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Resumo  

Vários modelos climáticos prevêem, durante este século, um aumento da 

temperatura média do ar até 4,7ºC, a temperatura da água irá acompanhar esta subida. 

As consequências do aumento de temperatura na composição das comunidades e 

interacções biológicas estabelecidas dentro delas, ainda são pouco conhecidas nos 

ecossistemas lóticos. Neste estudo foi avaliado o efeito, individual e em conjunto, do 

aumento de temperatura e da presença de um detritívoro dominante (Allogamus 

laureatus) na decomposição de folhas de carvalho, e nas comunidades de detritívoros 

associados à folhada. Para tal, um pequeno ribeiro foi dividido longitudinalmente em 

duas secções; numa das secções a água foi mantida á temperatura ambiente (12,4ºC, 

média), na outra secção a água foi aquecida cerca de 3ºC acima da temperatura 

ambiente. Os sacos de carvalho foram incubados durante a primavera de 2011 em 

ambos os lados do ribeiro, metade dos sacos continham uma larva de A. laureatus. Os 

sacos de folhada foram removidos do rio a cada duas semanas durante seis semanas, 

para posterior determinação da massa final da folhada de carvalho e identificação dos 

detritívoros.  

Verificou-se que a presença do A. laureatus estimulou a decomposição das 

folhas de carvalho e o aparecimento de outros detritívoros à temperatura ambiente. O 

aumento da temperatura, na presença do A. laureatus, causou uma diminuição na taxa 

de decomposição da folhada e a relação positiva entre A. laureatus e os outros 

detritívoros desapareceu. O padrão natural de variabilidade da comunidade de 

detritívoros não diferiu entre tratamentos, contudo a riqueza específica dos 

macroinvertebrados que colonizaram as folhas foi significativamente superior à 

temperatura elevada.  
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Estes resultados sugerem que o A. laureatus desempenha uma função importante 

nos ecossistemas lóticos, quer pelas suas elevadas taxas de consumo quer através 

mecanismos de facilitação para com outros invertebrados. O aumento da temperatura 

causou uma inibição da actividade do A. laureatus alterando substancialmente a força 

da interacção entre ele e outros detritívoros, consequentemente limitando a taxa de 

decomposição foliar. Apesar de não terem sido encontradas diferenças significativas no 

padrão natural de variabilidade dos detritívoros, parece que o aumento de temperatura 

aumenta a variabilidade em termos da composição da comunidade e que a presença do 

A. laureatus tende a aumentar a variabilidade agregada. 

Este estudo mostra que os efeitos do aquecimento global no funcionamento dos 

ecossistemas são complexos pois este é moderado por factores bióticos. Entender a 

susceptibilidade de interacções biológicas ao aumento da temperatura da água pode 

fornecer pistas importantes e melhorar previsões sobre as alterações nos ecossistemas 

lóticos sob o cenário do aquecimento global, podem ainda constituir uma importante 

ferramenta em procedimentos de remediação. 
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Abstract  

Climate models predict an increase in mean global air temperature up to 4.7ºC 

during this century and water temperature should follow this increase. The 

consequences of this temperature increase on communities’ composition and biotic 

interactions establish within them are mostly unknown for stream ecosystems. In this 

study I assessed the individual and combined effects of rising temperature and presence 

of a dominant detritivore (Allogamus laureatus) on the decomposition of submerged 

oak litter and associated shredder communities. For this, a headwater stream was 

divided longitudinally into two sides; one side was kept at ambient temperature (12.4ºC, 

mean) while the other side was warmed ~3ºC above ambient temperature. Oak litter 

bags were incubated in spring 2011 on both stream sides, with half of bags having one 

A. laureatus larvae. Replicate litter bags were collected every two weeks over six weeks 

for determination of oak litter remaining mass and detritivores identity.  

 The presence of A. laureatus stimulated decomposition of oak litter and the 

appearance of other shredders at ambient stream side. Temperature increase, in the 

presence of A. laureatus, caused a decrease on decomposition rate and the positive 

relationship of A. laureatus and the other shredders disappeared. The natural variability 

patterns of shredder communities did not differ among treatments, but the total 

macroinvertebrate richness was significant higher at elevated temperature.  

These results suggest that A. laureatus play an important role on stream 

ecosystems either by high consumption rates or through facilitation mechanisms for 

other shredders. The temperature increase caused an inhibition of A. laureatus activity 

thus cause a substantial change on strength of interactions between him and other 

shredders, limiting leaf litter decomposition. In spite no significant differences on 
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variability patterns it seems that rising temperature, increases compositional variability 

and the presence of A. laureatus increases aggregate variability.    

This study highlights that the effects of global warming on ecosystem 

functioning are complex as they are moderated by biotic factors. Understanding the 

susceptibility of biological interactions to increased water temperature may give 

important clues to make better predictions on stream ecosystems changes under global 

warming scenarios and may constitute an important tool for remediation procedures. 
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1.1 Streams: an overview 

 
Lotic ecosystems are one of the most impaired systems in the world (Malmqvist & 

Rundle 2002; Strayer & Dudgeon 2010). These systems are primarily vulnerable to 

local and global changes largely due to their isolation, important role as water source for 

human activities and close dependence on their catchment (Malmqvist & Rundle 2002; 

Perkins et al. 2010; Strayer & Dudgeon 2010). 

Small streams represent more than 75% of total length of river network in a 

catchment basin (Benda et al. 2005; Clarke et al. 2008). They are located at the head of 

the continuum (River Continuum Concept; Vannote et al. 1980) and constitute very 

specific environments (Richardson & Moore 2007). Forested headwaters in temperate 

areas usually present overshadowed channels, low primary productivity, local 

microclimate gradients and a high edge to surface area ratio. One of the main features of 

these systems is the strong stream-riparian area relationships, guarantee of supply of 

organic matter as a source of nutrients and energy to the stream biota. A complex 

stream-riparian coupling largely explains the vulnerability of these systems to 

anthropogenic disturbances (Richardson & Moore 2007; Kominoski & Rosemond 

2012).  

