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Abstract 

Nowadays computer science applied to cancer research is of great importance. In this 

work, unsupervised and supervised learning techniques were applied to 

[
18

F]Fluorothymidine Positron Emission Tomography ([
18

F]FLT-PET) data. 

As supervised learning we used an approach named Kinetic Spatial Filtering (KSF) 

developed at Imperial College London based on uptake of the radiopharmaceutical 

([
18

F]FLT) that differs from tissue to tissue. It is a filter shown to separate tumour and 

vertebra from other tissues in patients. However, when applied to images of mice 

implanted with HCT116 cancer cell lines, even when mouse time activity curves were 

used as template, it failed to achieve similar results to the ones obtained in analysis of 

patient images with pancreatic cancer with liver metastases where the filter was able to 

distinguish the tumour from the surrounding organs. This analysis intends to be used to 

detect early tumour response after one cycle of treatment.   

 As unsupervised learning we used Self-Organizing Maps (SOM). We applied this 

algorithm in [
18

F]FLT-PET data from mice. First we applied SOM for HCT116 data 

analysis. The objective was successfully achieved since these maps could differentiate 

pre from post treatment images. In a second application, we used SOM with data from 

mice implanted with A2780, SJSA, SN40R2 and HT29 cancer cell lines, to see if we 

could distinguish and classify the tumours. We could only distinguish SJSA from other 

tumours. In two of the mice studies, data inputs for the SOM were voxels obtained from 

drawn regions of interest (ROI): tumour, muscle, bladder, heart and kidney. 

Characteristics of the derived maps were the clustering patterns of voxels from each 

tissue type. As final result, SOM was able to cluster the data as follows: tumour, muscle 

and bladder formed one cluster, heart and kidney formed another more diffuse cluster. 

When applying SOM just to tumour ROIs, the separation between different tumours 

was partly achieved. On a third approach we used this classification method on patient 

data, to see if it was able to distinguish between pre and post treatment data, so that we 

could evaluate if the patient was responding or not to treatment. We found that the 

algorithm was able to perform this task. Again, in this data, ROIs were drawn around 

tumour, vertebra, heart, liver and kidney. Here liver, tumour, vertebra and kidney 

performed one cluster and heart another. 
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Suma rio 

Nos dias de hoje a informática aplicada à investigação em cancro é de grande 

importância. Neste trabalho, técnicas de aprendizagem não supervisionada e 

supervisionada foram aplicadas a dados de [18F]Fluorotimidina – Tomografia por 

Emissão de Positrões ([
18

F]FLT-PET). 

Como aprendizagem supervisionada usámos um filtro chamado Filtro Cinético Espacial 

(KSF) desenvolvido no Imperial College que é baseado na captação do radiofármaco 

([
18

F]FLT) que difere de tecido para tecido. É um filtro capaz de separar tumor e 

vértebra dos restantes tecidos. Contudo, quando aplicado a imagens de ratinhos 

implantados com linhas celulares de cancro de HCT116, mesmo quando curvas de 

actividade ao longo do tempo do próprio ratinho foram usadas como modelo, este não 

conseguiu obter os mesmos resultados que obtivemos na análise de dados de um 

paciente com cancro no pâncreas com metastases no fígado onde o filtro foi capaz de 

distinguir o tumor dos órgãos circundantes. Esta análise pretende ser usada para detectar 

resposta precoce depois de um ciclo de tratamentos. 

Como aprendizagem não supervisionada usámos Self-Organizing Maps (SOM). 

Aplicámos este algoritmo em dados de [
18

F]FLT-PET de ratinhos. Primeiro aplicámos 

SOM na análise de dados de HCT116. O objectivo foi alcançado com sucesso, uma vez 

que os mapas finais conseguiram diferenciar imagens de pré das de pós tratamento. 

Numa segunda aplicação, usámos SOM com dados de ratinhos implatados com linhas 

celulares de A2780, SJSA, SN40R2 e HT29 para ver se este conseguia distinguir e 

classificar os tumores. Conseguimos apenas distinguir SJSA das restantes linhas 

celulares. Em ambos os estudos, dados de input de SOM eram voxels obtidos de regiões 

de interesse: tumor, músculo, bexiga, coração e rim. Características dos mapas finais 

são os padrões de clustering dos voxels de cada tecido. No resultado final, o SOM 

conseguiu os seguintes clusters: tumor, músculo e bexiga num cluster e coração e rins 

noutro mais difuso. Quando aplicámos SOM apenas a ROIs sobre os tumores, a 

separação entre diferentes tumores foi apenas parcialmente conseguida.  

Numa terceira aplicação usámos este método de classificação nos dados da paciente, 

para ver se este conseguia distinguir entre pré o pós tratamento, no sentido de poder 

avaliar se o paciente estaria a responder ou não ao tratamento. Descobrimos que o 
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algoritmo era capaz  efectuar esta tarefa. Aqui o algoritmo agrupou fígado, tumor, 

vértebra e rins e colocou o coração noutro cluster. 
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Chapter 1. Introduction 

Throughout history there have been diseases concerning human civilization. In the bible 

we have evidence that show leprosy as the most fearful disease, then in the Middle Ages 

and Renaissance in Europe, the Plague haunted the human race and last century, it was 

tuberculosis that terrified the people (Pitot & Loeb, 2002). This infectious disease 

started to be less significant worldwide in the twentieth century, with the development 

of antimicrobial therapy.  

Since the last century, the most frightening disease in developed countries is cancer 

(Tobias et al., 2010). 

Cancer has long been known as a human infirmity. However, records showing cancer as 

a cause of death first appeared in Europe in the eighteenth century. Since then, the 

mortality rate for cancer increased and accentuated after the industrialization of the 

nineteenth century (Glade, 1999).  

In 2009, 320467 new cases of cancer were diagnosed in the United Kingdom and more 

than 1 in 3 people will develop some form of cancer during their lifetime. In the United 

Kingdom, the most common types of cancer are breast cancer, prostate cancer, lung 

cancer, bowel cancer, bladder cancer, uterine cancer (NHS, 2012).  

 

Figure 1 – The twenty most commonly diagnosed cancers excluding non-melanoma skin cancer in UK 2009 

(CancerResearch) 
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In Portugal there are more than forty thousand new cancer patients diagnosed every year 

and more than 20 thousand die from this disease (LPCC, 2012). 

World-wide, millions of people live with cancer diagnosis and it is thought that in 2020, 

the number of people diagnosed with cancer will rise from 10 million new cases every 

year to 16 million, with the deaths rising from 7 million to 10 million. Taking into 

account that the average life expectancy is growing every year, what we can take from 

here is that the number of cancer cases will rise, but more people will survive this 

condition (Nakajima, 2003; Tobias et al., 2010). 

For many years, the way to fight this pathology was based on surgery and radiotherapy. 

Nowadays, due to high level of research and developments in chemotherapy and 

radiotherapy, the planning in cancer treatment looks at each case as an individual. There 

are collaborations established on a national and international scale leading to an 

improvement in cancer treatment (Pitot & Loeb, 2002; Tobias et al., 2010). 

Cancer treatments are expensive and substantially toxic. To proceed with them, the 

doctors need to be completely sure of their efficacy in each individual patient. They 

need to be sure that they are increasing survival or improving quality of life somehow. 

For that reason, the collaboration between specialists is of massive importance: 

surgeons, specialists of the area where the tumour is located and radiologists need to 

work in cooperation (Pitot & Loeb, 2002; LPCC, 2012; NHS, 2012). 

Before the treatment is started, the team need to be sure about the type of cancer that the 

patient has. Tumour pathology must be defined and the extent of local and systemic 

disease must be determined. It is in this last section that histopathology, cytology, 

haematology, chemical pathology and diagnostic imaging help (Pitot & Loeb, 2002; 

LPCC, 2012; NHS, 2012). 

Accuracy in the staging of the tumour, prior to and after surgery, is achieved nowadays 

thanks to modern imaging techniques (e.g. Positron Emission Tomography (PET), 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound). The 

techniques are expensive and the information that we get from there needs to be 

assembled with other clinical results to accomplish good answers (Tobias et al., 2010).  

The main problem with the imaging is due to human bias presented in all the analysis. 

That is the main reason why currently large investigation is being developed in the field 

of Oncology together with Pattern Recognition/Classification imaging methods. The 

aim of this coupling is to allow the detection of cancer as early as possible, in situations 
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where the human eye cannot distinguish anything as pathological and more important, 

non-invasively. Since screening is one of the main weapons to fight this sickness, if we 

can access software that can give us this answer, without the need of being invasive and 

with high reliability, we could alert the patient and start the treatment at a pre-

symptomatic stage, where it is easier to ensure a successful response (Tobias et al., 

2010).  

That is where my project gains relevance and it is now time to introduce it.  

Data are available from a wide range of imaging techniques and can include dynamic, 

metabolic and spatial information. Improved methods are needed to extract the 

maximum information from these multi-parametric datasets and so aid tumour 

characterization. 

This study will evaluate the use of advanced pattern recognition techniques, especially 

self-organizing maps (an unsupervised neural network method), for analysis of dynamic 

PET data to help characterize and/or classify animal and human tumour models. This 

involved data that has been obtained at Newcastle University over the last three years. 

Due to the cooperation between Imperial College London and Newcastle University, we 

had access to software developed there, named Kinetic Spatial Filter (KSF), that helps 

to identify the tumour area in pancreatic tumours. Because our clinical team is trying to 

develop and improve new protocols for this malignancy, they gave us their software and 

we tried that on our data. That is the other part of the analysis developed in this project.  

