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Abstract  

 Blood pressure (BP) is one of the most important physiological parameters, in particular 

regarding the cardiovascular system. Through this vital sign is possible to infer about the health 

of a subject in various different ways. However, its continuous monitoring is conditioned by 

methods, which are either invasive or not comfortable enough yet having high costs, which in a 

society increasingly changing to a preventive medicine and patient monitoring in non-clinical 

environments becomes hardly feasible. 

 This document describes a system for syncope prediction based on signals acquired 

simultaneously and in real time, the photoplethysmogram (PPG) and the electrocardiogram 

(ECG), from, which one can extract measures correlated to BP and its regulation, the pulse 

arrival time (PAT) and the heart rate (HR). Since a syncope episode, generally, happens due to 

critical BP drops, tracking these features allows to predict a fainting phenomenon. 

 In order to achieve the ultimate goal, several processes had to be taken into account 

involving the conjugation of the acquired signals, the removal of motion artifacts and noise and 

the creation of thresholding algorithms to identify critical situations of BP changes and 

presyncope stages in real time. These thresholds were determined with the aid of receiver 

operating characteristic (ROC) curves. The data used to evaluate the performance of the 

developed algorithm was acquired in a tilt table test from 44 patients with a history of syncope. 

Thus, a sensitivity of 90.48%, a specificity of 83.33% and a positive predictive value of 82.61% 

were obtained and the average prediction time, i. e. the time between the prediction alarm and 

the faint was 77.71 ± 71.78 seconds. 

 Therefore, the development of simple systems to predict faints in real time is feasible 

and can help to increase the quality of life of patients suffering from recurrent syncope. 

 

Keywords: syncope; electrocardiogram; photoplethysmography; pulse arrival time; heart rate; 

prediction algorithms; blood pressure, tilt table test. 
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Sumário 

A pressão sanguínea é um dos parâmetros fisiológicos mais relevantes, 

nomeadamente no que diz respeito ao sistema cardiovascular. Através deste sinal vital é 

possível inferir de diversas formas acerca do estado de saúde do doente. No entanto, a sua 

monitorização contínua está condicionada por métodos que ou sendo invasivos ou não sendo 

suficientemente confortáveis têm ainda custos muito elevados, o que num sistema cada vez 

mais virado para a medicina de prevenção e monitorização do doente em ambiente não clínico 

se torna pouco viável. 

 Neste documento é descrito um sistema de predição de síncopes baseado no uso de 

sinais adquiridos simultaneamente e em tempo real como o fotopletismograma e o 

electrocardiograma dos quais são extraídas medidas correlacionadas com a pressão 

sanguínea e com a sua regulação, o tempo de chegada de pulso e o ritmo cardíaco. Uma vez 

que um episódio de síncope ocorre devido a descidas críticas da pressão sanguínea, a 

monitorização destes parâmetros permite a previsão de desmaios. 

De forma a atingir o objectivo final, tiveram de ser tomadas em conta diversas etapas 

que envolvem processos como conjugação dos sinais, a remoção de artifactos de movimento e 

ruído e a criação de algoritmos de limiar para a identificação de situações críticas e de estágios 

pré-síncope em tempo real. Esses limiares foram determinados com o auxílio de curvas da 

característica do receptor (ROC). Para avaliar o desempenho do algoritmo desenvolvido foram 

usados dados adquiridos em testes de mesa inclinada de 44 pacientes com historial de 

síncope. Assim, obteve-se uma sensibilidade de 90,48%, uma especificidade de 83,33% e um 

valor de predição positiva de 82,61%, sendo que a média de tempo de previsão, isto é, o tempo 

entre o alarme e a ocorrência do desmaio foi de 77,71 ± 71.78 segundos. 

Conclui-se portanto que a criação de sistemas simples de predição de desmaios em 

tempo real é viável e podem ajudar no aumento da qualidade de vida de pacientes que sofrem 

de síncope recorrente. 

 

Palavras-chave: síncope; electrocardiograma; fotopletismograma; tempo de chegada de pulso; 

ritmo cardíaco; algoritmos de predição; pressão sanguínea; teste de mesa inclinada. 
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1. Introduction 

The risk of fainting is permanent threatening to the quality of life of people diagnosed 

with recurrent syncope. 

Preventive medicine and promotion of healthy customs are increasingly relevant issues 

in today’s society in such a way that they were officially introduced by the world health organiza-

tion only in 1984. Contrasting with the curative medicine, the costs involved in the preventive 

medicine are much lower, as an example most of money that is spent every year in the treat-

ment of obesity and smoking diseases could be saved if the patients simply do physical exer-

cise or quit smoking. Besides, it is known that nowadays the majority of health problems are 

preventable, which is also a motivation for the investment on preventive medicine. 

Initially, preventive medicine was based on educational efforts to avoid risk behaviours, 

however with the increase in chronic diseases there was an evolution on this concept and now 

the preventive medicine tries also to act in people who already suffer from a disease in order to 

cure them or at least to avoid the progress of the disease, reducing its impact in the quality of 

life of the patient. 

Thus, the use of portable medical devices for continuous and real time monitoring of the 

patients in their daily environment, pHealth systems, makes more sense than ever. These 

devices can contribute to the increase not only in the quality of life of the patients, but also in the 

increase of their average life expectancy, enabling a better control of the disease, the anticipa-

tion of undesirable effects and the reduction of serious consequences resulting from a defective 

monitoring of the patient. So, as a complement to the traditional medical procedures there is a 

need of using simple and portable devices, so that the normal life of the patient is the least 

affected as possible. 

Recurrent fainting is one of these chronic diseases that have a huge impact in the daily 

life of a person since it happens occasionally, but sometimes without precedents, which can 

result in uncontrolled falls, resulting in severe damage to the patient, majorly to the elderly. So, if 

there was a way of predicting the occurrence of syncope episodes that could allow to the patient 

to react with countermeasures such as laying down or doing isometric exercises in order to 

promote the blood circulation, that could be a good way of improving the quality of life of this 

patients. 

Our goal is to develop a way of predicting syncope episodes based on the fact that they 

happen, most of the times, due to a critical decrease in systolic blood pressure. 

Since the existent techniques to monitor BP are very limited for a continuously and 

portable application together with the fact that the existent portable devices are not comfortable 

to wear, in this work a different approach for BP monitoring was explored. We developed an 

algorithm for syncope prediction, which uses the pulse arrival time acquired from ECG and PPG 

signals as a surrogate measure of the SBP. From these surrogates it is possible to track SBP 

changes and detect the critical decreases that might cause a faint. This algorithm has to be 

simple enough to be applied in a portable device, but at the same time robust enough to deal 

with the motions artifacts caused by the movements of a patient in a continuous, portable and 

real-time application  

So, in this document we describe the steps for the development of the algorithm, start-

ing with an overview of the cardiovascular system and an introduction to the clinical background 

of the syncope. Then, a study of the state of the art in feature extraction, signal processing and 

syncope prediction is made followed by the presentation of the datasets used. From here, the 

creation of the algorithm is described step by step starting with the pulse detection of the PPG, 

feature extraction, artifacts removal and, finally, the syncope prediction. In the end, it is made a 

discussion regarding the obtained results, an overview of the algorithm and a reflection about 

future work that can be done in order to increase the performance of the algorithm.  
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2. Clinical Background 

2.1. Cardiovascular System 

The cardiovascular System is one of the most important systems of the organism. It is 

responsible for the transport and supply of nutrients, oxygen and hormones for all cells of the 

body through the blood. At the same time it collects carbon dioxide and other products of their 

metabolism. In addition, this system transports proteins and cells of the immune system, and it 

is also important on the defense, thermic and pH regulation of the organism. [1] 

This circulatory system consists of a heart that pumps the blood through the blood ves-

sels. So, when the heart is working, it creates pressure gradients that force the blood to circu-

late through the vessels. This movement is unidirectional and the oxygenated blood (arterial) 

never blends with the deoxygenated blood (venous) because it is divided in two circulations: the 

pulmonary and the systemic circulation. [2] 

2.2. Heart 

The heart is a muscular organ primarily composed of four chambers: two atria (input 

chambers) and two ventricles (output chambers), more specifically an atrium and a ventricle on 

the left side (whose connection is made through the mitral (or bicuspid) valve) and an atrium 

and a ventricle on the right (whose connection is made by the tricuspid valve), as shown in 

Figure 1This separation is done at the level of the atria by the interatria septum and at the level 

of the ventricles by the interventricular septum, this allows to have two types of circulation so 

there is no mixing between oxygenated and venous blood. [1] 

 

 
Figure 1 Schematic illustration of human heart. [3] 

 

However, the left side is thicker than the right because this is the side where the oxy-

genated blood is pumped throughout the body (systemic circulation), while on the right side the 
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deoxygenated blood is ejected into the lungs (pulmonary circulation), which requires less effort 

since the distance and friction are reduced. [1] 

Blood circulation is created by periodic contractions of the myocardium (heart muscle), 

which is stimulated electrically. The heart rate is then maintained by excitatory nodes: the sino-

atrial node (which is located in the right atrium and sends impulses to the atria) and the atrio-

ventricular node (which is located between the right atrium and right ventricle and stimulates the 

ventricles). The latter node creates a delay in the contraction of the ventricles in relation to the 

atria in order to the atria to contract and fill the ventricles before ventricular contraction occurs 

where the blood is released into the arteries. [3] 

So, the cardiac cycle is a succession of contractions (systole) and relaxations (diastole) 

of the heart (Figure 2). While in the ventricular systole there are contractions of the ventricles at 

the same time that the mitral and tricuspid valves open to eject blood into the arteries, in the 

ventricular diastole this valves are closed and the ventricles are filled with blood from the atria. 

[2] 

 

 
Figure 2 Cardiac Cycle. [2] 

 

2.3. Types of circulation 

As illustrated in Figure 3, there are two types of blood circulation, the systemic circula-

tion in which the blood circulate to all body, and the pulmonary circulation that is when the blood 

flows to the lungs to be oxygenated. However, one can still consider a third circulation the 

coronary circulation that distributes the blood to the heart, although it is a part of the systemic 

circulation. [2] 
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Figure 3 The pulmonary and systemic circulations. [4] 

 

2.3.1. Systemic circulation 

In the systemic circulation the oxygenated blood is provided to all tissues of the body. It 

leaves the left ventricle and flows to the aorta and its ramifications to the arterioles and then to 

the capillaries. The blood reaches the tissues where the exchange of oxygen and carbon diox-

ide takes place, so the blood passes from arterial to venous blood. After this, it returns to the 

right atrium by the veins, venules and (superior and inferior) vena cava. [1] [2] 

2.3.2. Pulmonary circulation 

The main targets of pulmonary circulation are to re-oxigenate the blood and remove 

carbon dioxide. Thus, the venous blood that reached the right atrium with the systemic circula-

tion passes now to the right ventricle from where is ejected into the pulmonary arteries, which 

carry the blood to the lungs in progressive smaller vessels until the capillaries surrounding the 

alveoli. Here takes place the gas exchange that replaces the carbon dioxide for oxygen (the 

venous blood passes again to arterial blood). The blood then returns to the heart by increasing 

vessels up to the pulmonary veins that lead to the left atrium, and the cardiac cycle starts again. 

[1] [2] 

2.4. Blood Pressure Regulation 

Since the circulatory system operates with a pump (the heart), creating pressure gradi-

ents, it is possible to detect these variations in pressure in some areas of the body. From these 

variations one can have a curve that reflects different physiological parameters. In the case of 

arterial pressure curve shown in Figure 4, the systolic pressure corresponds to the peak (pres-

sure in the artery when the blood is ejected from the left ventricle), while during ventricular 

diastole the pressure decreases until the exact moment before the new ejection of blood, which 

corresponds to the minimum point of the curve and, therefore, to the diastolic pressure. [5] 

The values of mean pressure and the percent volume of blood in the vessels for a nor-

mal subject are represented in Figure 5, where we can notice a decrease in mean arterial 

pressure as we move to ever more distant vessels from the ventricles of the heart. 
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Figure 4 The aortic blood pressure curve. [5] 

 

Arterial blood pressure is influenced by several physiological factors such as physical 

and mechanical characteristics of the fluid (e.g. volume and viscosity), heart rate, ventricular 

contractility, arterial stiffness, peripheral resistance of the cardiovascular system and venous 

return (which affects the level of left ventricular filling and, therefore, the force that is needed to 

carry out the blood from the heart, also known as cardiac preload). [1] [2] [5] 

 

 
Figure 5 Distribution of pressures and volumes in the vessels. [5] 

 

Depending on the needs of the body, either by metabolic factors (supplying of oxygen 

and nutrients and removal of carbon dioxide and other metabolic wastes), whether for circulato-

ry reasons, the blood stream has to be regulated in order to optimize the blood flow that satis-

fies the needs of the body. This regulation can be made locally, by hormonal control or by 

neural control. [1] [2] [5] 

2.5. Local Autoregulation 

This is an emergency regulation that occurs depending on the tissue partial pressures 

of oxygen and carbon dioxide, nutrients or temperature. Thus, by releasing vasodilator sub-

stances or changing the muscle tone of blood vessels (since this depends on substances like 

oxygen or some nutrients), the vasodilatation or vasoconstriction of local microcirculation can be 

regulated. [1] [5] 

2.6. Hormonal Regulation 

Unlike the local autoregulation, hormonal regulation is made by binding substances, 

which can be stimulatory or inhibitory, to specific receptors that trigger a particular response, 
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regulating cell activity. Thus, this regulation is essentially made by the concentration of hor-

mones to release in the target tissue to maintain the homeostatic balance. However, in spite of 

being precise, the hormonal regulation doesn’t provide effective control in comparison with the 

neural regulation whose effects are longer lasting [1]. So the hormones help to adjust the blood 

pressure by regulating the cardiac output, the peripheral resistance and the blood volume and 

there are four main hormonal regulation systems: the renin-angiotensin-aldosterone system, the 

epinephrine and norepinephrine system, the antidiuretic hormone and the atrial natriuretic 

peptide [1]. The blood pressure regulation by hormones is resumed in Table 1. 

