

System for Acquisition of Corneal Images
Slip Lamp Application

Thesis by

Hugo José Pinto de Almeida

In Fulfillment of the Requirements

for

Master’s Degree in Biomedical Engineering

Coimbra, September 2012

(defended September 24)

This work is funded by FEDER, through the Programa Operacional Factores de Competitividade-COMPETE
and by National funds through FCT- Fundação para a Ciência e Tecnologia in the frame of project PTDC/SAU-
BEB/104183/2008, F-COMP-01-0124-FEDER-010941

Este trabalho é financiado pelo FEDER, através do Programa Operacional Factores de Competitividade-
COMPETE e fundos nacionais através da FCT- Fundação para a Ciência e Tecnologia no âmbito do projeto
PTDC/SAU-BEB/104183/2008, F-COMP-01-0124-FEDER-010941

ii

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os

direitos de autor são pertença do autor da tese e que nenhuma citação ou informação

obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognize that its copyright rests with its author and that no quotation from

the thesis and no information derived from it may be published without proper

acknowledgement.

All contents written in Portuguese are in compliance with Old Portuguese Language

Orthographic Agreement.

iii

Accepted by the University of Coimbra, in fulfillment of the requirements for the

degree of Master in Biomedical Engineering.

Thesis Examination Committee:

(PhD) Custódio Francisco Loureiro Melo1,2 (Chairperson)

(PhD) Francisco José Amado Santiago Fernandes Caramelo3

(PhD) José Paulo Pires Domingues1,3 (Advisor)

1
Department of Physics, Faculty of Sciences and Technology, University of Coimbra, Portugal

2
Instrumentation Center, Faculty of Sciences and Technology, University of Coimbra, Portugal

3
IBILI – Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of

Coimbra, Portugal

iv

Aos meus pais,

v

Acknowledgements

Começo por agradecer a toda a equipa do projecto NeuroCórnea, em particular ao

Professor Doutor José Paulo Domingues, meu orientador de projecto, pelo

acompanhamento prestado durante todo o ano.

Agradeço aos meus avós paternos por estarem presentes na minha vida, não só nesta

fase mas no passado e daqui adiante.

Ao Maurício (palmas ao malabarista) e à Carlota (com um beijo), que me

acompanharam de perto durante o decorrer do projecto e a escrita da tese, agradeço pelos

bons momentos.

Aos meus pais, muitíssimo obrigado por todo o esforço e dedicação que possibilitou a

minha caminhada pelo percurso universitário. Esta tese é-lhes dedicada.

A todos, agradeço.

vi

Abstract

Diabetes is a chronic disease that is associated chronic complications such as diabetic

neuropathy - leading cause of disability in diabetics.

Currently, corneal confocal microscopy is a technique used to acquire in vivo images of

the cornea nerves. As an expensive technology which is only available in central hospitals

and private clinics, the case of a slit lamp microscope is a starting point to improve this

solution since it is often used to observe the anterior segment of the eye. Thus, the

purpose of NeuroCórnea is (but not only) the development of a confocal module for use in

a slit lamp microscope; a method for assessing the corneal nerves for diagnosis and

monitoring of diabetic neuropathy.

A part of the object of NeuroCórnea has to do light intensity measurement. In order to

achieve part of this goal, has been proposed an acquisition model based on a Hamamatsu

FFT-CCD C5809 Image Sensor and controlled by a PIC microcontroller. Due to a failure that

arose during the project, the FFT-CCD was replaced by a S3921-128Q MOS Linear Image

Sensor, which would be the only way to continue to get results.

During the course of the project we were given the opportunity to work with LIP-

Coimbra (Laboratory of Instrumentation and Experimental Physics of Particles) and

adapting our entire system (hardware, firmware and software) for a temperature

measurement system for a liquid xenon detector. This was not an objective proposed in the

beginning but served to consolidate knowledge and show the versatility of the

instrumentation.

In order to handle all these devices (PIC, FFT-CCD, MOS and LIP circuit) was created a

GUI (Graphical User Interface) using Microsoft Visual Studio C++ that has, among other

features, the ability to view real-time video outputs for each device.

In short, this project was handling a wide range of variables such as: electronic

components (regulators, references, ADC ...), PIC microcontroller, graphical interface (GUI),

C programming language (C and Visual C++), Assembler programming language, handling

various tools (an example is welding with tin). In the end, the knowledge gained was

successful and personally rewarding.

Keywords: Cornea, diabetic neuropathy, FFT-CCD, PIC microcontroller, MOS, LIP.

vii

Resumo

A diabetes é uma doença crónica que tem associadas complicações como por exemplo

a neuropatia diabética – maior causa de incapacidade em diabéticos.

Actualmente, a microscopia confocal da córnea é a técnica usada para adquirir imagens

dos nervos da córnea in vivo. Sendo uma tecnologia onerosa e que só está disponível em

hospitais centrais e clínicas privadas, o caso do microscópio de lâmpada de fenda é um

ponto de partida para melhorar esta solução uma vez que é frequentemente usado para

observar o segmento anterior do olho humano. Assim, o propósito da NeuroCórnea é (mas

não só) o desenvolvimento de um módulo confocal para aplicação num microscópio de

lâmpada de fenda. É um método para avaliação dos nervos da córnea, para o diagnóstico e

acompanhamento da neuropatia diabética.

Uma parte do objectivo da NeuroCórnea tem que ver com a medição da intensidade.

De modo a cumprir uma parte deste objectivo foi proposto um modelo de aquisição

baseado num sensor de imagem FFT-CCD C5809 da Hamamatsu e comandado por um

microcontrolador PIC. Devido a uma avaria que surgiu no decorrer do projecto, o sensor

FFT-CCD foi trocado por um sensor de imagem linear S3921-128Q MOS, que seria o único

modo de prosseguir para obter resultados.

Durante o decorrer o projecto foi-nos dado a oportunidade de trabalhar com o LIP-

Coimbra (Laboratory of Instrumentation and Experimental Physics of Particles) num

sistema de medição de temperatura para uma câmara de xénon líquido e, adaptando todo

o nosso sistema (hardware, firmware e software), conseguimos atingir o objectivo

proposto. Este não era um objectivo proposto no início mas serviu para consolidar

conhecimentos e mostrar a versatilidade da instrumentação.

De modo a manipular todos estes dispositivos (PIC, FFT-CCD, MOS e circuito do LIP) foi

criada uma interface gráfica usando o Microsoft Visual Studio C++ que tem, entre outras

funcionalidades, capacidade de visualizar em tempo real as saídas vídeo de cada

dispositivo.

Em suma, neste projecto houve manipulação de uma pluralidade de variáveis tais

como: componentes electrónicos (reguladores, referências, ADC...), microcontroladores

PIC, linguagens de programação C (Visual C++ e C), interface gráfica, linguagem de

programação Assembler, manuseamento de vários instrumentos (um exemplo é a

soldadura com estanho)... No fim, a aprendizagem obtida foi pessoalmente gratificante.

Palavras-chave: Córnea, neuropatia diabética, FFT-CCD, microcontrolador PIC, MOS,

LIP.

viii

Table of Contents

Acknowledgements ... v

Abstract .. vi

Resumo ... vii

Table of Contents ... viii

List of Figures ... xi

List of Tables .. xii

List of Examples ... xii

Chapter 1. Introduction .. 1-1

1.1 - Diabetic Neuropathy .. 1-1

1.2 - NeuroCórnea .. 1-1

1.3 - Objective .. 1-2

1.4 - Microcontrollers ... 1-2
1.4.1 - PIC ... 1-3

1.5 - Von Neumann Architecture ... 1-4

1.6 - Harvard Architecture ... 1-4

1.7 - Modified Von Neumann Architecture and Harvard Architecture..................................... 1-5

Chapter 2. PIC32 USB Starter Kit II Microchip .. 2-1

2.1 - PIC32MX (PIC32MX795F512L) ... 2-2
2.1.1 - Interrupts .. 2-2

2.1.1.1 - Interrupt Priorities and Sub Priorities ... 2-2
2.1.2 - I/O Ports ... 2-3

2.1.2.1 - Control Registers ... 2-3
2.1.2.2 - Modes of Operation .. 2-3

2.1.3 - Timers ... 2-4
2.1.3.1 - Control Registers ... 2-4
2.1.3.2 - Interrupt Configuration ... 2-5

2.1.4 - Output Compare ... 2-5
2.1.4.1 - Output Compare Functions ... 2-6

2.2 - I/O Expansion Board .. 2-8

Chapter 3. Power Supply Voltage Board .. 3-1

3.1 - PT78NR115S (-15V) .. 3-2

3.2 - L7812CV (+12V).. 3-2

3.3 - LM7815CV (+15V) .. 3-2

3.4 - LM78M05CT (+5V) ... 3-3

3.5 - LD1085V50 (+5V) ... 3-3

3.6 - IE1224S (+24V) ... 3-4

ix

3.8 - PTN78000A (-15V) ... 3-5

3.7 - REF 195 .. 3-5

3.8 - 16-bit ADC AD7680 .. 3-6

Chapter 4. Hamamatsu Image Sensors .. 4-1

4.1 - FFT-CCD C5809 Image sensor .. 4-1
4.1.1 - Timing signal generator .. 4-1
4.1.2 - Voltage regulators .. 4-1
4.1.3 - Inputting the control signal from the PIC (Start and CLK) .. 4-2

4.2 - S3921-128Q MOS Linear Image Sensor ... 4-2
4.2.1 - Driver Circuit ... 4-2
4.2.1 - Signal Readout Circuit .. 4-3

Chapter 5. Temperature Monitor for a Liquid Xenon Detector ... 5-1

5.1 - LIP - Laboratory of Instrumentation and Experimental Physics of Particles 5-1

5.2 - 1N4148 diodes ... 5-1
5.2.1 – Specifications ... 5-2

5.3 - PCB ... 5-2

5.4 – LIP circuit ... 5-3

Chapter 6. Firmware ... 6-1

6.1 - Introducing MPLAB .. 6-1

6.2 - The elements of MPLAB ... 6-1

6.3 - MPLAB C32 C Compiler .. 6-2
6.3.1 - File Naming Conventions .. 6-2
6.3.1.1 - Data Storage .. 6-2

Storage Endianness ... 6-2
Integer Representation ... 6-2
Signed and Unsigned Character Types .. 6-3
Floating-Point Representation .. 6-3

6.3.2 - Pragmas (pragmatic information) .. 6-3
6.3.3 - Interrupts .. 6-4

Chapter 7. Software.. 7-1

7.1 - Visual C++/CLI .. 7-1
7.1.1 - .NET .. 7-1
7.1.2 - Framework .NET ... 7-2
7.1.3 - Common Language Runtime .. 7-2

7.2 - Windows Forms ... 7-3

Chapter 8. Results... 8-1

8.1 - The graphical interface (GUI) ... 8-1
8.1.1- Communication between Forms ... 8-1

8.2 - Data Visualization .. 8-2
8.2.1 - Save data in .txt format. ... 8-2

8.3 - Communication between PC and PIC ... 8-3
8.3.1 - Sending Data to PIC Firmware .. 8-3
8.3.2 - Sending Data to PC Software .. 8-4

9.3.2.1 - How conversions are made ... 8-5

x

8.4 - ADC Tests ... 8-6
8.4.1 - Effective number of bits (ENOB) of the 16-bit ADC AD7680 8-6

8.1.1.1 - 1.3 Volts battery test... 8-7
8.4.2 - ADC units to Volts conversion .. 8-8
8.4.3 - SPI communication ... 8-9

8.5 - FFT-CCD image sensor ... 8-10
8.5.1 - External control signals .. 8-10
8.5.2 - Acquisition parameters .. 8-11
8.5.3 - Disk storage .. 8-12
8.5.4 - Processing of Data .. 8-13

8.6 - LIP – Temperature Monitor for Liquid Xenon Detector .. 8-13

8.7 - MOS Linear Image Sensor .. 8-15
8.7.1 - External control signals .. 8-15
8.7.2 - A/D Conversion... 8-16
8.7.3 - Pixel duration time ... 8-16

