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MRI is becoming increasingly important in the characterization of NAFLD,

which is one of the most relevant diffuse liver diseases with increasing preva-

lence in the developed countries. Currently, biopsy is the gold standard in the

early identification and staging of NAFLD, which is crucial to evaluate the risk

of hepatocellular carcinoma development. However, the later is associated with

sampling errors and with the development of several post-surgical complica-

tions. In this work, we address the problem of quantifying the fat accumulation

in the liver using a non-invasive procedure based on chemical shift imaging and

two signal models, the magnitude and complex models. In particular, we ad-

dress the influence of noise, relaxation effects and choice of echo times in fat

fraction estimation error. Our approach relied in the development of a new

acquisition strategy based on the optimal choice of echo times, which were

evaluated in simulation studies and later tested with phantoms. A program to

perform in-vivo fat quantification was implemented, extending our approach to

clinical data. Results indicate that good fat fraction estimation can be achieved

by correctly choosing the echo times. However, it is extremely difficult to find a

single echo time combination which optimize a large range of fat fractions. Fi-

nally, we also demonstrate that the standard clinical protocol has several flaws

and that a new acquisition protocol must be developed.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Acknowledgements

I would like to express my appreciation to all those who provided me the possi-

bility to complete this project at the the Inst́ıtuto de Ciências Nucleares Apli-
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Chapter 1

Introduction

1.1 Motivation and objectives

The western life style keeps on changing: obesity and problems that emerge

from fat accumulation are a well-known issue nowadays. Public and private

health institutions, governmental associations and even the media have been

promoting awareness campaigns aiming to minimize and prevent what can be

seen as a public health problem. An increasing topic of interest is, therefore, fat

accumulation in the liver, which gives rise to Non Alcoholic Fatty Liver Disease

(NAFLD). NAFLD is a diffuse liver disease which is not related to alcohol

consumption, but rather linked to the metabolic syndrome [1]. It comprises

a spectrum of clinical conditions of increasing severity that range from simple

steatosis to non-alcoholic steato-hepatitis (NASH), fibrosis, and finally cirrhosis

[1, 2].

The characterization and staging of NAFLD is increasingly important since

several studies recognize NAFLD as the most common cause of chronic liver

disease with a high prevalence worldwide, particularly in the western world.

Currently, liver biopsy is the gold standard in early assessment of NAFLD.

However, the latter is an invasive and expensive method prone to sampling

errors and low accuracy [1–3].

With the evolution of technology and the increased interest on biomedicine,

magnetic resonance (MR) chemical shift methods appeared as non-invasive al-

ternative to biopsy in the early characterization and staging of NAFLD. The

1
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idea was simple but very effective; take advantage of the difference in the res-

onance frequency between the protons of water and fat, a property known as

chemical shift, to quantify the amount of fat present in the liver [4]. MR spec-

troscopy (MRS), which takes advantage of the chemical shift effect to detect

and quantify various chemical species, led to several advances in quantitative fat

estimation and it is now considered the safest and most accurate non-invasive

method. However, MRS is performed on a single-voxel basis, thus introducing

variability at the same time that is time consuming and therefore not suitable

for normal clinical routine [5, 6]. In contrast, chemical shift imaging emerges as

an attractive method for fat quantification on a voxel-by-voxel basis since it al-

lows for whole-liver coverage, it is widely accessible and easy to use. In fact, it is

well established in the literature that if the signals from water and fat protons

were correctly separated, accurate fat quantification would be possible [4–6].

Nevertheless, the correct mathematical modulation of the signal, the noise, the

relaxation effects as well as the errors introduced by external magnetic field in-

homogeneities are confounding factors in fat quantification, introducing errors

in the estimates [4, 7].

Although, many advances were made regarding fat quantification with chemical

shift imaging, there are still many methodological questions that remain open.

Particularly, the properly evaluation and addressing of the echo times, that are

used to sample de data during the several scans that are acquired at multiple

echo times.

The present work, which aims to optimize fat quantification in the liver using

chemical shift imaging, consists of three main parts: the first one is a simulation

study where the accuracy of several signal models are tested with respect to

liver fat fraction quantification at 3T, In particular, the influence on fat fraction

bias and error of sampling the signal with different echo times combinations,

will be explored. The second part consists in identifying the echo time combina-

tions that minimize both fat fraction bias and error. Subsequently, appropriate

phantoms will be built in order to test experimentally the results obtained in

the simulation study. Finally, the third part of this work consists in developing

a software to produce parametric maps of liver fat fraction based on clinical

data.
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1.2 Theoretical background

1.2.1 The liver: a brief overview

The liver (figure 1.1) is the largest internal organ weighting approximately 1.3Kg

to 1.7Kg. It is located in the upper right quadrant of the abdominal cavity under

the right hemidiaphragm; lying to the right of the stomach and overlying the

gallbladder [8, 9]. At the anatomic level, four lobes can be identified: the left,

right, caudate and quadrate lobes [9]. The lobes are than divided in lobules

which are the functional units of the liver, containing the hepatic cells [8, 10].

The liver is also connected to two major afferent blood vessels, the hepatic artery

and the portal vein, by which it gets its blood supplies. These vessels branch

themselves into minor vessels, forming the capillary network, which reaches the

lobules and intervene in the liver functions [8, 9].

Figure 1.1: The Liver: general anatomy and location. Source: aviva.com.uk, medical encyclopae-
dia

The epithelial cell population consists of the hepatocytes (parenchymal cells)

and the cholangiocytes, which are the two main cell types in the lobules. The

hepatocytes correspond to approximately 80% of the livers volume and are the

key effectors in its activity [10]. However, this convention is somewhat wrong.
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In fact, together with the hepatocytes, several other cells work as an integrated

community to carry-out the liver functions. This functional integration is ob-

tained by several communication mechanisms, such as signalling networks [10].

As far as physiological functions are concerned, the liver has a well-established

role in several functions:

1) Digestion: Due to its secretory function, the liver can be considered

a gland. The hepatocytes produce and excrete the bile, a fluid that is

storaged in the gallbladder and delivered into the small intestine. The bile

aides in the digestion of fat and in the absorption of fat soluble nutrients

[10, 11].

2) Metabolism: The liver is involved in several metabolic processes. For

example, it regulates the levels of glucose in the blood flow as well as the

storage of fat. The production, metabolism and excretion of cholesterol

is also controlled by the liver [10, 11].

3) Storage: The liver stores several nutrients such as vitamins A, B-9 and

D. Furthermore it also stores iron, which can be used to form heme groups,

such as the ones present in hemoglobin [10, 11].

4) Detoxification: The liver plays a major role in helping the organism

metabolizing toxic substances that have been absorbed. Substances like

alcohol, drugs, pesticides, and heavy metals which are absorbed in the

digestion are delivered into the liver through the portal vein. The liver

filters and processes these substances, and excretes them to the bile. Nor-

mal bio products of the metabolism are also metabolized by the liver

[10].

5) Protein synthesis: The liver is involved in the synthesis of several pro-

teins, including enzymes and hormones [10, 11].

1.2.2 Non Alcoholic Fatty Liver Diseases

Normal liver activity can be affected by several factors which can lead to severe

health issues.NAFLD is an heterogeneous liver pathology that is not linked to
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alcohol consumption, but rather to the metabolic syndrome [1]. NAFLD com-

prises a vast spectrum of pathologies of increasing severity and that range from

fat accumulation inside the hepatocytes (steatosis) to non-alcoholic steatohep-

atitis (NASH), that lead to fibrosis and cirrhosis (figure 1.2) [1–3, 12].

Figure 1.2: Stages of NAFLD and corresponding histological appearance. Adapted from [13].

The first stage of NAFLD is the simple accumulation of fat droplets within

the hepatocytes, a condition known as steatosis [3, 12]. In order for a subject

to be classified as having steatosis, fat accumulation in the liver must exceed

5% to 10% by weight [1, 2]. Steatosis in itself is not associated with increased

short-term morbidity nor mortality. However, it can trigger the progression to

more severe stages of NAFLD such as NASH [2, 12, 14]. The mechanisms by

which this triggering takes place are still largely unknown, but it is believed

that fat accumulation increases the probability of cell injury [1].