 

Table 1 Blood Pressure Regulation by Hormones. [1] 

Factor Influencing Blood Pressure Hormone  
Effect on Blood Pres-

sure 

Cardiac Output   

Increased Hear Rate and Contractility 
Norepinephrine 
Epinephrine 

 
 

Increase 

Systemic Vascular Resistance   

Vasoconstriction 

Angiotensin II 
Vasopressin 
Norepinephrine* 
Epinephrine** 

 
 
 
 

Increase 

Vasodilation 
Atrial Natriuretic Peptide 
Epinephrine** 
Nitric Oxide 

 
 
 

Decrease 
 

Blood Volume   

Increase 
Aldosterone 
Vasopressin 

 
 

Increase 

Decrease Atrial Natriuretic Peptide  Decrease 

* Acts at α1 receptors in arterioles of abdomen and skin. 

** Acts at β2 receptors in arterioles of cardiac and skeletal muscle; norepinephrine has a much smaller vasodilating 

effect. 

2.7. Neural regulation 

 This type of regulation is done by the autonomic nervous system, specifically by control 

centers in the medulla, which are controlled by the brain and are stimulated by signals generat-

ed by receptors spread throughout the body like baroreceptors and chemoreceptors, for exam-

ple in arteries. It is a very fast regulation and can be divided in two types depending on the type 

of receptors: baroreflex regulation and chemoreflex regulation. [1] [5] 

2.7.1. Baroreflex Regulation 

 This type of regulation has the objective of maintaining the arterial blood pressure in 

normal values in cases of abrupt changes or its adaptation to acute conditions, meeting the 

needs of the body. This system of regulation is compound by receptors that are located in zones 

like the aortic arch, the carotid and in other areas of the venous and arterial peripheral circula-

tion, by the efferent pathways and by the effector regulation. So, as resulting of this type of 

regulation one have the effect of the alteration of the cardiac rhythm, of the contractibility and 

elasticity of the vessels and of the volume of the venous return, to reach the ideal level of blood 

pressure. This regulation is illustrated in Figure 6. [1] [5] 

 These receptors can react to variations of blood pressure in a range of pressures from 

60 to 180 mmHg. However, the optimal operating point, or at least the maximal sensitivity point 

is near the normal mean arterial pressure, which is about 95 mmHg in a healthy adult. This fact 

allows that a minimal deviation from the normal value can have a stronger, faster and more 
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effective response. So, if this variation is positive, in other words, if the blood pressure increas-

es, the stretching of the baroreceptors fibers also increase and, consequently, their firing rate, 

which leads to a decrease in the sympathetic activity from the cardiovascular centers in the 

medulla and an increase in their parasympathetic outflow, causing a decrease in heart rate, 

vasoconstriction and ventricular contractility. It’s important to note that sometimes (when hap-

pens an increase in venous return) the stretching of the baroreceptors fibers can cause the 

opposite effect, increasing heart rate, which is known as the Bainbridge effect. Otherwise, when 

the blood pressure decreases, the firing rate of the receptors also decrease leading to an in-

crease in the sympathetic outflow accompanied by a decrease in parasympathetic activity 

causing vasoconstriction and heart rate and contractility augmentation. [5] 

 

 
Figure 6 Example of baroreflex mechanism. [1] 

 

2.7.2. Chemoreflex Regulation 

 Like the baroreflex regulation this regulation is also composed by receptors, in this case 

chemoreceptors, by the afferent and efferent pathways and by the regulatory effectors. This 

regulation has as control variables the partial pressures of oxygen and carbon dioxide and the 

H
+
 concentration, which are used as the base of the function of the system. By this reason, 

there are two types of afferent pathways: one departs from peripheral chemoreceptors and is 

mainly controlled by the cardiovascular centers in the medulla and the other departs from the 

elasticity sensors of the lungs. So, to ensure the level of perfusion of oxygen necessary in the 
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tissues, we can also control the heart rate, the contractility and elasticity of the vessels and the 

volume of the venous return. This type of regulation is illustrated in Figure 7. [1] [5] 

 The chemoreceptors increase their firing response when the arterial pO2 drops below 

80 mmHg (the normal value is about 95 mmHg), when the arterial pCO2 rises above the normal 

value of 40 mmHg or when de pH is below 7.4. In fact, it is known that the presence of carbon 

dioxide in the tissues increase the acidity, so the arterial pCO2 and pH are highly related. 

 

 
Figure 7 Example of chemoreflex mechanism referred from [Colorado University, 2004] 

 

 All of these regulations affect directly the cardiac output, which is the total volume of 

blood ejected by each ventricle per minute and it is a very important physiological parameter 

because one can take a lot of information about the cardiovascular function from it. [1] [2] 

2.8. Cardiac Output 

 As said above, cardiac output is the amount of blood ejected from a ventricle in one 

minute. Cardiac output can vary because it is dependent of heart rate and stroke volume. In fact 

cardiac output equals the heart rate (beats/min) multiplied by stroke volume (mL/beat) and, 

because of that, an increase (or decrease) in any of these parameters cause a proportional 

increase (or decrease) in cardiac output. [1] [2] 

 In terms of quantization of cardiac output in a normal subject, the cardiac index is the 

best parameter to describe it, because it relates cardiac output with the surface area of the 

body. Thus, depending on the size of the person, the range of normal values for cardiac index 

varies from 2.6 to 4.2 L/min/m
2
. [5] 

 Another important fact about cardiac output is that blood pressure is related to it. In-

deed, blood pressure only depends on two factors: cardiac output and peripheral resistance, in 

other words the greater the volume of blood in the vessels, the greater the pressure exerted on 

its walls and, besides that, the smaller the vessel or the greater its length, the greater the re-

sistance and, therefore, the pressure. To be more precise if the cardiac output can be calculated 

by dividing mean arterial pressure by peripheral resistance, it’s easy to see that mean arterial 

pressure is only the cardiac output multiplied by resistance (Equation (1)). [1]  

          (1) 

This equation will be further discussed in chapter 2.13. So, if the resistance is kept con-

stant, a decrease in cardiac output leads to a decrease in arterial blood pressure. [1] [2] 
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 Thus, if stroke volume depends on afterload, preload and contractility [1] [6], then the 

cardiac output and, therefore, the blood pressure are also dependent on these factors. In addi-

tion to that, we have seen that peripheral resistance and heart rate are also factors that con-

strain blood pressure. So, one can have at least five features that directly affect blood pressure 

and from which we can estimate its value. 

2.9. Cerebral Perfusion 

 The brain and the nervous system are probably the most important systems of the 

human body, since they control all other systems or organs. Because of that, it is important to 

ensure that, in case of disturbance, this system keeps stable. However, because the brain is 

inside of an isovolumetric box (the skull), if the volume of any intracranial component is in-

creased like blood volume or cerebrospinal fluid this must be balanced with a volume decrease 

of the other components in order to keep the right intracranial pressure and volume that ensures 

the right perfusion [7] [8]. 

 Due to cerebral autoregulation, the cerebral blood flow is not entirely dependent of the 

cardiac output or arterial pressure [7] [9]. In other words, the cerebral blood flow, which is about 

50-60 ml/min per 100g of brain tissue, is kept stable for an arterial pressure range between 60 

to 160 mmHg. This is known as the autoregulation range. Between these values, the cerebral 

blood flow is controlled by mechanisms of cerebral autoregulation, which are not fully under-

stood, but it seems to consist on vascular muscle fibers that respond to the transmural pressure: 

they relax if this pressure is decreasing (to allow more blood flow) or constrict if the pressure is 

increasing [7] [8]. Besides that, cerebral blood flow is also dependent on CO2. In fact, carbon 

dioxide is a vasodilator, which can increase cerebral blood flood independently of cerebral 

autoregulation. However, if the arterial pressure drops below 60mmHg, autoregulation mecha-

nisms are lost and cerebral blood flow becomes dependent of arterial pressure [9]. So, if the 

arterial pressure becomes too low (less than 50 mmHg) the cerebral perfusion cannot be en-

sured, which leads to syncope [9]. So, it is the cerebral autoregulation that allows the brain to 

have a reserve time for hypoxia (about 7 seconds), which means that, if the blood circulation is 

interrupted for less than that reserve time, the cerebral blood supply keeps stable, passing 

unnoticed by the patient [10].  

2.10. Syncope 

Syncope, also known as fainting, is a transient loss of consciousness due to a transient 

cerebral hypoperfusion. It is characterized by rapid onset, short duration and complete sponta-

neous recovery. [11] 

In some types of syncope may be precursor symptoms such as dizziness, nausea, 

sweating, weakness or visual disturbances, which allows to know that a syncope is about to 

occur. However, it is very common to happen without any apparent precursor, so it is very 

difficult to estimate in advance the loss of consciousness and even its duration. Besides that, it 

is important to notice that the occurrence of this precursor symptoms, their duration and the 

duration of the unconsciousness can be different from patient to patient, being the age and sex 

the two most important determinative factors (in general women have more symptoms than 

men, and the elderly have less symptoms than younger patients) . [10] [11] 

Regardless of the type of syncope, a fall in systemic blood pressure accompanied by a 

decrease in cerebral blood flow is usually the cause of syncope. With just a cessation of 6 to 8 

seconds of the blood flow to the brain or a value below 60 mmHg in systolic blood pressure is 

possible to verify a complete loss of consciousness. [5] [11] 

Thus, as cause of low transient cardiac output is, in the first place, a physiological reflex 

causing bradycardia (slow heart rate, less than 60 bpm), known as neurally mediated syncope, 

in the second there are the cardiovascular diseases such as arrhythmia and structural diseases 
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like pulmonary embolism or hypertension, and finally the inadequate venous return. These 

compose the three types of syncope: reflex syncope, cardiac syncope and syncope secondary 

to orthostatic hypotension, respectively. [11] 

2.10.1. Reflex Syncope (Neurally Mediated Syncope or Vasovagal Syncope) 

A reflex syncope is the result of a set of conditions in which cardiovascular reflexes that 

normally regulate the blood flow becomes irregular and inadequate in response to an unex-

pected stimulus such as emotional stress or the post exercise condition. This leads to the vaso-

dilatation and/or bradycardia and, therefore, to a reduction in arterial blood pressure and conse-

quent decrease of blood flow in the brain. This abnormality in the cardiovascular reflexes is 

occasional and not a permanent disability of these reflexes. [11] 

 The prodromal symptoms of vasovagal syncope begin to be noticed from 30 to 60 

seconds before the loss of consciousness, which is enough time to sit or lie down preventing the 

syncope. However, this duration depends largely on the patient, and there are patients that 

don’t notice the prodromal symptoms, particularly the elderly. Thus, the symptoms of the pro-

dromal phase are common to the other types of syncope and to the ones that were described 

above and their occurrence and intensity increase with the reduction of blood pressure until the 

fainting occurs. [10] 

 The duration of the unconsciousness phase is normally less than 10 to 20 seconds, but 

in some cases it can extend for a few minutes (up to 5 minutes). An important condition that is 

related to the duration of this phase is the position of the patient: in a standing position the 

cerebral blood flow is insufficient for a greater amount of time than lying or sitting down, which 

leads to a slower recovery. [10] 

2.10.2. Syncope Secondary to Orthostatic Hypotension 

The orthostatic hypotension is defined as an atypical decrease of systolic blood pres-

sure upon standing. Thus, unlike the reflex syncope, in autonomic failure the efferent pathways 

are permanently impaired, which means that there are defects in the vasoconstriction regulation 

despite the symptoms are identical, which can make the diagnosis of these two distinct types of 

syncope quite hard. Thus, when standing, there is a sudden drop in blood pressure at which the 

body is unable to respond and syncope occurs. [11] 

This type of syncope is characterized for having three stages of succession of events: 

the presyncope phase (before syncope), the loss of consciousness and the postsyncope phase 

(after syncope). So, the presyncope is the earlier phase when people start to feel the prodromal 

symptoms such as weakness, dizziness, blurred vision, nausea, abdominal discomfort and 

sweating (there also another symptoms such as headache, tunnel vision or vertigo, but these 

described above are the most common ones), it may last 30 seconds, which can be enough 

time for the subject to sit or lie down in order to prevent injuries due to a fall when the loss of 

consciousness happens. The second phase is the loss of consciousness, which last for just a 

few seconds (it can be just 5 seconds, but in the worst cases it may last up to 20 seconds) and 

the person who faints is normally pale or ashen, with cold skin, but sweating, and sometimes is 

having convulsions. The last phase, postsyncope, corresponds to the moment after the fainting, 

when the patient regains consciousness, which is associated to nervousness, headache and 

nausea. [12] [10] 

In patients with syncope due to orthostatic hypotension the prodromal effects start to 

occur when the systolic blood pressure drops to 60 mmHg, which means that this pressure in 

the brain is between 30 to 40 mmHg. The loss of consciousness phase happens at 20 mmHg of 

blood pressure in the brain (at eye level). [10] 
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2.10.3. Cardiac Syncope 

Arrhythmias are the main cause of cardiac syncope by causing hemodynamic dysfunc-

tion, which leads to decreased cardiac output and, therefore, to decreased cerebral blood 

perfusion level [11]. The duration of loss of consciousness is clearly related with the duration of 

the arrhythmia and it happens from 20 to 120 seconds after the onset of the arrhythmia, which 

means that this type of syncope is much slower than the other types because the blood pres-

sure drops slower, offering enough time for the patient to notice the prodromal symptoms and 

take the right steps to minimize injuries [10]. 

