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Exposure to environmental toxicants, mainly endocrine disruptors, has been 

associated with a decline in sperm quality paralleled by a trend for increased testicular 

cancer and anomalies in male reproductive organs, suggesting that these substances play a 

role in male reproductive dysfunction and infertility. Of the more prevalent pollutants, 

organochlorine compounds such as the classical dioxin TCDD, PCBs and the major DDT 

metabolite, p,p’-DDE, are potentially serious hazards to the general human population. 

Although these substances preferentially accumulate in body fat, important amounts are 

present at the site of fertilization in vivo, representing an important direct route of 

exposure for spermatozoa that should not be neglected. Moreover, while often relying on 

the evaluation of standard semen parameters to infer about the potential damaging effects 

of such compounds in human male fertility, studies may have underestimate their true 

toxicity, mainly at low physiological concentrations. Thus, the evaluation of more precise 

sperm functional parameters is mandatory. One of these parameters is sperm 

chromatin/DNA integrity, crucial for a correct delivery of the paternal genome to the 

embryo. Despite the multitude of tests available, the lack of valid cut-offs and the 

involvement of extensive protocols and/or expensive reagents and equipment have 

hampered the introduction of sperm DNA damage as an additional parameter in routine 

semen analysis and limited its evaluation in large-scale studies.  

In the first part of our work an in vitro approach allowed to mimic the putative in 

vivo continuous exposure of human sperm to TCDD, PCB 77 and p,p’-DDE in the female 

reproductive tract, for several days. Although exposure to TCDD did not affect sperm 

function, both the dioxin-like PCB 77 and p.p’-DDE were able to directly target human 

sperm, promoting several alterations that culminated in cell death. p,p’-DDE exposure was 

found to decrease both mitochondrial function and cellular ATP levels which, collectively, 

resulted in a notable reduction of sperm motility. Similarly, PCB 77 affected both 

mitochondria and motility, but by firstly causing a decline in sperm motility followed by 

mitochondrial dysfunction, a different mechanism of action was suggested when 

compared to p,p’-DDE. Consistent with this idea, sperm capacitation was inhibited only 

by p,p’-DDE treatment. Furthermore, Ca
2+

 homeostasis, which is vital for proper sperm 

function, was not significantly affected by PCB 77, but was strikingly altered upon p,p’-

DDE exposure, even at doses as low as 1 pM and 1 nM. The remarkable increase and 

sustained elevation of intracellular Ca
2+

 levels promoted by p,p’-DDE exposure resulted 

from an influx from the external environment triggered by the activation of the Ca
2+

-
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permeable cation channel Catsper localized at the plasma membrane. The acrosome 

reaction, which is strongly Ca
2+

-dependent, was prematurely triggered by p,p’-DDE.  

In the second part of our work we sought to determine the value of our simple, fast 

and inexpensive Diff-Quik staining assay in evaluating sperm chromatin status and 

predicting ART fertility outcomes in post-prepared samples. Similarly to what was 

reported using other tests, this recently described assay was able to detect an improvement 

of sperm chromatin integrity after sperm selection. Moreover, lower percentages of 

chromatin damage were associated with better quality embryos in both IVF and ICSI 

cycles and with clinical pregnancy success, but only in IVF treatments, where some 

degree of “natural” sperm selection may occur. In this case, a threshold value beyond 

which clinical pregnancy was significantly compromised was established at 34.25% of 

damaged sperm monitored by the Diff-Quik staining assay.  

Overall, we provide evidence that p,p’-DDE and PCB 77 promote direct (non-

genomic) effects in human sperm function via different mechanisms of action, ultimately 

compromising male fertility. Given the involvement of Ca
2+

 in many vital processes 

relevant for sperm function, p,p’-DDE-induced non-regulated Ca
2+

 entry via Catsper and 

overload may be, at least in part, accountable for the general sperm dysfunction observed. 

In contrast, TCDD was ineffective in vitro suggesting that its effects on human sperm 

parameters may be indirect, i.e. rather resulting from alterations at other levels. To our 

knowledge this is the first time that Catsper has been associated with the action of 

endocrine disruptors.  

Furthermore, the Diff-Quik staining assay was confirmed to be a clinically valuable 

tool that provides useful information concerning the success ART, particularly in IVF 

cycles, and is thus suggested as an alternative method to detect sperm chromatin status in 

minimal clinical settings, when no other well-established assays are available.  
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A exposição a contaminantes ambientais, em particular a disruptores endócrinos, 

tem sido associada a uma diminuição da qualidade espermática e a uma tendência 

acrescida de cancro testicular e anomalias nos órgãos reprodutores masculinos, dados 

que sugerem estes compostos como potenciais causadores de disfunção reprodutora 

masculina e infertilidade. De entre os mais conhecidos contaminantes com este tipo de 

propriedades incluem-se substâncias organocloradas como a clássica dioxina TCDD, os 

PCBs e o p,p’-DDE (principal metabolito do pesticida DDT), as quais representam 

sérios riscos para a população humana, dada a ampla disseminação e persistência das 

mesmas. Muito embora estas substâncias acumulem tendencialmente no tecido adiposo, 

têm também sido encontradas no tracto reprodutor feminino, estando assim em contacto 

directo com os espermatozóides. No entanto, a análise apenas de parâmetros seminais 

clássicos para avaliar os potenciais efeitos nefastos destes compostos na fertilidade 

masculina pode subestimar a sua toxicidade, sobretudo a baixas concentrações. Torna-se 

assim imperativa a avaliação de parâmetros funcionais mais precisos. Um destes 

parâmetros é a integridade da cromatina/ADN, crucial para uma correcta transmissão da 

informação genética paterna ao embrião. Apesar do vasto número de técnicas 

disponíveis para a sua análise, a ausência de valores-limite e a utilização de protocolos 

extensos e/ou de reagentes e equipamento dispendiosos têm dificultado a introdução da 

integridade da cromatina/ADN como parâmetro adicional aquando da realização de um 

espermograma, bem como limitado a sua avaliação em estudos de larga escala.  

Na primeira parte do trabalho uma abordagem in vitro permitiu mimetizar a 

exposição contínua aos compostos TCDD, PCB 77 e p,p’-DDE a que os 

espermatozóides estão sujeitos in vivo durante vários dias no tracto reprodutor feminino. 

Embora a exposição a TCDD não tenha comprometido os parâmetros funcionais 

estudados, tanto o PCB 77 como o p,p’-DDE afectaram directamente a função 

espermática, culminando em morte celular. A exposição a p,p’-DDE levou a uma 

diminuição da função mitocondrial que, em simultâneo com o decréscimo dos níveis de 

ATP celular, resultou numa acentuada redução da mobilidade espermática. A exposição 

a PCB 77 afectou igualmente a mitocôndria e a mobilidade espermática, no entanto o 

declínio na mobilidade precedeu a disfunção mitocondrial, sugerindo distintos 

mecanismos de acção para os diferentes compostos. Reforçando esta ideia, uma inibição 

da capacitação foi observada apenas durante a exposição a p,p’-DDE. Além disso, a 

homeostase do Ca
2+

 não foi significativamente afectada pelo PCB 77 mas foi, pelo 
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contrário, substancialmente alterada durante a exposição a p,p’-DDE, inclusive a 

concentrações tão diminutas e fisiologicamente relevantes como 1 pM e 1 nM. De facto, 

o notável e persistente aumento dos níveis de Ca
2+

 intracelular proveniente do meio 

externo foi despoletado pela activação do canal de Ca
2+

 Catsper localizado na 

membrana plasmática. Por seu lado, a reacção acrossómica, evento fortemente 

dependente de Ca
2+

, foi também prematuramente induzida pela exposição a p,p’-DDE. 