This thesis is divided in five chapters. This first chapter makes a contextualisation of the 

motivations and objectives of the thesis. In the second chapter we have a general 

background over all the subjects developed in this project. In the third chapter we have 

the methods and respective results on the fourth chapter. In the fifth, we have discussion 

and conclusion of the thesis. Finally, we have one appendix with parallel work 

developed to help with the achievement of our results. 
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Chapter 2. General Background 

 Tumour physiological and biochemical 2.1

properties 

Cancer is a problem of cellular growth and differentiation. The tumour cell has two 

major characteristics: autonomy and anaplasia. They are autonomous because they get 

complete independence from the normal internal control of the cells, continuously 

proliferating and we say that they are anaplasic because they lose differentiation 

capability. The normal process of programmed cell death no longer operates leading to 

complete uncontrollable growth of the tumour cells (Macdonald et al., 2004; Lehninger 

et al., 2008). 

The tumour cells increase the size and density of the nucleus, which means, their DNA 

(Deoxyribonucleic Acid) replicates. They have abnormal chromosomes and abnormal 

mitosis. They develop modifications in their cellular surface: loss or modification of the 

glycolipids/glycoproteins; alterations in cellular response to external Growth Factors 

(GF), responding only to their own GFs (autocrin stimulation). They exhibit abnormal 

cellular proliferation, alteration in cell to cell recognition and less adhesion than normal 

cells (Macdonald et al., 2004; Tobias et al., 2010). 

Tumours can be divided into benign and malignant. The benign ones are usually not 

fatal. They are well separated from the organs and grow inside a well-defined capsule 

that permits its elimination with no major difficulties. Malignant tumours can spread 

through all the body and generate further growth and metastasis, therefore becoming 

life-threatening (Pitot & Loeb, 2002; Macdonald et al., 2004).  

In this project we used image data from mice and patient, all with malignant types of 

tumour.  

In human we just used data from one patient with pancreatic cancer with liver 

metastases.  

The mice data collected is from two types of colorectal tumour (HCT116 and HT29), 

two from osteosarcoma (SJSA and SN40R2) and one from ovarian type (A2780). These 

tumour cell lines are of particular interest for Newcastle University either because of the 
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frequency of these tumour types in the population or because useful genetic variants are 

available. 

 Positron Emission Tomography – PET  2.2

Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique that 

emerged during the 1980’s and is based in the interaction between radioisotopes and 

matter (Brownell, October 15, 1999). Using this technique we can scan a subject 

(human or animal) and obtain a two or three-dimensional (2D or 3D) image based on 

cellular function and physiological processes. It is one of the techniques of Nuclear 

Imaging and it is very useful for research due to his wide application in diagnosis of 

different diseases in a vast number of areas: Cardiology, Respiratory Disease, 

Endocrinology, Neurology, Oncology, etc. Clinical applications for PET continue to 

increase, particularly in the field that we are mostly interested in this study: Oncology 

(Sharp et al., 2005). For each type of study, a different range of radiopharmaceuticals is 

used, depending on the organ and function that we want to visualize (e.g. 

Fluorodeoxyglucose (FDG) and Fluorothymidine (FLT) among many others) (Sattler et 

al., 2010). 

 

Figure 2 – PET scanners for patients (a) and mice (b) from Newcastle University. 
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 Procedure 2.2.1

The first procedure is the injection, inhalation or even ingestion of the 

radiopharmaceutical by the patient. The criteria to choose this radiopharmaceutical is 

usually related to the organ and disease that we intend to visualize. After the injection 

there will typically be a waiting period where we wait for the biodistribution of the 

radiopharmaceutical. This interval between the first step and the beginning of the scan is 

dependent on the organ that we want to visualize (Saha, 2010).  

 

 Fundamentals 2.2.2

‘Radioactivity is a property of atomic nuclei and may be defined as the spontaneous 

transformation of a structurally unstable nucleus to a structurally more stable nucleus, 

with the emission of energy in the form of ionizing radiation’ (Biersack, 2007). These 

transformations are known as radioactive decays and occur by emission of radiation 

such as α particles, β
-
 particles, β

+
 particles, electron capture and isomeric 

transition(Saha, 2010). These radioactive isotopes are termed radionuclides.   

Out of all the above radioactive decays, the one that we are interested in for PET studies 

is the positron (β
+
) decay characteristic of radionuclides which are proton rich or 

neutron deficient. In essence, a proton in the nucleus is converted to a neutron in the 

process (Phelps, 2006; Saha, 2010): 

 

               Equation 1 

 

Where p is the proton, n is the neutron, β
+
 is the positron and ν is the neutrino. 
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Figure 3 – The process of positron emission and subsequent positron-electron annihilation which produces two 

511KeV photons emitted in opposite directions (~180o). (Adapted from (Saha, 2010)) 

 

In Figure 3, we have the decay process of a radionuclide, producing a positron that 

annihilates with an electron, emitting two γ photons (511KeV of Energy) in opposite 

directions (~180
o
). The site of annihilation is usually very close to the point of positron 

emission because the emitted positrons rapidly lose their energy in tissue (Cherry, 

2006). If these two photons are detected by the detectors of the PET scanner within a 

short (~ns) timing window (the coincidence timing window), an event called true 

coincidence is recorded along a straight line that connects the centres of the two 

detectors – denominated the Line of Response (LOR). This is the basis of PET scanning 

(Saha, 2010).  

There are some events that can yield false coincidences. These are present in Figure 4.  

 

 

 
Figure 4 – False coincidences detected. The Compton interaction will yield a scattering event (a) and the 

accidental interaction will yield a random coincidence (b) (Adapted from(Ferreira, 2009)) 

 

 



27 

 

In Figure 4 a) is present the Compton scattering interaction (Ollinger, 1997). This is a 

result of Compton Scattering of one or both photons with matter. The Compton 

Scattering interaction results from a partial energy transfer from γ photon to an outer 

shell electron, forcing it to change the direction and lose some of its energy (See Figure 

5) (Ollinger, 1997; Hendee & Ritenour, 2002). 

 
Figure 5 – Compton Scattering interaction (Adapted from (Cherry, 2006)). 

 

It is important to point that whether this is counted as a coincidence event, depends on 

the final photon energy compared to the energy window set for the detectors. 

To understand the accidental interaction (Figure 4 b)), we need to know that there are a 

large number of scattered photons. As a result, there will be single photons detected. If 

two single photons from different annihilations are detected, we have an accidental 

interaction. (Hendee & Ritenour, 2002; Cherry, 2006). 

The forthcoming process after the annihilation is the detection of these γ photons by the 

detectors of the PET scanner.  

These are solid scintillation detectors that after absorbing γ radiation emit photons of 

light that will be converted to an electrical signal by photomultiplier tubes (PMTs). This 

electrical current is then registered as a count (Cherry, 2006; Saha, 2010). The 

configuration of these detectors is given in Figure 6. As shown there, a block of 

detectors consists of an array of individual scintillation crystals viewed by a number of 

PMTs. All these components together generate a module that will be part of the PET 

scanner ring that surrounds the patient. 
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Figure 6 – Scintillation detector of PET scanner. (Adapted from (Ferreira, 2009) 

These detectors need to have some characteristics that make them optimum for the 

detection of the γ photons. They should have good stopping power for 511KeV (i.e. 

high density), they should have quick reaction time, good energy resolution, low 

Compton scatter inside the detector crystal and matching of wavelength of fluorescence 

to response of the light detector (Sharp et al., 2005). In Table 1 we have some of the 

most commonly used materials for solid scintillator crystals detectors and its respective 

characteristics.   

Table 1 – Properties of different solid scintillator crystals for PET detectors (adapted from (Cherry, 2006) 

Scintillation 
Density 

(g/cc) 

Light 

output 

(photons 

per 

511Kev) 

Decay 

time 

(ns) 

Index of 

refraction 

Linear 

attenuation at 

511KeV(cm
-1

) 

Ratio 

Between 

Photoelectr

ic and 

Compton 

Sodium Iodide [Nai(Tl)] 3.67 19400 230 1.85 0.34 0.22 

Bismuth Germanate 

(BGO) 
7.13 4200 300 2.15 0.96 0.78 

Lutetium 

Oxyorthosilicate(LSO:Ce) 
7.4 ~13000 ~47 1.82 0.88 0.52 

Gadolinium 

Oxyorthosilicate(GSO:Ce) 
6.71 ~4600 ~56 1.85 0.70 0.35 

Barium Fluoride(BaF2) 4.89 700, 4900 
0.6, 

630 
1.56 0.45 0.24 

Yttium Aluminium 

Perovskite (YAP:Ce) 
5.37 ~9200 ~27 1.95 0.46 0.05 

 

Block Modulos 
PET scanner 
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With correct calibration, PET can yield very precise quantitative estimates of the 

concentration of the radiopharmaceutical, giving us precise quantitative measurements 

of specific physiological quantities such as blood flow, glucose metabolism, receptor 

binding characteristics, among many other physiological, biochemical and 

pharmacological processes (Ollinger, 1997). The biological pathway visualized, 

depends on the radiopharmaceutical chosen.  

 Data acquisition 2.2.3

The data acquisition in PET can be static or dynamic.  

The most basic data acquisition is a static PET protocol that implies an acquisition of a 

single data set or static frame over a fixed length of time. The data obtained is useful to 

estimate the gross tracer uptake which means, the average tissue activity concentration 

of the tracer. Usually this acquisition mode is applied in studies where the concentration 

of the tracer is stable or the best time for imaging is already well defined (e.g. [
18

F]-

FDG)(Phelps, 2006; Saha, 2010). 

In dynamic PET, the data is acquired as a sequence of dynamic time frames. Here the 

information given is relevant to understand how the tracer biodistribution is done along 

the time of the acquisition in the body. A kinetic curve of the tracer can be achieved. 