8.8 - Final prototype ... 8-17

8.9 - Unsolved problems .. 8-18

Chapter 9. Conclusion and Future work ... 9-1

Bibliography ... I

Attachment I ... A

Attachment II .. B

Attachment III ... C

Attachment IV .. D

Attachment V .. E

Attachment VI ... F

Attachment VII ... G

Attachment VIII .. H

Attachment IX .. I

Attachment X ... J

Attachment XI ... K

Attachment XII .. L

Attachment XIII ..M

Attachment XIV .. N

xi

List of Figures

Figure 1-1. Zilog Z80 - 8-bit microprocessor designed and sold by Zilog from July 1976. [7] ______ 1-2
Figure 1-2. The Von Neumann architecture. [10] __ 1-4
Figure 1-3. The Harvard architecture. [10] ___ 1-5
Figure 2-1. PIC32 USB Starter Kit II. [13] ___ 2-1
Figure 2-2. Interrupt Controller Module.___ 2-2
Figure 2-3. The Starter Kit I/O Expansion Board.[14] _____________________________________ 2-8
Figure 2-4. Microchip PICtail Plus Daughter Board. ______________________________________ 2-8
Figure 3-1. Board with power supplies for the Hamamatsu FFT-CCD C5809 Image Sensor _______ 3-1
Figure 3-2. Standart Application, Pin-Out Information and Ordering Information of PT78NR100

Series. [16] __ 3-2
Figure 3-3. Connection Diagram (top view) and Standart Application Circuits of the L7800 series

regulators.[17] ___ 3-2
Figure 3-4. Connection Diagram (top view) and Standart Application Circuits of the LM7800 series

regulators.[18] ___ 3-3
Figure 3-5. Connection Diagram of the LM78M05CT regulator.[19] _________________________ 3-3
Figure 3-6. Pin Configuration (top view) and Application Circuit of the LD1085V50 regulator.[20] _ 3-4
Figure 3-7. Image and pinout of IE1224S DC/DC Converter.[21] ____________________________ 3-4
Figure 3-8. Standard Application of PTN78000A regulator. Application Information in Attachment

V.[23] __ 3-5
Figure 3-9. Typical Connection Diagram of the REF195. [22] _______________________________ 3-5
Figure 3-10. Functional Block Diagram and Pin Configuration of 16-Bit AD7680. [22] ___________ 3-6
Figure 4-1. Timing diagram for drive circuit of S3921-128Q MOS Linear Image Sensor [28]. ______ 4-3
Figure 4-2. Recommend readout circuit and pulse timing for S3921-128Q MOS Linear Image

Sensor.[28] __ 4-4
Figure 4-3. Header for communication between MOS and PIC._____________________________ 4-4
Figure 5-1. PCB used to measure the temperature of the D1 and D2 diodes. __________________ 5-2
Figure 5-2. Schematic of the circuit that will monitor the temperature of a liquid xenon detector. 5-3
Figure 7-1. Framework .NET architecture diagram. ______________________________________ 7-1
Figure 7-2. Image of the first Form of the graphical user interface (GUI). _____________________ 7-3
Figure 8-1. Communication between two Windows Forms ________________________________ 8-1
Figure 8-2. ADC WindowsForm image where the ADC parameters are selected. _______________ 8-6
Figure 8-3. .txt file that demonstrates a slight increase of values of SCAN NUMBER: 3 in relation to

the SCAN NUMBER: 2. ___ 8-8
Figure 8-4. Scheme of ADC units to Volt conversion. _____________________________________ 8-8
Figure 8-5. Microchip PICtail Plus Daughter Board with components. _______________________ 8-9
Figure 8-6. Schematic of the correspondence between ADC pins and PIC pins. ________________ 8-9
Figure 8-7. Header (in PIC daughter board) for connecting the Start and Clock signals FFT-CCD image

sensor and for connection of Trigger signal to the PIC. ______________________________ 8-10
Figure 8-8. FFT-CCD image sensor 15-pin D-SUB Connector. ______________________________ 8-11
Figure 8-9. Picture of the selection window of FFT-CCD parameters. _______________________ 8-12
Figure 8-10. Scheme illustrating the 1 Hz square wave used as a trigger to synchronize conversions of

diode D1 and diode D2. ___ 8-13
Figure 8-11. File in ASCII format which are stored the mean values and standard deviation of each D1

and D2 conversion. __ 8-14
Figure 8-12. Picture of the GUI where we can view D1 and D2 variations. ___________________ 8-14
Figure 8-13. Graphs of temperature variation in diodes D1 and D2. These graphs were obtained using

an excel sheet. __ 8-15
Figure 8-14. Header (in PIC daughter board) with all signals for MOS sensor. ________________ 8-15
Figure 8-15. Video output of S3921-128Q MOS linear image sensor in the oscilloscope and

conversions to be made. __ 8-16

xii

Figure 8-16. An acquisition of MOS. ___ 8-17
Figure 8-17. Final prototype with MOS. __ 8-17
Figure 8-18. Schematic with state buffer/line driver (ex.: HCT244). ________________________ 8-19
Figure M-1. AD7680 Serial Interface Timing Diagram - 24SCLK Transfer. ______________________ M
Figure M-2. AD7680 Serial Interface Timing Diagram - 20 SCLK Transfer. ______________________ M

List of Tables

Table 3-1. LM78M05CT Specifications.[19] ... 3-3
Table 3-2. Electrical characteristics of LD1085V50.[20] .. 3-4
Table 3-3. Input and Output specifications of IE1224S DC/DC Converter.[21] 3-4
Table 3-4. Terminal functions of PTN78000A regulator.[23] .. 3-5
Table 3-5. Pin Function Descriptions of AD7680. [22] ... 3-6
Table 6-1. File extensions names in compilation driver. ... 6-2
Table 6-2. Example of stored at address 0x100 of 32-bit value 0x12345678. 6-2
Table 6-3. Integer representation values in MPLAB C32 C Compiler. ... 6-3
Table 6-4. MPLAB C32 C Compiler floating-point format. ... 6-3
Table 8-1. Analysis of points converted by the ADC subjected to a potential of 1.3 volts. 8-7
Table 8-2. Analysis of one acquisition with 512 points, converted by the ADC subjected to a potential

of 1.3 volts. ... 8-7

List of Examples

Example 2-1. Code example will set group priority level. ... 2-2
Example 2-2. Code example will set group sub priority level.. 2-3
Example 2-3. Code Example of Analog and digital inputs/outputs. .. 2-4
Example 2-4. 16-Bit Timer Interrupt Initialization Code Example. .. 2-5
Example 2-5. Timer ISR Code Example. ... 2-5
Example 2-6. Example code for configuration of the single output pulse event and Interrupt Servicing

(16-Bit Mode). .. 2-6
Example 2-7. Example code for configuration of the continuous output pulse event and Interrupt

Servicing (16-Bit Mode). ... 2-6
Example 8-1. Code for communication between two Windows Forms .. 8-1
Example 8-2. Partial code to display data in continuous mode. ... 8-2
Example 8-3. Partial code for storage in .txt format. .. 8-3
Example 8-4. Partial code that shows how values of parameters are sent to the PIC. 8-4
Example 8-5. Partial code of MPLAB Firmware. .. 8-4
Example 8-6. Partial code used to send 512 conversions to PC. ... 8-5
Example 8-7. Partial code used to make ADC conversions ... 8-5
Example 8-8.Example of PIC problem description. ... 8-19

1-1

Chapter 1. Introduction

1.1 - Diabetic Neuropathy

Diabetic peripheral neuropathy (DPN) is nerve damage caused by diabetes, affects up

to 50% of older type 2 diabetic patients and is the major cause of chronic disability in

diabetic patients, being implicated in 50-75% of non-traumatic amputations. Patients with

peripheral neuropathy must be considered at risk of insensate foot ulceration and must

receive preventive education and care. [1]

The present approach to reduce diabetic neuropathy complications is based on its early

diagnosis and accurate assessment, a difficult task due to the non-availability of a simple

non-invasive method for early diagnosis. [2]

DPN is by far the most common of all the neuropathies and may be divided into the

following two main types:

 Acute sensory neuropathy

 Chronic sensorimotor neuropathy

Acute sensory neuropathy is a distinct variety of the symmetrical polyneuropathies1

with an acute or sub-acute onset characterized by severe sensory symptoms, usually with

few if any clinical signs.

Chronic sensorimotor neuropathy is by far the most common form of DPN. It’s usually

of insidious onset and may be present at the diagnosis of type 2 diabetics in up to 10% of

patients. Whereas up to 50% of patients with chronic DPN may be asymptomatic symptoms

sufficient to warrant specific therapy. [3]

Management of diabetic neuropathy includes two approaches: therapies for

symptomatic relief and those that may slow the progression of neuropathy. Of all

treatments, tight and stable glycemic control is probably the most important for slowing

the progression of neuropathy. [4]

The cornea is one of the most densely innervated tissues in the human body and is

accessible to inspection through optical methods. In the past 15 years, several researches

proposed the use of morphologic parameters extracted from images of the corneal sub-

basal nerve plexus, acquired in vivo, on conscious patients, using corneal confocal

microscopy (CCM). [5]

1.2 - NeuroCórnea

The NeuroCórnea has the purpose of early detection and monitoring of diabetic

peripheral neuropathy by automatic analysis of the in vivo morphology of corneal sub-basal

nerves. The technique will be based on dedicated instrumentation meant to be coupled to

1
 Poluneuropathy is a neurological disorder that occurs when many nerves throughout the body

malfunction simultaneously.

1-2

a standard slip lamp, a feature that will ease its adaptation by ophthalmologists and

general practitioners. [5,6]

This thesis project has an application in respect of NeuroCórnea. It is therefore

requested a construction of a system capable of measuring the density of light from a slit

lamp.

1.3 - Objective

This is a continuing project, initiated in 2010/2011, and aims to consolidate

conceptually a prototype system to acquire/scan based on a PIC microcontroller and a USB

interface. The goal is also the control with speed and resolution suitable for the acquisition

of confocal images of the cornea provided by a camera attached to a slip lamp.

The aims to embody the following tasks:

1. Study the existing system and its main components

2. Survey of possible operational problems and limitations

3. Digital oscilloscope. Acquisition in real time (continuously)

4. Submission of a comprehensive proposal for implementation of the final

prototype

5. Completing the hardware/firmware solution and implementation of graphical

user interface (GUI) for the acquisition and control

6. Image acquisition and parameterization of the performance in terms of

resolution, speed and sensitivity

7. Adaptation of firmware and software to other applications

1.4 - Microcontrollers

Microcontrollers are smart chips, which has a processor, pin for input/output (I/O) and

memory. By programming the microcontroller can control their output, with reference

inputs or an internal program.

What differentiates the various types of microcontrollers is the amount of memory

(program and data), processing speed, number of I/O pins, power, peripherals, architecture

and instruction set.

First to all we need to differentiate a microcontroller of a microprocessor, easy terms

to be confused but there is great difference between them.

Figure 1-1. Zilog Z80 - 8-bit microprocessor designed and sold by Zilog from July 1976. [7]

1-3

A microprocessor circuit is very complex, in the form of an integrated circuit, which can

contain from a few thousand (Figure 1-1) to 7 million transistors (Pentium II). These

transistors are the most diverse internal logic circuits, such as counters, registers, decoders

and hundreds of others. These logic circuits are arranged in a complex manner, giving the

microprocessor the ability to perform logical, arithmetic and control operations.[7]

A microcontroller is na integrated circuit that has na internal microprocessor and all

peripherals essential to its operation, like:

 Program Memory – usually an EPROM1 type memory which stores the program

information, ie, the microprocessor should execute.

 Data Memory – usually a type memory RAM (Random Acess Memory), where

the information will be stored data that the program will use, is usually used to

store a value or a flag.

