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meus pais, por me terem dado todas as condições para que pudesse
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Abstract

In this work we study the influence of the exchange and correlation

functional on the ionization potentials of atoms, in the framework of

Density Functional Theory. Here, we will present the results for 42

atoms of the periodic table, and for a total of almost 1000 different

combinations of exchange and correlation functionals. A comparison

between different levels of theory and a list of the combinations with

smallest errors is given. We also present some results for 2 special

exchange functionals with the correct asymptotic limit.





Resumo

Neste trabalho faz-se um estudo sobre a influência do funcional de

troca e correlação nos potenciais de ionização atómicos, em Teoria

do Funcional da Densidade. Apresentam-se os resultados para 42

átomos da tabela periódica, e para cerca de 1000 combinações difer-

entes de funcionais de troca e correlação. Faz-se também uma com-

paração entre os vários ńıveis de teoria, e apresenta-se uma lista com

as combinações que originam os menores erros. Também se apresenta

alguns resultados para 2 funcionais de troca que possuem o limite

assimptótico correcto.
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Chapter 1

Introduction

Density Functional Theory (DFT) has become one of the most widely used meth-

ods in the condensed matter simulations world. In its Kohn-Sham formulation,

the very complicated many-body problem is reformulated as a set of effective

single-particle Schrödinger-like equations, where the effective potential is a func-

tional of the electronic density. The non-classical effects resulting from the inter-

acting nature of the electrons are described by an exchange-correlation potential

which has to be approximated. Over the years, the quest for better and better

approximations originated dozens of different formulas for this functional. If we

combine all the possible suggestions for this functional that exist on the literature

we end up with an huge set of possibilities to choose from for our calculations.

Since there is no ”right” or ”wrong” answer we usually make an educated guess

based on previous calculations and benchmarks.

In this work we will study how the ionization potential of elements of the

periodic table change with the exchange-correlation functional used. Atoms are

simple systems, which some properties, like their ionization potentials, can easily

be evaluated. The experimental values for the ionization potentials are known

[1] which give us a direct way to compare results. The ultimate goal of this work

is to use all the possible exchange-correlation combinations of the functionals in

the LIBXC library [2], for all the atoms of the Periodic Table. Also, we will use

three formulations of the Kohn-Sham equations: Schrödinger, Scalar Relativistic

and Dirac, in their spin unpolarized and polarized forms. However, due to time
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constraints1, in this thesis we will use only a fraction of the periodic table, and

not for all the combinations of functionals. We choose not to use the ones that

presented numerical problems. Also, due to its complexity, calculations with the

polarized Dirac equation are a lot more demanding from the computational point

of view than the others cases, and no result with this scheme will be presented

at this point. Even with these constraints, the number of calculations done in

this work is far from small. We have almost 1000 combinations of exchange and

correlation functionals, for 42 elements of the periodic table, and for 5 degrees of

theory.

There are some benchmarks in the literature where the Ionization Potentials

were used to evaluate the performance of exchange and correlation functionals [3]

[4] [5]. However, these are usually done for a small set of atoms / molecules or

for a small set of functionals. Also, usually only one of the formulations of the

Kohn-Sham equations is used. Thus, such a comprehensive study as we propose

to do was never performed before. With this work, out goal is to give further

insights on the choice of the exchange-correlation functional.

This thesis is organized in the following way: in the second chapter we will

provide a review of Density Functional Theory. The third chapter is an overview

on how the DFT equations are solved in the code used. In the fourth we will

present and discuss our results and finally, in the fifth chapter we will present our

conclusions and point to some future work.

1The total number of combinations of atoms, functionals and DFT formalisms is over half
a million.
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Chapter 2

Density Functional Theory

Lets start by considering a system of N non-relativistic electrons described by the

time-independent Schrödinger equation, in the Born-Oppenheimer approximation

[6]:

ĤΨ(x1,x2, . . . ,xN) = EΨ(x1,x2, . . . ,xN) . (2.1)

The hamiltonian operator can be written as,

Ĥ = T̂ + V̂ext + V̂ee , (2.2)

where the kinetic energy, the external potential, and the electron-electron repul-

sion operators are respectively:

T̂ = −
N∑
i=1

1

2
∇2
i , V̂ext =

N∑
i=1

vext(ri) , and V̂ee =
N∑
i<j

1

rij
, (2.3)

with

vext(ri) = −
∑
α

Zα
riα

and rij = |ri − rj| . (2.4)

Here, α stands for the atom nuclei and xi comprehends the spatial and spin

coordinates of electron i (ri, σi). Atomic units are use throughout. To obtain the

total energy of the system we have also to add the nuclei-nuclei repulsive energy
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contribution,

Vnn =
∑
α<β

ZαZβ
rαβ

. (2.5)

So, in principle, solving (2.1) would allow us to evaluate any physical quantity

we want. There are couple of setbacks however. In the first place, Ψ is a function

of 3N variables. Just storing the wave-function in memory is an impossible task,

even for small systems. Also, due to the last term of (2.2) we can not solve the

equation independently for each one of the N particles. A simple way of dealing

with this is a theory known as Density Functional Theory (DFT).

In DFT we replace the wave-function by a much simpler quantity - the elec-

tronic density of the system n(r), which is a function of just 3 variables, as the

basic variable. We also recast the problem of interacting particles into one of

non-interacting particles. The first approach to this idea was done in 1927 by

Llewellyn Thomas and Enrico Fermi which, independently, idealized a model

were the full many-body Schrödinger equation was replaced by one equation on

the electronic density of the system. However it was only on the sixties that DFT

was formulated as the accurate and widely used method we know today.

