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Introduction: Natural killer (NK) cells are key components of the innate immune system 

and participate in the early response against infected or transformed cells. They are 

characterized by the expression of a varied repertoire of receptors, named inhibitors 

and activators, which balance mediates their function. NK cell contribution in infection 

remains unclear. Mycobacterium tuberculosis infection is still a significant health 

problem and it will probably become even more significant in coming years because of 

the high prevalence of human immunodeficiency virus (HIV). The main goal is to clarify 

the role of NK cells in immunopathogenesis and hypothetical contribution as targets for 

therapy interventions. 

Material and methods: Peripheral blood from 38 TB patients and 15 HC was analysed. 

Complete Blood Cells count as well as enumeration of lymphocyte subsets was made. 

NK cell surface expression of some important receptors and markers (CD56/CD16, 

CD27/CD11b, CD57, CD94/NKG2D, NKp30, NKp44, NKp46, NKp80, KIR2DL1, 

KIR2DL2, KIR3DL1, KIR2DS1) were evaluated and also the intracellular expression of 

IFN-γ. 

Results and Discussion: A moderate lymphopenia was observed in TB patients, with a 

decrease of all lymphocyte subsets, except for B cells. NK cells from TB patients 

present a higher level of maturation and IFN-γ production. The most marked increase 

in surface markers expression was observed for CD57. 

Conclusion: The general NK cells phenotyping here presented can help in the 

understanding of NK cell role in pulmonary tuberculosis infection and progression to 

disease, giving some highlights for further research.  
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Introdução: As células Natural Killer (NK) são componentes chave do sistema imune 

inato e participam numa primeira fase da resposta contra células infectadas ou 

danificadas. São caracterizadas pela expressão de um variado repertório de 

receptores, incluindo inibidores e activadores, cujo balanço irá mediar as funções 

destas células. A contribuição das células NK na infecção não se encontra definida. A 

infecção pelo Mycobacterium tuberculosis continua a ser um grave problema de saúde 

pública, podendo vir-se a agravar devido ao aumento da prevalência da infecção com 

o vírus da imunodeficiência humana (HIV). O principal objectivo deste trabalho foi 

clarificar o papel das células NK na imunopatogénese desta doença e a sua hipotética 

contribuição como alvos terapêuticos. 

Material e Métodos: Neste estudo foram analisadas amostras de sangue periférico de 

38 doentes com tuberculose e 15 contactos saudáveis. Foi feito um hemograma 

seguido da enumeração dos subtipos dos linfócitos presentes. A expressão na 

superfície das células NK de alguns receptores e marcadores importantes 

(CD56/CD16, CD27/CD11b, CD57, CD94/NKG2D, NKp30, NKp44, NKp46, NKp80, 

KIR2DL1, KIR2DL2, KIR3DL1, KIR2DS1) foi avaliada juntamente com a expressão 

intracelular de IFN-γ. 

Resultados e discussão: Foi observada uma linfopenia moderada nos doentes com 

tuberculose, com um decréscimo em todos os subtipos de linfócitos, à excepção das 

células B. As células NK dos doentes com tuberculose apresentaram níveis mais 

elevados de maturação e de produção de IFN-γ. O aumento mais acentuado registou-

se na expressão do CD57. 

Conclusão: Os dados aqui apresentados relativos à fenotipagem das células NK 

poderão ajudar na compreensão do papel destas células na infecção pela 

Mycobacterium tuberculosis e progressão para doença, abrindo perfectivas de 

utilização das células NK como alvos terapêuticos.  
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Immune System 

 The immune system is a specialized network of organs, cells and soluble 

mediators that all together forms a defence mechanism against invading pathogens, 

infectious agents and transformed cells. The immune system can be divided into two 

branches: the innate and the adaptive systems. Both systems interact and complement 

each other to provide the protection of the body. 

 Innate immune system 

 The innate immune system offers a first barrier against penetration and is 

quickly activated after tissue injure or infection and targets pathogens non-specifically. 

However, it does not have memory, so the immune response will not increase with next 

exposure to the same pathogen. Physical barriers (skin and mucosal membranes), 

which prevent the infection by a pathogen, are combined with a set of cellular 

mechanisms and soluble factors that are able to destroy a pathogen once the infection 

occurred. 

 The most important cells in a response to an infection are phagocytic white 

blood cells like macrophages and neutrophils, competent to ingest and kill microbes by 

producing toxic chemicals and degradative enzymes, and Natural Killer (NK) cells, 

which mediate lysis of target cells. During the early phase of the innate immune 

response, both cell types produce cytokines, which cause a local inflammation and 

active the adaptive immune system. NK cells are crucial for early defence against 

infections and tumour surveillance and also represent a connecting cell type between 

innate and adaptive immune system. 

 As phagocytic cells, macrophages and neutrophils are important in the 

elimination of pathogens. Macrophages migrate to the site of infection after neutrophils 

but are also involved in other functions, such as initiating healing and stimulating the 

adaptive immune response. Like macrophages, dendritic cells serve as antigen-
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presenting cells (APCs) and stimulate the adaptive response. On the other hand, 

natural killer cells are quickly activated lymphocytes that attack tumours and cells 

infected with virus.  

 In order to be alerted, the innate immune system displays a set of receptors, 

which recognize many related molecular structures called pathogen-associated 

patterns (PAMPs). PAMPs are molecular motifs consistently found on pathogens and 

not in the host. They are recognized by toll-like receptors (TLRs) and other pattern 

recognition receptors (PRRs), such as dectins and nucleotide-binding oligomerization 

domain containing (NOD). The binding of PAMP to cells of the innate immune system 

results in killing of the pathogens and secretion of pro-inflammatory cytokines. The 

innate immune system acts within minutes to hours after an infection and many of the 

effector and costimulatory molecules generated during this early phase of the immune 

response play an important role for the slower developing adaptive response. 

 Adaptive immune system 

 Although 90% of infections are eliminated by mechanisms of the innate immune 

system, some pathogens escape the defences and the adaptive immune system has to 

be activated. Soluble factors that belong to the complement system and chemokines 

and cytokines secreted by innate immune system induce recruitment of lymphocytes 

and the activation of the adaptive immune system. Adaptive immunity is mainly exerted 

by two types of lymphocytes, namely T cells and B cells. In contrast to innate immune 

cells, T and B lymphocytes express antigen specific receptors (TCR and BCR, 

respectively) which undergo genetic recombination in somatic cells. This process 

provides with a highly diverse repertoire of receptors able to recognize plenty different 

pathogen-derived antigens. Adaptive immunity not only contributes to pathogen 

clearance but is also essential for the formation of an immunological memory allowing 

fast acting responses in case of reinfection. The protection of the extracellular fluids 

and spaces is mediated by humoral immune response, in which antibodies produced 
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by B cells bind to extracellular pathogens and toxins. Activation of naive B cells is 

triggered by binding of the BCR to its specific antigen and usually requires the help of T 

cells. Following antigen binding to the BCR, B cells become activated and differentiate 

into antibody secreting plasma cells. The secreted antibodies bind specifically to the 

antigen on the pathogen surface, subsequently leading to complement activation and 

phagocytosis of the pathogen. Also NK cells recognize target cells coated with 

antibodies, leading to lysis of the target cell by so-called antibody dependent cellular 

cytotoxicity (ADCC). 

 Different from B cells, T cells are not able to recognize the pathogens directly, 

needing the help of a professional APC which have been activated by pathogen-

derived PAMP degrade the pathogen and present the antigens on major 

histocompatibility complex (MHC) molecules expressed on their surface leading to T 

cell activation and clonal expansion. Among T cells, two populations can be 

distinguished: CD4+ T helper (TH) and CD8+ cytotoxic T cells. CD8+ T cell activation 

and release of cytotoxic molecules leads to killing of the infected target cells and CD4+ 

T cell do not only stimulate innate cells but also play a crucial role in activating other 

adaptive cells, contributing to the elimination of the pathogen. 

 Summing up, innate and adaptive immune responses intensively cooperate with 

each other contributing to pathogen elimination. While the innate immune system has a 

crucial importance during the early phase of a primary infection but does not provide 

immunological memory, the adaptive system takes longer to be activated but have 

immunological memory, which allows an even quicker response in case of re-exposure 

to the same pathogen. (1, 2) 
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Natural Killer Cells 

Natural killer (NK) cells represent the third largest lymphoid cell population in 

mammals, are key components of the innate immune system and participate in the 

early response against infected or transformed cells (3). They constitute a first line of 

defence and can kill infected and tumor cells.  These cells are large, granular, bone-

marrow – as well as lymph node-derived lymphocytes. However, NK cells are distinct 

from T cells or B cells and have distinct morphologic, phenotypic and functional 

properties. NK cells do not require sensitization for the exertion of their activity 

differently from T cells or B cells (4).  

NK cells are present in blood as circulating cells and to other organs of the body 

as resident cells. In peripheral blood, they are characteristically described as having 

the morphology of large granular lymphocytes (5), whereas in tissues, the 

microenvironment of the organ has influence on phenotype and activity of NK cells. 

They are characterized by the expression, on their cell surface, of a varied repertoire of 

receptors, named inhibitors and activators, which balance mediates their function (6). 

The balance of inhibitory and stimulatory signals received by a NK cell determines the 

outcome of interactions with target cells. Normal target cells are protected from killing 

by NK cells when inhibitory signals delivered by self MHC class I molecules 

compensate the signals delivered by stimulatory ligands (7). 

 Development and maturation 

NK cells are believed to be relatively short-lived lymphocytes. They derived 

from CD34+ hematopoietic progenitor cells (HPC) and some observations indicate that 

the bone marrow (BM) and lymph nodes (LN) are important for their 

development/maturation (8, 9). 

Primarily, NK cell development occurs in the BM, and despite the critical factors 

necessary for development are still unknown, some analyses demonstrated the 
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presence of an enriched microenvironment with CD34+ HPC, including a fraction of NK 

cell precursors (pre-NK) in BM(10). IL-2 has been used to study NK cell development 

from CD34+ HPC in vitro (10-12), however, this cytokine is not found within the BM 

stroma (11, 13, 14), so other factors that bind to the IL-2R are critical for NK cell 

development. IL-15 is produced by human BM stromal cells and its function have 

demonstrated to facilitated the differentiation of cytolytic NK cells from CD34+ HPC (15) 

because this cytokine shares common signalling receptor subunits with IL-2, which 

form an intermediate-affinity heterodimeric receptor complex, IL-2/IL-15Rβγ (16). It has 

been demonstrated that only the CD34+ CD45RA+ phenotype is all-inclusive for human 

IL-2/IL-15-responsive pre-NK cells (17, 18). Other BM stromal cell factors such as c-kit 

ligand (KL) and flt3 ligand (FL), the ligands for members of the class III receptor 

tyrosine kinase family (includes c-kit and flt3), have been shown to potentiate 

significantly the expansion of NK cells from CD34+ HPC in combination with IL-15, 

however alone these molecules have no effect on cell differentiation into NK cell (19, 

20). In development, NK cell it may be divided into an early phase in which FL acts 

synergistically with IL-15 to generate an exclusive CD34+CD122+CD38+ NK cell 

intermediate subset from CD34+ HPC, and where IL-15 is necessary to increase the 

mature NK cells characteristics such as CD56 and NKR expression, cytotoxic activity 

and the ability to produce abundant cytokines and chemokines (11). CD56 is a 140-

kDa isoform of neural cell adhesion molecule (NCAM). 

