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Doxorubicin (DOX) is a potent and broad-spectrum anthracycline with 

antineoplastic properties. However, the use of this drug is limited due to a dose-

dependent and cumulative myocardial toxicity that devolps to cardiomyopathy. DOX-

induced cardiotoxicity is multifactorial, with increased reactive oxygen species 

production, which ultimately results in cardiomyocyte dysfunction and apoptosis, being 

hailed as one of the main mechanisms to justify DOX cardiotoxicity. p66Shc protein 

has been described for its role as a stress response for increased levels of reactive 

oxygen species (ROS). When oxidative stress increases, p66Shc is translocated to 

mitochondria promoting higher levels of ROS and causing cell death.  

 In the present study, we aimed to investigate whether p66Shc signaling is 

activated during DOX treatment of the cardiomyoblast cell line H9c2 and whether the 

transcriptional factor FoxO3a, reported to transcriptionally activate target genes 

responsible for apoptosis and cell cycle arrest, is also involved in the activated redox 

pathway. Our results demonstrate that after 24h of incubation with DOX, there is an up-

regulation of p66Shc protein, although unexpectedly, a decreased ratio between the 

serine 36-phosphorylated form and total p66Shc was measured.  Our results also 

suggest a physical involvement of p66Shc and FoxO3a that increases upon DOX 

treatment and FoxO3a translocation to the nucleus, leading to the up-regulation of 

several proteins involved in DOX cell death including superoxide dismutase-2, p53 and 

Bim. Hispidin, a PKC β inhibitor, was used in the present study to block DOX toxicity 

on H9c2 cells, although per se it caused already some cytotoxicity. The results suggest 

that p66Shc signaling may have a role in the activation of DOX stress/toxicity responses 

after H9c2 cell treatment and that selective inhibition of this pathway may be a 
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promising therapeutic approach, as well as a good framework to investigate the 

persistent DOX cardiotoxicity, an hallmark of this anthracyclin. 

Keywords: Cardiotoxicity, Doxorubicin, FoxO3a, H9c2 rat cardiomyoblasts, 

p66Shc.  
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Doxorrubicina (DOX) é um composto antracíclico com propriedades 

anticancerígenas. Contudo, o uso deste composto é limitado devido a uma 

toxicidade cumulativa e dependente da dose que afecta o miocárdio e se manifesta 

como cardiomiopatia. A toxicidade induzida pela DOX é multifactorial e um dos 

principais mecanismos para explicar essa mesma toxicidade baseia-se no aumento 

de produção de espécies reactivas de oxigénio, que conduz à disfunção dos 

cardiomiócitos e apoptose. A proteína p66Shc tem sido descrita pelo seu papel ao 

ao nivel da resposta ao stresse em relação ao aumento dos níveis espécies reactivas 

de oxigénio. Quando ocorre um aumento do stresse oxidativo, a p66Shc é 

translocada para a mitocôndria contribuindo para aumentar ainda mais a produção 

de espécies reactivas de oxigénio e, consequente morte celular.  

No presente estudo, tivemos como objectivo investigar se a p66Shc é 

activada durante o tratamento com DOX da linha celular derivada de 

cardiomioblastos H9c2 de rato e, se o fator de transcrição FoxO3a, descrito por 

induzir a transcrição de genes envolvidos em apoptose e na paragem do ciclo 

celular, também está relacionado com a via redox que poderá estar a ser activada. 

Os nossos resultados demonstram uma activação da p66Shc após 24 horas de 

tratamento com DOX, apesar de contrariamente ao esperado, ter-se observado uma 

diminuição na razão entre a p66Shc fosforilada na serina 36 e a p66Shc total. Os 

nossos resultados também sugerem uma interacção entre a p66Shc e o FoxO3a, cuja 

translocaçao para o núcleo aumenta após tratamento com DOX, conduzindo à 

sobreexpressao de várias proteínas envolvidas na morte celular induzida pela DOX 

que incluem, a superóxido dismutase-2, p53 e Bim. Apesar de por si só provocar 

alguma citotoxicidade, o composto Hispidina, um inibidor da PKC β, foi usado no 
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presente estudo de forma a bloquear a toxicidade induzida pela DOX nas células 

H9c2. Os resultados sugerem que a sinalização da p66Shc pode ter um papel na 

activação da resposta ao stresse/toxicidade induzida pela DOX após tratamento das 

H9c2 e a inibição selectiva desta via pode ser importante para a terapia, bem como 

base para investigar a persistência cardiotóxica induzida pela DOX, que é um efeito 

secundário característico desta antraciclina.  

Palavras-chave: Cardiotoxicidade, Doxorubicina, FoxO3a, cardiomioblastos H9c2 

de rato, p66Shc. 
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1.1. Doxorubicin as a Chemotherapeutic Agent 

Doxorubicin (DOX) is a potent and broad-spectrum anthracyline antibiotic with 

antineoplastic properties that was first isolated by aerobic fermentation of the pigment-

producing Streptomyces peucetius caesius. This technique has been performed through 

solvent extraction, followed by chromatographic purification and crystallization as an 

hydrochloride form (Arcamone et al., 1969). Similarly to others anthracyclines, DOX 

has a four-ring 7,8,9,10-tetrahydrotetracene-5,12-quinone structure (figure 1) in which 

the tetracycline ring system represents the chromosphore and includes a quinone 

structure (Zunino and Capranico, 1990, Minotti et al., 2004). When excited at 500 nm 

DOX presents two emission peaks (550 nm and 590 nm), which provides it with 

intrinsic fluorescence.  

 

 

  

 

 

Figure 1. Chemical structure of Doxorubicin (adapted from Wallace, 2007). 

 

DOX is an analogue of Daunorubicin (DAN), a glycoside formed by a tetracycline 

quinone to which a daunosamine sugar residue is bound. Despite this minor difference, 

important consequences for the activity of both compounds exist, with DOX being very 

effective for the treatment of breast cancer, childhood solid tumors, soft tissue 

sarcomas, and aggressive lymphomas, while DAN shows activity against acute 

lymphoblastic or myeloblastic leukemias (Weiss, 1992). 
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DOX has become one of the most widely prescribed antineoplastic compounds due 

to its cytostatic biological activity, as well as its long half-life in the body and lipophilic  

properties (Weiss, 1992). Cytotoxicity increases exponentially with both drug 

concentration and time of exposure. Children and old adults are particularly susceptible 

to the cardiotoxic effects of anthracycline chemotherapy, and there is no safe 

concentration range for anthracycline treatment in this population (Zhang et al., 2009). 

Currently, DOX is clinically used for the treatment of several types of cancer such 

as breast, ovarian, transitional cell bladder, bronchogenic lung, thyroid and gastric 

cancers, as well as soft tissue sarcoma, osteogenic sarcomas, neuroblastoma, Wilms’ 

tumor, malignant lymphoma (Hodgkin’s and non-Hodgkin’s), acute myeloblastic 

leukemia, acute lymphoblastic leukemia and Kaposi’s sarcoma related to acquired 

immunodeficiency syndrome (AIDS) (Mross et al., 2006).  

Despite extensive clinical utilization, the action mechanisms of anthracyclines in 

cancer cells remain a matter of controversy and different mechanisms have been 

proposed. Drug–cell membrane interactions, DNA intercalation, topoisomerase 

interaction, generation of free radicals and apoptosis are some of the well known 

mechanisms by which DOX has been proposed to act (Mross et al., 2006). These 

different mechanisms are represented in Figure 2.  

DOX intercalates into double-stranded DNA, covalent binding to DNA or 

regulatory proteins (Leonhard et al., 1992). Doxorubicin is rapidly taken up into the 

nucleus of cells where it binds with high affinity to DNA through classical intercalation 

between base pairs. The structure of the planar anthracycline ring of DOX is capable of 

intercalating into the DNA double helix in a reversible way, interfering with the correct 

reading fidelity of both DNA and RNA polymerases. Indeed, hydrophobic interactions, 

hydrogen bonds to DNA phosphate groups and the insertion of the daunosamine sugar 
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into the DNA small groove with an affinity to the CpG-complex and transcriptional 

active sites leads to a stable drug-DNA-complex with a long half-life (Quigley et al., 

1980). 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of possible DOX mechanisms as an antineoplastic 

agent. Doxorubicin can interact with cell membranes, mitochondria and  DNA. DOX can 

interact with cell membrane and it is accumulated in the nucleus where it binds with high 

affinity to DNA, inhibiting interactions of DNA transcription factors and RNA polymerase. 

DOX also acts as a topoisomerase II poison where it perturbs the re-ligation step of 

topoisomerase II. DOX can stimulate ROS production in mitochondria and consequently, 

disrupt the function of this organelle.  

 

Although DOX may exert its anticancer activity through DNA intercalation, this 

mechanism is not sufficient to explain the whole spectra of different actions of the 

anthracyclines. The planar aglycone, without the daunosamine sugar,  intercalates with 

DNA as well, but no antitumor activity was found (Dessypris et al., 1986). DOX also 

interacts as a topoisomerase II poison since, once intercalated into DNA, the drug 

disturbs the re-ligation step of topoisomerase II resulting in the formation of the ternary 

drug-DNA-topoisomerase II ‘cleavable complex’ (Cutts et al., 2005). There are many 

early reports of DOX-DNA adducts formed by enzymatic, microsomal or cellular 

activation of the drug and this was enhanced in tumor cells when treated with pre-

activated DOX (Cummings et al., 1991). It is still unclear if the potent antitumor effect 
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is a direct consequence of the drug-DNA interaction in vivo but it appears that drug 

specificity in addition to DNA binding is important for the antitumor activity of 

antineoplastic drugs (Tewey et al., 1984). 

 

1.2. Doxorubicin-Induced Cardiac Toxicity 

DOX cardiotoxicity is expressed as a dose-dependent and cumulative 

cardiomyopathy and ultimately in high mortality risk. This risk of cardiotoxicity is 

higher in individuals with a previous history of cardiomyopathy, or mediastinal 

irradiation with previous heart disease (Allen, 1992; Papkovsky, 2004). In fact, drug 

related myocardial toxicity may develop even years after the administration (Bristow et 

al., 1981). DOX causes numerous morphological alterations in cardiac-like cells, 

including loss of myofibrils, distension of the sarcoplasmic reticulum, lamin 

degradation, vacuolization of the cytoplasm and nuclear swelling, as well as 

mitochondrial depolarization and fragmentation of mitochondrial filaments, besides 

causing membrane blebbing, a morphological hallmark of apoptosis (Sardao et al., 

2009b). As described before, the mechanisms of DOX cardiotoxicity are dose-

dependent and a redox cycling mechanism appears to be very important in the context 

of DOX cardiac toxicity. Initially, a univalent quinone reduction to the corresponding 

semiquinone free radical occurs, which ultimately involves three different pathways: 

reduction to the corresponding hydroquinone, covalent DNA adducts or proteins 

production, or even the transfer of the unpaired electron to another electron acceptor, 

completing a reduction/oxidation DOX cycle (Monti et al., 1995). This redox cycle 

generates reactive free radical species, a possibly primary mechanism for the toxicity 

observed with this agent and with other anthracyclines (Lee et al., 1991). 
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One primary effect of DOX on mitochondrial bioenergetics is an interference with 

oxidative phosphorylation and inhibition of ATP synthesis (Oliveira and Wallace, 

2006). Free radical generated from DOX redox-cycling on mitochondrial NADH 

dehydrogenase (Complex I) are thought to be responsible for many of the secondary 

effects of DOX, including lipid peroxidation, the oxidation of both proteins and DNA, 

and the depletion of glutathione and pyridine nucleotide reducing equivalents in the cell 

(Davies and Doroshow, 1986). 

In the presence of molecular oxygen and a proper electron donor (complex I in 

mitochondria), DOX forms semiquinone radicals which are rapidly reoxidized in a 

process which generates superoxide and other reactive oxygen species. DOX is then 

available to participate in further reduction/oxidation cycles (Davies and Doroshow, 

1986; Fang et al., 2007). Free radicals resulting from DOX redox cycle are thought to 

be responsible for many of the secondary effects, including lipid peroxidation, the 

oxidation of both proteins and DNA, the depletion of glutathione and pyridine 

nucleotides. Since DOX redox cycling occurs primarily in mitochondria, disruption of 

mitochondrial function is the main mechanism proposed to explain DOX cardiotoxicity 

(Doroshow and Davies, 1986; Wallace, 2007). Most of these cellular events can 

contribute to cardiomyocyte dysfunction and, in some cases death, which has been 

proposed to be involved in DOX-induced cardiomyopathy (Kumar et al., 2001, 

Mizutani et al., 2005, Zhang et al., 2009). 

DNA damage and signaling pathways involving the tumor suppressor p53 and 

Bax translocation to mitochondria are early events in DOX-induced cardiac cell death 

(Sardao et al., 2009a). Shizukuda et al., (2005) have also shown that disruption of the 

p53 gene reduces DOX-induced cardiotoxicity and attenuates the decline of left 

ventricle systolic function, apoptosis of cardiac myocytes, and the depletion of 
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myocardial glutathione and Cu/Zn superoxide dismutase. p53 protein can also act 

directly as a pro-apoptotic protein. Once translocated to the mitothondria, p53 can 

activate the mitochondrial dependent pathway of apoptosis, which occurs independently 

of new gene transcription or protein synthesis (Liu et al., 2008a).  