Na última parte do trabalho determinámos o valor do método de coloração Diff-

Quik na avaliação do estado da cromatina espermática após selecção dos 

espermatozóides para utilização nas técnicas de Reprodução Assistida, e a sua relação 

com os resultados de fertilidade obtidos. Recentemente desenvolvido pelo nosso grupo 

de trabalho, este método simples e barato detectou um aumento da percentagem de 

espermatozóides com cromatina íntegra após o processo de selecção. Adicionalmente, 

amostras com baixas percentagens de espermatozóides com danos na cromatina foram 

associados a uma melhor qualidade embrionária após ICSI e FIV e à obtenção de uma 

gravidez clínica após FIV, onde, apesar de toda a manipulação inerente ao 

procedimento, é possível ocorrer uma certa selecção “natural”. Neste último caso, 

34,25% de espermatozóides com danos na cromatina foi estabelecido como valor de 

referência acima do qual a obtenção de uma gravidez poderá estar comprometida. 

Em conclusão, os compostos organoclorados p,p’-DDE e PCB 77 afectam 

directamente a função espermática humana via diferentes mecanismos de acção, 

comprometendo, em última análise, a fertilidade masculina. Tendo em conta o 

envolvimento do Ca
2+ 

em diversas vias de sinalização, o seu influxo não regulado e 

excessivo via Catsper poderá ser responsável, pelo menos em parte, pelo declínio da 

função espermática observada durante a exposição ao p,p’-DDE. Pelo contrário, a 

exposição ao composto TCDD mostrou-se ineficaz sugerindo que os efeitos 

previamente descritos em espermatozóides humanos resultam de um outro mecanismo, 

possivelmente indirecto. Este é o primeiro estudo que descreve o envolvimento do canal 

de Ca
2+

 Catsper na acção de disruptores endócrinos. 

Ademais, o método de coloração Diff-Quik revelou-se uma importante ferramenta 

clínica com capacidade de predizer o sucesso das técnicas de Reprodução Assistida, em 

particular após FIV, sendo portanto sugerido como método alternativo para detecção do 
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estado da cromatina em espermatozóides humanos em qualquer laboratório de 

Andrologia, quando não estejam disponíveis técnicas mais elaboradas. 
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2 

1.1 Male infertility 

Infertility, generally defined as the inability to conceive following at least 1 year of 

regular and unprotected intercourse, affects approximately 15% of couples (Dada et al. 

2011) and in many cases the male factor is the sole reason behind this problem (Schulte 

et al. 2010). Currently, male infertility diagnosis relies on the microscopic assessment 

of standard semen parameters - sperm concentration, motility and morphology - in the 

native sample based on the World Health Organization (WHO) guidelines and reference 

values (WHO 2010). To this extent, a sperm sample is considered normal, and thus 

normozoospermic, if it contains ≥15 millions of spermatozoa per ml of semen, ≥32% of 

sperm with progressive motility or ≥40% of spermatozoa with total motility 

(progressive motility and in situ motility) and ≥4% of morphologically normal forms 

(WHO 2010). If one of these parameters is below the reference value, the sample is 

considered abnormal and defined as oligozoospermic, asthenozoospermic or 

teratozoospermic according to the low values of concentration, motility or morphology 

displayed, respectively (WHO 2010).  

The evaluation of sperm concentration, motility and morphology, although 

relevant, is not sufficient for a complete male infertility diagnosis. It has become 

evident that these parameters may not accurately predict fertility outcomes (Agarwal & 

Allamaneni 2005) as normozoospermic individuals may be infertile (Agarwal & 

Allamaneni 2004) and men presenting abnormal values in one, two or even all sperm 

parameters may father a child. As a result, these parameters seem to only address few 

aspects of sperm quality and function of the male reproductive system and not the 

ability of spermatozoa to fertilize an oocyte (Sousa et al. 2009). Inevitably, this further 

stimulated the search for better markers of male fertility and consequently the 

development of assays that may give clear indications of a subject fertilizing potential, 

such as the ones detecting capacitation status, acrosome reaction (AR), sperm-oocyte 

interaction and chromatin/deoxyribonucleic acid (DNA) integrity, among others (Aitken 

2006). The detection of different aspects of sperm function by these tests certainly 

provides valuable information for the diagnosis of male infertility as well as for 

understanding how environmental contamintants may influence human fertility.   
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1.2 Spermatogenesis - the production of spermatozoa 

The seminiferous tubules are considered the functional units of the testis (Cheng & 

Mruk 2002) and it is within these unique structures that spermatogenesis occurs. Inside 

the tubules two different types of cells can be found: the somatic Sertoli cells and the 

germ cells. Sertoli cells play a paramount role in all the spermatogenic process 

nourishing and providing physical support to the germ cells located within their 

invaginations and creating an privileged microenvironment that controls substances 

entrance and antigen/antibody exchanges, through the formation of the blood-testis 

barrier (Holstein et al. 2003). Not less important are the intertubular space located 

Leydig cells, which are vital for the regulation of spermatogenesis and the 

differentiation of male sexual organs and secondary sex characteristics by secreting the 

steroid hormone testosterone (Holstein et al. 2003). 

The highly dynamic and metabolically active process of spermatogenesis, by 

which spermatogonia give ultimately rise to spermatozoa, involves different steps of 

proliferation and differentiation and culminates with the release of newly formed cells 

to the lumen of seminiferous tubules (De Kretser et al. 1998; Holstein et al. 2003). 

Spermatogenesis starts at puberty and occurs continuously throughout life because of 

the self-renewing spermatogonia stem cell pool present in the germinal epithelium 

(Holstein et al. 2003). The duration of each spermatogenic cycle, i.e. the time required 

to obtain spermatozoa from the progenitor spermatogonia, is species-specific (França et 

al. 1998) and in men it takes approximately 64 days on average (Misell et al. 2006). 

Spermatogenesis can be divided in three distinct and sequential phases:  

spermatogoniogenesis, meiosis and spermiogenesis (Figure 1.1). In this first phase, 

spermatogonial stem cells present at the basement membrane undergo numerous mitotic 

divisions to continuously reload the germinal epithelium (De Kretser et al. 1998; 

Holstein et al. 2003). At this point, the daughter cells can either remain dormant and 

renew the stem cell reservoir (A-type spermatogonia) or initiate a sequential and gradual 

transformation that will finally give rise to spermatozoa (committed B-type 

spermatogonia; Holstein et al. 2003).  

After the last spermatogonial division, B-type spermatogonia differentiate into 

primary spermatocytes that enter the first meiotic division. From this reducing division 

secondary spermatocytes are generated. These cells do not undergo DNA replication 
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dividing quickly to form round spermatids in the second and last meiotic division 

(Holstein et al. 2003). Round spermatids soon undergo a series of complex alterations 

that allow their differentiation into spermatozoa in a process termed spermiogenesis (De 

Kretser & Kerr 1994). During this profound remodeling step, chromatin becomes highly 

condensed and the haploid nucleus elongated as a consequence of the replacement of 

histones by smaller basic nuclear proteins, the protamines. The Golgi apparatus 

undergoes conformational changes contributing to the formation of the acrosome, which 

connects to the nucleus surface. Conversely, the flagellum is formed in each cell in the 

opposite direction. Further reorganization of organelles and loss of most cytoplasm and 

other structures complete the series of morphological changes (Holstein et al. 2003).  
 

 

 
 

Figure 1.1. Spermatogenesis. 

Spermatogenesis is a highly dynamic and metabolically active process which allows the formation of 

spermatozoa from the progenitor spermatogonia. It involves different steps of proliferation and 

differentiation and can be divided into three distinct phases. Spermatogoniogenesis is defined by the 

proliferation of spermatogonia and development of primary spermatocytes that quickly enter meiosis. 

After two meiotic divisions, the initial primary spermatocyte leads to the formation of four haploid round 

spermatids that during spermiogenesis experience terminal differentiation. Spermatocytes I - primary 

spermatocytes; spermatocytes II – secondary spermatocytes (adapted from 

http://www.embryology.ch/anglais/cgametogen/spermato03.html). 

http://www.embryology.ch/anglais/cgametogen/spermato03.html
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At the end of spermiogenesis cells are released to the lumen of seminiferous 

tubules in a process known as spermiation (De Kretser et al. 1998; Holstein et al. 2003). 

