats compared to the vehicle group. The labeling of both C-6 

hydrogens in both groups was the same. Labeling in position C-4 is introduced through 

glyceraldehyde-phosphate dehydrogenase catalysed reduction of 1,3-biphosphoglycerate 

(Fig. 6.6). Reversible reactions between glyceraldehyde-3-phosphate and dihydroxyacetone-

phosphate catalysed by triosephosphate isomerase and aldolase will introduce further 

labeling into positions C-3 of dihydroxyacetone-phosphate and C-1 and C-2 of 

glyceraldehyde-3-phosphate and thus into positions C-3, C-4 and C-5 of glucose (Fig. 6.8). 

Although the enrichment on C-4 and C-5 of glucose was found to be the same within both 

groups of animals, that on position C-3 was considerably smaller. Enrichment on position 

C-3 was found to be significantly smaller in vehicle group than in the CsA-treated group. 

However, other processes than the above described ones, like transaldolase exchange or 

primary kinetic isotope effect of triosephosphate-isomerase can influence the enrichment on 

position C-3 and increase C-5/C-3 enrichment ratio(Bock et al., 2008). Enolase responsible 

for the reversible conversion of 2-phosphoglycerate to PEP will result in additional labeling 

of position C-2 of glyceraldehyde-3-phosphate and C-5 of glucose (Figure 6.6).   

Labeling at C-2 of glucose occurs for all the glucose-6-phosphate sources that 

contribute to the hepatic glycogen and is the result of glucose-6-phosphate isomerase 

activity. It is equal to the ratio of the enrichment in position H2 and BW enrichment. Whereas 

glucose contributing to glycogen through the direct pathway will be labeled only in the 

position C-2, glucose contributing through indirect pathway will be labeled in position C-5 

as well due to the label exchange at the triose-phosphate level. Therefore, the ratio of C-5/C-

2 enrichment of glucose derived from glycogen can be used to estimate the fraction of 
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glycogen derived from gluconeogenesis. Contributions of direct and indirect pathways are 

the same for both vehicle and CsA-treated animals. Although the enrichments of C-3 and C-

5 of glucose basically have the same origins, labeling on position C-3 can be influenced by 

transaldolase exchange. The ratio of H3/H5 enrichment was therefore tentatively used as the 

measure of transaldolase activity. Results of the NMR MAG analysis suggest that 

transaldolase activity was decreased due to CsA treatment. 

Changes in relative contribution of DNL to fatty acid pool provide interesting 

information about processes such as TG assembly and production, and has been studied with 

various stable isotope traces including 2H2O. However, in stable isotope studies, the accurate 

determination of the true precursor enrichment is difficult when that particular precursor is 

not biochemically available, which is the case with acetyl-CoA, the basic building block in 

fatty acid synthesis. Given the complex sources of fatty acid hydrogens each precursor pool 

can potentially have different enrichments and quantitative determination of DNL is limited 

by certain assumptions. In mass spectrometry (MS) based measurements of 2H enrichment, 

mass isotopomer distribution analysis (MIDA) based on mathematical principles of 

combinatorial probabilities was developed in order to determine the true precursor 

enrichment. By comparing the measured isotope pattern of a given metabolite with expected 

statistical distribution of possible enrichment sites n it is possible to determine the isotopic 

enrichment of the precursor pool (Hellerstein et al., 1999). The use of MIDA in the analysis 

of fatty acid synthetic rates provided the n values based on composite contributions of 

different hydrogen pools. Values of n were found to be strongly dependent upon conditions 

and the tissue being examined.  

Recently,Delgado et al. (2009) proposed a novel method of DNL quantification 

based on ex vivo 2H NMR analysis of triglyceride 2H enrichment from 2H2O. During DNL 

terminal methyl hydrogens are derived directly from acetyl-CoA (Figure 9) and do not 

participate in the processes of hydrogen exchange that occur during the FA chain elongation. 

The proposed method is based on the assumption that pyruvate is the main source of 

lipogenic acetyl-CoA and that the exchange of pyruvate CH3 protons with 2H2O is essentially 

complete. Under these conditions acetyl-CoA 2H enrichment is considered to be the same as 

the body water enrichment and can be used as the true precursor enrichment. However, the 

DNL contribution will by underestimated to the extent that the methyl hydrogens are not 

fully exchanged with those of body water (Rognstad et al., 1974; Zhang et al., 2006). The 

other assumption the method is based on is the fact that the hepatic TG pool is completely 

turner over during the 2H2O exposure experiment. Unless the turn-over is complete 



NMR-based metabolic profiling of hepatic response to Cyclosporine A 

 

103 

 

underestimation of DNL occurs. The complete turn-over in healthy humans has been 

estimated to be less than 48 h (Vedala et al., 2006) and taking into account faster basal 

metabolism in rats it is assumed that the total TG pool in rats will be completely turned over 

during 72 h of 2H2O exposure. 