NASH is characterized by excessive fat accumulation combined with liver cell

injury, inflammation and necrotic activity [1, 2, 14]. It is correlated both with

morbidity and mortality, and it is increasingly becoming a reason for liver trans-

plantation [14]. In addition, NASH dramatically increases the risk of fibrosis,

cirrhosis, liver failure and hepatocellular carcinoma (HCC) [1, 12]. In the last

two stages of NAFLD, there is the replacement of liver tissue by fibrotic tissue,

with the loss of lobular architecture and severe cell injury. At these stages,

patients are at a higher risk of developing HCC [2].
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1.2.2.1 Pathogenesis

The exact pathogenesis of NAFLD remains poorly understood. However, it

is widely considered to be the manifestation of the metabolic syndrome, i.e.

related to Diabetes Mellitus Type 2, insulin resistance and obesity [1, 14].

The most widely accepted explanation for NAFLD pathogenesis is the multi-

hit hypothesis. In this hypothesis, multiple hits are in the origin of the disease

and its progression, with the metabolic syndrome playing a central role [14].

Insulin resistance is associated with fat retention, which makes it closely related

to obesity, and is considered to play a major role in NAFLD pathogenesis

[2, 14, 15].

1.2.2.2 Epidemiology

Recent studies recognize NAFLD as the most common cause of chronic liver

diseases [1, 14, 16, 17]. Although, geographic variations in its prevalence are

notorious, NAFLD affects all racial and ethnic groups as well as ages and genres

[18] and it has been reported worldwide with a distribution that is closely asso-

ciated with diabetes and obesity [14, 18]. The latter conditions are now reaching

epidemic proportions, particularly obesity, and serve as a good overview for the

incidence of NAFLD as figure 1.3 shows. Furthermore, NAFLD prevalence is

increasing, particularly in the western world [14, 18].

Figure 1.3: Estimated worldwide prevalence of obesity in males and females aged above 15 in
2010. Source: WHO [14]

A number of studies indicate that, only in the United States of America, 30%

of the general population is affected. The same reports estimate an incidence of
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10% to 30% on the world population [16, 17]. The prevalence among children

is pointed to be up to 10% overall, being that the incidence in obese children is

even more severe and reported to be up to 53% [19]. Although Gastadelli et al,

2007, report that 80% to 90% of the identified cases rely on simple steatosis,

Falck-Ytter et al, 2011, showed that up to 20% of patients with steatosis develop

NASH and cirrhosis [19, 20]. Moreover, according to new data presented in the

International Liver Congress of 2011, the prevalence of NAFLD is expected to

increase, in the USA alone, by 50% in 2030, thus reaching epidemic proportions.

1.2.2.3 Diagnosis

As previously shown, the worldwide prevalence of NAFLD is large, which im-

plies that its diagnosis and early assessment are extremely important. As a

consequence, several studies using various medical imaging techniques, have

been proposed to help in the early diagnosis and assessment of NAFLD.

Ultrasound imaging detects fat accumulation in the liver. However, it cannot

quantify fat and subsequently differentiate between stages, therefore it often

requires further evaluation with other techniques, such as biopsy [3]. Liver

biopsy is currently the gold standard in NAFLD early assessment [1, 2, 12, 14].

However, this technique presents several drawbacks, the most important of

which are the high cost, potential post-surgical complications, and inherent

sampling bias. The latter is very important for the correct diagnose based

on biopsy, since fat infiltrations are heterogeneously distributed while biopsy

only samples one or few liver portions. Finally, hepatic biopsy is a highly

invasive procedure with risk of morbidity and even mortality: about 1% to 3%

of the patients require hospitalization and the complications may vary with the

procedure [21].

1.2.3 MRI fundamentals

MRI is a medical image technique based on the interaction of nuclear spins

(protons in the hydrogen atoms of water molecules) with an external magnetic

field, B0 [22–25]. Due to its abundance in the human body, 1H nuclei are

typically used in MRI to produce images with various types of contrast [22, 23].
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The generation of signal to produce images is based on the manipulation and

detection of the magnetization that is available in the sample [22–24].

In the absence of B0, each spin ensemble element (with individual magnetic

moment (~µ) of equal magnitude) is randomly oriented. As a consequence,

the resulting net magnetization is zero. In the presence of B0, the magnetic

moments tend to align with the direction of B0 in two orientations: parallel and

anti-parallel to B0. At room temperature there is small excess of spins aligned

parallel to B0 which produce the net equilibrium, ~M0 [22, 23]. Furthermore,

the spin precesses around the axis defined by the direction of B0 at a constant

(Larmor) frequency [22] which is given by the Larmor equation

ω0 = γB0 (1.1)

where γ is the gyromagnetic ratio.

In the absence of any other magnetic field, the net magnetization ( ~M) remains

at equilibrium, i.e. aligned parallel to the direction of B0, and no signal is gen-

erated. In order to produce an MR image, the magnetization has to be excited

away from its equilibrium position. This is accomplished by the application of

a radiofrequency (RF) pulse (B1) that is applied to the system orthogonally to

B0, for a short period [22, 23]. If the sample is irradiated with an RF pulse

with frequency (ωRF = ω0 (on resonance condition)), the spins absorb the RF

energy, thereby causing the net magnetization, ~M , to move away from its origi-

nal equilibrium position and to rotate around an axis perpendicular to both B0

and B1 (figure 1.4) [22]. Following RF excitation, ~M will have a longitudinal

component ~Mz, parallel to B0, and a transverse component ~Mt, perpendicu-

lar to B0, which will continue precessing around B0 at the Larmor frequency

[22, 23]. The variation in ~Mt generates an RF signal which is detected with a

coil by magnetic induction and that is used for image reconstruction [22–25].

1.2.3.1 Relaxation effects and Bloch equation

Relaxation effects
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Figure 1.4: The application of an RF pulse, B1, along the direction of x causes ~M to rotate in
the direction of y (Left). Precession movement in the xy plane (right) [25].

After excitation, and in the absence of any other RF pulse, the spins release

the absorbed energy and ~M returns progressively to equilibrium. This process

is called relaxation and it is governed by two time constants: T1 and T2 [22–25].

During T1 relaxation or spin-lattice relaxation, the spins release their energy

to the surrounding atomic lattice. As a consequence, ~Mz returns progressively

to its equilibrium value. The rate at which spin-lattice relaxation takes place

is controlled by the T1 relaxation time constant. Generally, T1 times are in

the order of several hundreds of milliseconds and vary from tissue to tissue as

well as with the intensity of B0 [23–25]. The T2 relaxation time, also called

spin-spin relaxation, is associated with the transverse decay of ~M [22, 23].

Spins experience local fields produced by the surrounding protons. This leads

to different local precessional frequencies and subsequently to the loss of phase

coherence or dephasing, as figure 1.5 illustrates. Dephasing decreases transverse

magnetization and reduces signal intensity [22, 23].

The presence of spatially varying inhomogeneities in B0 are also responsible for

the dephasing of transverse magnetization. This type of relaxation is controlled

by the T ′2 relaxation time constant [22, 25]. Thus, the total transverse relaxation

is the summed effect of spin-spin interaction and magnetic field inhomogeneities,

and it is characterized by the T ∗2 relaxation time constant, defined as

1

T ∗2
=

1

T ′2
+

1

T2

(1.2)

The values of T2 and T ∗2 , which are in the order of the milliseconds, vary from

tissue to tissue and are dependent of the strength of the applied B0; overall,

T1 > T2 > T ∗2 [22].
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Figure 1.5: Dephasing of spins in the transverse plane due to T2 relaxation (above) and its
influence on the net magnetization intensity (below)[22].

Bloch Equations in the absence of B1

The Bloch equations [22] describe the magnetization in presence of B0, B1 and

relaxation effects as

dMz

dt
= −ω1My +

M0 −Mz

T1

(1.3)

dMx

dt
= ∆ωMy −

Mx

T2

(1.4)

dMy

dt
= −∆ωMx + ω1Mz −

My

T2

(1.5)

where M0 is the value of the equilibrium magnetization, ω1 is the spin frequency

due to the RF field and Mz , Mx and My are the magnetization components

along x-, y-, and z-axis respectively. ∆ω represents the difference between ω0

and ω, where ω is the RF pulse frequency. It is furthermore assumed, without

loss of generality, that B0 is oriented along the z-axis and that Mz and Mx(My)

are the longitudinal and transverse components of ~M respectively. B1 is also

considered to be much smaller than B0 [22].
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When only B0 and relaxations effects are considered, equations 1.3, 1.4 and 1.5

are written as

dMz

dt
=
M0 −Mz

T1

(1.6)

dMx

dt
= ω0My −

Mx

T2

(1.7)

dMy

dt
= −ω0M −

My

T2

(1.8)

Solving for 1.6, the following solution is obtained:

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) (1.9)

This expression quantifies T1 relaxation, i.e. it shows the evolution from the

initial magnetization value after excitation, Mz(0), to the equilibrium value M0

[22]. The solution to 1.7 and 1.8 is

Mx(t) = e−t/T2(Mx(0)cosω0t+My(0)sinω0t) (1.10)

My(t) = e−t/T2(My(0)cosω0t−Mx(0)sinω0t) (1.11)

Which corresponds to the T2 exponential decay of the transverse magnetization

that is precessing around B0 (z-axis) with an angular frequency ω0 [22].