Spermatozoa can then leave the testis towards the rete testis by peristaltic contraction of 

the seminiferous tubules (Romano et al. 2005) aided by the testicular fluid secreted by 

Sertoli cells (Holstein et al. 2003). It is throughout the epididymal ducts that 

spermatozoa suffer posttesticular maturation, acquiring significant physiological 

attributes such as the ability to swim progressively (Yanagimachi 1994; Cooper 2007). 

 

 

1.2.1 Hormonal regulation of spermatogenesis 

Spermatogenesis is a highly regulated process mainly dependent upon testosterone 

and the pituitary gonadotropins follicle stimulating hormone (FSH) and luteinizing 

hormone (LH; Holdcraft & Braun 2004). Upon LH stimulation in response to the 

hypothalamic gonadotropin-releasing hormone (GnRH; Holstein et al. 2003; Figure 

1.2), Leydig cells expressing LH receptors produce testosterone which is absolutely 

crucial for adult spermatogenesis, especially in the progression and completion of both 

meiosis and spermiogenesis (McLachlan et al. 2002a; Haywood et al. 2003; Ruwanpura 

et al. 2010). Testosterone acts via androgen receptors (ARec) localized in Sertoli and 

Leydig cells and it is generally accepted that its actions on spermatogenesis are 

transduced by the Sertoli cells (McLachlan et al. 2002b). However, these receptors have 

also been identified in germ cells (Kimura et al. 1993; Zhou et al. 1996) and 

spermatozoa (Aquila et al. 2007; Rago et al. 2007; Kotula-Balak et al. 2012), 

suggesting that testosterone may possibly have another mechanism of action by direct 

interaction with these cells. Furthermore, by a negative feedback mechanism 

testosterone also inhibits LH secretion (Holstein et al. 2003).  

FSH, on the other hand, acts on Sertoli cells through specific G-protein coupled 

surface receptors (Simoni et al. 1997; McLachlan et al. 2002b) stimulating their 

proliferation at specific time windows of mammalian development (Sharpe et al. 2003). 

This is particularly relevant given that each Sertoli cell only supports a limited number 

of germ cells (Rodriguez et al. 1997; Sinha Hikim & Swerdloff 1999), determining the 

quantity of germ cells present in the seminiferous tubule and consequently, sperm 

output (Ruwanpura et al. 2010). Additionally, FSH may regulate spermatogonial 
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proliferation, meiosis and spermiogenesis. FSH may stimulate spermatogonial division 

(Krishnamurthy et al. 2000; Haywood et al. 2003; O'Shaughnessy et al. 2010) and also 

act as a survival factor by controlling apoptosis in spermatogonia (Meachem et al. 1999; 

Ruwanpura et al. 2008a,b), spermatocytes (Meachem et al. 1999; Ruwanpura et 

 

 

 

Figure 1.2. Hormonal regulation of spermatogenesis. 

The hypothalamus regulates the production of FSH and LH by the anterior pituitary gland through GnRH 

secretion. LH stimulates Leydig cells to secrete testosterone which is crucial for the development of 

spermatogenesis, particularly of meiosis and spermiogenesis. Besides having a local action, testosterone 

enters the blood stream and inhibits LH secretion (negative feedback). FSH, on the other hand, exerts its 

effects through Sertoli cells. Both circulating inhibin B secreted by Sertoli cells and oestradiol, converted 

from testosterone by the enzyme aromatase, decrease FSH secretion by the hypophysis (negative 

feedback). Estrogens play an important role in the development of spermatogenesis.  GnRH - 

gonadotropin-releasing hormone; FSH - follicle stimulating hormone; LH - luteinizing hormone (adapted 

from Cooke & Saunders 2002). 

 

al. 2008a) and spermatids (Chandolia et al. 1991; Meachem et al. 1999). Similar to the 

role of testosterone on later spermatogenic cells (spermatocytes and spermatids; Erkkilä 



 Chapter 1 General Introduction 

 

7 

et al. 1997), FSH also appears to be important in supporting germ cell development to 

spermatids through the regulation of apoptosis in men (Tesarik et al. 2000; Matthiesson 

et al. 2006). FSH may also interfere with the adhesions between spermatids and Sertoli 

cells. Saito and colleagues have found a higher percentage of cells failing to spermiate 

following one week of passive FSH immunization in adult rats, stressing its importance 

in the spermiation process (Saito et al. 2000). These authors also found that combined 

FSH and testosterone suppression led to a 50% failure in spermiation, a far higher 

percentage than the approximately 15% observed for each hormone individually, clearly 

highlighting the need of both substances for the development of a normal spermiation 

process (Saito et al. 2000). In fact, many reports show that both FSH and testosterone 

can act co-operatively and thus optimize the spermatogenic process. The synergy among 

FSH and testosterone is also observed at the spermatocyte level in which combined FSH 

and testosterone treatment was found to be much more effective in the maintenance or 

re-establishment of meiosis than individual hormone treatment (McLachlan et al. 

2002a). Through a negative feedback mechanism FSH secretion is inhibited by inhibin 

B secreted by Sertoli cells (Holstein et al. 2003) and, paradoxically, by the “female 

hormone” oestradiol (Hayes et al. 2001).  

In reality, increasing evidence identifies estrogens as potential regulators of 

spermatogenesis in many mammalian species including humans (Carreau et al. 2010, 

2012). Both the biologically active enzyme aromatase, which irreversibly converts 

testosterone to oestradiol (the major physiological estrogen), and the estrogen receptors 

(ERs), the main mediators of estradiol actions, are localized in several testicular cell 

types such as Leydig, Sertoli and germ cells (Cavaco et al. 2009; Lardone et al. 2010; 

Carreau et al. 2010, 2012). Additionally, ERs have also been detected in mammalian 

spermatozoa (Aquila et al. 2004; Rago et al. 2007; Carreau et al. 2010; Kotula-Balak et 

al. 2012). Estrogens were found necessary for the progression of adult spermatogenesis, 

especially during meiosis and differentiation of spermatozoa (Carreau et al. 2010, 

2012). Furthermore, oestradiol was also found to act as a potent germ cell survival 

factor in human testis (Pentikainen et al. 2000). On the other hand, increased 

concentrations of estrogens in the male testis may impair spermatogenesis (Carreau et 

al. 2012). 
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1.3 Spermatozoa – highly specialized and functional cells  

Spermatozoa are terminally differentiated and hydrodynamic-shaped cells that 

have only one but rather gigantic “goal”, to achieve fertilization and transmit their 

genetic information to the progeny. In order for this to happen, each one of these 

notable cells is composed of three main regions: head, midpiece and tail (Figure 1.3). 

 

 

Figure 1.3. Longitudinal schematic representation of a mammalian spermatozoon.  

Spermatozoa consist of three main regions: the head (which comprises the acrosome and the 

nucleus), the midpiece (where mitochondria are restricted) and the flagellum (composed of a 

proximal piece and an end piece). PM - plasma membrane; OAM - outer acrosomal membrane; A - 

acrosomal matrix; IAM - inner acrosomal membrane; OAM + A + IAM - acrosome; N - nucleus; 

ODF - outer dense fibers; M - mitochondrion; Ax - axoneme; FS - fibrous sheath (adapted from 

http://www.embryology.ch/anglais/cgametogen/spermato05.html). 

 

 

1.3.1 Sperm head 

Within the sperm head two organelles are easily distinguished: a large secretory 

vesicle dubbed acrosome and the nucleus, which contains a haploid set of chromosomes 

(Holstein et al. 2003). 