Since mitochondria play a vital role on the energy production of cells, these 

organelles are quite abundant in cardiac tissue (up to 35% of the cell volume) since 

energy supply must be kept high to sustain contractile function (Lebrecht et al., 2005; 

Tokarska-Schlattner et al., 2006). As described above, DOX interferes with cardiac 

oxidative phosphorylation, including inhibition of both NADH and succinate oxidase of 

heart mitochondria in vitro and in vivo (Santos et al., 2002). DOX is also a potent 

inhibitor of the Mg-dependent FoF1-ATPase of heart and skeletal muscle mitochondria 

(Davies and Doroshow, 1986, Boucek et al., 1987). Indeed, in vivo studies shown that 

DOX cardiotoxicity decreases in the presence of radical scavengers supporting that 

oxidative stress is important in this mechanism (Jung and Reszka, 2001). 

 DOX-induced oxidative stress can also be a part of the mechanism of increased 

mitochondrial permeability transition pore (MPTP) which has been implicated in 

mitochondrial and cell dysfunction (Halestrap et al., 1997). 
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Figure 3. DOX effect on mitochondrial calcium homeostasis and functionality. DOX 

induces cardiac mitochondrial calcium deregulation due an over-generation of ROS. 

Disruption of mitochondrial calcium homeostasis by DOX is also associated with MPTP. 

The opening of MPTP consequently releases pro apoptotic factors, promoting cell death. 

 

It has been reported that DOX inhibits the net accumulation of calcium by 

isolated cardiac mitochondria and stimulates the release of calcium from the 

mitochondrial matrix (Sokolove and Shinaberry, 1988; Pereira et al., 2009). However, 

Cyclosporin A (CsA) reverses that decrease in vitro in mitochondrial calcium-loading 

capacity which indicates that the effect is due to an increased sensitivity to induction of 

MPTP, since that compound is a specific inhibitor of the MPTP (Broekemeier and 

Pfeiffer et al., 1989). The adenine nucleotide translocator (ANT), an important 

component of the mitochondrial machinery of ATP synthesis because of its intrinsic 

activity of adenine nucleotide translocase, is also proposed to be a structural or at least 

regulatory component of the MPTP (Vieira et al., 2000). ANT has a dual role: one 

acting in both regulation of mitochondrial physiology and a second one as MPTP 

inductor. Induction of MPTP after DOX treatment occurs through increased oxidation 

of vicial thiol groups in specific mitochondrial protein (Oliveira et al., 2006) and/or 

through disturbing the adenine nucleotide translocate (ANT) activity and expression in 
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the heart. In fact, the decrease in the amount of ANT protein in DOX-treated rats 

(Oliveira and Wallace, 2006) may be a good explanation for both increased MPTP 

induction and inhibition of respiration. 

DOX toxicity persists during an extended period of time, although this 

phenomenon still unexplored in the literature (Steinherz et al., 2001). Some studies in 

rodent model have reported deleterious alterations in cardiac mitochondrial function, 

including decreased calcium loading capacity and gene expression profile (Zhou et al., 

2001; Berthiaume et al., 2007; Richard et al., 2011) supporting the notion that DOX 

cardiotoxicity in the myocardium is persistent and irreversible. Indeed, long-term 

persistence of DOX cardiotoxicity has a large impact in survivors of childhood cancer 

since it may lead to the appearance of later cardiac alterations during stressful events, 

including pregnancy, (Bar et al., 2003) and may disturb the ability to perform physical 

activity (Johnson et al., 1997). However, the mechanisms for this persistent toxicity are 

still unknown. 

 

1.3. Prevention of Doxorubicin-Induced Cardiotoxicity 

Since ROS overgeneration has been considered a primary mechanism of DOX-

induced cardiotoxicity, clinical approaches were designed to attenuate or prevent this 

cardiotoxicity, consisting mainly of antioxidants and iron chelators. In fact, several 

compounds with antioxidant properties have been investigated in vitro and in vivo with 

some positive outcomes (resumed in figure 4). 
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Figure 4. Potential strategies to prevent DOX-induced cardiotoxicity. Some of the 

strategies to reduced/prevent DOX side effects, as well as cardiomyopathy includes the use 

of anti-oxidant and free radical scavengers, inhibition of increased calcium concentrations, 

inhibition of p53, delivery systems for DOX administration, and DOX prodrugs/derivatives 

(Adapted from Zhang et al., 2009).  

 

Carvedilol is clinically used for the treatment of congestive heart failure, mild 

to moderate hypertension, and myocardial infarction (Fazio et al., 1998). This 

compound is an adrenergic blocking agent with strong antioxidant properties and 

has been observed to protect against DOX-induced mitochondrial-mediated 

cardiomyopathy. Carvedilol antioxidant effect is based on its ability to chelate free 

iron and direct scavenging activity (Oettl et al., 2001; Oliveira et al., 2004, 

Spallarossa et al.,2005). Carvedilol also removes iron from its complex with DOX, 

and thereby reducing hydroxyl radicals and superoxide generation (Lebrecht et al., 

2007). Dexrazoxane, the only cardioprotective drug currently available clinically 

against DOX toxicity, is an intracellular iron chelator which has been proved to 

protect myocardial mitochondria from genetic and functional lesions induced by 
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DOX. Resveratrol, a naturally occurring phytoalexin, can act as an intracellular 

antioxidant and anti-inflammatory agent. Studies with this compound  showed an 

increase in the cellular levels of antioxidant function by directly scavenging 

reactive oxygen radicals, preventing the formation of cellular reactive oxygen, 

and/or increasing cellular detoxification mechanisms (Oktem et al., 2010). In 

particular, RES has been shown to protect against DOX-induced oxidative stress 

through changes in mitochondrial function, mediated by Sirt1 pathway leading to 

cardiac cell survival (Danz et al., 2009, Zhang et al., 2011). Some cardioprotective 

effects have been attributed to opioids, particularly morphine, which has similar 

effects to a phenomenon known as Ischemic Preconditioning. It has been clearly 

shown that opioids exert protective effect in the heart and in other organs against 

stress conditions through specific opioid receptors. Morphine was able to protect 

heart against the most unwanted effects of DOX. Kelishomi et al., (2008) have 

demonstrated that morphine exert a very positive protective effect on a high dose of 

DOX. Sharma et al., (2010) reported that Rosuvastatin pretreatment for 30 days 

significantly decreases cardiac tissuecaspase-3 activity, DNA fragmentation, and 

decreases serum lactate dehydrogenase and lipid levels, along with reversal of 

hemodynamic changes induced by DOX. 

Similarly, flavonoids and phenolic acids also seem to have a protective role 

against DOX-induced cardiotoxicity. Overall, luteolin-7-O-b-D-glucopyranoside 

showed cardioprotective effect by inhibiting the DOX-induced intracellular level of 

ROS and calcium overload (Wang et al., 2010). Pifithrin-alpha, a p53 inhibitor, was 

found to be a protective agent against the cardiotoxic effects induced by DOX 

administration, confirming DNA damage as an early event in cardiomyocyte death 

(Liu et al., 2004; Sardão et al., 2009a). 
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Several other compounds have been studied in order to prevent 

cardiotoxicity and new approaches are continually being proposed. Recently, 

formulations of liposome-encapsulated DOX have been approved for the treatment 

of tumors resistant to conventional anticancer drugs. Nanoparticles, prodrugs and 

DOX derivatives are also promising vehicles for antitumor drug delivery. 

Increasing DOX intracellular accumulation, as well as the therapeutic efficacy 

reduces the cytotoxic effect on off-target cells (Jiang et al., 2011; Ren et al., 2011; 

Shieh et al., 2011). 

 L-carnitine is a vitamin-like compound which has been successfully used in several 

forms of cardiomyopathy (Sayed-Ahmed et al., 1999). L-carnitine inhibits DOX-

induced ROS generation and NADPH oxidase activation, also reducing cleaved 

caspase-3 levels and cytosolic cytochrome c, and increases Bcl-xL, expression, 

protecting cardiomyocytes from DOX-induced apoptosis (Chao et al., 2011).Currently, 

other important mechanisms to protect the heart from DOX toxicity have been 

considered. Caloric restriction (CR), physical exercise, and endogenous neuropeptides 

are some of them. CR induces a general attenuation of oxidative damage, inflammation 

and apoptosis, through interactions with multiple signaling  pathways, including 

activation of AMPK, insulin-like growth factor 1 (IGF-1), Akt and mTOR (Chen et al., 

2011). Physical exercise in its various forms has been shown to be an effective 

intervention and daily exercise seems to antagonize some harmful consequences of 

DOX treatment (Ascensao et al., 2011; Hydock et al., 2011). Pituitary adenylate 

cyclase-activating polypeptide (PACAP) is a widely distributed endogenous 

neuropeptide, also occurring in the cardiovascular system. This neuropeptide inhibits 

cardiac fibrosis and protects cardiomyocytes against oxidative stress and in vitro 
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ischemia/reperfusion. PACAP treatment also reduces caspase-3 activation and increased 

the level of phospho-Bad (Racz et al., 2010). 

 Future research should continually improve the essential mechanisms and 

develop new therapeutic strategies in order to prevent the main side effects from 

doxorubicin administration, as well as premature cardiomyocyte death in pediatric 

patients who need anthracycline treatment. 

 

1.4.  Cell Death Signaling Pathways 

Apoptosis is a highly conserved mechanism of programmed cell death (PCD) that 

was first described in 1972 by Currie and colleagues (Kerr et al., 1972). PDC is an 

essential process for the elimination of damaged, unwanted or unnecessary cells not 

only during organism development and homeostasis, but also to maintain the balance 

between cell proliferation and differentiation.  Contrary to other forms of cell death, 

such as necrosis, apoptosis involves the activation of a signaling cascade that causes 

cells to maintain membrane integrity through most of the death process. Characteristic 

apoptotic features include cell membrane blebbing and shrinkage, formation of 

apoptotic bodies, nuclear envelope breakdown, caspase activation, phosphatidylserine 

present on the plasma membrane outer leaflet, as well as chromatin condensation and 

DNA fragmentation (Savill and Fadok et al., 2000). This process is tightly controlled by 

a complex regulatory network. However, failure of this regulation may lead to 

pathological disorders such as developmental defects, autoimmune diseases, 

neurodegeneration or even cancer (Thompson, 1995; Hanahan and Weinberg et al., 

2000). 

There are two main major apoptotic pathways that can be triggered through a 

wide range of stimuli: the extrinsic pathway (death receptor pathway) or the intrinsic 
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pathway (the mitochondrial pathway) as pictured in Figure 5. These two apoptotic 

signaling pathways are evolutionally conserved, but the precise molecular events 

involved in the regulation of caspase enzymatic cascades are often specific to cell type 

and death stimulus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Apoptotic signaling pathways. Apoptosis can result from  activation of two 

biochemical cascades: the extrinsic (death receptor) and the intrinsic (the mitochondrial 

pathway) pathways. The extracellular apoptotic pathway is initiated at the plasma 

membrane by specific transmembrane receptors, whereas mitochondrial apoptosis is 

triggered by intracellular stimuli such as Ca
2+

 overload and high production of ROS. In 

both, initiator caspases (caspase-8 and -9, respectively) are activated and can catalyze the 

proteolytic maturation of executioner caspases, such as caspase-7 and -3. Mitochondrial 

membrane permeabilization is an important event in mitochondrial pathway by activating 

both caspase-dependent and independent mechanisms that eventually execute cell death. 

After MMP, the mitochondrial intermembrane space protein cytochrome c and other pro-

apoptotic factors are released into the cytosol. Cyt c interacts with the adaptor protein 

apoptotic peptidase activating factor 1 (APAF-1), as well as with procaspase-9 to form the 

apoptosome. This sequentially activates caspase-9 and executioner caspases, such as 

caspase-3, in a process known as the caspase cascade. One of the major links between 

extrinsic and mitochondrial apoptosis is provided by the BCL-2 homology domain 3 

(BH3)-only protein BID, which can promote MMP following caspase-8-mediated cleavage. 

Endoplasmic reticulum (ER) also promotes the activation of caspase-12 with subsequent 

activation of caspase-9 and -3 promoting cell death (adapted from Hotchkiss et al. 2006).  
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Caspases are cysteine-dependent aspartate-directed proteases responsible for 

propagating the apoptotic signaling cascade. Apoptotic caspases comprise a protein 

family synthesized as inactive zymogens containing a prodomain followed by p20 and 

p10 subunits, where zymogens can be cleaved during apoptosis. Based on their 

function, caspases are classified into three groups: Inflammatory caspases (involved in 

inflammation and not in apoptosis), apoptotic initiator caspases (with long prodomains 

containing either a death effector domain (DED) (caspase-8 and -10) or a caspase 

activation and recruitment domain (CARD) (caspase-2, -9), and apoptotic effector 

caspases (executioner class known as caspase-3, -6,-7) (Stennicke and Salvesen, 2000). 

 

          1.4.1. Extrinsic Apoptotic Pathways 

The extrinsic pathway (receptor-mediated death pathway) is modulated by cell 

surface death receptors, such as Fas, tumor necrosis factor receptor (TNFR), or TRAIL 

receptors by their respective ligands. Death receptor ligands characteristically initiate 

signaling via receptor oligomerization, which in turn results in the recruitment of 

specialized adaptor proteins and activation of caspase cascades. Binding of FasL 

induces trimerization, and recruitment of the adaptor protein Fas-associated death 

domain and caspase-8, forming a death-inducing signaling complex (DISC). 