The studies developed on this work are all based on dynamic data acquisition, in 

particular, the KSF is based on the kinetic curves obtained from this PET dynamic 

protocol (Phelps, 2006; Saha, 2010).   

 PET Units 2.2.4

Standard Uptake Value (SUV) is broadly used as the standard unit in PET studies, and 

this project was not exception. All the analyses were developed using SUV units.  

The SUV is the concentration of activity at the region of interest (ROI), which is 

normalized for body weight and to injected dose activity.  

 

    
                                       

                                
  

For mice analysis, we used Philips PET scanner. PET statistics in the Philips scanner 

are shown, by default, in counts. To visualize data in Standardized Uptake Value (SUV) 
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instead of counts, we need to calibrate the scanner to convert counts per pixel into 

millicuries per cubic cm (mCi/cc) (PhilipsManual, 2010). We can also convert the data 

from counts to SUV, after the acquisition, as described in methods.  

For patient data, the scanner used was Siemens and the final data was already in SUV 

with no need for conversions. 

 PET/CT Data acquisition 2.2.5

A multimodality scanner can acquire structure and functional information in the same 

study. With the CT we can more accurately identify the anatomic structures and with 

PET we can determine where, for example, an abnormal function, such as a tumour, is 

present. When we have these images precisely coregistered, we can more precisely 

determine where in the body the tumour is (Townsend, 2008). 

The introduction of combined PET/CT scanners to the market was in 2001 and 

nowadays it is fully adopted in all the Nuclear Medicine Services, but specially used for 

oncology studies (Muehllehner & Karp, 2006; Townsend, 2008). 

In this project, for the patient study the PET/CT scanner was used. The objective of the 

KSF filter was to identify the tumour region of interest in the neighbourhood of high 

[
18

F]FLT signals from the liver in a PET study. CT images, especially making use of CT 

contrast agent injection, have been used to help identify the pancreatic tumour in this 

patient.    

 Radionuclides and radiopharmaceuticals 2.3

The majority of the radionuclides are produced artificially. They are atoms with 

unstable nuclei, due to excess or deficit of neutrons. Tending towards stability, they will 

spontaneously decay (radioactive decay), emitting different types of radiation: α 

particles, β
-
 particles, β

+
 particles, electron capture and isomeric transition. The practical 

applications of these radionuclides are dependent on their properties and interaction 

with matter. As stated before, the radionuclides that we are interested in for PET study 

purposes are the ones that decay with positron (β
+
) emission (deficit of neutrons) 

(Allisy-Roberts et al., 2007). 

The characteristics to look at when choosing the radionuclide for in vivo studies are the 

half-life – it needs to have a half-life big enough to permit transport from the production 

source until image acquisition but it cannot be too high, to avoid the unnecessary 
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exposure of the patient to the radiation. We need to be also aware of the radiotoxicity of 

the radionuclide, which is dependent on the nature and energy of the emitted radiation, 

on the tissues’ uptake of the radionuclide and finally on the pharmacokinetic 

elimination of the radionuclide. Another important aspect is the relation between cost 

and benefit. There are some interesting radionuclides, but due to high production costs, 

they are generally not used (e.g. 
67

Cu). Finally, the perfect radionuclide should be easy 

to attach to the pharmaceutical (Hendee & Ritenour, 2002).   

In  

Table 2 we have some of the more commonly used radionuclides with respective 

properties, where half-life is the time that the activity of the radionuclide will fall to 

one-half. The Maximum Energy (Emax) is the energy released in the positron after the 

decay (Martin et al., 2003). The β
+
 Branching Fraction is the probability that the 

radionuclide will decay with positron emission (β
+
) (Hendee & Ritenour, 2002). Finally, 

the precursor columns show the isotopes that are used to generate the radioisotope by 

the reaction showed in parenthesis.  

 

Table 2 – Properties of the most common positron emitters. 

Radionuclide Half-life 
Emax 

(MeV) 

β+ Branching 

Fraction 
Precursor 

11
C 20.4 min 0.96 1.00 

14
N(p,α)

11
C 

13
N 9.97 min 1.2 1.00 

16
O(p,α)

13
N 

15
O 2.03min 1.73 1.00 

14
N(d,n)

15
O 

18
F 109.8min 0.63 0.97 

18
O(p,n)

18
F 

 

Radiopharmaceuticals are biochemical or drug molecules labelled with a radionuclide. 

It consists of two parts: a carrier molecule and the incorporated radionuclide. With the 

proper radiopharmaceutical we can image specific biochemical processes or we can 

image a certain organ that we are interested in (Schiepers & Baert, 2006; Biersack, 

2007).  

The criterion to choose this radiopharmaceutical is the ability to target a specific organ 

or disease, its solubility and capacity to cross cell membranes, along with all the criteria 

stated before to choose the radionuclide (Guy & Ffytche, 2005). 

Some of the more commonly used radiopharmaceuticals are presented in Table 3. 
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Table 3 – Most commonly used radiopharmaceuticals. (adapted from (Haubner, 2010)) 

Molecular 

uptake 

Mechanism 

Tracer 
Radio 

nuclide 

Organs of highest 

physiological uptake 
Availability 

Amino acid 

transport and 

protein 

synthesis 

Methionine 
11

C 

Liver, salivary glands, lachrymal 

glands, bone marrow, pancreas, 

bowels, renal cortical, urinary 

bladder 

In house 

production/ 

cyclotron 

Fluoroethyltyrosine 
18

F 
Pancreas, kidneys, liver, heart, 

brain, colon, muscle  

In house 

production/ 

cyclotron 

FDOPA 
18

F 
Pancreas, liver, duodenum, 

kidneys, gallbladder, biliary duct 

Commercially 

available 

Glucose 

metabolism 
FDG 

18
F 

Brain, myocardium, breast, 

liver, spleen, stomach, intestine, 

kidney, urinary bladder, skeletal 

muscle, lymphatic tissue, bone 

marrow, salivary glands, 

thymus, uterus, ovaries, testicle, 

brown fat 

Commercially 

available 

Proliferation FLT 
18

F 
Bone marrow, intestine, kidneys, 

urinary bladder, liver 

In house 

production/ 

cyclotron 

Hypoxia 

FMISO 
18

F Liver, urinary excretion 

In house 

production/ 

cyclotron 

FAZA 
18

F 
Kidneys, gallbladder, liver, 

colon 

In house 

production/ 

cyclotron 

Cu-ATSM 
64

Cu 
Liver, kidneys, spleen, 

gallbladder 

In house 

production/ 

cyclotron 

Lipid 

Metabolism 

Choline 
11

C 
Liver, pancreas, spleen, salivary 

glands, lachrymal glands, renal 

excretion, bone marrow, spleen 

In house 

production/ 

cyclotron 

Fluoroethylcoline 
18

F 
Liver, kidneys, salivary glands, 

urinary bladder, bone marrow, 

spleen 

In house 

production/ 

cyclotron 

Acetate 
11

C 
Gastrointestinal tract, prostate, 

bone marrow, kidneys, liver, 

spleen, pancreas 

In house 

production/ 

cyclotron 

Angiogenesis/ 

integrin 

binding 

Galacto-RGD 
18

F Bladder, kidneys, spleen, liver 

In house 

production/ 

cyclotron 

AH111585 18F Bladder, liver, intestine, kidneys 

In house 

production/ 

cyclotron 

SSTR Binding 

DOTATOC 68Ga 
Pituitary and adrenal glands, 

pancreas, spleen, urinary 

bladder, liver, thyroid 

In house 

production/ 

cyclotron 

DOTATATE 68Ga Spleen, urinary bladder, liver 

In house 

production/ 

cyclotron 

 

Using PET with the radiopharmaceuticals presented on  Table 3. 
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Table 3, we can image for tumour staging, we can predict tumour response to therapy, 

we can detect recurrence, and finally, evaluate modifications in organ function after 

treatment (Rohren et al., 2004). 

In cancer research, the most commonly used radiopharmaceutical is [
18

F]-FDG. The 

FDG-PET combined with a structural imaging given by Computed Tomography (CT), 

provides the necessary information for a cancer stage definition.  

Another radiopharmaceutical that recently started to be used is [
18

F]-FLT. In our studies 

we used just this one.  

In the following subsections we are going to write about both radiopharmaceuticals. 

 [18F] – FDG 2.3.1

The [
18

F]-FDG is an analogue of the glucose molecule. Fluorine is incorporated into 

deoxyglucose yielding FDG and this compound is very successfully used in oncology 

(see Figure 7) (Guy & Ffytche, 2005). 

It is intravenously administrated and it will initially follow the same pathway as 

glucose. To ensure their fast growth, the tumour cells are avid for glucose and usually 

exhibit an increase in the membrane glucose receptors. The [
18

F]-FDG will enter the cell 

using the glucose transporters and inside the cell, it will be phosphorylated by 

Hexokinase II (HK II). After this conversion from [
18

F]-FDG to [
18

F]-FDG-6-

phosphate, it is not metabolized any further, so it will be trapped in the cell(Saha, 2010).   

 

Figure 7 – [18F]FDG uptake into tumour cells (Haubner, 2010). 

HK II 
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The major disadvantage of this radiopharmaceutical is that it images all the pathways 

that involve glucose. With this radiopharmaceutical we can image benign tumours, 

acute or chronic inflammatory tissue, normal tissue with a high physiological or 

metabolic activity (as bladder, kidney, heart, brain, muscle...) which yields a high 

background that will hamper the visualization and diagnosis. In other words, [
18

F]-FDG 

is relatively unspecific. Nowadays it is the gold standard in oncology although, FLT has 

started to be used recently as a marker for proliferation, rather than a marker for more 

energetically and glycolytically active cells (Gray et al., 2010). 