Since in the 2H NMR spectrum methyl signals of palmitoyl (C16) and stearoyl (C18) 

chains co-resonate the measured methyl group enrichment represents the contribution of C16 

and C18 acyl moieties to DNL (Fig.6.9). Although part of stearic acid present in the extracted 

TG is derived by palmitoyl chain elongation the resulting enrichment is introduced in the 

carboxyl end of the chain and does not contribute to stearic acid derived from DNL. CsA 

treatment did not influence FSR of TG fatty acids. After 72 h of 2H2O exposure, about 3% 

of total hepatic TG pool was derived from de novo lipogenesis in both groups. Enrichment 

of C-1and C-3 positions of TG glycerol was much higher and indicates that hepatic TG 

undergo hydrolysis and considerable glycogen futile cycling. However, although there is a 

tendency of higher glycerol FSR in CsA treated rats, no statistically significant difference 

was observed (Table 6.4). 

To test the influence of CsA treatment on the development of hypertriglyceremia, the 

production of VLDL, the carrier of hepatic TG in plasma, was measured. Under the fasting 

conditions where the VLDL is the only source of plasma TG, the rate of TG accumulation 

in blood is the indicator for hepatic VLDL production rate. The property of non-ionic 

detergent Pluronic F-124 to inhibit TG hydrolysis by lipoprotein lipase and which results in 

a progressive increase in the concentration of TG in the blood was used to determine the rate 

of VLDL synthesis (Millar, 2005). Blood plasma TG levels were significantly higher in CsA 

group of rats before the detergent injection. Although the total hepatic TGs have not been 

determined, no difference was observed in TG concentrations per gram of hepatic tissue. 

Hepatic VLDL rate was determined 4 h after the detergent injection. Although the total 

plasma TG concentration determined 2 h after the injection was higher in the CsA-treated 

animals, after 4 h no significant difference was observed despite the observed trend toward 

higher VLDL production in CsA treated animals. However, in some animals there was no 

observed increase in plasma TG after the detergent injection and the n should be increased 

in order to obtain more reliable results.  

Taken together these results indicate that CsA at this dose and time of treatment 

affects body weight and glucose tolerance, but not glycogen synthesis or de novo lipogenesis. 
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Figure 6.8. Incorporation  of 2H into glucose molecule through the labeled substrates. 
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In recent years, organ transplant has been a medical procedure more frequent and 

necessary, as our life expectancy increases and our body suffers the consequence of aging 

and the development of metabolic diseases. Immunosuppressive agents are essential in order 

to avoid allograft rejection, increasing the success rate of transplantation. Although they 

have been used for many years, their molecular effects have not been fully understood. Basic 

research is important in order to identify the different molecular targets affected by these 

agents, so pharmaceutical companies can employ their resources in developing better agents 

with fewer side effects. 

In this work, we focused on the effects of two particular agents, CsA, a calcineurin 

inhibitor and cornerstone of immunosuppressive therapy, and SRL, an mTOR inhibitor and 

a promising agent. The global effects of these agents on glucose and lipid metabolism are 

well known, including the development of NODAT and dyslipidemia, affecting the quality 

of life of the patients and the success of the transplant.  

The first aim of this thesis was to explore the effects of therapeutic doses of CsA and 

SRL on glucose homeostasis and glucose uptake in peripheral insulin sensitive tissues. The 

results presented in chapter 3 and 4, show that pharmacological doses of these agents 

promote glucose intolerance and insulin resistance. When taken for a longer period of time 

(9 weeks), CsA promoted fasting hyperglycemia and decreased insulin levels, which might 

be the result of a possible deficiency in insulin secretion/production. CsA-treated animals 

also had increased adipocyte diameter and weight,  parameters that contributes to insulin 
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resistance as suggested by the fact that in large fat cells, insulin stimulation does not increase 

the amount of GLUT4 in the plasma membrane (Franck et al., 2007). 