 I/O Device Selection – is the communication of memory locations with the

external pins of the microcontroller.

 Timers and Counters – used to tell time or count events.

 Clock – in some microcontrollers the clock signal generator is also coupled to

the microprocessor, it has the function to synchronize all the events of a digital

circuit.

 Interrupt Controller Device – as the name implies, is the component that

controls the interrupt request to the CPU.

1.4.1 - PIC

PIC (Peripheral Interface Controller) is a family of microcontrollers manufactured by

Microchip Technology® which process data of 8-bits, 16-bits and more recently 32-bits (our

case). They have wide variety of models and internal peripherals, have high processing

speed due to its Harvard architecture and RISC2 instruction set (35 sets of instructions and

76 instructions), with resources for programming flash memory and EEPROM3. (See

Chapter 2)

Note.: The PIC18F also process data of 32-bit, double type variables for example. What

distinguishes the architectures is the ALU4. In the PIC18 is 8bits, in the PIC24 16bit ALU and

have a PIC32 32-bit ALU

1
 EPROM (rarely EROM), or Erasable Programmable Read Only Memory is a type of memory chip

that retains its data when its power supply is switched off. In other words, it is non-volatile.
2 RISC or Reduced Instruction Set Computer simplifies the processor by only implementing

instructions that are frequently used in programs; unusual operations are implemented as
subroutines, where the extra processor execution time is offset by their rare use.

3 EEPROM (also written E2
PROM) stands for Electrically Erasable Programmable Read-Only

Memory and is a type of non-volatile memory used in computers and other electronic devices.
4
 Arithmetic and Logic Unit (ALU) is a digital circuit that performs arithmetic and logical

operations.

1-4

1.5 - Von Neumann Architecture

The Architecture of Von Neumann (Figure 1-2) is a computer architecture that is

characterized by the possibility of a digital machine to store your programs on the same

memory space as the data, thus being able to handle such programs. [8]

The Von Neumann architecture is used in microprocessor instructions which may have

different formats, ie, the number of bytes used for writing the instructions may vary for

instruction statement, and therefore, these microprocessors allows the use of a broad

range instruction. CPUs are CISC (Complex Instruction Set Computer), suitable for software

development highly structured and based on the use of repertoires of instructions that

allows great design flexibility. [9]

Figure 1-2. The Von Neumann architecture. [10]

1.6 - Harvard Architecture

The Harvard Architecture (Figure 1-3) based on a concept that the latest Von Neumann,

and has been the need for the microcontroller to work faster. It’s a computer architecture

that distinguishes itself from others by having two different and independent memories in

terms of bus and connection to the processor. It’s based on the separation of bus and

connection which are memories of the program instructions and data memories, allowing a

processor can access both simultaneously, obtaining a better performance than the Von

Neumann architecture, it may seek a new instructions while executing another. [11]

The Harvard Architecture is particularly suited for microprocessors that, by using a

reduced number of instructions, are usually designated by RISC (Reduced Instruction Set

Computer). [9]

Our PIC microcontroller family, which will be further specified in more detail, displays

Harvard architecture and is designed in light of the RISC philosophy. For example,

processors PIC16Fxxxx use a repertoire of thirty-five instructions written with words of

fourteen bits, and operate on data words of eight bits.

1-5

Figure 1-3. The Harvard architecture. [10]

1.7 - Modified Von Neumann Architecture and Harvard Architecture

Before closing this chapter, it should be noted that the distinction of slides based on

the concept of philosophies CISC and RISC, or classification of the architecture, such as

Harvard or Von Neumann, tends to blur as manufacturers of microprocessors increasingly

betting more on developing devices whose architecture does not fit precisely those

concepts. Often, these constructs are called "Modified Von Neumann Architecture" or

"Modified Harvard Architecture" and display a repertoire of these microprocessors,

instruction reinforced, ie a repertoire that, in addition to containing instructions, comprises

instructions to a large processing capacity. [9]

For example, in some microcontrollers and in many microprocessors - signal processors

of the type DSP (Digital Signal Processor) - often using a Modified Harvard Architecture, to

allow the transfer of operands through the bus, at the outset, is dedicated to the program

memory access, thus improving the performance of systems to perform operations on two

operands that are involved.

2-1

Chapter 2. PIC32 USB Starter Kit II Microchip

The PIC32 USB Starter Kit II (Figure 2-1) provides a method to experience the USB

functionality of the PIC32 microcontroller. We can develop CAN (Controller Area Network)

applications using PIC32 expansion board. With the board we can develop USB embedded

host/device/OTG (USB On-The-Go) applications because it’s possible combining this board

with Microchip’s free USB software. [12]

PIC32 USB Starter Kit II includes the following items:

 PIC32 USB Starter Kit II Development Board

 USB mini-B to full-sized A cable for debug.

 USB micro-B to full-sized A cable to communicate with the PIC32 USB port

 Three user-programmable LEDS

 Three push button switches

Figure 2-1. PIC32 USB Starter Kit II. [13]

Note.: The content (Figures and Examples) which are presented below, was adapted

from “PIC32MX Family Reference Manual”, for this reason there will be no other reference

in this section (Chapter 2.1). This document is available on a CD-ROM that accompanies the

PIC32 USB Starter Kit II and is available online on Microchip website. The intension of its

inclusion was to provide the reader overall information of this important content for work

project.

2-2

2.1 - PIC32MX (PIC32MX795F512L)

The PIC32MX795F512L manipulation involves a huge knowledge of its architecture, its

functional blocks and their components. There is no logic to explain everything about the

PIC in this thesis; however, I will make a brief reference to the functional blocks of most

interest.

2.1.1 - Interrupts

In response to interrupt events, PIC32MX795F512L generates interrupt request. The

interrupts module includes the following (but not only) features:

 96 interrupt sources

 64 interrupt vectors

 Single and Multi-Vector mode operations

 7 user-selectable priority levels for each vector

 4 user-selectable sub priority levels within each priority

Figure 2-2. Interrupt Controller Module.

Note.: The Attachment I provide a brief summary of interrupt module registers.

2.1.1.1 - Interrupt Priorities and Sub Priorities

We can select priority levels in range from 1 (low) to 7 (high). If an interrupt priority is

“0”, the interrupt vector is disabled.

The following code example will set the priority to level 2.

Example 2-1. Code example will set group priority level.

2-3

We can select a sub priority in range from 0 (low) to 3 (high). The following code

example will set the sub priority to level2.

Example 2-2. Code example will set group sub priority level.

2.1.2 - I/O Ports

I/O pins are considered the simplest of peripherals because. I/O pins allow monitor and

control devices.

2.1.2.1 - Control Registers

The I/O Ports module consists of the following Special Function Registers (SFRs):

 TRISx: Data Direction register for the module “x”

 PORTx: PORT register for the module “x”

 LATx: Latch register for the module “x”

 ODCx: Open-Drain Control register for the module “x”

Note1.: “x” denotes any port module instances

Note2.: The Attachment II provides a brief summary of all I/O ports-related registers.

2.1.2.2 - Modes of Operation

I/O pins can be configured as:

 Digital Inputs (TRIS register bits = 1)
 Analog Inputs
 Digital Outputs (TRIS register bits = 0)
 Analog Outputs
 Open-Drain Configuration (ODCx register = 1)

Example 2-3 illustrates configuring RB0, RB1 as analog (default) inputs, RB2 as a digital

input and RB4 as a digital output with open-drain enabled using SET, CLR atomic SFR

registers.

2-4

Example 2-3. Code Example of Analog and digital inputs/outputs.

Note.: The Attachment III provides a summary of I/O pin mode settings configuration.

2.1.3 - Timers

We can configure PIC32MX795F512L with two different types of timers:

 Type A Timer

 16-bit time

 Software selectable prescalers 1:1, 1:8, 1:64 and 1:256

 Type B Timer

 16-bit or 32-bit timer

 Software selectable prescalers 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 and

1:256

Note.: 32-bit timer/counter configuration requires an even-numbered timer combined

with an adjacent odd-numbered timer, e.g., Timer2 and Timer3, or Timer4 and Timer 5.

2.1.3.1 - Control Registers

We configure a 16-bit timer with the following Special Function Registers (SFRs):

 TxCON: 16-Bit Control Register Associated with the Timer

 TMRx: 16-Bit Timer Count Register

 PRx: 16-Bit Period Register Associated with the Timer

 TxIE: Interrupt Enable Control Bit

 TxIF: Interrupt Flag Status Bit

 TxIP: Interrupt Priority Control Bits

 TxIS: Interrupt Subpriority Control Bits

Note.: The Attachment IV summarizes all Timer-related registers.

2-5

2.1.3.2 - Interrupt Configuration

PIC32MX795F512L timer module has an interrupt flag bit TxIF, an interrupt mask bit

TxIE and its priority level.

Example 2-4 will enable Timer2 interrupts, load the Timer2 Period register and starts

the Timer. When a Timer2 period match interrupts occurs, the ISR must clear the Timer2

interrupt status flag in software.

Example 2-4. 16-Bit Timer Interrupt Initialization Code Example.

Example 2-5 demonstrates a simple ISR for Timer1 interrupts. The code at this ISR

handler should perform any application specific operations and must clear the

corresponding Timer1 interrupt status flag before exiting.

Example 2-5. Timer ISR Code Example.

2.1.4 - Output Compare

PIC32MX795F512L output compare (OC) module is used to generate one single pulse or

set of pulses.

Example 2-6 will set the OC1 module for interrupts on the single pulse event and select

Timer2 as the clock source for the compare time base. Example 2-7 set the OC1 for

continuous pulse event.

2-6

Example 2-6. Example code for configuration of the single output pulse event and Interrupt Servicing

(16-Bit Mode).

Example 2-7. Example code for configuration of the continuous output pulse event and Interrupt

Servicing (16-Bit Mode).

2.1.4.1 - Output Compare Functions

This section contains a list of individual functions for Output Compare module and an

example of use of the functions.

CloseOC1 . . . CloseOC5

This function disables the Output Compare interrupt and then turns off the module.

The Interrupt Flag bit is also cleared.

2-7

Code Example: CloseOC1();

ConfigIntOC1 . . . ConfigIntOC5

This function clears the Interrupt Flag bit and then sets the interrupt priority and

enables/disables the interrupt.

Interrupt enable/disable:

OC_INT_ON

OC_INT_OFF

Interrupt Priority:

OC_INT_PRIOR_0 . . . OC_INT_PRIOR_7

Interrupt Sub-priority:

OC_INT_SUB_PRIOR_0 . . . OC_INT_SUB_PRIOR_3

Code Example: ConfigIntOC1(OC_INT_ON | OC_INT_PRIOR_2 | OC_INT_SUB_PRIOR_2);

OpenOC1 . . OpenOC5

This function configures the Output Compare Module Control register (OCxCON) with

the following parameters: Clock select, mode of operation, operation in Idle mode. It also

configures the OCxRS and OCxR registers.

Module on/off control:

OC_ON

OC_OFF

Clock select:

OC_TIMER2_SRC

OC_TIMER3_SRC

Output Compare modes of operation:

OC_PWM_FAULT_PIN_ENABLE

OC_PWM_FAULT_PIN_DISABLE

OC_CONTINUE_PULSE

OC_SINGLE_PULSE

OC_TOGGLE_PULSE

OC_HIGH_LOW

OC_LOW_HIGH

OC_MODE_OFF

2-8

Code Example: OpenOC1(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_ENABLE,

0x80, 0x60);

2.2 - I/O Expansion Board

The Starter Kit I/O Expansion Board provides full access to MCU signals, additional

debug headers and connections of PICtail™ Plus daughters boards. MCU signals are

available to attaching prototype circuits or monitoring signals with logic probes. [14]

Figure 2-3. The Starter Kit I/O Expansion Board.[14]

To make the connections of external devices to the PIC we use a daughter board to

solder the wires and devices required. The advantage of having a daughter board is its

portability, ie, it is not necessary to remove the PIC development board for soldering wires,

another advantage is that perhaps if something goes wrong, we know that all connections

are being made to from the daughter board, so it is easier to discover the provenance of

the breakdown.