Autoactivation of caspase-8 at the DISC can directly cleave and activate caspase-3, or 

alternatively, it can cleave Bid, a pro-apoptotic Bcl-2 family protein. When cleaved, 

tBid translocates to mitochondria, inducing cytochrome c release and activation of 

effector caspases, including caspase-6, -3 and -7 in order to carry out the apoptotic cell 

death program. FasL and TNF-α may also activate JNK via ASK1/MKK7, inhibiting 

Bcl-2 and promoting apoptosis (Jin and El-Deiry, 2005; Van Herreweghe et al., 2010). 
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Although cardiomyocytes are usually resistant to Fas-induced apoptosis, recently 

studies indicate that cardiomyocyte apoptosis caused by DOX can be executed through 

a Fas mediated pathway. Similarly, Kalivendi et al., 2005) showed that DOX treatment 

of rat cardiomyocytes increased mitochondrial ROS production, activated the 

calcium/calcineurin signaling pathway, and consequently activated nuclear factor-

activated T cell-4 (NFAT4), leading to up-regulation of Fas/FasL. 

 

  1.4.2. Intrinsic Apoptotic Pathways 

The intrinsic pathway is initiated following intrinsic signals including DNA 

damage induced by irradiation or chemicals, and exposure to certain chemotherapeutic 

agents. This pathway is characterized by permeabilization of the outer mitochondrial 

membrane (OMM), which leads to the release of pro-apoptotic factors from the IMS 

into the cytosol. Mitochondrial integrity and the intrinsic pathway are controlled by the 

evolutionarily conserved B-cell lymphoma-2 (BCL-2) protein family. The pro-apoptotic 

Bcl-2 proteins, Bad, Bid, Bax and Bim translocate to mitochondria following death 

stimuli, promoting the release of cytochrome c to the cytoplasm. Consequently, 

cytosolic cytochrome c binds to apoptosis protease-activating factor 1 (APAF-1) and 

procaspase-9, generating an intracellular DISC-like complex known as “apoptosome”, 

where caspase-9 is activated, and subsequently process caspase-3. The two pathways of 

apoptosis, extrinsic/death receptor and intrinsic/mitochondrial, converge on caspase-3, 

and subsequently on other proteases and nucleases conducting the terminal events of 

programmed cell death (Jin and El-Deiry et al., 2005; Parsons and Green, 2010).  

As described in Figure 6, cytochrome c is required for formation of the 

apoptosome and activation of caspase-9, thus, without MOMP and the release of 

cytochrome c from the IMS, caspase-9 activation and subsequent activation of 
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downstream effector caspases does not occur. However, another protein, second 

mitochondria-derived activator of caspase/direct IAP-binding protein with low pI 

(Smac/DIABLO) also contributes to caspase activation by neutralizing inhibitor of 

apoptosis proteins (IAPs) which binds to and prevents caspase-9 activity, as well as 

their downstream effectors (Brenner and Mak et al., 2009). Following an apoptotic 

stimuli, the effector molecules Bak and Bax undergo conformational changes that 

trigger the formation of homo-oligomers in the OMM. Bak and Bax homo-oligomers 

form pores in the OMM through where IMS proteins, including  cytochrome c, 

SMAC/DIABLO, the Apoptosis-Inducing Factor (AIF), Endonuclease G (EndoG) and 

Omi/HtraA2 (Pradelli et al., 2010), translocate to the cytosol and initiate the apoptotic 

signaling process. Besides the translocation during apoptosis, translocation and 

oligomerization of Bax are central events. However, the mechanism for recruitment of 

Bax to intracellular organelles is not fully understood. Activated following DNA 

damage, p53 induces the transcription of Bax, Noxa and Puma. Emerging experimental 

evidence has shown that BH3-only proteins, such as Bid and Bim, could activate Bax 

directly or indirectly (Liu et al., 2011).  
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Figure 6. The Mitochondrial role in apoptosis. ROS and calcium overload are two 

possible apoptotic stimuli that can lead to mitochondrial membrane permeabilization 

(MMP). After MMP, the mitochondrial intermembrane space (IMS) protein 

cytochrome c (Cyt c) and other pro-apoptotic factors such as Apoptosis Inducing Factor 

(AIF) and Endonuclease G (EndoG) are released into the cytosol. AIF and EndoG can 

trigger cell death without activating the caspase cascade. On the other hand, cytochrome c 

interacts with the adaptor protein apoptotic peptidase activating factor 1 (APAF-1), as well 

as with procaspase-9 to form the apoptosome. This sequentially activates caspase-9 and 

executioner caspases, such as caspase-3, ending with cell death. Second mitochondria-

derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI 

(Smac/DIABLO) is also a proapoptogenic mitochondrial protein that is released to the 

cytosol in response to diverse apoptotic stimuli. In the cytosol, Smac/DIABLO interacts 

and antagonizes inhibitors of apoptosis proteins (IAPs), allowing the activation of caspases 

and consequent apoptosis. 

 

Mitochondrial permeability mechanisms, as well as release of cytochrome c 

during apoptosis are not yet completely understood. However, Bcl-xl, Bcl-2, and Bax  

seem to also interact with the voltage-dependent anion (VDAC), which affect or 

regulate Cyt c release. 

Several studies have shown that DOX-induced cardiomyocyte apoptosis is 

associated with increased expression and activation of p53 tumor suppressor protein. 
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DNA lesions induced by ROS or directly by DOX activated ERK1/2, followed by 

increased phosphorylation of p53. p53 downstream genes such as Bax, are then 

expressed inducing the intrinsic apoptosis pathway (L'Ecuyer et al., 2006, Liu et al., 

2008b). 

 

       1.4.3. Caspase-Independent Mechanisms 

Intermembrane mitochondrial proteins, such as EndoG and AIF have been 

suggested as the main effectors in nuclear DNA fragmentation independently of caspase 

recruitment (Gupta, 2001). EndoG is compartmentalized in the IMS of healthy cells 

(Lee et al., 2005). Mammalian EndoG is synthesized as an inactive 32 kDa pro-peptide. 

The mitochondrial signal peptide is cleaved off by an unknown proteinase upon 

entering the mitochondria and the mature active 27 kDa EndoG can be released from 

mitochondria during apoptosis (Lee et al., 2005). When released from mitochondria, 

this protein migrates to the nucleus where it attacks nuclear DNA being another protein 

with an important function in both cell life and death (Burhans and Weinberger, 2007).  

AIF is a flavoprotein with a molecular mass of 57 kDa consisting of three 

structural domains: FAD-binding domain, NAD-binding domain and C-terminal 

domain. This protein has NADH oxidase activity and is normally contained in the 

mitochondrial intermembrane space or loosely associated with the inner mitochondrial 

membrane (Susin et al., 1999; Sevrioukova, 2011). AIF was one of the first proteins 

shown to be released from mitochondria during apoptosis. AIF translocation from 

mitochondria into nucleus promotes apoptosis and seems to play a crucial role during 

caspase-independent apoptotic cell death (Cande et al., 2004). AIF can translocate to the 

cytoplasm with the thought MPTP complex (Daugas et al., 2000) or through pores 

formed by pro-apoptotic Bcl-2 family members Bax, Bak, and Bid (Landshamer et 
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al.,2008). When released from mitochondria, AIF acts as death effector, migrating to 

the nucleus in a PARP-dependent manner, inducing chromatin condensation and large-

scale DNA fragmentation resulting in 50 kbp fragments in a caspase-independent 

manner, as seen in Figure 7 (Susin et al., 2000).  

 

 

 

 

 

 

 

 
 

 

 

Figure 7. Caspase-independent mechanisms. The pro-apoptotic proteins AIF and EndoG 

are released from mitochondria due an apoptotic stimulus (ROS or DOX, for example). 

Translocation from mitochondria to the nucleus promotes apoptosis and seems to play a 

crucial role in apoptotic cell death. Once in the nucleus, AIF and EndoG induce chromatin 

condensation and large-scale DNA fragmentation, increasing ROS production. Due to DNA 

fragmentation, p53 can be activated and act as a transcription factor promoting an increase 

in Bax and Bak expression. Bax/Bak is translocated to mitochondrial membranes producing 

Bax clusters, which interfere with mitochondrial integrity and cell death. 

 

Two isoforms have been described for their role in AIF translocation: PARP-1, 

whose activation leads to excessive consumption of cytoplasmic NAD and AMP 

generation, contributing to mitochondrial depolarization and, consequently, 

translocation of AIF (Formentini et al., 2009; Vosler et al., 2009), as well as PARP-2, 

that contributes to nuclear translocation of AIF via PAR accumulation (Li et al., 2010). 

However, none of the AIF effects can be prevented by addition of Z.VAD.fmk, a 
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caspase inhibitor, which can be used to confirm that AIF acts through caspase-

independent mechanism (Susin et al., 2000). 

 

   1.4.4. The Apoptotic Role of p66Shc 

Src homolog and collagen homolog proteins (Shc) are widely known to serve as 

adaptor proteins in receptor protein tyrosine kinase (RTK) signaling with three main 

isoforms: p66Shc, p45Shc and p52Shc.  p66Shc is a 66 kDa proto-oncogene, known as 

receptor tyrosine kinase signaling mediator and recently identified to be as sensor to 

oxidative stress-induced apoptosis and as a longevity protein in mammals 

(Ravichandran, 2001). This isoform is transcribed from a promoter in the first intron of 

Shc locus. It contains four functional domains, a SH2 domain (∼100 amino acids) at the 

COOH-terminal that mediates the formation of multiprotein complexes during signaling 

and a PTB binding domain, which is separated by a collagen homology (CH1) domain, 

enriched in proline and glycine residues and contains the essential tyrosine 

phosphorylation sites (Yoshida et al., 2004). This isoform also carries a cytochrome c-

binding region within the CH2-PTB domains which is primarily implicated in 

mitochondrial regulation of oxidative stress (figure 8) (Giorgio et al., 2005). 

 

 

 

 

 

 

 

 

Figure 8. Schematic organization of Shc protein. All the Shc isoforms contains three 

functional domains: a SH2 domain at the COOH-terminal, a PTB binding domain, which is 

separated by a collagen homology (CH1) domain. p66Shc also contains a CH2-PTB 

domain that can be phosphorylated on serine 36 (adapted from Yoshida et al., 2010).  
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Several hypotheses have been proposed in order to describe the signaling 

pathways involving p66Shc. One idea proposes that p66Shc is translocated to 

mitochondrial intermembrane space in response to oxidative stress promoted by the 

activation of the protein kinase C (PKC β), a critical regulator of cell proliferation, 

survival, and cell death. PKC β seems to induce the phosphorylation of p66Shc on Ser 

36 which is then recognized by the prolyl isomerase Pin1 that catalyzes its cis-trans 

isomerization. Subsequently, p66Shc is  dephosphorylated by type 2 protein 

serine/threonine phosphatase (PP2A) and imported in the mitochondria where it would 

bind to cytochrome c and act as a oxireductase, increasing ROS levels and promoting 

apoptosis (Figure 9) (reviewed in Raffaello and Rizzuto, 2011). ROS are not only the 

final result of the oxidative stress accumulated during aging, but they are believed to 

play a significant role regulating different signaling pathways.  

 

 

 

 

 

 

 

 

 

Figure 9. Protein p66Shc signaling pathway. Upon some cellular stress (ROS, Ca
2+

) PKC 

β is activated and phosphorylates p66Shc on Ser 36. This modification allows the 

recognition and the binding of Pin1 that isomerizes p66Shc. As a consequence, p66Shc is 

dephosphorylated by PPA2 and imported into mitochondria where it binds to cytochrome c 

and acts as an oxidoreductase. Thus, activation of p66Shc induces ROS overgeneration and 

ageing (adapted from Raffaello and Rizzuto, 2011). Nevertheless, more recent results 

appear to suggest that p66Shc does not neter the mitochondrial matrix. 
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More recent data appears to suggest that p66Shc does not enter mitochondria, 

remaining associated with the outer membrane, thus excluding interaction with 

cytochrome c in the IMS (Lebiedzinska et al., 2010; Wieckowski et al., 2009). 

p66Shc is primarily expressed in epithelial cells (Migliaccio et al., 1997), 

hematopoietic cell lines and peripheral blood lymphocytes, and its expression varies in 

breast (Stevenson and Frackelton, 1998, Jackson et al., 2000) and prostate cancer cell 

lines (Veeramani et al., 2008). The expression of these adaptor proteins, especially 

p66Shc, is regulated by steroid hormones that play a distinct role in the regulation of 

tumor development, cancer cell proliferation, progression, and metastatic processes of 

major types of cancers (Henderson and Feigelson, 2000). For example, there is a direct 

correlation between the protein level of p66Shc and prostate cancer cell proliferation, 

demonstrating the importance of p66Shc adaptor protein in the tumorigenicity of human 

prostate cancer (Lee et al., 2004, Veeramani et al., 2008). In ovarian carcinoma cell 

lines, p66Shc protein level positively correlates with ErbB-2 expression, a prognostic 

marker for ovarian cancer (Kumar et al., 2011). 