2.1 Hohenberg-Kohn Theorems

The crucial step to establish the idea of the electronic density as the fundamental

variable was given by Hohenberg and Kohn in their landmark paper in 1964 [7].

Consider a N−electron system with a non-degenerate ground-state ruled by the

hamiltonian (2.2). The first theorem states that the external potential vext(r) is

determined, within a additive constant, by the electronic ground state density

n0(r) of the system. That is, there is a one-to-one correspondence between the

electronic density of the system and the external potential. Let’s prove this theo-

rem in two steps via reductio ad absurdum. First, consider two external potentials

Vext and V ′ext, differing by more than a constant, leading to the same ground-state

wave-function. If we subtract the two resulting Schrödinger equations we get

(Vext − V ′ext) |Ψ〉 = (E0 −E ′0) |Ψ〉, which clearly violates our assumption. Second,

we have to prove that two different ground-sate wave-functions can not produce
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the same ground-state electronic density. Following the same philosophy we used

for the first case, let’s consider two ground-state wave-functions Ψ0 and Ψ′0. As

we already saw, these wave-functions must come from different hamiltonians, Ĥ

and Ĥ ′. If E0 is the ground-state energy of Ĥ,

E0 = 〈Ψ0| Ĥ |Ψ0〉 (2.6)

then, by the Rayleigh-Ritz [8] variational principle, we have:

E0 < 〈Ψ′0| Ĥ |Ψ′0〉 = 〈Ψ′0| Ĥ ′ |Ψ′0〉+ 〈Ψ′0| Ĥ − Ĥ ′ |Ψ′0〉

= E ′0 +

∫
drn0(r)[vext(r)− v′ext(r)] .

(2.7)

Repeating the same process for Ψ′ and Ĥ ′

E ′0 < 〈Ψ0| Ĥ ′ |Ψ0〉 = 〈Ψ0| Ĥ |Ψ0〉+ 〈Ψ0| Ĥ ′ − Ĥ |Ψ0〉

= E0 −
∫
drn0(r)[vext(r)− v′ext(r)] .

(2.8)

Adding (2.7) with (2.8) we get E0 + E ′0 < E ′0 + E0, which is a contradiction.

Thus, we have proved that a one-to-one correspondence between ground-sate

densities and potentials exist, which can be expressed as v[n](r). In fact, we can

write any observable of the system as a unique functional of the density,

〈Ψ| Ô |Ψ〉 = O[n] . (2.9)

For instance, we can write the total energy of the system under an external

potential vext as a functional of the density:

Evext [n] = 〈Ψ| T̂ + V̂ext + V̂ee |Ψ〉+ Enn

= FHK[n] +

∫
drn(r)vext(r) + Enn ,

(2.10)

where

FHK[n] = T [n] + Vee[n] (2.11)

is an universal functional, independent of the external potential, which is the same
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for any N -electron system. The second theorem states that, for a non-negative

trial density, ñ, and
∫
ñ dr = N :

E0 ≤ Evext [ñ] . (2.12)

The exact ground-state density is then the one that minimizes the energy func-

tional (2.10):

E0 = min
{n}

Evext [n] . (2.13)

which can also be written as:

δ

δn(r)

[
Evext [n]− µ

∫
n(r) dr

]
=
δFHK[n]

δn(r)
+ vext(r)− µ = 0 , (2.14)

where µ is a Lagrange multiplier which ensures the normalization to the to-

tal number of electrons. So, solving the last equation would give us the exact

ground-state of any electronic system, if we knew the explicit form of FHK, which

unfortunately we do not.

An important remark here is that these theorems are only valid for v-representable

densities. A function n is called v-representable if it belongs to some external

potential. In other words, not all densities belong to some physical external

potential. However, on a finite or infinite lattice, all ground-state densities are

v-representable [9]. We have also considered only non-degenerated ground-states.

This condition can be relaxed using the Levy constrained search formalism [8].

2.2 Kohn-Sham Equations

Let us consider a non-interacting system of electrons (V̂ee = 0 at equation (2.2)).

In this case, the many-body ground-state wave-function can be written as a Slater
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determinant of the single particle wavefuntions ψi,

Ψs(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · ψN(r2)
...

...
. . .

...

ψ1(rN) ψ2(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣
, (2.15)

satisfying: [
−1

2
∇2 + vs(r)

]
ψi(r) = εiψi(r) . (2.16)

The ground-state density is obtained from the N lowest occupied orbitals,

n(r) =
N∑
i=1

|ψi(r)|2 . (2.17)

Proceeding in the same way we did in the previous section, the variational

principle for this non-interacting system yields:

δ

δn(r)

[
Es[n]− µs

∫
n(r) dr

]
=
δTs[n]

δn(r)
+ vs(r)− µs = 0 . (2.18)

This is formally equivalent to equation (2.16). Now, let us consider again the

interacting system. We can rewrite the functional (2.11) as

FHK[n] = Ts[n] + EH[n] + Exc[n] , (2.19)

where EH[n] is the classic Coulomb energy, also known as the Hartree energy

EH[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
, (2.20)

and the non-classical part, the exchange-correlation energy

Exc[n] = T [n] + Vee[n]− Ts[n]− EH[n] . (2.21)
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With these modifications the Euler equation (2.14) reads:

δTs[n]

δn(r)
+ vext(r) +

1

2

∫
dr′

n(r′)

|r− r′|
+
δExc[n]

δn(r)
− µ = 0 . (2.22)

We can rewrite this Euler equation as:

δTs[n]