Woodland low order streams (Strahler 1957) are heterotrophic systems and largely 

dependent on leaflitter inputs from the riparian area (Abelho 2001; Graça & Canhoto 

2006). Once in the stream, these leaves are decomposed and converted into secondary 

production (González & Graça 2003). Decomposition is a key ecosystem process 

carried out by microbes, primarily aquatic hyphomycetes, and invertebrate detritivores 

(Gessner et al. 1999; Hieber & Gessner 2002); the dynamics of this process depends on 

intrinsic (e.g. leaf chemistry) and extrinsic (e.g. temperature, water nutrient contents, 



3 
 

oxygen dissolved, pH, light) factors (e.g. Canhoto & Graça 1999; Franken et al. 2005; 

Simon et al. 2009; Ferreira & Chauvet 2011) 

Leaf litter decomposition is usually subdivided into three sequential phases that can 

overlap: leaching, conditioning, and fragmentation. Right after immersion, leaves start 

to leach soluble compounds. This abiotic phase usually lasts about 48 hours determining 

a mass loss that can reach 42 % (Abelho 2001). Conditioning (Boling et al. 1975) is 

characterized by the colonization of leaves by microorganisms (aquatic fungi and 

bacteria) that promote a nutrient enrichment of leaf litter and increase its palatability to 

invertebrate detritivores (Cummins 1974; Vannote et al. 1980; Graça 2001). Finally, 

leaves suffer fragmentation either by physical abrasion or by invertebrate activity 

(Gessner et al. 1999).  

Stream invertebrates that consume decaying leaves are known as shredders. This 

functional feeding group (Cummins 1974) includes a wide range of invertebrates such 

as larvae of Diptera, Trichoptera and Plecoptera and crustaceans (Tachet et al. 2002). It 

is commonly accepted (but see Gonçalves et al. 2007) that they participate in the 

decomposition process and that their feeding behavior accelerates litter decomposition 

(Graça 2001; Alemanno et al. 2007). Shredders present high ingestion rates and low 

assimilation efficiencies (Wallace et al. 1982); their feeding activities convert coarse 

particulate organic matter (CPOM; > 1mm) into fine particulate organic matter (FPOM; 

0.45μm-1mm) as feces, and lower size fragmented material - dissolved organic matter 

(DOM; <0.45 μm). FPOM becomes a food resource available for other functional 

feeding groups, namely the collectors (Jonsson & Malmqvist 2005). The density, 

diversity and identity of shredders associated with leaf decomposition, as well their 

behavior (Jonsson & Malmqvist 2003; Alemanno et al. 2007), play a key role in the flux 

of organic matter, and as a structuring force in composition of lotic food webs (Allan & 
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Castillo 2007). Along with the less abundant scrapers and predators, shredders are part 

of the stream brown food webs (Kaspari 2004). 

 

1.2 Water temperature 

Temperature increase is one of the main physical threats associated with global 

change. Warming can directly threaten the ecological integrity of freshwater ecosystems 

(many life processes are temperature-dependent) and indirectly through changes in the 

hydrological conditions, oxygen solubility, intensity of anthropogenic stress, etc. 

(reviewed by Perkins et al. 2010). Several studies suggest important effects of increases 

in stream water temperature on the structure of the biotic communities through changes 

in individuals life histories (e.g., emergence patterns, metabolism, behavior; Harper & 

Peckarsky 2006; Dillon et al. 2010) and species interactions (e.g., competition, 

predation; Nilsson & Otto 1977; Nicola et al. 2010), with important consequences on 

ecosystem functioning (Gilman et al. 2010; Traill et al. 2010; Woodward et al. 2010). 

However, a gap still exists on the recognition of the main determinants of community 

structure (see Townsend 1989; Perkins et al. 2010), along with the clarification of the 

real importance of diversity, and species identity (Jonsson & Malmqvist 2003b; Vos et 

al. 2010), particularly within the shredders group, on stream processes, such as 

decomposition. This seems of paramount importance in global warming scenarios 

considering that “species interactions seem to shape the effects of climate-change” 

(Gilman et al. 2010) 
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1.3 Main objectives  

 
In this work I tried to contribute to fill this gap by assessing the combined effects of a 

~3ºC increase in water temperature and the presence of a common competitively 

dominant shredder (Allogamus laureatus) on the composition of shredder communities 

associated with decomposing oak litter in a woodland stream in Central Portugal over a 

6 week time period.  
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Chapter II –  

Effect of temperature and presence of a dominant shredder (Allogamus 

laureatus) in the variability patterns of macroinvertebrate assemblages 

associated with decomposing leaf litter 
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2.1  Introduction 

Headwater streams are a critical component of hydrological basins as they represent 

more than 75% of total length of river network (Benda et al. 2004; Clarke et al. 2008) 

and play an important role in supporting biodiversity and ensuring the functioning of the 

entire ecosystem (Meyer et al. 2007; Clarke et al. 2008). Many headwater streams flow 

through forests and can be heavily shaded, which limits in-stream primary production. 

The organic matter provided by the surrounding vegetation is, therefore, the main 

source of energy and carbon for aquatic food webs in these systems (Abelho 2001). This 

organic matter is incorporated into the food web by the activities of shredders, a guild of 

invertebrates that uses coarse organic matter directly, establishing the link between dead 

organic matter and higher trophic levels (Cummins & Klug 1979; Abelho 2001; Graça 

2001; Hieber & Gessner 2002; Graça & Canhoto 2006). The abundance and identity of 

shredders can regulate the leaf litter decomposition rate (Jonsson &  Malmqvist 2005; 

Kobayashi & Kagaya 2005) and also determine the growth rate of other 

macroinvertebrates (Graça 2001; Jonsson & Malmqvist 2005). So, any perturbation that 

cause a shift in shredder communities can have several impacts on the food web and 

ecosystem functioning. 

Climate models predict that the mean maximum air temperature in Portugal will 

increase by up to 4.7°C (A2 scenario) until 2100 (Ramos et al. 2011). Water 

temperature should follow this increase closely (Eaton & Scheller 1996; Webb & 

Nobilis 1997; Morrill et al. 2005). This magnitude of changes was not experienced by 

organisms before (Raven 2002) and it is likely that such global warming will cause 

changes in many ecosystems through changes in life history, biotic interactions, and 

ecosystem processes (Traill et al. 2010). 