1.2.3.2 Spatial encoding

The goal of MRI is the spatial localization of MR signals in order to be able to

reconstruct an image. Spatial encoding of the MR signal in three dimensions

is obtained by applying magnetic field gradients in three different directions.

These gradients produce a signal with spatially varying frequency components

in accordance with
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ω(x) = γB(x) (1.12)

Where x is the spatial coordinate along the direction of the gradient and B(x)

is the magnetic field that spins, at position x along the gradient direction,

experience [22].

Three main gradients are used to perform spatial encoding: Slice selection

(Gss); Phase encoding (Gpe) and Readout or Frequency encoding gradient

(Gro) [23–25].

The first step in spatial encoding is the selection of a slice plane to be imaged.

Two main components are involved in this process: the selective RF pulse and

Gss. The selective RF pulse has a limited bandwidth of frequencies which are

related to slice thickness. When this pulse is applied in the presence of Gss, a

portion of the sample, coincident with the desired slice location and thickness, is

excited [23, 24]. During phase encoding, Gpe induces a constant spin dephasing

along the direction of Gpe. As a consequence, spins at different positions along

that direction will precess at the same frequency but with different phases.

Thus, phase encoding locates the MR signal along Gpe direction through spin

phase variation [23, 24]. Finally, the effect of Gro is to cause a variation of the

spin precession frequency along its direction. This frequency variation encodes

the third spatial coordinate and allows for image reconstruction using Fourier

Transformation [23–25].

1.2.3.3 Pulse sequences

Pulse sequences are the methodology by which an MRI image is acquired, and

involve the manipulation of e.g. RF pulses, gradients analog-to-digital con-

version (ADC), which are usually applied with a fixed pre-determined order

− pulse sequences [23]. Several parameters are important in pulse sequences,

namely the repetition time (TR), the echo time (TE) and flip angle (α). The

TR corresponds to the time between successive excitation RF pulses whereas

α is the angle by which the magnetization is tipped away relative to the B0

direction by the application of the RF pulse. Finally, TE is defined as the time

from the excitation pulse to the time point where maximum signal is detected

[23].
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There are two main families of pulse sequences: Spin-echo (SE) and Gradient-

echo (GRE) sequences [22, 23].

Spin-echo sequences are the most commonly used in clinical procedures. This

technique is characterized by the use of, at least, two RF pulse: an RF excitation

pulse, generally with a flip angle of 90o, and one (or more) 180o refocusing pulse,

which is applied to rephase the signal and to generate a spin-echo. If more than

a spin-echo is desired, then several 180o refocusing pulses are necessary [23].

The second type of pulse sequences are the gradient-echo sequences. In contrast

to spin-echo sequences, these sequences do not use RF refocusing pulses. Gra-

dient reversal is used instead for magnetization rephasing and signal generation

the gradient-echoes. Another difference with respect to SE sequences is that

flip angles lower than 90o are generally used. Furthermore, GRE sequences are

typically weighted on T ∗2 [22, 23]. In this work, the pulse sequence that is used

for data acquisition is of the GRE type.

Figure 1.6: Spoiled GRE sequence timing diagram, 2D method. Because there is no 180o RF
pulse, the polarity of Gro dephasing gradient pulse (a) is opposite that of the readout gradient
pulse applied during signal detection. The TE is measure from the middle of the excitation to the

center of the echo [25].

1.2.3.4 Chemical shift imaging

The precession frequency of spins depends on the local magnetic field that each

individual spin experiences. So far, it was assumed that only B0 contributes

to this local magnetic field. However, in reality each spin has its own local
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magnetic field, which is determined by which molecules and atoms exist in the

neighbourhood of the spin [22, 23, 25].

In MRI, the signal comes essentially from the protons in water molecules and in

the chains of fatty acids [22, 23, 25]. Protons from water and fatty acids experi-

ence different chemical environments and have distinct electron configurations,

as figure 1.7 shows [25].

Figure 1.7: Chemical environment of water (left) and fat protons with the shading regions illus-
trating the electron density distribution [25].

Because of its molecular environment, the water proton experiences a local

magnetic field which is different from that of a fat proton. This local difference

is known as chemical shielding and leads to slightly different Larmor frequencies,

for water and fat [22, 23, 25]. Such frequencies can be described in terms of

chemical shifts, σ, which is defined as

Bshifted(j) = (1− σj)B0 (1.13)

Where Bshifted is the the local magnetic field difference and j represents the

chemical compound, which in the present work is fat. The chemical shift term

is generally small and it is expressed in parts-per-million (ppm) with a value of

3.5 for fat (figure 1.8) [22, 23]. The difference in the Larmor frequency from fat

relative to water depends also on B0 and is given by

∆ω0 = γσB0 (1.14)

where for B0 = 3T the chemical effect is approximately equal to 450Hz [23].

This difference in frequencies causes the fat protons to precess slower than the

water protons. As a consequence, the water and fat magnetization components
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Figure 1.8: Spectrum of water and fat at 3T. The resonance frequencies are separated by 3.5ppm
which corresponds to a frequency difference of 450HZ [23].

are in phase and out of phase (oppose-phase), depending of the TEs, as illustrate

in figure 1.9 [22, 23].

Figure 1.9: Precession of fat and water protons. Due to the difference in the resonance frequencies,
the two components are in phase (a, c and e) and out of phase (b and d) at distinct TEs [23].

In the SE sequences, the chemical shift effect is compensated by the 180o RF

refocusing pulse which implies that water and fat protons are always in-phase.

In GRE sequences there is no compensation and therefore both chemical species

acquire phase with respect to each other that is proportional to TE. In a voxel

containing water and fat, when both components are in-phase, a reinforcement

of the signal is observed. when both components are out-of-phase there is signal

cancelation as illustrated in figure 1.10 [22, 23].
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Figure 1.10: In-phase (A and C) and opposed-phase (B and D) abdominal images acquired using
a GRE sequence. Arrows indicating the phase cancelation in voxels containing water and fat.

Chemical shift imaging takes advantage of the abovementioned properties and

it is referred as the process by which identical nuclei, experiencing different

levels of shielding, are selectively imaged [22].

1.2.4 NAFLD and chemical shift imaging

Since Dixon (1984) first proposed the two-points Dixon technique to decompose

the water and fat components based on two images (in-phase and opposed-

phase) [26], many advances on chemical shift imaging for fat quantification were

made. Two main models have been used to separate water and fat components

with multi-echo (ME) sequences: magnitude and complex models [4, 27–29].

These models rely on the acquired data to perform an water/fat decomposition

using a least-squares fitting procedure[30]. A few clinical applications of the

magnitude model [5, 6, 31–37] and, to a lesser extent of the complex model

[34, 37, 38] have proved these methods to be suitable alternatives for non-

invasive in-vivo fat quantification. However, several methodological issues have

largely been misunderstood [4, 7].

There are small spatial variations in the main magnetic field of an MR scanner,

known as magnetic field inhomogeneities [4, 39–41]. They depend not only on

hardware issues, but also on the sample that is being imaged. Magnetic field

inhomogeneities, together with the chemical shift, influence the phase of the

signal, introducing unexpected phase errors which can potentially increase the

systematic errors associated with parameter estimation [4, 39]. Furthermore,

such inhomogeneities tend to increase with the intensity of the main magnetic

field, which implies that ultra-high field scanners (B0 > 3 tesla (T)) are more

susceptible to this problem. Although phase errors due to magnetic field in-

homogeneities had been addressed, they are not, yet, well quantified [39]. The



Chapter 1. Introduction 17

complex model is very sensitive to this problem, since it takes phase informa-

tion into consideration when estimating fat content. Magnitude model considers

only magnitude data (discarding all phase information) and emerges as a simpli-

fied model that overcomes the estimation errors associated with magnetic field

inhomogeneities [4, 27–29, 34]. Nevertheless, the latter model is characterized

by inherent noise amplification. This, together with the fact that it contains

no phase information implies that it is often unable to accurately estimate fat

fractions over 50% [4, 37].