δn(r)
+ vKS[n](r)− µ = 0 , (2.23)

where

vKS[n](r) = vext(r) + vH[n](r) + vxc[n](r) , (2.24)

with

vH[n](r) =
1

2

∫
dr′

n(r′)

|r− r′|
and vxc[n](r) =

δExc[n]

δn(r)
. (2.25)

If we now compare this last equation with (2.14), we see that the two are identical

and therefore, solving (2.23) has to be the same as solving the single-particle

Schrödinger equation:[
−1

2
∇2 + vKS[n](r)

]
ψi(r) = εiψi(r) , (2.26)

where the ground-state density is given by:

n(r) =
N∑
i=1

|ψi(r)|2 . (2.27)

Equations (2.23) and (2.26) are known as the Khon-Sham equations. They

allow us to treat a system of interacting electrons as a non-interacting one, that

yields the same ground-state density. This would be exact if we knew the exact

form of Exc, which we do not. Nevertheless, the major part of the electron-

electron interaction (the Hartree energy) is treated exactly and so does the non-

interacting kinetic energy. The remaining exchange-correlation energy is by far

the one that has the smallest contribution to the total energy. It is however, the

main responsible for the binding energy of matter, being a good approximation
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to this term the key to obtain accurate results.

2.2.1 Spin Density Functional Theory

Up to this point we have only discussed the spin-independent formalism. Now

we will look at the Kohn-Sham equations in their spin-dependent form [10]. We

will consider only its collinear form in which m = (0, 0,mz). The basic variables

are now the ground-state density,

n(r) = n↑(r) + n↓(r) , (2.28)

and the magnetization density,

mz(r) = n↑(r)− n↓(r) , (2.29)

where

nσ(r) =
Nσ∑
i=1

|ψσi (r)|2 . (2.30)

In this case (assuming the absence of magnetic external fields), we end up with

two sets of Kohn-Sham equations:

[
−1

2
∇2 + vH[n](r) + vσext[n](r) + vσxc[n,mz](r)

]
ψσi (r) = εiψ

σ
i (r) . (2.31)

This formalism is more general than the spin-independent version through

the inclusion of spin-dependent external potentials. The exchange-correlation

potential is most commonly written as a functional of the spin up and down

densities,

vσxc[n
↑, n↓](r) =

δExc[n
↑, n↓]

δnσ(r)
. (2.32)
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2.2.2 Relativistic Spin Density Functional Theory

When relativistic effects become important, a relativistic extension of DFT has

to be used. Here we will consider only systems not subject to external magnetic

fields and, as before, m = (0, 0,mz) [11]. The Dirac-Khon-Sham equations are

then:

[
icα · ∇+ (β − 1)c2 + vKS[n,mz](r) + βΣzBxc[n,mz](r)

]
ψk = εkψk , (2.33)

where α and β are the usual Dirac matrices, vKS is the usual Kohn-Sham effective

potential like in (2.24), and

Bxc[n,mz](r) =
δExc[n,mz]

δmz(r)
, (2.34)

which can also be written as functional of the spin up and down densities:

Bxc[n
↑, n↓](r) =

1

2

{
δExc[n

↑, n↓]

δn↑(r)
− δExc[n

↑, n↓]

δn↓(r)

}
. (2.35)

The ground-state density and the magnetization are constructed from the

4-component spinors by1:

n(r) =
∑
k

ψ†k(r)ψk(r) , (2.36)

mz(r) = −µB
∑
k

ψ†k(r)βΣzψk(r) . (2.37)

2.3 Exchange and Correlation Functionals

We already saw that we do not know the exact form of the exchange-correlation

potential. We will now look at some of the most used families of approximations

for this functional.

1Vacuum states are excluded from the summation.

10



2.3.1 Local density approximation

The first, and also the simplest one, is the local spin density approximation

(LSDA). It takes the following form:

ELDA
xc [n↑, n↓] =

∫
drn(r) εHEG

xc (n↑(r), n↓(r)) . (2.38)

where εHEG
xc (n↑, n↓) is the exchange-correlation energy per particle for an electron

gas of uniform spin densities n↑, n↓ [12]. The exchange energy of an homoge-

neous electron gas is known analytically. For the correlation part, the analytic

expression is only known in the extreme limits of high and low densities. For the

values in between, we only know the values for a few densities by Monte-Carlo

simulations [13]. Most of the different proposed LSDA correlation functionals

result from different parameterizations of these results.

The LSDA yields very good results for systems whose density varies slowly

over space. Surprisingly, it also works well for systems which do not. This

happens because LSDA has many physically correct features [10]. It has also

some bad features. For instance, it is not exact in the one-electron limit. It does

not take into account the fact that one electron does not interact with itself. As a

consequence of this, the exchange-correlation potential has the wrong asymptotic

limit - it goes to zero exponentially instead of going as −1/r [14].

2.3.2 Generalized gradient approximations

The natural improvement over LSDA would be the gradients expansion approxi-

mation (GEA) [7]. However this does not improve the results consistently, since

it broke some of the good features of LSDA. The goal is then a more general form

for an exchange-correlation functional depending on the gradients, that conserve

the good features of LSDA, and add new ones. This is known as the generalized

gradient approximation (GGA):

EGGA
xc [n↑, n↓] =

∫
drn εGGA

xc (n↑, n↓,∇n↑,∇n↓) . (2.39)

The function εGGA
xc is built in such a way that the functional obeys some know

physical constraints and there are dozens of proposed forms for this function [2].
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The problems enumerated for the LSDA are partially eliminated with the GGA.