Figure 2-4. Microchip PICtail Plus Daughter Board.

Note.: The pin out equivalence of the development board for the daughter board is

shown in Attachment XI.

3-1

Chapter 3. Power Supply Voltage Board

The power board in Figure 3-1 was built entirely by us. This board has the function to

supply all components of our system and has two power inputs (1 and 2).

This board also has an ADC and communication with PIC is made by SPI. (See

Attachment XIII)

Figure 3-1. Board with power supplies for the Hamamatsu FFT-CCD C5809 Image Sensor

Legend of Figure 3-1:

1 - XP Power, model AED100US19 that provides +19 V DC output of power (Input)

2 - ELECTRO DH, model 50.055 that provides +6.5V DC output of power (Input)

3 -GND

4 - +5V (PIC supply)

5 - GND, +5, +15, -15, +24 Volts (Output)

6 - 16-bit ADC AD7680

Note.: 6.5 V input is required for LD1085V50 regulator because dropout is guaranteed

at a maximum of 1.2 V at the maximum output current. Experimentally it was found that

when we supply the regulator with 19V, 15V or 12V it was very hot and damaged.

Moreover, we needed current of about 2A to the FFT-CCD and we could not maintain the

5V regulator.

3-2

3.1 - PT78NR115S (-15V)

The PT78NR115S (Figure 3-2) creates a negative output voltage (-15V) from a 12V of

input voltage with maximum output power of 5 watts. [16]

Figure 3-2. Standart Application, Pin-Out Information and Ordering Information of PT78NR100 Series.

[16]

3.2 - L7812CV (+12V)

The L7812CV of three-terminal positive regulator (Figure 3-3) creates a positive output

voltage (+12V) from a +19V of input voltage and can deliver over 1A output current. [17]

Figure 3-3. Connection Diagram (top view) and Standart Application Circuits of the L7800 series

regulators.[17]

3.3 - LM7815CV (+15V)

The LM7815CV is available in an aluminum TO-31 package (Figure 3-4) which will allow

over 1.0A load current if adequate heat sinking is provided and creates a positive output

voltage (+15V) from +12 of input voltage. [18]

1
 TO-3 (“transistor outline”) is a designation for a standardized metal semiconductor package

used for transistors and some integrated circuits.

3-3

Figure 3-4. Connection Diagram (top view) and Standart Application Circuits of the LM7800 series

regulators.[18]

3.4 - LM78M05CT (+5V)

The LM78M05CT of three-terminal positive voltage regulator (Figure 3-5) creates a

positive output voltage (+5V) from positive input voltage [19]

Figure 3-5. Connection Diagram of the LM78M05CT regulator.[19]

Table 3-1. LM78M05CT Specifications.[19]

3.5 - LD1085V50 (+5V)

The LD1085V50 is a low drop voltage regulator (Figure 3-6) able to provide up to 3 A of

output current. Dropout is guaranteed at a maximum of 1.2 V at the maximum output

current, decreasing at lower loads. Only a 10 μF minimum capacitor is need for stability and

creates a positive output voltage (+5V) from ELECTRO DH, model 50.055 that provides

+6.5V DC output. [20]

3-4

Figure 3-6. Pin Configuration (top view) and Application Circuit of the LD1085V50 regulator.[20]

Table 3-2. Electrical characteristics of LD1085V50.[20]

3.6 - IE1224S (+24V)

The IE1224S reference provides +24V DC output from +12V input voltage.

Figure 3-7. Image and pinout of IE1224S DC/DC Converter.[21]

Table 3-3. Input and Output specifications of IE1224S DC/DC Converter.[21]

3-5

3.8 - PTN78000A (-15V)

This component was used in place of the PT78NR115S (there is no longer for sale).

Operating from a wide-input voltage range, the PTN78000A provides high-efficiency,

positive-to-negative voltage conversion for loads of up to 1.5 A. The output voltage is set

using a single external resistor, and may be set to any value within the range, –15V to –3V

(Table 3-4). [23]

Figure 3-8. Standard Application of PTN78000A regulator. Application Information in Attachment V.[23]

Table 3-4. Terminal functions of PTN78000A regulator.[23]

3.7 - REF 195

In fact, because the supply current required by the 16-bit AD7680 is so low, a precision

reference can be used as the supply source to the AD7680. REF195 (Figure 3-9) can be used

to supply the required voltage to the ADC AD7680. This configuration is especially useful if

the power supply available is quite noisy.

Figure 3-9. Typical Connection Diagram of the REF195. [22]

3-6

3.8 - 16-bit ADC AD7680

The AD7680 is a 16-bit, fast, low power, successive approximation ADC. The part

operates from a single 2.5 V to 5.5 V power supply and features throughput rates up to 100

kSPS. [22]

The conversion process and data acquisition are controlled using CS1 and the serial

clock, allowing the devices to interface with microprocessors or DSPs2. The input signal is

sampled on the falling edge of CS and the conversion is also initiated at this point.

(Attachment XIII)

The reference for the part is taken internally from VDD, which allows the widest

dynamic input range to the ADC. Thus, the analog input range for this part is 0 V to VDD.

[22]

Figure 3-10. Functional Block Diagram and Pin Configuration of 16-Bit AD7680. [22]

Table 3-5. Pin Function Descriptions of AD7680. [22]

1
 Chip select (CS) or slave select (SS) is the name of a control line in digital electronics used to

select one chip out of several connected to the same computer bus usually utilizing the three-state
logic.

2
 DSP or digital signal processor is a specialized microprocessor with an architecture optimized

for the fast operational needs of digital signal processing.

4-1

Chapter 4. Hamamatsu Image Sensors

Datasheets Information

Note.: This chapter is an adaptation of information obtained in each equipment manual

(referenced in the bibliography) and introduces the equipment to the reader before

analyzing results.

4.1 - FFT-CCD C5809 Image sensor

The C5809 series multichannel detector head consists of a thermoelectrically-cooled

FFT-CCD image sensor, a low-noise driver/amplifier circuit and a temperature control

circuit. This combination enables stable operation of the image sensor by input of simple

external signals. [29]

The driver/amplifier circuit provides various timing signals necessary to operate the

image sensor and processes the analog video signal from the image sensor with a low

degree of noise. This circuit operates from two kinds of external control signals (Start, CLK)

and four different supply voltages (+5V, +15V, -15V, +24V). (See Chapter 3)

4.1.1 - Timing signal generator

Consisting of a counter and EPROM, the timing signal generator supplies various timing

signals. It also provides trigger signals (Trigger) for external A/D conversion (See

Attachment XIII). These signals are synchronized with external master clock pulse signals

(CLK) and initialized by start pulse signals (Start).

4.1.2 - Voltage regulators

The voltage regulator generates various voltages necessary to operate the image

sensor. Each voltage is generated by a low noise regulator with a high degree of accuracy

and stability. (See Chapter 3)

Note1.: For operating procedures see Attachment VII

Note2.: If “Green” LED is ON, indicates that the cooling temperature is set to the

present level (TS = 0 ºC).If “Red” LED is ON, warns that overheat is occurring due to

electrical open or short circuit of the thermistor in the image sensor, or failure of the

thermoelectric cooler. In this case we immediately turn the power off.

4-2

4.1.3 - Inputting the control signal from the PIC (Start and CLK)

Inputting two kinds of control signals (Start, CLK) from the PIC to the driver/amplifier

circuit. The pulse width of the “Start” signal must be longer than one cycle of the “CLK”

signal, and should be synchronized with the “CLK” signal as much as possible.

The “CLK” signal frequency determines the readout frequency of the “Data Video”

signal, and the pulse interval of the “Start” signal determines the storage time to the image

sensor.

Using the FFT-CCD image sensor operated at “CLK” signal frequency of 1MHz:

The readout frequency for the “Data Video” signal is 1/4th the “CLK” signal frequency

(See Attachment VII). The readout time per one channel, tv, is 4us.

The binning operation frequency is 1/16th the “CLK” signal frequency. The binning

operation time per one channel, tb, is 16us.

Thus, the time required for one scan, tscan, including the binning operation time

becomes

Equation 4-1. Time required for one scan of the FFT-CCD image sensor.

Where:

Nv – Number of channels of the vertical register.

Nh – Number of channels of the horizontal register.

Note.: See Attachment VIII

4.2 - S3921-128Q MOS Linear Image Sensor

The S3921 MOS linear image sensor feature a signal processing circuit which integrates

a signal charge in the inner video line and performs impedance conversion to provide an

output signal with a boxcar waveform. This allows signal readout with a simple external

circuit. The S3921 also have a wide photosensitive area with a pixel height of 2.5mm and a

pixel pitch of 50µm. [28]

4.2.1 - Driver Circuit

Driving the MOS shift register requires a start pulse (ɸst) and two.phase clock pulses

(ɸ1, ɸ2). The polarities of ɸst, ɸ1 and ɸ2 are positive. ɸ1 and ɸ2 can be either fully

separated or in the complementary relation. However, the overlap should not exist at the

rise or fall edge between ɸ1 and ɸ2. In other words, ɸ1 and ɸ2 must not be at the high

4-3

level at the same time. The pulsewidth of ɸ1 and ɸ2 must be longer than 200 ns. Since the

photodiode signal is obtained at the rise of every ɸ2, the clock pulse frequency determines

the video data rate. [28]

The amplitude of ɸst should be equal to that of ɸ1 and ɸ2. The shift register starts to

read out the signal with the high level of ɸst, so the time interval of each ɸst determines

he signal accumulation time. The pulsewidth of ɸst must also no longer than 200 ns and

must be overlapped with ɸ2 for at least 200 ns. Moreover, in order to start the shift

register normally, ɸ2 must be changed only once from the high level to the low level during

the high level of ɸst.

Note.: The timing diagram for each pulse is shown in Figure 4-1 and the respective time

values are shown in Attachment XI.

Figure 4-1. Timing diagram for drive circuit of S3921-128Q MOS Linear Image Sensor [28].

4.2.1 - Signal Readout Circuit

The amplitude of the reset pulse (Reset ɸ) should be equal to ɸ1, ɸ2 and ɸst. When

the Reset ɸ is at the high level, the video line is set at the reset voltage (Reset V). It is

recommended that the reset voltage be set at 2.5V when the amplitude of ɸ1, ɸ2, ɸst and

Reset ɸ is 5V. However, the sensor is to be powered by PIC that has signal whose peak is

4.9 volts. So, here we have a problem that is discussed in Chapter 8.

4-4

The fall of Reset ɸ must be prior to the rise of ɸ2 because the photodiode signal is

obtained at the rise of ɸ2. To obtain a stable output, an overlap between the reset pulse

(Reset ɸ) and ɸ2 must be settled, and furthermore, the fall edge of Reset ɸ should be

delayed from the fall edge of ɸ2.

The linear image sensor provides an output signal with negative polarity boxcar

waveform which includes a DC offset of approximately 1V when the reset voltage is 2.5V.

 When it is desired that the DC offset is null and the waveform is inverted to the

positive polarity, a signal readout circuit and pulse timing is shown in Figure 4-2.

Figure 4-2. Recommend readout circuit and pulse timing for S3921-128Q MOS Linear Image Sensor.[28]

Note.: In this circuit, RS must be larger than 10 kΩ. Also, the gain is determined by the

ratio of Rf to RS, so, choose the value of Rf that suits our application.

The communication of all the sensor signals to the PIC is made through a connecting

header. The header is shown in Figure 4-3 and PCB is shown in Attachment XIV.

Figure 4-3. Header for communication between MOS and PIC.

5-1

Chapter 5. Temperature Monitor for a Liquid Xenon
Detector

Having learned the ongoing project and the potential of our instrumentation, the

Laboratory of Instrumentation and Experimental Physics of Particles (LIP-Coimbra)

requested our collaboration for routinely screened a system that will serve to control the

temperature of a liquid xenon detector.