LN are also naturally and selectively enriched with CD34dimCD45RA+ HPC and 

are able to differentiate these cells into CD56bright NK cells in the presence of either IL-2 

or IL-15 (17).  Fehniger et al. (21) showed that endogenous T cell-derived IL-2 may 

trigger, through the NK high-affinity IL-2 receptor, CD56bright NK cells to produce IFN-γ. 

This selective enrichment of both CD34dimCD45RA+ HPC and CD56bright NK cells within 

LN compared with the BM or blood is suggesting of LN as a site for NK cell 

development.  
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There are two distinct blood subsets of human NK cells identified by cell surface 

density of CD56 (22). NK cells in human peripheral blood are majority CD56dim, express 

high levels of CD16 and killer cell immunoglobulin-like receptor (KIR) and a minority 

are CD56bright CD16dim/neg, having low cytotoxic activity and secrete more cytokines in 

response to stimulation (22).  Furthermore, Romagnani et al. (23) demonstrated that 

CD56dim NK cells from peripheral blood exhibit shorter telomeres than peripheral and 

LN-derived CD56bright NK cells. 

The NK cell development stages in human are not yet well established but 

based on the presence of different expression kinetics of surface markers could define 

distinct stages of their development. Freud et al. (24)  based on the principle that: more 

than 99% of NK cells within LN express at least CD34, CD117, and/or CD94;  CD34 

and CD94 are independent antigens, indicating that NK cells intermediate stages would 

first lose CD34 and then express CD94; and NK cell functional maturity (cytotoxic and 

IFN-γ secretion) as well as acquisition of surface CD56 in humans are acquired at a 

later stage of development (25, 26), have proposed a marker panel set using the 

combination of CD34, CD117, CD94 and CD16 to differentiate the functionally distinct 

stages of human NK cell development (figure 1).  

The first stages of NK cells differentiation are dependent of concomitant IL-15 

responsiveness and not all CD34+ CD117+ CD94- cells are compromised with NK cell 

lineage. Immature NK cells (iNK cells), are different from the first developmental stage 

of NK cell because these cells are completely incapable to generate T cells and DC, 

being this way committed with NK cell lineage (8, 24). iNK cells express antigens 

including CD2, CD7, CD56, CD161 and NKp44, besides lack of CD10, integrin β7 and 

HLA-DR, characteristics that further will distinguish the iNK cells phenotype from pre-

NK cells. In this third developmental stage, iNK cells are  exclusively in NK cell branch 

however they are not capable to produce IFN-γ or mediate perforin-dependent cellular 

cytotoxicity against MHC-I negative target cells (24). CD56+ cells can express different 
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levels of CD117 and are subdivided in CD56+CD117high and CD56+ CD117low/- subsets 

(27). These populations are considered different since the latter expresses NKp30, 

NKp46, NKG2D, NKG2A and CD94, while CD56+CD117high cell do not. It were been 

shown that CD56+CD117highCD94- cells are not cytotoxic and CD56+CD117low/-CD94+ 

effectively kill target cells and express high levels of FasL and IFN-γ, representing 

differentiation at stage 4. KIR+ NK cells are primarily within the CD56dimCD94+/-CD16+ 

fraction of cells in both LN and peripheral blood, whereas the CD56bright CD94+CD16+/-

do not express KIR, which is consistent with evidence indicating that KIR acquisition is 

rather a late event during NK cell maturation (28-30).  

Stage 1 

(Pro-NK) 

Stage 2 

(Pre-NK) 

Stage 3 

(iNK) 

Stage 4 

(CD56
bright

) 

Stage 5 

(CD56
dim

) 

CD34
+
 CD34

+
 CD34

-
 CD34

-
 CD34- 

CD117
-
 CD117

+
 CD117

+
 CD117

+/-
 CD117

-
 

CD94
-
 CD94

-
 CD94

-
 CD94

+
 CD94

+/-
 

CD16
-
 CD16

-
 CD16

-
 CD16

-
 CD16

+
 

Enrollment to NK cell lineage   

  NK cell maturation 

    Cytotoxicity 

acquisition 

Figure 1 – Phenotypic features used to discriminate the main NK cell subsets during the ontogenic 

process. This figure brings the more important markers acquired during the five ontogenic stages (31) 

 

The dominant NK cell subset in LN are CD56bright (75% median value), however, 

in peripheral blood and spleen, the majority of NK cells are a more mature subset: 

CD56dim (95% and 85%, respectively) (32). Moreover, the CD56dim subsets in the 

spleen and in the peripheral blood express CD16; CD56bright NK cells in LN are 

negative for CD16 and express low levels of activation markers (HLA-DR and CD69) 

(32). These observations suggest that the CD56bright cells are more immature and will 

give rise to CD56dimCD16+ NK cells (the last stage of NK cell life) inside the LN and 
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then go to peripheral blood. It is important to mention that despite these stages 

representing a possible developmental NK cell pathway, it is still possible that some 

cells from each stage may still be terminally differentiated with essential functions for 

body homeostasis. 

 

Figure 2 – Phenotypical and functional properties of CD56
bright

 and CD56
dim

 NK cells. (a) Schematic 

illustration of CD56 and CD16 expression on CD3
-
CD4

-
CD14

-
CD19

-
 lymphocytes with gates on CD56

bright 

(blue) and CD56
dim

 (red) NK cells. (b) Relative expression levels of activation and inhibitory receptors on 
CD56

bright
 (blue) and CD56

dim
 (red), and NK cells from peripheral blood. (c) Functions of CD56

bright
 and 

CD56
dim

 NK cells from peripheral blood (adapted from Björkström et al. Trends Immunol 2010 (33))  

 

Fu et al. (34) recently found that according to the differential CD27/CD11b 

expression NK cells could be characterized in terms of maturation state. This work 

refer that during NK cell maturation, they acquire CD27 having a highest cytokine 

expression, suggesting that NK cells had the ability to produce cytokines, low 

expression of CD16, suggesting a diminished cytotoxic capacity. After acquisition of 

CD27, NK cells acquire CD11b and lost CD27. These NK cells had the highest CD16 

expression, suggesting that they have the strongest cytotoxic capacity. Summary, NK 

cells during development/maturation pass for four stages according to CD27/CD11b 

expression: CD27-CD11b-, CD27+CD11b-, CD27+CD11b+ and finally CD27-CD11b+. 
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Recently, CD57 was described as a marker for NK cell terminal differentiation 

as happens in CD8+ T cells (35). Authors refer CD57+ NK cells as subset of highly 

mature cells, having lower frequency of IFN-γ+ cells comparatively to CD57- cells, lower 

proliferative capacity and with a mature phenotype. 

 Function properties 

NK cell functions can be classified in three categories: cytotoxicity, cytokine and 

chemokine secretion and contact-dependent cell costimulation. 

Cytotoxicity 

NK cells can kill certain infected cells and tumor target cells apart of their MHC 

expression (36). NK cells have a relatively large number of cytolytic granules (secretory 

lysosomes) containing perforin and various granzymes. After the contact between an 

NK cell and its target, these granules travel to the contact zone with the susceptible 

target cell (immunological synapse), and the contents are released to effect lysis. 

Perforin-dependent cytotoxicity is the major mechanism of NK cell lysis, but NK cells 

have also other ways of killing, namely in a perforin-independent manner utilizing FAS 

ligand, TNF or TNF-related apoptosis-inducing ligand (TRAIL), although with less 

efficiency and in a slower time kinetic.  

Cytokine and chemokine secretion 

NK cells are best noted for their ability to produce IFN-γ but also produce a 

number of other cytokines and chemokines which contribute to the resistance against 

infectious agents (37-39). Killing and cytokine secretion are mediated by two different 

subsets of human NK cells characterized by the intensity of expression of CD56 and 

CD16 on their surface. 
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Contact-dependent cell costimulation 

NK cells express several costimulatory ligands including CD40L (CD154) and 

OX40L, allowing them to provide a costimulatory signal to T cells or B cells (40, 41). 

NK cells may serve as a bridge in an interactive loop between innate and adaptive 

immunity. Dendritic cells (DC) stimulate NK cells, which then deliver a costimulatory 

signal to T or B cells allowing for an optimal immune response. NK cells also stimulate 

cells from the innate immune systems after being stimulated by them. 

 Cytokines and chemokines 

The cytokines play a key role in NK cell activation. They are immunomodulating 

molecules, once secreted by infected cells, they signal NK cells for the presence of 

pathogens. NK cells produce cytokines after being stimulated, in part by the monocyte-

derived cytokines during the early pro-inflammatory response to infection and also by 

the a subset of NK cells present at the site of inflammation (42). 

NK cells produce a range of cytokines, including haematopoietic factors such as 

IL-3 and granulocyte–macrophage colony-stimulating factor (GM-CSF), TNF-α and 

regulatory cytokines such as transforming growth factor (TGF-β) and IFN-γ (42). In both 

viral and bacterial models of infection, IFN-γ production by NK cells has been shown to 

be a crucial event in successful resolution of infection (43). These molecules secreted 

by NK cells will stimulate phagocytosis of bacteria by macrophages and facilitate their 

elimination via a number of mechanisms including the generation of reactive oxygen 

and nitrogen species important in immune response (44). In a very early phase of 

infection, IL-12 is produced and will be responsible for driving NK cells to produce IFN-

γ (45).  

The CD56bright NK cell subset produces significantly more IFN-γ following IL-18 

and IL-12 stimulation compared with CD56dim NK cells (45).  
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 Natural Cytotoxicity Receptors (NCRs) and other activating receptors 

Natural cytotoxicity receptors are an important group of activating receptors 

consisting of NKp30 (CD337), NKp44 (CD336) and NKp46 (CD335) expressed 

exclusively on NK cell surface (46). NCRs play a major role in the NK-mediated killing 

of most tumor cells (47). NKp46 and NKp30 are constitutively expressed on resting or 

activated NK cells, enabling a precise identification of all NK cells (which is not true for 

other widely used NK cell markers including CD56 and CD16) and NKp44 is selectively 

expressed only by IL-2 activated NK cells (47, 48). The ligands for the NCRs are not 

well characterized but seem to exist on tumor cells and virally infected cells. 

NK cells also express other triggering receptors that contribute to cell activation 

and target cell killing, including NKG2D, NKp80, NTB-A (CD352), 2B4 (CD244), 

DNAM-1 (CD226), and NKG2C. Among these molecules, NKG2D forms homodimers, 

is not structurally related to the other NKG2 receptors and represents a major triggering 

receptor that is known to specifically recognize the stress-inducible MHC class I-related 

chain molecules and plays a role in NK-mediated cytolysis (47, 49). On the contrary, 

NKp80, NTB-A, 2B4, and NKG2C appear to synergize with NCRs and NKG2D in the 

NK-mediated cytolysis, working as co-receptors (47).  
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Figure 3 – Activating NK receptors and coreceptors and their cellular ligands. This figure illustrates the 

molecular structure of the NK receptors NKp46, NKp30, NKp44 and NKG2D as well as of the NK 
coreceptors 2B4, NTB-A, DNAM-1 and NKp80. Their interaction with signaling polypeptides or with 
relevant cytoplasmic molecules is also shown. The known cellular ligands are illustrated in a simplified 
form. (Moretta et al. EMBO J 2004 (46)) 

 

 Cross-talk with other immune cells 

NK cells  have a regulatory action that influence various other immune cell 

types, such as macrophages, DCs, T cells and B cells. NK cells can interact with DCs 

in peripheral tissues, as well as in secondary lymphoid organs, and can have two 

distinct ways of action (50-52). First, NK cells are capable to kill immature DC, 

influencing DC homeostasis, but they can also limit DC-based vaccination efficiency 

(53, 54). However, the lysis of target cells by NK cells can cause cross-presentation of 

antigens from apoptotic NK cell targets by some DCs’ subsets. This mediated 

cytotoxicity exerted by NK cell on target cells induces robust antigen-specific adaptive 

immune responses that involve CD8+ T cells, CD4+ T cells and immunoglobulin G (55). 