The influence of the relaxation effects (T1 and T ∗2 ) is another confounding factor.

Many studies discuss that the way that the relaxations are implemented in the

models have a strong influence in the quantification, namely the T ∗2 . It is

well documented in the literature that when T ∗2 relaxation is ignored, highly

biased estimations are obtained whereas in the presence of T ∗2 corrections the

estimation is enhanced [7, 31]. Generally, two assumptions are made regarding

T ∗2 relaxation constants:

1) Consider two independent T ∗2 constants for water and fat [7, 39, 42];

2) Assume only a common T ∗2 relaxation constant for both components [35,

40].

In certain conditions, the use of a single T ∗2 constant can improve fat quantifica-

tion and avoid large errors [4, 27]. For instance, in advanced stages of NAFLD

it is common to find iron overload in 40% of the patients [43, 44]. This shortens

the values of T ∗2 leading to a much larger error in their estimation . Modelling

the signal with only one T ∗2 relaxation constant is reported to be a way to

surpass this situation [7, 36]. However, Chebrolu et al. (2010) questioned the

validity of the assumption that T ∗2 of fat and water may be equal, given that

there is no biological evidence in support of this statement. The same article in-

dicates that for values of T ∗2 that are significantly different, larger errors emerge,

especially when T ∗2 of fat and water are short [7]. In addition, it is known that

spurious T1−weighting images leads to an overestimation of fat since T1 of fat

is shorter than that for water; nevertheless, a way to overcome this problem is

using small flip angles or dual flip angles during the acquisition [45].

In order to enhance fat quantification, some methodological improvements were

proposed in recent years. A number of groups introduced MRS fat peaks when



Chapter 1. Introduction 18

modelling the signal [29, 30]. Hernando et al.(2012) proposed the mix-approach

model in which the best of magnitude and complex models was taken into ac-

count. Although, good estimations were achieved by this model, phase errors

remain a problem [34]. Finally, Heredita et al. (2012) developed a new method-

ology based on the analysis of liver-vessel cancelation artefact on in-phase and

oppose-phase MRI images. This methodology shows that the presence of phase

cancelation around the intra-hepatic vessels is a feature of ultra-high fat ac-

cumulation. However, phase cancelation is not observed in low values of fat

content which implies that this approach is not complete in estimating a large

range of fat accumulation [33].

Despite the advances in fat quantification based on chemical shift imaging,

many issues remain quite unexplored. An important methodological issue is

the choice of the TE combination to be used in data sampling. The latter is

often empirical, and its impact in fat quantification with both the magnitude

and complex models, remains to a large extent unknown [37]. Furthermore, the

majority of chemical shift fat quantification procedures require accuracy evalu-

ation by means of other techniques such MRS, which is particularly undesirable

in clinical procedures [5, 6, 28, 29, 32].



Chapter 2

Materials and Methods

2.1 Signal models for fat quantification

Chemical shift imaging relies on the fact that hydrogen protons in water and fat

molecules have different resonance frequencies. This technique uses the distinct

water-fat phase shifts, generated at multiple echo times, to estimate the water

and fat content in tissues on a voxel-by-voxel basis [37]. In general, voxels may

contain different amounts of water and fat, as figure 2.1 suggests.

Each fat and water component generates signal with a given intensity. If signal

intensity from both components can be sorted out correctly, then the precise

amount of fat fraction, FF, can be calculated as

FF =
Sf

Sw + Sf

(2.1)

where Sw and Sf are the signal intensities from water and fat, respectively [27].

In order to estimate Sw and Sf , the signal from each voxel must be described

by a suitable mathematical model. There are several factors to be taken into

account when modelling the voxel signal:

1) A fundamental assumption of FF estimation is that water and fat are the

only two signal-contributing chemical species [40];

19
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Figure 2.1: Schematic representation of a sample with voxels containing different amounts of
water and fat.

2) Water and fat protons have different T ∗2 relaxation constants, which im-

plies that the models must consider the signal intensity decay over time

due to these constants [4];

3) Magnetic field inhomogeneities influence the signal phase and should also

be considered when modelling the signal [4].

Several models have been proposed to describe the signal in chemical shift

imaging. In the present study, the magnitude model and complex model are

addressed.

2.1.1 Magnitude and complex models

A model vastly discussed in the literature is the estimation of fat from mag-

nitude images. In this model, the magnitude of the total signal |S| from any

given voxel can be modelled as the sum of the signals from both water and fat

components

|S| =
∣∣∣Swe

−TE/T ∗2w + Sfe
−TE/T ∗2f ei∆ωTE

∣∣∣ (2.2)

Where TE represents the echo time, Sw (T ∗2w) and Sf (T ∗2f ) are the signal inten-

sities (T ∗2 relaxation constants) from water and fat respectively [28]. Parameter
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∆ω is the phase angle due to the chemical shift effect and it is given, in radians,

by

∆ω = 2πγσB0 (2.3)

Here, γ represents the gyromagnetic ratio, σ is the chemical shift between fat

and water and B0 is the external magnetic field intensity [40].

If MR complex data is considered for fat quantification, i.e. if in addition to

magnitude images, the phase information is also taken into account, then data

modelling is slightly modified, when compared to 2.2. In this case, the signal

from a voxel with water and fat, including the effects of T ∗2 relaxation, chemical

shift and magnetic field inhomogeneities, can be modelled as

S =
[
Swe

−TE/T ∗2w + Sfe
−TE/T ∗2f ei∆ωTE

]
ei∆ω0TE (2.4)

where all constants are as defined in 2.2 [7]. Parameter ∆ω0 = 2πγ∆B0 is the

frequency shift due to magnetic field inhomogeneities, ∆B0. The corresponding

phase accumulation is then defined as φ = ∆ω0TE [40].

Magnitude and complex models can be implemented by considering that the

T ∗2 relaxation constants of water and fat are different (dual-decay model) or

by assuming the simplifying assumption that T ∗2w = T ∗2f (single-decay model)

[4, 35, 41]. In the latter case, equations 2.2 and 2.4 simplify to

|S| =
∣∣(Sw + Sfe

i∆ωTE)e−TE/T ∗2
∣∣ (2.5)

S =
(
Sw + Sfe

i∆ωTE
)
e−TE/T ∗2 ei∆ω0TE (2.6)

2.2 Theoretical and experimental work

2.2.1 Simulation studies

Simulations were conducted (for both single- and dual-decay models) to:
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1) Determine the influence of different combinations of TE values in the

estimation bias and error of FF, T ∗2w, and T ∗2f in the presence of noise and

using both magnitude and complex models;

2) Complex model: Determine the influence of phase errors due to magnetic

field inhomogeneities in estimation bias of FF, T ∗2w, and T ∗2f ;

3) Complex model: In the presence of noise and phase errors, study the

variation of estimation bias and error with different combinations of TE

values.

Data was simulated considering T ∗2w =23.8ms, T ∗2f=18.5ms [4] and FF = 5%,

25%, 50% and 75%. Rician and Gaussian noise were added to magnitude and

complex data respectively with relative noise amplitude (RNA) of 5% and 10%.

Noise amplitude, NA, was calculated from the value of RNA according to

NA = max

[
S0w

S0f

]
RNA (2.7)

where S0w and S0f are the signal intensities for water and fat respectively,

considering B0 = 0.

Computations were conducted using software that was written in Matlab R2012a

(Mathworks, Natick, Mass). The Levenberg-Marquart method (lsqnolin func-

tion in Matlab) was chosen for the non-linear fit (in a least-squares sense) of

FF, T ∗2w, and T ∗2f to the data.

2.2.1.1 Noise studies

Monte Carlo simulations were conducted to evaluate the robustness of mag-

nitude and complex models, in the presence of noise, for different combina-

tions of TE values. Sample data was simulated at twelve different TEs at 3T.

Each Monte Carlo simulation took 1000 different noise realizations into ac-

count. Noise realizations were extracted from a Rician distribution (in the case

of magnitude data) and from a Gaussian distribution (in the case of complex

data).
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Figure 2.2: flowchart illustrating the major steps of the algorithm that was implemented to
evaluate the behaviour of the models in the presence of noise.