Structural cardiovascular diseases are another cause of syncope since by decreasing 

the ability to increase cardiac output does not allow that the body’s circulatory requirements are 

met. This is aggravated when there are obstructions in the left ventricular outflow tract. Thus, 

loss of consciousness is due to inadequate blood flow to the brain. [11] 

 

2.11. Syncope Epidemiology 

As seen from Figure 8, the first occurrence of syncope arises at characteristic ages, 

mainly between 10 and 30 years old and at older ages (over 60 years old). [11]  

Besides that, it appears that reflex syncope is the most common type of syncope at any 

age and situation, followed by cardiovascular syncope, which are most frequent in the elderly, 

and, finally, the orthostatic hypotension syncope, which also occur mostly in elderly. [11] 

Being a common disorder in the general population, syncope recurrence has a serious 

impact on quality of life for many people. The difficulties inherent in a patient of recurrent synco-

pe are comparable with those of other chronic diseases such as arteritis. Furthermore, psycho-

social disturbances have an impact estimated at 33% of the activities of daily life, since syncope 

reduces mobility and usual abilities and increases discomfort, depression and even pain that 

can result from inanimate falls resulting from fainting. Thereby, although syncope takes place 

intermittently, the continuous threat of recurrence implies the loss of quality of life, especially 

with advancing age. [11] 

 

 
Figure 8 Distribution of age of first episode of syncope in general population. [11] 

 

2.12. Tilt Table Testing 

 As shown in Figure 9 a tilt table test consists of a table that spins from supine to erect 

posture causing a gravitational shift. This gravitational shift makes an estimated blood volume of 

0.5 to 1 liter to flow to the vascular system below the diaphragm and reduces the plasma vol-

ume by about 700ml. This effects cause a reduction in venous return and, therefore, a decrease 

of stroke volume and, consequently, in cardiac output. However, the short-term mechanisms 
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that ensure the correct arterial blood pressure when standing up, like the neural mediated 

vasoconstriction of vessels, which work as blood reservoirs, have the capability to compensate 

the fall of arterial blood pressure caused by this decrease in cardiac output. [13] 

In situations of prolonged orthostatic stress the normal venous return and, therefore, the 

cardiac output and arterial blood pressure is ensured by the skeletal muscle pump together with 

the neural orthostatic reflexes that depends of baroreceptors and chemoreceptors. As we have 

seen, the failure of these mechanisms can lead to episodes of syncope and this is the basic 

principle of tilt table tests. In other words, tilt table test pretend to simulate the failure of this 

compensatory systems causing a reduction in arterial blood pressure (normally a decrease to 

90 mmHg of systolic blood pressure is associated with impending syncope and if this value is 

reduced to 60 mmHg syncope happens) and, consequently, a decrease in cerebral blood flow. 

[13] 

Although tilt table tests are used to make scientific investigation, they can also be used 

in diagnosis of syncope in healthy patients or, at least, in patients without structural heart dis-

eases or arrhythmias. [13] 

 

 
Figure 9 Example of tilt table test performing. [14] 

 

2.13. Windkessel Model 

 In order to make easier the understanding of all these concepts like blood pressure, 

blood flow and resistance, we can compare the cardiovascular system to a 3-element Windkes-

sel model, which is an electric circuit composed by one battery, two resistors and a capacitor as 

shown in Figure 10. Besides, it is important to keep in mind that this is not the only type of 

Windkessel model. In fact, there are several other variations, some of them more realistic, but 

also more complex which might include diodes, representing the valves that prevent the return 

of blood flow, and inductances that represent the inertia of the fluid (blood) [6]. 
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Figure 10 3-element Windkessel model [6]. 

 

 In this system we can consider the input as being the current I(t), which is the equiva-

lent of blood flow from the heart to the main arteries, P(t) or the potential corresponds to the 

blood pressure also in the main arteries and it is created by the battery, which is symbolically 

represented by the heart because it creates the pressure gradient, C represents the arterial 

compliance and, finally, R2 is the peripheral resistance, while R1 pretends to represent the 

resistance created due to cardiac valves (aortic or pulmonary). [6] 

 Thus, from this Windkessel model it’s easier to understand the equation presented in 

chapter 2.8, which relates mean arterial pressure with cardiac output and peripheral resistance. 

From Ohm’s law, the potential equals the product between resistance and current (Equation 

(2)). 

       (2) 

So, as said above, the potential of the circuit is the pressure, here represented by mean 

arterial pressure (MAP), and the current corresponds to the blood flow, which can be approxi-

mated to cardiac output since it is also the quantity of blood per time unit. Finally, joining the 

resistance of the circuit, which represents the peripheral resistance of the cardiac circulation, 

and replacing this three factors in the Ohm’s law equation, one can obtain the analogue Ohm’s 

law for the cardiac system presented in equation (2). Note that the presence of the capacitor 

was neglected since its resistance was not considered because it was assumed that it is an 

ideal capacitor and that this is a simplified model. 

So, using the electrical circuit laws and using some known values for these parameters 

one can obtain a fully description of the cardiovascular system and even get values of parame-

ters that are not possible to obtain easily such as the peripheral resistance. However, although 

this model is able to make a good representation of the cardiovascular system there are many 

other possible variations of Windkessel models with also good results [15]. 
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3. State of The Art 

3.1. Photopletysmography and Its Features 

 Being the blood pressure regulation failure the effective cause of syncope one can use 

the physiological parameters related to blood pressure, such as heart rate, vasodilation, stroke 

volume and others to detect the moment when de prodromal phase or even the syncope starts, 

and, eventually, to predict it. In order to do that, one can use the photoplethysmography (PPG) 

from where one can obtain various features that are correlated with these variables. 

3.1.1. Photoplethysmography 

 Photoplethysmography or just PPG is a simple, non-invasive, low-cost and well-known 

method used to detect blood volume changes. It is an optical measurement technique whose 

principle is based on the interaction of light with biological tissues and, because of that, one light 

emitter and one photodetector (at least) are needed. However, this interaction is not simple and 

there are a few factors that affect the reception of light by the photodetector: the blood volume, 

the wall movement of blood vessels, the orientation of the red blood cells and even the amount 

of fat in the tissues. [16] 

 The most important issue that influences the quality of measurements from a PPG is 

the wavelength of the emitted light. So, this wavelength must be chosen considering three 

factors: avoid wavelengths that are absorbed by water, which is the main constituent of tissues, 

and melanin; use an isobestic wavelength, which is the wavelength that allows the signal not to 

be affected by the oxygen saturation, or in other words, the wavelength in, which oxyhemoglo-

bin and reduced hemoglobin have the same absorbance (590 and near 800 nm); use a wave-

length that provides a deep penetration in tissue. Thus, the red or near infrared wavelengths are 

the most used in photoplethysmography because they assemble these three conditions. [16] 

From the PPG one can obtain a pulsatile signal like the one showed in Figure 11 identi-

fied as “digital volume” pulse or in Figure 12. Although the pulse waveform of the PPG is very 

similar to the arterial blood pressure waveform (compare the digital volume pulse with the radial 

pressure pulse in Figure 11), they are not the same wave and they have different features [17]. 

 

 
Figure 11 Comparison between the PPG pulse wave and the pressure pulse wave. [18] 

 

 In fact, the pulsatile component of PPG pulse wave, also known as “AC” component 

reflects the peripheral pulse and it is obviously synchronized with the heartbeat [16], while the 

“DC” component, which is indeed a slow varying component and composes the baseline of the 

signal is related to the respiratory and sympathetic nervous system activity and thermoregula-
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tion [16] [19]. So, the pulse wave can be divided in two main parts: the rising edge or anacrotic 

phase, which is related to systole, and the falling edge, which is associated with diastole. In the 

latter phase there is usually a dicrotic notch (Figure 12), which results from the closure of heart 

valves after ventricular ejection. 

 

 
Figure 12 Normal PPG pulse wave. [20] 

 

 However, despite the similarity with arterial pulse wave and simplicity of the technique, 

the features from PPG pulse wave are not fully understood. However, there are already various 

features that have been documented and highly related with the operation of cardiovascular 

system and the autonomic control, which can be used as surrogates for the blood pressure 

changes. It is important to note that the PPG pulse waveform varies from subject to subject, 

mainly due to age, and it is very susceptible to movement artifacts like the ones caused by deep 

breathing and by probe movement [16]. 

 For all these reasons, the photoplethysmography is a good method to acquire infor-

mation to achieve our goal, i. e., to predict syncopes. As we have seen, every cause of syncope 

has a common factor, which is the failure in blood pressure regulation. Nevertheless we have 

also seen that blood pressure depends on resistance of the vessels, which is essentially affect-

ed by vasodilation, and on cardiac output, which is a function of heart rate and stroke volume. 

To determine this parameters one can use surrogates extracted from some of the features of 

the PPG, which are summarized in Figure 13 and will be further discussed in the next section. 

 
Figure 13 Schematic representation of the PPG features. 

 



 

16 

3.1.2. Heart Rate Variability (HRV) 

 The evaluation of heart rate is a reliable indicator of cardiovascular disorders [16]. Since 

the analysis of heart rate variability is based on the fact that the normal heart beat is not regular, 

the loss of heart rate variability can be an indicator sign of heart or vessel diseases [21] [22]. 

Besides that, knowing that heart rate is controlled by autonomic nervous system, a change in 

heart rate variability reflects a change in the modulation of the heart rate. For example, if the 

heart rate variability increases, this reveals an increase in the autonomic modulation, while low 

heart variability reflects a deficiency in the autonomic modulation [23]. 

 In photoplethysmography one can have the pulse rate variability, which is an approxi-

mation to heart rate variability, and can be used as so [24]. Thus, the heart rate variability is the 

variance of the intervals between pulses and these fluctuations in heart rate reflect the influence 

of the autonomic nervous system in the cardiovascular system along time [21] [25]. However, 

when analyzing the heart rate variability, it is important to have in account that there are subject-

dependent factors that influence HRV such as age and gender [26] [27].  

 The most used methods of analyzing the heart rate variability data are the time and the 

frequency domain analysis. In the frequency domain one can obtain a heart rate variability 

spectrum (Figure 14) by measuring the time intervals between instantaneous pulses and apply-

ing a frequency transformation to the obtained time series [16]. The normal spectrum has two 

peaks, one (centered near 0.1 Hz) corresponds to the sympathetic component of the heart rate, 

or the accelerating component, and the other (centered near 0.3 Hz) refers to the parasympa-

thetic component, or the heart rate diminishing component [16]. The time domain analysis is 

simpler to make. Here there are two kinds of variables: the statistics derived from the interbeat 

intervals and statistics obtained from the differences between sucessive intervals [23].  

 

 
Figure 14 Spectrum of the frequency domain analysis of a normal PPG pulse. [28] 

 

3.1.3. Pulse Wave Velocity (PWV) 

 During systole, the pressure in the aorta increases. Although this increase in pressure is 

not transmitted instantaneously, this creates a pressure pulse that travels along the arterial tree 

at a given speed. This speed is known as the pulse wave velocity [18] and there are different 

ways of measuring it. For example, one can place two probes in different body sites and record-

ing both the photoplethysmographys at the same time, another example consists in recording 

the pulses at different sites, but comparing the time delay with the QRS complex of the ECG, 

which is also recording simultaneously [29]. 
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 An important concept that is associated with pulse wave velocity is the pulse transit time 

(PTT), which is the time that the pulse wave takes to travel from the heart to the local of the 

photoplethysmography measurement in the periphery. This can be achieved dividing the pulse 

wave velocity by the distance traveled by the pulse waveform, but it can also be approximated 

by the time delay between the two peaks of the PPG waveform (Pdelay in Figure 15) [18]. 

 Pulse wave velocity provides information about the dilation of the vessels and BP and 

can be calculated in two different ways. The Moens-Koerteweg equation (equation (3)), uses the 

Young’s modulus of elasticity of wall material (E), the wall thickness (h), the inside radius of 

vessel (r) and the density of blood (ρ), the Bramwell-Hill equation (equation (4)) relates pulse 

wave velocity to distensibility (D) using the relative volume elasticity of the vessel segment (
   

  
) 

and the blood density (ρ) [30]. 
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 (3) 

     √
   

   
 √
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From equation (4) it is easy to see that if the distensibility decreases, for example with 

vasoconstriction, the pulse wave velocity increases.  

 

 
Figure 15 Pulse delay (Pdelay) between the two peaks of the PPG pulse wave. Adapted from 

[18]. 

 

 However, the parameters needed to calculate the pulse wave velocity with the above 

equations are not easy to determine. So, if we have the pulse transit time, or at least the time 

delay between the two peaks of the PPG pulse, one can use a surrogate for measuring the 

pulse wave velocity, the stiffness index (SI), which can be calculated with equation (5), where H 

is the subject’s height [31]. 

    
 

      
 (5) 

 As reference, for a normal subject the pulse wave velocity is 690±297 cm/s if it is male 

and 577±171 cm/s if it is female [32]. 

3.1.4. Left Ventricular Ejection Time (LVET) 

 The left ventricular ejection time is the duration of time that blood takes to flow out of the 

heart [33]. It is dependent of ventricular contractility and because of that is correlated with stroke 

volume (Figure 16) [33]. Nevertheless, it is also associated with heart rate since both affect the 
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duration of cardiac cycle. Thus, if the heart rate increases, LVET tend to decrease as shown in 

Figure 17, however, this dependency can be eliminated by using normalized LVET. 