Second, by the secretion of IFN-γ and tumor necrosis factor (TNF), NK cells can help 

the development of DCs, which will also activate NK cells by secretion of IL-12 (50-52). 

This interaction between NK cells and DCs might thus lead to anti-inflammatory 

applications.  
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In addition to the influence exercised in DC function, NK cells also influence 

adaptive immune responses by direct action on T and B cells. The IFN-γ secretion by 

NK cells can help the priming of CD4+ T helper type 1 (TH1) (56, 57). NK cells have 

also the capacity of killing activated T cells, except T cells express sufficient amounts 

of classical or non-classical MHC I molecules (58). Blockade of CD94-NKG2A 

inhibitory receptors results in NK cell lysis of activated CD4+ T cells. This knowledge 

can be useful in CD4+ T cell-dependent autoimmunity therapy by the use of  blocking 

antibodies to NKG2A to prevent it (58).  

NK cells not only protect the host against pathological agents, but also control 

the immune response exerted by other immune cells. 

 Killer-cell Immunoglobulin-like Receptors (KIRs) 

Natural Killer cells and some subsets of T cells express in its surface receptors 

belonging to the immunoglobulin-like receptors (KIRs).  KIR nomenclature is based on 

its structure: they can have two (KIR2D) or three (KIR3D) extracellular immunoglobulin-

like domains (59, 60). The cytoplasmic tail varies in length, a property connected to 

functional activity: inhibitory KIRs have long (L) cytoplasmic tails with ITIM motifs and 

activating KIRs have short (S) cytoplasmic tails which can associate with the ITAM-

containing DAP12 adaptor protein.  

Currently, about 14 KIR genes and 2 pseudogenes have been described in the 

KIR gene cluster on chromosome 19 in humans. The number of genes varies greatly 

between individuals and there are only three commonly shared framework genes 

present in all individuals (KIR2DL4, KIR3DL2 and KIR3DL3). KIR genes are highly 

homologous so it is likely that the variability is due to gene duplications or non-allelic 

homologous recombinations during evolution (61).  

Based on the gene content two types of haplotypes have been defined, where B 

haplotypes have more activating KIRs compared to A haplotypes. KIR haplotype B 
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have one or more of the KIR genes; 2DS1, 2DS2, 2DS3, 2DS5, 3DS1 and 2DL5 and 

haplotype A lack all of these and can as an alternative possess inhibitory KIRs 

including 2DL1, 2DL3 and 3DL1 as well as the activating 2DS4 (62). An extensive 

allelic variation in several genes confers an even higher diversity to KIR genes that will 

influence the amount of KIR expressed on each NK cell (63-65). In addition, some 

allelic variants do not produce functional proteins expressed at the cell surface (64).  

This highly diverse expression is believed to be important for giving a broad NK cell 

response against different pathogens.  

The KIR proteins are also expressed in a diverse way on NK cells (59, 60, 66). 

However, once an NK cell clone has started to express a certain KIR gene during 

development, the expression is established and does not appear to be affected by 

cytokines (64, 67). In recent studies, it was described that KIR gene transcription is 

controlled by epigenetic mechanisms such as methylation, and by the presence of a 

bidirectional promoter able to stochastically switch direction of transcription during 

maturation of the NK cell, determining if the NK cell will express the KIR gene or not 

(68, 69). Resulting in a diverse KIR expression repertoire in NK cells that can recognize 

almost every MHC class I molecule (66). 

 

Natural Killer cells in infection 

NK cells have long been demonstrated to be activated in vitro by virus-infected 

cells (70). Other types of intracellular pathogens have also been shown to activate NK 

cells for IFN-γ production or increase cytotoxicity (70, 71). Evidence for an implication 

of NK cells in the control of extracellular pathogens is not defined (72).  

NK cells are activated by a variety of intracellular pathogens, including many 

viruses and also bacteria or protozoa having potential to contribute to the immune 

defence against a variety of infections. However, in certain infections were a high of NK 
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cell activation is observed, there is no evidence that NK cells play a direct role in the 

control of the pathogen (73). Thus, the modulation of NK cell functions by an infection 

is not enough to indicate that NK cells contribute directly to the clearance of the 

pathogen.  

NK cell secretion of the cytokines TNF-α and IFN-γ is known to play a crucial 

role in granuloma formation following challenge with intracellular bacteria, including 

Mycobacterium avium and Francisella tularensis (74, 75). Granulomas help protect the 

host from bacterial dissemination by isolating infectious foci. 

NK cell activation resulting of infections by intracellular bacteria, such as Listeria 

monocytogenes (76), or protozoa, such as Leishmania (77) or Plasmodium (78), 

involves the production of IL-12 and IL-18 by innate immune cells such as DCs, 

monocyte or macrophages and also the direct interactions between these cells and NK 

cells. Activation receptors on primary NK cells can add to these cells the capacity of 

IFN-γ production and also to the cytotoxic activity (38, 79). Finally, NK cells can 

respond to a variety of chemokines being essential for their recruitment to the site of 

inflammation quickly after infection, as demonstrated in the model of murine 

cytomegalovirus infection in a seminal report from Salazar-Mather and colleagues (80), 

more recently in Toxoplasma gondii infection (81) and reviewed elsewhere (82). 

 

Tuberculosis 

The World Health Organization (WHO) defines Tuberculosis as: 

 “… an infectious bacterial disease caused by Mycobacterium tuberculosis, 

which most commonly affects the lungs. It is transmitted from person to person via 

droplets from the throat and lungs of people with the active respiratory disease. In 

healthy people, infection with Mycobacterium tuberculosis often causes no symptoms, 



20 
 

since the person's immune system acts to “wall off” the bacteria. The symptoms of 

active TB of the lung are coughing, sometimes with sputum or blood, chest pains, 

weakness, weight loss, fever and night sweats. Tuberculosis is treatable with a six-

month course of antibiotics.” 

Mycobacterium tuberculosis (Mtb) infection remains a major international health 

problem that is probable to become even more significant in coming years because of 

the high prevalence of human immunodeficiency virus (HIV). Although it is estimated 

that one-third of the world population is currently infected by M. tuberculosis, the 

majority never develop the active disease (83), indicating the ability of human immune 

responses to control the infection. On the other hand, approximately 10% of these 

individuals develop active pulmonary disease. Immune mechanisms involved in this 

differential response by each individual are not clearly explained. Genetic mechanisms 

involved in immune response can also be one of the reasons. 

Mtb is an obligatory aerobic, intracellular pathogen, which preferentially infects 

lung tissue rich in oxygen, but can also spread to other parts of the body.  The tubercle 

bacilli enter the body via the respiratory and are phagocytosed by alveolar 

macrophages as first event in the host-pathogen relationship that decides the outcome 

of infection. Then, an influx of lymphocytes is observed and activated macrophages 

migrate to the site of infection, granuloma is formed. The exponential growth of the 

bacilli is verified and dead macrophages form a caseum containing the bacilli. The 

bacilli can remain forever within the granuloma, get re-activated later or may get 

released into the airways after enormous increase in number, necrosis of bronchi and 

cavitation.  

“Fibrosis represents the last-ditch defence mechanism of the host, where it 

occurs surrounding a central area of necrosis to wall off the infection when all other 

mechanisms failed” (84). 
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 There are some other mechanisms that can be described in immune response 

against TB: the binding of Mtb to monocytes/macrophages by complement, mannose 

and other surface receptors; the fusion of phagolysossome that will allow the Mtb 

degradation; the recruitment of accessory immune cells for the local of inflammatory 

response; the role of reactive oxygen and nitrogen intermediates in the signalling of the 

infection; the IFN-γ and TNF-α mediated anti-mycobacterial effects; the NK cells action 

upon pathogens or infected monocytes; the antigen presentation by APCs to T 

lymphocytes for the development of adaptive response; and finally, the role of B cells 

or antibody in response to Mtb infection (84). 

 

Natural killer cells in Tuberculosis 

 As integrant part of innate immune system, NK cells has been implicated in 

early immune response to a variety of pathogens because they are capable of rapidly 

producing IFN-γ and other immunoregulatory cytokines, as well as lysing specific target 

infected cells always in the absence of prior activation. Some researches have 

demonstrated that NK cells from the peripheral blood contribute for protective immunity 

though IFN-γ of cytotoxic mechanisms, having a huge bactericidal role against Mtb 

(85). 

 The role of NK cell receptors in cytotoxic-mediated killing of mononuclear 

phagocytes infected with an intracellular bacterium has already been reported (85) in 

the same work were they propose that the diminished NK activity during tuberculosis 

infection is probably the 'effect' and not the 'cause' for the disease. Human NK cells are 

known to directly lyse M. tuberculosis-infected monocytes and macrophages in vitro 

(86, 87). In this work, it was found that NKp46 and NKG2D receptors contribute to NK 

cell-mediated lysis of cells infected with Mtb and that reduced functional capacity of NK 

cells is associated with severe manifestations in disease. Denis’ data (88) suggest an 
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important involvement of NK cells in host resistance to TB because of their elevated 

lytic activity against Mtb-infected monocytes. Another study demonstrate the direct 

binding of NKp44 to the mycobacterial surface (89), suggesting that ligands for other 

NK cell receptors may play a role in the specific NK-mediated recognition of Mtb. 

But the NK cells activity in Mtb-infection is not just lyse Mtb-infected cells, these 

cells also actively restrict the infectious agent growth in an apoptosis-dependent but 

Fas/FasL independent manner (90, 91) and this action can be further higher by 

addition of IL-2, IL-12 and glutathione (90). Consistent with the protective role of NK 

cells in tuberculosis (TB), reduced activity of NK cells has been found in active 

pulmonary TB patients (85). Higher levels of pre-NK cells were observed in positive 

tuberculin skin test (TST+) and in TB patients, and in addiction TST+ individuals 

presented levels greatly increased of these cells in comparison to TB (92). Barcelos et 

al. (92) also observed a selective increase in putative activated NK cells of TST+ 

individuals and demonstrated for TST+ and TB patients a distinct correlation profile 

between NK cells and macrophage-like monocytes, suggesting that high levels of 

activated NK cells together with macrophage-like monocytes may be involved in 

protective mechanisms in putative TB-resistant individuals. This finding could be 

important to explain the immunopathogenic context, since these cells contribute for 

protective mechanisms because NK cells have a great ability to proliferate and their 

potential to differentiate into CD3-CD16+CD56+ cells with higher cytotoxic activity. 