On the other hand, and also after 9 weeks, SRL-treated rats maintained the 

normoglycemia but presented higher levels of insulin, suggesting insulin resistance. This 

was confirmed by higher value of HOMA-IR than the vehicle group. In our rat model, after 

3 and 9 weeks of treatment, the CsA group presented an impaired response to a glucose 

challenge when compared to either the vehicle or SRL-treated groups, presenting higher 

values of glucose at the different time point after the glucose bolus, during a GTT. On the 

other hand, the glucose excursion curve of the SRL-treated group was also impaired, as the 

recovery kinetics of the blood glucose levels was slower after 3 and 9 weeks. Moreover, the 

ITT showed clearly that the glucose levels in the CsA-treated group were higher, and 

remained elevated for a longer period. This was also observed in the SRL group, as the 

glucose values reached higher concentration than the vehicle group. Since SRL is considered 

to be less nephrotoxic than CsA, and is a valid alternative to calcineurin inhibitors therapy 

during the maintenance phase, we assessed the glucose clearance rate in the urine. This 

parameter tended to be increased in the SRL-treated group, suggesting higher glucose levels 

in the urine than the renal tubule can absorb.  

Since in vivo treatment with CsA and SRL caused hyperglycemia and insulinemia in 

the animals, we evaluated whether these agents impaired adipocytes glucose uptake in both 

ex vivo and in vivo settings. Ex vivo treatment reduced insulin-stimulated glucose uptake in 

rat isolated adipocytes in a concentration-dependent manner, as already observed in isolated 

human adipocyte (Pereira et al., 2012; Pereira et al., unpublished data) and similar to 

glucocorticoids effects (Lundgren et al., 2004). In addition, in vivo treatment for 3 and 9 

weeks with either CsA or SRL at therapeutic doses also reduced insulin-stimulated glucose 

uptake in isolated adipocytes. In order to further understand the impairment in insulin-

stimulated uptake, we closely studied glucose metabolism, namely gluconeogenesis and 

insulin signaling (chapter 4).  

Insulin is an important hormone that promotes energy storage and utilization of 

glucose through glucose uptake, mediated by glucose transporters. After 3 weeks of 

treatment with SRL, IRS-1 protein level was increased in liver, muscle and adipose tissue, 

while phosphorylation of IRS-1 at Tyr612 was decreased. Moreover, phosphorylation of the 

insulin receptor at Tyr1146 residue and Akt phosphorylation at Ser473 and Thr308 residues 

was decreased in liver and adipose tissue. None of the key factors involved in the insulin 

signaling were affected by CsA treatment, as also observed in isolated human adipocyte 
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(Pereira et al. unpublished data). Phosphorylation of AS160, an important substrate of Akt 

that activates translocation of glucose transporters to the plasma membrane, was also 

decreased in SRL group. Although no changes were observed in GLUT4 protein expression, 

we cannot exclude the possibility that GLUT4 translocation might have been affected by 

these drugs, but we did not perform this assay in this study. Moreover, the mTOR pathway 

was effectively blocked by SRL, as evidenced by the lack of phosphorylation p70S6K at 

thr421/424 in the three tissues, which is directly activated by mTORC1, the complex 

sensitive to SRL. 

 In our model, after only 3 weeks of treatment with CsA the G6Pase protein level 

was clearly increased and accompanied with a trend for an increase in protein expression of 

PEPCK, and the transcriptional factors PGC1-α and FOXO1, confirming an enhanced 

hepatic gluconeogenesis. NODAT has been associated with dysfunctional hepatic 

gluconeogenesis and inefficiency of insulin to inhibit this pathway. On the other hand, GK 

protein level, the enzyme responsible for producing glucose-6-phosphate, and consequently 

glycogen, was decreased in SRL-treated group, suggesting that the glycogen production was 

decreased in this group. Moreover, PTP1B protein expression, a negative regulator of insulin 

signaling and also associated with insulin resistance, was increased in the CsA group in the 

liver. To our knowledge this is the first report to show an effect of CsA on PTP1B gene and 

protein expression. This increase in PTP1B protein expression may be linked to an increase 

in insulin resistance and gluconeogenesis observed after CsA treatment. 

Insulin sensitivity may also be affected by intracellular lipid accumulation in other 

tissue than the adipose depot, through impairment of the IRS1-PI3K-AKT signaling 

pathways. In fact, after 3 weeks of treatment with SRL, there was accumulation of TGs in 

liver and muscle (chapter 5). Down-regulation of key genes involved in lipid metabolism by 

SRL in adipose tissue, may contribute to reduced TG storage in these depot. This reduction, 

together with enhanced lipolysis in SRL-treated animals, may potentiate lipid accumulation 

in tissues such as muscle and liver. As a matter of fact, SRL decreased the expression of 

several genes involved in lipogenesis in adipose tissue, including ACC1, lipin 1, SDC1 and 