 
Figure 16 Comparison of stroke volume with LVET. [33] 

 
Figure 17 Comparison of heart rate with LVET. [33] 

 Since LVET is not affected by changes caused by the arterial tree, one can obtain it 

directly from a PPG [34]. LVET corresponds to the time interval from the onset to the end of 

ventricular ejection estimated from PPG first derivative (Figure 18). [35] 

3.1.5. Pulse Arrival Time (PAT) 

 Pulse arrival time is defined as the time interval between the R-peak of the ECG and 

the arrival of the arterial pulse wave at periphery, as seen in Figure 18, more precisely to the 

local where measurements are made. This includes the sum of the pre-ejection period, which is 

the isovolumetric ventricular contraction phase, and the pulse transit time [36]. PAT can be a 

good estimator of blood pressure, since they are correlated, especially with the systolic blood 

pressure. In fact, an increase in blood pressure leads to a decrease in arterial compliance and, 

consequently, to a decrease in PAT and vice-versa, which reveals that PAT is inversely related 

with blood pressure [37] [38] [39]. 

 

 
Figure 18 Representation of an ECG and the first derivative of a PPG pulse. Adapted from [35]. 
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3.1.6. Inflection Point Area Ratio (IPA) 

 The inflection point area ratio, IPA, is a recent revealed feature of photoplethysmogra-

phy and it is associated with pulse wave reflection, which results from the impedance difference 

between the arterial system constituents and, therefore, with vasoconstriction. Thus, knowing 

that the area ratio of the second and first peak in the PPG wave is mainly influenced by the 

strength of pulse wave reflection, this feature is a clear indicator of the vessel dilation. So, IPA is 

given by the ratio of the areas of each peak: 

     
  

  
 (6) 

Where S1 and S2 are the areas of each peak, as shown in  

Figure 19a. Hence, if arteries contract, the total peripheral resistance will change (in this 

case will increase), which will change the impedance mismatch and further change IPA. [40] 

 

 
Figure 19 Domains of a pulse from a PPG. a) Time domain; b) Frequency domain. [40]. 

3.1.7. Inflection and Harmonic Area Ratio (IHAR) 

 The inflection and harmonic area ratio is also a recent feature, which also reproduces 

the pulse wave reflection as a result of the impedance mismatch in the arterial system. Because 

of that, it is highly related with cardiac output and, therefore, with blood pressure. IHAR is a 

parameter derived from the frequency domain analysis of the PPG pulse wave ( 

Figure 19b). It can be calculated dividing the normalized harmonic area by IPA. 

      
∑         

 
   ∑         

 
   ⁄

   
 (7) 

Where          is the square of the magnitude at the n
th
 harmonic. [40] 

3.1.8. Dicrotic Index 

 In the PPG, the dicrotic notch is the minimum of the depression between the two main 

peaks (the systolic wave peak and the reflected wave peak) as represented in Figure 12. This 

point is the result of the pressure produced when the aortic valves close at the end of 

left-ventricular ejection, which is transmitted along the circulatory path [41], but it is also related 

to the reflected wave from the periphery, which makes that this point becomes clearly influenced 

by vasodilation [42]. Thus, the incisura rise with vasoconstriction and with the age as the result 

of the loss of elasticity in the vessels to a point that can be visually indistinguishable because 

both of two peaks appear to join in a single one. On the other hand, with vasodilation the dicrot-

ic notch tends to decrease, separating the two main peaks of PPG [18]. 
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3.1.9. Reflection Index (RI) 

 When the pressure pulse travels along the arterial tree, a part of it is reflected back-

wards in different points of the systemic vasculature. Nevertheless, the arterial system acts as if 

a single wave is reflected back from the lower body [18]. 

 As seen in the dicrotic index section, the dicrotic notch and, consequently, the existence 

of the second peak in the PPG pulse wave is directly related to the reflection of the pulse wave 

in the arterial system, and also to vasodilation. So, a reflection index can be defined as the ratio 

of the amplitude of the reflected wave (b in figure Figure 15) to the amplitude of the first peak (a 

in Figure 15), as seen in equation (8). An important fact is that the effects of vasodilation in 

reflection index can be firstly detected than alterations in heart rate or blood pressure. [18] 

    
 

 
 (8) 

 However, RI is highly dependent of the detection of the second peak, which is not 

always possible since the second peak is less pronounced with age. Besides that the RI deter-

mination is dependent of temperature since it changes the vasodilation of vessels, which can 

also change the amplitude of the PPG second peak [43] [31].  

3.1.10. Augmentation Index (AI) 

 The augmentation index of photoplethysmography is another feature that is related to 

vasodilation and peripheral resistance of the circulatory system. It is defined as the ratio of the 

late systolic peak to the early systolic peak in the pulse [44]. So, the augmentation index can be 

calculated with the following equation: 

    
       

  
 (9) 

Where PT2 is the height of the second systolic peak, PT1 is the height of the first systolic peak 

and MA is the maximum amplitude of the pulse, as represented in Figure 20. As reference, 

augmentation index calculated for a normal subject is 0.252 ± 0.09 for subjects with ages in the 

interval of 57 ± 6 years [44]. So, augmentation index increase is associated to vasoconstriction 

increase, on the other hand with the increase in vasodilation, the augmentation index decreases 

[45] [46]. 

 

 
Figure 20 A pulse wave from a PPG signal. Adapted from [44]. 

 

3.1.11. Shape Analysis 

All the PPG pulses had common features such as the systolic rising edge or the dicrotic 

notch. Knowing that the PPG pulse is correlated to the real pressure pulse, it reflects the altera-

tions of the cardiac system. Some of these alterations have already been seen such as the 

dicrotic notch position, which varies with the vessel dilation. However there are other conclu-

sions that can be taken from the pulse shape of PPG. It is known that the amplitude of the 
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pulsatile component of the PPG is influenced by respiration, sympathetic nervous system activi-

ty and temperature (cold acts as vasoconstrictor, which leads to reduced amplitude, while heat 

has the opposite effect, dilating the vessels). Furthermore, it is also known that age has great 

influence in the PPG pulse shape.  

In fact, the pulse wave of a PPG can be classified in terms of its shape, which is pre-

sented in Figure 21. As can be observed, in class 1 the dicrotic notch is clearly visible; in class 2 

the dicrotic notch is lost and the incisura becomes horizontal; the class 3 has no notch, but there 

is a visible angle change in the descent part, however in class 3-bis the first systolic pulse is 

separated from the second one; the fourth class has no notch and there is no visible angle 

change in the descent part of the pulse. While the class 1 is usually associated to young indi-

viduals, the class 4 is prevalent in older ages or in individuals with coronary artery diseases, 

since it is a typical pulse of high artery stiffness or reduced compliance. 

 

 
Figure 21 Different types of PPG pulses. [18]. 

 

 The relevance of age in the pulse wave shape can be achieved with the second deriva-

tive of pulse wave (Figure 22), from where one can obtain the age index, which is given by: 

           
       

 
 (10) 

Where a, b, c, d and e are the heights of each wave in the second derivative of the photople-

thysmography pulse. Apart from that the relative heights, b/a, c/a, d/a and e/a are also related to 

arterial blood pressure and artery stiffness. [18] 



 

22 

 
Figure 22 Comparison between two different PPG pulses to their second derivative. [18] 

 

3.2. Blood Pressure from PPG 

As seen before, a faint can be caused by a decrease in systolic blood pressure, which 

is a process that can be tracked in order to predict a syncope episode. However, current 

methods to monitor blood pressure are invasive or are not easy to wear, which means that 

another solution has to be found. Using already existing signals, like PPG and ECG, is a well 

known way of achieving BP surrogates. Moreover, these signals offer continuous measurement, 

low complexity and the devices to acquire them are easy to wear. This chapter is an overall 

review of the existent techniques of tracking blood pressure from PPG signals. 

Although the pulse wave shape of the PPG is very similar to the blood pressure wave, it 

is not the same wave. In fact, they are correlated, but there is no consensus if this correlation is 

static or dynamic. Nevertheless, it is easy to understand that while in the PPG one obtain a 

wave where the amplitude is an electric potential from the PPG sensor, in the blood pressure 

curve the amplitude is a completely different physical quantity, the pressure, which can be 

argued with the fact that the PPG is the BP transformed by optical and vascular factors. 

However, some authors have been trying to obtain the exact blood pressure from the 

PPG and other hardware such as accelerometers. Although the results are consistent with the 

blood pressure measurements through the conventional ways, the fact that the system is 

composed of additional hardware is a relevant drawback [47]. So, the more consensual way of 

accessing to BP using PPG is through computational methods using some of its features. In this 

case there is a wide range of possibilities starting with the determination of a transfer function 

obtained by Fourier transforms of the PPG pulse to obtain the BP one [48]. The possibility of 

using neural networks was also studied, but an individual calibration for each subject was 

needed as well as controlled laboratory conditions, which are not convenient for a practical 

usage [49].  

More recently, several other methods have been used. One of them is the relation 

between the pulse amplitude of the PPG that has been studied in different ways, such as the 

width of the pulse at different portions of its amplitude. These gave promising preliminary 

results, but a validation of the method in patients with cardiovascular pathologies has to be 

carried out [50]. Another strategy is related to the amplitude of the pulse by itself, which has also 

a correlation with the blood pressure. There are authors who even argue that it is a better way 

of tracking the blood pressure than the PAT, although this is not consensually proved [51] [52]. 

One of the most used methods of accessing the blood pressure, mainly the SBP, is the 

PAT. As described above, this method needs an ECG measured at the same time as the PPG 

and it has been studied by several authors who concluded that there is a linear relationship 
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between PAT and BP in under specific conditions, e.g. during and after physical exercise. The 

potential of this technique is attested by the amount of literature available and the number of 

studies that has been done. Those are the reasons why the PAT was the feature chosen for the 

purpose of this thesis, to predict critical blood pressure changes that can cause a syncope [37] 

[38] [51] [53]. 

However, it is important to mention that PAT is actually the sum of the PTT and the 

pre-ejection period PEP. PTT is more directly related to blood pressure as discussed by 

equation (3) and (4), whereas it has been shown that PEP can vary even independently of 

Blood Pressure [53]. 

             (11) 

To compensate PEP contributions an alternative measurement has to be used, like the 

impedance cardiogram, heart sounds or echocardiography, and, therefore, is not as simple as 

using only the PAT. It has been also shown that PTT, e.g. during physical exercise, does 

necessarily correlate with BP [54] [53]. 

3.3. PPG Signal Processing 

In order to extract the features needed to achieve our goal, several processing 

techniques must be designed. The first important fact to bear in mind is that the PPG signal is 

very subjected to noise and motion artifacts, which should be removed in an efficient way, but at 

the same time trying to keep the important information that can be present in the corrupted 

segments. Besides, features like PAT or HR are in a beat-to-beat domain, which means that a 

segmentation of the pulses should be implemented. 

The filtering and motion artifacts removal of PPG signals is clearly a growing field, not 

only because of the need for faster and more effective filtering techniques in physiological 

measurements, but also due to the increasing usage of this signal particularly in personal health 

systems. These facts led the scientific community to test several techniques, such as singular 

value decomposition methods to extract the principal components of a signal, although it is not a 

very fast algorithm [55]. Principal component analysis using the covariance matrix and 

reconstructing the signal with the components of interest [56] [57] is another used technique, as 

well as the usage of wavelets transforms to decompose the signal and reconstruct it without the 

noise or motion artifacts components [58] [59]. Time-frequency methods, like pseudo Wigner-

Ville distributions or Fourier series analysis based on the principle of periodicity of the PPG 

pulses [60] [61] [62], were also used offering good results, but being too complex for our 

purpose. Other possibilities regarding techniques based on least mean square errors, have 

been also studied, such as creating an artificial noise reference signal based in features from 

the original signal in order to detect the corrupted segments, or using accelerometers to 

generate that reference [63] [64] [65]. Finally, there is also reference to independent component 

analysis methods, if an independent relation between noise and signal is considered [66]. 

Besides that, it is important not to forget the filtering techniques, which can be a small part of the 

algorithms mentioned above, where they were only used to remove high or low frequency noise, 

but they can also compose entire methods to remove noise and even motion artifacts [67] [68]. 

Apart from the filtering and motion artifacts removal there is also the need for pulse 

segmentation in order to extract the features in a continuous way. There are some possible 

approaches in the literature that can be used. One of the most simple is finding the peaks and 

the valleys of the pulses using a thresholding method of the entire or, at least, long segments of 

the PPG record, which can be a fast algorithm, but it is highly affected by baseline fluctuations 

or even amplitude changes of the pulses [69]. Zhang et al. used wavelet transform to identify 

the characteristic points of the pulse waveform [70] and Aboy et al. tried a more simple 

methodology based on nearest neighbour criteria [71]. However, both of the algorithms are not 

very flexible, since they don’t take into account the different types of pulses that can be caused 

by pathological or age reasons or even slightly corrupted ones. After a filtering procedure to 
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remove high and low frequency components, Couceiro et al. also used a different segmentation 

approach with the first and the third derivatives of the PPG in which the most significant local 

maxima and minima were chosen, respectively [72]. Another possible solution involves the 

creation of an analysis window, which has approximately the same duration of the pulse period, 

then, the segmentation is evaluated with comprehensible criteria like the number of peaks, for 

example. In case of an incorrect segmentation, another window is calculated and the process is 

repeated until a correct segmentation is achieved [73]. The last algorithm, although it was 

developed for BP pulses, offers very good results also in PPG with sensitivity and positive 

predictive accuracy of more than 99% with a simple implementation. This algorithm can be 

divided in 3 steps: low pass filtering in order to remove the high frequency noise, a slope sum 

function that enhances the upslope of the pulses and a decision rule, which is used to find the 

pulse onset of that slope sum function, which has to be compensated to match the original 

signal, due to the phase shift caused by the low pass filter [74]. 

3.4. Syncope Prediction 

There are not too many studies about fainting prediction independently of the type of 

syncope that is involved. Besides, the majority of work that has been done in this field does not 

use the same signals that are going to be described in the following chapters. Some authors 

use the arterial blood pressure or systolic blood pressure that are very reliable measurements, 

but there is no comfortable way for continuously measuring them, not allowing them to be used  

in a personal health scenario. So, not surprisingly, the specificity and sensitivity were about 80% 

on a dataset with 80 patients [75] and 95% in another study with 1155 patients [76]. Another 

method using heart rate variability achieved very good results, although the tests were 

performed only with healthy subjects with no cardiovascular disease or even unstable heart rate 

[77]. The possibility of using neural networks it has been studied as well, however, it requires 

more computational effort than using simple techniques like thresholding [78].  