 

 

1.3.1.1 Acrosome  

 The acrosome is a double membrane organelle (comprises an inner and an outer 

membrane) located in the anterior portion of the sperm head, overlaying the nucleus 
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(Florman et al. 2008; Abou-haila & Tulsiani 2009). In mammals, both the shape and the 

size of acrosome are species-specific and normally follow sperm head morphology, 

which in humans assume a paddle shape form (Abou-haila & Tulsiani 2009). The 

acrosome may comprise 40-70% of the sperm head (WHO 2010) and contains 

hydrolytic enzymes, such as acrosin, thought to facilitate sperm penetration through the 

oocyte zona pellucida (ZP; Ramalho-Santos et al. 2007). Because certain proteins with 

hyaluronidase activity (Lin et al. 1994; Hunnicutt et al. 1996) are present in the sperm 

surface, it is believed that acrosome-intact spermatozoa can safely penetrate the 

hyaluronic acid rich-extracellular matrix between the cumulus cells that surround and 

support the oocyte (Lin et al. 1994; Abou-haila & Tulsiani 2009), allowing sperm to 

move forward. However when spermatozoa interact with the translucent glycoprotein-

based ZP, AR takes place. AR is a calcium (Ca
2+

)-dependent exocytotic event in which 

the outer acrosomal membrane and the plasmalemma fuse at multiple sites, conducing 

to the release of hydrolytic enzymes (important for digesting and penetrating the ZP) 

and the exposure of new membrane domains, both of which essential for fertilization to 

occur (Breitbart 2002; Florman et al. 2008; Abou-haila & Tulsiani 2009). Binding to the 

ZP seems to trigger a signaling cascade that involve second messengers, Ca
2+

 influx, 

internal pH rise and activation of protein kinases that promote protein phosphorylation 

(Abou-haila & Tulsiani 2009). This will ultimately lead to exocytosis of the acrosomal 

contents by stimulating the fusion between the outer acrosomal membrane and plasma 

membrane (Abou-haila & Tulsiani 2009). Besides ZP, a number of physiological 

inducers, i.e. substances that spermatozoa will encounter during in vivo fertilization, are 

also known to induce AR. Progesterone, which is released by cumulus cells, was 

recently found to trigger acrosomal exocytosis by directly activating a cation channel 

which promotes Ca
2+

 influx apparently without involving metabotropic receptors 

(Strunker et al. 2011).  

AR is indispensable for fertilization to occur both in vivo and in vitro (except in 

the case of Intracytoplasmic Sperm Injection [ICSI] where spermatozoa are directly 

injected into the oocyte). Sperm cells that experience AR prematurely or do not possess 

an acrosome due to defective spermiogenesis have no fertilizing ability in vivo. 

Furthermore, it has been reported that human samples with low percentages of 

acrosome-intact spermatozoa also present low in vitro fertilizing potential (Liu & Baker 

1988; Albert et al. 1992; Chan et al. 1999).  
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Human spermatozoa are not capable of experiencing AR and thus fertilization 

oocyte immediately after ejaculation. It is only after being in the female reproductive 

tract (Abou-haila & Tulsiani 2009) for a suitable amount of time (Yanagimachi 1994) 

that spermatozoa undergo a series of poorly understood maturation steps collectively 

dubbed capacitation (Visconti & Kopt 1998; Ramalho-Santos et al. 2007). This 

fertilizing competence acquisition includes increased plasma membrane permeability 

and fluidity due to cholesterol efflux, influx of ions specially Ca
2+

 and bicarbonate 

(HCO3
-
), internal pH rise and protein phosphorylation, typically on tyrosine residues 

(Visconti & Kopf 1998; Ramalho-Santos et al. 2007; Abou-haila & Tulsiani 2009). The 

increased membrane fluidity in capacitated spermatozoa was found to facilitate fusion-

related events during spermatozoa-oocyte interactions such as AR and sperm-oocyte 

fusion (Primakoff & Miles 2002). Capacitation is also related to striking changes in 

sperm swimming patterns, designated as sperm hyperactivation (Suarez 2008; Abou-

haila & Tulsiani 2009). The hyperactive beat pattern of the flagellum is believed to be 

required for sperm to penetrate both the cumulus complex and the ZP, being therefore 

another important factor that regulates fertilization (Suarez 2008) 

The process of capacitation may also be achieved in vitro using chemically-

defined media complemented with energy substrates (e.g. lactate, pyruvate and 

glucose), ions (e.g.  Ca
2+ 

and HCO3
-
) and serum albumin, a cholesterol acceptor 

(Visconti & Kopf 1998; Abou-haila & Tulsiani 2009). Spermatozoa may also revert 

their capacitated state when treated with decapacitating factors, causing cells to fall 

back to a non-fertilizing condition (Fraser 2010). With time, spermatozoa can 

recapacitate and recover their fertilizing ability, showing that the process of capacitation 

itself is reversible (Fraser 2010). This in vitro manipulation of capacitation has allowed 

researchers to determine its importance in mammalian fertility.  

 

 

1.3.1.2 Nucleus – chromatin/DNA structure 

Spermatozoa are responsible for the delivery of the paternal genetic information, 

distinctively packaged in the haploid nucleus, to the future embryo. Unlike the 

relatively loose chromatin structure present in somatic cells, spermatozoa possess an 

extremely organized and highly compacted chromatin due to the unique associations 

between the DNA and sperm nuclear proteins, primarily protamines (Ward & Coffey 
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1991; Brewer et al. 1999). In fact, while the somatic cell nuclear DNA is wrapped 

around histone octamers forming nucleosomes that will further coiled into solenoids 

(McGhee et al. 1980) therefore increasing chromatin volume, spermatozoa experience a 

different type of chromatin packaging that results in a reduced nuclear size (Ward & 

Coffey 1991; Figure 1.4). 

During spermiogenesis sperm chromatin undergoes several alterations in which the 

histones are replaced by transition proteins and later on by protamines (Dadoune 1995; 

Lee et al. 1999; Steger et al. 2000; Kierszenbaum 2001). The DNA strands are tightly 

wrapped around these latter proteins, forming supercoiled doughnut-like structures 

named toroids, the basic packaging units of sperm chromatin (Tanphaichitr et al. 1978; 

Ward & Coffey 1991; Brewer et al. 1999). These structures, in addition to the solenoids 

 

 

 

Figure 1.4. DNA packaging in somatic cells and spermatozoa. 

Somatic and sperm cells do not share the same type of DNA packaging. While in somatic cells the DNA 

double helix is wrapped around histone octamers forming nucleosomes further coiled into solenoids, the 

DNA from spermatozoa is wrapped around protamines forming supercoiled doughnut-like structures 

(toroids; adapted from Sakkas et al. 1999a and http//compbio.med.wayne.edu/protamines.html). 

 

in somatic cells, are further organized into loop domains attached to a nuclear matrix 

(Ward & Coffey 1991). Progressive oxidation of the thiol (-SH) groups among cysteine-

rich protamines will lead to inter- and intramolecular disulfide cross-links further 
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allowing compaction and stabilization of the sperm nuclei (Kosower et al. 1992), thus 

reducing sperm chromatin to one-sixth the volume taken up in somatic cells nuclei 

(Fuentes-Mascorro et al. 2000). This chromatin rearrangement is thought to be 

important, not only for protecting the paternal genome during the transport through the 

male and female reproductive tracts, but also in guaranteeing its proper delivery to the 

oocyte, hence allowing accurate embryo development (Sakkas et al. 1999a). 

Interestingly, altered protamine expression may be detrimental. Human spermatozoa 

contain both type-1 and type-2 protamines (P1 and P2, respectively), but a higher 

prevalence of P2 may cause DNA to become more susceptible to damage since P2 

contains fewer cysteine residues and consequently less disulfide cross-links (Corzett et 

al. 2002). Torregrosa and coworkers have suggested a relationship between deficient P2 

processing and decreased DNA integrity in infertile patients (Torregrosa et al. 2006) 

and others have shown a common altered P2 expression in these men (Carrell et al. 

2001). 