9 
 

  The responses to global warming will be species-specific and will be more 

severe in ectotherms (Heino et al. 2009; Perkins et al. 2010). In a recent review, 

Woodward et al. (2010) stated that an increase in temperature will affect all levels of 

biological organization. At the organismal level, an increase in temperature, up to 

species optimal temperature, will stimulate individual metabolism, consumption and 

growth rates and lead to reduced adult body size, which might alter organismal effects 

on ecosystem processes (Sweeney & Vannote 1986; Hogg & Williams 1996; González 

& Graça 2003; Dillon et al. 2010; Rumbos et al. 2010; Ferreira et al. 2010). Population 

densities will be modulated by temperature through direct and indirect effects (Hogg & 

Williams 1996; Beveridge et al. 2010), emergence patterns may be altered in warmer 

environment (Langford 1975; Hogg & Williams 1996; Harper & Peckarsky 2006) and 

population range shifts will likely occur under global warming (Sweeney et al. 1992; 

Parmesan & Yohe 2003).  

 Numerous studies have highlighted the effect of temperature on 

macroinvertebrate communities (Hogg et al. 1995; Lessard & Hayes 2002; Daufresne et 

al. 2007; Friberg et al. 2009; Lawrence et al. 2010; Lecraw & Mackereth 2010). Some 

authors argue that water temperature increases will lead to a shift in species traits that 

provide them more resistance to this perturbation. For instance, life cycle duration, and 

number of reproductive cycles per year will shift in the way communities function 

(Bonada et al. 2007; Tobin et al. 2008; Lawrence et al. 2010; Poff et al. 2010). Petchey 

et al. (1999) found that trophic structure in microcosms was severely changed with 

increases in temperature, with a loss of 30-40% species, which translated into altered 

ecosystem functioning (primary production). However, our knowledge of the effect of 

warming on stream community composition, biologic interactions and ecosystem 

processes remains poor (Friberg et al. 2009). 
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Biological interactions are strong modulators of community structure and they 

should be incorporated in experimental studies to allow us a deeper understanding of the 

effect of global warming on communities and ecosystem function. Biological 

interactions are the indirect pathway by which the effects of global warming spread 

through communities (Gilman et al. 2010). For instance, raising temperature can alter 

the predator-prey relationships by decreasing energetic efficiency of predators or by 

driving them locally extinct (Beisner et al. 1997; Abrahams et al. 2007; Vucic-Pestic et 

al. 2011). The parasite-host relationship can change under warmer conditions. 

Mouritsen et al. (2005) verified a model prediction of gradual decline in host population 

abundance with rising temperature due to stimulation of parasite infection, which 

caused change on community structure. Temperature effects was also observed by 

Nilsson & Otto (1977) on the densities of two detritivores species (Potamophylax 

cingulatus Steph. and Gammarus pulex L.). The authors demonstrated that elevated 

temperature enhanced interspecific competition between them, resulting in higher 

mortality in the less competitive species. Taniguchi & Nakano (2000) argued that 

competitive ability is an important mechanism that structure communities and showed 

that competition between fish species was strongly mediated by temperature. Also, 

Jiang & Morin (2007) reported results from a microcosm study in which they tested 

random fluctuations on temperature versus temperature fluctuation correlated with time 

series and observed that random fluctuations favored coexistence of two competing 

freshwater bacterivorous species, whereas temperature fluctuations correlated with time 

series enhance competitive exclusion.  

In this study I assessed the effects of experimental warming (~3ºC above ambient 

temperature in spring) and of the presence of a competitively dominant shredder 

(Allogamus laureatus), individually and in combination, on oak litter decomposition 
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and on the composition of the shredder communities associated with decomposing litter, 

over 6 weeks in a mountain temperate stream. I expected that the presence of A. 

laureatus would stimulate litter decomposition rate at ambient temperature. Increase in 

temperature was expected to stimulate litter decomposition in the absence of A. 

laureatus. It is more difficult to anticipate the response of litter decomposition rates at 

elevated temperature in the presence of A. laureatus because this will depend on the 

shredder thermal tolerance and on it interaction with the other members of the shredder 

guild. Finally I hypothesized that the increase in temperature, as well the presence of a 

dominant shredder, would decrease the abundance and specific richness of shredder 

communities, changing therefore the natural aggregate and compositional variability 

patterns of macroinvertebrate communities. 

 

2.2  Materials and methods 

Experimental conditions 

Study area. The study took place in Candal stream, Lousã mountain, Central Portugal 

(40º04’48.10’’N, 8º12’11.16’’W, 634 m a.s.l.). This is a second order stream (Strahler 

1957) that runs through schistose substrate, and is bordered by native mixed deciduous 

forest, dominated by chestnut (Castanea sativa Mill.) and oak (Quercus spp) trees. The 

study section was divided longitudinally along 22 m with schistose stones, each side 

~50 cm wide and 5–10 cm deep. One side of the study section was warmed up by 2.8 ºC 

(elevated side) above the ambient temperature registered in the other side (ambient side) 

(Fig 1.) Warming was initiated two months before the experiment started (28 March 

2011) and continued during the study period. Stream water was derived from upstream 

into a 260L reservoir provided with 30 electrical resistances (2000 W; Crussel, 
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Portugal), supplied with a continuous power of 40kW, that warmed the water and 

discharged it into the elevated side at a rate of 2.0 L/s ± 0.2 (mean, SE).  The flow rate 

was controlled manually at the outlet of the reservoir. A similar system was used to 

provide water to the ambient stream side, except that the reservoir did not have any 

electrical resistances and therefore the water was delivered at ambient temperature 

(more details in Canhoto et al., in prep.). The increase in temperature simulates the 

expected increase in water temperature in the area. Expected water temperature was 

calculated by multiplying the mean air temperature increase predicted over this century 

(3.75ºC; IPCC 2007) by a conversion factor (0.9) proposed by Eaton & Scheller (1996).   