Accumulation of oxidative cellular damage caused by ROS is apparently an 

important component of ageing (Vigneron and Vousden, 2012). In agreement, 

mutations and deletions of both nuclear and mitochondrial DNA are common 

phenomena in aged mammals (Lee and Wei, 2007). The oxidative stress theory of 

ageing, from which the mitochondrial theory of ageing resulted, is based around the 

idea of a vicious cycle, in which somatic mutations of mitochondrial DNA (mtDNA) 

triggers respiratory chain dysfunction leading to increased ROS production and in turn 

to the accumulation of further mtDNA mutation (reviewed in Raffaello and Rizzuto, 

2011). It has been shown that mitochondria not only represent the major source of ROS 

production but are also the major targets of their damaging effects. One functional role 
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of Shc proteins is in regulation of redox signaling, thus playing a prominent role in 

oxidative stress-induced apoptosis and in life span.  Indeed, despite the fact that p66Shc 

expression decreases in mice with advanced age (Pinton and Rizzuto, 2008). However, 

the amount of p66Shc phosphorylated at Ser 36, significantly increases with age, 

resulting in higher free radical production and, subsequently accumulation of oxidative 

damages (Lebiedzinska et al., 2009).  

On the other hand, Zhang et al., (2010) have found overexpression of p66Shc in 

senescent cells, which was consistent with prior observations that an increased 

expression of p66Shc is associated with cellular senescence in bovine fibroblasts 

(Favetta et al., 2004).  

The increased ROS production by mitochondria, as a response to p66Shc 

phorphorylation and possible translocation, seems to increase the probability of 

mitochondrial permeability transition pore opening, and consequently, release of pro-

apoptotic cofactors into the cytoplasm (Orsini et al., 2004). This explains how p66Shc 

is connected with oxidative damages, apoptosis and ageing. 

Some authors described that cytosolic p66Shc is phosphorylated and 

translocated to mitochondria through the interaction with TOM/TIM (transporter outer 

membrane/transporter inner membrane) import complex and mitochondrial heat shock 

protein mtHsp70, where it associates to cytochrome c acting as an oxidoreductase, thus 

generating ROS (Orsini et al., 2004). Moreover p66Shc was also shown to be an 

essential downstream target of p53 stress induced elevation of oxidants, cytochrome c 

release, and apoptosis (Trinei et al., 2002). Mitochondrial respiration generates 

hydrogen peroxide (H2O2) through dismutation of superoxide anion, by directly 

transferring electrons from cytochrome c to molecular oxygen (Giorgio et al., 2007) 

which in turn, induces opening of MPTP and cellular apoptosis. Intracellular ROS 
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levels and oxidation-damaged DNA are significantly reduced in p66Shc-/- primary 

cultures and shows enhanced resistance to apoptosis, whereas overexpression of p66Shc 

increases the sensitivity to apoptosis. Overexpression of p66Shc increases ROS 

production while its ablation is sufficient to decrease their levels (Trinei et al., 2002). 

p66Shc knockout mice are resistant to oxidative stress, showing a 30% increase in 

average lifespan (Hu et al., 2007). 

Although several aspects of p66Shc signaling are still unexplored, one attractive 

hypothesis is that an over-activation of p66Shc signaling may result in long-term 

persistence of mitochondrial stress. 

 

 1.4.5. FoxO Transcription Factors and p66Shc 

Forkhead transcription factors are a superfamily of proteins firstly found in 

Drosophila Melanogaster and whose primary function is to act as transcription factors 

in the nucleus and bind as monomers to their cognate DNA targeting sequences 

(Carlsson et al., 2002).  This protein superfamily shares a conserved 100-residue DNA 

binding domain, the forkhead (FKH) domain, as seen in Figure 10 (Kaestner et al., 

2000). In mammals four isoforms of the FoxO transcription factor family can be found: 

FoxO1, FoxO3, FoxO4 and FoxO6. All of them belong to the most divergent subfamily 

because of sequence differences within their DNA-binding domains (Wijchers et al., 

2006).  

FoxO proteins can regulate several mechanisms including apoptosis, cell cycle 

transitions, DNA repair, cell differentiation, glucose metabolism, longevity, as well as 

oxidative stress (Barthel et al., 2005; Greer and Brunet, 2005). For example, FoxO 

proteins are involved in transactivation of Bim, a gene that encodes a member of the 

pro-apoptotic BH3-only subgroup of BCL-2 family proteins during apoptosis (Stahl et 
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al., 2002). However, FoxO proteins can induce cell death through mitochondria-

dependent and independet mechanisms (Modur et al., 2002).  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. FoxO family structure and sites of phosphorylation. The subfamily members 

FoxO1, FoxO3, FoxO4 and FoxO6 as FoxO transcription factors are regulated by 

phosphorylation and acetylation in response todifferent stimuli: insulin, growth factors or 

stress stimuli. According with their post-translational modifications, FoxO subcellular 

localization is different. Other effects include FoxO degradation, DNA-binding ability, 

transcriptional activity, or protein–protein interactions (adapted from Greer and Brunet, 

2005). 

 

FoxO isoforms are also involved in signaling as a response to growth factor 

stimulation and oxidative stress through PI3K/Akt signaling pathway (Biggs et al., 

1999). For instance, FoxO1, FoxO3 and FoxO4, are critically regulated by Akt-

dependent phosphorylation at three specific sites in response to growth factor and 

insulin stimulation (Thr 32, Ser 253 and Ser 315 for human FoxO3). Furthermore, some 

other signaling pathways can directly regulate FoxO activity: the stress-activated Jun-N-

terminal kinase (JNK), the mammalian ortholog of the Ste20-like protein kinase 

(MST1) and the deacetylase Sirt1 (Brunet et al., 2004; Essers et al.,2004; Lehtinen et 

al., 2006). In response to insulin or growth factors, FoxO is exported from the nucleus 

to the cytoplasm in an Akt-dependent phosphorylation process. When phosphorylated, 
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FoxO factors will remain in the cytoplasm and transcriptional function is repressed 

(Brunet et al., 1999; Essers et al., 2004).  In the presence of growth factors or insulin, 

FoxO-dependent transcription is inhibited promoting cellular proliferation and survival, 

but also rendering the cell sensitive to oxidative damage (Figure 11). However, upon 

oxidative or nutrient stress stimuli several proteins can induce the phosphorylation, 

acetylation and monoubiquitination of  FoxO factors at a number of regulatory sites by 

factors such as AMPK (AMP-dependent kinase), JNK (Jun-N-terminal kinase), MST1 

and CBP (CREB binding protein (Brunet et al., 1999 ). FoxO factors translocate to the 

nucleus binding to the deacetylase Sirt1 and promoting gene transcription (Figure 11).  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Regulation of FoxO factors in the presence or absence of insulin or growth 

factors. In the presence of insulin or growth factors, FoxO factors are negatively regulated. 

The PI3K-Akt/SGK is activated and promotes FoxO phosphorylation on three conserved 

residues promoting their export from the nucleus through binding with the chaperone 14-3-

3 and FoxO sequestration on the cytoplasm. This negative regulation allows cells to 

become more sensitive to ROS, but also leads to proliferation and cell survival (A). In the 

absence of insulin or growth factors FoxO factors are translocated into the nucleus where 

they promote gene transcription of key target genes involved in apoptosis and cell cycle 

arrest: MnSOD (manganese superoxide dismutase), Bim (pro-apoptotic Bcl2-.interacting 

mediator of cell death), FasL (Fas ligand), p27 (cyclin-dependent kinase inhibitor) and 

GADD45 (growth arrest- and DNA damage-inducible gene 45 α). Adapted from Greer and 

Brunet, 2005. 
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Some FoxO downstream targets include the manganese superoxide dismutase 

(MnSOD), FasL, p53 and the pro-apoptotic Bcl2-interacting mediator of cell death Bim 

(Nemoto and Finkel et al., 2002). Genes involved in cell-cycle arrest, the growth arrest 

and DNA damage-inducible gene 45 α (Gadd45 α) and the cyclin-dependent kinase 

inhibitor (p27), were also reported as being downstream targets for FoxO factors (Van 

der Horst et al., 2004). Depending on the post-translational modification 

(phosphorylation, acetylation and mono/polyubiquitination ) the subcellular localization 

of FoxO is altered, as well as protein stability, DNA binding properties, and 

transcriptional activity (Rena et al., 2002). 

One of FoxO isoforms, FoxO3a is particularly highly expressed in brain, spleen, 

heart, and ovaries. Loss of FoxO3a transcriptional activity leads progenitor cells or 

tumor cells resistant to the cytostatic effects of extracellular effectors such as TGFβ, 

which may contribute to tumor development (Gomis et al, 2006). 

Recently, a link between p66Shc and FoxO3a has been suggested. In this 

mechanism, phosphorylation on serine 36 seems to play a crucial role regulating 

FoxO3a phosphorylation (Nemoto and Finkel, 2002). p66Shc may act in a redox-

dependent pathway that sensitizes cells to pro-apoptotic stimuli by activating Akt, 

phosphorylating/inactivating FoxO transcription factors, and preventing the induction of 

free radical scavenging genes (Kisielow et al., 2004). However, this is a different 

mechanism from the Akt-FoxO inactivation pathway recruited by trophic factor.  

Chahdi and Sorokin (2008), reported that FoxO3a phosphorylation requires 

p66Shc phosphorylation in an Akt-independent mechanism, and that both p66Shc and 

FoxO3a are physically interacting in a model of SV40-transformed human mesangial 

cells (HMCs). For instance, p66Shc phosphorylated on serine 36 seems to FoxO3a 

phosphorylation and cytoplasmatic localization appears to occur.  The importance on 
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this interaction is more evident when oxidative stress no longer stimulates 

phosphorylation of FoxO3a in p66Shc deficient cells. 

 

1.5. Investigating DOX-Induced Cardiotoxicity - H9c2 as a Model for 

Cardiac Cells 

In vivo models of DOX-induced cardiomyopathy and in vitro studies using 

different cell lines have been widely reported in the literature (L’Ecuyer et al., 2001). 

The myoblastic cell line H9c2 (Kimes and Brandt, 1976) has been extensively used as 

an in vitro model to study morphological and biochemical alterations induced by DOX 

treatment (Sardão et al., 2007). This cell line retains both skeletal and cardiac tissues 

properties, showing similar electrophysiological and biochemical properties to adult 

cardiomyocytes (Hescheler et al., 1991). H9c2 cells have been considered as a proper 

model to study molecular responses of the cardiomyocyte to oxidative damage, 

intracellular DOX degradation, DNA damage induced by DOX, p53 activation or even 

to study the protective effect of different compounds such as carvedilol and resveratrol, 

known for their cardioprotective function (Oliveira et al., 2004; Danz et al., 2009; 

Kweon et al., 2010). Sardao et al., (2009b) reported that DOX treatment causes 

morphological alterations in mitochondrial, nuclear, and fibrous protein structures in 

H9c2 cells. Also DOX treatment results in increased mitochondrial apoptotic signaling 

in H9c2 cells which is secondary to p53 activation and occurs through Bax-mediated 

effects (Sardao et al., 2009a). 
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A major limitation of doxorubicin administration is a dose-related 

cardiomyopathy, which can lead to congestive heart failure which is thought to occur 

due to several mechanisms including the overgeneration of reactive oxygen species 

(Mross et al., 2006). One of the critical aspects of DOX-induced cardiotoxicity is a 

dose-dependent and persistent toxicity which can lead to the development of a 

characteristic cardiomyopathy occurring often decades after treatment.  

Our hypothesis for the present work is that DOX causes an activation of the 

p66Shc signaling pathway which leads to a progressive deterioration of mitochondrial 

function. The signaling mechanism of p66Shc on doxorubicin-induced cell death has 

never been explored before, and so our work is very relevant for the mechanisms of 

DOX toxicity and its implication in clinical therapies. 

 In the present work we investigate p66Shc signaling, including phosphorylation 

on serine 36, using as a model the myoblastic cell line, H9c2. In this particular research, 

we intend to investigate the initial step of what we believe is a feedback loop that leads 

to the progression and persistence of DOX-induced cardiotoxicity. Hence, we 

investigated whether DOX activates p66Shc signaling in H9c2 myoblasts.  

The role of the Forkhead transcription factor (FoxO3a) family, reported as an 

inducer for the transcriptional activity of target genes responsible for apoptosis and cell 

cycle arrest, has also been studied in our cell model. Since FoxO3a is highly expressed 

in heart (Salih and Brunet, 2008), a possible link between p66Shc protein and FoxO3a 

was studied. We also hypothesize that p66Shc is physically interacting with FoxO3a in 

a stress-dependent pathway contributing for the mitochondrial dysfunction and cell 

death during DOX treatment. 
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3.1. Reagents 

Dulbecco`s modified Eagle`s medium (DMEM), penincilin, streptomycin, fetal bovine 

serum (FBS) and Trypsin were purchased from Gibco-Invitrogen (Grand Island, NY). 