The efficiency of each model to determine the FF was quantified using the

number of signal averages (NSA) which is defined as

NSA =

√
σ

σE
(2.8)

Where σ represents the noise standard deviation and σE is the standard devi-

ation associated with the estimation of Sf .

Besides NSA, two other measures were used to evaluate the models: Bias and

Error. The Bias associated with a given parameter X is defined as
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BiasX =
X̄E −Xt

Xt

× 100 (2.9)

Where X̄E is the mean of the estimates XE of all noise realizations, and Xt

is the true value of X. The bias of a given estimated parameter quantifies

the error in parameter estimation due to the incompleteness of the model to

describe the data. On the other hand, Error X reflects the error in parameter

estimation which results from the sensitivity of the model to noise. It is defined

as

ErrorX =
σXE

X
× 100 (2.10)

Where σXE
is the standard deviation associated with XE.

The biases and errors were computed for FF, T ∗2w and T ∗2f . Results were rep-

resented as colour maps with the NSA, bias an errors expressed as function of

TEmin (TE minimum) and ∆TE (step between TEs). The flowchart in figure

2.2 illustrates the major steps that were implemented in the algorithm for noise

simulations.

2.2.1.2 Influence of magnetic field inhomogeneities and noise on FF

estimation using complex model

Model parameters were estimated for both single- and dual-decay models, with-

out noise, at 400 different off-resonance frequencies, ranging from -200Hz to

200Hz and considering FFs of 5%, 25%, 50% and 75%. The simulations were

performed for three distinct TE combinations: the clinical protocol and two

TEs combinations that were chosen from the identification of TE-∆TE regions

where both the bias and errors (in FF, T ∗2w and T ∗2f ) were minimized in the pres-

ence of noise (for single- and dual-decay models). All the remaining simulation

parameters were equal to what was previously described.

Echo times :

1) Single-decay model: TEs of 3,00ms to 27,20ms in increasing steps of

2,20ms;
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2) Dual-decay model: TEs of 2,80ms to 28,10ms in increasing steps of 2,30ms;

3) Clinical protocol: TEs of 2,46ms to 15,99ms in increasing steps of 1.23ms.

The biases in FF, T ∗2w and T ∗2f were obtained as function of off-resonance fre-

quencies. The flowchart presented in figure 2.3 shows the algorithm that was

implemented.

Figure 2.3: Flowchart illustrating the major steps of the algorithm that was implemented evaluate
the influence of off-resonance frequencies on complex model FF estimations.

In order to evaluate the combined influence of noise and magnetic field inho-

mogeneities on FF estimation (with single- and dual-decay constants), a set of

simulations, similar to those described above were computed. For each simula-

tion, the TEmin was kept fixed and equal to those indicated above. Estimation

Bias and Error were plotted as colour maps as function of off-resonance fre-

quencies and ∆TE. Figure 2.4 shows the flowchart of the algorithm that was

implemented for these computations.
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Figure 2.4: Flowchart illustrating the major steps of the algorithm that was implemented to
evaluate the influence of noise and off-resonance frequencies on complex model FF estimations.

2.2.2 Fat quantification program

A program with a basic user interface was implemented in order to estimate

FF, on a voxel-by-voxel basis, from in-vivo multi-echo gradient-echo (ME-GRE)

data. In addition to FF, estimations for T ∗2w and T ∗2f can also be obtained.

Results are obtained as parametric maps that are represented on the original

dicom images (i.e. a voxel in a dicom image correspond to the same voxel in

a parametric map). The flowchart in figure 2.5 indicates the major steps that

are involved in the implementation of this program.



Chapter 2. Material and Methods 27

Figure 2.5: Flowchart illustrating the major steps of the algorithm that was implemented to
estimate the FF on a voxel-by-voxel basis.

2.2.3 Experimental work

2.2.3.1 Phantom construction

In order to experimentally validate the simulation results, a phantom consisting

of 6 vials, containing a water-fat emulsion with different values of FF, was built.

In order to minimize image artefacts, a homogeneous mixture has to be created.

However, due to their polarity, water and fat do not mix spontaneously. There

are several ways to solve this problem, but adding an emulsifier is the simplest

one.

Emulsifiers are chemical compounds belonging to a major category of chemi-

cals named as surfactants. Surfactants are organic molecules with amphipathic
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characteristics. Due to this fact, the molecules of the emulsifier can interact

either with polar and non-polar molecules. Therefore, the addition of an emul-

sifier, to a mixture of water and fat, allows the non-polar lipids to disperse into

the polar molecules of water [46].

Due to their different densities, water and fat tend to separate. An easy way to

avoid this is to add a stabilizer to the emulsion. Two major types of stabilizers

are available: solid phase stabilizers and liquid phase stabilizers. Solid phase

stabilizers work by creating a cross-linked matrix that traps the components

and avoid the separation. Liquid phase stabilizers increase the viscosity of the

emulsion thereby preventing the separation [46]. It should be stressed that even

with the stabilizer, the separation continues to take place, but very slowly.

Emulsions: choice of chemical compounds

Oil:

There are several vegetable oils which may be used in the phantom construction.

The choice of the oil was based on several factors, namely chemical composition,

toxicity, availability and price. Table 2.1 summarizes the information for four

different oils.

Table 2.1: Fatty acids in the composition of four different vegetal oils. The toxicity, price and
availability were also indicated.

One property of interest is the oil similarity to human fat in terms of fatty acid

composition. To perform this comparison, a study by Kokatnur et al. (1979)

was taken as reference [47]. In this study, the authors conduct an evaluation

of the major fatty acids that are present in fat of the human buttock and in

perirenal tissues. The relevant results are expressed in table 2.2.

In table 2.2, some fatty acids (myrist and palmitoleic acids) are neglected, since

their percentage is minimal when compared with other fatty acids and they

are not present in vegetable oils. In addition, focus was only to the perirenal

because of its anatomical proximity to the liver. Comparing tables 2.1 and 2.2,

we observe that peanut oil shows more proximity to human fat than any of the
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Table 2.2: Fatty acid composition of fat in the perirenal region for different races and ages.
Adapted from [47]

other oils. It is commonly used in cooking and can be purchased from any food

store at a relatively low price. Furthermore, peanut oil has been previously

used in phantoms from other research groups thus providing more information

about its use in phantom construction [38, 45]. Taking all this into account,

peanut oil emerged as an optimal choice.

Emulsifier:

As emulsifier agent we used the anionic surfactant sodium dodecyl sulphate

(SDS). SDS is non-toxic and it was readily available.

Stabilizer:

Based on the literature two stabilizers were considered: agar and gelatine. Gela-

tine (solid phase stabilizer) is a triplex helix compound derived from hydrolysed

collagen and when in contact with water forms a gel which prevents phase sep-

aration [48]. Agar is a polysaccharide extracted from red-purple marine algae

and is used as a growing medium [49]. Gelatine was chosen over agar due to its

capacity to easily crosslink the amine groups by an aldehyde [48]. Formaldehyde

was the chosen aldehyde for this purpose.
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Preparation

Table 2.3: Composition and final volume of each vial.

A protocol, based on the report from Parlato et al. (2009) was designed in

order to prepare the emulsion and build the phantom:

1) The amount of each component of the emulsion was calculated in a Mi-

crosoft Excel spread sheet. The major parameters to consider here were

the volume of the vials and desired fat percentage. The composition of

each vial is given in table 2.3;

2) The desired volumes of water, oil and formalin were measured; gelatine

and emulsifier were weighted;

3) A 100mL solution of sodium dodecyl sulphate was prepared;

4) The gelatine was added while the solution was heating using a magnetic

stirrer hotplate [50];

5) When the solution reached a temperature between 65o − 93o the peanut

oil was added;

6) The mixture was then left to cool down and when it reached a temperature

between 37o − 49o, formalin was added;

7) The emulsion was homogenised, by means of a homogenizer, during 2

minutes with 1 minute rest interval;

8) Finally, the emulsion was rapidly cooled in ice in order to form a gel and

prevent phase separation.
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This procedure was repeated 6 times; one for each vial.

After all emulsions were prepared, the vials were placed side by side on a frame.

Figure 2.6 sketches the phantom final result, indicating the values of FF in each

vial.

Figure 2.6: Schematic representation of the phantom. Values of FF are shown within each vial.