It is important to note that not all histones are replaced by protamines and up to 

15% are actually retained in human sperm (Gatewood et al. 1987; Bench et al. 1996). It 

is believed; however, that these histones mark the genes that will be preferentially 

activated in early stages of embryonic development (Gatewood et al. 1987; Gineitis et 

al. 2000) by remaining less tightly compacted, thus providing an easy access to DNA. 

In contrast, an excess of nuclear histones may be associated with reduced chromatin 

compaction and enhanced susceptibility to DNA damage in both human and mice 

spermatozoa (Cho et al. 2001, 2003; Aoki et al. 2005, 2006). Furthermore, a higher 

histone to protamine ratio among infertile men has been described when compared to 

fertile controls (Steger et al. 2000; Oliva 2006; Zhang et al. 2006; Zini et al. 2007).  

 

 

1.3.2 Sperm tail and midpiece 

The ultrastructure of the mammalian sperm tail is highly conserved and is 

comprised of a number of cytoskeletal structures whose proper assembly is decisive for 

sperm motility (Turner 2003). The sperm tail is composed by an axoneme displaying a 

central pair of single tubulin microtubules and nine peripheral doublets in a classic 9+2 

microtubular arrangement, further surrounded by the outer dense fibers and a fibrous 
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sheath (Kierszenbaum 2002; Ramalho-Santos et al. 2007). These cytoskeletal elements 

provide strength and resistance to the tail (Turner 2003; Ramalho-Santos et al. 2007) 

and also differentiate the sperm flagella in its principal piece and end piece (Turner 

2003). Both the outer dense fibers and the fibrous sheath narrow in the end of the 

principal piece and are no longer present in the end piece, letting the plasma membrane 

as the sole structure encircling the axoneme (Turner 2003).  

During spermiogenesis mitochondria suffer elongation and become arranged end 

to end in the midpiece, where they are wrapped helically around both the axoneme and 

outer dense fibers in the anterior portion of the tail (Otani et al. 1988; Olson & Winfrey 

1992; Ho & Wey 2007). It is believed that since mitochondria are retained in a 

specialized region of spermatozoa and do not contribute to the formation and 

development of the embryo, they might have an essential role on sperm function 

(Ramalho-Santos et al. 2009). As in other cells, sperm mitochondria may be important 

for numerous events including the regulation of apoptosis, Ca
2+

 storage, reactive oxygen 

species (ROS) generation and energy production in the form of adenosine triphosphate 

(ATP), among others (Ramalho-Santos et al. 2009; Amaral et al. 2013a). Sperm 

mitochondria are composed of an outer and inner membrane separated by the 

intermembrane space (Figure 1.5). The inner membrane, which encloses the 

mitochondrial matrix, is folded, forming cristae that contain enzymes of the electron 

transfer chain (ETC) involved in the oxidative phosphorylation (OXPHOS) process. 

OXPHOS is the major provider of cellular ATP and relies on the activity of five ETC 

complexes (Ramalho-Santos et al. 2009; Amaral et al. 2013a). The oxidation processes 

occurring at complexes I (nicotinamide dinucleotide-dehydrogenase) and II (succinate 

dehydrogenase) generate electrons that are transferred to complexes III (cytochrome c 

dehydrogenase) and IV (cytochrome c oxidase) and accepted by oxygen at complex IV, 

synthesizing water. The electron transport throughout complexes I, III and IV is 

accompanied by the pumping of protons from the mitochondrial matrix to the 

intermembrane space, producing a transmembrane electrochemical gradient commonly 

termed mitochondrial membrane potential (MMP). This electrochemical gradient is 

further used by complex V (ATP synthase) to catalyze the production of ATP from 

adenosine diphosphate (ADP) and inorganic phosphate. 
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Figure 1.5. Schematic representation of a mitochondrion. 

Mitochondria are composed of an outer and an inner membrane. The inner mitochondrial membrane 

enfolds the matrix and forms numerous invaginations, the cristae, where the ETC complexes are located. 

The area between the two membranes is termed intermembrane space (adapted from Rajender et al. 

2010). 

 

As mitochondria generate ATP through OXPHOS they might provide sperm with 

energy for key events such as flagellar propulsion. In fact, multiple studies support the 

involvement of mitochondria in sperm motility. Patients presenting asthenozoospermic 

samples have shown decreased activities of the ETC complexes I, II and IV when 

compared to men with no sperm motility issues (Ruiz-Pesini et al. 1998). Furthermore, 

in vitro inhibition of the ETC enzymes (for instance, with antimicin A, rotenone or 

potassium cyanide) have resulted in ATP depletion and/or reduced sperm motility in 

different mammalian species including humans (Ford & Harrison 1981; Fisher-

Fischbein et al. 1985; De Lamirande & Gagnon 1992; Pascual et al. 1996; Krzyzosiak 

et al. 1999). Additionally, strong associations between decreased mitochondrial 

function, determined by a lower MMP, and reduced sperm motility has been observed 

in both humans (Donnelly  et  al. 2000; Marchetti et al. 2004; Sousa et al. 2011; 

Sharbatoghli et al. 2012) and other mammals (Garner et al. 1997; Martinez-Pastor et al. 

2004). More importantly, fertilization capability, measured as fertilization rates after In 

Vitro Fertilization (IVF), have been robustly correlated with MMP, and therefore with 

mitochondrial function in humans (Kasai et al. 2002; Marchetti et al. 2002; Gallon et al. 

2006).  

Nevertheless, the complete dependence of sperm motility in OXPHOS-derived 

ATP has been challenged, as compartmentalization of mitochondria in the midpiece 
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may limit the availability of OXPHOS-derived ATP for the ATPases placed in the 

principal piece, as it is uncertain that enough ATP can diffuse to distant parts of the tail, 

particularly in species with long sperm tails (e.g. rodents; Ramalho-Santos et al. 2009). 

Accordingly, several studies have suggested that the ATP needed for sperm motility 

may be produced by the glycolytic pathway, given that mammalian sperm possess 

various glycolytic enzymes compartmentalized in the fibrous sheath of the principal 

piece (Mukai & Okuno 2004; Ford 2006; Krisfalusi et al. 2006; Kim et al. 2007; Storey 

2008). Furthermore, male homozygous knockout mice for the sperm glycolytic enzyme 

glyceraldehyde 3-phosphate dehydrogenase-S (a mouse sperm-specific enzyme) has 

shown slow sperm movement without forward progression and no alterations in 

mitochondrial oxygen consumption, stressing the importance of glycolysis as opposed 

to OXPHOS in sperm motility (Miki et al. 2004).  

However, latest findings suggest that pathways other than glycolysis and 

OXPHOS may also provide human sperm with the ATP necessary to fuel motility. 

Specifically, Amaral and colleagues have reported the presence of various components 

involved in the mitochondrial fatty acid β-oxidation pathway by proteomic analysis and 

described a decrease in motility when sperm cells were incubated with the fatty acid 

oxidation inhibitor etomoxir (Amaral et al. 2013b). Overall, the origin of the ATP 

generated for mammalian sperm motility is a largely debated topic and evidence suggest 

that OXPHOS, glycolysis and fatty acid β-oxidation may supply ATP required for 

sperm motility. The prevalence of one of these metabolic pathways may vary among 

species and according to the substrates available for spermatozoa to use. 

Besides the large ATP expenditure for motility, ATP is also required for many 

events and ultimately for maintaining sperm viability. It is also well established that 

ROS, which in spermatozoa appear to be mainly produced by the mitochondrial ETC, is 

normally balanced by various cellular antioxidant defences but at high concentrations it 

may cause cellular oxidative stress (De Lamirande & Gagnon 1992; De Lamirande et al. 

1997; Turrens 2003). Small amounts of ROS stimulate several key events including 

sperm motility, capacitation, hyperactivation and fusion-related events such as AR and 

sperm-oocyte fusion (De Lamirande & Gagnon 1993; Aitken et al. 1995, 1997; Griveau 

& Le Lannou 1997), but excessive ROS has been linked to DNA fragmentation, 

peroxidation of plasma membrane lipids, decreased motility and apoptosis in 

mammalian sperm (De Lamirande et al. 1997; Agarwal et al. 2008). Thus, the fine 
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balance between ROS generation and ROS scavenging is of paramount importance for 

sperm to successfully fertilize the oocyte. 