Hispidin, doxorubicin, dithiothreitol (DTT), Phenylmethanesulfonyl fluoride (PMSF), 

protease inhibitor cocktail (leupeptin, antipain, chymostatin, and pepstatin A), 

sulforhodamine B (SRB) were obtained from Sigma (St. Louis, USA). Goat polyclonal 

anti-p53 antibody were purchased from Santa Cruz (Santa Cruz, CA). Mouse 

monoclonal anti-AIF, rabbit monoclonal anti-Bax, rabbit monoclonal anti-Bim, rabbit 

anti-Akt and rabbit anti-phospho Akt (Ser 473) antibodies  were purchased form Cell 

Signaling (Danvers, MA). Rabbit polyclonal anti-FoxO3a, rabbit polyclonal anti-

FoxO3a (phospho Ser 253) and rabbit polyclonal anti-Superoxide dismutase 2 were 

purchased from Abcam (Cambridge, UK). Mouse monoclonal anti-SHC was purchased 

from BD Biosciences (Woburn, MA). Mouse monoclonal anti-Shc/p66 (Ser 36) was 

purchased from Calbiochem (Merck, Darmstadt, Germany). Mouse polyclonal 

Cytochrome c was purchased from BD Farmingen (San Diego, CA). Secondary 

antibody Fluorescein (FITC) anti-Mouse IgG and alkaline phosphatase (AP)-conjugated 

were purchased from Jackson ImmunoResearch Laboratories, Inc. (Cambridgeshire, 

UK). DOX was dissolved in miliQ water at a stock solution of 25 mM. 

3.2. Cell Culture and Treatments 

The H9c2 cell line was purchased from America Tissue Type Collection (Manassas, 

VA; Catalog # CRL – 1446). Cells were cultured in DMEM medium supplemented with 

1,5 g/L sodium bicarbonate, 10% fetal bovine serum, 100U/ml of penincilin and 100 

µg/ml of streptomycin in 150 cm
2
 tissue culture flasks at 37 ºC in a humidified 

atmosphere of 5% CO2. H9c2 cells were treated with 0.5 µM and 1 µM DOX for 24 
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hours or 48 hours, according to the assay. In the experiments performed with Hispidin, 

the compound was added to the cells in a concentration of 5 µM or 10 µM four hours 

prior to DOX treatment. For immunocytochemistry, cells were seeded on glass 

coverslips at a density of 3.5x10
5
 cells/well in six well plates containing coverslips 

(final volume of 2 ml per well). For sulforhodamine B assay cells were also seeded at 

3.5x10
5
 cells/well in 24well-plates at a final volume of 1 ml per well.  

3.3. Cytotoxicity and Cell Density Evaluation by Sulforhodamine B 

(SRB) Assay  

The sulforhodamine B (SRB) assay, a colorimetric method used for cell density 

determination, is based on the measurement of cellular protein content (Houghton et al., 

2007). The dye binds to basic aminoacids of cellular proteins mass which is related to 

cell number. H9c2 cells (3.5x10
3
 cells/well) were seeded in 24 well plates and at 

specific time points, the incubation media was removed and cells were fixed in 1% 

acetic acid in ice-cold methanol for at least 30 minutes. Cells were then incubated with 

0.5 % (wt/vol) SRB dissolved in 1% of acetic acid for 1h at 37ºC. The unbound dye was 

removed with 1% acetic acid solution. Dye bound to cell proteins was extracted with 10 

mM Tris base solution, pH 10, and the optical density of the solution was determined at 

540 nm. Results were expressed as a percentage of time zero (first time point harvested 

after cell attachment, 24 hours after seeding). This assay was performed in order to 

evaluate the cytotoxic effects of DOX and Hispidin. 

3.4. Collection of Total, Cytosolic, Mitochondrial and Nuclear Extracts 

from H9c2 Cells 

To obtain total cellular extracts, H9c2 cells were harvested by trypsinization after 

treatments and washed once with PBS. In order to collect total cells (attached and 

floaters), two centrifugation steps were performed for 5 minutes at 1000xg. Cellular 
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pellet was resuspended in collecting buffer (20 mM HEPES/NaOH, pH 7.5, 250 mM 

Sucrose, 10 mM KCl, 2 mM MgCl2, 1 mM EDTA) supplemented with 2 mM 

dithiothreitol (DTT), 100 µM phenylmethylsulfonyl fluoride (PMSF) and a protease 

inhibitor cocktail (containing 1 µg/ml of leupeptin, antipain, chymostatin and pepstatin 

A) and ruptured by 30 passages 27-gauge needle. The cell suspension was then kept at -

80 ºC until used. For subcellular fractionation, cells were harvested as described above 

and resuspended in homogenization buffer (250 mM sucrose, 20 mM K+ Hepes pH 7.5, 

10 mM KCl, 1.5 mM MgCl2, 0.1 mM EDTA, 1 mM EGTA) supplemented with 1 mM 

DTT, 100 µM PMSF and protease inhibitor cocktail (containing 1 µg/ml of leupeptin, 

antipain, chymostatin and pepstatin A). Cells were incubated on homogenization buffer 

for 15 min on ice. Cells were then transferred to a pre-cooled tissue homogenizer and 

homogenized 30 times using a tight pestle. The homogenized cells were centrifuged at 

217xg for 5 min at 4ºC. The pellet was discarded and the supernatant was centrifuged 

again at 14000 xg for 15 min at 4º C. The pellet, containing the mitochondrial fraction 

was resuspended in 50 µl of homogenization buffer. Mitochondrial fractions were 

stored at -80 ºC until used. For cytosolic and nuclear extraction, the K266-100 

Nuclear/Cytosol Fractionation kit from Biovision was used. Protein contents were 

determined using the Bradford assay (Bradford M.M, 1976). 

3.5. Western Blott Analysis 

After denaturation at 95°C for 5 min in a Laemmli buffer (from BioRad), equivalent 

amounts of proteins (25 μg) were separated by electrophoresis in 8% or 12% SDS-

polyacrylamide gels (SDS-PAGE) and electrophoretically transferred to 

apolyvinylidene difluoride (PVDF) membrane for 90 min at 100 V. After blocking 

membranes with 5% milk in TBST (50 mM Tris-HCl, pH 8; 154 mM NaCl and 0.1% 

Tween 20) for 2 hours at room temperature, membranes were incubated overnight at 
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4°C with the respective antibodies (Table 1). Membranes were washed and incubated 

with the secondary goat anti-mouse IgG (1:2500) and goat anti-rabbit IgG (1:2500) 

antibodies. Membranes were incubated with the ECF detection system (from GE 

Healthcare, Piscataway, NJ) and imaged with Versa Doc imaging system (Bio-Rad, 

Hercules, CA).  Densities of each band were calculated with Quantity One Software 

(Bio-Rad). Membranes were also stained with Ponceau reagent to confirm equal protein 

loading in each lane.   

Table 1 - Primary and secondary antibodies used for Western Blotting experiments. 

 

 

PRIMARY ANTIBODIES DILUITION HOST SUPPLIER 

AIF 1:1000 Mouse 
Cell signaling 

(#4642) 

Akt 1:1000 Rabbit 
Cell Signaling 

(#9272) 

Akt-p (Ser 473) 1:1000 Rabbit 
Cell Signaling 

(#9271) 

Bax 1:2000 Rabbit 
Cell Signaling 

(#2772) 

Bim 1:1000 Rabbit 
Cell Signaling 

(#2819) 

Cyt c 1:1000 Mouse 
BD Farmigen 

(#556433) 

FoxO3a 1:1000 Rabbit 
Abcam 

(#ab4709) 

FoxO3a-p (Ser 253) 1:1000 Rabbit 
Abcam 

(#ab47285) 

p53 1:1000 Rabbit 
Cell signaling 

(#2524) 

p66Shc 1:1000 Mouse 
BD Biosciences 

(#610879) 

p66Shc-p (Ser 36) 1:1000 Mouse 
Calbiochem 

(#566807) 

SOD2 1:5000 Rabbit 
Abcam 

(#ab13533) 
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3.6. Immunocytochemistry (ICC) 

H9c2 cells were seeded on glas coverslips in six-well plates and incubated with 0.5 µM 

DOX and 1 µM DOX. Thirty minutes before the treatment was over, cells were 

incubated with Mitotracker Red (125 nM) at 37 ºC in the dark. Cells were then washed 

with cold PBS and fixed with 4% paraformaldehyde for 15 minutes at room 

temperature. Cells were rinsed with PBS,  blocked with 1% milk in PBS-T during one 

hour at 37 ºC cells and probed with the respective antibody solution overnight at 4°C 

(Table 2). After that, cells were incubated with the respective secondary antibody 

(FITC-conjugated anti-mouse or anti-rabbit antibody) for 2 hours at 37 ºC. Between the 

primary and the secondary antibodies, cells were rinsed 3 times with PBST during 

5minutes each. Coverslips were mounted on glass slides. Cells were observed under a 

Zeiss LSM 510Meta confocal microscope. Images were obtained through LSM Image 

Browser. 

Table 2 - Primary antibodies used for Immunocytochemistry experiments. 

 

 

 

 

 

 

 

3.7. Caspase-3 and 9-like Activity 

The activity of caspase-3 and -9 was analyzed in total cellular extracts collected with the 

following conditions: control, 1 µM DOX, 5 µM Hispidin and10 µM Hispidin. Cells 

were also treated with 5 µM and 10 µM of Hispidin and four hours later DOX was 

PRIMARY 

ANTIBODIES 
DILUITION HOST SUPPLIER 

p66Shc 1:250 Mouse 
BD Biosciences 

(#610879) 

FoxO3a 1:250 Rabbit 
Abcam 

(#ab47409) 
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added for 24 and 48 hours more, respectively. After treatment, cells were harvested by 

tripsinization and washed once with PBS. Floating cells were also collected and 

combined with adherent cells. In order to collect total cells, two centrifugation steps 

were performed for 5 minutes at 1,000xg. Cellular pellet was ressuspended in collecting 

buffer (HEPES/NaOH, pH 7.5, 250 mM Sucrose, 100 mM KCl, 2mM MgCl2, 1 mM 

EDTA) supplemented with 2 mM DTT, 100 µM PMSF and a protease inhibitor cocktail 

(containing 1µg/ml of leupeptin, antipain, chymostatin and pepstatin A) and kept at -

80ºC.  Protein contents were assayed using the Bradford method. Caspase-3 and -9 like 

activity was evaluated following the cleavage of the colorimetric substrate Ac-LEHD-

pNA (purchased from Clabiochem). Extracts containing 25 µg and 50 µg of total 

protein were incubated in a reaction buffer, for caspase-3 and -9-like activity, 

respectively. Reaction Buffer containing 25 mM Hepes (pH 7.4), 10% Sucrose, 10 mM 

DTT, 0.1%, CHAPS and 100 µM caspase-3 or -9  substrate for 2 hours at 37 ºC was 

added. Caspase activity was determined following the detection of the chromosphore p-

NA after cleavage from the labeled substrate Ac-LEHD-pNA. The method was 

calibrated with known concentrations of p-nitroanilide (purchased from Calbiochem) 

and the results are expressed as % pNa released. 

3.8. Nuclear Chromatin Condensation 

Nuclear morphology of cells was studied by using the cell-permeable DNA dye Hoechst 

33342. Cells with homogeneously stained nuclei were considered to be normal, whereas 

the presence of chromatin condensation in non-mitotic cells was indicative of apoptosis. 

After Hispidin or DOX treatment, cells were washed twice with PBS, fixed with 2 ml of 

ice cold absolute methanol and stained with 1 µg/ml of Hoecsht 33342 for 30 minutes at 

37ºC in the dark. Nuclear morphology changes were detected by using an 

epifluorescence Nikon Eclipse TE2000U microscope (UV filter). Two hundred cells 
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from several randomly chosen fields were counted and the number of apoptotic cells 

was expressed as a percentage of the total number of cells. 

3.9. Imunoprecipitation (IP) 

H9c2 cells were harvested by trypsinization and washed once with PBS. Floating cells 

were also collected. In order to collect total cells, two centrifugation steps were 

performed for 5 minutes at 1000xg. Cellular pellet was resuspended in collecting buffer 

(20 mM HEPES/NaOH, pH 7.5, 250 mM Sucrose, 10 mM KCl, 2 mM MgCl2, 1 mM 

EDTA) supplemented with 100 µM phenylmethylsulfonyl fluoride (PMSF), a protease 

inhibitor cocktail (containing 1 µg/ml of leupeptin, antipain, chymostatin and pepstatin 

A), N-Ethylmaleimide (NEM) 10 mM, Orthovanadate (NaVO 4) 10 mM, 10% SDS and 

1% Triton X – 100). Antibody-immobilized beads were prepared by incubating p66Shc 

or Mouse IgG antibodies with 30 μl of Protein G PLUS-Agarose beads (Santa Cruz 

Biotechnology, CA), overnight at 4 ºC. The immobilized antibodies were incubated 

with 1 mg protein during 2 hours at 4 ºC, and the beads were washed five times (1 min 

centrifugations, 3 300 x g) at 4 ºC with wash buffer, supplemented as described for the 

lysis buffer. The final pellet, containing the immunoprecipitated p66Shc bound to the 

antibody-immobilized beads, was used for Western Blot analysis.  

2.10. Statistical Analysis 

Data are expressed as means±SEM for the number of experiments indicated in the 

legends of the figures. Double comparisons were performed by t-test. Multi 

comparisons were performed using one-way analysis of variance (ANOVA) followed 

by a Bonferroni post-hoc test. Significance was accepted with p value <0.05.
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4.1. Doxorubicin Treatment Induces p66Shc Protein Upregulation 

 Alterations in p66Shc protein content induced by DOX treatment were analyzed 

by both immunocytochemistry and Western Blot assays (Fig. 12). For 

immunocytochemistry experiments (Fig. 12 A), control and DOX treated cells were 

fixed and labeled with an antibody against p66Shc. The results demonstrate an increase 

in p66Shc nuclear fluorescence intensity when cells were treated with DOX (both 0.5 

and 1 µM) for 24 hours (data not shown) and 48 hours (Fig. 12 A). For Western Blot, 

H9c2 cells were treated with 0.5 and 1 µM DOX for 24 and 48 hours and total cellular 

extracts were collected, as described in the material and methods section. For total 

cellular extracts treated with DOX during 24 hours, an increase in p66Shc protein 

content is only statistically significant at 1 µM DOX, although a significant increase 

occurs for both DOX concentrations after 48 hours of incubation.   