 [18F] – FLT  2.3.2

Thymidine is the only nucleoside that is incorporated into DNA and not into RNA, 

becoming for that reason a good candidate to measure cell proliferation (Backes et al., 

2009).  

The [
18

F]FLT (Fluorothymidine) is a radiopharmaceutical analogue to thymidine where 

the hydroxyl function in position 3’ is replaced by 
18

F. It enters the cell using mainly 

nucleoside transporters (NT), but it can also enter by passive diffusion. After its 

entrance in the cell, it is phosphorylated by thymidine kinase 1 (TK1) to [
18

F]FLT-

monophosphate, which is further phosphorylated by nucleoside triphosphate kinase 

(TPK) and nucleoside diphosphate kinase (DPK) to [
18

F]FLT-diphosphate and 

[
18

F]FLT-triphosphate but the incorporation in DNA is restricted to minor amounts, due 

to the missing 3’-hydroxyl function (see Figure 8). Due to the negative charge of the 

phosphate group, it is not going to cross biological membranes getting accumulated 

inside the cell. This is the basis of [
18

F]FLT – PET imaging (Backes et al., 2009; 

Barwick et al., 2009; Buck et al., 2009; Haubner, 2010). 
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Figure 8 - [18F]FLT uptake into tumour cells(Haubner, 2010). 

This radiopharmaceutical is nowadays used as a promising tracer for imaging cell 

proliferation. It goes mostly to hepatic metabolism as well as rapid proliferating 

tumours and some other tissues as the heart and vertebra (Gray et al., 2010). And 

because the changes in proliferation in a tumour cell happen before changes in glucose 

metabolism or changes in the size of the lesion, it is described as a successful tracer in 

monitoring response to oncological therapy for some tumour types (e.g. pancreatic, 

colorectal, liver cancers) (Quon et al., 2008; Contractor et al., 2012). 

 

 Kinetic Spatial Filter – Based on (Gray et 2.4

al., 2010) 

In 2010, a publication from Imperial College titled ‘Kinetic filtering of 

[
18

F]Fluorothymidine in positron emission tomography studies’, brought a new 

nonlinear kinetic filtering technique based  on the kinetic properties of the FLT that are 

different depending on the tissues, but similar in all the patients (Gray et al., 2010). 

The basic idea behind this filter, was the isolation of cancerous tissue from healthy 

organs, developed and validated using scan data from 29 patients with locally advanced 

metastatic breast cancer, using [
18

F]FLT-PET. 

The dose-normalized average time versus radioactivity curves (TACs) for different 

organs (lungs, liver, normal breast, vertebra), background (for voxels located outside the 
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body but inside the Field of View (FOV)) and tumour, were generated using scans from 

the 29 patients in this study. The resulting curves are presented in Figure 9. Each image 

voxel was then classified according to the tissue type it was more likely to represent, 

taking into account all the time frames for this voxel and comparing to the TACs 

obtained as a template. This comparison was made using Mahalanobis distance, given 

by Equation 2: 

 

 

where    is the activity of the voxel,    and    are the mean and standard deviation 

activities, respectively, of the class it is being compared against. N is the number of 

discrete time frames of the TACs.  

In the end, after applying the filter, the idea was to reproduce an image only with 

tumour and vertebra tissues. Ideally they wanted to have just tumour, but because the 

signal in both vertebra/bones and tumour tissue is caused by rapid proliferation, the 

potential to remove the vertebra signal with a kinetic filtering approach was not 

considered further. 

The technique belongs to class of supervised approaches and uses predefined kinetic 

classes recently introduced in PET for neurological applications (Turkheimer et al., 

2007).  

In the Figure 9 we have the kinetic curves used for the classification algorithm in 

humans.  

 

 

   √∑(
      

  
)
 

 

   

       Equation 2 
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Figure 9 – Kinetic curves used for the classification algorithm in patients. These curves are derived from de 

templates used in the KSF. The error bars represent the standard error of the mean (SEM) where we have the 

FLT uptake for heart (a), liver (b), lung (c), normal breast (d), tumour (e) and vertebra (f). 

They claim: ‘We have developed a novel kinetic filter that employs the time 

information in PET scans of FLT to remove high physiological background uptake 

signal and can be used to measure accurately changes in proliferation in liver tumours. 

The method was found to be successful in removing signal from the liver, heart, lungs 

and normal breast, whilst retaining that from tumour and vertebra tissue.’ Thus this 

technique appears to be very helpful for localization of the tumour lesion, reducing the 

background signal.   

In discussion, they reveal that in one of the patients that had liver metastases, the filter 

was able to distinguish the tumour from the liver, what led to the study ‘Imaging of 

cellular proliferation in liver metastasis by  [
18

F]Fluorothymidine PET: effect of 

therapy’ also from Imperial College (Contractor et al., 2012), where they could 

distinguish between liver and metastases using what they now call kinetic spatial filter 

(KSF).  

In mice, we can apply the same technique, but we need to take into account that the 

uptake curves are different in some tissues, as we can see in Figure 10 

a) b) c) 

d) e) f) 
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Figure 10 – Kinetic curves used for the classification algorithm in mice. The error bars represent the standard 

error of the mean (SEM) where we have the FLT uptake for heart (a), kidney (b), bladder (c), muscle (d) and 

tumour (e). 

 

  Self-Organizing Maps 2.5

To understand Self-Organizing Maps, we need to know its original basis. It is one of the 

most well-known Artificial Neural Networks (ANN). This ANN started in mid-1980s 

and was a result of the knowledge on how the brain works and the necessity to develop 

computer models that would be able to deal with complex tasks, as close as possible to 

brain ability to understand, learn, classify and cluster complex external information. 

Therefore, the basic idea was to mimic as perfectly as possible the brain cells and 

processes (Ritter et al., 1992). Aiming to mimic the brain, ANN uses processing units 

(neurons) with connections between them to store the information needed to do a 

specific task (Cattinelli et al., 2012). Results from (Tu, 1996) suggest that we can obtain 

better results using ANN than traditional statistical methods in medical applications, 

particularly when the data is complex and non-linear(Valkonen et al., 2002). 

We can say that ANN are models to learn from the environment. There are two types of 

learning processes inside the ANN: Supervised Learning and Unsupervised Learning.  

a) b) c) 

d) e) 
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Supervised Learning presupposes that the correct answer is already known, serving for 

training or simply for comparing the input data with the training, sometimes being the 

output just right or wrong (reinforcement learning)(Guthikonda, 2005). 

The Unsupervised Learning implies that the correct answer is not known/ not given to 

the network. Therefore the aim of the network is to find by itself patterns in the input 

data. The advantage from this method is the independence from human interaction 

(Guthikonda, 2005).  

The SOM is an Unsupervised Learning method. As unsupervised, it does not need any 

initial knowledge of the data and from this we just expect to collect some new 

information about the data. SOM is a non-hierarchical network with only lateral 

interconnections between computing units, which means that all neurons are connected 

to their nearest neighbours with respect to the structure of the network. All neurons have 

the same weighting or importance (Kohonen et al., 1996a). 

This algorithm was created by Kohonen et al as a model for visualization and 

interpretation of high-dimensional datasets (Kohonen & Oja, 1987). Also known as 

Kohonen’s Neural Network, it transforms complex nonlinear statistical relationships in 

n-dimensional data into a low-dimensional grid map preserving the topological relations 

between the data(Chen et al., 1999; Lobo et al., 2007).  

The package with this software was released in 1992 and since then it has had regular 

updates to improve its performance (Kohonen et al., 1996a). 

This software is very useful for visualization, dimension reduction, clustering, 

classification, sampling, vector quantization and data mining (Lobo et al., 2004). 

The advantages of the SOM are the capacity to cluster noisy and even incomplete data 

in an interpretable manner (Covell et al., 2003; Hsu et al., 2003). The ability to explore 

large data sets is another of the main advantages of this algorithm(Valkonen et al., 

2002). The fact that no a priori hypothesis needs to be provided by the user leads to an 

unbiased result, another of SOM’s advantages (Cattinelli et al., 2012). SOM is reported 

to be a really good technique able to achieve better dimensionality reduction and data 

visualization than other methods (Lee & Verleysen, 2007). After learning to interpret 

the final maps, they get easily-readable, what makes SOM a good method to use in data 

analysis (Cattinelli et al., 2012). As described in Hsu et al., SOM data has a good 

compression property, where nodes of SOM serve as prototypes , or mean values, for a 
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number of analogous input data, so that complete clustering can be achieved in a 

reasonable time (Hsu et al., 2003). 

As disadvantages we can name the necessity to define the number of clusters that we are 

going to visualize, or at least, the maximum number and the fact that it is not able to 

grow by itself, as we can see in GSOM(Hsu et al., 2003). 

 The basic process 2.5.1

The Self-Organizing Map process is divided into three steps: 

Competition 

1. Initialization of weights for each node. 

2. Randomly a vector is chosen from the set of training data and presented to 

the network (input). 

3. All the nodes from the network are examined to determine which node has 

weights closest to the input vector, which means, the ones with minimal 

distance. In this step, the winning node is known as Best Matching Unit 

(BMU). The Euclidian distance is used to measure the closest input vector to 

a determined node: 

 

 ‖    ‖      {‖    ‖} Equation 3 

 

where ‖ ‖ is the distance measure, in this specific analysis, Euclidian 

distance. 

 

Figure 11 – Competition step of SOM. Any given input node is compared to the weight vector of each map 

node (or neuron) and the closest map node is the winner. 
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Cooperation 

4. The radius of the neighborhood of the BMU is calculated. This value starts 

large. Typically it is set to be the radius of the network, diminishing at each 

new iteration. 