2.3.3 Meta-generalized Gradient Approximations

Another step further is the meta-generalized gradients approximation (MGGA).

In this approximation:

EMGGA
xc [n↑, n↓] =

∫
drn εMGGA

xc (n↑, n↓,∇n↑,∇n↓,∇2n↑,∇2n↓, τ ↑, τ ↓) , (2.40)

where τσ = 1
2

∑
i |∇ψiσ(r)|2 is the Kohn-Sham orbital kinetic energy density for

electrons of spin σ. Note that the functional dependence on ∇2nσ is not present

in some MGGAs.

2.4 Ionization Potentials

The ionization potential can be evaluated as the difference between the total

energies:

IP = E(N+)− E(N) , (2.41)

where E(N) is the total energy of the atom and E(N+) the total energy of the

correspondent cation.

In the Kohn-Sham theory there is no physical meaning for the orbitals ψi(r).

Their only purpose is to construct the ground-state density. Accordingly, the

Kohn-Sham eigenvalues do not have any physical meaning either. There is how-

ever an exception – the eigenvalue of the highest occupied orbital (HOMO) –

which is equal to minus the ionization potential (IP) [15]:

IP = −εHOMO . (2.42)

However, due to the limitations of the LDA presented above, we know in advance

that the ionization potentials evaluated by this method will be approximately

30− 50% off from the experimental value [14]. Even the GGA functionals do not
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correct this problem completely.
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Chapter 3

Procedure and numerical details

All the calculations for this work were done using the program APE (Atomic

PseudoPotentials Engine) [16]. This program uses the LIBXC library [2] to eval-

uate the exchange-correlation potentials. In this work, we are going to use three

formulations of Kohn-Sham theory: non-relativistic, scalar-relativistic and rela-

tivistic equations, both in their spin-unpolarized and polarized forms.

3.1 Kohn-Sham equations for atoms

As we are only dealing with atoms, spherical symmetry is assumed. In this case,

the Kohn-Sham potential is spherically symmetric and the Kohn-Sham orbitals

can be separated into an angular and a radial part.

3.1.1 Non-relativistic equations

In the case of non-relativistic calculation, the single-particle orbitals can be writ-

ten as:

ψi(r) = Rnl(r)Ylm(θ, φ) , (3.1)

where Rnl are the radial wave functions and Ylm are the spherical harmonics.

The Kohn-Sham equation (2.26) for the radial part results in a one-dimensional

15



second-order differential equation:(
−1

2

d2

dr2
− 1

r

d

dr
+
l(l + 1)

2r2
+ vKS

)
Rnl = εnlRnl , (3.2)

and the radial electron density is given by:

n(r) =
∑
n

n−1∑
l=0

Θnl
|Rnl(r)|2

4π
. (3.3)

where Θnl are the occupations of each nl sub-shells.

For a spin-dependent calculation, in which the spin-up and spin-down elec-

trons feel a different Kohn-Sham potential (2.32), two sets of one-particle equa-

tions are solved.

3.1.2 Relativistic equations

3.1.2.1 Scalar-relativistic equation

This case is actually a simplification of the Dirac-KS equation. In this scheme

proposed by Koelling and Harmon [17], all the relativistic effects are included,

but the spin-orbit interaction is neglected. Without this term, and assuming

again spherical symmetry, the radial Dirac-KS equation may be written as the

following one-dimensional second-order differential equation:

1

2M(r)

(
− d2

dr2
+

1

M(r)

dM(r)

dr

d

dr
− 2

r

d

dr
+
l(l + 1)

r2

)
Rnl

+vKSRnl = εnlRnl , (3.4)

with

M(r) = 1 +
(εnl − vKS[n](r))

2c2
. (3.5)

For the spin-dependent case, the same procedure of the non-relativistic calculation

applies.
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3.1.2.2 Spin-unpolarized Dirac-Kohn-Sham equation

In the unpolarized case, equation (2.33) becomes:

[
icα · ∇+ (β − 1)c2 + vKS[n](r)

]
ψi = εiψi , (3.6)

since if n↑ = n↓, then Bxc = 0. In this case, ψi is written as:

ψi(r) =

(
ignlj(r) Ωjlm(θ, φ)

−fnlj(r) Ωjl′m(θ, φ)

)
, (3.7)

where Ωjlm are the spherical spinors and gk and fk are solutions of (k ≡ nlj):

c

(
d

dr
+
k + 1

r

)
gk = (εk + 2c2 − vKS)fk , (3.8a)

c

(
d

dr
+

1− k
r

)
fk = −(εk − vKS)gk . (3.8b)

The k quantum number is related with l by:

k =


−(l + 1) for j = l +

1

2
,

l for j = l − 1

2
.

(3.9)

The radial electronic density is written as:

n(r) =
∑
n

n−1∑
l=0

l+ 1
2∑

j=l− 1
2

Θk
|fk(r)|2 + |gk(r)|2

4π
(3.10)

3.1.2.3 Spin-polarized Dirac-Khon-Sham equation

For this equation, which was implemented in APE during the course of this

work, we followed closely the implementation by E. Engel [11]. Here we have to

distinguish states with 2|mj| = 2l+1 from states with 2|mj| 6= 2l+1. For the first

case, which has the standard form of closed-subshell spinors with j = l+ 1/2, the

radial functions are solutions of the following set of coupled first-order differential

17



equations (k ≡ nlmj):

c

(
d

dr
− l

r

)
gk =

(
εk + 2c2 − vKS −

2mj

2l + 3
Bxc

)
fk , (3.11a)

c

(
d

dr
+
l + 2

r

)
fk =

(
−εk + vKS +

2mj

2l + 1
Bxc

)
gk . (3.11b)