 Cytosolic and nuclear fractions were also analyzed (Fig. 12 B). No changes were 

seen in cytosolic fractions during 24 hours treatment, but a significant increase occurs 

for 48 hours treatment at 1 µM DOX. Interestingly, p66Shc content increases within the 

nucleus for both time points used when cells were treated with 1 µM DOX. 

Phosphorylation of  p66Shc on serine 36 was also analyzed in total cellular extracts by 

Western Blot. A significant decrease was observed for cells treated with 1 µM DOX 

during 48 hours (Fig. 13 A), but no changes occured for 24 hour treatment. Cytosolic 

and nuclear fractions were also analyzed. A significant decrease for 1 µM occurred after 

24 and 48 hours treatment, in cytosolic fractions (Fig. 13B). A significant decrease also 

occurred after 24 hours treatment for 0.5 µM DOX. In nuclear fractions (Fig. 13C) a 

significant decrease was observed after 24 and 48 hours treatment for 1 µM DOX. 
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Figure 12.  DOX treatment increases p66Shc content in H9c2 cells. (A) Confocal 

microscopy images of nuclei showing H9c2 cells treated with 0.5 and 1 µM DOX during 48 

hours. After treatment, cells were incubated with mitotracker Red (red), fixed and labeled 

with an antibody against p66Shc (green). Cells were also counterstained with DAPI (blue), 

as described in the material and methods section. Confocal microscopy images show an 

increase in p66Shc in mitochondrial and nuclear compartments after DOX treatment. 

p66Shc content in total cellular extracts (B), cytosolic (C) and nuclear fractions (D) 

identified by Western Blot analysis as a protein band of 66 kDa. Cells were collected after 

treatment with 0.5 and 1 µM DOX for 24 and 48 hours treatment, as described in material 

and methods section. Images are representative experiments of four independent 

experiments. Ponceau labeling shows the loading of equal protein amount in each lane. 

Densitometric analysis of p66Shc protein, expressed as % of control. Data are expressed as 

means±SEM of four different experiments. Statistical analysis: *p < 0.05 compared with 

control for the respective time point.  
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Figure 13. Serine 36-phosphorylated p66Shc content in whole cell extracts. p66Shc-p 

content in total cellular extracts (A), cytosolic (B) and nuclear fractions (C), identified by 

Western Blot as a70 kDa band. Cells were collected after treatment with 0.5 and 1 µM 

DOX during 24 and 48 hours, as described in the material and methods section. Images are 

representative experiments from four different experiments. Ponceau labeling shows the 

equal protein amount in each lane. B) Densitometric analysis of p66Shc-p protein, 

expressed as % of control. Data are expressed as means±SEM of four different 

experiments. Statistical analysis: * p < 0.05 compared with control. 

 

 

4.2. p66Shc, but not the Serine 36- phosphorylated Form, Translocates to 

Mitochondria after DOX Treatment 

 The presence of p66Shc in mitochondrial fractions, after DOX treatment was 

analyzed by Western Blot (Fig. 14 B). The results demonstrate an increase in p66Shc 
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content in mitochondrial fractions isolated from H9c2 cells treated with 0.5 and 1µM 

DOX for 24 and 48 hours. However, no changes are observed for cells treated with 0.5 

µM DOX during 24 hours. Mitochondrial fractions revealed a decreased content in the 

ratio between p66Shc phosphorylation on serine 36 and p66Shc after DOX treatment 

(Fig. 14 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. DOX induces p66Shc translocation to mitochondria. p66Shc (A) and 

p66Shc-p (B) content in mitochondrial fractions, identified by Western Blot as a band of 66 

and 70 kDa, respectively. Mitochondrial fractions were collected from H9c2 cells after 24 

and 48 hours treatment with 0.5 and 1 µM DOX, as described in the methods section. 

Western Blot images are representative of four different experiments. Ponceau labeling 

shows  equal protein amount on each lane. B) Densitometric analysis of p66Shc and 

p66Shc-p protein, expressed as % of control. Data are expressed as means±SEM of four 

different experiments. Statistical analysis: * p < 0.05 compared with control. 
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4.3. Doxorubicin Treatment Promotes an Increase of Transcriptional Factor 

FoxO3a in H9c2 Cells 

One of the Forkhead family members, the transcriptional factor FoxO3a, is 

translocated from cytosol to the nucleus as an oxidative stress response (Biggs et al., 

1999). through PI3K/Akt signaling. After DOX treatment, total cellular extracts, 

cytosolic and nuclear fractions were collected and analyzed by Western Blot for content 

in FoxO3a (Fig. 15). H9c2 cells were treated with 0.5 and 1 µM DOX for 24 and 48 

hours and collected, as described in material and methods section. For total cellular 

extracts, an increase in FoxO3a was observed after treatment during 24 and 48 hours for 

both DOX concentrations (Fig.15 A). No changes were observed in cytosolic fractions 

during 24 hour treatment, but a significant decrease occurs for 48 hours treatment with 1 

µM DOX (Fig. 15 B). For nuclear fractions, a significant increase in both time points 

and DOX concentration occurs (Fig. 15 C), with an higher increase detected for 48 

hours 
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Figure 15.  FoxO3a increased in total cellular extracts, cytosolic and nuclear fractions 

after DOX treatment. FoxO3a   content in total cellular extracts (A), cytosolic (B) and 

nuclear fractions (C), identified by Western Blot as a 100 kDa band.  Cells were collected 

from H9c2 cells after 24 and 48 hours treatment with 0.5 and 1 µM DOX, as described in 

material and methods section. Western Blot images are representative from four different 

experiments. Ponceau labeling shows equal protein amount in each lane. Graph represents 

the densitometric analysis of FoxO3a, expressed as % of control. Data are expressed as 

means±SEM of four different experiments. Statistical analysis: * p < 0.05 compared with 

control.  

 

4.4. FoxO3a Phosphorylation Decreases after Doxorubicin Treatment 

As previously reported, PI3K/Akt signaling pathway mediates the translocation 

of FoxO3a to the nucleus. After an oxidative stress injury, Akt is phosphorylated and 
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induces FoxO3a phosphorylation. When phosphorylated, FoxO3a remain in the cytosol 

and do not promote the upregulation of several important genes involved in apoptosis 

and cell arrest (Brunet et al., 1999; Essers et al., 2004). The effect of DOX treatment on 

FoxO3a phosphorylation on serine 253 was also analyzed. H9c2 cells were treated with 

0.5 and 1 µM DOX for 24 and 48 hours. Western blot analysis shows no changes for 

cells treated during 24 hours, but a significant decrease occurs in total cellular extracts 

when cells were treated with 1 µM DOX for 48 hours (Fig. 16 A). The same was 

observed in cytosolic factions for the same time points and concentrations (Fig. 16 B). 

In H9c2 cells nuclear fractions no significant differences were observed (when 

compared with non treated cells) (Fig.16 C). 
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Figure 16. FoxO3a phosphorylation in the cytosolic content decreases after 

Doxorubicin treatment. FoxO3a-p   content in total cellular extracts (A), cytosolic (B) 

and nuclear fractions (C), identified by Western Blot as a band of 70 kDa.  Cells were 

collected from H9c2 cells after 24 and 48 hours treatment with 0.5 and 1 µM DOX, as 

described in material and methods section. Western Blot images are representative of four 

different experiments. Ponceau labeling shows the equal protein amount in each lane. 

Graph represents the densitometric analysis of FoxO3a-p, expressed as % of control. Data 

are expressed as means±SEM of four different experiments. Statistical analysis: * p < 0.05 

compared with control. 

 

4.5. FoxO3a Downstream Targets are Upregulated by DOX Treatment 

p53, SOD2 and Bim protein are some of the FoxO3a downstream targets that 

have been described in the literature (Nemoto S and Finkel T. et al., 2000).  After DOX 

treatment, total cellular extracts were collected and the three FoxO3a downstream 

targets were analyzed by Western Blot (Fig. 17). H9c2 cells were treated with 1 µM 

DOX for 24 and 48 hours. The results show a significant increase for 24 and 48 hours 

treatment for all of the FoxO3a downstream targets analyzed (when compared with non 

treated cells).  
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Figure 17.  FoxO3a downstream targets are upregulated by DOX treatment. p53 

(A), SOD2 (B) and Bim (C) content in total cellular extracts, identified by Western Blot as 

a band of 53, 22 and 18 kDa, respectively. Cells were collected from H9c2 cells after 24 

and 48 hours treatment with 1 µM DOX, as described in the methods section. Western Blot 

images are representative of four different experiments. Ponceau labeling shows the equal 

protein amount in each lane. Graph represents the densitometric analysis of p53,SOD2 and 

Bim expressed as % of control. Data are expressed as means±SEM of four different 

experiments. Statistical analysis: * p < 0.05 compared with control. 
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4.6. Doxorubicin Caused p66Shc-FoxO3a Nuclear Interaction and Decreased 

Akt in Total Cellular Extracts 

Due to the observed increase in p66Shc protein content in the nuclear fractions 

of H9c2 cells, a possible interaction with FoxO3a was hypothesized. This possible 

binding was analyzed by immunocytochemistry (Fig.18) and immunoprecipitation (Fig. 

19). For immunocytochemistry experiments, control and treated cells were fixed and 

labeled with an antibody against p66Shc (red fluorescence) and against FoxO3a (green 

fluorescence). H9c2 cells were treated with 0.5 and 1 µM DOX during 24 and 48 hours, 

as previously described. An increase in FoxO3a content was detected as nuclear 

fluorescence intensity in treated cells (both 0.5 and 1 µM) for 24 hours (data not shown) 

and 48 hours (Fig. 18). For immunoprecipitation (IP) experiments, cells were treated 

with 1 µM DOX for 24 and 48 hours, and appropriately collected, as described in the 

material and methods section. Cell extracts from H9c2 cells were immunoprecipitated 

with anti-p66Shc or IgG control followed by immunoblotting with anti-FOXO3a or 

anti-p66Shc (positive control) (Fig. 19). The results confirm the p66Shc and FoxO3a 

binding after 24 and 48 hours with increased binding after DOX treatment (Fig. 19).  

The presence of Akt, a regulator of cell death and survival (Brazil and Hemings, 

2001; Brunet and Greenberg, 2001), was also analyzed in total cellular extracts treated 

with 1 µM DOX during 24 and 48 hours. Akt has been reported for its role in regulating 

FoxO3a translocation to the nucleus. As seen in Figure 20, Western Blot assay results 

demonstrate no changes for cells treated during 24 hours, but a significant increase was 

detected for 48 hours treatment (when compared with non treated cells). 

Phosphorylation of Akt on serine 473 is responsible to induce phosphorylation of 

FoxO3a and so, this transcriptional factor remains in the cytosol. Phosphorylation of 

Akt was also analyzed for cells treated with 1 µM DOX. In this case, a significant 

increase for both time points was detected (Fig. 21). 
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Figure 18. FoxO3a content increases in nuclear fractions from H9c2 cells after DOX 

treatment. Confocal microscopy images of H9c2 cells treated with 0, 0.5 and 1 µM DOX 

during 48 hours. After treatment, cells were fixed and labeled with an antibody against 

p66Shc (red) and FoxO3a (green) andcounterstained with DAPI (blue), as described with 

material and methods section. Confocal microscopy images illustrate an increase of 

FoxO3a in nuclear labeling after H9c2 cells treatment with DOX. However, an increase in 

p66Shc content was not detected as expected. Data are representative of three 

different experiments. 
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Figure 19. p66Shc interacts with FoxO3a in H9c2 cells. Cell extracts from 

H9c2cells were immunoprecipitated with anti-p66Shc or IgG control followed by 

immunoblotting with anti-FOXO3a or anti-p66Shc (positive control). Data are 

representative of three different experiments.  

 

 

 

 

 

 

 

 

 

 

Figure 20. Akt content in H9c2 cells after DOX treatment. Akt content in total 

cellular extracts, identified by Western Blot as a 70 kDa band. Cells were collected from 

H9c2 cells after 24 and 48 hours treatment 1 µM DOX, as described in the methods section. 

Western Blot images are representative of four different experiments. Ponceau labeling 

shows the equal protein amount in each lane. Graph represents the densitometric analysis of 

Akt, expressed as % of control. Data are expressed as means±SEM of four different 

experiments. Statistical analysis: * p < 0.05 compared with control. 
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Figure 21. Akt phosphorylation on serine 473 content in H9c2 cells after DOX 

treatment. Akt phosphorylation content in total cellular extracts, identified by Western 

Blot as a 60 kDa band. Cells were collected from H9c2 cells after 24 and 48 hours 

treatment with 1 µM DOX, as described in the methods section. Western Blot images are 

representative of four different experiments. Ponceau labeling shows the equal protein 

amount in each lane. Graph represents the densitometric analysis of Akt-p, expressed as % 

of control. Data are expressed as means±SEM of four different experiments. Statistical 

analysis: * p < 0.05 compared with control. 