2.2.3.2 Phantom measurements

The phantom was imaged in a 3T whole-body MRI scanner (Siemens Magnetom

Trio, Erlangen, Germany), using a ME-GRE sequence with 12 TEs. Further

imaging parameters were: FOV = 165 × 220mm, TR = 32ms, α = 10o,

Acquisition Matrix= 192 × 115 , 2 slices 10mm thick. Magnitude and phase

images were acquired with 5 different combinations of TE values:

1) Clinical protocol: TEs of 2,46ms to 15,99ms in increasing steps of 1.23ms;

2) TEs of 3,00ms to 28,3ms in increasing steps of 2,30ms;

3) TEs of 2.60ms to 16,46ms in increasing steps of 1,26ms;

4) TEs of 3,00ms to 27,20ms in increasing steps of 2,20ms;

5) TEs of 2,80ms to 28,10ms in increasing steps of 2,30ms.
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Image processing

Phase images were exported from the MR scanner in dicom format, where phase

values were integers ranging from -2048 to 2048. When these images are loaded

into a dicom reader, the image intensity, I, is rescaled according to:

I = RescaleSlope× Iraw +RescaleIntercept (2.11)

Where RescaleSlope and the RescaleIntercept are two main fields in any dicom

header. For Siemens scanners, the value of these fields is 2 and -4096 respec-

tively. When re-scaling takes place, phase values, from 0 to 4096, correspond

to real values falling in the interval [0, 2π]. Phase values are wrapped, with the

instantaneous phase values, φ(t), confined to be in [−π, π] or [0, 2π]. Therefore,

all phase values that are outside these intervals are folded back. In order to

surpass this problem and determine the correct phase values, the application of

phase unwrapping algorithms is needed.

Major steps for phase image pre-processing:

1) Scale image intensity according to 2.11 using Matlab;

2) Conversion of phase images from dicom to nifti format [51], using dcm2nii

utility [52];

3) Application of the rescaling using FSL [53];

4) Creation of a mask containing only the pixels within the vials. Mask

magnitude images using FSL’s Bet ;

5) Phase unwrapping using FSL’s prelude.

Images were then processed using the program described in section 2.2.2. Over

each vial, a region of interest (ROI) was defined where FF quantification was

performed and results were obtained as parametric maps. In addition, plots of

the true FF against the estimated FF were also obtained.
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2.2.3.3 In-vivo experiments

In order to perform in-vivo experiments, the Diamarker project population,

consisting of 37 controls (23 females, mean age of 49±7) and 32 patients (20

females, mean age of 60±8), was considered. The patient group is composed by

subjects with type II diabetes, while control group consists of subjects without

history of neuropsychiatric, renal, liver, heart, ocular or any other severe non-

age related disease. From this population seven controls and seven patients were

enrolled in our study. Control subjects were chosen with the prior information

that no liver fat accumulation was observed. In opposition, the chosen patients

were known to have considerable fat accumulation.

Prior to the present work, breath-hold images were acquired on a whole-body

MRI scanner (Siemens Magnetom Trio, Erlangen, Germany) using ME-GRE se-

quences with twelve echoes and acquisition parameters: FOV = 400× 400mm,

TR of 30ms and clinical protocol TEs. In this procedure, a single slice 10mm

thick, was acquired.

Fat quantification was performed for 7 controls and 7 patients. Only magnitude

models were used for this purpose, since no phase images had been acquired.

For each image, a mask was applied on the actual abdominal structures (ROIs),

as a means to discard the background noise. Finally, all results were obtained in

a form of parametric maps of the abdominal region and representing FF values

on a voxel-by-voxel basis.
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Results

3.1 Simulations studies

3.1.1 Noise studies

The variation of NSA with TE-∆TE, for magnitude and complex models, is

displayed in figure 3.1 for a RNA of 5%.

Figure 3.1: NSA values obtained with magnitude single- and dual-decay model (above). NSA
values for complex single- and dual-decay model (below). All values of NSA computed for a FF of

5% and a RNA of 5%.

34
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Figure 3.2: FF estimation error for magnitude (left) and complex (right) model. Both models were
implemented with dual-decay constants, FF equal to 5% and RNA of 5%. The error corresponding
to the TE-∆TE combination that is used in the clinical protocol is indicated with a black arrow.

From the comparison of the colour maps in figure 3.1, it becomes evident that

magnitude model is more sensitive to the assumptions that are considered for T ∗2

relaxation constants: generally, NSA values above 1 for single-decay model and

below 1 otherwise. In opposition, the complex model has higher NSA values:

generally, above 2 when implemented with dual-decay constants and below 2

otherwise. Hence, the fitting performed with single-decay constants appears to

be more robust to noise in both models. The clinical TE-∆TE combination is

indicated. This combination is not optimal, falling in a region where NSA is

not maximized. Furthermore, the results for a RNA of 10% (not shown) are

similar.

The colour maps in figure 3.2 show the dependence of FF estimation error on the

combinations of TEs that are used to sample the signal, for both magnitude

and complex models, implemented with dual-decay constants. In the dual-

decay model, T ∗2water and T ∗2fat are different, whereas in the single-decay model

the simplification T ∗2water=T
∗
2fat is considered. A straightforward observation,

which is common to all other parameter combinations that were used in the

simulations, is that there are combinations of TE which yield a lower error

associated with FF estimation -TE-∆TE best combinations.

Figure 3.3 extends the results for different values of FF (25%, 50%, 75%). The

number of TE-∆TE combinations that minimize FF error increase with the

value of FF. The performance of the complex model is better than that of the

magnitude model since overall, the error in FF is smaller than that obtained

with the magnitude model: almost all errors are below 10% for all FF.



Chapter 3. Results 36

Figure 3.3: FF estimation error for magnitude (above) and complex (below) model. Both models
were implemented with dual-decay constants, FF equal to 5% and RNA of 5%.

Figure 3.4: FF estimation bias for different values of FF, performed with magnitude (above) and
complex (below) models, dual-decay constants and RNA of 5%.

Results of the estimation bias are shown in figure 3.4. Similarly to the FF esti-

mation error, also here the complex model performs better than the magnitude

model. For all FF values above 5%, minimum estimation bias obtained with

the complex model lie close to 0% whereas for the magnitude models that is

not the case. For a FF of 5%, both models fail to yield unbiased estimations of

FF.

Figure 3.5 shows a comparison between the performances of complex and mag-

nitude models using single-decay constants. When comparing figures 3.3 and

3.5 one observes that the way by which relaxations effects are included in the
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model strongly affect the FF estimation error. Particularly for the magnitude

model, considering T ∗2water=T
∗
2fat decreases the estimation error for all FF val-

ues except that of 5%. In general, the complex model performs better than the

magnitude model, even for FF=5% where complex dual-decay model achieves

lower error. Finally, complex model appears to be more robust, in terms of the

estimation error, when implemented with two decay constants.

Figure 3.5: FF estimation errors for different values of FF, estimated with magnitude (above)
and complex (below) models with single-decay constants. RNA of 5%.

The bias obtained for the magnitude single-decay model is shown in figure 3.6.

When compared to figure 3.4, we observe that magnitude single-decay model

originates a more biased estimation of FF. However, for FFs of 50%, magnitude

model presents some regions of bias between -10% and 10%. The problem here is

that it is difficult to find a TE-∆TE combination where both FF error and bias

are minimized. The bias results for complex model are not represented since

their values are generally negative and extremely high, lying beyond -100%.

This is an unexpected result, which illustrates some difficulties of the complex

in describing the data when implemented with only one decay constant.

Figure 3.6: FF estimation bias for different values of FF, estimated with magnitude single-decay
model and RNA of 5%.

It is worth mentioning that, in all cases, the TE-∆TE combination that is used

in the clinical protocol falls on regions of high errors and biases. This suggests

that the clinical protocol is not optimized for FF estimation.
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The error and bias associated with T ∗2 constants (results not shown) indicate

that the single-decay magnitude model performs better than the dual-decay

magnitude model. For low values of FF (5% and 25%), the error and bias in

the estimates of T ∗2fat are high and more TE-∆TE combinations are observed

to minimize the error and bias of T ∗2water. In contrast, for high values of FF

(75%) the opposite is observed: lower error and bias for T ∗2fat and higher error

and bias for T ∗2water. The complex model shows a similar behaviour. In fact, for

low values of FF, the complex single-decay model is better, but as the values of

FF increase, the dual-decay model yields more TE-∆TE combinations in which

the error and bias are minimized.