 

 

 

 

 

 

Figure 12 – Cooperation step of SOM. Here the diameter begins in the outer dashed line and is going to shrink 

to the inner one with the iterations(Kohonen et al., 1996a). 

Adaptation 

5. Any nodes found within the radius of the BMU, calculated in step 4 are adjusted to 

make them more similar to the input vector. The closer a node is to the BMU the 

more its weights are transformed.   

 

 

 

 

 

Figure 13 – Adaptation step of the SOM (Kohonen et al., 1996a). The winner map node (neuron), represented 

here by spheres, and its neighbours are going to adapt to make their weight vectors identical to the input 

nodes. 

 

6. Repeat from step 2. for N iterations. 

It is important to note that the main idea of SOM after all these steps is not to cluster 

into a minimal amount, but to group the data into reduced and representative clusters 

(Valkonen et al., 2002). 



42 

 

 

 Applications of SOM 2.5.2

Self-Organizing Maps can be applied in a vast number of different areas; here I set 

down some of the ones found: 

1. Colour reduction (Rasti et al., 2007) 

2. Computer Vision (Kohonen & Oja, 1987) 

3. Classification of animals (Kohonen et al., 1996b) 

4. Image analysis(Rasti et al., 2007) 

5. Phoneme recognition(Arous & Ellouze, 2002) 

6. Analysis of patients gene expression(Hsu et al., 2003)  

7. Analyse breast sonography to diagnose breast cancer (Chen et al., 1999) 

8. Modelling urban phenomena(Lobo et al., 2007) 

9. Tool for geodemographical data analysis(Lobo et al., 2004) 

10. Monitor the performances of dialysis clinic chains (Cattinelli et al., 2012)  
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Chapter 3. Methods 

This project was developed using data from mice and patients. The mice data was 

collected in Newcastle University (Northern Institute for Cancer Research) in the PET 

scanner provided there, and the mice treatment and care was also developed there.  

The patient data was collected at Newcastle University PET Centre. It was acquired in a 

PET/CT scan and provided to me by the research team involved in the project. 

The data used for KSF analysis and for SOM analysis is the same, so I will start with a 

description on common features of the acquired data and I will then specify what I have 

done differently in each analysis. 

All the analyses were performed in a computer running Ubuntu 11.04, using Matlab 

7.10 (Mathworks). 

 

 Data acquisition 3.1

 Pre-clinical (mouse studies) 3.1.1

All animal experiments were conducted in compliance with the Animals (Scientific 

Procedures) Act 1986 and were approved by the local ethical review committee. 

All imaging was carried out on a Philips Mosaic HP small animal PET scanner 

(Philips). The scanner has a gantry designed with an 18 cm port diameter, a transverse 

FOV of 12.8 cm and an axial extent of 11.9 cm. The scanner operates exclusively in 3D 

mode. The coincidence timing window is 12 ns and the standard energy window lies 

between 410 and 665 KeV. 

 

Animals were selected for scanning when their tumour was approximately 5 x 5 mm 

(volume: ~62.5 mm
3
) in diameter, the three tumours closest to the median diameter are 

chosen for scanning. They were anaesthetised with a mixture of ketamine/medetomidine 

(Ketamine 50-75 mg/kg IP and medetomidine 0.5-1.0 mg/kg IP in a volume of 0.1 

ml/10 g).  

The animals then had their lateral tail vein cannulated and placed on the PET bed three 

at a time in the prone position (See Figure 14). The [
18

F]FLT ( produced in PETNET, 
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Nottingham) is injected (~10 MBq) at the start of the scan and a dynamic data set is 

collected over a period of 1 hour for the HCT116 study with FLT or 2 hours for FLT 

with all other tumour cell lines. 

 

 

Figure 14 – Image of the three mice placed on PET scanner. 

After the acquisition, a reconstruction for each mouse was conducted using 3D-

RAMLA algorithm with no attenuation correction. It means that we need to do three 

reconstructions per scan, adjusting for mouse weight and radiation dose. In the end, for 

each mouse we get a Digital Imaging and Communications in Medicine (DICOM) file 

with correct values just for one of the mice presented in the image.  

We had a small problem because we identified that the PET scanner was giving us the 

data in counts, and we believed that it was already converted to SUV. In the end we 

solved this problem by converting each pixel of the DICOM image, into SUV, applying 

the following equation: 

 

           (        )    Equation 4 

 

Where SV means original pixel value, m means rescale slope, b means rescale intercept 

and f means SUV scale Factor, all these values available in DICOM file header.  

After this conversion, the mice data was ready to be analysed with both software tools. 
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The mice were scanned and analysed differently depending on the study: HCT116 study 

was different from other tumour cell lines study, so I have separated them to enable the 

correct description of both pre-clinical works. 

The rest of the process is dependent on the software applied, so this will be split from 

now on. 

3.1.1.1 HCT116  

This study consisted of 9 mice in the beginning, but one died one day after the first 

scan, therefor we remained with 8 mice. The drugs used were both inhibitors of kinases 

(MEK or PI3K) used to target signalling pathways in tumour cells. 

Mice were scanned on day 0, before any treatment and on day 2, after two days from the 

beginning of the study. The control mice were scanned on both days but remained 

without any treatment during the study. The others were scanned on both days too, but 

two hours after the first scan, on day 0, they started to be treated with 1mg/Kg 

PD0325901 (MEK inhibitor) and 100mg/Kg GDG-0941 (PI3K inhibitor). That 

treatment was repeated for the next two days. On the last day, two hours after the last 

treatment, they were scanned (See Table 4). 

 

Table 4 – Table with the design of mice treatment, in HCT116 tumours. (†) dead mouse. 

Mice  
HCT116 

Day 0  Day 2 

Mouse 1 Not treated † 

Mouse 2 Not treated Not treated 

Mouse 3 Not treated Not treated 

Mouse 4 Not treated Treated 

Mouse 5 Not treated Treated 

Mouse 6 Not treated Treated 

Mouse 7 Not treated Not treated 

Mouse 8 Not treated Treated 

Mouse 9 Not treated Not treated 

  

These mice went on an 1 hour dynamic [
18

F]FLT-PET scan, where the sequence of the 

time frames was (10 x 1 min, 6 x 5 min, 2 x 10 min). 

To analyse this data we applied the KSF to find out if it was able to separate tumour 

from other tissues, using just data from controls. We also applied SOM to try to identify 

patterns in the image data, comparing controls against treated, aiming to identify any 

differences between pre and post treatment data.  
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3.1.1.2 Other Tumour Cell Lines 

This group includes mice implanted with the following tumour cell lines: A2780, SJSA, 

SN40R2 and HT29. 

The mice were scanned on day 0, before any treatment and on day 2, after two days. 

The control mice were scanned on both days but remained without any treatment during 

the study. The others were scanned on both days also, but 2 hours after the first scan, in 

day 0, they started to be treated with specific cancer drugs, depending on the tumour 

cell line. That treatment was repeated for the next two days. On the last day, two hours 

after the last treatment, they went scanned again.  

As mentioned before, these mice went on a 2 hour dynamic [
18

F]FLT-PET scan, where 

the sequence of the time frames was (10 x 1 min, 6 x 5 min, 8 x 10 min). 

These mice were analysed just with SOM, aiming to distinguish between different types 

of tumour. 

 

 Clinical (human study) 3.1.2

 This data is from a study of our clinical group, entitled ‘[
18

F]FLT-PET for assessment 

of treatment response in Exocrine Carcinoma of the Pancreas’. 

The target group in this study are patients with locally advanced or metastatic pancreatic 

carcinoma. The clinical group aim to find collaboration from 28 patients. By the end of 

this report, they just had data from one patient. This first patient has a pancreatic cancer 

with liver metastases and was attending the Northern Centre for Cancer Care, Newcastle 

upon Tyne, United Kingdom. 

The patient experiments were conducted in compliance with the Ethics Committee 

(10/H0707/50, West London REC expiry – 31/07/2012 ).  

All imaging was carried out on a Siemens Biograph – 40 PET/CT scanner. The scanner 

has an axial FOV of 21.6 cm. It has four rings of LSO (Lutetium Oxyorthosilicate) 

detectors giving longer FOV and higher sensitivity. The coincidence timing window is 

4.5 ns. 

This patient went in this PET/CT scanner to perform the baseline, before any treatment 

(day 0). Five days after she started her first chemotherapy cycle with Standard 



47 

 

Gemcitabine-based chemotherapy (IV). The second multimodality scan was performed 

on the fifteenth day after the first chemotherapy treatment (day 2). 

Simultaneously with PET scan, the patient went on a CT scan on both days to help with 

the tumour localization. The data that we had access was properly anonymised to 

protect the patient identity. 

These PET scans were one hour long list mode and the images acquired were 

reconstructed into 28 time frames with 168x168x74 voxels. 

 

 Kinetic Spatial Filter (KSF) 3.2

 Pre-clinical (mouse) 3.2.1

The pre-clinical data used for KSF analysis was just the one from HCT116 cancer cell 

lines. 

The analysis of this data aims to identify and separate tumour from other tissues. 

For this study, we did not use any of the treated mice presented in Table 4. They were 

analysed afterwards with SOM. With KSF we only analysed all the data from day 0 

(Mouse 2 to Mouse 9).  

In this analysis we adapted the Software assigned by Imperial College to our data. We 

tried first with the kinetic curves already provided with the filter that is based on human 

kinetic curves. On a second approach, we developed some kinetic curves based on the 

data from the controls, doing the average of all controls and calculating the standard 

deviation to create the .struct file needed in this software, but the final results were not 

good. 

We changed the filter to be able to analyse each mouse individually, applying a mask to 

look only to one mouse at a time.  