For the second case, a superposition state of j = l+ 1/2 with j = l− 1/2 spinors

is used (k ≡ nlmjσ):

ψk(r) =
∑
s=±1

(
igsk(r) Ωjlmj(θ, φ)

−f sk(r) Ωjlmj(θ, φ)

)
. (3.12)

Here the quantum number σ is introduced to differentiate states with the same

magnetic quantum number mj, but different j. The resulting radial equations

are:

c

(
d

dr
− l

r

)
g+k =

(
εk + 2c2 − vKS −

2mj

2l + 3
Bxc

)
f+
k , (3.13a)

c

(
d

dr
+
l + 2

r

)
f+
k =

(
−εk + vKS +

2mj

2l + 1
Bxc

)
g+k + ClmjBxcg

−
k , (3.13b)

c

(
d

dr
+
l + 1

r

)
g−k =

(
εk + 2c2 − vKS +

2mj

2l − 1
Bxc

)
f−k , (3.13c)

c

(
d

dr
− l − 1

r

)
f−k =

(
−εk + vKS −

2mj

2l + 1
Bxc

)
g−k + ClmjBxcg

+
k , (3.13d)

with

Clmj = − [(2l + 1)2 − (2mj)
2]1/2

2l + 1
. (3.14)

3.1.3 Solving the Kohn-Sham equations

All the previous Kohn-Sham equations are either first-order differential equations,

a set of coupled first order, or, being second-order, can be written as a set of first-

orders. Thus, the numerical method to solve then is the same. Also, since vKS

18



depends on the density which itself depends on ψi, the Kohn-Sham equations

have to be solved self-consistently, and the eigenvalues and the eigenfunctions are

obtained simultaneously. To solve these equations, we proceed in the following

way: for each function fk and gk, values for the starting and ending points are

chosen, subject to some boundary conditions. For a trial eigenvalue εk and using

a suitable algorithm, both equations are integrated from r0 (a point close to the

origin) to rm, and from r∞ (a point very far away) to rm, where rm is a point

in between (r0 < rm < r∞). One of the functions is forced to be continuous

at r = rm, and the mismatch in the remaining is used as a correction to the

eigenvalue. For the special case of equation (3.13) a few more steps are required.

First, instead of two equations fk and gk, we have four: f+
k , f

−
k , g

+
k and g−k .

Besides that, when searching for the boundary conditions, we end up with two

independent sets of coupled solutions to integrate [11]. The functions resulting

from the sum of these two sets are them matched as in the other cases (three

functions are forced to match at r = rm in this case).

3.2 Generating Ionization Potentials

To obtain the ionizations potentials we proceeded in the following way: first,

for each possible exchange-correlation functional, an all-electron calculation was

performed for a ground-sate configuration [1]. We used an algorithm proposed by

Averill and Painter [18] that changes the occupations numbers, in order to obtain

the lowest self-consistent total energy solution. The HOMO eigenvalue and the

atom total energy are then saved. After that, one electron is removed and a new

self-consistent calculation is performed. To finish, the total energy of the ionized

and neutral atoms are used to evaluate the ionization potential by (2.41).
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Chapter 4

Results and Discussion

In this Chapter we will present and discuss our results. First, we will choose a

set of widely used exchange and correlation functionals and compare the results

obtained for the different schemes: Schrödinger, Scalar Relativistic and Dirac

equations, both in their unpolarized and polarized form, for the ionization po-

tentials obtained through the total energy difference (equation 2.41). For the

polarized Dirac case however, it was not possible to have the results ready on

time, so no results will be presented for this scheme at the moment. After, we

will choose the polarized Schrödinger equation, and look for the differences in

the performance of the functionals. We will then finish with the results for the

ionization potentials evaluated by the HOMO eigenvalue (equation 2.42). We

choose a total of 42 atomic elements for our analysis - the first four lines of the

periodic table and the remaining of groups I and II.

4.1 Comparing different levels of theory

For this section, we choose four combinations of exchange-correlation function-

als: two LDA and two GGA. For the LDA, we choose the parametrization of

S.H. Vosko, Wilk and Nusair (VWN)[19] and the one by Perdew and Wang

(PW)[12]. For the GGA, the functional proposed by Perdew, Burke, and Ernzer-

hof (PBE)[20; 21], and the parametrization of Armiento and Mattsson (AM05)[22;

23]. In figures 4.1.1, 4.1.2 and 4.1.3, we present the relative errors for each of
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Figure 4.1.1: Relative errors (dots) and mean relative error (lines) for several combi-
nations of functionals, obtained using the unpolarized Schrödinger (top) and polarized
Schrödinger (bottom) equations, as a function of the atomic number Z.
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Figure 4.1.2: Relative errors (dots) and mean relative error (lines) for several com-
binations of functionals, obtained using the unpolarized Scalar Relativistic (top) and
polarized Scalar Relativistic (bottom) equations, as a function of the atomic number
Z.
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Figure 4.1.3: Relative errors (dots) and mean relative error (lines) for several combi-
nations of functionals, obtained using the unpolarized Dirac equation, as a function of
the atomic number Z.
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these functionals, for each atom, and the corresponding mean absolute relative

error for each functional:

Relative Error =
IPcalc − IPexp

IPexp

For the mean values, the absolute relative errors were used.