Ten times over the study period (42 days), 300 mL of water from each stream side were 

collected, filtered through fiber glass filters (47 mm , pore size 0.7 µm; Millipore 

APFF04700, Millipore, MA, USA), and frozen at –20 ºC for later determination of 

nutrient concentrations and alkalinity. Nitrate concentration (NO3
-) was determined by 

catalyzed reaction and quantification by colorimetry (MI I.LB.I2 – LCK 339), soluble 

reactive phosphorus (SRP) concentration was determined by the ascorbic acid method 

(APHA 1995), and alkalinity was determined by titration with H2SO4 0.02N up to an 

end point pH of 4.2 (APHA 1995). Conductivity, total dissolved solids (TDS) (LF330 

315, WTW, Weilheim, Germany), pH (pH 3110, WTW, Weilheim, Germany), and 

dissolved oxygen (Oxi 3210, WTW, Weilheim, Germany) were recorded in situ in both 

stream sides. Temperature was recorded hourly during the study period with submersed 

data loggers (Hobo Pendant, Onset Computer Corp., MA, USA). 

 

Initial litter quality. Oak (Quercus robur L.) leaves used in this experiment were 

collected after senescence in November 2010, air dried in the dark at ambient 

temperature and stored until needed. Before the beginning of the experiment, the 
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chemical and physical properties of leaves were assessed: phosphorous using four 

replicates (Graça et al. 2005), carbon and nitrogen using three replicates (IRMS Thermo 

Delta V advantage with a Flash EA 1112 series) and polyphenolic concentration using 

four replicates (Graça et al. 2005). Oak leaf composition was: 0.03% ± 0.01 (mean ± 

SE) of phosphorous/g DM; 49.86% ( ± 0.66, SE) of carbon /g DM; 0.83% (± 0.05) of 

nitrogen /g DM and 7.47% (± 0.23) of polyphenols /g DM. Leaf toughness was also 

determined on leaves previously soaked in water for 30 min using a penetrometer 

(Graça et al. 2005). Three oak discs (12 mm ) were cut out of tree replicates with a 

cork borer, removed from leaves and fixed between two acrylic sheets. The mass 

required to force an iron rod (0.5 mm ) through the leaf (avoiding major and 

secondary veins) was determined as g of water + cup + rod weight : 147.61 ± 6.59 

(mean ± SE)  (Graça et al. 2005).  

 

Shredders. The caddisfly Allogamus laureatus (Trichoptera: Limnephilidae) was chosen 

for this study because it is a dominant detritivore in aquatic systems. Limnephilidae, in 

general, are reported as aggressive with high growth rates (Wissinger et al. 1996), and 

are functionally dominant in the decomposition process (Creed et al. 2009). To avoid 

interfering with the invertebrate communities in the experimental reach, the individuals 

were collected in a nearby stream (Cerdeira, Lousã mountain, 40°05'21.39"N, 

8°12'06.67"W). All the individuals were inspected using a binocular microscope (6.4 x, 

Wild M38, Heerbrugg, Switzerland) and the linear distance between the eyes 

(interocular distance) was measured using a micrometer. Forty-two individuals with 

interocular distance of 10 micrometer divisions (1.43 mm) and case opening diameter > 

4 mm were selected. Then, 24 individuals were randomly chosen and individually 

allocated into tetrahedral mesh bags, according to the treatments (see below). The 
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remaining individuals (18) were dried (105 ºC, 24 h) and then weighed (± 0.01 mg) to 

estimate the mass of individuals used in experiment (1.5  0.12 g dry mass, mean  SE).  

 

Litter bags. A total of 48 tetrahedral mesh bags (12 × 12 cm, 0.4 mm mesh) were 

prepared with 2.01 ± 0.01 g (mean ± SE) air dried oak leaves (rehydrated with distilled 

water to avoid breakage). One single A. laureatus larvae was added to half the bags just 

before immersion in both stream sides (ambient and elevated), according to the 

treatment (see below). (Fig. 2)  

 

Experimental design 

The individual and combined effects of the presence of a dominant detritivore 

and of increase in water temperature on the shredder communities associated with 

decomposing oak litter were assessed by incubating litter bags with and without one A. 

laureatus larvae, in the study stream, at ambient and elevated temperature, for 42d (3rd, 

May – 14th, June). The two factors, detritivore presence and water temperature, were 

crossed in a complete factorial design resulting in four treatments: 1) Bags with A. 

laureatus at ambient temperature (LimnA); 2) Bags with A. laureatus at elevated 

temperature (LimnE); 3) Bags without A. laureatus at ambient temperature (NoLimnA) 

and 4) Bags without A. laureatus at elevated temperature (NoLimnE). Twelve litter 

bags per treatment were distributed into four blocks and fixed to the streambed with 

nails; each block received three litter bags from each treatment. After 14d, 27d, and 42d, 

four litter bags from each treatment (one from each block) were retrieved, enclosed in 

individual zip-lock bags, and transported to the laboratory in a cooler (Fig. 3).  
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In the laboratory, leaves were carefully rinsed with distilled water on top of a 

500 m mesh sieve to remove adhering invertebrates and sediment. The remaining litter 

material was oven dried (105ºC, 48h), weighed ( 0.1 mg) to allow determination of dry 

mass (DM), ignited (550ºC, 4h) and reweighed ( 0.1 mg) to allow determination of the 

ash fraction and ash free dry mass remaining (AFDMr). The proportion of AFDM mass 

remaining at each sampling date was calculated by dividing AFDMr per initial AFDM. 

Ten extra litter bags were prepared in the same way as the samples, taken to the 

stream on d0, submerged for ~10 min, brought back to the laboratory and processed as 

above. These were used to calculate an air DM to AFDM conversion factor, taking into 

account mass loss due to handling, to be applied to the samples and estimate initial 

AFDM.   

 

Macroinvertebrates  

The macroinvertebrates retained on top of the 500 m mesh sieve were 

recovered, stored in 20 mL scintillation vials, and preserved with 95 % ethanol. 