Finally, there is another way of achieving the goal of syncope prediction. This method 

requires the extraction of PAT and HR from PPG and ECG, since the heart rate tends to 

decrease before syncope. In a primary stage, only the PAT was taken into account and then the 

algorithm was improved adding the HR variability information, which improved the sensitivity 

and specificity, although it reduced the prediction times. In the first case, the prediction time for 

the patients who effectively fainted varied between 41 and 724 seconds, while in the second the 

range is between 16 and 337 seconds. Attending to the results and to the fact that only 14 

patients were tested (7 with syncope and 7 without syncope), there is a need to test the 

algorithm with more subjects, but, still, this study shows that there is a high potential in this 

technique and for that reason it will work as a base for the syncope prediction part of this thesis 

[79]. 
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4. Methods 

This chapter describes the developed algorithms that were used in this project. Besides, 
to test these algorithms two databases were used and are also described in this section. One 
contains PPG signals from patients of an intensive care unit and the other contains data from a 
HUT test in which PPG, ECG, BP and the position of the patient were acquired. 

The first algorithm was used to detect the relevant points of the PPG, such as the peak 
and the onset. The sensitivity of the algorithm was 94.81% and 91.91% for onsets and peaks, 
respectively. The specificity was 95.77% and 99.38% for onsets and peaks respectively. Then, 
two other algorithms were used to extract the pulse amplitude, the PAT and the HR from the 
PPG and ECG signals. After the feature extraction, there was a need for artifact removal from 
the extracted features and this was done in two different ways, despite only the one with the 
best performance (optimal values of 80.17% and 76.71% for sensitivity and specificity, 
respectively) were chosen to integrate the final algorithm. 

Finally, since our goal is to predict faints, a syncope predictor was also developed 
based on an already existent methodology. The optimal value that was obtained for sensitivity 
was 95.24%, for the specificity 83.33%, for positive predictive value 82.61 and the best average 
prediction time was 109.97 seconds. 

For further details see appendix A.6. 
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5. Conclusion 

From the results obtained in the last chapter, the best value for the specificity is 

83.33%, for the sensitivity 95.24%, which corresponds to a syncope prediction of 20 cases from 

a total of 21 existent in the dataset, and for positive predictive value 82.61%. These are good 

indicators of the feasibility of this algorithm. Moreover, the general prediction times are long 

enough for the purpose of this algorithm, which is to avoid the consequences of a sudden 

syncope episode. The success of these results is influenced by every step of this work, which 

was chosen and developed with the intent of having the best performance as possible and 

trying to avoid the maximum number of limitations, but at the same time keeping in mind that the 

simpler the algorithm, the easier to use it in a daily life application. 

Regarding the beat detection and pulse segmentation we have seen that while the top 

of the pulse is easily distinguishable by eye and through computational methods (the worst 

sensitivity and PPV achieved were 88.78% and 96.14%, respectively), the same does not 

happen with the foot of the pulse (83.22% and 91.58%, respectively). This issue affects the 

ability of the PAT foot in tracking BP drops and, consequently, reduces the performance of the 

prediction. So, in order to improve the performance of this PAT, the onset detection might be 

made in a different way such as the ones previously described in the state of the art. Still, with 

the other pulse points, the problem of the inaccuracy is attenuated, which results in more 

reliable PATs and, consequently, better specificity and sensitivity for the prediction alarms. 

Although the general prediction times from this features are shorter than with the PATfoot 

partially due to the delay between the foot of the pulse and the other points. 

Although the PAT is well known as a surrogate of the BP and it worked properly in this 

case, the HR variability might also be used to help identifying a critical blood pressure change 

since the HR often decreases before a faint and it has been proved that it can improve the 

effectiveness of the prediction algorithm. However, introducing more features to analyse in the 

algorithm will increase the computational effort, despite it might help to increase the robustness 

when the signals are corrupted by motion artifacts. Furthermore, the pulse amplitude was also 

taken into account to use, however we have seen that in most of the cases any change of pulse 

amplitude is visible together with the decrease in SBP. In the two records where a variation is 

seen it is a negative variability while, theoretically, was expected an increase, since when the 

BP drops the vasoconstriction tries to compensate, which is reflected in the amplitude increase 

of the pulse, therefore, this feature was discarded. 

The next step was to remove the influence of motion artifacts from the features since 

they affect their reliability. An algorithm based on the HR comparison of the ECG and PPG was 

developed showing better results than the simple threshold method developed before. Despite 

the improvement on the performance, this algorithm has also its limitations since the ECG is 

used as reference and, although this signal is less prone to artifacts than the PPG, it can also 

be affected by them, and when that happens the removal is not well performed, which creates 

corrupted values in the extracted features. Along with this limitation we have seen that after the 

removal of corrupted values, long segments without data remain, which might compromise the 

tracking of the increase of the PAT. Other possibilities could be taken into account, in the 

literature we have seen more complex approaches, which can work properly but need a lot 

more computational effort. However, there are also simpler ways of dealing with noise and 

motion artifacts, such has filtering and/or thresholding the input signals, instead of doing it after 

the feature extraction, as we did. This might offer a major advantage since after the signal 

processing, there might be no need for a cleaning procedure in the extracted features. However, 

processing the input signals is much more complicated since the signals have a complex 

periodic shape comparing with the linear behaviour of the PAT or HR. Besides, the changing of 

the signal shape can influence the values of the features extracted from them generating values 

that do not correspond to the real parameters. 
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The problem regarding all the filtering techniques is that nothing ensures that a long 

segment without data cannot be generated not only by normal moves in a daily life activity, but 

also during the increase in PAT, when there are a lot of motion artifacts caused by the natural 

reaction of trying to move when the presyncope symptoms appear. So, in order to avoid that the 

prediction times are affected by these segments we have seen that an interpolation of 2 Hz can 

solve this issue, since it easily allows tracking the increase of PAT. 

Still in the chapter of the artifacts removal, some interesting conclusions can be taken. 

The computed spectrum for each PAT (Figure 35, Figure 36, Figure 37, Figure 38 and Figure 

39) has the same behaviour of the frequency response of an integrator, whose transfer function, 

H(s), is given by: 

      
 

 
 (12) 

From this transfer function one can create a system that models the relation between 

the failure of BP regulation mechanisms and the increase in PAT (or decrease in BP). In fact, 

the PAT increase (Figure 30, Figure 31, Figure 32, Figure 33 and Figure 34) is also similar to 

the step response of an integrator (Figure 23). Thus, if we consider a Heaviside function where 

the step represents the failure of the BP regulation mechanisms, it might be possible to find the 

exact moment of this failure with this model and the PAT behaviour. 

 

 
Figure 23 Representation of a step function (a) and of the step response of the integrator from 

equation (12) (b). 

 

This might be a topic for further investigation in order to improve the detection of this 

failure, or to model it, which might be useful in understanding this phenomenon and improving 

the treatments for syncope. 

Finally, we reached the syncope prediction algorithm based on the normalized PAT. 

The introduction of the normalized PAT brings some issues that can influence the final results. 

The PATref adds an additional error to the normalized PAT (Section A.5). So, redefine the place 

to acquire the PATref in a more stable situation, or at least in a later position after up tilt or even 

before, it is a good way of reducing the variance and improve the performance since in the 

actual situation the PATref is occasionally acquired during an adaptation phase of the BP to the 

standing position. 
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 It is important to refer that in a real time situation there are no annotations of the 

posture changes, which means that there is no baseline to use as reference to measure the 

PATref. In a future real-time application this issue might be overcome by monitoring the patient 

at a resting position during a short period of time where the PATref can be acquired in a 

baseline situation with the minimum variance of the PAT. 

Resuming, in Figure 24 there is a flowchart representing an overview of all the steps of 

the algorithm. Starting with the input data and resulting in an alarm generation in case of an 

impending syncope. 

 

Beat detection

PPG signal ECG signal

R-peak 
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HR extraction HR extraction

Remove PPG’s 
Corrupted 
Reference 

Points

HR comparison

PAT extraction

Syncope 
Prediction

Syncope Risk
No Syncope 

Risk

 
Figure 24 Flowchart with an overview of the produced algorithm. 

 

In order to optimize the thresholds, or even find a better algorithm for prediction using 

additional features such as the heart rate or maybe the pulse amplitude, there are some 

researches that can still be done. In fact, it might be possible to improve every step of the 

algorithm, since all of them have their own limitations. Besides, the implementation in a real time 

device and the testing with the signal processing and prediction made at the same time as the 

signal is acquired are tasks to be realized. 

Finally, the definition of optimal threshold is relative; in this work the optimal values 

were considered the ones that have the best relation between maximizing true positive rate and 

minimizing the false positive rate. However, if it is preferred to have a conservative algorithm, in 

order to increase the number of true positives, despite the reduction in true negatives, the 

optimal thresholds will be certainly different. Along with this, and despite the average of 

prediction time is enough for taking syncope preventive actions, if the priority is to have the 

longest prediction times as possible, it is also possible to increase them by reducing the 

threshold, which might compromise a good specificity. 
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This work proved that a real time and continuous monitoring of patients who suffer from 

recurrent syncope can be achieved using simple methodologies and already existent 

technologies. This might help to improve the quality of life of these patients, since the injuries 

and the discomfort of being constantly concerned about the possibility of a syncope episode to 

occur can be avoided. All of this using devices with low producing costs and comfortable 

enough to wear in daily life. However, some work has still to be done, starting with a refining of 

the segmentation, artifacts removal and syncope prediction algorithms, adapt and test the 

algorithm to work with real-time acquisition data, and, finally, evaluate the possibility of using 

some of the features that were described in the beginning of this work for syncope prediction. 
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A Appendices 

A.1 Tables 

Table 2 Sensitivity and specificity for choice of best threshold in HR variations. (d is the distance 

to the upper left corner of the ROC curve). 

Threshold 
(bpm) 

Foot Top 20% 50% 80% 

SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d 

0.5 99.34 4.05 95.95 99.30 4.51 95.50 99.24 5.09 94.92 98.86 5.21 94.79 98.80 5.12 94.89 

1 98.11 12.96 87.06 98.19 14.21 85.81 96.54 16.88 83.19 96.18 17.30 82.79 97.31 16.92 83.12 

1.5 96.91 24.08 75.98 96.57 26.38 73.70 94.33 30.38 69.85 93.52 30.96 69.34 95.13 30.32 69.85 

2 94.99 34.81 65.39 95.14 37.41 62.78 91.33 42.46 58.19 90.08 43.17 57.69 91.99 42.31 58.24 

2.5 93.55 43.20 57.16 93.34 46.11 54.30 88.76 51.31 49.97 87.25 52.27 49.40 89.41 51.39 49.75 

3 91.97 50.97 49.68 91.18 54.23 46.61 86.81 59.21 42.87 85.25 60.15 42.49 86.77 59.52 42.59 

3.5 90.41 56.50 44.54 88.86 60.14 41.39 84.88 64.49 38.60 83.15 65.56 38.34 84.79 65.04 38.12 

4 88.98 61.05 40.48 86.99 64.82 37.51 83.34 68.67 35.49 81.03 69.80 35.66 82.95 69.26 35.15 

4.5 87.85 64.83 37.21 85.34 68.57 34.68 81.85 71.93 33.43 79.68 73.18 33.65 81.04 72.70 33.23 

5 86.63 67.60 35.05 84.01 71.50 32.68 80.90 74.25 32.06 78.24 75.60 32.69 79.99 75.17 31.89 

5.5 85.78 69.95 33.24 82.76 73.86 31.31 80.00 76.27 31.04 77.17 77.49 32.06 78.83 77.20 31.12 

6 85.08 71.93 31.79 81.49 75.82 30.46 78.86 77.97 30.53 76.00 79.14 31.80 77.90 78.90 30.56 

6.5 84.37 73.63 30.65 80.58 77.46 29.75 77.91 79.30 30.27 75.16 80.34 31.68 77.08 80.24 30.26 

7 83.63 75.05 29.84 79.88 78.81 29.22 77.29 80.45 29.96 74.44 81.50 31.55 76.04 81.48 30.29 

7.5 83.12 76.23 29.15 78.91 79.99 29.07 76.80 81.33 29.78 73.90 82.41 31.47 75.12 82.37 30.49 

8 82.48 77.44 28.56 78.09 81.15 28.90 76.17 82.11 29.79 73.26 83.20 31.58 73.91 83.22 31.03 

8.5 81.92 78.42 28.15 77.10 82.15 29.03 75.41 82.99 29.90 72.66 84.01 31.67 73.48 84.04 30.95 

9 81.29 79.41 27.82 76.33 83.06 29.11 74.92 83.75 29.88 71.98 84.81 31.87 72.90 84.85 31.05 

9.5 80.61 80.19 27.71 75.65 83.94 29.17 74.51 84.41 29.88 71.65 85.42 31.88 72.30 85.51 31.26 

10 80.10 80.99 27.52 74.82 84.67 29.48 74.04 85.10 29.93 71.02 86.15 32.12 71.72 86.09 31.52 

10.5 79.41 81.64 27.58 74.10 85.30 29.78 73.63 85.63 30.04 70.65 86.63 32.25 71.06 86.60 31.89 

11 78.98 82.42 27.40 73.33 86.05 30.10 73.09 86.24 30.23 70.12 87.14 32.53 70.45 87.18 32.21 

11.5 78.52 83.06 27.35 72.77 86.65 30.33 72.65 86.74 30.40 69.69 87.64 32.73 70.05 87.74 32.36 

12 78.10 83.58 27.37 72.21 87.17 30.61 72.05 87.11 30.78 69.42 88.01 32.84 69.58 88.10 32.66 

12.5 77.61 84.10 27.46 71.39 87.64 31.16 71.85 87.51 30.80 68.97 88.43 33.11 69.16 88.54 32.90 

13 77.04 84.77 27.55 70.74 88.12 31.58 71.50 87.98 30.93 68.41 88.86 33.50 68.58 88.93 33.31 

13.5 76.53 85.25 27.72 70.07 88.56 32.04 70.87 88.38 31.36 68.17 89.24 33.60 68.31 89.35 33.43 

14 76.05 85.74 27.88 69.65 88.98 32.29 70.33 88.73 31.74 67.76 89.60 33.88 67.94 89.67 33.69 



 

II 

Table 3 Sensitivity and specificity for choice of best threshold in PAT variations. (d is the distance to the upper left 

corner of the ROC curve). 