 

 

1.3.3 Ca2+ stores and channels 

Despite their small size and low cytoplasm content spermatozoa are equipped with 

extraordinary mechanisms for the tight regulation of intracellular Ca
2+

 concentration 

([Ca
2+

]i) and production of complex Ca
2+ 

signals, exhibiting a specialized ‘toolkit’ of 

channels, pumps and stores (Jimenez-Gonzalez et al. 2006). In fact, Ca
2+

 signaling is of 

particular significance in spermatozoa, given its crucial regulatory role in many key 

processes including AR (Kirkman-Brown et al. 2002), motility, hyperactivation (Ren et 

al. 2001; Carlson et al. 2003; Qill et al. 2003) and capacitation (Jimenez-Gonzalez et al. 

2006). Impairment of Ca
2+

 signaling is therefore associated with decreased male fertility 

(Krausz et al. 1995; Nikpoor et al. 2004; Espino et al. 2009; Alasmari et al. 2013). 

Signaling through [Ca
2+

]i is achieved by allowing Ca
2+

 from the extracellular 

environment and/or from intracellular organelles, where Ca
2+

 concentration is extremely 

high, to enter the sperm cytoplasm where Ca
2+

 is maintained at very low (resting) levels 

(Costello et al. 2008). Evidence supports the existence of two storage organelles in 

mammalian spermatozoa, one in the acrosomal region, i.e the acrosome itself, and 

another in the sperm neck/midpiece (Naaby-Hansen et al. 2001; De Blas et al. 2002; 

Herrick et al. 2005; Costello et al. 2008). The acrosomal store is strongly implicated in 

the regulation of AR as stored Ca
2+

 mobilization through inositol 1,4,5-triphosphate 

(IP3)-sensitive Ca
2+

 channels, which are located mostly in the outer acrosomal 

membrane, is essential for AR induction (De Blas et al. 2002; Herrick et al. 2005). On 

the other hand, the store present in the neck/midpiece region seems to function as a 

regulator of sperm motility (Costello et al. 2008). It is well established that mammalian 

sperm mitochondria can accumulate Ca
2+

 into the matrix (Storey & Keyhani 1974; 

Babcock et al. 1976; Vijayaraghavan & Hoskins 1990). However, in pathological 

conditions, Ca
2+

 uptake by these organelles may conduce to mitochondrial Ca
2+

 

overload and consequent disruption (Bianchi et al. 2004).  
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Before 2001, sperm plasma membrane voltage-operated Ca
2+

 channels (CaV; 

VOCC) were believed to be responsible for Ca
2+

 entry into the cell, being also 

understood as the main sperm Ca
2+

 conductance (Florman et al. 1998; Darszon et al. 

1999). This idea was borne by the discovery of CaV channels in spermatocytes using the 

patch-clamp technique (Arnoult et al. 1996; Santi et al. 1996) and also by a putative 

voltage-gated Ca
2+

 influx observed in mature spermatozoa upon application of a high 

pH extracellular medium (Wennemuth et al. 2000). However, male mice deficient in 

high- (CaV 2.2, CaV 2.3) and low-voltage activated channels (CaV3 subfamily), were 

found to be fertile, showing that these VOCCs were not fundamental for sperm 

physiology or worked redundantly (Kim et al. 2001; Beuckmann et al. 2003). 

Knockouts of the high-voltage channel subfamily Cav1, particularly CaV 1.2, and CaV 

2.1 were lethal, therefore preventing the evaluation of Ca
2+

 rise in spermatozoa (Jun et 

al. 1999; Seisenberger et al. 2000).  

In 2001 a novel low voltage-dependent Ca
2+

-permeable cation channel (Catsper), 

with a transmembrane pore sequence that resembles that of VOCCs, was described 

exclusively in spermatozoa (Ren et al. 2001; Jimenez-Gonzalez et al. 2006). So far, 

seven subunits composing this heteromeric channel have been identified (Figure 1.6), 

with the four α subunits that form the Ca
2+

-selective pore - CatSper1-4 - and the 

auxiliary subunit CatSper δ - being indispensible for appropriate channel formation and 

function (Ren et al. 2001; Lobley et al. 2003; Qill et al. 2003; Carlson et al. 2005; Qi et 

al. 2007). Though interaction of the two other auxiliary subunits (CatSper β and 

CatSper γ) with the CatSper complex has been revealed (Liu et al. 2007; Wang et al. 

2009), whether they are necessary for functional CatSper channel assembly is still 

unclear (Lishko et al. 2012).  

Due to Catsper channel localization in the principal piece of the sperm flagellum 

(Ren et al. 2001), its involvement in the regulation of motility has been suggested. 

Consistent with this notion, studies reported that Catsper gene and protein expressions 

were reduced in human sperm samples presenting low motility (Nikpoor et al. 2004; 

Bhilawadikar et al. 2013). Furthermore, Ren et al. also found that CatSper-null mouse 

presented a severe decrease in sperm motility and consequently CatSper-null 

spermatozoa were unable to fertilize intact oocytes (Ren et al. 2001). Additionally, 

others have also shown the preponderant role of Catsper in sperm hyperactivation, a 

hallmark of capacitation. It was found that in the absence of at least one of the Catsper α 
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subunits a remarkable decrease or a complete lack of hyperactivated motility under 

capacitating conditions was observed (Carlson et al. 2003; Qill et al. 2003; Jin et al. 

2007; Qi et al. 2007), further supporting the idea that all Catsper α proteins are required 

for hyperactivation and thus male fertility (Qill et al. 2003; Jin et al. 2007). 

Furthermore, as the CatSper channel is gated by internal pH alterations, intracellular 

alkalinization caused by extracellular application of the Catsper agonist ammonium 

chloride or by increased patch-clamp pipette pH solution potentiated [Ca
2+

]i elevation 

(Kirichov et al. 2006; Marquez & Suarez 2007) and elicited hyperactivation in 

mammalian spermatozoa (Marquez & Suarez 2007).  

 

 

 

 

 

 

 

 

Figure 1.6. Schematic representation of the Catsper channel.  

CatSper is a plasma membrane channel formed by four α subunits that enclose the Ca
2+

-selective pore and 

three auxiliary proteins - CatSperβ, CatSperγ and CatSperδ - of unknown stoichiometry (Liu et al. 2007; 

Wang et al. 2009; Ren & Xia 2010). Upon stimulation, Catsper allows Ca
2+

 influx from the external 

environment promoting an increase in [Ca
2+

]i. All CatSper subunits are located in the principal piece of 

the sperm flagellum (adapted from Lishko et al. 2012). 

 

Interestingly, Catsper has also being newly implicated in the robust Ca
2+

 influx 

and concomitant AR induced by progesterone in human sperm (Lishko et al. 2011; 

Strünker et al. 2011). Progesterone was found to stimulate human CatSper at low doses 

by changing the voltage dependency of the channel towards the physiological range. 

Progesterone action was fast and independent of metabotropic receptors and 

intracellular ATP, guanosine diphosphate, cyclic nucleotides, Ca
2+

, or additional soluble 
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intracellular messengers (Lishko et al. 2011; Strünker et al. 2011). The authors 

suggested that the progesterone-binding site may be accessible from the extracellular 

environment and may be either located on one of the CatSper subunits or on a currently 

unknown protein associated with the CatSper complex (Lishko et al. 2011). Besides 

membrane potential, intracellular pH and progesterone, Catsper is also activated by the 

cumulus cells-secreted prostaglandins, known to stimulate Ca
2+

 influx, odorants and 

other organic molecules (Lishko et al. 2011; Strünker et al. 2011; Brenker et al. 2012), 

apparently acting as a polymodal sensor for numerous chemical stimuli that support 

spermatozoa through their journey in the female reproductive tract. 