In figures 4.1.1 and 4.1.2, we can clearly see that the errors are bigger for the

unpolarized cases. Values missing in the figures are cases where we could get

the results (numerical problems). We can see this looking at the mean relative

errors, which are smaller for the polarized case, or looking at the dispersion of the

relative errors in respect to the mean values. This is a consequence of treating

open-shell atoms with a closed-shell formalism. These errors are much smaller in

the corresponding polarized calculations. For the same spin scheme, the mean

error decreases when increasing the level of the theory (Schrödinger → Scalar

Relativistic → Dirac) and spin-polarization effects should be bigger.

For the heaviest elements in our set (Cs, Ba, Fr and Ra), the difference between

an unpolarized calculation and a polarized one dilutes. Relativistic effects have

the biggest contribution to the error in this region, and thus, using relativistic

equations should yield better results. This is something we also see in our results.

The close similarity between the scalar relativistic and the Dirac equations results

for this four elements is not surprising. Barium and Radium have closed s-shell

orbitals, while Cesium and Francium only have one unpaired electron. We only

expect to see some significative differences in the results of the two equations

for elements with many unpaired electrons in the valence, where both spin-orbit

(which is the main difference between the two equations) are bigger.

In tables 4.2.1 and 4.2.1, we present the mean relative errors for the same

functionals we used before, and the respective variance. In table 4.2.1 we clearly

see the improvement from a spin-independent for a spin-dependent calculation.

Not only the mean relative errors are smaller, but also are de variances. For the

second table were we wanted to see the effects of relativity, the non relativistic

results seem better than the others. However this is not a very conclusive result,

since there are not many heavy atoms in our set. Because of this, we will think

the polarized Schrödinger equation is enough for this set of atoms (it is also less
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numerically demanding), and we will only use this equation in the next section.

4.2 Comparing different exchange-correlation po-

tentials

In figure 4.2.1 we present the relative errors for all the combinations of exchange

and correlation functionals considered in this work (for a complete list of the

functionals, see Appendix 1) obtained using the spin-polarized Schrödinger equa-

tion. We divided the functionals by groups: functionals with only LDA exchange

and correlations on the left, LDA correlations mixed with GGA exchanges and

vice-versa on the center, and GGA only functionals on the right (the tics on the

x-axis mark the limits). We choose to leave out some functionals from the LIBXC

that turned out yo be numerically unstable and for which we were only able to get

results for very few elements. Nevertheless, there is a total of 902 combinations of

functionals in this figure. The dark spots correspond to functionals whose errors

are greater than 60% or to cases where we could not get the ionization potentials

(numerical problems). There are some vertical red/”greenish” lines (red for the

LDA/GGA region, green for the GGA), almost periodical, that correspond to

some particular bad combinations of exchange and correlation. The errors for

the GGA only part are lower than for the others. There are some elements with

consistently bigger errors (horizontal bands). This is the case Li, Na, K, Rb and

Cs (group I), and V, Cr, Ni and Cu. The later are elements with reasonably large

magnetic moments, which could be a reason for these larger errors. A bit surpris-

ingly, because its the other way around for the majority of the other elements,

errors for the heaviest elements are bigger for the GGA only functionals than

from the LDA/GGA mixture. The reason for this may be the following: we know

that one of the reasons to the accuracy of LDA is the cancelation of errors from

the exchange and the correlation parts. Then, mixing LDA correlations with the

GGA exchange, results in an uncompensated error that adds to the total energy

in the (fortunate) ”right” direction.

Another view of those is presented in figure 4.2.2. Here we averaged the error

for the set of elements for each functional and count the number of functionals
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that have mean relative errors in some given interval. The top histogram has all

the 902 combinations of functionals that we consider (LDA + GGA + mixtures)

and in the bottom one we split the groups of functionals (the LDA functionals

are not present in this histogram because they are so few compared with the

GGAs that they are negligible). From this figure we can conclude that, even

when mixing exchanges and correlations functionals from different families, the

mean relative error are almost all under 10%. Even more, roughly half of the

combinations of functionals give errors under 5%. However, we can also see

that GGA only functionals are still averaging better than the mixture of LDA

and GGA functionals. This figure also tell us that roughly 40 combinations of

functionals that have mean relative errors under 2%. Next, we are going to make

a ranking of functionals. We are looking for the functionals that yield very good

results, relative errors under 2%, and we are going to count for how many atoms

each functional has relative error less than that error. These results are (partially)

presented in table 4.2.3. From this figure we can see that there are some LDA

correlations, mixed with GGA exchanges, that yield very good results, but there

is none GGA correlation with the LDA exchange. Also, the Perdew 88 GGA

correlation appears several times, mixed with various exchanges.
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Table 4.2.1: Comparison of the mean relative errors (∆) and corresponding variances
(σ) for some selected combinations of exchange-correlation functionals when considering
or not spin-polarization, for both Schrödinger and scalar-relativistic equations.

Schrödinger Scalar-relativistic
Unpolarized Polarized Unpolarized Polarized

Functional ∆ σ ∆ σ ∆ σ ∆ σ

LDA VWN 0.0547 0.0019 0.0297 0.0006 0.0501 0.0011 0.0345 0.0008
LDA PW 0.0536 0.0018 0.0296 0.0006 0.0510 0.0011 0.0353 0.0008
GGA AM05 0.0564 0.0017 0.0251 0.0008 0.0471 0.0007 0.0183 0.0003
GGA PBE 0.0537 0.0017 0.0260 0.0010 0.0490 0.0008 0.0199 0.0004

Table 4.2.2: Mean relative errors (∆) and corresponding variances (σ) for some se-
lected combinations of exchange-correlation functionals using different wave-equations,
but without considering spin-polarization.