Threshold (s) 
Foot Top 20% 50% 80% 

SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d 

0.005 84.97 28.91 72.66 84.04 30.93 70.89 82.23 37.32 65.15 81.80 37.78 64.82 82.17 37.19 65.30 

0.01 80.28 51.17 52.67 77.91 54.30 50.76 74.51 64.82 43.45 72.67 65.98 43.64 74.22 64.35 43.99 

0.015 75.00 66.29 41.97 72.39 69.02 41.50 67.71 78.78 38.64 64.86 79.96 40.45 66.43 78.55 39.84 

0.02 71.80 72.33 39.51 68.56 74.91 40.22 63.65 82.87 40.18 60.55 84.00 42.57 62.56 82.94 41.15 

0.025 68.85 76.52 39.01 64.66 79.20 41.01 60.25 85.19 42.42 56.61 86.29 45.51 58.45 85.42 44.04 

0.03 67.08 78.75 39.19 62.34 81.53 41.94 58.29 86.32 43.90 53.96 87.33 47.75 56.21 86.55 45.81 

0.035 65.83 80.33 39.43 59.98 83.36 43.34 56.91 87.07 44.99 52.09 88.06 49.37 53.91 87.40 47.78 

0.04 64.48 81.32 40.14 58.19 84.47 44.60 55.44 87.48 46.29 50.63 88.48 50.70 52.42 87.87 49.10 

0.045 63.30 82.35 40.72 56.53 85.50 45.82 54.28 87.91 47.29 49.23 88.81 51.99 50.69 88.28 50.68 

0.05 62.36 83.10 41.26 55.26 86.16 46.83 53.29 88.14 48.19 48.27 89.00 52.89 49.59 88.59 51.69 

0.055 61.35 83.70 41.95 54.07 86.74 47.80 52.35 88.37 49.05 47.38 89.16 53.72 48.49 88.81 52.71 

0.06 60.84 84.20 42.22 53.14 87.19 48.58 51.75 88.54 49.59 46.53 89.29 54.53 47.87 88.97 53.29 

0.065 59.27 84.70 43.51 51.99 87.64 49.58 50.68 88.73 50.59 45.92 89.40 55.11 47.00 89.12 54.10 

0.07 58.67 85.08 43.94 50.67 87.98 50.77 50.01 88.84 51.22 45.46 89.50 55.54 46.22 89.24 54.85 

0.075 57.78 85.50 44.64 49.75 88.28 51.60 49.39 88.99 51.80 44.93 89.63 56.04 45.56 89.37 55.47 

0.08 57.04 85.81 45.24 48.91 88.50 52.37 48.79 89.11 52.36 44.52 89.69 56.43 44.73 89.45 56.27 

0.085 56.56 86.12 45.61 48.02 88.74 53.18 48.25 89.22 52.86 44.33 89.77 56.60 44.45 89.53 56.53 

0.09 55.89 86.39 46.17 47.36 88.92 53.80 47.48 89.28 53.61 43.92 89.86 56.99 44.02 89.63 56.93 

0.095 55.36 86.61 46.60 46.35 89.13 54.74 46.85 89.41 54.19 43.17 89.97 57.71 43.58 89.71 57.35 

0.005 84.97 28.91 72.66 84.04 30.93 70.89 82.23 37.32 65.15 81.80 37.78 64.82 82.17 37.19 65.30 

0.01 80.28 51.17 52.67 77.91 54.30 50.76 74.51 64.82 43.45 72.67 65.98 43.64 74.22 64.35 43.99 

0.015 75.00 66.29 41.97 72.39 69.02 41.50 67.71 78.78 38.64 64.86 79.96 40.45 66.43 78.55 39.84 

0.02 71.80 72.33 39.51 68.56 74.91 40.22 63.65 82.87 40.18 60.55 84.00 42.57 62.56 82.94 41.15 

0.025 68.85 76.52 39.01 64.66 79.20 41.01 60.25 85.19 42.42 56.61 86.29 45.51 58.45 85.42 44.04 

0.03 67.08 78.75 39.19 62.34 81.53 41.94 58.29 86.32 43.90 53.96 87.33 47.75 56.21 86.55 45.81 

0.035 65.83 80.33 39.43 59.98 83.36 43.34 56.91 87.07 44.99 52.09 88.06 49.37 53.91 87.40 47.78 

0.04 64.48 81.32 40.14 58.19 84.47 44.60 55.44 87.48 46.29 50.63 88.48 50.70 52.42 87.87 49.10 

0.045 63.30 82.35 40.72 56.53 85.50 45.82 54.28 87.91 47.29 49.23 88.81 51.99 50.69 88.28 50.68 

0.005 84.97 28.91 72.66 84.04 30.93 70.89 82.23 37.32 65.15 81.80 37.78 64.82 82.17 37.19 65.30 

0.01 80.28 51.17 52.67 77.91 54.30 50.76 74.51 64.82 43.45 72.67 65.98 43.64 74.22 64.35 43.99 

0.015 75.00 66.29 41.97 72.39 69.02 41.50 67.71 78.78 38.64 64.86 79.96 40.45 66.43 78.55 39.84 

0.02 71.80 72.33 39.51 68.56 74.91 40.22 63.65 82.87 40.18 60.55 84.00 42.57 62.56 82.94 41.15 

0.025 68.85 76.52 39.01 64.66 79.20 41.01 60.25 85.19 42.42 56.61 86.29 45.51 58.45 85.42 44.04 

0.03 67.08 78.75 39.19 62.34 81.53 41.94 58.29 86.32 43.90 53.96 87.33 47.75 56.21 86.55 45.81 

0.035 65.83 80.33 39.43 59.98 83.36 43.34 56.91 87.07 44.99 52.09 88.06 49.37 53.91 87.40 47.78 

0.04 64.48 81.32 40.14 58.19 84.47 44.60 55.44 87.48 46.29 50.63 88.48 50.70 52.42 87.87 49.10 

0.045 63.30 82.35 40.72 56.53 85.50 45.82 54.28 87.91 47.29 49.23 88.81 51.99 50.69 88.28 50.68 

0.05 62.36 83.10 41.26 55.26 86.16 46.83 53.29 88.14 48.19 48.27 89.00 52.89 49.59 88.59 51.69 

0.055 61.35 83.70 41.95 54.07 86.74 47.80 52.35 88.37 49.05 47.38 89.16 53.72 48.49 88.81 52.71 

0.06 60.84 84.20 42.22 53.14 87.19 48.58 51.75 88.54 49.59 46.53 89.29 54.53 47.87 88.97 53.29 

0.065 59.27 84.70 43.51 51.99 87.64 49.58 50.68 88.73 50.59 45.92 89.40 55.11 47.00 89.12 54.10 

0.07 58.67 85.08 43.94 50.67 87.98 50.77 50.01 88.84 51.22 45.46 89.50 55.54 46.22 89.24 54.85 

0.075 57.78 85.50 44.64 49.75 88.28 51.60 49.39 88.99 51.80 44.93 89.63 56.04 45.56 89.37 55.47 

0.08 57.04 85.81 45.24 48.91 88.50 52.37 48.79 89.11 52.36 44.52 89.69 56.43 44.73 89.45 56.27 

0.085 56.56 86.12 45.61 48.02 88.74 53.18 48.25 89.22 52.86 44.33 89.77 56.60 44.45 89.53 56.53 

0.09 55.89 86.39 46.17 47.36 88.92 53.80 47.48 89.28 53.61 43.92 89.86 56.99 44.02 89.63 56.93 

0.095 55.36 86.61 46.60 46.35 89.13 54.74 46.85 89.41 54.19 43.17 89.97 57.71 43.58 89.71 57.35 



 

III 

 

Table 4 Sensitivity and specificity for choice of best threshold in HR comparison. (d is the 

distance to the upper left corner of the ROC curve). 

Threshold 
(bpm) 

Foot Top 20% 50% 80% 

SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d SE (%) SP (%) d 

0.5 93.57 35.66 64.66 93.24 37.82 62.54 90.40 45.72 55.12 90.22 46.45 54.44 91.05 45.47 55.26 
0.6 92.48 40.69 59.78 91.58 43.05 57.57 88.66 51.23 50.07 88.16 52.01 49.43 89.38 50.83 50.30 

0.7 91.52 45.69 54.97 90.26 48.17 52.74 86.86 56.58 45.37 86.43 57.14 44.96 87.83 55.95 45.70 

0.8 90.59 49.71 51.17 89.50 52.44 48.70 85.81 60.51 41.96 85.27 61.03 41.66 86.41 59.90 42.34 

0.9 89.87 52.88 48.20 88.49 55.53 45.93 84.81 63.31 39.71 83.77 63.93 39.56 85.24 62.81 40.01 

1 89.00 55.62 45.72 87.48 58.44 43.40 84.07 65.80 37.73 82.58 66.37 37.87 84.21 65.31 38.11 

1.1 88.41 58.13 43.45 86.90 61.14 41.00 83.24 67.89 36.23 81.28 68.56 36.59 83.09 67.52 36.62 

1.2 87.93 60.29 41.51 85.92 63.34 39.27 82.46 69.67 35.03 80.48 70.30 35.54 82.24 69.39 35.38 

1.3 87.46 61.97 40.04 85.26 65.03 37.95 81.86 70.95 34.25 79.57 71.58 35.00 81.21 70.85 34.68 

1.4 86.88 63.40 38.88 84.51 66.51 36.90 81.20 72.00 33.73 78.77 72.67 34.61 80.68 71.99 34.03 

1.5 86.41 64.70 37.82 83.78 67.90 35.96 80.51 72.92 33.36 78.08 73.63 34.29 79.98 72.99 33.62 

1.6 85.87 65.78 37.02 83.15 69.01 35.27 79.91 73.74 33.06 77.45 74.45 34.07 79.43 73.83 33.29 

1.7 85.20 66.83 36.32 82.62 70.15 34.54 79.25 74.46 32.90 76.81 75.17 33.97 78.75 74.65 33.08 

1.8 84.69 67.71 35.73 82.13 71.01 34.06 78.66 75.08 32.81 76.36 75.77 33.85 78.24 75.30 32.92 

1.9 84.40 68.50 35.15 81.65 71.73 33.70 78.10 75.57 32.81 75.70 76.26 33.97 77.66 75.85 32.90 

2 83.94 69.16 34.77 81.28 72.34 33.40 77.67 75.95 32.81 75.11 76.68 34.11 77.18 76.26 32.93 

2.1 83.71 69.79 34.32 80.69 72.96 33.22 77.43 76.36 32.68 74.74 77.09 34.10 76.84 76.65 32.89 

2.2 83.41 70.34 33.99 80.42 73.48 32.96 77.09 76.71 32.67 74.51 77.41 34.06 76.42 76.98 32.96 

2.3 83.01 70.80 33.79 80.11 74.03 32.71 76.78 76.98 32.70 73.94 77.71 34.30 75.98 77.35 33.02 

2.4 82.77 71.30 33.47 79.80 74.52 32.51 76.43 77.23 32.77 73.39 77.97 34.55 75.56 77.62 33.14 

2.5 82.37 71.70 33.34 79.36 74.90 32.50 76.13 77.44 32.85 72.96 78.23 34.72 75.11 77.87 33.30 

2.6 82.04 72.07 33.20 79.05 75.24 32.43 75.86 77.62 32.91 72.61 78.45 34.85 74.70 78.09 33.47 

2.7 81.95 72.42 32.96 78.72 75.54 32.42 75.51 77.82 33.04 72.32 78.60 34.99 74.42 78.26 33.57 

2.8 81.74 72.74 32.81 78.25 75.85 32.50 75.25 78.02 33.10 72.03 78.76 35.12 74.00 78.44 33.77 

2.9 81.53 73.03 32.69 78.03 76.17 32.41 74.92 78.16 33.25 71.76 78.94 35.23 73.74 78.61 33.87 

3 81.22 73.36 32.60 77.69 76.43 32.45 74.60 78.30 33.41 71.55 79.07 35.32 73.52 78.76 33.95 

3.1 81.07 73.62 32.47 77.38 76.68 32.49 74.34 78.44 33.52 71.35 79.19 35.41 73.13 78.90 34.16 

3.2 80.88 73.85 32.39 77.06 76.91 32.55 74.19 78.57 33.54 71.22 79.32 35.44 72.90 79.04 34.26 

3.3 80.71 74.10 32.30 76.49 77.07 32.84 74.00 78.68 33.62 71.04 79.42 35.53 72.50 79.15 34.51 

3.4 80.49 74.30 32.27 76.34 77.29 32.80 73.81 78.82 33.69 70.75 79.51 35.71 72.36 79.27 34.55 

3.5 80.34 74.52 32.18 76.03 77.48 32.88 73.64 78.93 33.75 70.44 79.59 35.92 72.03 79.39 34.74 