Finally, it is worth mentioning that in spermatozoa as well as in all other 

eukaryotic cells, Ca
2+

 clearance is essential for the control of Ca
2+

 signaling events 

(Berridge et al. 2000). As such, the maintenance or reduction of [Ca
2+

]i back to resting 

levels after stimulation is undertaken by ATP-requiring Ca
2+

 pumps (Ca
2+

-ATPases) or 

Na
+
-Ca

2+
 exchangers, which expel Ca

2+
 either out of the cell, or into intracellular stores 

(Michelangeli et al. 2005). 

 

 

1.4 Relevance of sperm chromatin/DNA damage on male fertility 

For the past years emerging reports have shown that sperm DNA integrity may be 

a better predictor of male fertilizing potential than standard sperm parameters (Agarwal 

& Allamaneni 2004; Bungum et al. 2011). Indeed, infertile patients often exhibit 

substantially higher levels of DNA damage than fertile donors (Zini et al. 2001, 2002; 

Saleh et al. 2003a; Sergerie et al. 2005) which may negatively influence both in vivo 

and in vitro fertility outcomes. Although sperm DNA damage was found to correlate 

with poor sperm parameters in several studies (Muratori et al. 2000; Zini et al. 2001, 

2002; Sousa et al. 2009), the truth is that standard parameters do not give any 

information about the status of sperm chromatin/DNA. This idea is strengthened by 

studies showing that infertile individuals with normal semen parameters display 

increased DNA damage compared to fertile men (Saleh et al. 2002a, 2003a; Venkatesh 

et al. 2011) and that morphologically normal spermatozoa may also possess DNA 

fragmentation (Avendaño et al. 2009). Thus, an important aspect of sperm status is not 

being routinely considered in most Andrology laboratories.  
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1.4.1 Mechanisms of chromatin/DNA damage 

Sperm DNA damage may occur within the seminiferous tubules, during sperm 

transit along the male reproductive tract and/or following ejaculation (Lewis & Agbage 

2008), but so far the exact mechanisms behind this impairment in human spermatozoa 

are not completely understood (Schulte et al. 2010). Nevertheless, three major theories 

including defective sperm chromatin packaging, abortive apoptosis and oxidative stress 

have been suggested (Schulte et al. 2010). One should note that these mechanisms are 

not mutually exclusive and damage may arise from combinations of all three (Aitken & 

De Iullis 2010). To date, several factors have been described to induce these 

mechanisms, including exposure to organochlorines (Rignell-Hydbom et al. 2005a; De 

Jager et al. 2006) and reproductive disorders such as varicocele, a pathological 

dilatation of testicular veins caused by venous reflux (Saleh et al. 2003b; Enciso et al. 

2006; Sadek et al. 2011), among others. 

 

 

 

 1.4.1.1 Defective sperm chromatin packaging  

Studies performed in both animal models and humans have proposed that in order 

for a proper chromatin packaging to occur temporary DNA nicks may be required to 

facilitate the replacement of histones by protamines (McPherson & Longo 1993; 

Marcon & Boissonneault 2004). These nicks, induced by the endogenous nuclease DNA 

topoisomerase II, are believed to relieve the torsional stress generated as DNA is 

condensed and packaged into the differentiating sperm head (McPherson & Longo 

1992; Sakkas et al. 1999a; Marcon & Boissonneault 2004). The transitory nicks are then 

usually repaired by this same enzyme before the end of spermiogenesis (McPherson & 

Longo 1992, 1993). However, if they remain unrepaired, spermatozoa with fragmented 

DNA will be present in the ejaculate (Manicardi et al. 1995; Sakkas et al. 1999a; 

Muratori et al. 2006), thus indicating anomalies during the later stage of 

spermatogenesis (Manicardi et al. 1995).  

Furthermore, damage may also arise as a result of defective chromatin compaction. 

For example, protamine deficiency (absolute or relative) can potentially result in 

suboptimal compaction (Aravindan et al. 1997) turning chromatin more prone to 
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external assault. This deficiency may ultimately induce sperm DNA damage (Cho et al. 

2001, 2003; Aoki et al. 2005; Torregrosa et al. 2006). 

 

 

1.4.1.2 Abortive apoptosis 

It has been argued that sperm DNA damage may also be a consequence of abortive 

apoptosis. Throughout mammalian spermatogenesis, apoptosis usually occurs in order 

to 1) avoid an overproduction of germ cells and 2) selectively eliminate the damaged 

ones (Sinha Hikim & Swerdloff 1999). When the formation of these cells is excessive a 

mechanism such as apoptosis is required to match the size of the germ cell population 

with the supportive capacity of Sertoli cells (Rodriguez et al. 1997; Sinha Hikim & 

Swerdloff 1999). It has been reported that this apoptotic pathway is activated by the 

interaction between the Fas ligand (FasL) produced by the Sertoli cell and the Fas 

receptor in the germ cell surface (Lee et al. 1997; Pentikainen et al. 1999; Xu et al. 

1999; Francavilla et al. 2000). Nonetheless, the Fas system may not be the only one 

promoting apoptosis in the testis since Hikim and colleagues have observed that FasL 

defective mice presented germ cell apoptosis (Hikim et al. 2003). Regardless, this 

proposed mechanism may not be as efficient in clearing Fas-bearing cells and thus 

defective germ cells may undergo chromatin remodeling and differentiate into 

spermatozoa, particularly in men with poor sperm parameters (Figure 1.7; Sakkas et al. 

1999b). As a result, sperm cells displaying apoptotic markers such as Fas positivity and 

DNA damage will appear in the ejaculate (Sakkas et al. 1999b). Indeed, although a very 

small percentage of Fas-positive spermatozoa has been observed in normozoospermic 

men, individuals with abnormal sperm parameters present greater proportion of sperm 

expressing Fas in the ejaculate (Sakkas et al. 1999b). These results have further led to 

the hypothesis that in men with abnormal sperm parameters, cells may possibly undergo 

a process termed “abortive apoptosis”, i.e. they initiated the apoptotic pathway but 

subsequently managed to escape (Sakkas et al. 1999b).  

Furthermore, a study carried out by McVigar and coworkers reported that no 

spermatozoa from men considered fertile were labeled with the anti-Fas antibody while 

70% of the infertile patients exhibited samples with Fas positivity up to 55%. From 

these latter samples it was also found that 96% of the couples were experiencing 
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infertility exclusively due to a male factor, therefore suggesting a strong association 

between Fas signaling and male infertility (McVigar et al. 2004). 

 

 

 

Figure 1.7. The role of Fas throughout spermatogenesis in men with normal (A) and poor (B) semen 

parameters.  

An incorrect cell clearance via apoptosis may occur in men presenting abnormal sperm parameters 

leading to the production of spermatozoa with Fas positivity. These Fas-positive rescued cells suggest that 

‘abortive apoptosis’ may have taken place (adapted from Sakkas et al. 1999a). Spermatocytes I - primary 

spermatocytes; spermatocytes II – secondary spermatocytes. 

 

 

1.4.1.3 Oxidative stress 

Several studies suggest that oxidative stress is the mechanism that most frequently 

causes defective sperm DNA (Bungum et al. 2012) and an association between sperm 

DNA damage and elevated ROS levels is well established (Twigg et al. 1998a; Barroso 

et al. 2000; Irvine et al. 2000; Henkel et al. 2005; Mahfouz et al. 2010).  

Spermatozoa are particularly susceptible to ROS damage not only due to a plasma 

membrane rich in polyunsaturated fatty acids (PUFAs; Lewis & Agbage 2008) but also 

because they lack antioxidants and DNA repair systems, leaving to the oocyte the 

enormous task of repairing DNA and, with that, protect the offspring from anomalies 

that may arise from sperm DNA breaks (Bungum et al. 2012). Antioxidants within 

seminal plasma also protect sperm DNA following ejaculation (Twigg et al. 1998a; 
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Potts et al. 2000) but until then sperm must rely on testicular, epididymal and 

reproductive tract antioxidants (Tremellen 2008). However, when these antioxidants are 

not enough to overcome excessive ROS levels, cellular and DNA damage is frequently 

observed (Aitken & Krausz 2001).  