Schrödinger Scalar-rel. Dirac
Functional ∆ σ ∆ σ ∆ σ

LDA VWN 0.0547 0.0019 0.0501 0.0011 0.0516 0.0020
LDA PW 0.0536 0.0018 0.0510 0.0011 0.0522 0.0020
GGA AM05 0.0564 0.0017 0.0471 0.0007 0.0520 0.0015
GGA PBE 0.0537 0.0017 0.0490 0.0008 0.0483 0.0018

29



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.05  0.1  0.15  0.2

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
a

ls

Mean relative error

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.05  0.1  0.15  0.2

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
a

ls

Mean relative error

LDA/GGA

GGA
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4.3 Ionization Potentials by the HOMO Eigen-

value

Up to this point, the ionization potentials presented, or strictly speaking, the

relative errors in the ionization potentials, were evaluated by the difference on

the total energies. The reason for this, is that, has already discussed in sections

2.3 - 2.4, almost all exchange-correlation potentials have the wrong asymptotic

limit. This leads to huge errors in the ionization potentials evaluated by the

HOMO eigenvalue, as shown in figure 4.3.1. The mean relative errors are about

50%. Remember that the exchange-correlation functionals used are the same as

in figure 4.1.1, where the mean errors for the ionizations potentials evaluated by

the total energy difference were around 10%. However, some functionals with the

correct asymptotic limit exists. In this section, we will use two of these exchange

functionals (GGA exchanges): the functional of Leeuwen and Baerends and a

modified version of it [62][63].

In figure 4.3.2 are represented the mean relative errors for the 50 combinations

of exchange and correlation functionals (resulting from mixing these two GGA

exchanges with LDA and GGA correlations), for each atom. These functionals

are harder to converge, and so there are some dark blue squares, that correspond

to unfinished calculations. However we think that the remaining is still worth

some discussion. From this figure, we see that the LB94 functional seems to

be better for the lightest elements, in contrast with the its modified version,

which is better for the heaviest elements. We can not concluded much about the

differences between using LDA or GGA correlations, so a bit more study is need

for this case.

What we can also conclude is that, with those two functionals, we can obtain

errors of the same magnitude we had for the case where the ionization potentials

were calculated using the total energies, but using the HOMO eigenvalue instead.

32



-1

-0.8

-0.6

-0.4

-0.2

 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 55 56 87 88

R
e
la

ti
v
e
 E

rr
o
r

Z

lda vwn
lda pw

gga am05
gga pbe

-1

-0.8

-0.6

-0.4

-0.2

 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 55 56 87 88

R
e
la

ti
v
e
 E

rr
o
r

Z

lda vwn
lda pw

gga am05
gga pbe

Figure 4.3.1: Relative errors (dots) and mean relative error (lines) for several func-
tionals for the unpolarized Schrödinger (top) and polarized Schrödinger (bottom) equa-
tions.
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Figure 4.3.2: Relative errors for the LB94 [62] functional (left part) and the modi-
fied LB94m fcuntional [63] (right part) combined with 25 LDA and GGA correlation
functionals, for each atom, evaluated by the HOMO eigenvalue with the spin-polarized
Schrödinger equation.
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Chapter 5

Conclusions and Future Work

First, we have to stress the fact that this is just a preliminary study, and it may be

that some conclusions change when all the calculations are done. Nevertheless, we

have showed that even in the simplest approximation (LDA), density functional

theory is able to reproduce within error of around 5% the experimental ionization

potentials. We have also seen, unsurprisingly, that higher levels of theory give

lower errors. We have constructed a list of some combinations of functionals that

consistently yield the best results, across the set of atoms we have used.

For the ionizations potentials evaluated by the HOMO eigenvalues, we have

shown that although the values obtained with the generality of the combinations

of functionals, there are some which are able to reproduce the ionization poten-

tials, within the same marge of error, as the remaining functionals do for the total

energy difference case.

The results presented in this thesis are just a fraction of what we plan to

do, and we think we have done only roughly 10% of the total. Finishing all the

calculations and getting the results for the remaining part is then something we

will do in the near future. We have still to get the first results for the polarized

Dirac equation calculations, and we are curious about how different will they be

comparing to the Scalar Relativistic case.

Even for these results, there are some things we did not have time to ana-

lyze yet, and could be interesting: are all the combinations predicting the same

ground-state configuration? How does the errors vary with the magnetic moment?

Also, it would be interesting to know if the combinations of functionals we
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discovered to be the best, will perform in the same away for other properties

(electronic affinities, excitation energies, etc), and in another systems (molecules

or solids).

36



Appendix A

Table 1: List of functionals used throughout this work with the corresponding Libxc
identifier.

LDA Functionals

LDA Exchange

XC LDA X LDA exchange [35; 36]

LDA Correlation

XC LDA C WIGNER Wigner parametrization [37]

XC LDA C HL Hedin & Lundqvist [38]

XC LDA C GL Gunnarsson & Lundqvist [39]

XC LDA C XALPHA Slater’s Xα (X-alpha)

XC LDA C VWN Vosko, Wilk, & Nussair [19]

XC LDA C VWN RPA Vosko, Wilk, & Nussair (RPA) [19]

XC LDA C PZ Perdew & Zunger [29]

XC LDA C OB PZ Ortiz & Ballone (PZ parametriza-

tion)

[27; 28; 29]

XC LDA C PW Perdew & Wang [12]

XC LDA C PW RPA Perdew & Wang fit to the RPA

energy

[12]

XC LDA C OB PW Ortiz & Ballone (PW

parametrization)

[12; 27; 28]