Invertebrates were sorted and identified under a binocular microscope (50x; Leica M80, 

Singapore). Identification was carried to the lowest taxonomic level possible, generally 

genus or species, following Lanero (2000) and Tachet et al. (2002). Invertebrates were 

classified into functional feeding groups following Lanero (2000) and Tachet et al. 

(2002). The results were expressed by number of individuals per bag and number of 

individuals per mass (AFDMr, g) and number of taxa per bag. During the experiment, 

several A. laureatus larvae entered in the bags due to their small size (case opening  < 

4mm), and the number of A. laureatus were no longer statistically different between 

treatments initially with and without A. laureatus (Presence of A. laureatus x 

Temperature interaction; two-way ANOVA, F0.05(1)1,36 = 1.46, p= 0.24).  



16 
 

Statistical analysis  

Litter breakdown rates (k/d) were calculated assuming an exponential decay with 

a fixed intercept: k = -Ln(AFDMr/AFDMi)/t, where t is the incubation time in days (d), 

AFDMi is the initial mass and AFDMr is the final mass. Remaining mass over time was 

compared among treatments by analysis of covariance (ANCOVA), with 

presence/absence of A. laureatus and temperature regime (ambient and elevated) as 

categorical variables, and time as continuous variable. Tukey´s honest significant 

difference (HSD) test was used for post hoc multiple comparisons if there was an effect 

of presence of A. laureatus, temperature or their interaction (α = 0.05). Given that both 

stream sides differed in temperature, litter breakdown rates per degree day (k/dd) were 

also calculated by replacing time (t) by the sum of mean daily temperatures 

accumulated by the sampling day (ºC). 

Total macroinvertebrate abundance, total species richness, shredder abundance 

and shredder richness per bag, and total abundance and shredder abundance per AFDMr 

were compared among treatments with a three-way ANOVA (presence/absence of A. 

laureatus, temperature and time as categorical variables). Total macroinvertebrate 

abundance, total species richness, shredder abundance and shredder richness per bag, 

and total abundance and shredder abundance expressed per AFDMr were also compared 

among treatments with a two-way ANCOVA (presence of A. laureatus and temperature 

as categorical variables and time as continuous variable). Only shredders were used in 

the analysis described below. 

Principal component analysis (PCA) was used to evaluate the compositional variability 

of detritivores in each sample (CANOCO for Windows 4.5; Biometrics-Plant Research 

International, Wageninger, The Netherlands). The Euclidean distances (EuD) were 

calculated between samples that belong to the same block and treatment. Assuming that 
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P1(x1,y1,z1) represents one sample of first sampling date with x1,y1,z1 as coordinates of 

the three first axis of PCA, P2(x2,y2,z2) and P3 (x3,y3,z3) represent, respectively, the 

samples of second and third sampling date for that same treatment and block, then 

EuD	(P1, P2, P3) = EuD	(P1, P2) + EuD	(P2, P3), with EuD	(푃1,푃2) = (푥 − 푥 ) + (푦 − 푦 ) + (푧 − 푧 ) . 

Euclidean distances were compared among treatments by two-way ANOVA with 

presence/absence of A. laureatus and temperature regime as categorical variables. 

The coefficient of variation (CV%, standard deviation/mean) was determined for 

total macroinvertebrate and shredder abundance, were calculated per treatment and per 

block, only CV% of shredder abundance was used to calculate aggregate variability. 

The CVs were compared among treatments by a two-way ANOVA (presence/ absence 

of A. laureatus and temperature regime as categorical variables). The relationships 

between number of A. laureatus per bag, number of detritivores per bag and remaining 

AFDM were assessed by linear regression. 

Tukey´s honest significant difference (HSD) test was used for post hoc multiple 

comparisons if the ANCOVAs or ANOVAs above detected an effect of presence of A. 

laureatus, temperature or their interaction (α = 0.05). The assumptions of normality and 

homocedasticity were confirmed with Shapiro-Wilk and Bartlett tests, respectively. All 

statistical analyses were performed with STATISTICA 7 software (StaSoft, OK, USA), 

except when indicated otherwise. 
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Fig. 1  Study area (Candal stream, Lousã mountain, Central Portugal 40º04’48.10’’N, 
8º12’11.16’’W, 634 m a.s.l.). The study section was divided longitudinally along 22 
m with schistose stones, each side being ~50 cm wide and 5–10 cm deep. One side 
of the study section was warmed up by 2.8 °C (elevated side) above the ambient 
temperature registered in the other side (ambient side). 

 

Fig. 2 Litter bags (12 × 12 cm; 4mm mesh) were prepared with ~2 g of air dried oak 
leaves. One A. laureatus larvae was added to half of the bags. Half of the bags 
were incubated at ambient and half at elevated temperature.  

 

Fig. 3 After 14d, 27d, and 42d, four litter bags from each treatment (one from each 
block) were retrieved, enclosed in individual zip-lock bags, and transported to the 
laboratory in a cooler. 

 

i) ii) 
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2.3  Results 

Water variables 

Experimental warming effectively increased the water temperature in the 

elevated stream side by a mean of 2.8ºC above ambient temperature during the study 

period (t = -36.9, df = 1922, p < 0.0001). This translated into a slightly lower dissolved 

oxygen concentration in the elevated side (9.4 mg/L) compared with the ambient side 

(10 mg/L) (t = 4.1, df = 18, p > 0.001). In general, the water variables did not 

statistically differ between sides (ambient and elevated); however, SRP was significant 

higher in the ambient side (t = -2.3, df = 12, p = 0.042) and conductivity was significant 

higher in the elevated side (t = -3.2, df = 16, p = 0.005) (Table 1). 

 

Table 1 Water variables during the experimental period in both stream 
sides (mean ± SE).  