 

 

4.7. Effect of PKC β Inhibitor on Doxorubicin-Induced Cytotoxicity and 

Mitochondrial Dysfunction 

The p66Shc signaling pathway has not been clearly established. However, 

the most acceptable model proposes that p66Shc is translocated to mitochondrial 

spaces in response to oxidative stress promoted by the activation of the protein 

kinase C (PKC β). PKC β seems to induces the phosphorylation of p66Shc on Ser 

36 which is then recognized by the prolyl isomerase Pin1 that catalyzes its cis-trans 

isomerization. Subsequently, p66Shc is dephosphorylated by type 2 protein 

serine/threonine phosphatase (PP2A) and imported in the mitochondria (Raffaello 

and Rizzuto, 2011). Since PKC β mediates the primary step for p66Shc activation, 

the effect of Hispidin, a PKC β inhibitor (Jang et al., 2010) was studied.  
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The effect of Hispidin, a PKC β inhibitor (Jang et al., 2010), on DOX-

induced cytotoxicity treatment was analyzed by using the SRB assay (Fig. 22 A). 

Caspase-3 and -9 like activities were also evaluated by following the cleavage of 

the colorimetric substrates Ac-DEVD-pNA and Ac-LEHD-pNA, respectively (Fig. 

22 B and C ). The concentration of Hispidin used was based on preliminary 

experiments where the toxic threshold of Hispidin on H9c2 cells was evaluated 

(data not shown). After four hours pre-incubation with 5 µM or 10 µM Hispidin, 

H9c2 cells were incubated with 1 µM DOX for 24 hours or 48 hours more. The 

results demonstrate that Hispidin treatment did not prevent cell death or caspase-3 

and -9 activation induced by DOX treatment (Fig. 22 B and C). Caspase-3 

activation also increases with Hispidin treatment for both time points and 

concentrations, but caspase-9 activation was only significantly higher for cells 

treated with DOX (48 hours treatment) and Hispidin (for both time points). Indeed, 

capase-9 activation decreases when cells were treated with Hispidin and DOX 

simultaneously for both time points (when compared with cells only treated with 

DOX). 
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Figre 22. Effect of Hispidin treatment on cell mass and caspase -3 and -9 activity.. 

(A) The effect of Hispidin on DOX-induced cell death was analyzed by using the 

sulforhodamine B dye-binding assay. Cell treatment was performed as described in 

the material and methods section. Data represent the means±SEM of three different 

experiments. Caspase-3 (B) and -9 (C) -like activities were measured after 24 and 48 hours 

treatment by following the cleavage of colorimetric substrates Ac-DEVD-pNA and Ac-

LEHD-pNA, respectively. The caspase-like activity was expressed as concentration of pNA 

released per µg protein. The results were calibrated with known concentrations of pNA. 

Data are expressed as means±SEM of four different experiments. Statistical analysis: * p < 

0.05 vs control (no DOX added) and ** p < 0.05 vs DOX treatment. 

 

 

4.8. Hispidin Treatment Decreases p66Shc Content Total Cellular Extracts  

The presence of p66Shc content in total cellular extracts (Fig. 23 A) and 

mitochondrial fractions (Fig. 23 B), after DOX treatment, were analyzed by 

Western Blot. p66Shc content increases with DOX treatment (Fig. 12). Cells were 

C 

C 

B 



  RESULTS 

64 | ROLE OF P66SHC SIGNALING ON DOXORUBICIN-INDUCED CARDIAC MITOCHONDRIAL DYSFUNCTION 

 

treated with 5 and 10 µM Hispidin during 24 and 48 hours. Cells treated during 24 

hours shown an increase in p66Shc content (compared with non treated cells), but 

for 48 hours the same does not occur and no significant changes were observed 

(compared with non treated cells). The same occurs for cells treated with Hispidin 

and pre-incubated with DOX, but a significant decrease is observed for 48 hours 

treatment. p66Shc content in mitochondrial fractions increases for both time points 

when cells were treated with DOX, but for cells treated with 5 and 10 µM Hispidin , 

a significant increase was also detected. When cells were treated with Hispidin and 

DOX a significant decrease was also detected (when compared with DOX treated 

cells). 
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Figure 23. Hispidin treatment decreases p66Shc protein content in total cellular 

extracts and mitochondrial fractions of H9c2 cells.  p66Shc content in total extracts (A) 

an mitochondrial fractions (B), identified by Western Blot as a band of  66 kDa, 

respectively. Cells were collected as described in the material and methods section. Images 

are representative of four independent experiments. Ponceau labeling shows the loading of 

equal amount of protein in each lane. Graph represents the densitometry analysis of p66Shc 

expressed as % of control. Data are expressed as means ± SEM of four different 

experiments. Statisctical analysis: *p < 0.05 compared with control for the respective time 

point and **p < 0.05 vs DOX treatment. 

 

4.9. Hispidin Treatment Prevents DOX-Induced Decrease in the Serine 36-

Phosphorylated Form of p66Shc 

Phosphorylation of p66Shc on serine 36 in total extracts (Fig. 24 A) and 

mitochondrial fractions (Fig. 24 B), was analyzed by Western Blot, after DOX 

treatment. As previously described (Fig. 13), p66Shc-p content decreases with DOX 

treatment. Cells were treated with 5 and 10 µM Hispidin during 24 and 48 hours. 

For both total extracts and mitochondrial fractions when cells were treated during 

24 and 48 hours no significantly changes were observed (for all used 

concentrations). The same occurs for cells treated with Hispidin and pre-incubated 

with DOX. 
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Figure 24. p66Shc phosphorylation content in total cellular extracts and 

mitochondrial fractions of H9c2 cells after Hispidin treatment. p66Shc-p in total 

extracts (A), and mitochondrial fractions (B), identified by Western Blot as a band of  70 

kDa, respectively. Cells were collected as described in the material and methods section. 

Images are representative of four independent experiments. Ponceau labeling shows the 

loading of equal amount of protein in each lane. Graph represents the densitometry analysis 

of p66Shc-p expressed as % of control. Data are expressed as means ± SEM of four 

different experiments. Statisctical analysis: *p < 0.05 compared with control for the 

respective time point and **p < 0.05 vs DOX treatment. 
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4.10. Effects of PKC β Inhibition on Pro-Apoptotic Proteins 

Content in p53, Bax (Fig. 25), cytochrome c (Fig. 26) and AIF (Fig. 27) in 

total cellular extracts, was analyzed by Western Blot, after DOX treatment. Cells 

were treated with 5 µM and 10 µM Hispidin during 24 and 48 hours. The results 

demonstrate an increase in the content of p53 in total cellular extracts from H9c2 

cells treated with Hispidin (both concentrations). However, a significant increase in 

Bax concentration caused by Hispidin treatment per se as only detected when cells 

were treated with 10 µM Hispidin for 24 and 48 hours.  

The next objective was to identify whether Hispidin could alter the effects of 

DOX on pro-apoptotic proteins p53, Bax, cytochrome c and AIF. H9c2 cells were 

also pre-incubated with Hispidin for 24 and 48 hours, followed by 1 µM DOX 

treatment during 24 and 48 hours more. In this, no significant differences were 

observed (compared with cells treated only with DOX) in p53 content. Although a 

decrease in DOX-induced p53 up-regulation was noticeable for 48 hours. Pre-

incubation with Hispidin partly decreased DOX-induced Bax increase. 

 After DOX treatment, cytochrome c release from mitochondria was analyzed 

by Western Blot. To this propose total cellular extracts and isolated mitochondrial 

fractions were probed against a cytochrome c antibody. An increase of cytochrome 

c in total cellular extracts (Fig. 26 A) after treatment with 1 µM DOX for 24 and 48 

hours. The same occurs when cells were treated with 10 µM Hispidin. However, 

cells pre-incubated with Hispidin and treated with DOX showed a small decrease in 

Cyt c content (when compared with cells treated with DOX). Mitochondrial 

fractions (Fig. 26 B) treated with the same experimental conditions were also 

analyzed. The results shown an increase when cells were treated with Hispidin, but 

a decrease was observed for cells treated with DOX (24 and 48 hours treatment), as 
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expected. After 48 hours treatment with Hispidin and DOX, a significant  decrease 

in cytochrome c loss in mitochondria was detected (when compared with cells 

treated with DOX). As previously reported, AIF content in total cellular extracts 

does not change with DOX treatment. The same was observed when cells were 

treated with Hispidin or with both compounds during 24 hours. However, when 

cells were treated with Hispidin (10 µM) and DOX simultaneously during 48 hours, 

AIF total content increased (Fig. 27 A). Mitochondrial fractions of H9c2 cells were 

also analyzed. After 24 hours treatment, a significant decrease was detected for 

cells treated with DOX, 5 or 10 µM Hispidin. The results were similar for 48 hours 

(Fig. 27 B). It is also noticeable that Hispidin blurred the decrease of AIF in 

mitochondrial fractions.  
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Figure 25. p53 and Bax protein content in total cellular extracts. p53 (A) and Bax (B) 

content in total extracts, identified by Western Blot as a band of  53 and 21 kDa, 

respectively. Total extracts were collected as described in the material and methods section. 

Images are representative of four independent experiments. Ponceau labeling shows the 

loading of equal amount of protein in each lane. Graph represents the densitometry analysis 

of p53 and Bax expressed as % of control. Data are expressed as means ± SEM of four 

different experiments. Statisctical analysis: *p < 0.05 compared with control for the 

respective time point and **p < 0.05 vs DOX treatment. 
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Figure 26. Cyt c protein content in total cellular extracts and mitochondrial fractions 

of H9c2 cells.  Cyt c in total extracts (A), and mitochondrial fractions (B), identified by 

Western Blot as a band of 15 kDa, respectively. Cells were collected as described in the 

material and methods section. Images are representative of four independent experiments. 

Ponceau labeling shows the loading of equal amount of protein in each lane. Graph 

represents the densitometry analysis of Cyt c expressed as % of control. Data are expressed 

as means ± SEM of four different experiments. Statisctical analysis: *p < 0.05 compared 

with control for the respective time point and **p < 0.05 vs DOX treatment.  
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Figure 27. AIF content in total extracts and mitochondrial fractions. AIF content in 

total extracts (A) and mitochondrial fractions (B), identified by Western Blot as a band of 

57 kDa. Cells were collected as described in the material and methods section. Images are 

representative of four independent experiments. Ponceau labeling shows the loading of 

equal amount of protein in each line. Graph represents the densitometry analysis of AIF 

expressed as % of control. Data are expressed as means ± SEM of four different 

experiments. Statisctical analysis: *p < 0.05 compared with control for the respective time 

point and **p < 0.05 vs DOX treatment. 

 

 

4.11. Superoxide Dismutase-2 Content Increases with PKC β Inhibition by 

Hispidin 

Superoxide dismutase-2 (SOD2) content in total cellular extracts was 

analyzed by Western Blot, after treating cells with DOX (Fig. 28). SOD2 content 

increased when cells were treated with 5 µM and 10 µM Hispidin during 48 hours, 

but during 24 hours treatment a significant decrease is only observed at 5 µM 

Hispidin. Cells treated with DOX only also showed an increase in SOD2 quantity 

for both time points. However, no changes in SOD2 quantity are observed for cells 

treated with Hispidin and pre-incubated with DOX during 24 hours.  
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Figure 28. SOD2 protein content in total cellular extracts of H9c2 cells.  SOD2 

expression in total extracts, identified by Western Blot as a band of 22 kDa, respectively. 

Total extracts were collected as described in the material and methods section. Images are 

representative of four independent experiments. Ponceau labeling shows the loading of 

equal amount of protein in each lane. Graph represents the densitometry analysis of SOD2 

expressed as % of control. Data are expressed as means ± SEM of four different 

experiments. Statisctical analysis: *p < 0.05 compared with control for the respective time 

point. 

 

 

4.12. PKC β Inhibition by Hispidin Treatment Induces Chromatin 

Condensation in H9c2 Cells 

Nuclear morphological changes typical of apoptosis were also measured by 

epifluorescence observation of cells treated with Hispidin. After treatment with 

different concentrations of Hispidin (5 and 10 µM), H9c2 cells were also treated 

with 1µM DOX during 24 and 48 hours. The results showed a significant increase 

in the number of nuclei showing condensed chromatin for both time points (Fig. 

29). DOX-induced increase in apoptotic nuclei was not inhibited by Hispidin 

treatment.  

 



  RESULTS 

73 | ROLE OF P66SHC SIGNALING ON DOXORUBICIN-INDUCED CARDIAC MITOCHONDRIAL DYSFUNCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 



  RESULTS 

74 | ROLE OF P66SHC SIGNALING ON DOXORUBICIN-INDUCED CARDIAC MITOCHONDRIAL DYSFUNCTION 

 

0

10

20

30

40

50 *

*
*

* *

[DOX] M

[Hispidin] M

- 1 - - 1 1

- - 5 10 5 10

 A
p

o
p

to
ti

c 
n

u
cl

ei
 (

 %
 C

o
n

tr
o
l)

0

10

20

30

40

50

-

-
1 - - 1 1
- 5 10 5 10

[DOX] M

[Hispidin] M

* * *
*

*

A
p

o
p

to
ti

c
 n

u
c
le

i 
(%

 C
o
n

tr
o
l)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Determination of apoptotic cells by Hoescht nuclear labeling.  (A) 

Epifluorescence microscopy images of nuclei showing H9c2 cells treated with Hispidin or 

pre-incubated with Hispidin and then treated with 1 µM DOX during 24 and 48 hours. 