5.1 - LIP - Laboratory of Instrumentation and Experimental Physics
of Particles

LIP is a technical and scientific association of public utility that aims to research in the

field of Experimental High Energy Physics and Associated Instrumentation.

Research fields of the LIP have grown to encompass the Experimental High Energy

Physics and Astroparticle, Radiation Detection Instrumentation, Data Acquisition and Data

Processing, Advanced Computing and applications in other fields, in particular the Medical

Physics.

The main research activities of the laboratory are developed within large collaborations

at CERN and other international organizations and major infrastructure inside and outside

Europe, such as ESA, SNOLAB, GSI, NASA and AUGER.

The LIP is an "associated laboratory" assessed as "Excellent" in three successive

evaluations by international panels.

In its three laboratories in Coimbra, Lisbon and Minho, LIP has about 170 employees, of

which more than 70 PhDs, and many teachers in local universities.

The center of Coimbra has a long experience in R&D of radiation detection systems and

their applications in experiments. Its activity is supported by a well equipped machine shop

and expert staff.[24]

5.2 - 1N4148 diodes

The 1N4148 is a standard silicon switching diode. Its name follows the JEDEC

nomenclature. The 1N4148 has a DO-351 glass package and is very useful at high

frequencies with a reverse recovery time of no more than 4 ns. It was second sourced by

many manufacturers; Texas Instruments listed their version of the device in an October

1966 data sheet. [25, 26]

1
 The DO-35 is a semiconductor package type. It is often used to package small signal, low power

diodes (a 100V, 300mA silicon diode). Generally a diode will have a line painted near the cathode
end.

5-2

5.2.1 – Specifications

VRRM = 100 V (Maximum Repetitive Reverse Voltage)

IO = 200 mA (Average Rectified Forward Current)

IF = 300 mA (DC Forward Current)

IFSM = 1.0 A (pulse width = 1 sec), 4.0 A (pulse width = 1 µsec) (non-repetitive peak

forward surge current)

PD = 500 mW (power Dissipation)

TRR < 4 ns (reverse recovery time)

5.3 - PCB

The PCB will be used to measure the temperature at two points (at the bottom and

along the photomultiplier) of a detector which will be used to estimate the reflectivity of

PTFE (commonly referred to as Teflon) to light the Xenon scintillation fluid, and with PTFE

immersed in liquid xenon. [30]

Figure 5-1. PCB used to measure the temperature of the D1 and D2 diodes.

Legend of Figure 5-1:

1 –"+12 V" and "-12" power supplies

2 – (J2) "+5 V" square wave

3 – (J3) signal to be measured by our ADC

D1 and D2 - 1N4148 standard silicon switching diodes

5-3

5.4 – LIP circuit

The aim is to view and save values of temperature variations in two 1N4148 diodes. To

do this you must create the necessary firmware to the acquisition of temperature and

adjust the graphical interface (the interface used for the ongoing project) for the said

purpose proposed.

The system in question is a printed circuit board, PCB, (See Attachment IX). This system

has power header with "+12 V" and "-12" for power supplies and produces a signal, J3,

which depends on the sign that attacks J2. J3 is the signal to be measured by our ADC and is

controlled by a trigger signal, J1, which is in phase with the signal J2.

Figure 5-2. Schematic of the circuit that will monitor the temperature of a liquid xenon detector.

Therefore, if we use J2 in a "+5 V" square wave signal in J1, it is known that we have a

square wave with the same phase at J2 and J3. It is also known that, in J3, the lower part of

the waveform corresponding at one diode and the top correspond to the other diode. It is

from this assumption that we create our firmware (and software) to acquire the values of

the voltages to the terminals of the diodes D1 and D2.

6-1

Chapter 6. Firmware

At the end of this section we should have developed an understanding of the core

features of the MPLAB C32 C compiler, including its libraries and the core features of the

programming language C.

6.1 - Introducing MPLAB

MPLAB is an IDE1 hat can be downloaded free from Microchip’s web site. There is also a

copy on the book’s companion website and contains all the software tools necessary to

write a program in Assembler, assemble it, simulate it, and then download it to a

programmer. Further software tools can be bought and then integrated with MPLAB, both

from Microchip and from other suppliers. This includes alternatives to what MPLAB already

offers – e.g. assemblers or simulators, as well as tool which offer much greater

development power, like C compilers or emulator drivers. [15]

6.2 - The elements of MPLAB

MPLAB is made up of a number of distinct elements which work together to give the

overall development environment. These are:

 Project Manager – The preferred way of developing programs in MPLAB is by

creating a project. An MPLAB project groups all the files together that relate to

the project and ensures that they interact with each other in an appropriate

way and are updated as needed.

 Text Editor – This allows entry of the source code. It behaves to some extent

like a simple text editor such as Notepad, but it can recognize the main

elements of the programming language that is being used.

 Assembler and Linker – The function of the Assembler we have assumed that

there is a single source file. The role of the Linker is to put the code, may be

created from a number of different files, together; give each its correct location

in memory and ensure that blanches and calls from one file to the other are

correctly established.

 Software Simulator and Debugger – A software simulator allows a program to

be tested by running it on a simulated CPU in the host computer. The debugger

contains the tools which allow program execution to be fully examined.

1
 Integrated Development Environment (IDE) is a software application that provides

comprehensive facilities to computer programmers for software development. An IDE, normally,
consists of a source code editor, build automation tools and a debugger.

6-2

6.3 - MPLAB C32 C Compiler

6.3.1 - File Naming Conventions

The compilation driver recognizes the following file extensions, which are case

sensitive.

Extensions Definition

file.c A C source file that must be preprocessed

file.h A header file (not to be compiled or linked)

file.i A C source file that has already been pre-processed

file.o An object file

file.s An assembly language source file

file.S An assembly language source file that must be preprocessed

other A file to be passed to the linker
Table 6-1. File extensions names in compilation driver.

6.3.1.1 - Data Storage

Storage Endianness

MPLAB C32 C compiler stores multi-byte values in little-endian format. That is, the least

significant byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

Table 6-2. Example of stored at address 0x100 of 32-bit value 0x12345678.

Integer Representation

Integer values in MPLAB C32 C compiler are represented in 2's complement and vary in

size from 8 to 64 bits. These values are available in compiled code via limits.h. The limits.h

header file defines the ranges of values which can be represented by the integer types.

6-3

Table 6-3. Integer representation values in MPLAB C32 C Compiler.

Signed and Unsigned Character Types

By default, values of type plain char are signed values. This behavior is implementation-

defined by the C standard, and some environments define a plain char value to be

unsigned. The command line option -funsigned-char can be used to set the default type to

unsigned for a given translation unit.

Floating-Point Representation

MPLAB C32 C Compiler uses the IEEE-7541 floating-point format. Detail regarding the

implementation limits is available to a translation unit in float.h.

Table 6-4. MPLAB C32 C Compiler floating-point format.

6.3.2 - Pragmas (pragmatic information)

The “#pragma” directive is the method specified by the C standard for providing

additional information to the compiler, beyond what is conveyed in the language itself..

#pragma interrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the

function will perform more extensive context preservation.

#pragma vector

Generate a branch instruction at the indicated exception vector which targets the

function.

1
 IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point

computation established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).

6-4

#pragma config

The #pragma config directive specifies the processor-specific configuration settings

(i.e., configuration bits) to be used by the application.

6.3.3 - Interrupts

Interrupt processing is an important aspect of most microcontroller applications.

Interrupts may be used to synchronize software operations with events that occur in real

time. When interrupts occur, the normal flow of software execution is suspended and

special functions are invoked to process the event. At the completion of interrupt

processing, previous context information is restored and normal execution resumes.

PIC32MX devices support multiple interrupts, from both internal and external sources.

The devices allow high-priority interrupts to override any lower priority interrupts that may

be in progress.

The MPLAB C32 C Compiler provides full support for interrupt processing in C or inline

assembly code.

7-1

Chapter 7. Software

7.1 - Visual C++/CLI

The .NET platform appears to be the future, especially now that is largely standardized.

Therefore, it is not surprising the huge amount of companies and developers interested in

.NET programming, using in particular the Visual Studio development environment. We also

know that there are many who program in C and C++ (the language most used in the

production of games).

The Visual C++ allows to program according to the open standard C++/CLI (Common

Language Infrastructure) ECMA1. When programming in accordance with this standard, the

programmer produces code for the standard .NET, which facilitates its portability and

interoperability between languages. On the other hand, the Visual Studio enables those

who want, ignoring the many peculiarities and proprietary technologies that were

inescapable in previous .NET versions. To build the graphical interface is used the 2008

version of Visual Studio C++, following the new standard C++/CLI, and all code is compatible

with the framework 3.5. [32]

7.1.1 - .NET

The .NET is a platform oriented for Internet and its main function is to provide software

as a service. The three main components are shown in the next figure. At the highest level

are the development tools, for example, Visual Studio .NET.

Figure 7-1. Framework .NET architecture diagram.

1 ECMA (European Computer Manufacturers Association) is an association founded in 1961

dedicated to the standardization of information systems. Since 1994, became the Ecma International
to reflect its international activities. Membership is open to companies that manufacture, sell or
develop computer systems or communication in Europe.

7-2

7.1.2 - Framework .NET

It is an infrastructure development and execution with its own class library (Base Class

Library - BCL) and its runtime (CLR).

The main objectives of the Framework .NET are:

 Infrastructure components - allowing a simple way to integrate libraries

complicated without changing the source code.

 Integration of language - a language class can inherit from other languages,

e.g. .NET all objects derived from a root class System::Object.

7.1.3 - Common Language Runtime

The CLR is the most important component Framework .NET, which provides a secure

execution environment and a high performance applications. In addition, it’s designed to

be driven code execution for all languages and possibly multiple platforms.

The Visual C++ is the only language you can mix managed1 code with non-managed

(native2). In .NET data types can be described as reference types (example: ARRAY, HANDLE

…) or value types 3 . Reference types are considered managed. The CLR allows

interoperation between managed and native code. The terms managed and native refer to

how memory space is reserved for the types of instances and how it is carried out

management of the memory.

An instance of a managed type created with gcnew operator is always placed on the CLI

heap.

In C++/CLI, a variable of a native type can be created on the stack, but it is created on

the heap will be used to release native C++ operator new and types will be created on the

heap of the native C++. For these types will require the programmer to free the memory of

these objects using the delete operator of the native C++. In the case of managed types,

this is not necessary for this task rests with the CLR.[32]

1
 Managed code is code that has its execution managed by the .NET Framework Common

Language Runtime. It refers to a contract of cooperation between natively executing code and the
runtime. This contract specifies that at any point of execution, the runtime may stop an executing
CPU and retrieve information specific to the current CPU instruction address. Information that must
be query-able generally pertains to runtime state, such as register or stack memory contents.

2
 Native code it's a code that is compiled to run with a particular processor and its set of

instructions. If the same program is run on a computer with a different processor, software can be
provided so that the computer emulates the original processor.

3
 Value types represent values allocated in the program stack and are the legacy (directly or

indirectly) from the System::ValueType class.

7-3

7.2 - Windows Forms

Using the tools in the toolbox Visual Studio C++ was possible to construct a graphical

user interface that enables interactive graphical quite handling various external devices

that can be connected to the microcontroller.

Figure 7-2. Image of the first Form of the graphical user interface (GUI).

The tool Windows Forms of the Microsoft Visual Studio C++ allows creating new Forms,

i.e., we are not restricted only one window may be (as is the case) multiple windows in

parallel which enables a more didactic with user.

In the Figure 7-2 you can see several buttons. Some of these buttons open new

windows (Forms) where we can selected parameters and devices that we want to control.

In the following chapter (Chapter 8. Results) will be given more information about

Windows Forms.

8-1

Chapter 8. Results

8.1 - The graphical interface (GUI)

There were some problems when upgrading the graphical interface that already

existed. We chose to build a new graphical user interface, more robust and more didactic.