 
 Ambient side Elevated side  

Water properties   

     Temperature (C°) * 12.4 ± 0.1 15.1 ± 0.3 

     pH  7.1 ± 0.1 7.1± 0.1 

     Conductivity (S/cm) * 27.2 ± 0.1 27.5 ± 0.1 

     TDS (mg/L)  30.0 ± 0.2 30.1 ±0.1 

       Oxygen dissolved (mg/L)* 10.0 ± 0.1 9.4 ± 0.1 

     Oxygen dissolved (%)  99.8 ± 1.0 98.8 ± 0.9 

     SRP (µg/L) * 34.8 ± 9.1 11.8 ± 4.4 

     Nitrates (mg/L)  0.08 ± 0.01 0.11 ±0.02 

     Alkalinity (mg CaCO3/L)  4.7 ± 0.1 4.6 ± 0.2 

     Discharge (L/s)  2.3 ± 0.3 2.0 ± 0.2 

    *, variables that significantly differed between stream sides (t test, p>0.05) 
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Litter decomposition  

After the 6 week incubation period, LimnA treatment had the lowest percentage 

of AFDMr (36.9 % ± 4.1, mean ± SE), followed by NoLimnE (40.5% ± 4.0, SE), 

LimnE (46.3% ± 4.7) and lastly NoLimnA (48.4% ± 2.6). The litter decomposition rates 

were significantly different among treatments (Fig. 4, Table 2). In the ambient 

temperature side the decomposition rate of oak leaves in the presence of Allogamus 

laureatus was higher (0.023/d) than in its absence (0.017/d) (Tukey HSD, p = 0.04). In 

the elevated temperature side there was no effect of the presence of A. laureatus in the 

decomposition rate, however the temperature increase, in the presence of A. laureatus, 

caused a significant decrease on decomposition rate suggesting that warming may cause 

a negative effect in A. laureatus activity (Fig. 4). When considering decomposition rates 

expressed per degree days (k/dd) significant differences were found among treatments 

(Table 2). LimnA had the highest decomposition rate (0.0017/dd) and it was statistically 

different from both LimnE (0.0011/dd; Fisher LSD, p = 0.03) and NoLimnA 

(0.0013/dd; Fisher LSD, p = 0.01) (Fig. 4).  

 

 

 

 
 
 
 
 

Fig. 4 Decomposition rates of oak leaf litter incubated in the ambient (A) 
and elevated (E) stream side, in the presence (Limn) and absence (NoLimn) 
of A. laureatus for 42d. i) k/day ii) k/degree days. Bars represent the mean 
± standard error (SE). Different letters indicate statistical differences among 
treatments (ANCOVA followed by Tukey HDS and Fisher LSD respectively, p 
≤ 0.05). 

i) 

ii) 
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Table 2 Summary table for the ANCOVA performed on fraction of mass remaining over time (days) or degree 
days of oak litter incubated in the ambient and elevated stream side over 42 days, in the presence/absence of A. 
laureatus. 

 Mass loss (days)  Mass loss (degree days) 
 df F p  df F p 

ANCOVA        
     Intercept 1 15.37 <0.01  1 12.79 <0.00 
     Time 1 231.74 0.00  1 215.85 0.00 
     Presence shredder 1 1.25 0.27  1 1.18 0.28 
     Temperature 1 0.20 0.66  1 15.33 <0.01 
     Presence shredder*temperature 1 7.70 0.01  1 7.26 0.01 
     Error 43    43   

 

 

Macroinvertebrates 

There were no statistically significant differences among treatments in terms of 

macroinvertebrates abundance (three-way-ANOVA interaction presence shredder x 

temperature, p = 1.00), total species richness (p = 0.86), shredder abundance (p = 0.85) 

and shredder richness (p = 0.56) per bag, if the variability of the three factors (time, 

temperature and presence of A. laureatus) are considered (Table 3; Fig. 5). The two-way 

ANCOVA detected differences in total macroinvertebrate richness between 

temperatures in either the presence and absence of A. laureatus (Tukey test, p < 0.05; 

Table 3). The coefficient of variability (CV%) was compared among treatments by two-

way ANOVA and no significant differences were detected for total macroinvertebrate 

abundance (interaction presence shredder x temperature, p = 0.52), species richness (p = 

0.56), shredder abundance (p = 0.55) and shredder richness (p = 0.33) (Table 3). When 

total and shredder abundance were expressed per litter mass no differences were found 

among treatments (three-way ANOVA, interaction Presence shredder x temperature: 

F0.05(1)1,28 =  3.39, p = 0.67 and  F0.05(1)1,28 =  0.60, p = 0.63, respectively). In general, 

neither the presence of A. laureatus nor the increase in temperature generated different 
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patterns of macroinvertebrates colonization, but the global macroinvertebrate richness 

responded positively to the increase of temperature (Table 3).  

 

 

 

 

 

 

 

Fig. 5 Macroinvertebrate community response associated with oak leaf litter incubated in the ambient (A) and 
elevated (E) stream side, in the presence (Limn) and absence (NoLimn) of A. laureatus for 42d. a) Total 
invertebrate abundance b) shredder abundance c) total species richness and c) shredder species richness per bag. 
Values are means ± SE. 

Table 3 Summary table for the three-way-ANOVA and two-way-ANCOVA, performed on macroinvertebrate 
abundance, macroinvertebrate richness, shredder abundance and shredder richness, associated with oak litter 
incubated at ambient or elevated side stream, in the presence or absence of A. laureatus for 42 days. p value ≤ 
0.05 indicate statistical differences among treatments. 

 

  
Macroinvertebrate 

abundance  
Macroinvertebrate 

richness  Shredder abundance  Shredder richness 

  df F p  df F p      df F p  df F p 
3-way- ANOVA                
 Intercept 1 92.97 <0.01  1 270.50 <0.01  1 60.81 <0.01  1 115.52 <0.01 
 Time (days) 1 1.43 0.24  1 0.10 0.75  1 0.06 0.80  1 0.02 0.89 
 Presence shredder 1 1.07 0.31  1 3.88 0.06  1 0.43 0.52  1 0.98 0.33 
 Temperature 2 0.74 0.49  2 0.27 0.77  2 0.17 0.84  2 0.70 0.51 
 Presence shredder*temperature 1 1.07 0.31  1 1.76 0.20  1 0.00 1.00  1 0.08 0.78 
 Presence shredder*time 2 0.23 0.80  2 0.49 0.62  2 0.14 0.87  2 0.04 0.96 
 Temperature*time 2 1.88 0.17  2 1.80 0.18  2 1.69 0.20  2 0.74 0.48 
 Presence shredder*temperature*time 2 0.00 1.00  2 0.15 0.86  2 0.17 0.85  2 0.58 0.56 
 Error 28    28    28    28   
                