Infection with the intracellular pathogen Mtb also results in local lung NK cell 

accumulation and activation, however, their importance in clearing the infection is  not 

clear yet (93, 94). Junqueira-Kipnis et al. (94) explained that NK cells become activated 

during the early response to Mtb infection, but their removal does not substantially 

affect the expression of host resistance. Contrary, Roy et al. (95) identified a potential 

new role for NK cells in maintaining the balance between the regulatory and effector 

arms of the immune response to Mtb infection with the Treg cells lysis. Other findings 
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also suggest NK cells role upon other immune cells in response to Mtb infection, 

promoting expansion of γδ T cells forming immune synapse and by soluble factors 

TNF-α, GM-CSF, and IL-12, but not IFN-γ concluding the NK cells action might be 

beneficial to prevention and control this infection (96). 

 

Aim 

 In the present research on TB patients and healthy contacts it was intended to 

analyze NK cell subsets, surface receptors and intracellular production of cytokines 

(IFN-γ), accounting for the effect in Mycobacterium tuberculosis infection and to the 

progression to pulmonary disease. Establishment of regulatory, cytotoxic and cell-

dependent contact status of NK cells in TB is aimed for an extended characterization of 

NK cells in TB. The main objective is to clarify the role of NK cells in 

immunopathogenesis and hypothetical contribution as targets for therapy interventions. 
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MATERIAL AND METHODS 
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Study population 

The samples used in this study are from two different groups: healthy contacts 

(HC) and pulmonary tuberculosis patients (TB) from Centro de Diagnóstico 

Pneumológico (CDP) de Vila Nova de Gaia. Were studied 38 TB patients 68% male, 

age 45±16 and 15 HC 73% male, age 38±14. Sample number in each experience is 

referred in results (figure or table). Patients with concomitant conditions including 

autoimmune disease, HIV infection, cancer, extrapulmonary TB and other systemic 

disease were excluded from the present analysis. Samples from TB patients were 

collected within the first two weeks of anti-mycobacterial therapy.  

It was obtained informed consent from participants and approval from the Ethics 

Committee of the Faculty of Medicine of the University of Coimbra and of the Faculty of 

Medicine of the University of Porto.  

Blood sampling 

Peripheral blood samples were collected using one K3EDTA tube (3mL), one 

Lithium heparin tube (4mL) and one tube for serum separation (5mL). Serum and 

plasma aliquots were frozen at -80ºC. PBMCs from K3EDTA and samples from Lithium 

heparin tubes were used to flow cytometry and cell culture, respectively. 

 

Complete Blood Cell (CBC) count 

CBC were released in COULTER AC •T diff Analyzer (Beckman Coulter) using 

12µL of whole blood from K3EDTA tube. The Coulter method accurately counts and 

sizes by detecting and measuring changes in electrical resistance when a particle in a 

conductive liquid passes through a small aperture. 
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Enumeration of Lymphocyte subsets 

In order to enumerate lymphocytes and subpopulations, leukocytes from 100µL 

of each peripheral blood sample were labeled with surface monoclonal antibodies 

(mAbs) anti-human: anti-CD4 FITC (clone: OKT4), anti-CD56 PE (clone: HCD56), anti-

CD3 PerCP-Cy5.5 (clone: OKT3), anti-CD8 PE-Cy7 (clone: HIT8a), anti-CD19 APC 

(clone: HIB19), anti-CD16 APC-Cy7 (clone: 3G8) and anti-CD11b Pacific Blue (clone: 

ICRF44). All mAbs were purchased from Biolegend (San José, CA, USA). PBMCs 

were incubated with 30µL of mAbs mix (diluted 1,5:100 in 1x PBS), after red blood cells 

were lysed with 1x RBC lysis buffer (NH4Cl 0.15M,  KHCO3 10mM, EDTA 0.1mM), 

during 30min in the dark at RT. Were added 100µL 4% Formalin and incubated 10min 

at the previous conditions. Cells were washed with cold 1x PBS, for 10min at 300g. 

Supernatant were discarded and cells resuspended in 200µL 1x PBS. Samples were 

analysed in FACSCanto II Flow Cytometer (BD Biosciences, Erembodegem, Belgium). 

 

NK and KIR phenotyping 

To phenotype NK and KIR were used flow cytometry. Whole blood from 

K3EDTA tube were lysed with 1x RBC for 10min at 4ºC and then washed with cold 1x 

PBS. Cells were labeled with extracellular mAbs according to Table 1 scheme during 

30min in the dark at RT. Samples without intracellular labeling were fixed with 100µL 

4% Formalin and incubated 10min at the previous conditions and washed with cold 1x 

PBS for 10min at 300g. Samples with intracellular labeling were fix with 100µL Fix & 

Perm® Medium A (Invitrogen, Carlsbad, CA, USA) for 10min in the dark at RT, washed 

with cold 1x PBS 10min at 300g, were added 100µL Fix & Perm ® Medium B and the 

intracellular mAbs, incubated 30min at RT in the dark and washed for 10min at 300g. 

Supernatant from all samples were discarded and cells resuspended in 200µL 1x PBS. 

Sample data was acquired in FACSCanto II Flow Cytometer. 
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Table 1 – Labeling plan for NK and KIR phenotyping. mAb (clone). 

Fluorochrome FITC PE 
PerCP-

Cy5.5 
PE-Cy7 APC 

APC-

Cy7 

Pacific 

Blue 
m

A
b
s
 a

n
ti
-h

u
m

a
n

 

CD27 

(O323) 

CD57 

(HCD57) 

CD3 

(UCHT1) 

IFN-γ 

(4S.B3) 

CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

1F12 CD158a/h 

(HP-MA4) 

CD3 

(UCHT1) 

- CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

8C11 CD158a/h 

(HP-MA4) 

CD3 

(UCHT1) 

- CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

1F12 CD158b 

(DX27) 

CD3 

(UCHT1) 

- CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

8C11 CD158b 

(DX27) 

CD3 

(UCHT1) 

- CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

CD27 

(O323) 

CD158a/h 

(HP-MA4) 

CD3 

(UCHT1) 

CD56 

(HCD56) 

CD335 

(9E2) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

CD27 

(O323) 

CD158e1 

(DX9) 

CD3 

(UCHT1) 

CD56 

(HCD56) 

CD335 

(9E2) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

CD94 

(DX22) 

CD56 

(HCD56) 

CD3 

(UCHT1) 

IFN-γ 

(4S.B3) 

CD314 

(1D11) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

CD27 

(O323) 

CD336 

(P44-8) 

CD3 

(UCHT1) 

IFN-γ 

(4S.B3) 

CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

CD27 

(O323) 

CD337 

(P30-15) 

CD3 

(UCHT1) 

IFN-γ 

(4S.B3) 

CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

CD27 

(O323) 

NKp80 

(5D12) 

CD3 

(UCHT1) 

IFN-γ 

(4S.B3) 

CD56 

(CMSSB) 

CD16 

(3G8) 

CD11b 

(ICRF44) 

Note: intracellular staining referred in bold. 

Flow Cytometry acquired data were analyzed using FlowJo 7.6 software (Tree 

Star Inc, Ashland, USA). 

  

Statistical analysis 

 Statistical tests were performed using GraphPad Prism Version 5.0 software 

(CA, USA). The non-parametric Mann Whitney was used for comparison of TB patients 

and HC. Statistically significant P values are annotated as follows: * p<0.05, ** p<0.01 

and *** p<0.001.  
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Complete Blood Cell (CBC) count 

 A CBC is a record of the findings that give the numbers, proportions and 

morphological features of cell components present in peripheral blood. It was 

performed a CBC in TB patients (TB) and in healthy controls (HC) to evaluate the 

possibility of significant changes not only in numbers of lymphocytes, but in all the 

blood components since there are interactions between them that can be important in 

infection and disease. The values of both groups are represented in Table 2. 

Table 2 – Absolute and relative frequencies of white blood cells (WBC) from HC and TB. 

Parameters Units HC TB P 

Leucocytes x10^3/µL 5.88 ±1.03 6.30 ±1.72 0.8106 

Lymphocytes % 31.07 ±5.84 25.40 ±7.73* 0.0423 

Monocytes % 4.95 ±0.83 4.53 ±1.40 0.1735 

Granulocytes % 63.98 ±5.23 69.24 ±8.90 0.0512 

Lymphocytes x10^3/µL 1.82 ±0.43 1.57 ±0.52 0.1845 

Monocytes x10^3/µL 0.28 ±0.06 0.30 ±0.14 0.8178 

Granulocytes x10^3/µL 3.76 ±0.78 4.41 ±1.47 0.2964 

Values represent mean ±SE (HC n=10; TB n=26). *p<0.05 compared to HC (Mann Whitney test). 

 

 All the parameters analysed in the CBC were within the reference values for 

Portuguese populations (97). Comparing the two groups, there is only statistically 

significant difference in the percentage of lymphocytes (p<0,05). This decrease of 

lymphocytes is supported by several studies (98-100), other study found this decrease 
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in 46% of the untreated TB patients but a lymphocytosis in 6% of TB patients (101) and 

two other reports, relate the lymphopenia with the severity of the disease (102, 103).  

 

Enumeration of lymphocyte subsets 

 Lymphocyte subsets reference values are used to monitor infectious diseases 

including tuberculosis. Using Flow Cytometry, these subsets were evaluated by the 

differential surface expression of some markers: CD3+ (T cells); CD3+CD4+ (helper T 

cells); CD3+CD8+ (cytotoxic T cells); CD3-CD19+ (B cells) and CD3-CD56+ (NK cells). 

With Flow Cytometry data (percentage of cells) and the absolute values for 

lymphocytes of the CBC it was possible to calculate the absolute numbers of each 

lymphocyte subset. 

Figure 4 – A, B – Representative dot plots of lymphocyte sub-populations in TB and HC, respectively. C – 
Lymphocyte sub-populations percentage in TB (gray; n=11) and HC (white; n=9). D – Absolute number of 

lymphocyte sub-populations in TB and HC. *p<0.05 compared to HC (Mann Whitney test). 

 

 In terms of percentages of cells there are no statistically significant differences 

and the distribution is similar between both groups. When the comparison is made in 
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number of cells there are important changes to report. All the lymphocytes subsets are 

decreased in TB group, particularly cytotoxic T cells (p=0.0184), except B cells subset. 

Since the number of lymphocytes was lower in TB, as was observed in CBC, was 

expected that the same happen in its subsets. In the literature, the results for this type 

of lymphocyte counts are not consensual. Wu et al. (104) observed a decrease in CD3+ 

and CD3+CD4+, an increase in B cells and CD3+CD8+ and a similar numbers in NK 

cells between TB and controls. Ainslie et al. (105) also found decrease in CD3+CD4+ 

and an increase in CD3+CD8+. Rodrigues et al. (106) and Beck et al. (107) describe a 

decrease in both CD3+CD4+ and CD3+CD8+. Uppal et al. (108) observed a decrease in 

CD3+CD4+ but similar levels for CD3+CD8+, Hernandez et al. (109) found significant 

lower values for B cells and similar for CD3+. These contrasting results may be 

explained by the possibility that the modifications of PBMCs change over time since 

immunological factors seem to change in concentrations over the time. 

 

Total NK cells 

 NK cells are lymphocytes phenotypically characterized as CD3-CD56+. Once 

the work focused the NK cells, it was performed another evaluation of this cells in TB 

and HC using labelling with mAbs in other fluorochromes.  