Due to the complexity of construction, I'll just present how is the communication between

various Forms.

8.1.1- Communication between Forms

When starting a new project (Windows Forms Application) is generated a Form with

Form1.h original name. This Form is a header file without a .cpp source file. Thus, all code is

inserted into the header. From here, any new Form created has to be included in an include

header file created at beginning of project, the name of this file is stdafx.h.

For communication between Forms we use functions of windows language.

Figure 8-1. Communication between two Windows Forms

Figure 8-1 shows the communication between two Forms (Form1 and ADCForm).

Example 8-1 shows the code entered on Form1 to have dialogue with ADCForm.

Example 8-1. Code for communication between two Windows Forms

ADCForm ^adc = gcnew ADCForm();

adc->ShowDialog();

textBox1->Text = "ADC";

textBox2->Text = Convert::ToString(Parametro.tempo_amostragem);

textBox3->Text = Convert::ToString(Parametro.numero_amostras);

textBox4->Text = "n. a.";

8-2

8.2 - Data Visualization

An important part of this project was the visualization of the data received in

continuous mode. This was achieved by manipulating the object Chart of the toolbox of

Microsoft Visual Studio C++.

Chart object can paint values in an ArrayList. To re-paint a new set of values has

created an array and then inserted into an ArrayList. Before re-paint new data, is made a

Clear and it’s incorporate a new array values in ArrayList by an Add. Whenever the Chart

paints a data set and we use the Update function to force Chart to change their status.

Below is shown a partial code used to display data in continuous mode.

Example 8-2. Partial code to display data in continuous mode.

The Update function is used to update other objects of the Microsoft Visual Studio C++

toolbox. It is the case of labels used to count the number of acquisitions.

Note.: The Example 8-2 is not the full code for the visualization of data in continuous

mode, is just one example that demonstrates the use of some functions of Windows

language. In this example, the data received by USB communication are shown in Chart1.

8.2.1 - Save data in .txt format.

All acquisitions can be saved in .txt format. The partial code of Example 8-3 shows how

this storage is done

ArrayList ^ xvals = gcnew ArrayList();

ArrayList ^ yvals = gcnew ArrayList();

int scan[scan_length];

int s_index = 0;

scan[s_index++] = Data_int;

for(int i = 0; i< scan_length ; i++)

{

yvals->Add(scan[i]);

xvals->Add(i);

}

chart1->Series["Series1"]->Points->DataBindXY(xvals,yvals);

chart1->Update();

8-3

Example 8-3. Partial code for storage in .txt format.

Note.: They can also be stored images that are to be printed on the screen. To do so,

use the following line of code:

chart1->Serializer->Save("C:\\Users\\Asus\\Desktop\\UI\\Neurocornea\\SAVES\\ChartImage\\CCD\\" +

textBox5->Text + " scan n. " + (NumeroAquisicoesPIC+1));

8.3 - Communication between PC and PIC

Another very important part of this project is to develop the communication between

user and PIC by USB communication. Improve how data is sent and received is the first step

to get a better sampling in Chart of the GUI.

The development of a USB communication is highly complex. To program this PIC

microcontroller it’s used a library provided by Microchip called LibUSB. This is an open

source library that allows access to USB devices once recognized VID/PID of the device.

The library used has a USB output and a bulk endpoint and transfers is set to Full-

Speed. Thus, each bulk transfer has up to 64 bytes per data packet.

The USB communication had been established the previous year. However, was

created a variable able to send values to the PIC

8.3.1 - Sending Data to PIC Firmware

To be able to visualize the data in continuous mode is required, firstly, more than one

data packet (scans) to be sampled.

The Example 8-4 shows how values of parameters are sent to the PIC.

using namespace System::IO;

…
FileStream ^ outFile = gcnew

FileStream("C:\\Users\\Asus\\Desktop\\UI\\Neurocornea\\SAVES\\Files

ASCII\\Temperatura\\" + textBox5->Text + ".txt", FileMode::Append,

FileAccess::Write);

StreamWriter ^streamOut = gcnew StreamWriter(outFile);

…
streamOut->WriteLine(Data);

…
streamOut->WriteLine("END OF ACQUISITION");

streamOut->Close();

8-4

Example 8-4. Partial code that shows how values of parameters are sent to the PIC.

Obviously, firmware reads all of these values. The Example 8-5 shows partial code of

this interpretation and application of the one value.

Example 8-5. Partial code of MPLAB Firmware.

8.3.2 - Sending Data to PC Software

As stated, the USB communication established does not support more than 64 bytes

(64 chars) per download package. Thus, 512 (or 128) conversions have to be separated by

data packets to be sent to get the PC.

The result of a conversion occupies 2 bytes. In automatic mode, packets are sent with

32 conversions. Thus, for conversions with 512 points, this will be sent 16 packets. [27]

In Example 8-6 is shown a partial code used to send conversions.

char OutputPacketBuffer[64];//Allocate a memory buffer which will

contain data to send to the USB device

OutputPacketBuffer[0] = 0x82; //0x82 command in the firmware

OutputPacketBuffer[1] = Parametro.tempo_amostragem;

OutputPacketBuffer[2] = Parametro.numero_amostras;

OutputPacketBuffer[3] = Parametro.pix_duration;

//Writes data to a bulk endpoint. The Function call will send out 64

bytes to the USB Device.

if(usb_bulk_write(MyLibusbDeviceHandle, 0x01, &OutputPacketBuffer[0],

64, 5000) != 64)

return;

}

case 0x82:

pix_end = OUTPacket[1];

scans_end = OUTPacket[2];

naq_end = OUTPacket[3];

…

T3CON = 0; //Disable Timer 3. Write bits configurations

TMR3 = 0;

PR3 = pix_end;
…

8-5

Example 8-6. Partial code used to send 512 conversions to PC.

9.3.2.1 - How conversions are made

Before data is sent to PC, PIC has to do conversions. In all cases (ADC at maximum rate,

FFT-CCD, MOS, LIP circuit), is used OC3 (Output Compare 3), an OC module of the PIC.

Below is the code used to make ADC conversions.

Example 8-7. Partial code used to make ADC conversions

//Data transfer throw usb

unsigned int b;

for(b=0;b<16;b++)

{

unsigned short int t;

for(t=0;t<32;t++)

{

DataToTransfer[t]=DataToTransfer[t+(b*32)];

}

unsigned int j,i;

for(j=0, i=0;j<64;j++)

{

INPacket[j]=DataToTransfer[i];

j++;

INPacket[j]=DataToTransfer[i]>>8;

i++;

}

if(!USBHandleBusy(USBGenericInHandle))

{

USBGenericInHandle =

USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket,USBGEN_EP_SIZE);

}

DelayMs(1);

}

void __ISR(_OUTPUT_COMPARE_3_VECTOR, ipl3) OC3Handler(void)

{

static unsigned int spidata;

SPI1BUF = 0x00000000;

while(!SPI1STATbits.SPIRBF);

spidata=SPI1BUF;

unsigned short int spidata2 = spidata >> 13;

DataToTransfer[mais2]=spidata2;

mais2++;

IFS0 &= 0xFFFFBFFF;

}
…

SetTimer2();

//OC3 interrupt enable (in the interrupt the acquisition will be made)

IFS0 &= 0xFFFFBFFF; //Clear OC3 Flag

IEC0 |= 0x00004000; //Set OC3 Interrupt

IPC3 |= 0x000C0000; //Priority = 3

OpenOC3(OC_ON | OC_TIMER2_SRC | OC_CONTINUE_PULSE , 100 ,0);

while(mais2<512); //Counter of 512 acquisitions

//Reset OC3 and Timer2

CloseOC3();

Timer2Reset();

8-6

8.4 - ADC Tests

From the GUI, user can visualize any signal that is connected to the ADC input. This case

does not take into account any particular temporization and ADC will convert at the

maximum rate (100 kSPS). In this case there may be some problem in visualization, since

there is no time been able to transfer a data packet before another package begins to be

send. Therefore, a brief interruption is used (which may be increased in GUI) to enable the

correct transmission of data before starting next acquisition.

Figure 8-2. ADC WindowsForm image where the ADC parameters are selected.

Note.: In the case of ADC, the exposure time and has no units because there is no need,

the intention is just a “groove” in any acquisition.

8.4.1 - Effective number of bits (ENOB) of the 16-bit ADC AD7680

All signals contain a certain amount of noise. If the drive is able to represent the signal

levels below the noise floor of the system, the lower bits of the digitized signal representing

only system noise and contain no useful information. ENOB specifies the number of bits in

the digitized signal above the background noise.

Equation 8-1. An often used definition for ENOB.

Where all values are given in dB, and:

 SINAD is the ratio of the total signal including distortion and noise to the

wanted signal

 The 6.02 term in the divisor converts decibels (a log10 representation) to bits (a

log2 representation)

 The 1.76 term comes from quantization error in an ideal ADC

8-7

Equation 8-2. An often used definition for SINAD.

Where SNR is a Signal-to-Noise ratio.

From ADC AD7680 datasheet, we know that in our conditions SINAD = 87.82 dB.

Note.: We can see that this value corresponds to reality if we look Figure 8-3.

8.1.1.1 - 1.3 Volts battery test

In order to test the certainty of ADC conversion, a test was done with a 1.3 volt battery.

2560 points were acquired (5 acquisitions of 512 points) and obtained the results shown in

the Table 8-1:

Average 17755.27

Standard Deviation 14.03055

Maximum 17820

minimum 17632

Table 8-1. Analysis of points converted by the ADC subjected to a potential of 1.3 volts.

However, if we do the same calculations but now for an acquisition of 512 points (each

acquisition will have a maximum of 512 points):

Average 17746.99

Standard Deviation 8.061647

Maximum 17802

minimum 17632

Table 8-2. Analysis of one acquisition with 512 points, converted by the ADC subjected to a potential of

1.3 volts.

From standard deviation, we have a better performance of the ADC in a single

acquisition.

This difference has to do with the values that the ADC converts each acquisition. It was

found that one acquisition to another exists or a rise or fall of converted values, as shown

in Figure 8-3.

8-8

Figure 8-3. .txt file that demonstrates a slight increase of values of SCAN NUMBER: 3 in relation to the

SCAN NUMBER: 2.

This should not happen since we are converting precisely the same value. One reason

for this difference in values is the stability of the ADC. In this case, the ADC destabilizes by

internal factors such as influences of processing the firmware code.

8.4.2 - ADC units to Volts conversion

ADC is supplied with 4.8 V (output value of Reference 195). Note that we don’t have 5

volts at the output of the reference because it needs a minimum of 5.10 volts of the input

(VIN) for returning 5 volts and PIC is only able to provide approximately 4.9 volts.

Figure 8-4. Scheme of ADC units to Volt conversion.

Therefore, we know that our resolution per bit is about 73 µV. The graphical interface

has the option to select the display scale of the graph, which obviously includes the scale in

Volts (mV).

8-9

8.4.3 - SPI communication

Communication between PIC and ADC is done via SPI communication [Attachment XIII].

Since this is a continuing project, this communication was already established. However,

everything that concerns the code used in firmware has not been substantially changed.

Moreover, electrical connections of the PIC pins to ADC pins have been changed, since the

ADC was placed on daughter board.

Figure 8-5. Microchip PICtail Plus Daughter Board with components.

Legend of Figure 8-5:

1 -16-bit ADC AD7680

2 - ADC Reference 195

3 - Start, Clock and Trigger

4 -ADC Input

5 -signals for MOS

6 - GND

The Figure 8-6 shows a schematic of the correspondence of the pins of the ADC and the

pins of the PIC.

Figure 8-6. Schematic of the correspondence between ADC pins and PIC pins.

8-10

Note.: For more information about the communication between PIC and ADC see

Attachment XIII and Chapter 3.