2-way- ANCOVA                
 Intercept 1 19.84 <0.01  1 38.95 <0.01  1 4.15 <0.05  1 10.53 <0.01 
 Time (days) 1 0.45 0.50  1 0.07 0.79  1 1.58 0.22  1 1.69 0.20 
 Presence shredder 1 2.00 0.17  1 0.34 0.56  1 0.22 0.64  1 0.15 0.70 
 Temperature 1 1.48 0.23  1 4.25 <0.05  1 0.29 0.59  1 0.70 0.41 
 Presence shredder *temperature 1 0.97 0.33  1 1.34 0.26  1 0.04 0.85  1 0.29 0.59 
 Error 35    35    35    35   
                
Coefficient of variability (Cv%) 
2-way-ANOVA 

               

 Intercept 1 53,04 <0.01      1 35,39 <0.01     
 Presence shredder 1 0,41 0,54      1 2,93 0,13     
 Temperature 1 2,23 0,17      1 0,18 0,68     
 Presence shredder *temperature 1 0,45 0,52      1 0,40 0,55     
 Error 8        8       
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 The Euclidean distances and the coefficient of variability of shredder abundance were 

similar among treatments (two-way-ANOVA interaction Presence shredder x 

Temperature, p = 0.80 and p = 0.55, respectively; Table 4). Therefore, all treatments 

have the same pattern in both aggregate and compositional variability through time, 

suggesting that macroinvertebrate colonization was not influenced by the 

presence/absence of A. laureatus nor elevated temperature (Fig.6)  

 
Table 4 Summary of two-way-ANOVA´s performed on coefficient of shredder abundance and Euclidean distances 
calculated from shredder communities associated with oak litter incubated in the ambient or elevated stream 
side, in the presence/absence of A. laureatus for 42 days. p value ≤ 0.05 indicates statistical differences among 
treatments. 

 

 

Fig. 6 Variability patterns of shredder communities associated with oak 
leaf litter incubated in the ambient (A) and elevated (E) stream side, in 
the presence (Limn) and absence (NoLimn) of A. laureatus for 42d. 
Coefficient of variability (%) versus Euclidean distance of shredder 
abundance. Values are the means ± SE.  
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  Coefficient of variability  Euclidean distance 
 df F p  df F p 
2-way- ANOVA        
 Intercept 1 35.39 0.00  1 24.67 0.00 

Presence shredder 1 2.93 0.13  1 0.17 0.69 
 Temperature 1 0.18 0.68  1 1.50 0.25 
 Presence shredder*temperature 1 0.40 0.55  1 0.07 0.80 
 Error 8    8   
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Simple linear regression with number of shredders as the dependent variable and 

number of A. laureatus as the independent variable was significant for ambient 

temperature (R2 = 0.39, p = 0.01), but not for elevated temperature (R2 = 0.03, p = 0.39). 

AFDMr (g) and number of shredders were negatively correlated only for elevated 

temperature (R2 = 0.20, p = 0.03). In spite of no significant differences in variability 

patterns, it appears that the presence of A. laureatus was responsible for the presence of 

other shredders at ambient temperature and that this effect disappeared when 

temperature increased (Fig. 7 and Fig. 8). 

 

 

 

 

 

 

 

Fig. 7 Plot of simple linear regression between number of shredders and number of 
A. laureatus per bag for ambient and elevated temperature. The linear regression 
models, R2 and p values are given. 

 

 

Fig. 8 Plot of simple linear regression between AFDM (g) and number of shredders 
per bag for ambient and elevated temperature. The linear regression models, R2 and 
p values are given. 
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2.4   Discussion 

Previous studies carried out in freshwater ecosystems regarding global warming 

revealed severe impacts on benthic communities. Some authors found differences on 

total density, growth patterns and phenology of macroinvertebrates (Hogg et al. 1995; 

Hogg & Williams 1996) while others showed also changes on structure and 

communities composition (Burgmer et al. 2007; Daufresne et al. 2007; Friberg et al. 

2009). In this study neither the presence of Allogamus laureatus nor the raising in 

temperature caused a significant change in variability patterns of shredder communities. 

However, there was a slight tendency: the presence of the A. laureatus seemed to 

increase the variability of shredder abundance, and elevated temperature seemed to 

increase variability in terms of identity of species. Furthermore, another pattern 

emerged: the presence of A. laureatus stimulated the appearance of more shredders in 

the leaf pack communities at ambient temperature and this effect was eliminated by 

warming.  

 

Litter decomposition 

Leaf litter decomposition is a complex process, which is carried out mainly by 

aquatic fungi and shredders (Gessner et al. 1999; Jonsson & Malmqvist 2000; Hieber & 

Gessner 2002; Graça & Canhoto 2006; Costantini & Rossi 2010). In this study, stream 

water temperature and the presence of a dominant shredder in litter pack were 

manipulated in a mountain stream. Under these circumstances, oak litter decomposition 

rate varied between 0.017 day-1 and 0.023 day-1. At ambient temperature, the presence 

of A. laureatus stimulated the decomposition rate of oak litter, in accordance with a 
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previous study where the presence of another species of Limnephilidae was manipulated 

(Creed et al. 2009). At elevated temperature no significant differences were found 

between presence and absence of A. laureatus, nevertheless, the temperature increase, in 

the presence of A. laureatus, led to a significant decrease on decomposition rate 

Presumably, the increase of temperature caused an inhibition of A. laureatus activity. 

Brandt (2001) showed that the optimal temperature for occurrence of Limnephilidae is 

about 13.1 ºC (these data were collected from more than four thousands locations on 

United States of America), and during this experiment the mean temperature in the 

elevated stream side was approximately 2 ºC above this value. Furthermore, Rumbos et 

al. (2010) evaluated consumption rates of a Limnephilidae species, at several 

temperatures, and demonstrated that the highest consumption rate was recorded at 13 ºC 

in agreement the optimal temperature suggested by Brandt (2001). It is noteworthy that 

these values are from individuals of Limnephilidae family that is extremely diverse; 

also, one should consider that temperature tolerance limits vary geographically. 