Figure 5 - A, B – Representative dot plots of total NK cells (CD3 vs. CD56) in TB and HC, respectively. 
C – Analysis of total NK cells (CD3

-
CD56

+
) in peripheral blood of TB (gray, n=27) and HC (white, n=9). 

D – Mean fluorescence intensity of CD56 and CD3 in NK cells of TB and HC. Gated lymphocytes were 

used in analysis. Not significant results. (Mann Whitney test). 
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Once again the results only present a trend to a decrease of NK cells in TB 

comparatively to HC. As was referred above, other studies also didn’t find significant 

differences between these two groups. It is important to report that the mAbs used in 

this labelling seems to be unstable since the population CD3+CD56+ is not according to 

what was expected. The mean of fluorescence intensity for CD3 and CD56 in CD3-

CD56+ population in both groups was analysed and CD56 was no significantly increase 

in HC population. These increase that mean a higher expression of this molecule can 

be due to the instability of the fluorochrome so, in the future, different fluorochromes 

should be tested.  

 For CD3-CD56+ populations in both TB and HC were evaluated theirs 

expression of CD16 as well as their distribution in terms of CD27/CD11b. The results 

are represented in Table 3. 

Table 3 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD3

-
CD56

+
 in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 62.83 ±20.70 57.21 ±17.45 0.5837 

MFI CD16 1336.33 ±381.58 1077.04 ±684.55 0.0860 

CD11b
-
 CD27

+
 

% 1.25 ±1.23 1.17 ±1.23 0.9272 

MFI CD27 2177.75 ±1450.53 1240.08 ±997.29* 0.0140 

MFI CD11b 261.25 ±54.00 243.95 ±73.40 0.7453 

CD11b
+
 CD27

+
 

% 1.92 ±1.40 7.69 ±11.54* 0.0235 

MFI CD27 1163.33 ±289.48 841.96 ±337.14* 0.0137 

MFI CD11b 1822.22 ±479.18 1739.70 ±800.74 0.4650 

CD11b
+
 CD27

-
 

% 64.94 ±20.51 65.59 ±15.28 0.8982 

MFI CD27 13.52 ±28.14 65.33 ±84.43 0.0531 

MFI CD11b 2228.78 ±503.08 2144.59 ±807.88 0.6348 

CD11b
-
 CD27

-
 

% 31.89 ±20.63 25.57 ±14.33 0.4216 

MFI CD27 37.77 ±30.89 49.09 ±37.20 0.5211 

MFI CD11b 135.29 ±53.40 122.73 ±51.06 0.6090 

Values represent mean ±SE (HC n=27; TB n=9). *p<0.05 compared to HC. (Mann Whitney test) 

 

 The distribution of these surface makers will be explained in more detail below, 

where it is only important to refer that the CD16 expression tends to decrease and it is 
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observed a higher percentage in CD11b+CD27+ subset in TB patients, probably due to 

a decrease in NK cell maturation. The partial decrease in CD16 expression does not 

corroborate a previous study that reports a great increase of CD16 expression in TB 

patients (110). 

 

Proposal of NKp46 for NK cell definition 

 NKp46, a natural cytotoxicity receptor, is expressed almost exclusively in NK 

cells. Recently this molecule is being referred as a better markers for NK cells than 

CD56, so it as analysed its expression of CD3- subset of lymphocytes (111).  

 

 It was observed a higher percentage of CD3- cells expressing NKp46 in TB 

relatively to HC, but with a decrease level of expression of this receptor. The role of 

NKp46 in lysis of infected monocytes with Mtb is already defined. One study correlates 

this capacity of lyse with increased expression of mRNA of NKp46 receptor and also 

refers that this expression in reduced in TB patients (86). Results presented here are 

concordant because despite of the higher percentage of NKp46+ cells present in TB, its 

expression tends to decrease. 

 When the expression of CD16 and subset distribution of CD27/CD11b was 

evaluated (Table 4), once again it was observed an increase in CD11b+CD27+ (not 

Figure 6 – A, B – Representative dot plots of NK cells (CD3
 
vs. NKp46) in TB and HC, respectively. C – 

Analysis of NK cells (CD3
-
NKp46

+
) in peripheral blood of TB (gray, n=27) and HC (white, n=9). D – Mean 

fluorescence intensity of NKp46 and CD3 in NK cells of TB and HC. Gated lymphocytes were used in 
analysis. (Mann Whitney test). 
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statistically significant) in TB patients, with a slight decreased expression of CD27 in 

this subset. This result points towards a more immature form of cells in TB patients. 

Table 4 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD3

-
NKp46

+
 in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 84.51 ±6.09 80.84 ±13.35 0.7285 

MFI CD16 1478.56 ±453.33 1174.26 ±717.53 0.0734 

CD11b
-
 CD27

+
 

% 0.26 ±0.38 0.43 ±0.86 0.7549 

MFI CD27 892.75 ±764.06 622.40 ±224.02 0.5249 

MFI CD11b 127.71 ±79.46 232.96 ±93.04* 0.0102 

CD11b
+
 CD27

+
 

% 5.29 ±3.71 11.45 ±15.41 0.4762 

MFI CD27 685.25 ±107.39 524.15 ±139.35** 0.0045 

MFI CD11b 2095.00 ±218.10 1752.31 ±611.03* 0.0403 

CD11b
+
 CD27

-
 

% 91.32 ±3.89 85.03 ±15.04 0.4321 

MFI CD27 17.07 ±38.57 44.83 ±58.09 0.1001 

MFI CD11b 2476.22 ±513.43 2351.07 ±829.02 0.4876 

CD11b
-
 CD27

-
 

% 3.12 ±3.07 3.10 ±3.10 0.9418 

MFI CD27 16.75 ±22.38 61.53 ±62.26 0.0929 

MFI CD11b 113.43 ±31.22 177.76 ±89.13* 0.0258 

Values represent mean ±SE (HC n=27; TB n=9). *p<0.05 **p<0.01 compared to HC (Mann Whitney test). 

 

 When the values of CD3-CD56+ were compared to CD3-NKp46+, the first 

observation was that CD3-NKp46+ population is smaller, meaning that if only CD3-

NKp46+ was considering as NK cells, probably would be lost a lot of information. So, 

CD3-CD56+ still remain as the better characterization for NK cells. 
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Figure 7– CD56 vs. NKp46 as NK cell-speciifc phenotype markers: correlation of CD3-CD56+ and CD3-

NKp46+ cells in peripheral blood of pulmonary tuberculosis (TB) patients and healthy contacts (HC). Gated 
lymphocytes were used for comparisons. No correlations were found in TB (r

2
=0.0595) and HC (r

2
=0.144). 

  

Then CD3-CD56+NKp46+ population was studied and the results are 

represented in Figure 8 and Table 5. 

 

Figure 8 – A, B – Representative dot plots of CD3
-
 using CD56 and NKp46 as surface markers to 

distinguish different subsets in TB and HC, respectively. C – Analysis of NK cells (CD56
+
NKp46

+
) in 

peripheral blood of TB (gray, n=27) and HC (white, n=9). D – Mean fluorescence intensity of NKp46 and 

CD56 in NK cells of TB and HC. Gated lymphocytes were used in analysis. *p<0.05 compared to HC. 
(Mann Whitney test). 

  

Percentage of cell CD3-CD56+NKp46+ doesn’t have significant variation 

between two groups. Looking to mean of fluorescence intensity, there is a significant 
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higher expression of CD56 in HC group. CD16 percentage of cells and expression are 

similar in both groups. CD27/CD11b subsets are concordant with previous results here 

presented: increase of CD11b+CD27+ in TB patients. In the literature are not studies of 

these characterizations in CD3-CD56+NKp46+. 

 

Table 5 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD3

-
CD56

+
NKp46

+
 in TB and 

HC. Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 81.97 ±9.00 78.22 ±13.85 0.5588 

MFI CD16 1372.78 ±411.39 1126.74 ±685.40 0.1002 

CD11b
-
 CD27

+
 

% 0.14 ±0.19 0.43 ±1.03 0.8810 

MFI CD27 925.71 ±1169.03 618.88 ±229.07 0.3326 

MFI CD11b 104.50 ±68.72 207.88 ±80.04** 0.0083 

CD11b
+
 CD27

+
 

% 5.68 ±3.98 11.33 ±16.18 0.7701 

MFI CD27 723.00 ±114.56 527.69 ±147.48** 0.0028 

MFI CD11b 2089.75 ±353.92 1692.81 ±685.73 0.1180 

CD11b
+
 CD27

-
 

% 91.33 ±4.51 85.09 ±15.74 0.5226 

MFI CD27 12.39 ±26.55 44.47 ±57.55 0.1048 

MFI CD11b 2392.56 ±497.24 2257.30 ±806.19 0.5346 

CD11b
-
 CD27

-
 

% 2.85 ±3.40 3.15 ±3.63 1.0000 

MFI CD27 4.23 ±6.98 48.48 ±51.14* 0.0130 

MFI CD11b 107.13 ±55.34 168.31 ±71.41* 0.0194 

Values represent mean ±SE (HC n=27; TB n=9). *p<0.05 **p<0.01 compared to HC (Mann Whitney test). 

 

  

Total NK cell – Classic subsets (CD56/CD16) 

 Classically, NK cells are characterized by CD3- and by the intensity of CD56 

(dim or bright). Approximately 90% of peripheral NK cells present low density for CD56 

and high levels of CD16. The remaining 10% express high levels of CD56 and are 
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negative for CD16 (112). This last subset is more immature, it is thought that during 

their development and cytotoxicity acquisition NK cells pass through three stages: 

CD56dimCD16- (immature), CD56brightCD16- (“regulatory”) and CD56dimCD16+ 

(cytotoxic). In this study was considered another stage: CD56brightCD16+ as a “pro-

inflammatory” stage. 

 
Figure 9 – A, B – Representative dot plots of NK cell subsets according to CD56 and CD16 surface 
expression in TB and HC, respectively. C – Analysis of NK cell sub-sets in peripheral blood of TB (gray, 
n=29) and HC (white, n=10). D – Mean fluorescence intensity of CD56 and CD16 in NK cell subsets of TB 

and HC. Gated lymphocytes were used in analysis. *p<0.05 **<0.01 compared to HC. (Mann Whitney test) 

 

 Data represent NK cells normalized for a total of 100%. As can be observed in 

first graph (C) there are no statistically significant changes in both of groups for NK cell 

subsets, but the values for more mature subsets in TB patients tend to be increased. 

The mean of fluorescence intensity has some variations in CD16 expression with a 

significant decrease in TB patients. This means that although TB patients present 

these increased values in more mature subsets, NK cells have less cytotoxic capacity 

in comparison with HC. 

 Previous data supports these results referring a decrease in CD3-CD16-

/+CD56dim and an increase in CD3-CD16-/+CD56bright in TST+ controls (92). However, 
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Bozzano et al. (113) found decreased proportions of CD16+/-CD56bright and increased 

values of CD16+CD56dull subsets in TB. 

 CD27/CD11b expression was evaluated for each subset. Only CD56brightCD16- 

subset presented differences in these markers as well as in mean of fluorescence 

intensity (Table 6). 

 

Table 6 – Percentage of cells in each CD27/CD11b subset for CD3
-
CD56

bright
CD16

-
 in TB and HC. Means 

of fluorescence intensity for CD27 and CD11b. 