8.5 - FFT-CCD image sensor

Results presented to the FFT-CCD image sensor are based only on simulations since this

device had a breakdown during the course of project. To continue the work we opted for a

sensor that was in stock, S3921-128Q MOS Linear Image Sensor, whose results were quite

satisfactory and will be presented later in this thesis.

8.5.1 - External control signals

The FFT-CCD image sensor circuit operates from two kinds of external control signals

(Start and Clock). The master clock pulse and start pulse signals are generated by PIC. Upon

receiving these signals, FFT-CCD image sensor is able to send a signal (Trigger) for external

A/D conversions, in this case, informs our firmware when you can do conversions.

Figure 8-7. Header (in PIC daughter board) for connecting the Start and Clock signals FFT-CCD image

sensor and for connection of Trigger signal to the PIC.

This circuit operates from four different supply voltages (+5V, +15V, -15V, +24V). These

supply voltages are provided by regulators that were described in Chapter 3. All signals and

power supplies are connected to the FFT-CCD image sensor by a 15-pin D-SUB Connector

can see that in view Attachment VI.

8-11

Figure 8-8. FFT-CCD image sensor 15-pin D-SUB Connector.

Legend of Figure 8-8:

1 - Start, Clock and Trigger signals

2 - Video signal

3 - GND, +5V, +15V, -15V and +24V supply voltages

4 -15-pin D-SUB Connector

8.5.2 - Acquisition parameters

Were defined and implemented control signals of the FFT-CCD image sensor (MCK,

Mstart and Trigger) so as to be available for A/D conversion a valid data video signal. From

these signals the firmware produces acquisitions/scans comprised of 512 pixels forming the

video signal.

Each acquisition parameters will be defined by the user:

 Number of scans;

 Exposure time (time interval between the beginning of two consecutive scans;

 Conversion A/D per pixel.

In the Figure 8-9 it is possible to view the Windows Form created to select parameters

will be defined by user that are sent to PIC.

8-12

Figure 8-9. Picture of the selection window of FFT-CCD parameters.

Note 1.: In this case we have an exposure time limit (4s). The time defined by user is is

the time of each acquisition (512 points with a line of 3216 clocks). Thus, after an

acquisition the values are sent to PC and software processes these values. If exposure time

is more than 4 seconds, software does not respond because time of USB communication.it

exceeded.

Note 2.: This exposure time was not calculated, it was verified experimentally. Also

mean that the exposure times and conversions per pixel are not easy to calculate because

it does not depend only for interruptions but also data transmission and processing time

code. On the other hand, it is defined that the maximum time that a USB communication is

available is five seconds.

8.5.3 - Disk storage

The software is able to automatically store acquisitions in ASCII format. The file names

are automatically set and contains the time of recording (so we avoid writing the name of

the file, which would waste time between two consecutive acquisitions). Are also stored

individual scans, parameters of acquisition and other descriptive information.

The graphical interface created is able to save the acquisitions in “.file” format. So,

these images can be viewed later using the same platform.

8-13

8.5.4 - Processing of Data

It is possible the processing of files like: determination of mean and standard deviation,

peak values; loading several acquisitions (aquis1, aquis2, etc.) for comparison and

determination of differences.

8.6 - LIP – Temperature Monitor for Liquid Xenon Detector

The aim is to view and save values of temperature variations in two 1N4148 diodes.

To meet the challenge, our code of firmware is able to receive a square wave signal

(trigger) and convert various points in higher and lower level of the square wave.

From graphical interface user can select number of acquisitions (number of

measurements for each temperature of the diode). In each acquisition are made 256

conversions of the D1 and 256 conversions of D2 temperatures (total of 512 points), and

from this the software make an average for each 256 conversions. Was chosen this method

because we have enough time to do so, each data array sent to software had a length of

512 values and more than one point minimizes substantially the noise error.

Figure 8-10. Scheme illustrating the 1 Hz square wave used as a trigger to synchronize conversions of

diode D1 and diode D2.

The wave serving as a trigger which is 1Hz, ie, each cycle has a second. Therefore, we

make the first conversion when trigger = 1 (high level) and use an interruption with 0.25

seconds, when trigger = 0 (low level) we use the same interruption for the second

acquisition.

The graphical user interface created calculates mean and standard deviation for each

conversion and saves the corresponding values in .txt file format. Are also stored some

additional information such as time (in milliseconds) of the first conversion and it is known

that second conversion is 0.5 seconds later, third is 0.5 seconds later, until last conversion.

8-14

Figure 8-11. File in ASCII format which are stored the mean values and standard deviation of each D1 and

D2 conversion.

At the end are displayed in a graph all points relating each conversion. This image can

also be saved. During the various conversions are shown in the graph the points that are

being converted as well as mean, standard deviation, maximum and minimum values of

each conversion. Thus, it is possible to monitor the temperature variations in real time.

Figure 8-12. Picture of the GUI where we can view D1 and D2 variations.

Note.: In Figure 8-12, the range of values to the change in temperature of the diodes is

not very salient because we visualize the variation curves of the two diodes in the same

graph (chart). Using the values recorded on “.txt” file in excel page would have a results

from the Figure 8-13, where more easily visualize this variation.

8-15

Figure 8-13. Graphs of temperature variation in diodes D1 and D2. These graphs were obtained using an

excel sheet.

Note.: There was no need interest by us to record the temperature variations of the

diodes. The temperature varies between 24 º C and 70 º C (approximately). We had not a

particular interest in diodes calibration because it was not proposed to us at time. We take

the time to work on the most important aspects that we considered, how to make sure we

were doing the right conversions, calculate means and standard deviations.

8.7 - MOS Linear Image Sensor

This sensor was used due to damage that occurred with the Hamamatsu FFT-CCD

C5809 Image Sensor.

8.7.1 - External control signals

The MOS sensor circuit operates from some kinds of external control signals. All these

signals come from the PIC daughter board signals and are sent to the MOS sensor in a

header that is shown in Figure 8-14.

Figure 8-14. Header (in PIC daughter board) with all signals for MOS sensor.

8-16

8.7.2 - A/D Conversion

Since there was used the circuit shown in Figure 4-1, as stated in Chapter 4, the linear

image sensor provides an output signal with negative polarity boxcar waveform. Taking this

into account, the video signal that must be converted is the descending part of the output

signal. Thus, there is a portion which should remain constant that includes a DC offset of

approximately 1V when the reset voltage is 2.5V.and the other will vary with the light

enters on photodiode.

It was thought to make an acquisition of base (that part does not change) and signal

(part that varies with the light) and then do the subtraction. However, for a better

visualization of data we decided acquiring a part which varies with the amount of light that

falls on the detector and make processing in software, descending (negative) part.

8.7.3 - Pixel duration time

Another issue that should be talked about has to do with the duration of each pixel.

Firstly, it is noted that this is the most important parameter and is controlled by user. It is

the duration of each pixel that defines the exposure time for an acquisition.

To program duration of each signal in "MOS shift register" times that were used are

indicated in Figure 4-1 and Attachment X. However, to make sure we were on the parts you

want to convert the output signal, use an oscilloscope to check whether there was any

delay imposed by the operating system that would influence conversions.

Figure 8-15. Video output of S3921-128Q MOS linear image sensor in the oscilloscope and conversions to

be made.

Note.: In Figure 8-15 we can see the various conversions per pixel (20 conversions) that

are carried out on each "level" of the output signal. The output signal is a square wave

signal and the high level is the level of offset.

8-17

Figure 8-16. An acquisition of MOS.

In Figure 8-16 you can see the variation of the amount of light that is entering in

detector. More than that, it is possible to know the amount of light that is inserted in each

pixel. That is, each point on the graph corresponds to the respective pixel on the sensor.

Point 1 – Pixel 128; Point 128 – Pixel 1.

The exposure time that user selects is the exposure time for each pixel. Thus, this time

is the time between two consecutive phi_start (ɸst).

8.8 - Final prototype

The Figure 8-17 shows the final instrumentation prototype created. You can see the

power board, I/O Expansion Board with USB Starter Kit II and the connection to MOS. The

15-pin D-SUB Connector serves for connection to the FFT-CCD.

Figure 8-17. Final prototype with MOS.

8-18

Legend of Figure 8-17:

1 - PIC32 USB Starter Kit II

2 - I/O Expansion Board

3 - Microchip PICtail Plus Daughter Board.

4 - Power Supply Voltage Board

5 - FFT-CCD image sensor 15-pin D-SUB Connector

6 - S3921-128Q MOS Linear Image Sensor

In the Figure 8-17 it is possible to see a blue box where are placed the Power Board, the

I/O Expansion Board with USB Starter Kit II and PICtail Plus daughter board. This box has a

lid that when placed would complete the final prototype. The lid has the outputs cables for

USB PIC and other connecting cables. As a final model can’t end, the lid is not shown on the

picture. This lid would also reduce noise signal since exposure to external agents would be

substantially lower.

8.9 - Unsolved problems

As stated, the FFT-CCD had a malfunction during the project however, mean that the

instrumentation is prepared to receive the FFT-CCD. The FFT-CCD fault can be solved or

obtained a new and immediately placed in the instrumentation.

The J2 slot of the I/O Expansion Board is faulty. However this board has two slots for

PICtails and J4 is stable.

When sending data to the PC, sometimes the first data packet (32 points) arrives with

some errors. This happens when we have very small exposure times (milliseconds). This has

to do with shipping time USB communication, no time to send the packets correctly. To

improve this point we have to improve USB communication.

The maximum time for sending each data packet is 5 seconds, after which the USB

communication is broken, so each acquisition can’t last more than 5 seconds.

At the end, the S3921 MOS linear image sensor no longer has the desired sensitivity. By

this I mean that the image of the Figure 8-16 is no longer able to obtain due to a

malfunction. To rectify the fault are the following proposals:

 Making an experience with another sensor

 Placing the sensor on another signal board

 Create a button on the GUI only for the sensor

It was found that the minimum voltage of each signal (Φ) must be 4.5 volts (low level).

However, the PIC logic outputs only provide 3.3 volts (even with 12 volts external supply).

Therefore, check if the problem keeps with 4.5 volts is also a proposal to try to fix the

problem of sensor sensitivity.

8-19

To be able to place all signals with 4.5 V can be used a state buffer/line driver (HCT244).

The Figure 8-18 shows the schematic which would be used for this purpose.

Figure 8-18. Schematic with state buffer/line driver (ex.: HCT244).

For the GUI created, this serves the purpose perfectly for sampling data. However,

there was one thing that was not quite finished. When sampling data packets, it is not

possible to stop viewing without using commands in Microsoft Visual Studio C++. By this I

mean that as there is a button that initiates acquisitions, it would be great to program a

button to stop the acquisition. This goal is not easy conclusion once during the course of an

event (eg, reading the code of a button) do not have access to another event until the first

finish.

All connections between the components of the power board and PICtail have been

checked and are stable. However, to improve the quality of the signals a PCB would be the

ideal solution. It would also be very important to put all entries of the devices in the

housing lid and close the box in order to give greater security to the PIC and power board.

During the project, some of our PIC had a malfunction described in Example 8-8. The

Microchip Technical Support was contacted and the solution was the replacement of new

PIC.

Example 8-8.Example of PIC problem description.

Target Device ID (000FF000) does not match expected Device ID (00007000).

Device reset failed
Make sure Configuration Bits are correct.

PIC32 Starter Kit hardware initialization failure.
Error = -1, Detail = 0x00000000
(LID: 29)

Device reset failed
Make sure Configuration Bits are correct.

9-1

Chapter 9. Conclusion and Future work

During the course of the project always occurring several problems that have been

solved. However, the connection to the FFT-CCD image sensor was not possible because

this sensor was damaged during the project. But, from simulations, the entire firmware and

software is ready to accept this sensor.

The great advantage of FFT-CCD image sensor is undoubtedly the sensitivity but also

the cooling. That is, both the light intensity being received by pixel to charge and discharge

the capacitor at each pixel influence the signal that is read. Once cooled know that there is

no influence of warming in the video signal. So, switching to a MOS Linear Image Sensor

was not an advantage, but it was the only way to continue to get results.