The animal data has a different number of volumes compared to patient data, so we 

needed to change this number in the filter before applying it.  

The biggest issue on this analysis was the fact that the software was prepared to receive 

the data in ANALYZE format. In a first approach, we converted data using ImageJ and 

Amide. But because we found that there were some scaling issues with the data, we 
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decided to change the filter to accept data straight from DICOM, avoiding problems 

either from scaling or related with the inversion of the data time frames. 

 Clinical (human) 3.2.2

For this analysis we had data in DICOM format. All the software was almost complete 

for human analysis, we just needed to do minor changes. We applied a Gaussian filter in 

the original data to smooth the images. Then we corrected the time points because the 

original software was prepared for data with more time frames than the ones we had.  

To avoid again the problems with conversion from DICOM to ANALYZE using Amide 

or ImageJ, we changed the software to receive DICOM files. 

 

 Self-Organizing Maps 3.3

The SOM analysis was carried out in using the SOM Toolbox for Matlab freely 

available from the internet (CIS, Accessed in September 2011).  

The way that the weight vectors were initialized was randomly, the type of algorithm 

used for training was batch and the neighbourhood function employed in weight updates 

was Gaussian. 

We choose one of the visualizations presented in the SOM Toolbox that we found more 

relevant and easier to interpret, according to our data. The analysis is based on pixel 

values of the ROIs defined on different tissues.   

To measure the quality of our SOM, it gives us a final quantization error and final 

topographic error. The first error states how well the prototypes represent the input data; 

the second one gives the degree of preservation of neighbourhood relations. The best 

result is achieved when both errors are minimized.  

When applying this algorithm, we tried different approaches: we tried different types of 

analysis using Principal Component Analysis (PCA) with SOM, using different 

approaches to add or remove values from our data, we tried different maps. In the end 

we opted for applying just SOM with no previous application of PCA. We removed 

values randomly from the matrices to make sure that they had the same size and we 

opted for showing the final result using the U-Matrix map with respective labels.  
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Due to specificities of the application of this software in these different studies, from 

now on we are going to divide the information, depending on the data analysed. 

 

 Pre-Clinical (mouse) 3.3.1

In pre-clinical SOM analysis, the first steps in HCT116 analysis and the analysis of all 

the other tumour cell lines are the same. 

The analysis was based on pixel values of the ROIs defined on tumour, bladder, muscle, 

heart and kidney of the mice.  We chose these tissues because they are easy to define in 

mice [
18

F]FLT-PET image data. 

To apply the SOM to this data we converted the data from counts to SUVs, we scaled 

the initial data for the acquisition time frames and to smooth the image we applied a 

Gaussian filter (Gonzalez & Woods, 2008). After that, we created a mask to make sure 

that we were looking only for the mouse that we were interested in and after this, the 

image was ready to be analysed with SOM. 

 The next steps are different, depending on the study, so again, we are going to separate 

the studies in order to specify each ones procedures. 

3.3.1.1 HCT116 

The analysis of this data with SOM aims to find a pattern in the scan from day 0 against 

day 2 scan. 

For this study, we did not use any of the controls. They were analysed just to make sure 

that the conditions before and after treatment were the same. We just picked the ones 

that went on treatment to compare the differences on day 0 against day 2. According to 

Table 4, we analysed mice 4, 5, 6 and 8. 

We did one mouse at a time, with pre and post treated data from this same mouse, and 

we applied the SOM to that group. Next steps were repeated for mouse 4, 5, 6 and 8. 

Initially we draw the ROIs described above, in day 0 and day 2 from the same mouse. 

After getting the values from these ROIs of all the above tissues we create a matrix with 

this data and we proceed with the SOM analysis to find the final maps.    

From here we got four SOM maps. 
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3.3.1.2 Other Tumour Cell Lines 

The analysis involving mice with tumours of A2780, SJSA, SN40R2 and HT29 and 

SOM aims to find if this algorithm is able to distinguish between different types of 

tumour and/or find if the ones with the same origin have some common pattern, 

different from the other tumour types. Thus for this study we just used the controls. 

The analysis is again based on pixel values of the ROIs drawn around tumour, bladder, 

muscle, heart and kidney of the mice in a first approach. To help with the analysis of the 

resulting maps we got the kinetic curves that show the uptake of the 

radiopharmaceutical in each tumour cell line. Finally we developed a very similar 

mapping to the first one, using SOM, but drawing ROIs just around the tumours, to 

check if the algorithm could distinguish tumour alone, ignoring other tissues. 

We draw the ROIs described above, in each mouse. After getting the values from these 

ROIs of all the above tissues of all the mice, we created a matrix with this data and we 

proceed with the SOM analysis. 

 Clinical (human) 3.3.2

The aim of this study was to find if there was any difference when analysing the patient 

data comparing between the first scan (before treatment) and the second scan (after 

treatment).  

We choose the same visualization method as before. 

This data came already in SUV, with no need of conversions. The analysis is based on 

pixel values of the ROIs defined on tumour, kidney, heart, liver and vertebra of the 

patient.  We choose these tissues because they are easy to define in human [
18

F]FLT-

PET  data. 

This data was scaled for the acquisition time frames and we applied a Gaussian filter to 

smooth the image. Then we draw the above ROIs in patient data on day 0 and on day 2 

(corresponding to the second scan, which is fifteen days after starting treatment) images 

and saved the values resulting from here in a matrix, ready to be analysed with SOM. 
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Chapter 4. Results 

In this chapter we are going to present the results from all the described studies.  

We are going to start from the KFC applied to HCT116 and to the patient data. 

Afterwards we are going to report the results from SOM applied to HCT116, to the 

comparison between different tumour cell lines and finally, to our patient data. 

   

 Kinetic Spatial Filter (KSF) 4.1

 Pre-clinical (mouse) 4.1.1

In Figure 15 is present the final image that we get before applying the KSF. This image 

is from Mouse 2 Day 0. It is reconstructed taking into account weight and injected dose 

from the mouse in the middle. Thus, for the KSF analysis we applied a mask to be able 

to visualize just the mouse that we are interested in, the one with the right 

reconstruction in that image. 

In Figure 16 we have the images resulting from the application of the KSF. The mice 

missing are the ones that did not achieve good results. 

 

Figure 15 – Transverse slices of the [18F]FLT-PET scan of mice implanted with HCT116 data, before applying 

the KSF.  This image is from Mouse 2, day 0. The yellow arrows are indicating the tumour region. 
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Figure 16 – Transverse slices of the [18F]FLT-PET scan of mice implanted with HCT116 data, after applying 

the KSF.  The yellow arrows are indicating the tumour region. 

Mouse2 Day0 Mouse3 Day0 Mouse3 Day2 

Mouse4 Day2 Mouse5 Day0 Mouse 5 Day2 

Mouse 6 Day0 Mouse 6 Day2 Mouse 7 Day0 

Mouse 7 Day2 Mouse 8 Day0 Mouse 8 Day2 

Mouse 9 Day0 Mouse 9 Day 2 
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In these results we show only the slices where we know that the tumour is present 

because the major aim for this study was to see if the filter was able to retain just the 

tumour signal. As we can see, this filter removed almost all the signal, keeping just the 

borders of the mice. The image of ‘Mouse 8 Day 0’ clearly reveals the tumour and a 

small part of the bladder. In other images, as Mouse 5 Day2 and Mouse 9 days 0 and 2 

we can see that the signal of the bladder was kept too.  

 

 

 

 

 Clinical (human) 4.1.2

The results of applying KFC to data from the [
18

F]FLT-PET scans of our patient, are 

presented in Figure 17 and Figure 18.  

In Figure 17, in the left (A), we have a sequence of some representative slices where we 

can see the liver and vertebra (in the first three images) and in the following ones we 

can see the kidneys appearing on the right bottom of the image. Notice the colour bar 

presented on the top of the images, where 100% means the maximum uptake of the 

[
18

F]FLT for that image, and 0% means no uptake. The z-axis is pointing in the 

direction of low to high z value of transversal slices of patient data. 

In Figure 17 (B) we can see the same slices presented in Figure 17 (A) but after 

applying the filter. In all slices we can clearly distinguish the vertebra and the outline of 

the body. In the last image, all tissues were removed, except a small signal of the kidney 

and the tumour (note the yellow arrow). 
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Figure 17 – Image from the first [18F]FLT-PET patient scan normal (A) and filtered using KSF (B). Tumours 

are indicated with yellow arrows. Note the intensity bar and the z-axis. At the bottom we zoom the last slice (z 

= 37) to help visualization of KSF. The legend for Liver, Vertebra and Kidney are common for (A) and (B). 
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Vertebra 

Kidney 
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In Figure 18 we have the resulting filtered data of the second [
18

F]FLT-PET scan of the 

patient, after treatment. Again we have the same colour bar and z axis with the same 

meaning described above. In Figure 18 (A) we have the images before applying the 

filter. The slices are the same as the ones in Figure 17. Again we can clearly see 

vertebra and liver in the first slices, but in the last two ones, we start to distinguish the 

tumour (yellow arrow) and kidneys.  

Figure 18 (B) shows the filtered image. The vertebra is also present as it is all the 

outline of the patient body. In the last two images we can notice the tumour, pointed 

with yellow arrows.  
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Figure 18 - Image of the second (post treatment) [18F]FLT-PET scan normal (A) and filtered using  KSF (B). 