  HC TB P 

CD11b
-
 CD27

+
 

% 0.46 ±0.93 2.98 ±3.46* 0.0355 

MFI CD27 2365.00 ±481.09 1757.06 ±735.53 0.2040 

MFI CD11b 346.33 ±66.51 208.84 ±72.65* 0.0300 

CD11b
+
 CD27

+
 

% 23.17 ±14.43 18.85 ±13.72 0.4556 

MFI CD27 1242.75 ±171.97 1193.86 ±250.42 0.7144 

MFI CD11b 2163.25 ±570.82 1485.43 ±465.76** 0.0068 

CD11b
+
 CD27

-
 

% 74.31 ±15.84 71.42 ±16.45 0.5516 

MFI CD27 121.09 ±52.79 80.22 ±55.90 0.0592 

MFI CD11b 2396.90 ±416.10 1785.07 ±609.98** 0.0033 

CD11b
-
 CD27

-
 

% 2.07 ±2.38 6.75 ±6.84* 0.0295 

MFI CD27 137.97 ±84.49 120.73 ±92.21 0.6321 

MFI CD11b 261.86 ±81.04 304.56 ±76.96 0.2740 

Values represent mean ±SE (HC n=29; TB n=10). *p<0.05 **p<0.01 compared to HC (Mann Whitney test). 

 

 Significant changes were found in CD11b- subsets, with an increased 

expression in TB patients. This alteration is also observed in CD11b+ subsets with a 

sharp significantly lower mean of fluorescence intensity. CD11b expression is related 

with gain of maturity, as will be explained next. The subset of these findings in the 

second more immature of the NK cells, and this lack of CD16 expression gives an even 

more immaturity phenotype to TB patients cells in CD3-CD56brightCD16- subset. 
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CD27/CD11b 

 Recently, Fu et al. (34), made some progress in NK cell phenotyping relatively 

to CD27/CD11b expression and defined four stages that describe NK cell development: 

CD11b-CD27-, CD11b-CD27+, CD11b+CD27+ and CD11b+CD27-. So, during their 

maturation cells acquire and lose CD27 and acquire CD11b. In peripheral blood NK 

cells have their more mature stage: CD11b+CD27-. 

 Data of this kind of analysis is represented in Figure 10. There are no 

differences in subset distribution of NK cells in TB and HC. In other words, according to 

this characterization NK cells in terms of CD27/CD11b, TB and HC have the same 

level of development. 

 

Figure 10 – A, B – Representative dot plots of NK cells and NK cell subsets according to CD27 and 
CD11b surface expression in TB and HC, respectively. C – Analysis of NK cell subsets in peripheral blood 
of TB (gray, n=29) and HC (white, n=11). D – Mean fluorescence intensity for CD27 and CD11b in NK cell 

subsets of TB and HC. Gated lymphocytes were used in analysis. *p<0.05 compared to HC (Mann 
Whitney test). 
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IFNγ production by NK cells 

 The IFNγ is the key cytokine for a protective immune response against Mtb 

(114). This cytokine is produced mainly by CD4+, CD8+ T cells and NK cells (114). Here 

it was evaluated the intracellular IFNγ production by NK cells. As observed in  

Figure 11, TB patients present a significantly higher percentage of IFNγ
+ NK cells 

comparatively to HC. This can be explained because in TB patients, NK cells are 

producing great levels of this cytokine to recruit macrophages to kill intracellular Mtb.  

 

Figure 11 – A – Representative histogram of IFNγ intracellular expression in NK cell (CD3
-
CD56

+
) of TB 

(red) and HC (blue). B – Analysis of IFNγ intracellular expression in NK cell in peripheral blood of TB (gray, 
n=23) and HC (white, n=10). C – Mean fluorescence intensity of IFNγ in NK cells of TB and HC. Gated 

lymphocytes were used in analysis. **p<0.01 compared to HC (Mann Whitney test). 
 

Bozzano F et al. (113) made some observations in NK cell phenotype as well as 

IFNγ production related with the course of treatment. They report that before treatment 

cells were producing less IFNγ than controls, but after treatment these levels of 

production were equivalent. What was observed here was a massive production of 

IFNγ in TB comparatively with HC, that can be due to treatment. 

 

CD57 as a marker for NK cell terminal differentiation 

 Lopez-Verges et al. (35) suggested recently that NK cells expressing CD57 

represent a subset of mature and terminally differentiated cells. Data presented here 

demonstrate a significantly increase (p<0.001) of CD57 expressing cells in TB patients 
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with a partial increase in intracellular IFNγ in these cells represented in Figure 12. In 

terms of CD27/CD11b distribution, results for CD57+ subset are concordant with what 

was expected: almost of cells are CD11b+CD27-, confirming their high degree of 

maturation (Table 7). CD16 expression is not according with this state of differentiation; 

it was expected higher percentage of cells expressing this marker. This may be due to 

instability of marker once cells were first extracellular labelled and than permeabilized, 

so there may be some interference with extracellular labelling of this marker. 

 

Figure 12 – A - Representative histogram of CD57 surface expression in NK cell (CD3
-
CD56

+
) of TB (red) 

and HC (blue). B – Analysis of CD57 expression on NK cell in peripheral blood of TB (gray, n=20) and HC 
(white, n=11). C – Mean fluorescence intensity of CD57 in NK cells of TB and HC. D – Representative 
histogram of IFNγ intracellular expression on NK cell CD57

+
 for TB (red) and HC (blue). E – Anaysis of 

IFNγ intracellular expression on NK cells CD57
+
. F – Mean fluorescence intensity of IFNγ in NK cells 

CD57
+
 in TB and HC. Gated lymphocytes were used in analysis. ***p<0.001 compared to HC (Mann 

Whitney test). 

 

 The meaning of these results can be explained by the NK response to infection, 

once Lopez-Verges (35) explained that CD57+ cells have more lytic activity and higher 

sensibility to stimulation. According to the same author, these cells also express higher 

levels of NCRs being well prepared to oppose infected cells with Mtb. 
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Table 7 – Percentage of cells expressing CD16 and in each CD27/CD11b subset for CD3
-
CD56

+
CD57

+
 in 

TB and HC. Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 16.92 ±25.48 15.38 ±18.25 0.8688 

MFI CD16 600.27 ±512.45 560.05 ±454.17 0.5494 

CD11b
-
 CD27

+
 

% 0.01 ±0.03 0.00 ±0.00 - 

MFI CD27 - - - 

MFI CD11b - - - 

CD11b
+
 CD27

+
 

% 1.54 ±1.00 1.52 ±1.50 0.5222 

MFI CD27 605.50 ±90.39 797.75 ±331.35 0.2020 

MFI CD11b 1904.90 ±1227.87 2302.60 ±1422.69 0.3442 

CD11b
+
 CD27

-
 

% 89.92 ±7.75 90.27 ±11.35 0.5084 

MFI CD27 245.91 ±46.15 332.70 ±130.77* 0.0475 

MFI CD11b 1706.91 ±1583.26 1823.65 ±1022.66 0.3529 

CD11b
-
 CD27

-
 

% 8.53 ±7.61 8.22 ±11.12 0.3957 

MFI CD27 122.97 ±49.24 127.71 ±27.72 0.2734 

MFI CD11b 315.00 ±183.85 273.43 ±46.70 0.3664 

Values represent mean ±SE (HC n=20; TB n=11). *p<0.05 compared to HC (Mann Whitney test). 

 

Surface expression of CD94 and NKG2D 

 CD94 is a Killer cell lectin-like receptor belonging to subfamily D, number 1 

(also known as KLRD1). This receptor appears usually as heterodimers with elements 

of NKG2 family. NKG2D, a member of NKG2 family, is an activating receptor. CD94 

can also appears linked with NKG2A (inhibitory receptor) and NKG2C (activatory 

receptor) as well as in form of oligodimer. Here as observed the co-expression of CD94 

and NKG2D in TB and HC. 
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Figure 13 – A, B – Representative dot plots of NK cells and NK cell subsets according to CD94 and 
NKG2D surface expression in TB and HC, respectively. C – Analysis of NK cell subsets in peripheral blood 
of TB (gray, n=10) and HC (white, n=9). D – Mean fluorescence intensity for CD94 and NKG2D in NK cell 

subsets of TB and HC. Gated lymphocytes were used in analysis. *p<0.05, **p<0.01 compared to HC 
(Mann Whitney test). 

 

Data presented in Figure 13 represents CD94/NKG2D populations in TB and 

HC. It can be observed a significant increase in double positive subset in TB patients 

as well as higher levels of CD94 expression in all subsets relatively to HC. NKG2D 

expression tends to increase in all subsets of TB patients. 

Table 8 shows CD16 and intracellular IFNγ in each CD94/NKG2D subset. The 

significance of those NK cell subsets remains unclear. Further analysis dissecting 

NKG2A and NKG2C in those cells in needed. 

 

  



44 
 

Table 8 – Percentage of cells expressing CD16 and intracellular IFNγ in each CD94/NKG2D subset in TB 
and HC. Means of fluorescence intensity for CD16 and IFNγ. 

  HC TB P 

CD94
-
 NKG2D

+
 

% CD16 32.91 ±33.56 50.89 ±31.31 0.3154 

MFI CD16 436.89 ±591.87 576.80 ±663.35 0.1207 

% IFNγ 33.21 ±15.13 44.42 ±14.49 0.1912 

MFI IFNγ 303.22 ±72.57 281.40 ±81.58 0.4470 

CD94
+
 NKG2D

+
 

% CD16 39.77 ±24.19 58.86 ±20.66 0.0653 

MFI CD16 306.22 ±325.78 423.40 ±440.73 0.0535 

% IFNγ 39.48 ±3.75 44.29 ±6.99 0.2528 

MFI IFNγ 271.78 ±44.67 277.00 ±57.82 0.8702 

CD94
+
 NKG2D

-
 

% CD16 54.17 ±10.25 53.15 ±22.65 0.8421 

MFI CD16 288.67 ±89.70 325.00 ±141.82 0.7197 

% IFNγ 40.08 ±10.02 40.71 ±9.40 0.7802 

MFI IFNγ 286.78 ±56.80 280.10 ±57.68 0.7802 

CD94
-
 NKG2D

-
 

% CD16 40.66 ±13.39 45.50 ±35.23 0.8380 

MFI CD16 345.78 ±106.31 225.88 ±93.59* 0.0384 

% IFNγ 37.74 ±15.15 32.78 ±29.21 0.4132 

MFI IFNγ 301.89 ±87.13 264.71 ±48.07 0.4698 

Values represent mean ±SE (HC n=10; TB n=9). *p<0.05 compared to HC (Mann Whitney test). 

 

Other Natural Cytotoxicity Receptors (NCRs) 

 Natural cytotoxicity receptors (NCRs) play a major role in NK cell cytotoxicity 

against transformed cells (47). NKp46, NKG2D and CD94 NCRs have already been 

discussed in the results. It was also analysed NKp44, NKp30 and NKp80 positive cells, 

expression, intracellular IFNγ, CD16 and CD27/CD11b positive cells and expression on 

TB and HC. In data it can be observed increased levels of positive cells for all of these 

NCRs as well as higher levels of intracellular IFNγ in TB patients (Figure 14). The most 

significant increase in NCRs was observed for NKp80 and this receptor is also the 

most expressed in NK cells in both groups. NKp30 is not only the least represented in 



45 
 

NK cells from two groups, but also the receptor that presented the least increase in TB 

patients. Although in terms of expression NKp30 was significantly increased in TB 

patients. NKp44 is present in a vast majority of NK cells in both groups however is 

increased in TB patients. 