The results presented in Chapter 8 have been met with success, is to say that most of

these results were not foreseen at the beginning of the project. One such example is the

application for the LIP circuit, which was performed with success. In this application has

been used quite ingenuity to adapt both the GUI as the firmware once created for this new

application.

At the end of all this work it is possible to convert any signal in continuous mode.

Overcoming this goal was not a simple question because it implies knowing very well the

capabilities of the toolbox of Microsoft Visual Studio C++, in this case, I had to study very

well the features of "Chart" object and the way to go "updating" the values that is

receiving. This is not so easy because we will have to make sure that we keep getting values

in an array that also has features very own, an "ArrayList". After overcome this aim, the

step for the display of any entry of a pin of the PIC was very simple.

The programming of MOS Linear Image Sensor was not very difficult because we only

had to generate (in PIC) the signals that it needs. In this case, there were not used OC’s

(output compares) as in the case of FFT-CCD image sensor. How times had with a very

precise synchronization between each signal, the work was done in order to go modifying

the state of each pin of the PIC to take the desired signals. As the video signal generated by

MOS sensor signal is not "real", this processing was done in software and the results are

visualized are very well understood.

A future work will adapt our firmware and software for different types of MOS Linear

image sensors (256, 512 and 1028 pixels). This work began to be done at the end of the

project but no time to finish. More future work will be able to send commands to the PIC.

Controlling interrupts, set timer values or choose if you want a 16 or 32 bit timer...

At LIP circuit work, was never made a rigorous calibration of diodes temperature

curves. The truth is that we have never been asked but would be a work that would make

viewing the varying temperatures of the diodes more easily understandable.

The graphical interface created can store all values acquired in ASCII format but also in

system image format. This image format is a system format and been able to be opened by

the GUI. Thus, future work would be able to do calculations from these images.

A point to be noted is that our system is prepared to convert any signal by a trigger.

That is, we have a digital input (pin AN2) of the PIC always active to use as a trigger.

9-2

However, all code would have to be changed according to the characteristics of the signal

that we want to convert.

As stated, the damage that had happened in the PIC as a PIC replacement solution (by

Microchip Technical Support), since the fault was in a kind the code protect ON (a kind of

fuse is burned), the starter kit is broken and the arrangement was difficult. These faults

could have occurred by several factors but surely these factors have resulted in a short

circuit that burned the fuse. I want to mean that rapid support from Microchip was crucial

to proceed with work on the project.

Finally, I say that the work was made with the knowledge acquired during the course of

project. Departure for this project I had no knowledge in C language, so the process of

programming the PIC involved a lot of learning both the equipment with its programming.

The process of building the GUI also involved to study windows language very closely and

successfully to control an object minimally.

Therefore, I am pleased with the work accomplished and, more than that, on

knowledge that I now have about managed devices. It should be noted that this project

involved manipulation of electronic devices and is placed on integrated circuits, and the

whole panoply of processes that have to be made for their recognition by PIC and uptake of

results for a graphical interface.

I

Bibliography

1. Vinik, A. I. et al. Diabetic Neuropthies. Diabetologia. 2000, Vol. 43, pp. 957-

973.

2. The Diabetes Control and Complications Trial Research Group. The Effect of

Intensive Treatment of Diabetes on the Development and Progression of Long-

Term Complications in Insulin-Dependent Diabetes Mellitus. The New England

Journal of Medicine. 1993, Vol. 329, pp. 977-986.

3. Boulton, Abdrew J. M. Management of Diabetic Peripheral Neuropathy.

Clinical Diabetes. Number 1, 2005, Vol. 23.

4. Lin, Helen C. and Quan, Dianna. Diabetic Neuropathy. Medscape Reference.

November 2011.

5. Morgado, António M. et al. Evaluation of Corneal Nerves Morphology for

Diabetic Peripheral Neuropathy Assessment. 2012.

6. NeuroCornea. NeuroCornea. [Online] 2011. [Cited: June 3, 2012.]

http://neurocornea.net78.net/home.html.

7. CPU World. CPU World. [Online] Gennadiy Shvets, 2003-2010. [Cited: June 4,

2012.] http://www.cpu-world.com.

8. Riley, H. Norton. The von Neumann Architecture of Computer Systems.

Pomona, California : s.n., September 1987.

9. Gonçalves, Victor. Sistemas Baseados em Microcontroladores PIC. Porto :

Publindústria, Edições Técnicas, 2008.

10. Hof., Philipp. Von Newmann’s Architecture. Electrical and Computer

Engineering. [Online] University of Canterbury - Christchurch, New Zealand.

[Cited: June 20, 2012.]

http://www.elec.canterbury.ac.nz/PublicArea/Staff/hof/p10-embed/p10-

tutorial/p12.html.

11. ARM Technical Support Knowledge Articles. ARM The Architecture for the

Digital World. [Online] ARM Ltd. Copyright 2012. [Cited: June 17, 2012.]

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka3839.ht

ml

12. Microchip Technology Incorporated. PIC32 USB Starter Kit II. U.S.A. : s.n., 2010.

13. Microchip Technology Inc. Microchip. [Online] 1998-2012. [Cited: June 17,

2012.]

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=

1406&dDocName=en535536.

14. Starter Kit I/O Expansion Board Information Sheet. 2355 West Chandler Blvd,

Chandler : s.n., 2011.

15. Microchip. PIC32MX795F512L. [Online] Microchip Technology Inc., 2009.

[Cited: June 17, 2012.]

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en54566

0.

16. Texas Instruments. PT78NR100 Series. s.l. : Power Trends Products, 2000.

http://neurocornea.net78.net/home.html
http://www.cpu-world.com/
http://www.elec.canterbury.ac.nz/PublicArea/Staff/hof/p10-embed/p10-tutorial/p12.html
http://www.elec.canterbury.ac.nz/PublicArea/Staff/hof/p10-embed/p10-tutorial/p12.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka3839.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka3839.html
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535536
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535536
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545660
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545660

II

17. STMicroelectronics. Group of Companies. L7800 Series, Positive Voltage

Regulators, 2000. [Cited: June 17, 2012.] http://www.pira.cz/pdf/78xx.pdf

18. National Semiconductor. LM78XX Series Voltage Regulators, May 2000. [Cited:

June 17, 2012.] http://pdf1.alldatasheet.com/datasheet-

pdf/view/9047/NSC/LM7815C.html

19. National Semiconductor. LM78M05CT 3-Terminal Positive Voltage Regulators,

July 1999. [Cited: June 17, 2012.] http://pdf1.alldatasheet.com/datasheet-

pdf/view/8862/NSC/LM78M05CT.html

20. STMicroelectronics. Group of Companies.LD1085xx, 3 A low drop positive

voltage regulator adjustable and fixed, 2009. [Cited: June 17, 2012.]

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERA

TURE/DATASHEET/CD00001883.pdf

21. XP Power. IE1224S-H - Converter, DC/DC, 1W, 24V. August 30, 2011. [Cited:

June 17, 2012.] http://www.xppower.com/pdfs/SF_IE.pdf

22. Analog Devices. AD7680 - 16-Bit ADC, May 2011. [Cited: June 17, 2012.]

http://www.analog.com/static/imported-files/data_sheets/AD7680.pdf

23. Texas Instruments. PTN78000A 1.5-A, Wide-Input Adjustable Buck-Boost

Switching Regulator, January 2006. [Cited: August 26, 2012.]

http://www.ti.com/lit/ds/symlink/ptn78000a.pdf

24. Laboratório de Instrumentação e Física Experimental de Partículas (LIP). [Cited:

August 26, 2012.] http://www.lip.pt/index.php?id=6&subid=10&lg=pt

25. Wikipedia, the free encyclopedia. 1N4148. [cited: August 26, 2012.]

http://en.wikipedia.org/wiki/1N4148

26. NXP Semiconductors. High-speed diodes 1N4148, 1N4448, August 10, 2004.

[cited: August 26, 2012.]

http://www.nxp.com/documents/data_sheet/1N4148_1N4448.pdf

27. Lamas, João. NeuroCórnea – Desenvolvimento de Modulo Confocal para

Aplicação a Lâmpada de Fenda. A Electrónica de Controlo e Aquisição de

imagem. Coimbra, September 2011.

28. Hamamatsu. MOS Linear Image Sensors, Technical Data. Japan, March 1993.

pp. 17-24.

29. Hamamatsu. [cited: August 26, 2012]

http://sales.hamamatsu.com/en/products/solid-state-division/image-

sensors/ccd.php

30. Marques, R Ferreira et al. Performance of a Chamber for Studying the Liquid

Xenon Response to Nuclear Recoils. Nuclear Science. January 10, 2005.

31. Wilmshurst, Tim. Designing Embedded Systems with PIC Microcontrollers:

Principles and Applications. Elsevier, 2010.

32. Sampaio, Isabel and Sampaio, Alberto. Visual C++/CLI. Editora Informática

2007. ISBN:9789727223640

http://www.pira.cz/pdf/78xx.pdf
http://pdf1.alldatasheet.com/datasheet-pdf/view/9047/NSC/LM7815C.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/9047/NSC/LM7815C.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/8862/NSC/LM78M05CT.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/8862/NSC/LM78M05CT.html
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00001883.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00001883.pdf
http://www.xppower.com/pdfs/SF_IE.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7680.pdf
http://www.ti.com/lit/ds/symlink/ptn78000a.pdf
http://www.lip.pt/index.php?id=6&subid=10&lg=pt
http://en.wikipedia.org/wiki/1N4148
http://www.nxp.com/documents/data_sheet/1N4148_1N4448.pdf
http://sales.hamamatsu.com/en/products/solid-state-division/image-sensors/ccd.php
http://sales.hamamatsu.com/en/products/solid-state-division/image-sensors/ccd.php

A

Attachment I

B

Attachment II

C

Attachment III

D

Attachment IV

E

Attachment V

F

Attachment VI

G

Attachment VII

H

Attachment VIII

I

Attachment IX

J

Attachment X

K

Attachment XI

L

Attachment XII

M

Attachment XIII

Information by AD7680 datasheet

The CS signal initiates the data transfer and conversion process. The falling edge of CS puts the

track-and-hold into hold mode, takes the bus out of three-state, and samples the analog input. The

conversion is also initiated at this point and requires at least 20 SCLK cycles to complete. Once 17

SCLK falling edges have elapsed, the track-and-hold goes back into track mode on the next SCLK rising

edge. Figure M-1 shows a 24 SCLK transfer that allows a 100 kSPS throughput rate. On the 24th SCLK

falling edge, the SDATA line goes back into three-state. If the rising edge of CS occurs before 24 SCLKs

have elapsed, the conversion terminates and the SDATA line goes back into three-state; otherwise

SDATA returns to three-state on the 24th SCLK falling edge as shown in Figure M-2.

Figure M-1. AD7680 Serial Interface Timing Diagram - 24SCLK Transfer.

A minimum of 20 serial clock cycles are required to perform the conversion process and to access

data from the AD7680. CS going low provides the first leading zero to be read in by the

microcontroller or DSP. The remaining data is then clocked out by subsequent SCLK falling edges

beginning with the second leading zero; thus the first falling clock edge on the serial clock has the

first leading zero provided and also clocks out the second leading zero. If a 24 SCLK transfer is used as

in Figure M-2, the data transfer consists of four leading zeros followed by the 16 bits of data,

followed by four trailing zeros. The final bit (fourth trailing zero) in the data transfer is valid on the

24th falling edge, having been clocked out on the previous (23rd) falling edge.

If a 20 SCLK transfer is used as shown in Figure M-2, the data output stream consists of only four

leading zeros followed by 16 bits of data with the final bit valid on the 20th SCLK falling edge. A 20

SCLK transfer allows for a shorter cycle time and therefore a faster throughput rate is achieved.

Figure M-2. AD7680 Serial Interface Timing Diagram - 20 SCLK Transfer.

N

Attachment XIV