PPAR-γ. Although, we did not observe changes in gene expression for the transcriptions 

factors ChREBP and SREBP1, the expression of the SREBP1 gene tended to decrease for 

the SRL-treated rats in adipose tissue. Furthermore, SRL treatment down-regulated gene 

expression of lipin 1 and SCD1, downstream target gene of SREBP1, responsible for the 

appropriate lipid storage in adipose tissue and de novo lipogenic pathway. A reduced SCD1 

and lipin 1 expression in adipose tissue might be responsible for the decreased weight gain 
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and smaller adipocytes of SRL-treated rats when compared to vehicle and CsA. On the other 

hand, levels of NEFA and TGs are higher in the CsA-treated group after 9 weeks, which can 

be related with the increase in isoproterenol-stimulated lipolysis and HSL protein 

expression. In addition, while there were no differences in IL-6 and TNF-α gene expression 

for either CsA or SRL treatment in adipose tissue, the liver TNF-α gene expression was 

significantly increased in the CsA group after 3 weeks of treatment. Cytokines, such as TNF-

α and IL-6, play a major role in dyslipidemia in rodents and TNF-α is also known to increase 

the expression of the LDL receptor in hepatocytes. These factors contribute to the lipid 

accumulation in the liver that we observed. However, with these doses of 

immunosuppressive agents no significant differences in lipogenic genes were observed in 

liver.  

In chapter 6, we used 2H NMR with the incorporation of 2H from deuterated water 

(2H2O) to quantify the 2H-enrichment of glucose, glycogen and TG after administration of a 

higher dose of CsA in vivo for 15 days. We determined that CsA at this dose decrease body 

weight as well as glucose tolerance, indicated by the higher glucose values observed during 

a GTT. Although significant differences were determined in the enrichment of positions 1, 

3, and 4 of glycogen labelling, no significant changes were observed in direct/indirect 

pathway fluxes of hepatic glycogen synthesis between CsA and vehicle. Moreover, no 

differences in de novo lipogenesis were found under these conditions. We used non-ionic 

detergent Pluronic F-124 to inhibit TG hydrolysis by suppressing lipoprotein lipase. Blood 

plasma TG levels were significantly higher in the CsA-treated group of rats before the 

detergent injection, nonetheless after 4 h no significant difference was observed despite a 

trend toward higher VLDL production in CsA-treated animals compared to vehicle. In 

addition, no differences were seen in hepatic TG concentrations per gram of hepatic tissue. 

No such measurements have been performed for SRL.  

There is an important complex cross-talk between liver and adipose tissue, regulating 

the contribution of adipose tissue as a storage site and liver to the de novo synthesis of fatty 

acids. Furthermore, skeletal muscle is the main tissue responsible for insulin-dependent 

glucose uptake by which normal whole body glycaemia levels are maintained. In this work, 

we demonstrated that CsA at therapeutic doses affects glucose metabolism, by increasing 

gluconeogenesis in liver, while SRL treatment affects insulin signaling in liver, muscle and 

adipose tissue; thus affecting glucose tolerance and glucose uptake. Moreover, CsA and in 

particular SRL, act at the level of adipose tissue enhancing lipolysis and down-regulating 

key lipogenic genes, impairing lipid metabolism. The deregulation of this balance led to 
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ectopic deposition of lipids in muscle and liver. These effects might be at the origin of the 

development of insulin resistance and dyslipidemia observed in patients during 

immunosuppressive therapy, and caution is required when choosing the therapy to apply to 

patients. 

In future studies, more insulin-signaling/mechanistic studies will be needed to better 

understand the effects of these agents on the molecular targets studied. In addition to the 

effects on total amount of phosphorylation of some key factors involved on glucose and lipid 

metabolism presented on this thesis, it would be important to assess differences in enzymatic 

activity as well as impairments in phosphorylation levels of other proteins linked to glucose 

metabolism, namely GK and PTP1B and to lipid metabolism, HSL. Moreover, experiments 

of GLUT4 translocation would be of importance to understand how CsA and SRL affect the 

translocation of GLUT4. It would also be important to use NMR technology to determine 

differences between metabolites of glucose and lipid metabolism in samples for the animals 

treated in vivo with CsA and SRL at either shorter or longer time points. Moreover, as 

regimens to minimize the use of calcineurin inhibitors when combined to mTOR inhibitors 

and the right time to apply the change of therapy is a field under exploration, it would be 

important to study if an early or a late conversion would produce a benefit to avoid the 

development of dyslipidemia and NODAT after immunosuppressive therapy. 
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