 Intracellular IFNγ positive cells were significantly elevated in all NCRs positive 

cells and its expression tends to be elevated in TB patients.  

NKp44+CD16+ cells decreased in both groups regarding to expected for cells in 

high degree of maturation (Table 9).  
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Figure 14 – 1 – Results for NKp44+ NK cells (TB n=23, HC n=10). 2 – Results for NKp30+ NK cells (TB 
n=19, HC n=9). 3 – Results for NKp80+ NK cells (TB n=16, HC n=10). A – Representative histogram of 
each NCR surface expression in NK cell (CD3

-
CD56

+
) of TB (red) and HC (blue). B – Analysis of each 

NCR expression on NK cell in peripheral blood of TB (gray) and HC (white). C – Mean fluorescence 
intensity of each NCR in NK cells of TB and HC. D – Representative histogram of IFNγ intracellular 
expression on NK cell positive for each NCR in TB (red) and HC (blue). E – Analysis of IFNγ intracellular 
expression on NK cells positive for each NCR. F – Mean fluorescence intensity of IFNγ in NK cells positive 

for each NCR in TB and HC. Gated lymphocytes were used in analysis. *p<0.05, **p<0.01 compared to 
HC (Mann Whitney test). 
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 CD27/CD11b subsets of NCRs positive populations had no significant 

differences except for NKp80 in CD11b+CD27- subset were can be observed an 

increase in TB patients (Table 11). But in general, almost all cells express CD11b and 

are negative for CD27 in both groups. 

 

Table 9 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD3

-
CD56

+
NKp44

+
 in TB and 

HC. Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 43.00 ±26.69 43.79 ±24.50 1.0000 

MFI CD16 313.80 ±280.27 409.26 ±573.55 0.6665 

CD11b
-
 CD27

+
 

% 0.00 ±0.01 0.00 ±0.01 0.1951 

MFI CD27 - - - 

MFI CD11b - - - 

CD11b
+
 CD27

+
 

% 0.94 ±0.66 0.78 ±1.37 0.0575 

MFI CD27 716.80 ±107.19 908.78 ±302.37 0.1040 

MFI CD11b 2101.60 ±1067.03 2358.00 ±984.53 0.2992 

CD11b
+
 CD27

-
 

% 88.46 ±12.74 92.40 ±8.37 0.3177 

MFI CD27 285.60 ±32.81 368.65 ±110.48* 0.0243 

MFI CD11b 1936.60 ±1704.04 2435.91 ±2366.98 0.4220 

CD11b
-
 CD27

-
 

% 10.60 ±12.88 6.82 ±8.43 0.5054 

MFI CD27 132.58 ±41.36 209.36 ±101.21** 0.0090 

MFI CD11b 320.44 ±52.50 485.45 ±192.35** 0.0023 

Values represent mean ±SE (HC n=23; TB n=10). *p<0.05 and **p<0.01 compared to HC (Mann Whitney 
test). 
 

 

  



48 
 

Table 10 – Percentage of cells each CD27/CD11b subset for CD3
-
CD56

+
NKp30

+
 in TB and HC. Means of 

fluorescence intensity for CD27 and CD11b. 

  HC TB P 

CD11b
-
 CD27

+
 

% 0.00 ±0.00 0.00 ±0.00 - 

MFI CD27 - - - 

MFI CD11b - - - 

CD11b
+
 CD27

+
 

% 0.58 ±0.88 0.63 ±0.61 0.2476 

MFI CD27 786.50 ±106.59 862.58 ±257.60 0.7702 

MFI CD11b 2176.63 ±914.82 2548.58 ±2100.65 0.6517 

CD11b
+
 CD27

-
 

% 89.27 ±10.31 92.00 ±7.24 0.5063 

MFI CD27 280.22 ±47.76 355.42 ±95.16* 0.0237 

MFI CD11b 1861.56 ±1402.46 2315.89 ±2562.20 0.3252 

CD11b
-
 CD27

-
 

% 10.16 ±10.63 7.36 ±7.00 0.5882 

MFI CD27 143.00 ±67.12 182.00 ±74.96* 0.0270 

MFI CD11b 346.56 ±107.89 399.61 ±124.67 0.2688 

Values represent mean ±SE (HC n=19; TB n=9). *p<0.05 compared to HC (Mann Whitney test). 
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Table 11 – Percentage of cells each CD27/CD11b subset for CD3
-
CD56

+
NKp80

+
 in TB and HC. Means of 

fluorescence intensity for CD27 and CD11b. 

  HC TB P 

CD11b
-
 CD27

+
 

% 0.00 ±0.01 0.00 ±0.01 - 

MFI CD27 - - - 

MFI CD11b - - - 

CD11b
+
 CD27

+
 

% 0.45 ±0.88 0.41 ±0.54 0.3292 

MFI CD27 825.89 ±59.10 969.36 ±263.91 0.2703 

MFI CD11b 1997.00 ±989.74 2929.00 ±1397.04 0.0832 

CD11b
+
 CD27

-
 

% 89.13 ±8.38 94.81 ±6.25* 0.0287 

MFI CD27 277.10 ±46.22 397.88 ±108.91** 0.0013 

MFI CD11b 1715.70 ±1331.58 2679.25 ±2184.25 0.0775 

CD11b
-
 CD27

-
 

% 10.42 ±8.72 4.77 ±6.15 0.0775 

MFI CD27 127.86 ±61.08 241.50 ±114.56** 0.0017 

MFI CD11b 361.50±136.09 574.81 ±214.75** 0.0044 

Values represent mean ±SE (HC n=16; TB n=10). *p<0.05 and **p<0.01 compared to HC (Mann Whitney 
test). 
 

Inhibitory KIR: KIR2DL1, KIR2DL2 and KIR3DL1 

 Killer cell immunoglobulin-like receptors (KIRs) belong to a highly polymorphic 

family of receptors that recognise MHC-class I molecules. KIR acquisition is a late 

event during NK cell maturation. These receptors are mostly inhibitors but they may 

also have activating functions depending on the length of their cytoplasmic tail. 

Inhibitory KIRs recognise MHC-class I molecules and suppress the cytotoxic activity of 

NK cells. 

 Based on David G et al. (115) work descriptions, KIR2DL2 and KIR2DL1 

phenotypes were analysed in TB patients and HC using a combination of mAbs (Figure 

15 – 1, 2). Also KIR2DL2/DL3 and KIR3DL1 NK positive cells were analysed through 

the use of specific mAbs (CD158b and CD158e, respectively). 
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 The percentage of KIR2DL2, KIR2DL1 and KIR3DL1 positive cells tends to 

decrease in TB patients and also their expression tends to be decreased. KIR3DL1 is 

significantly decreased in its expression in TB patients (Figure 15 – 1, 2 and 4). 

 

Figure 15 – 1-2 A-B – Representative dot plots of NK cells expressing KIR2DL2 (1) and KIR2DL1 (2) in 
TB and HC, respectively.1-2 C – Analysis of NK cell KIR2DSL2

+
 (1) (TB n=28; HC=11) and KIR2DL1

+
 (2) 

(TB n=29; HC n=11) in peripheral blood of TB and HC. 1-2 D – Mean fluorescence intensity for CD158b 
and 1F12 in NK cell KIR2DL2

+
 (1) and for CD158b and 8C12 in NK cell KIR2DL1

+ 
(2) of TB and HC. 3-4 A 

– Representative histogram of CD158b (3) and CD158e (4) expression in NK cells from TB (red) and HC 
(blue). 3-4 B – Analysis of CD158b (3) (TB n=28; HC n=11) and CD158e (4) (TB n=25; HC n=9) 
expression on NK cell in peripheral blood of TB and HC. 3-4 C – Mean fluorescence intensity of CD158a/h 
(3) and CD158e (4) in NK cells of TB and HC. Gated lymphocytes were used in analysis. *p<0.05 

***p<0.001 compared to HC (Mann Whitney test). 
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Table 12 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for KIR2DL2

+
 cells in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 87.55 ±14.83 82.44 ±19.73 0.4261 

MFI CD16 1604.00 ±836.03 1337.32 ±810.45 0.2816 

CD11b
-
 CD27

+
 

% 0.00 ±0.01 0.10 ±0.20 0.2239 

MFI CD27 537.00 ±0.00 2665.14 ±2036.33 - 

MFI CD11b 66.10 ±0.00 218.50 ±132.18 - 

CD11b
+
 CD27

+
 

% 0.77 ±0.93 1.15 ±1.26 0.5368 

MFI CD27 2851.25 ±1845.23 2990.47 ±1275.83 0.7300 

MFI CD11b 1760.13 ±513.90 1775.89 ±639.24 0.9365 

CD11b
+
 CD27

-
 

% 95.92 ±4.09 95.99 ±3.49 0.7667 

MFI CD27 39.86 ±13.29 41.68 ±21.01 0.7431 

MFI CD11b 2618.18 ±1056.50 2414.29 ±1056.85 0.4729 

CD11b
-
 CD27

-
 

% 3.32 ±4.09 2.76 ±3.20 0.8508 

MFI CD27 41.71 ±30.21 84.98 ±145.84 0.5259 

MFI CD11b 256.36 ±74.37 287.83 ±62.65 0.5879 

Values represent mean ±SE (HC n=28; TB n=11). Not significant data (Mann Whitney test). 
 

 Tables 12, 13, 14 and 15 show the results for CD16 and CD27/CD11b 

expression in NK cells expressing referred inhibitory KIRs. All cells present similar 

levels of differentiation as it can be observed by the surface expression of those 

markers.  
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Table 13 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for KIR2DL1

+
 cells in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 71.89 ±19.43 75.28 ±17.35 0.5547 

MFI CD16 1379.82 ±670.05 1027.66 ±467.92 0.1299 

CD11b
-
 CD27

+
 

% 0.16 ±0.35 0.46 ±1.26 0.9271 

MFI CD27 2280.50 ±593.50 1117.60 ±591.01 0.3810 

MFI CD11b 412.00 ±39.00 278.80 ±26.81 0.0952 

CD11b
+
 CD27

+
 

% 10.36 ±9.59 9.08 ±10.55 0.6135 

MFI CD27 2140.63 ±539.81 1925.62 ±1360.13 0.3414 

MFI CD11b 2882.50 ±670.32 2893.71 ±1440.10 0.6783 

CD11b
+
 CD27

-
 

% 83.44 ±10.55 85.67 ±12.42 0.5148 

MFI CD27 58.61 ±31.44 85.44 ±56.64 0.2256 

MFI CD11b 2539.36 ±1347.64 2333.41 ±806.90 0.9156 

CD11b
-
 CD27

-
 

% 6.04 ±8.96 4.79 ±6.40 0.6266 

MFI CD27 95.50 ±80.20 80.08 ±106.94 0.3511 

MFI CD11b 276.11 ±76.15 292.16 ±118.10 0.3787 

Values represent mean ±SE (HC n=29; TB n=11). Not significant data (Mann Whitney test). 
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Table 14 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD158b

+
 cells in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 92.02 ±12.54 89.62 ±11.54 0.4260 