3.6 80.17 74.71 32.14 75.67 77.63 33.05 73.52 79.00 33.80 70.22 79.66 36.06 71.65 79.45 35.01 

3.7 79.88 74.92 32.16 75.42 77.78 33.13 73.31 79.08 33.91 69.99 79.73 36.22 71.39 79.52 35.19 

3.8 79.68 75.06 32.17 75.14 77.93 33.24 73.20 79.15 33.95 69.85 79.82 36.28 71.17 79.60 35.32 

3.9 79.45 75.24 32.18 74.86 78.07 33.36 73.01 79.21 34.07 69.55 79.87 36.51 70.86 79.67 35.54 

4 79.28 75.39 32.16 74.62 78.22 33.44 72.90 79.25 34.13 69.44 79.93 36.56 70.63 79.76 35.67 

4.1 78.98 75.55 32.25 74.36 78.34 33.57 72.77 79.30 34.21 69.36 79.97 36.60 70.35 79.80 35.88 

4.2 78.77 75.70 32.27 74.12 78.50 33.64 72.62 79.37 34.29 69.24 80.04 36.67 70.14 79.87 36.01 

4.3 78.64 75.84 32.25 74.03 78.64 33.62 72.54 79.42 34.31 69.01 80.08 36.84 70.03 79.93 36.07 

4.4 78.35 75.97 32.34 73.86 78.73 33.70 72.43 79.49 34.37 68.88 80.12 36.92 69.79 79.99 36.24 

4.5 78.20 76.09 32.36 73.67 78.84 33.78 72.24 79.53 34.49 68.79 80.17 36.98 69.68 80.03 36.31 

4.6 77.95 76.17 32.46 73.46 78.93 33.89 72.15 79.57 34.54 68.70 80.19 37.04 69.48 80.07 36.45 

4.7 77.78 76.29 32.49 73.28 79.02 33.98 71.97 79.61 34.66 68.54 80.23 37.16 69.35 80.12 36.53 

4.8 77.71 76.37 32.48 73.01 79.08 34.15 71.84 79.64 34.75 68.45 80.25 37.22 69.20 80.15 36.64 

4.9 77.53 76.45 32.55 72.80 79.16 34.26 71.56 79.69 34.95 68.40 80.27 37.25 69.00 80.18 36.80 

5 77.33 76.54 32.62 72.58 79.25 34.38 71.40 79.72 35.06 68.33 80.29 37.30 68.88 80.21 36.88 

5.5 76.78 77.01 32.68 71.64 79.62 34.92 70.87 79.90 35.39 67.87 80.44 37.61 68.45 80.43 37.13 

6 75.99 77.37 33.00 70.84 79.85 35.44 70.25 80.03 35.83 67.34 80.53 38.02 67.96 80.54 37.49 

6.5 75.36 77.65 33.27 70.07 80.07 35.96 69.87 80.15 36.08 66.84 80.61 38.42 67.41 80.65 37.90 

7 74.71 77.92 33.57 69.39 80.22 36.45 69.41 80.24 36.42 66.48 80.69 38.69 66.96 80.71 38.25 

7.5 73.71 78.18 34.17 68.84 80.36 36.83 68.91 80.32 36.80 66.29 80.75 38.82 66.30 80.80 38.79 

8 72.96 78.36 34.63 68.10 80.47 37.41 68.54 80.39 37.07 65.80 80.78 39.23 65.73 80.83 39.26 

8.5 72.44 78.56 34.92 67.41 80.57 37.94 68.04 80.45 37.47 65.19 80.81 39.75 65.20 80.88 39.71 

9 71.95 78.76 35.19 66.74 80.64 38.49 67.45 80.49 37.95 64.93 80.85 39.96 64.68 80.93 40.14 

9.5 71.43 78.92 35.51 66.12 80.73 38.98 66.91 80.56 38.38 64.50 80.92 40.30 64.28 80.97 40.47 

10 70.90 79.07 35.84 65.54 80.81 39.45 66.53 80.62 38.68 64.23 80.96 40.52 63.96 81.02 40.73 



 

IV 

Table 5 Segmented PAT's for the PCA. 

Record 

PATtop PAT80 PAT50 PAT20 PATfoot 

Start 
(s) 

End 
(s) 

Start 
(s) 

End 
(s) 

Start 
(s) 

End 
(s) 

Start 
(s) 

End 
(s) 

Start 
(s) 

End 
(s) 

6 4349.80 4499.80 4349.76 4499.76 4345.65 4495.65 4353.60 4503.60 4356.78 4506.78 

7 3055.87 3205.87 3055.83 3205.83 3055.80 3205.80 3055.78 3205.78 3050.63 3200.63 

8 2845.01 2995.01 2844.98 2994.98 2844.96 2994.96 2844.93 2994.93 2844.87 2994.87 

9 2323.91 2473.91 2313.83 2463.83 2314.31 2464.31 2309.73 2459.73 2311.61 2461.61 

12 2676.75 2826.75 2676.68 2826.68 2676.65 2826.65 2676.61 2826.61 2681.46 2831.46 

13 2553.06 2703.06 2551.89 2701.89 2551.85 2701.85 2551.82 2701.82 2546.13 2696.13 

15 3311.37 3461.37 3308.19 3458.19 3308.16 3458.16 3303.42 3453.42 3299.29 3449.29 

18 2470.04 2620.04 2470.00 2620.00 2469.98 2619.98 2469.94 2619.94 2469.88 2619.88 

19 3043.32 3193.32 3081.82 3231.82 3043.26 3193.26 3044.84 3194.84 3044.80 3194.80 

24 4245.64 4395.64 4245.59 4395.59 4245.56 4395.56 4245.52 4395.52 4235.40 4385.40 

26 2236.51 2386.51 2231.78 2381.78 2229.91 2379.91 2226.15 2376.15 2226.07 2376.07 

33 2132.63 2282.63 2132.53 2282.53 2132.47 2282.47 2132.43 2282.43 2132.35 2282.35 

34 2607.74 2757.74 2606.85 2756.85 2606.82 2756.82 2606.78 2756.78 2615.56 2765.56 

36 3787.81 3937.81 3783.21 3933.21 3783.19 3933.19 3783.15 3933.15 3792.91 3942.91 

37 3108.32 3258.32 3089.48 3239.48 3098.07 3248.07 3098.04 3248.04 3077.11 3227.11 

39 3989.79 4139.79 3989.75 4139.75 3989.71 4139.71 3997.86 4147.86 3998.79 4148.79 

40 1551.22 1701.22 1537.65 1687.65 1537.62 1687.62 1537.59 1687.59 1522.65 1672.65 

42 4450.91 4600.91 4450.87 4600.87 4450.83 4600.83 4464.37 4614.37 4464.29 4614.29 

44 2356.52 2506.52 2356.49 2506.49 2357.88 2507.88 2357.85 2507.85 2355.45 2505.45 

46 3209.18 3359.18 3201.36 3351.36 3209.85 3359.85 3209.82 3359.82 3202.88 3352.88 

49 2822.43 2972.43 2822.38 2972.38 2822.35 2972.35 2820.54 2970.54 2822.24 2972.24 

 



 

V 

Table 6 HUT sequences for patients with syncope. 

Record 

Baseline Early Tilt Late Tilt 

PATf 
(ms) 

PAT20 
(ms) 

PAT50 
(ms) 

PAT80 
(ms) 

PATt 
(ms) 

PATf 
(ms) 

PAT20 
(ms) 

PAT50 
(ms) 

PAT80 
(ms) 

PATt 
(ms) 

PATf 
(ms) 

PAT20 
(ms) 

PAT50 
(ms) 

PAT80 
(ms) 

PATt 
(ms) 

6 337.53 385.63 409.73 433.23 458.61 333.63 377.37 397.03 416.01 437.36 284.28 418.65 451.60 473.61 513.69 
7 337.02 405.19 446.67 502.41 584.49 336.40 404.45 440.76 483.63 574.98 391.71 453.52 483.33 515.34 551.72 
8 314.38 371.10 403.68 449.14 544.45 306.13 357.87 381.33 407.63 509.59 330.66 377.08 399.07 418.96 444.34 
9 317.68 371.69 391.80 413.99 443.30 338.16 384.72 405.27 424.98 446.52 225.21 310.07 431.11 459.28 475.15 

12 335.40 397.49 432.90 487.90 593.53 345.19 410.92 448.66 504.41 586.22 370.87 432.40 461.10 489.70 539.05 
13 323.41 387.66 414.24 441.89 493.33 318.57 393.05 418.25 449.14 555.34 409.28 480.03 507.19 539.49 581.21 
15 325.44 376.33 400.43 426.11 469.33 336.86 389.81 413.36 438.20 473.13 341.66 410.86 433.79 457.58 489.23 
18 307.42 363.05 393.49 433.08 538.51 299.09 354.31 382.58 425.32 524.60 326.73 387.79 410.43 432.75 461.52 
19 332.19 390.64 415.32 439.48 471.58 329.26 392.26 417.32 441.53 472.60 375.69 432.06 461.15 488.29 525.25 
24 365.42 419.55 446.29 474.11 515.40 364.16 419.80 443.68 468.39 499.84 414.30 470.72 495.25 522.60 558.79 
26 357.17 421.46 458.37 499.62 578.42 365.07 446.15 472.65 504.32 546.53 461.40 541.13 575.74 614.55 661.53 
33 339.29 401.41 431.79 463.49 535.63 343.77 402.77 428.83 454.69 495.64 394.95 474.45 508.03 554.35 615.16 
34 326.33 382.18 407.63 436.30 488.33 337.56 398.84 428.88 459.17 506.70 358.10 413.84 440.32 466.99 499.97 
36 355.80 414.55 440.51 469.70 516.25 348.27 406.15 433.32 459.52 498.12 406.45 471.35 497.18 523.69 559.44 
37 343.73 403.76 433.69 461.56 504.58 356.46 416.54 445.37 476.14 543.26 382.08 438.20 467.04 490.53 524.64 
39 318.41 382.89 413.37 453.12 549.53 330.47 396.44 426.70 468.63 578.92 409.74 470.06 500.05 529.88 570.07 
40 380.33 436.92 463.41 492.28 558.89 375.06 440.89 460.81 490.15 552.91 432.46 512.08 545.83 571.17 615.74 
42 340.85 396.04 423.42 451.81 495.87 356.15 409.78 433.78 459.55 496.63 395.40 452.42 477.72 503.58 532.32 
44 319.11 363.19 384.54 404.41 429.43 319.51 363.35 382.25 399.36 420.46 295.33 378.65 385.20 402.09 433.90 
46 364.49 431.55 459.78 487.42 536.07 380.33 453.26 484.21 513.98 557.66 487.74 523.80 569.65 586.74 636.19 
49 338.18 417.17 455.01 503.34 584.67 353.18 418.45 448.94 489.41 565.79 360.48 410.67 432.17 453.46 480.39 

Average 337.12 396.16 425.05 458.30 518.58 341.58 401.77 428.29 458.77 516.32 374.02 440.94 473.00 499.74 536.63 
STD 18.45 21.20 23.62 28.79 46.94 20.48 25.85 27.69 31.85 47.11 58.74 52.86 50.44 53.83 61.08 



 

VI 

 

Table 7 HUT sequences for patients without syncope. 

Records 

Baseline Early Tilt Late Tilt 

PATf 
(ms) 

PAT20 
(ms) 

PAT50 
(ms) 

PAT80 
(ms) 

PATt 
(ms) 

PATf 
(ms) 

PAT20 
(ms) 

PAT50 
(ms) 

PAT80 
(ms) 

PATt 
(ms) 

PATf 
(ms) 

PAT20 
(ms) 

PAT50 
(ms) 

PAT80 
(ms) 

PATt 
(ms) 

5 339.46 411.31 449.71 508.15 592.17 344.21 410.68 446.77 503.34 589.68 333.53 396.70 420.63 443.84 473.78 

10 374.17 417.34 435.64 454.48 475.36 310.81 390.91 411.73 433.15 458.79 432.74 479.60 499.38 524.20 551.90 

11 332.02 402.70 431.80 471.28 575.53 354.29 421.60 448.13 482.38 563.33 352.52 415.95 440.15 465.73 513.28 

14 326.77 391.23 433.65 500.60 588.18 317.41 371.70 398.72 431.40 531.33 307.10 355.71 376.80 397.75 424.80 

16 409.47 502.70 555.77 635.45 695.11 386.48 484.89 533.83 576.71 655.06 359.85 452.38 489.34 547.71 605.32 

17 376.06 442.30 507.13 562.20 587.85 343.30 415.94 456.83 511.18 580.63 329.90 388.58 413.05 437.08 466.77 

20 340.79 432.77 479.55 533.35 619.38 343.71 428.14 471.22 523.92 610.46 415.30 477.35 504.33 534.34 569.17 

21 310.96 374.60 410.74 459.90 561.77 323.25 392.68 425.13 474.13 575.07 328.90 383.52 405.64 427.57 454.17 

25 254.01 420.48 452.56 365.97 564.64 228.05 330.35 439.16 382.03 513.45 279.83 335.62 359.53 383.56 413.12 

27 333.49 403.92 437.58 476.35 545.93 322.67 376.19 404.40 438.43 515.88 307.56 358.17 380.56 405.46 442.33 

28 325.63 383.59 413.40 447.33 506.25 312.04 370.09 396.63 423.34 461.08 348.15 393.65 415.16 435.15 460.91 

29 340.34 389.16 412.30 438.39 476.94 348.56 397.93 419.09 442.54 470.29 362.48 407.38 424.07 448.98 475.60 

30 323.74 381.01 406.93 436.31 501.51 330.21 382.53 405.07 430.72 460.76 349.09 398.83 420.49 441.29 465.19 

31 352.93 409.35 435.72 462.42 509.63 367.20 431.45 459.18 492.55 545.95 363.51 422.02 443.74 464.02 486.72 

32 402.44 467.16 506.17 557.79 637.95 354.66 419.14 438.68 490.36 556.01 359.28 419.11 447.39 477.69 519.29 

35 318.23 369.96 394.86 420.49 461.02 323.18 379.40 409.24 439.68 490.99 328.48 378.73 401.67 424.58 455.32 

38 359.08 448.29 501.81 563.43 637.86 365.64 437.70 477.86 532.21 605.73 343.56 397.98 420.55 445.61 477.40 

41 349.34 419.66 451.00 486.46 543.62 357.50 416.41 446.15 476.86 554.99 385.05 441.07 465.39 489.12 518.26 

43 360.62 433.86 474.11 529.51 622.23 389.78 457.87 489.87 527.57 589.91 382.23 464.43 503.89 530.96 587.98 

45 355.32 423.83 471.91 530.70 624.33 368.51 434.98 472.87 524.30 614.26 368.51 434.70 465.46 499.10 560.67 

48 349.98 416.90 458.47 513.87 585.24 360.16 423.88 465.06 519.27 578.38 342.24 399.17 428.57 460.21 509.23 

50 329.35 387.98 416.53 447.95 508.15 342.00 402.88 431.52 461.24 521.39 408.13 480.27 509.13 538.67 578.60 

51 328.04 374.87 396.31 418.73 446.55 315.57 361.36 383.26 403.13 427.56 346.21 394.94 417.31 440.27 467.11 

Average 343.14 413.26 449.29 487.87 559.44 339.53 406.03 440.45 474.80 542.22 353.66 411.99 437.05 463.60 499.00 

STD 30.97 31.42 39.92 59.08 63.98 32.52 33.41 34.87 47.46 58.61 34.63 39.12 41.78 45.91 53.01 

 



 

VII 

Table 8 Student’s t-test for HUT sequences of Table 6 and Table 7 (p < 0.05). 