XC LDA C vBH von Barth & Hedin [40]
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XC LDA C GOMBAS Gombas [41]

LDA Exchange-Correlation

XC LDA XC TETER93 Teter 1993 [42]

GGA Functionals

GGA Exchange

XC GGA X PBE Perdew, Burke & Ernzerhof ex-

change

[20; 21]

XC GGA X PBE R Perdew, Burke & Ernzerhof ex-

change (revised)

[43]

XC GGA X MPBE Adamo & Barone modification to

PBE

[44]

XC GGA X XPBE Extended PBE by Xu & Goddard

III

[45]

XC GGA X B86 Becke 86 Xalfa,beta,gamma [46; 47]

XC GGA X B86 MGC Becke 86 Xalfa,beta,gamma (with

mod. grad. correction)

[46; 48]

XC GGA X B88 Becke 88 [49]

XC GGA X PW86 Perdew & Wang 86 [50]

XC GGA X PW91 Perdew & Wang 91 [51]

XC GGA X OPTX Handy & Cohen OPTX 01 [52]

XC GGA X DK87 R1 dePristo & Kress 87 (version R1) [53]

XC GGA X DK87 R2 dePristo & Kress 87 (version R2) [53]

XC GGA X LG93 Lacks & Gordon 93 [54]

XC GGA X FT97 A Filatov & Thiel 97 (version A) [55]

XC GGA X FT97 B Filatov & Thiel 97 (version B) [55]

XC GGA X PBE SOL Perdew, Burke & Ernzerhof ex-

change (for solids)

[26]

XC GGA X RPBE Hammer, Hansen & Norskov

(PBE-like)

[56]

XC GGA X WC Wu & Cohen [57]
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XC GGA X AM05 Armiento & Mattsson 05 ex-

change

[22; 23]

XC GGA X PBEA Madsen 07 [58]

XC GGA X mPW91 mPW91 of Adamo & Barone [59]

XC GGA X BAYESIAN Bayesian best fit for the enhance-

ment factor

[60]

XC GGA X PBE JSJR Reparametrized PBE by Pedroza,

Silva & Capelle

[33]

XC GGA X OPTB88 VDW opt-Becke 88 for vdW [32]

XC GGA X PBEK1 VDW Reparametrized PBE for vdW [32]

XC GGA X OPTPBE VDW Reparametrized PBE for vdW [32]

XC GGA X RGE2 Regularized PBE [31]

XC GGA X RPW86 Refitted Perdew & Wang 86 [61]

XC GGA X KT1 Keal and Tozer, version 1 [30]

XC GGA X LB van Leeuwen & Baerends [62]

XC GGA X LBM van Leeuwen & Baerends modi-

fied

[63]

XC GGA X MB88 Modified Becke 88 for proton

transfer

[64]

XC GGA X APBE mu fixed from the semiclassical

neutral atom

[65]

XC GGA X HTBS Haas, Tran, Blaha, and Schwarz [66]

XC GGA X AIRY Constantin et al based on the

Airy gas

[34]

XC GGA X LAG Local Airy Gas [67]

XC GGA X C09X C09x to be used with the VdW of

Rutgers-Chalmers

[68]

XC GGA X SOGGA11 Second-order generalized gradient

approximation 2011

[25]

GGA Correlation

XC GGA C PBE Perdew, Burke & Ernzerhof cor-

relation

[20; 21]
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XC GGA C XPBE Extended PBE by Xu & Goddard

III

[45]

XC GGA C P86 Perdew 86 [24]

XC GGA C PBE SOL Perdew, Burke & Ernzerhof cor-

relation SOL

[26]

XC GGA C PW91 Perdew & Wang 91 [51; 69]

XC GGA C AM05 Armiento & Mattsson 05 correla-

tion

[22]

XC GGA C PBE JRGX Reparametrized PBE by Pedroza,

Silva & Capelle

[33]

XC GGA C RGE2 Regularized PBE [31]

XC GGA C WI Wilson & Ivanov [70]

XC GGA C WI0 Wilson & Ivanov initial version [70]

XC GGA C APBE mu fixed from the semiclassical

neutral atom

[65]

GGA Exchange-Correlation

XC GGA XC HCTH 93 HCTH functional fitted to 93

molecules

[71]

XC GGA XC HCTH 120 HCTH functional fitted to 120

molecules

[72]

XC GGA XC HCTH 147 HCTH functional fitted to 147

molecules

[72]

XC GGA XC HCTH 407 HCTH functional fitted to 147

molecules

[73]

XC GGA XC EDF1 Empirical functional from Adam-

son, Gill, and Pople

[74]

XC GGA XC XLYP XLYP functional [75]

XC GGA XC PBE1W PBE1W (functional fitted for wa-

ter)

[76]

XC GGA XC MPWLYP1W mPWLYP1w (functional fitted

for water)

[76]
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XC GGA XC PBELYP1W PBELYP1W (functional fitted for

water)

[76]

XC GGA XC KT2 Keal and Tozer, version 2 [30]

XC GGA XC TH FL Tozer and Handy v. FL [77]

XC GGA XC TH FC Tozer and Handy v. FC [77]

XC GGA XC TH FCFO Tozer and Handy v. FCFO [77]

XC GGA XC TH FCO Tozer and Handy v. FCO [77]

XC GGA XC TH1 Tozer and Handy v. 1 [78]

XC GGA XC TH2 Tozer and Handy v. 2 [79]

XC GGA XC TH3 Tozer and Handy v. 3 [80]

XC GGA XC TH3 Tozer and Handy v. 4 [80]
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