Tumours are indicated with yellow arrows. Note the intensity bar and the z-axis. At the bottom we zoom the 

last slice (z = 37) to help visualization of KSF. The legend for Liver, Vertebra and Kidney are common for (A) 

and (B). 
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A radiologist that works closely with our team came to help on localization of the 

tumour. To support that task we had the [18F]FLT-PET data (Figure 17 and Figure 18) 

and the CT images (Figure 19). Nevertheless, to ensure that we were looking to the 

tumour we decided to draw ROIs around what we thought to be the tumour in pre and 

post treatment data and we could get the images presented in Figure 20. They have the 

curves of the tumour uptake and with that we could confirm that we were looking to the 

right place. In Figure 20(A) we have the tumour kinetic curve of the first scan (PET1) 

and in Figure 20(B) we have the respective curve for the second scan (PET2). These 

graphs of Figure 20 are in accordance with tumour kinetic curves presented in Figure 9. 

 

 

Figure 19 – CT images of the patient. The yellow arrow shows the tumour region. The black dot in the tumour 

region is the catheter left there on purpose to help to identify the tumour in the image. 

 

Figure 20 – [18F]FLT uptake curves in the region thought to be the tumour. The graphs have SUV uptake 

against time frames. 

A) Tumour kinetic curve for PET1 B)Tumour kinetic curve for PET2 
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 Self-Organizing Maps 4.2

In this chapter we present the resulting data from all the SOM studies developed on this 

project. 

We begin showing the data obtained from the application of SOM to HCT116, aiming 

to find if SOM is able to distinguish between day 0 and day 2 in the same data.  

Then we show the results of SOM applied to the other tumour cell lines (A2780, SJSA, 

SN40R2 and HT29) study, were we intend to find if this algorithm is able to distinguish 

between different types of cancer.  

Finally we present the data of SOM applied to our patient data, aiming to see if there are 

differences, again, between the first and the second scans. 

It should be noted that the colour bars of all the maps in this chapter have the same 

meaning. The hot colours with maximum value for red correspond to high distance 

between the vectors. In contrast, the cold (blue) colours correspond to low distance 

between values. 

To measure the quality of the SOMs, we have the quantization error (QE) and 

topographic error (TE) given in the legend of all the figures. 

 Pre-clinical (mouse) 4.2.1

4.2.1.1 HCT116 

In this subsection we have the analysis performed in mice implanted with HCT116 

tumour cell lines. We need to remember here that Day 0 refers to the first scan of the 

mice and Day 2 refers to the scan that happened two days after. 

In Figure 21 we have the visualization of the SOM applied to Mouse 4 with HCT116 

tumour. As we can see here, the top left U-Matrix shows a well differentiated red line 

that in conjunction with the bottom right map, gives us the information that the 

algorithm clearly separates bladder, tumour and muscle from heart and kidney. Inside 

these major groups, we can still notice some distinction between different tissues. From 

the other maps we can notice that patterns from Day 0 and Day 2 are similar, but in Day 

0 we have the hottest colours more to the bottom left of the map and on Day 2, more to 

the bottom right.   
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Figure 21 – Visualization of the SOM applied to HCT116: data from Mouse 4. U-Matrix is on the top left, then 

we have component planes for Day0 and Day2 and on bottom right we have map unit labels. In the bottom 

right map the labels mean: H is for heart, T for Tumour, B for Bladder and K for Kidney. (QE=0.032 and 

TE=0.097)   

 

In Figure 22 we have the visualization of the SOM applied to Mouse 5 with HCT116 

tumour. The top left U-Matrix shows a less differentiated map. This map read in 

conjunction with the bottom right map, shows that the algorithm was able to separate 

bladder, tumour and muscle from heart and kidney. Again, inside these major groups, 

we can still notice some distinction between different tissues. Looking to the other two 

maps left, we can notice that patterns from Day 0 and Day 2 are similar, but in Day 0 

we have the hottest colours more to the bottom left of the map and on Day 2, more to 

the bottom right.   
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Figure 22 – Visualization of the SOM applied to HCT116: data from Mouse 5. U-Matrix is on the top left, then 

we have component planes for Day0 and Day2 and on bottom right we have map unit labels. In the bottom 

right map the labels mean: H is for heart, T for Tumour, B for Bladder and K for Kidney. (QE=0.090 and 

TE=0.028) 

 

In Figure 23 we have the visualization of the SOM applied to Mouse 6. The top left U-

Matrix shows a well differentiated map, more similar to Figure 21 than the former map. 

It shows that the algorithm was able to separate bladder, tumour and muscle from heart 

and kidney. In these two major groups the algorithm was able to separate between 

different tissues. Day 0 and Day 2 maps reveals an inversion of the map vectors 

distribution relative to the previous maps, but we have similar pattern between both 

days, just differing in the aspect that Day 0 has the red part localized on the top right of 

the map and Day 2 has the red part more to the top left.   
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Figure 23  – Visualization of the SOM applied to HCT116: data from Mouse 6. U-Matrix is on the top left, 

then we have component planes for Day0 and Day2 and on bottom right we have map unit labels. In the 

bottom right map the labels mean: H is for heart, T for Tumour, B for Bladder and K for Kidney. (QE=0.154 

and TE=0.107) 

 

Figure 24 shows the visualization of the SOM applied to Mouse 8. The top left U-

Matrix shows some degree of differentiation similar to almost all the previous maps. 

Here the algorithm was able to separate bladder, tumour and muscle from heart and 

kidney, as it did for all of the above analysis. Inside these two major groups we have 

separation between different tissues.  

The remaining maps reveal a pattern similar to Figure 21 and Figure 22. Again, Day 0 

has its hottest colours on the bottom left and Day 2 has its hottest colours on bottom 

right.  
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Figure 24 – Visualization of the SOM applied to HCT116: data from Mouse 8. U-Matrix is on the top left, then 

we have component planes for Day0 and Day2 and on bottom right we have map unit labels. In the bottom 

right map the labels mean: H is for heart, T for Tumour, B for Bladder and K for Kidney. (QE=0.060 and 

TE=0.027). 

 

 

4.2.1.2 Other Tumour Cell Lines 

In this subsection we have the analysis performed in mice implanted with A2780 

(ovarian carcinoma cancer cell line), SJSA (osteosarcoma cell line), SN40R2 

(osteosarcoma cell line selected for drug resistance) and HT29 (colorectal 

adenocarcinoma cell line).  

Figure 25 shows the visualization of SOM applied to all of the above tumour cell lines. 

Looking to the U-Matrix we can notice some segregation and completing this 

information with the one given in the bottom right map, we notice perfect dissociation   

between different tissues, from top to bottom, muscle, tumour, bladder, heart and 

kidney. Regarding the four maps left, they reveal a very similar pattern between them, 

SJSA being the most disparate from the others.  
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Figure 25 – Visualization of the SOM applied to all tumour cell lines: A2780, SJSA, SN40R2 and HT29. U-

Matrix is on the top left, then we have component planes for Day0 and Day2 and on bottom right we have map 

unit labels. In the bottom right map the labels mean: H is for heart, T for Tumour, B for Bladder and K for 

Kidney(QE=0.172 and TE=0.103). 

In Figure 26, we have the kinetic curves from all of the above tumour cell lines. In 

general there are no obvious differences between FLT uptake in any of these tumours. 

Mouse 1 (M1) refers to the mouse on the left, Mouse 2 (M2) to the one in the middle 

and Mouse 3 (M3) to the one on the right. 
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Figure 26 – Kinetic uptake curves of all the mice tumour cell lines: A2780, SJSA, SN40R2 and HT29. Curves 

were taken from mouse 1 (M1), mouse 2 (M2) and mouse 3 (M3) of all the tumour types. 

 

As a final confirmation, we used SOM again to analyse just the tumour ROIs along the 

time frames. What we got was the result presented in Figure 27. We notice that between 

the time frames 22 to 24 there are no differences and in U-matrix we have a map a bit 

diffuse. Analysing it carefully, HT29 is grouped on the top left of the map, SJSA is 

grouped more to the bottom left of the map, SN40R2 more on the bottom right and 

A2780 is in the centre, partly mixed with the other tumour cell lines. 
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Figure 27 – Visualization of the SOM applied to all tumour cell lines: A2780, SJSA, SN40R2 and HT29. U-

Matrix is on the top left, then we have component planes for t=22, t=23 and t=24 and on bottom right we have 

map unit labels. In the bottom right map the labels mean: H is HT29, SN for SN40R2, SJ for SJSA and A for 

A2780. 

 

 Clinical (human) 4.2.2

Here we had developed the analysis of patient data with SOM algorithm. 

Presented in Figure 28 we have the resultant data from this study. Comparing Day 0 and 

Day 2 maps, we notice some pattern but we can distinguish both of the maps because on 

Day 0 we have the hot colours on the top right and on Day 2 we have them on top left. 

This characteristic is very similar to the previous HCT116 study. 

The top left U-Matrix shows some degree of differentiation. Accomplishing this 

analysis with the labels map, we can notice that the heart is completely separated from 

other organs. Inside this group where all the other organs are together, we can find again 

some separation between tissues (tumour, kidney, liver and vertebra). Vertebra is the 

only tissue more mixed with the others. 

The maps presented have a quantization error of 0.04 and a topographic error of 0.108. 
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Figure 28 – Visualization of the SOM applied to patient data. We have Day 0 as data from first scan and Day 2 

as data from the second scan. U-Matrix is on the top left, then we have component planes for Day0 and Day2 

and on bottom right we have map unit labels. In the bottom right map the labels mean: H is for heart, T for 

Tumour, L for Liver, V for Vertebra and K for Kidney. (QE=0.040 and TE=0.108)  
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Chapter 5. Discussion 

 

After the described work, we can discuss the application of KSF and SOM to mice and 

patient data.  

The objectives of both in image analysis are different thus, to illustrate better the 

conclusions for each of the above applications, this chapter will have three subsections. 