MFI CD16 1545.82 ±794.65 1291.04 ±888.48 0.2886 

CD11b
-
 CD27

+
 

% 0.03 ±0.10 0.07 ±0.16 0.1404 

MFI CD27 4069.00 ±0.00 3660.80 ±3595.56 - 

MFI CD11b 127.00 ±0.00 154.31 ±57.28 - 

CD11b
+
 CD27

+
 

% 1.10 ±1.03 1.15 ±1.15 0.9251 

MFI CD27 3432.13 ±1129.40 2429.39 ±936.38 0.0610 

MFI CD11b 1962.38 ±474.60 2280.78 ±1471.33 0.8390 

CD11b
+
 CD27

-
 

% 95.89 ±4.98 97.50 ±2.56 0.3652 

MFI CD27 49.33 ±19.11 52.07 ±22.40 0.6209 

MFI CD11b 2410.27 ±899.16 2380.04 ±931.22 0.8883 

CD11b
-
 CD27

-
 

% 2.97 ±5.13 1.29 ±1.83 0.1381 

MFI CD27 78.37 ±55.76 62.53 ±56.44 0.8367 

MFI CD11b 161.82 ±31.10 182.28 ±32.89 0.0714 

Values represent mean ±SE (HC n=28; TB n=11). Not significant data (Mann Whitney test). 
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Table 15 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD158e

+
 cells in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 95.29 ±3.53 80.49 ±28.29 0.3564 

MFI CD16 1754.22 ±647.02 1144.57 ±527.56* 0.0263 

CD11b
-
 CD27

+
 

% 0.30 ±0.84 0.30 ±1.42 0.8119 

MFI CD27 2117.00 ±0.00 1862.00 ±378.00 - 

MFI CD11b 186.00 ±0.00 191.00 ±7.00 - 

CD11b
+
 CD27

+
 

% 0.98 ±1.39 12.19 ±26.69 0.2097 

MFI CD27 1634.67 ±573.95 1244.48 ±250.44 0.1797 

MFI CD11b 2556.00 ±1272.61 3322.10 ±1436.54 0.2938 

CD11b
+
 CD27

-
 

% 95.03 ±6.61 82.31 ±31.02 0.4121 

MFI CD27 4.39 ±8.79 96.61 ±194.48* 0.0237 

MFI CD11b 2683.11 ±576.38 2682.09 ±1005.39 1.0000 

CD11b
-
 CD27

-
 

% 3.69 ±6.63 1.19 ±2.07 0.1598 

MFI CD27 1.94 ±4.76 85.36 ±120.55** 0.0058 

MFI CD11b 176.66 ±65.75 211.79 ±73.88 0.2183 

Values represent mean ±SE (HC n=25; TB n=9). Not significant data (Mann Whitney test). 

 

 

Activating KIR: KIR2DS1 

 According to the length of the cytoplasmatic tail, KIR can be inhibitory or 

activating. The sort tail (S) has activation function. Here, once again methods and data 

analysis were based on David et al. (115) (Figure 16-1). CD158a/h correspond to 

KIR2DL1 (CD158a) – inhibitory receptor – and KIR2DS1 (CD158h) and the expression 

of these two KIR was analysed in TB and HC (Figure 16-2). 
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 The percentage of NK cells expressing KIR2DS1 is significantly higher in TB 

patients and when the compare the mean of fluorescence intensity of the two markers 

that defines this population there’s no differences to report.  

 

Figure 16 – 1A, 1B – Representative dot plots of NK cells expressing KIR2DS1 in TB and HC, 
respectively.1C – Analysis of NK cell KIR2DS1

+
 in peripheral blood of TB (gray, n=28) and HC (white, 

n=11). 1D – Mean fluorescence intensity for CD158a/h and 8C11 in NK cell KIR2DS1
+
 of TB and HC. 2A – 

Representative histogram of CD158a/h expression in NK cells from TB (red) and HC (blue). 2B – Analysis 
of CD158a/h expression on NK cell in peripheral blood of TB (gray, n=27) and HC (white, n=9). 2C – Mean 

fluorescence intensity of CD158a/h in NK cells of TB and HC. Gated lymphocytes were used in analysis. 
**p<0.01 compared to HC (Mann Whitney test). 

 

 KIR2DS1+ cells are greatly differentiated: high levels of CD16 and 

predominance of CD11b+CD27- subset (Table 16) as expected for KIR+ cells. There are 

significant reduction in two CD27/CD11b subsets in TB patients (CD11b-CD27+ and 

CD11b+CD27+), however the absolute numbers are similar. 
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Table 16 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for KIR2DS1

+
 cells in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 85.96 ±22.79 80.47 ±23.34 0.3572 

MFI CD16 1656.55 ±762.76 1332.07 ±671.50 0.2466 

CD11b
-
 CD27

+
 

% 0.25 ±0.51 0.06 ±0.14* 0.0301 

MFI CD27 3239.00 ±2845.02 2389.83 ±1466.43 0.8357 

MFI CD11b 193.31 ±157.31 264.83 ±203.31 0.8357 

CD11b
+
 CD27

+
 

% 0.69 ±0.56 0.33 ±0.44* 0.0451 

MFI CD27 2023.00 ±1314.96 2946.27 ±1530.93 0.1272 

MFI CD11b 2554.20 ±1632.15 1957.33 ±922.13 0.4212 

CD11b
+
 CD27

-
 

% 93.13 ±3.53 89.84 ±18.95 0.1978 

MFI CD27 74.66 ±40.83 60.68 ±38.50 0.2955 

MFI CD11b 2303.36 ±871.68 2475.15 ±954.72 0.7968 

CD11b
-
 CD27

-
 

% 5.94 ±3.24 6.19 ±7.88 0.3506 

MFI CD27 60.74 ±65.62 60.01 ±61.60 0.9230 

MFI CD11b 326.09 ±81.16 368.89 ±85.44 0.2337 

Values represent mean ±SE (HC n=28; TB n=11). *p<0.05 compared to HC (Mann Whitney test). 
 

The co-expressing cells for KIR2DS1 and KIR2DL1 (CD158a/h+) are 

represented in histogram on Figure 13-2. Values are significantly different from values 

for isolated KIR2DS1. Levels of maturity are about the same as those observed for 

KIR2DS1+ cells (Table 16).  

These two KIR belongs to the same group, based on their structural 

characteristics (KIR2D type I) but belong to different haplotypes (KIR2DS1 – haplotype 

B and KIR2DL1 – haplotype A) (116). 
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Table 17 – Percentage of cells CD16
+
 and in each CD27/CD11b subset for CD158a/h

+
 cells in TB and HC. 

Means of fluorescence intensity for CD16, CD27 and CD11b. 

  HC TB P 

CD16
+
 

% 93.41 ±5.77 82.43 ±18.77 0.1119 

MFI CD16 1537.78 ±537.21 1123.30 ±536.24 0.0650 

CD11b
-
 CD27

+
 

% 0.16 ±0.21 0.07 ±0.13 0.1662 

MFI CD27 2797.50 ±2611.08 1272.00 ±1744.33 0.1806 

MFI CD11b 97.37 ±64.81 183.73 ±73.99 0.0727 

CD11b
+
 CD27

+
 

% 3.99 ±4.46 21.73 ±30.40 0.1342 

MFI CD27 987.22 ±548.25 766.69 ±286.87 0.3551 

MFI CD11b 1938.67 ±656.11 2151.81 ±838.34 0.7771 

CD11b
+
 CD27

-
 

% 93.24 ±5.72 76.35 ±29.70 0.2893 

MFI CD27 16.22 ±45.88 35.89 ±61.52 0.3935 

MFI CD11b 2212.44 ±736.53 2313.15 ±1000.11 1.000 

CD11b
-
 CD27

-
 

% 2.61 ±2.90 1.86 ±2.77 0.3509 

MFI CD27 18.99 ±27.06 37.56 ±61.53 0.7919 

MFI CD11b 101.40 ±31.32 116.66 ±73.22 0.3784 

Values represent mean ±SE (HC n=27; TB n=9). Not significant data (Mann Whitney test). 
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CONCLUSION 
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 Pulmonary tuberculosis still remains one of the greatest public health problems. 

In some research NK cells’ importance have already studied, however the human NK 

cell phenotype in this pathology and in healthy contacts remains unclear. Several 

works have this NK cell characterization in animal models, and a few in human, but a 

wide research was needed. 

Taken together the presented results for these NK cell characterization in both 

TB patients and healthy contacts, NK cells from TB patients suggest a higher 

maturation, a higher activation and also higher levels of cytokine (IFN-γ) production. 

 From the beginning, TB patients present a moderate lymphopenia (p<0,05) with 

a decreasing trend in all lymphocyte subsets. The exception was observed in B cells 

that tend to be increased and in T CD8+ cells that were significantly decreased 

(p<0,05). 

 As it was observed when lymphocyte subsets were evaluated and confirmed 

with other labeling, NK cells (CD3-CD56+) in TB patients tend to decrease, however, 

when CD3-NKp46+ NK cells were counted, it was observed a partial increase in TB 

patients. NKp46 was recently referred as better marker than CD56 for NK cells, 

however it was not found a correlation between this to markers nor in TB patients and 

in HC. 

 The classic markers for NK cells are CD56 and CD16. It is defined four subsets 

according the level of expression of these two markers in CD3- cells. Results suggest a 

higher percentage of NK cells in more mature stages in TB patients. The expression of 

CD27/CD11b in NK cells surface also define developmental subsets but presented 

data do not demonstrate differences between two groups.  

CD57 is present in more mature NK cells, the expression of this marker were 

greatly increased in TB patients NK cells (p<0.0005). Despite CD27/CD11b, the higher 
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percentage of CD57+ cells and also the CD56/CD16 expression profile suggest a 

higher percentage of more mature NK cells in peripheral blood of TB patients. 

 It was observed a great increase in intracellular IFN-γ in total NK cells from TB 

patients (p<0.01). These increased values were also observed in NKp30, NKp44 and 

NKp80 positive subsets (p<0.05). 

 The co-expression of CD94 and NKG2D was also evaluated and a significant 

increase was observed in double positive subset (p<0.05) in TB patients. The meaning 

of these observations remains unclear. 

 Other NCRs and NKp80 (co-receptor) expression was increased (NKp44: 

p<0.05; NKp80: p<0.01; NKp30: n.s.). As referred above, it was observed an increase 

in intracellular IFN-γ+ in all NK cells expressing these receptors and co-receptor. 

 Killer Immunoglobulin-like receptors expression was evaluated. Data 

demonstrate that three inhibitory KIRs (KIR2DL2, KIR2DL1 and KIR3DL1) tend to 

decrease, KIR2DL2/DL3 tend to increase and activating KIR2DS1 was significantly 

increased (p<0.005). 

 Despite the importance of the presented data, further research is needed. A 

general phenotyping of NK cells was performed, giving some highlights about the role 

of these cells in TB, opening new doors for the future work. KIR genotyping have to be 

done for the TB patients and HC for correlations to the phenotype results. Also the 

gene expression of KIR genes, cytokines, chemokines, as well as the SNP screening 

for NK cells receptors. Once NK cells crosstalk with other immune cells, the effect of 

NK cells on other cells (e.g. dendritic cells and monocytes) should be studied. 

Functional activation and inhibition tests should be performed to evaluate NK cells role 

in immune response against pulmonary TB. 
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 Expansion and manipulation of NK cells for immunotherapy in infectious 

diseases is a promising field that remains to be explored. 
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