Nevertheless, the highest decomposition rate on the LimnA treatment can result from 

higher consumption rates of A. laureatus per se since these larvae can be very 

competitive (Creed et al. 2009). Alternatively, there may have been a facilitation 

occurring (i.e. other shredders benefit from presence of A. laureatus) as reported in 

other studies (Cardinale et al. 2002; Jonsson & Malmqvist 2003) since there were no 

differences on shredder richness or identity between treatments.  
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Macroinvertebrates community 

Communities change naturally through time. Micheli et al. (1999) developed an 

integrative approach that considers aggregate and compositional variability creating 

four different natural patterns of communities’ variability: synchrony, asynchrony, 

stasis and compensation. Significant shifts on these natural variability patterns due to 

stream warming were not demonstrated in this study.  

In our study, the increase in temperature and the presence of A. laureatus did not 

significantly change the variability patterns, colonization pattern, richness or abundance 

of shredders partially in contrast with that previously demonstrated by Nilsson & Otto, 

(1977). This may be due to the high variability over time by the taxa and the limited 

number of replicates. If one were to focus on the effect of temperature in this 

experiment, the pattern suggests that an increase in temperature increases compositional 

variation in macroinvertebrate communities (but not significantly). The effect of 

temperature was significant for total macroinvertebrate richness, but not for shredder 

richness: the increase in temperature caused an increase on invertebrate richness in 

agreement to what is globally found (Jacobsen et al. 1997). The functional feeding 

group analyses showed that this result is mainly caused by predators and deposit feeders 

(results in Annex). Furthermore, A. laureatus stimulated the presence of other shredders 

at ambient temperature, contrary to what was expected. Other researchers showed that 

Limnephilidae are generally aggressive, strong competitors with elevated activity rates 

(Wissinger et al. 1996; Creed et al. 2009); so, it was expected that shredder abundance 

would decrease with their presence. At the elevated reach it appears that A. laureatus 

activity was inhibited and that other shredders played a major role on decomposition, 

since there was a negative correlation between number of shredders and remaining ash 



28 
 

free dry mass. Thus, with the temperature increase, we could detect a substantial change 

of the strength of interaction between this caddisfly and the other shredders. 

Final remarks 

The idea that manipulative field experiments allow revealed community level 

dynamics, reducing confounding effects, is corroborated by our study. In spite of the 

absence of significant changes in shredder variability patterns due to warming, it is clear 

that there is a positive relationship between A. laureatus and other shredders. 

Significant changes occurred at leaf litter decomposition rate, either by the presence of 

A. laureatus as by elevated temperature. The decrease in decomposition rate recorded at 

elevated temperature can result from inhibition of A. laureatus activity, and therefore 

the lack of facilitation for other shredders. This may suggest a change in interspecific 

relationships established on those leaf pack assemblages. We can point out a shift of 

dominance of A. laureatus to other shredders with the increase of temperature through 

the decomposition process. 

 In this work I addressed three important features to understand the potential effect 

of global warming: changes in community structure and composition, biological 

interactions and ecosystem processing. I found stronger differences on the last two 

aspects, suggesting that they are more sensitive to the increase in temperature than 

structural community attributes. I suggest that understanding the susceptibility of 

biological interactions to increased water temperature may give important clues to make 

better predictions on stream ecosystems changes under global warming scenarios and 

may constitute an important tool for remediation procedures.  
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The species richness of each functional feeding group was compared with a 

three-way-ANOVA (temperature, presence of A. laureatus and time categorical 

variables). When functional feeding groups were tested separately, we found that higher 

species richness at the elevated stream side were due to predators (temperature: Tukey 

HSD, p= 0.04) and deposit feeders (temperature x presence of A. laureatus: NoLimnA 

is significant lower than LimnE and NoLimnE, Tukey HSD, p ≤ 0.002 and p ≤ 0.03 

respectively) (Table 5, Fig. 9). 

 

Table 5 Summary table for the three-way-ANOVA performed on functional feeding groups richness, associated 
with oak litter incubated in the ambient or elevated side stream, in the presence or absence of A. laureatus for 42 
days. p value ≤ 0.05 indicate statistical differences among treatments. 

 

 
 

Fig. 9 Deposit feeder richness (mean ± SE) associated with oak leaf litter 
incubated in the ambient (A) and elevated (E) stream side, in the presence 
(Limn) and absence (NoLimn) of A. laureatus for 42d. Different letters indicate 
statistical differences among treatments (ANCOVA followed by Tukey HSD, p ≤ 
0.05). 
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df F p 

 
df F p 

 
df F p 

 
df F p 

 
df F p 

3-way-ANOVA                    
   Intercept 1 172.65 <0.01  1 48.72 <0.01  1 26.25 <0.01  1 9.00 <0.01  1 106.11 <0.01 
   Presence shredder 1 0.15 0.70  1 0.09 0.76  1 0.47 0.50  1 0.25 0.62  1 0.18 0.67 
   Temperature 1 1.38 0.25 

 
1 4.51 0.04 

 
1 0.00 1.00 

 
1 2.25 0.14 

 
1 11.79 <0.01 

   Time 2 0.18 0.84  2 3.18 0.06  2 1.00 0.38  2 0.81 0.46  2 1.11 0.35 
   Presence shredder*temperature 1 0.04 0.85  1 2.30 0.14  1 0.12 0.74  1 0.00 1.00  1 4.61 0.04 
   Presence shredder*time 2 1.10 0.35  2 0.17 0.85  2 1.71 0.20  2 0.24 0.79  2 0.54 0.59 
   Temperature*time 2 0.81 0.46  2 2.24 0.13  2 1.00 0.38  2 0.81 0.46  2 0.96 0.39 
  Presence shredder*temperature*time 2 0.15 0.86 

 
2 0.48 0.62 

 
2 0.11 0.90 

 
2 0.81 0.46 

 
2 0.54 0.59 

   Error 28    28    28    28    28   
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