From the previous results, four alternative TE combinations were chosen to

minimize the errors and biases, particularly in FF, associated with each model.

Table 3.1 indicates these combinations.

Table 3.1: Alternative TE-∆TE combinations for magnitude and complex models with single-
and dual-decay constants.

The choice of the values in 3.1 relied on the identification of TE-∆TE regions

where the error and bias associated with T ∗2water, T
∗
2fat and FF respectively were

minimized. However, this implies that there are a total of six parameters that

must be accounted for. This means that the chosen TE-∆TE combinations are

a compromise between the minimization of ErrorT ∗2water
, ErrorT ∗2fat , ErrorFF ,

BiasT ∗2water
, BiasT ∗2fat and BiasFF . Tables 3.2 and 3.3 summarize the biases

and errors in the various parameters associated with the chosen combinations.

Tables 3.4 and 3.5 present the same information for the clinical protocol.
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3.1.2 Influence of magnetic field inhomogeneities and

noise on FF estimation using complex model

Figures 3.7 and 3.8 illustrate the complex model behaviour under the influence

of B0 inhomogeneities for different TEs combinations. Our results demonstrate

that in the presence of magnetic field inhomogeneities (in the plots expressed as

off-resonance, ∆F0, in Hz), the estimation of all parameters and that of FF in

particular, are highly biased. For the remaining FF values (results not shown),

a similar behaviour is observed. However, complex dual-decay model appears

to be slightly more resilient to phase errors: low bias is achieved even for high

off-resonance frequencies, particularly for low FFs .

Figure 3.7: Influence of magnetic field inhomogeneities on FF, T ∗2water and T ∗2fat bias for single-

and dual-decay complex models. Simulation parameters: FF=75% for single- and decay-model
using the alternative protocol.

Figure 3.8: Influence of magnetic field inhomogeneities on FF, T ∗2water and T ∗2fat bias for single-

and dual-decay complex model. Simulation parameters: FF=75% for for single- and decay-model
using the clinical protocol

The influence of noise and magnetic field inhomogeneities in FF estimation is

illustrated in figures 3.9 (Error) and 3.10 (Bias) for the dual-decay model and
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considering TE-∆TE values that according to table 3.1 minimize both FF bias

and error in the presence of noise only.

Figure 3.9: FF estimation error in the presence of noise and magnetic field inhomogeneities on
complex dual-decay model. TEmin of 2.80ms.

Figure 3.10: FF estimation bias in the presence of noise and magnetic field inhomogeneities on
complex dual-decay model. TEmin of 2.80ms.

In figures 3.9 and 3.10 it is notorious that in the presence of both magnetic

field inhomogeneities and noise, the performance of the complex model becomes

clearly worse. This is translated into high values of FF bias and error for off-

resonance frequencies.

3.2 Phantom measurements

Figure 3.11 shows the phantom that was built to test the simulation results in

a controlled setting. Visual inspection as well as the MR images suggested that

the emulsions in all tubes were homogeneous, at least at a macroscopic scale.
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Figure 3.11: Phantom for FF quantification with indication of the relative amount of fat per vial.

3.2.1 Clinical protocol

Figure 3.12 shows a phantom coronal image acquired using the clinical proto-

col. FF quantification with the magnitude model with single- and dual-decay

constants is represented as parametric maps. Moreover, a plot of the true FF

against the estimate FF, computed as the average estimated FF in each vial,

is also shown for clarity.

Figure 3.12: Phantom FF quantification with the magnitude model implemented with both single-
and dual-decay constants. Coronal image of the phantom, obtained with the clinical protocol (A),

parametric map of FF (B) and plot of the true FF against the estimated FF (C).

We observe that for both magnitude single- and dual-decay models a good es-

timation for low FF (0% and 5%) as well as for a FF of 100% is obtained. For

intermediate values, the estimation of FF in the vials is more biased. Never-

theless, for FF=50% the estimated FF value (single-decay model) is very close

to its true value but, with a high associated error. The comparison of figure

3.12 with the same results for another coronal slice (results not shown) shows
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that there is a disparity FF estimation from one slice to another (especially for

the dual-decay model). This observation may indicate the presence of emulsion

inhomogeneities along the vials, which in turn may reduces the sample quality

leading to less accurate estimations. The magnitude dual-decay model appears

to be more sensitive to such problem.

Figure 3.13: Phantom FF quantification performed with complex model, implemented with both
single- and dual-decay constants. Acquired magnitude (A) and phase (B) images of a slice using
the clinical protocol, parametric map of FF quantification (C) and plot of the true FF against the

estimated FF (D).

The FF was also estimated using the complex model with single- and dual-decay

constants. The result for a coronal slice is presented in figure 3.13.

Complex models show a less accurate quantification. Interestingly, though, the

errors associated with each of estimations are smaller than those of the mag-

nitude model, the majority of our estimates are underestimated, particularly

for the single-decay model. This observation is in contradiction to the simula-

tion results: although, theoretically best results are obtained using the complex

models, the same is not truth in practical approaches.

3.2.2 Magnitude model alternative combinations

From section 3.1.1, two alternative combinations were chosen and known to

minimize the error and bias in the magnitude model. These combinations were
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tested using the phantom and results are shown in figures 3.14 and 3.15 for two

distinct coronal slices.

Figure 3.14: Phantom FF quantification of images from two different slices using the alternative
combination for the magnitude single-decay model.

Figure 3.15: Phantom FF quantification of images from two different slices using the alternative
combination for the magnitude dual-decay model.

Figure 3.14 illustrates that FF estimation is, in general, affected by a large bias.

Interestingly, from the comparison with figure 3.12, the precise estimation of

the FF in the vial with an emulsion of 50% fat must be stressed.
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Results obtained with the alternative TE-∆TE combination for magnitude

dual-decay model is presented in figure 3.15. In contrast with the clinical pro-

tocol acquisition, figure 3.15 shows a more robust estimation, particularly for

low values of FF. Associated with this quantification, it is noteworthy the low

FF errors, in opposition with the magnitude single-decay model.

3.2.3 Complex model alternative combinations

Results obtained with alternative TE-∆TE combinations are expressed in fig-

ures 3.16 and 3.17.

Figure 3.16: Phantom FF quantification of images from two different slices acquired using the
alternative combination for the complex single-decay model.

Results show a severe disparity from the true amount of FF. Similarly to the

clinical protocol, the present quantification shows values mainly below the true

values. In addition, the quantification disparity from slice to slice is even larger

than in the case of the magnitude models, particularly in the case of dual-decay

model.
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Figure 3.17: Phantom FF quantification of images from two different coronal slices acquired using
the alternative combination for the complex dual-decay model.

3.3 In-vivo Studies

Figure 3.18 shows the parametric maps obtained for FF quantification in the

liver for 3 controls using the magnitude model with single- and dual-decay con-

stants. Results suggest that the magnitude single-decay model is very accurate

to estimate low FF values. In fact, all parametric maps obtained with this model

show a liver fat accumulation inferior to 10% (FF threshold for steatosis). On

the contrary, magnitude dual-decay model systematically fails to correctly sort

out the signal intensity of water and fat. In that sense, voxels where the FF is

close 0% are wrongly associated with a FF close to 100%. Similarly, voxels in

the subcutaneous fat are wrongly associated with a FF of 0%.

Figure 3.19 shows FF parametric maps of three patients obtained with the

magnitude model. As for the controls, here, magnitude single-decay model also

performed better in estimating FF values. In additions, magnitude dual-decay

model continues to incorrectly overestimate FF values.
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Figure 3.18: Parametric maps of liver FF in three control subjects obtained with the magnitude
model.

Figure 3.19: Parametric maps of liver FF in three patient obtained with the magnitude model.
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Discussion

The goal of the present work was to optimize the acquisition strategy for FF

quantification in the liver. The approach that was followed consisted in:

1) Study the dependence of FF quantification error and bias on distinct TE-

∆TE combinations both for magnitude and complex models;

2) Find alternative TE-∆TE combinations for FF quantification and test

their robustness experimentally;

3) Compare with the standard clinical protocol.