 Analysis with KSF 5.1

When applying this filter to our mice data, we found that the results were not in 

accordance with the analysis in patients. After trying this filter with kinetic curves 

created by us, based on HCT116 data without success, we decided to apply patient 

curves that came with this software and we could achieve the results presented in Figure 

16. In Figure 9 and Figure 10, we have access to kinetic curves from patients and mice 

and as we can see, there are differences within the same tissue. Heart uptake is similar 

in both humans and mice, but human tumour uptake is more similar to mice muscle 

uptake and human vertebra is more similar to mice tumour uptake. In Figure 10, curves 

for neither liver nor vertebra are shown because in mice images, these tissues are not as 

evident as they are in the human data. What happened when we filtered mice data using 

human kinetic curves was that bladder and some parts of the tumour where kept, 

because they have similar pattern to vertebra and tumour. Nevertheless, the results are 

not good and the best solution would be to acquire more data of mice implanted with 

HCT116 and create new kinetic curves. To draw the TACs, the study from Imperial 

College was using data from 29 different patients. We used data just from 9 mice which 

explains the size of our error bars compared to theirs and maybe our lack of success 

when applying them to our images.  

Our findings regarding the application of this filter to patient data is consistent with 

previous reports (Kenny et al., 2007; Gray et al., 2010). As we can see in Figure 17 and 

Figure 18 this filter is working almost perfectly on removing signal from all tissues, 

leaving just the outline, vertebra and tumour, as expected. We can say that it is efficient 

when analysing data from a patient with pancreatic cancer with liver metastases. The 

only problem in final results of our data was that this filter kept the kidneys, as we can 

see in the bottom images of both filtered figures (Figure 17(B) and Figure 18(B)). 

Initially this filter was developed to detect cancerous tissues in cases of breast tumours 
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that are far above kidneys, so it did not take into account the kidney uptake. To improve 

its performance, I would suggest adding kidneys TACs to the software. Another TAC 

that could be added was the pancreas one, since we are applying this filter specifically 

to pancreas studies. 

It is important to highlight the relevance of CT data that gave us some help for tumour 

localization (see Figure 20). If still in doubt we can always confirm if what is thought to 

be tumour tissue is really tumour, drawing a ROI around the area and performing an 

average of this ROI values across the volume. In the end we get graphs similar to the 

ones presented on Figure 20, and from this kinetic curves we can ensure what the type 

of tissue presented.  

This KSF is a really good tool for data analysis. However, in heterogeneous tumours 

(e.g. necrotic cores) it will keep high proliferating tissues, removing the necrotic part 

from the tumour in the images. In that situation is not so easy to distinguish between 

tumour and other organs. It is important to note also that for bone or bladder tumours, 

this filter is not so efficient because proliferation is already high in these tissues. Maybe 

the next step could be using this principle to apply in PET scans with other 

radiopharmaceuticals (Gray et al., 2010). In addition, it has other limitations such as not 

making any corrections for artefacts, not considering the hypothesis that different 

tissues can be mixed in the same voxel, having reduced sensitivity to small lesions and 

having reduced number of subjects included to create the template curves. 

 

 Analysis with SOM 5.2

The analysis of HCT116 with SOM presented in Figure 21 to Figure 24 shows us a 

clear pattern between the data from Day 0 against Day 2 for all the mice. In all the 

images we can see that SOM was able to distinguish data from Day 0 to Day 2 since 

they are revealing similar pattern when looking at all the figures, Day 0 and when we do 

the same for Day 2, we can see that the map is revealing a pattern from these group of 

days, in all mice data analysed.  

Regarding the U-Matrix and respective label maps, there was always a separation 

between all tissues, but especially tumour, bladder and muscle were grouped on one 

side and kidney and heart on the other. If we compare these result with the graphs 

presented in Figure 10, we notice that the uptake curves of kidney and heart, are very 
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similar between them and the shapes of the curves from tumour, bladder and muscle 

have also a high degree of similarity. 

From here we can conclude that this unsupervised learning method is able to distinguish 

between all the tissues and between Day 0 and Day 2.  Is important to notice the small 

error values acquired (quantization (QE) and topographic (TE) errors). 

Applying the SOM to different tumour cell lines to find out if it was able to make some 

distinction between them, was not as clear as expected, because A2780, SJSA and 

SN40R2 appear with the same pattern and just SJSA has a different one. Having in 

mind that A2780 is an ovarian cancer, SJSA and SN40R2 are osteosarcomas and HT29 

is a colorectal type of tumour, we should expect some grouping of SJSA and SN40R2, 

differentiated from the others.  

For this study we just analysed data from 4 scans, 12mice. To take any conclusions it 

would be better to add more data to this study. Considering just the present results, we 

can conclude that SOM is partly able to distinguish between these cell lines. Looking to 

Figure 26 and Figure 27 we find that uptake curves are not very different between 

different tumours and as we can see in the last SOM analysis, when having ROIs just 

around tumours, SOM could not differentiate so well between different tumour cell 

lines. We can conclude that this task for the SOM is difficult since it is trying to 

distinguish FLT uptake patterns between different tumours with similar curves. In 

general, most tumours are expected to have high uptake compared to most normal 

tissues. After these analyses we can infer that in some respects is maybe easier to use 

uptake information from other mouse tissues which takes into account toxicology 

between tumour and host. 

In patient analysis we have a similar behaviour as in the analysis of HCT116. We can 

distinguish data from Day 0 and Day 2. This is helpful for future analysis because it can 

reflect the response to treatment. For the next patient, the same analysis can be 

developed and if the pattern of the maps are the same, we can say that the patient is 

responding to the drug, if the pattern between Day 0 and Day 2 are similar, we can 

conclude that this treatment is not having any, or at least no significant effect on the 

patient. With this information the treatment can be conducted in another direction. 

In all the above SOM studies, the resulting errors are low. As explained in methods, we 

tried different types of analysis using PCA and SOM, using different approaches to 
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make sure that the size of each group of tissues had the same amount of values and the 

best results – results with smaller errors – where achieved using SOM, removing 

random values from the groups of tissues instead of using other approaches to add 

values to this groups and using the correct number of time frames from mice and patient 

data.     

The choice of hexagonal lattice in SOM maps is optional, we could have chosen 

rectangular lattice, but because as there is evidence that the hexagonal is better, we kept 

this one (Kohonen, 1997; Hsu et al., 2003) 

 General Discussion 5.3

Comparing the supervised classification technique used in this project (KSF) and the 

unsupervised one (SOM) we could suggest that KSF is more objective. KSF does not 

have the same uncertainties that SOM has. With SOM we should analyse more data 

aiming to confirm what each map pattern means so that, in future analysis, we would 

not need to do any ROIs delineations. It would automatically give us the answer that we 

would be able to interpret with no need of any basic knowledge of what was the type of 

tumour presented.  

The advantage and curious thing from SOM is that it can reveal unknown relations 

between data. So it can find useful relations to apply and test with supervised learning. 

Nowadays there are several studies that suggests different approaches for tumour 

classification such as Growing Self-Organizing Maps (GSOMs) (Hsu et al., 2003), 

algorithmic methods for multiclass tumour classifications based on gene expression 

(Covell et al., 2003) , application of vector machines to analyse carcinomas dataset (Su 

et al., 2001).  

I believe that the analysis of image texture and dynamic data all together, could yield 

good results within the field of oncological medical imaging. There is a study where 

benign and malignant tumours could be classified with SOM using interpixel texture 

(Chen et al., 1999). 
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Chapter 6. Conclusion 

The main goal of this thesis was to use SOM for analysis of non-invasive imaging data, 

aiming to achieve characterization of tumour physiological and biochemical properties. 

Collaboration between Imperial College and Newcastle University allowed us to use the 

KSF that we applied to pre-clinical and clinical data. Thus, we not only studied tumour 

characterization but also validated the KSF in our data and tested the importance of 

SOM in another type of classification, as visualizing if it was able to distinguish 

between pre and post treated data. 

The R Software was introduced to me and was also supposed to be used for this 

analysis. We started with it, using Kohonen Package Toolbox for R. Although, the 

Matlab analysis was complex so we decided to focus in that analysis and leave R 

analysis as suggestion for future work. We know that R is a really good tool for 

statistics and visualization so in the future we can compare the results obtained with 

Matlab with the ones obtained with R (Ron Wehrens, 2007).  

As future work it would be helpful to adapt KSF to other radiopharmaceuticals, as 

[
18

F]FDG. There was already a study where this was tried (Janssen et al., 2009), but 

since the KSF is giving good results, it could be adapted. Along with this adaptation, we 

could try to improve the KSF limitations described in the last chapter. 

At the end of this work we are aware of the importance of cancer research, not only in 

biology and genetics, but in computer sciences applied to this field. Nowadays it is 

believed that early screening together with good algorithms for image analysis can be 

the key for a non-invasive and early stage detection of cancer, yielding a best survival 

chance for the patient.  

After working with pre-clinical and clinical data, I also found important to remember 

that all this software should be adapted to enable and improve pre-clinical image 

analysis. Before applying any treatment to patients, there is great investigation in mice, 

therefore it is important to provide the best tools to help with interpretation of these 

results. 
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Appendix 

For the analysis of the data, I have created a Graphical User Interface (GUI). 

The usage is very simple, handy and instinctive. 

 

1) First we just need to call for the GUI on Matlab command line and we will get 

the following GUI. 

 

2) Click on the Start button and select the file that we want to analyse with the 

following extensions: .mat or .hdr. 
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3) Then the image will automatically open and we just need to click on the time 

frame that we want to visualize and we can use the slider to select the z value 

that we want to visualize. In this example we have all the mice together, but with 

simple changes we can visualize just the one that we are interested in. 
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