 

Non syncope Syncope 

PATf PAT20 PAT50 PAT80 PATt PATf PAT20 PAT50 PAT80 PATt 

Baseline vs. Early Tilt 0.503076 0.204718 0.069247 0.031852 0.00937 0,039717 0,023858 0,240441 0,896231 0,684473 

Early Tilt vs. Late Tilt 0.052081 0.386415 0.503891 0.196452 0.001945 0,007899 0,000116 3,99E-06 9,08E-05 0,122881 

Baseline vs. Late Tilt 0.099397 0.660434 0.206282 0.042854 0.000299 0,002713 4,50E-05 6,77E-06 0,000276 0,182081 

 

Table 9 Student's t-test HUT sequences comparison of syncope vs. non syncope patients (p<0.05). 

Baseline Early-Tilt Late tilt 

PATf PAT20 PAT50 PAT80 PATt PATf PAT20 PAT50 PAT80 PATt PATf PAT20 PAT50 PAT80 PATt 

0.444793 0.046891 0.020662 0.04446 0.024039 0.80628 0.648602 0.220233 0.209974 0.124222 0.186058 0.048852 0.015513 0.02372 0.038457 



 

VIII 

Table 10 Statistics for optimal threshold determination with the original PAT signal. The optimal threshold is the one closest to the upper left corner of the ROC space (d). 

Threshold 
PATfoot PAT20 PAT50 PAT80 PATtop 

SE (%) SP (%) PPV (%) d (%) SE (%) SP (%) PPV (%) d (%) SE (%) SP (%) PPV (%) d (%) SE (%) SP (%) PPV (%) d (%) SE (%) SP (%) PPV (%) d (%) 

1.05 100.00 0.00 33.33 100.00 95.24 16.67 40.00 83.47 95.24 15.79 38.46 84.35 95.24 19.44 40.82 80.70 76.19 16.22 34.04 87.10 

1.06 100.00 0.00 33.87 100.00 95.24 20.59 42.55 79.55 95.24 21.21 43.48 78.93 90.48 20.59 41.30 79.98 76.19 24.24 39.02 79.41 

1.07 100.00 0.00 33.87 100.00 95.24 22.58 45.45 77.57 95.24 22.58 45.45 77.57 90.48 24.24 43.18 76.35 76.19 28.13 41.03 75.72 

1.08 95.24 5.41 36.36 94.71 95.24 25.81 46.51 74.35 95.24 28.57 50.00 71.59 90.48 40.00 51.35 60.75 71.43 41.94 45.45 64.71 

1.09 95.24 15.15 41.67 84.98 95.24 39.29 54.05 60.90 95.24 44.44 57.14 55.76 90.48 46.67 54.29 54.18 66.67 46.67 46.67 62.89 

1.1 95.24 25.81 46.51 74.35 95.24 60.00 66.67 40.28 95.24 60.00 66.67 40.28 90.48 55.17 59.38 45.83 61.90 53.57 50.00 60.06 

1.11 95.24 26.67 47.62 73.49 95.24 64.00 68.97 36.31 90.48 64.00 67.86 37.24 90.48 61.54 65.52 39.62 61.90 57.69 54.17 56.93 

1.12 90.48 32.14 50.00 68.52 90.48 68.00 70.37 33.39 90.48 72.00 73.08 29.58 85.71 64.00 66.67 38.73 61.90 60.00 56.52 55.24 

1.13 90.48 35.71 51.35 64.99 85.71 70.83 72.00 32.48 90.48 83.33 82.61 19.20 85.71 70.83 72.00 32.48 61.90 64.00 59.09 52.41 

1.14 85.71 42.31 54.55 59.43 85.71 75.00 75.00 28.79 85.71 83.33 81.82 21.95 80.95 82.61 80.95 25.79 52.38 75.00 64.71 53.78 

1.15 85.71 52.00 60.00 50.08 76.19 82.61 80.00 29.48 80.95 86.96 85.00 23.09 76.19 82.61 80.00 29.48 52.38 75.00 64.71 53.78 

1.16 80.95 58.33 62.96 45.81 71.43 82.61 78.95 33.45 76.19 86.96 84.21 27.15 66.67 82.61 77.78 37.60 42.86 75.00 60.00 62.37 

1.17 71.43 58.33 60.00 50.52 71.43 86.96 83.33 31.41 76.19 86.96 84.21 27.15 66.67 82.61 77.78 37.60 38.10 82.61 66.67 64.30 

1.18 71.43 66.67 65.22 43.90 71.43 86.96 83.33 31.41 66.67 86.96 82.35 35.79 61.90 82.61 76.47 41.88 38.10 86.96 72.73 63.26 

1.19 61.90 78.26 72.22 43.86 66.67 86.96 82.35 35.79 57.14 86.96 80.00 44.80 57.14 82.61 75.00 46.25 38.10 91.30 80.00 62.51 

1.2 57.14 82.61 75.00 46.25 61.90 86.96 81.25 40.27 47.62 86.96 76.92 53.98 47.62 82.61 71.43 55.19 33.33 91.30 77.78 67.23 

1.21 47.62 82.61 71.43 55.19 57.14 86.96 80.00 44.80 47.62 86.96 76.92 53.98 38.10 82.61 66.67 64.30 28.57 91.30 75.00 71.96 

1.22 47.62 82.61 71.43 55.19 47.62 86.96 76.92 53.98 47.62 86.96 76.92 53.98 38.10 82.61 66.67 64.30 28.57 91.30 75.00 71.96 

1.23 42.86 82.61 69.23 59.73 47.62 86.96 76.92 53.98 42.86 86.96 75.00 58.61 33.33 82.61 63.64 68.90 28.57 91.30 75.00 71.96 

1.24 42.86 82.61 69.23 59.73 42.86 86.96 75.00 58.61 42.86 86.96 75.00 58.61 33.33 82.61 63.64 68.90 23.81 91.30 71.43 76.69 

1.25 42.86 82.61 69.23 59.73 38.10 86.96 72.73 63.26 42.86 86.96 75.00 58.61 28.57 82.61 60.00 73.52 19.05 91.30 66.67 81.42 

 

 



 

IX 

A.2 PCA 

Table 11 Explained Variances of each component from the PCA. 

 
PATtop PAT80 PAT50 PAT20 PATfoot 

Components 
Percentage 

(%) 

Cumulative 
Percentage 

(%) 

Percentage 
(%) 

Cumulative 
Percentage 

(%) 

Percentage 
(%) 

Cumulative 
Percentage 

(%) 

Percentage 
(%) 

Cumulative 
Percentage 

(%) 

Percentage 
(%) 

Cumulative 
Percentage 

(%) 

1 86.66 86.66 85.23 85.23 84.82 84.82 85.34 85.34 75.19 75.19 

2 5.26 91.92 4.82 90.05 4.78 89.60 3.91 89.25 5.53 80.72 

3 2.01 93.93 2.39 92.44 3.05 92.65 2.73 91.99 4.24 84.95 

4 1.05 94.98 1.69 94.13 1.49 94.14 1.53 93.52 3.72 88.68 

5 0.90 95.87 1.25 95.38 1.08 95.22 1.08 94.59 1.90 90.58 

6 0.74 96.62 0.88 96.26 0.73 95.95 0.89 95.49 1.52 92.10 

7 0.57 97.19 0.70 96.96 0.67 96.62 0.79 96.27 1.43 93.53 

8 0.53 97.72 0.48 97.44 0.49 97.11 0.66 96.94 1.24 94.77 

9 0.38 98.10 0.43 97.87 0.43 97.54 0.63 97.57 1.07 95.84 

10 0.34 98.44 0.34 98.21 0.38 97.91 0.54 98.11 0.83 96.67 

11 0.27 98.71 0.30 98.51 0.34 98.25 0.37 98.48 0.68 97.35 

12 0.24 98.95 0.27 98.79 0.28 98.53 0.31 98.79 0.58 97.93 

13 0.22 99.17 0.23 99.02 0.26 98.79 0.28 99.07 0.51 98.44 

14 0.16 99.33 0.21 99.23 0.25 99.03 0.25 99.32 0.48 98.92 

15 0.14 99.46 0.17 99.40 0.21 99.24 0.22 99.54 0.36 99.28 

16 0.12 99.59 0.17 99.57 0.19 99.43 0.20 99.74 0.28 99.57 

17 0.11 99.69 0.14 99.71 0.15 99.58 0.17 99.91 0.24 99.80 

18 0.10 99.79 0.12 99.82 0.13 99.71 0.09 100.00 0.20 100.00 

19 0.08 99.87 0.10 99.92 0.12 99.83 - - - - 

20 0.07 99.94 0.08 100.00 0.10 99.93 - - - - 

21 0.06 100.00 - - 0.07 100.00 - - - - 
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Figure 25 Explained Variance of the PATtop. 

 

 

Figure 26 Explained variance of PAT80. 
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Figure 27 Explained variance of PAT50. 

 

Figure 28 Explained variance of PAT20. 
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Figure 29 Explained variance of PATfoot. 

 

 

Figure 30 Comparison between original PATtop segments and the reconstructed ones. 
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Figure 31 Comparison between original PAT80 segments and the reconstructed ones. 

 

 

Figure 32 Comparison between original PAT50 segments and the reconstructed ones. 
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Figure 33 Comparison between original PAT20 segments and the reconstructed ones. 

 

 

Figure 34 Comparison between original PATfoot segments and the reconstructed ones. 

 



 

XV 

 

Figure 35 Power spectrum of PATtop segments after PCA reconstruction. 

 

 

Figure 36 Power spectrum of PAT80 segments after PCA reconstruction. 
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Figure 37 Power spectrum of PAT50 segments after PCA reconstruction. 

 

 

Figure 38 Power spectrum of PAT20 segments after PCA reconstruction. 
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Figure 39 Power spectrum of PATfoot segments after PCA reconstruction. 
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A.3 ROC curves 

 

Figure 40 ROC curve for Sensitivity and Specificity of the individual values of the normalized PATt during the late tilt. 

 

 

Figure 41 ROC curve for Sensitivity and Specificity of the individual values of the normalized PAT80 during the late tilt. 
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Figure 42 ROC curve for Sensitivity and Specificity of the individual values of the normalized PAT50 during the late tilt. 

 

 

Figure 43 ROC curve for Sensitivity and Specificity of the individual values of the normalized PAT20 during the late tilt. 
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Figure 44 ROC curve for Sensitivity and Specificity of the individual values of the normalized PATf during the late tilt. 

 

Figure 45 ROC curve for performance of PATt with different prediction times. 
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Figure 46 ROC curve for performance of PAT80 with different prediction times. 

 

 

Figure 47 ROC curve for performance of PAT50 with different prediction times. 
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Figure 48 ROC curve for performance of PAT20 with different prediction times. 

 

 

Figure 49 ROC curve for performance of PATf with different prediction times. 
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A.4 Demonstration of relationship between thresholds of 
nPAT 

Consider a threshold Th1 for a normalized PAT, which is given by: 

     
   

      
 (13) 

 

If an offset δ is added to the PAT, we have a new threshold Th2: 
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from where, 
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Figure 50 Impact of the offset in the determination of a new threshold. 
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A.5 Uncertainity of nPAT 

The normalized PAT, nPAT, is given by equation (28), so its uncertainty, ΔnPAT, can 
be obtained through:  

 |     |  |
     

    
|  |    |  |

     

       
|  |       | (19) 

But, ΔPATref is the standard deviation of PATref, σPATref, and PAT is a constant, so, 

 |     |  |
 

      
|  |    |  | 

   

       |  |       | (20) 

 

It is also known that the PAT is obtained through the difference of a PPG and an ECG point, so 
if the precision of the PPG beat and R-peak detection are ignored its uncertainty can be roughly 
achieved by: 

 |    |  |    |  |    | (21) 

Where ΔPPG and ΔECG are the precision of the monitors from where the PPG and the ECG 
are acquired, respectively. Finally, 

 |     |  |
 

      
|   |    |  |    |  | 

   

       |  |       | (22) 

 

  