Simulation results indicate that TE-∆TE combinations have a strong influence

in the FF estimation error. Overall, different TE-∆TE combinations optimize

FF quantification for different conditions. In fact, results show that TE-∆TE

combinations which minimize the errors and biases in one model, not necessarily

do the same in other models (e.g. figure 3.3). Moreover, distinct TE-∆TE com-

binations minimize different estimation parameters, which implies that there is

not a single optimal TE-∆TE combination to estimate FF with minimum error

and bias.

FF estimation with the magnitude model is more sensitive to noise [4, 37], es-

pecially when considering dual-decay relaxation constants. In the presence of

noise and particularly for low values of FF, this model may lead to an over-

estimation of the true amount of fat as can be clearly observed in figure 3.4.

The sensitivity of the magnitude model to the presence of noise is explained by

48
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the fact that magnitude images amplify the noise that is present in the com-

plex data acquired in the scanner. In fact, the square operation on complex

data transforms and amplifies the noise with Gaussian distribution into noise

with Rician distribution. In addition, the sensitivity of the magnitude model

to noise is also due to the fact that it discards the phase information that is

available in the data. As a consequence this model is not able to distinguish

the major component in the voxel. This becomes evident in the in vivo-studies,

where the magnitude dual-decay model systematically estimates high FF in

controls known to have a low FF. Another consequence of the lack of phase

information is that the estimations for FF near 50% are strongly dependent on

the TE-∆TE combination that is used to sample the signal. This is explicitly

demonstrated in the bias colour maps (figures 3.4 and 3.6) where an intricate

pattern of higher and lower biases is observed. In contrast, complex model ex-

hibits a more robust fitting, achieving higher values of NSA and lower errors,

especially for dual-decay constants. For both magnitude and complex models,

results demonstrate that as the values of FF increase, more TE-∆TE combina-

tions, where FF error and bias are minimized appear. This is the result of the

increased signal intensity from fat protons as FF values increase.

The way relaxations effects are included in the model influence the FF estima-

tion [4, 7]. Magnitude model profits from considering a single-decay constant

for water and fat, whereas complex model appears to perform better considering

two different relaxation constants. The justification for this lies in the fact that

the complex model with dual-decay constants is a more realistic description of

the data than any other model. This is proved by the low FF bias and errors

that are obtained, especially for higher values of FF.

The studies regarding magnetic field inhomogeneities indicate that complex

model leads to a highly biased FF estimations for off-resonance frequencies.

This is enhanced in figure 3.7 in which, even for optimized TE-∆TE combina-

tions, minimization is only achieved for frequencies very close to the resonance

frequency. Simulation results shows that, in the presence of the cumulative

effects of phase errors and noise, the complex model may show difficulties per-

forming fat quantification.

Finally, simulation results demonstrated that the clinical protocol is not opti-

mized for FF quantification. Generally, the clinical TE-∆TE combination falls

on regions of larger errors, which may lead to incorrect estimations.
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In the development of a new strategy for image acquisition, several considera-

tions were made in order to properly identify alternative TE-∆TE combinations

from the simulation studies. Finding the best TE-∆TE combination that si-

multaneously minimizes the bias and errors associated with all the parameters

(T ∗2water, T
∗
2fat, and FF), is difficult. The problem here is that a TE-∆TE com-

bination which optimizes a parameter may also dramatically increase the error

and bias in others. Therefore, the choice was to consider TE-∆TE combinations

that would roughly optimize the error and bias in FF, while keeping TEmin and

TE-∆TE as small as possible in order to maximize image SNR. Finally, there

were hardware limitations: the whole-body MRI scanner does not allow first

TEs and ∆TEs lower than 2.40ms and 1.26ms, respectively.

Phantoms experiments emphasise the limitations of the clinical protocol to cor-

rectly estimate certain amounts of fat. Although magnitude single-decay model

shows accurate estimates for certain values of FF (0%, 5% and 100%) it also

shows weak estimations for FFs between 5% and 100%. The better quantifica-

tion of low FF values in phantoms using the clinical protocol contradicts the

simulation results. In phantom experiments, differences in FF estimations for

different coronal slices are observed. This suggests that although, the emulsions

appears to be homogeneous at a macroscopic scale, that is probably not so at

a microscopic level. Furthermore, as the amount of FF increases more inhomo-

geneities may be present in the emulsions, which can reduce sampling quality

leading to more incorrect estimations. The magnitude dual-decay model also

shows an inaccurate quantification of fat, with the majority of the estimates

lying below the true value of FF.

When the FF is estimated using the alternative TE-∆TE combinations, im-

provements are found in the magnitude model. It is noteworthy the precise

estimation of FF of 50% using magnitude single-decay model where the FF

error is almost zero. This observation is in support of our simulation data

and emerges as results of our optimization process (table 3.2). Magnitude

dual-decay model also expresses enhanced performance in low FF range, being

capable of estimating FF of 0%, 5%, 10% more accurately, but failing in esti-

mating FF=100%. Nevertheless, we observed that in both models, an unbiased

estimation of the FF in a given vial often corresponds to the biased estima-

tion of FF in other vials, which provide further evidence of the difficulties in

choosing a single TE-∆TE combination that minimizes all FF simultaneously.
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For the complex model, alternative TE-∆TE combinations with lower error and

bias compared to magnitude model were identified. Nevertheless, even for these

alternative TE-∆TE combinations, the complex model often fails the FF esti-

mation, which implies that the drawbacks associated with the complex model

such as the presence of phase errors may be determinant in practice.

In-vivo experiments, using the clinical protocol and the magnitude single-decay

model show that it can correctly identify subjects with small amounts of liver

fat as opposed to patients with steatosis. However, it also shows how it fails to

correctly estimate the FF in subcutaneous fat. This implies that its use in situ-

ations where image SNR is lower may originate problems in FF quantification.

This work presents some limitations. In the first place, the fact that the emul-

sions of our phantom may not be totally homogeneous is a confounding effect

in the interpretation of these results. However, obtaining homogeneous emul-

sions of water and fat is extremely difficult. For instance, the preparation of a

macroscopically homogeneous emulsion with FF=75% was not possible. This

work also leads to several important conclusions. It is demonstrated that new

acquisition protocols can be developed to improve FF quantification. This is

particularly important for magnitude model, which is commonly used in clin-

ical procedures. It is also demonstrated that an optimal model or TE-∆TE

combinations to perform FF quantification does not exist, but rather better

options for different situations. Therefore, when developing a complete acqui-

sition protocol for FF quantification, a compromise between distinct TE-∆TE

combinations, different models and the expected range of FFs will have to be

taken into account. Finally, the complex model with dual-decay constants to-

gether with the appropriate changes in the pulse sequence in order to minimize

the effects of phase errors, may emerge as the best solution to improve FF

quantification



Chapter 5

Conclusion

In the present work the problem of liver fat quantification using chemical shift

imaging, was investigated with a view at data acquisition optimization at 3T.

The effects of noise, phase errors, relaxation effects and especially the influence

of distinct TE-∆TE combinations, so far largely overlooked in the literature, in

FF estimation, were evaluated for four distinct models.

In our approach, we demonstrated, theoretically, that good FF estimations

can be obtained, suggesting that enhanced fat quantification can be performed

by means of correctly choosing the TE-∆TE combinations. Moreover, it was

shown that better FF estimations are obtained for the complex model that is

potentially more precise in determining the FF because it describes the data

with more completeness. However, the potential advantages of the complex

model are largely overshadowed by the inaccuracies that are introduced by

phase errors, in the presence of magnetic field inhomogeneities. Since the latter

are more prominent at high field strength (3T and above), attention should be

given to pulse sequence optimization to minimize phase errors.

We also demonstrate that the problem of FF estimation from ME-GRE im-

ages is not a straightforward procedure and involves several complexities, at

both image acquisition and image post-processing levels. The standard clinical

protocol, based on the magnitude model, has several flaws and needs improve-

ment. Nevertheless, we demonstrate that the standard clinical can be used as

way to perform early steatosis staging: which may allow us to constrain ranges
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of FFs. This fact in association with new enhanced FF quantification proto-

cols, can emerge as a possible way to develop a complete new strategy for fat

quantification using chemical shift imaging.

5.1 Future Work

The development of a complete user interface for the application that was de-

veloped to quantify liver FF on voxel-by-voxel basis is the next step to extend

FF quantification to clinical routine. Finally, the acquisition of in vivo phase

images is of great importance to address the performance of the complex model

in-vivo. Furthermore, pulse sequence optimization will be carried-out in order

to minimize the effects of phase errors on FF quantification using the complex

model.
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