Changes in nuclear morphology characteristic of apoptosis were detected in Hoescht 33342 

stained cells. Scale bar represents 40 µm. (B) The number of apoptotic nuclei were counted 

and expressed as the percentage of total cells counted (approximately 200 cells per 

coverslip). Data represents the mean±SEM of five different experiments. * p < 0.05 vs 

control. 
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DOX-induced cardiotoxicity is due to a multifactorial process involving reactive 

free radical species as a possible primary mechanism for the toxicity observed with this 

agent and with other anthracyclines (Lee et al., 1991). Other mechanisms also proposed 

p53/Bax pathway translocation to mitochondria as early events in DOX-induced cardiac 

cell death (Sardao et al., 2009a).  

The first objective of the present study was to investigate the initial step that 

induces p66Shc activation and translocation to mitochondria upon DOX treatment. 

DOX is responsible for an increase in ROS levels (Mross et al., 2006), which we 

thought to be responsible for p66Shc activation and translocation to mitochondria. 

Western Blot confirmed the presence and increase in p66Shc content in total cellular 

extracts (Fig. 12 B) and mitochondrial fractions (Fig. 14 A), suggesting that DOX is 

activating the p66Shc pathway, in H9c2 cells. Immunocytochemistry also confirmed the 

presence and increase in p66Shc content, but interestingly an increase was also 

observed in nuclear fractions during 24 and 48 hours treatment (Fig. 12 A).  

p66Shc phosphorylation on serine 36 is a critical step on p66Shc activation  (Raffaello 

and Rizzuto, 2011).  This process is induced by protein kinase C (PKC β), which is then 

recognized by the prolyl isomerase Pin1 that catalyzes its cis-trans isomerization. 

Subsequently, p66Shc is dephosphorylated by type 2 protein serine/threonine 

phosphatase (PP2A) and imported in the mitochondria (Raffaello and Rizzuto, 2011).  

However, total cellular extracts of H9c2 cells showed a significant decrease in 

Serine 36-phosphorylated p66Shc (Fig. 13 A), which is also significant in mitochondrial 

fractions (Fig. 14 B). The decreased phosphorylation is actually unexpected unless 

increased p66Shc dephosphorylation is enhanced with DOX. More experiments are 

needed to demonstrate this point. As previously described, an increase in p66Shc 
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content was observed in nuclear fractions of H9c2 cells after 24 and 48 hours treatment 

(Fig. 12 D). Data suggested an involvement/binding with another protein. Indeed, some 

authors reported the physical binding of p66Shc and FoxO3a, a transcriptional factor, in 

part in a mechanism independent of Akt activation. 

FoxO3a is involved in apoptosis, cell cycle transitions, DNA repair, cell 

differentiation, and oxidative stress (Barthel et al., 2005; Greer and Brunet, 2005). 

FoxO isoforms are regulated as a response to growth factor stimulation and oxidative 

stress through PI3K/Akt signaling pathway (Biggs et al., 1999). In response to several 

stimulis (insulin or gowth factors), FoxO factors are exported from the nucleus to the 

cytoplasm in an Akt-dependent phosphorylation process. Akt phosphorylation induces 

FoxO phosphorylation, remaining in the cytoplasm and their transcriptional function is 

repressed. 

The presence of FoxO3a in H9c2 cells was analyzed by Western Blot (Fig. 15) 

and immunocytochemistry (Fig. 18). Both experiments confirmed an increase in 

FoxO3a content after DOX treatment during 24 and 48 hours. FoxO3a is being 

translocated from the cytoplasm (Fig. 15 B) to the nucleus (Fig. 15 C), suggesting that 

FoxO3a is involved in DOX-induced cell death. Furthermore, FoxO3a phosphorylation 

on serine 253 was also analyzed (Fig. 16). Western Blot experiments demonstrate a 

significant decrease in FoxO3a phosphorylation on serine 253, suggesting once more 

that FoxO3a does not remain in the cytoplasm, but instead it is being translocated to the 

nucleus where it contributes for DOX-induced cell death, as described before (Greer 

and Brunet, 2005). Once in the nucleus, FoxO3a promotes the up regulation of 

downstream targets involved in several pathways. Superoxide dismutase-2, p53 and the 

pro-apoptotic Bcl2-interacting mediator of cell death Bim are some of the FoxO 

downstream targets that can be up-regulated (Nemoto S and Finkel T. et al., 2002). 
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Results shown in Figure 17 revealed an increase of all downstream targets described 

before, showing that FoxO3a participates in the stress response to DOX treatment of 

H9c2 cells. Furthermore, the possible binding between p66Shc and FoxO3a was 

investigated by immunocytochemistry (Fig.18) and immunoprecipitation (Fig.19). Both 

experiments confirmed the presence of FoxO3a in H9c2 cells, also confirmed 

previously by Western Blot analyzes. Immunoprecipitation assay revealed that p66Shc 

is clearly binding to FoxO3a, and this interaction increases after 1 µM DOX treatment 

during 48 hours, although, no significant interaction is observed after 24 hours 

treatment. Since PI3K/Akt signaling pathway represents an essential signaling pathway 

in FoxO3a regulation, Akt content in H9c2 cells was also analyzed (Fig. 20). Western 

Blot results demonstrated a significant decrease in Akt content after DOX treatment 

with 1 µM DOX during 48 hours. The same was observed in the ratio of Akt S 473/ Akt 

after DOX treatment with 1 µM DOX during 48 hours (Fig. 21).  Akt is a key survival 

component, which means that a decrease in Akt may contribute to DOX-induced loss of 

cells. FoxO proteins are regulated by phosphorylation-dependent nuclear/cytoplasmic 

shuttling as a result of the activity of Akt and JNK kinases (Biggs et al., 1999). Indeed, 

Akt directly phosphorylates FoxO3a (at the Tyr 32, Ser 253 and Ser 315) and targets 

them to bind the 14-3-3 nuclear export protein (Brunet et al., 2002). This binding would 

exclude FoxO3a factors from the nucleus, leading to their cytoplasmic accumulation 

and subsequent degradation (Calnan and Brunet, 2008). The results support the 

hypothesis that FoxO3a factors are being translocated to the nucleus where they act as 

transcriptional factors contributing for DOX-induced stress response, including cell 

death. 

The second objective of the present study was to investigate the effects of 

Hispidin, a protein kinase C (PKC β) inhibitor, in p66Shc activation and signaling. As 
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previously described, PKC β is involved in p66Shc phosphorylation on serine 36, in a 

mechanism responsible for p66Shc activation and translocation to mitochondria 

(Raffaello and Rizzuto, 2011). The results demonstrate that Hispidin induces 

caspase-3 activation for both time points (24 and 48 hours) and concentrations, but 

caspase-9 activation only significantly higher for cells treated with DOX (48 hours 

treatment) and 5 µM Hispidin (for both time points) (Fig. 22 B and Fig. 22 C). 

Hispidin indirectly prevents p66Shc activation, and so the increased levels of ROS 

induced by DOX treatment may activate other mechanisms that will lead to caspase 

activation. The differences observed between caspase-3 and -9 are due to the 

executioner function of caspase-3 which does not need to be activated through 

caspase-9. 

The results suggest that Hispidin is an effective compound in inhibiting 

p66Shc activation. p66Shc decreases significantly with Hispidin treatment (Fig. 23) 

and the ratio between the serine 36-phosphorylated form of p66shc and p66Shc 

total form (Fig. 24) and are similar to non treated cells. Hispidin might possess 

antioxidant effects against free radicals as already described in the literature (Jang 

et al., 2010), therefore inhibiting p66Shc activation. 

p53 tumor suppressor plays a central role in the regulation of oxidative stress-

induced apoptosis (Vogelstein et al., 2000). Currently, p66Shc has been reported as a 

downstream target for p53, as an essential for its function in increasing intracellular 

oxidants, cytochrome c release and apoptosis (Trinei et al., 2002). H9c2 cells treated 

with Hispidin (5 and 10 µM), showed a significant increase in p53 content after 24 

hours treatment, but the same does not occur for 48 hours treatment. After 48 hours 

treatment, only cells treated with DOX showed increased levels of p53 (Fig. 25). Sardão 

et al., (2009a) reported the role of p53 and Bax in H9c2 cells treated with DOX, as an 
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important component for DOX-induced cell death. Bax was the first p53 regulating 

gene to be recognized as involved in the apoptotic process (Miyashita et al., 1994; 

Miyashita et al., 1995). The results suggest that Bax, as well as p53 signaling pathway 

may be connected with p66Shc protein, perhaps in a redox mechanism. Cytochrome c 

results showed an increase in total cellular extracts (Fig. 26 A) of H9c2 cells when 

treated with 10 µM Hispidin or DOX during 24 and 48 hours. Interestingly, an increase 

was also observed for cells treated with 5 µM Hispidin, suggesting that Hispidin is not 

capable of inhibiting Cyt c release form mitochondria, contributing to cell death (Fig. 26 

B). 

The apoptosis inducing factor (AIF) is released from mitochondria to the nucleus 

due to an oxidative stress injury where it promotes chromatin condensation and large-

scale DNA fragmentation (Susin et al., 2000). AIF signaling pathway has been reported 

as a mechanism that occurs independently of caspase activation (Cande et al., 2004). 

H9c2 cells were treated as previously described during 24 and 48 hours, and no changes 

were detected in total cellular extracts (Fig. 27 A). Mitochondrial fractions (Fig. 27 B) 

of H9c2 cells revealed a decrease in AIF content when cells were treated with 5 and 10 

µM Hispidin and also for cells treated only with DOX for 24 hours. However, cells 

treated during 48 hours do not show the same results. Indeed, AIF release only occurs 

for cells treated with DOX, suggesting that AIF release from mitochondria may be 

involved with p66Shc activation. This is even more evident when cells were pre-

incubated with Hispidin and four hours later treated with DOX, because one more time 

no changes were observed. 

The Manganese superoxide dismutase converts superoxide generated by the 

respiratory chain into hydrogen peroxide, and acts in ROS detoxification (Li et al., 

1995). p66Shc has been reported as a repressor of Superoxide dismutase (Koch et al., 
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2008). This link is observed when SOD2 content increased after Hispidin treatment 

during 24 and 48 hours treatment (Fig. 28). However, is not sufficient to inhibit SOD2 

after DOX treatment confirming once more that p66Shc regulates SOD2 levels in a 

redox mechanism. 

Moreover, despite the good results of Hispidin in inhibiting p66Shc activation is 

not sufficient to counteract DOX-induced cell death (Fig. 29), suggesting that this 

protein may not be essential in that mechanisms but interferes with important key steps 

for mitochondria function, compromising cell death.  
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6.1. Final Conclusion 

This work presents a major contribution to understand the underling mechanism 

of DOX-induced cardiotoxicity. Despite all negative aspects involving in DOX therapy, 

this compound is still a very effective anticancer drug. 

The first aim of the present work was to investigate if DOX causes activation of 

the p66Shc signaling pathway which leads to a progressive deterioration of 

mitochondrial function. Our data indicate that p66Shc is being activated upon DOX 

treatment, leading to an increase in p66Shc in mitochondrial fractions. However, the 

ratio between p66Shc phosphorylation on serine 36 and p66Shc decreases, suggesting 

that in our cell model other mechanisms might be involved on p66Shc activation. Our 

results also suggest that inhibiting the activation of p66Shc signaling can also contribute 

to prevent DOX-induced cell death. It is very likely that p66Shc activation is involved 

in the up-regulation of several proteins normally associated with DOX toxicity, 

including p53.  

In fact, a second goal of this work was to investigate a possible interaction 

between p66Shc and the transcriptional factor FoxO3a in a stress-dependent pathway 

contributing for the mitochondrial dysfunction and cell death during DOX treatment 

was also investigated. Our results point that p66Shc and FoxO3a are translocated to the 

nucleus promoting cell death.   
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Figure 30. A new mechanism to explain DOX-induced cardiotoxicity.  p66Shc and 

FoxO3a are physically interacting, and upon DOX treatment they are translocated to the 

nucleus promoting cell death. 

 

6.2. Future Perspectives 

In our study, we suggest that p66Shc activation and FoxO3a are important in 

contributing to cell death after DOX treatment. However, certain limitations are 

associated with the use of a cell line as a model, and so the results obtained should be 

confirmed using an in vivo model. Furthermore, PI3K/Akt pathway should be analyzed 

in more detail in order to clarify this contribution in FoxO3a regulation and cell 

survival. Following this, a PI3K and Akt inhibitor should be used.  

In this work, the effect of a PKC β inhibitor, Hispidin, was assessed. Despite of 

all good results demonstrating an efficient inactivation of p66Shc, more experiments 

should be performed about the selectivity of this inhibitor. Indeed, a p66Shc knockdown 

or knockout would provide us useful information about this protein and its role in 
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mitochondria dysfunction, and also it would increase the validity of our results. In order 

to identify whether DOX-induced stress participates in the activation of the p66Shc, we 

will use N-acetylcystein (NAC), the GSH precursor, which we have demonstrated 

already to inhibit cell death caused by DOX (Sardão et al., 2009a), and observe if NAC 

inhibits the DOX-induced p66Shc up-regulation. 
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