Leukocytes and spermatozoa themselves, in particular immature gametes, are 

considered major sources of ROS in semen (Aitken & West 1990; Gomez et al. 1996; 

Ollero et al. 2001). Sperm presenting residual cytoplasmic droplets, known as a sign of 

immaturity (Aitken & West 1990; Gomez et al. 1996; Ollero et al. 2001), and samples 

exhibiting high concentration of leucocytes (>1x10
6
/ml according to WHO 2010), have 

been associated with increased sperm DNA damage (Alvarez et al. 2002; Erenpreiss et 

al. 2002, Saleh et al. 2002b; Fischer et al. 2003) as a consequence of increased ROS 

levels (Zini et al. 2000, Saleh et al. 2002b). The association between sperm DNA 

damage and sperm-derived ROS proposes that DNA damage may be attributable to 

impaired spermiogenesis (Gomez et al. 1996), while the relationship between sperm 

DNA damage and leukocyte-derived ROS suggests that DNA damage may more likely 

arise from a post-testicular deficiency (e.g. epididymitis; Ochsendorf 1999). 

 

 

1.4.2 Tests for the evaluation of sperm chromatin/DNA status  

A multitude of assays has been developed to detect human sperm chromatin/DNA 

status. However, these techniques do not measure the same thing: while the terminal 

deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (TUNEL; 

Gorczyca et al. 1993), the in situ nick translation (ISNT; Bianchi et al. 1993) or the 

single cell gel electrophoresis assay at neutral pH conditions (COMET; Haines et al. 

1998) monitor DNA strand breaks directly, other tests such as the sperm chromatin 

structure assay (SCSA; Evenson et al. 1980), the acridine orange test (AOT; Tejada et 

al. 1984), the COMET at alkaline pH conditions (Hughes et al. 1996) or the sperm 

chromatin dispersion test (SCD; Fernandez et al 2003), measure the susceptibility of 

DNA to denaturation (indirect detection; Zini & Sigman 2009; Sakkas & Alvarez 2010). 

These latter assays rely on the premise that DNA of spermatozoa with a normal 

chromatin structure is resistant to denaturation while damaged DNA can more easily 

denature (Zini & Sigman 2009; Sakkas & Alvarez 2010). Other tests that depend on the 
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differential binding of colorimetric/fluorescent stains to detect loosely packaged 

chromatin have also been described (Schulte et al. 2010). 

Initially used in somatic cells, the TUNEL assay was further adjusted to detect the 

incorporation of the fluorescent labeled deoxyuridine triphosphate nucleotide (dUTP) in 

the 3’ terminus hydroxyl group of single and double stranded sperm DNA breaks using 

the enzyme terminal deoxynucleotidyl transferase (TdT; Gorcyza et al. 1993). This 

technique has produced consistent results but the many inter-laboratory protocol 

variations have limited the introduction of a consensual threshold beyond which one can 

infer that Assisted Reproductive Technology (ART) success might be compromised 

(Zini & Sigman 2009). Similarly to TUNEL, the ISNT assay detects single-stranded 

DNA breaks (Bianchi et al. 1993) by identifying the incorporation of fluorescent dUTP 

of single-stranded nicks in a reaction catalyzed by the template-dependent enzyme DNA 

polymerase I. Although it was considered a simple test, it has been shown to lack 

sensitivity (Twigg et al. 1998b). Another available test is the COMET assay, which 

performed at neutral pH detects double stranded DNA breaks (Singh & Stephens 1998; 

Erenpreiss et al. 2006), whereas at a higher pH senses both single and double stranded 

DNA breaks following denaturation (Erenpreiss et al. 2006; Simon & Carrell 2013). In 

this assay sperm cells are suspended in an agarose matrix, subjected to horizontal 

electrophoresis and stained with a fluorescent DNA-binding dye prior imaging analysis 

by dedicated software (Hughes et al. 1996). While short fragments of both single and 

double stranded DNA migrate during electrophoresis giving rise to a characteristic 

comet tail observable under fluorescence microscopy, high-molecular weight intact 

DNA segments remain in the comet head. Consequently, sperm with high levels of 

DNA damage present increased comet tail length and increased tail fluorescence 

(Hughes et al. 1996). Although this test is able to characterize DNA damage in a 

heterogeneous sperm population by measuring this parameter within each cell instead of 

giving the common overall measure of damaged spermatozoa in the total sperm 

population (Lewis & Agbaje 2008; Simon et al. 2010), it is expensive and labor-

intensive.  

In contrast, the SCD test has been described as an inexpensive method for the 

indirect analysis of sperm DNA fragmentation (Fernandez et al. 2003). In this case 

spermatozoa are initially immersed in an agarose matrix and exposed to acid-denaturing 

conditions followed by removal of nucleoproteins using a lysis solution. As an end-
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product, structures termed nucleoids, with a central core and a peripheral halo of 

dispersed DNA loops, are formed. Sperm with no DNA damage release their DNA 

loops producing large halos while spermatozoa presenting a small or no halo possess 

fragmented DNA (Fernandez et al. 2003). As this test is relatively recent, few reports 

have addressed its predictive value on ART success (Muriel et al. 2006a,b; Velez de la 

Calle et al. 2008; Tavalaee et al. 2009; Sharbatoghli et al. 2012) and only one has 

suggested a threshold value predictive of fertilization in IVF/ICSI couples (Velez de la 

Calle et al. 2008).  

Along with TUNEL, SCSA is a widely used technique and also the most studied 

one. Developed by Evenson and coworkers in 1980 (Evenson et al. 1980) this assay 

relies on the metachromatic shifts of the fluorochrome acridine orange (AO) following a 

mild acid- or heat-denaturing treatment. AO emits a green fluorescence when 

intercalated with intact double-stranded DNA whereas in the presence of single stranded 

DNA AO changes its fluorescence to red (denatured DNA; Evenson et al. 1999). DNA 

damage is measured by flow cytometry and is expressed as the DNA fragmentation 

index (DFI), which represents the ratio between the percentage of spermatozoa 

displaying red fluorescence and the total sperm population presenting fluorescence (red 

plus green; Evenson et al. 2002). SCSA is a highly reproducible test (Bungum et al. 

2012) with useful thresholds for predicting the likelihood of ART success (Sakkas & 

Alvarez 2010). However, it requires specialized equipment to analyze the data 

(SCSAsoft
®
; Bungum et al. 2012) and it may be of no use in cases involving the 

assessment of DNA damage in testicular sperm or in severe oligozoospermic men 

(Lewis & Agbaje 2008). Similarly to SCSA, the AOT test is based on the 

metachromatic properties of AO to detect denatured sperm DNA. It is a simpler and less 

expensive method than SCSA since DNA damage can be detected by fluorescence 

microscopy (Tejada et al. 1984). Nevertheless, this technique has been shown to be 

heterogeneous, and rapid fading of the staining hampers visual interpretation, thus 

making the technique untrustworthy (Chohan et al. 2006).  

Among the tests that detect chromatin packaging defects, Chromomycin A3 

(CMA3) is able to identify sperm protamine deficiency (Bianchi et al. 1993; Bizzaro et 

al. 1998) either by fluorescence microscopy (Bianchi et al. 1993) or flow cytometry 

(O’Flaherty et al. 2008). CMA3 competes for the same DNA binding site as protamines 

(Berman et al. 1985; Gao & Patel, 1989; Bianchi et al. 1993), proportionally increasing 
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its fluorescence with decreasing protamine levels (Bianchi et al. 1993; Bizzaro et al. 

1998). On the other hand, the Aniline Blue test (AB) relies on the properties of this 

acidic stain to bind histones present in the sperm nucleus, indicating an abnormal 

condensation status when sperm samples present increased blue staining (Terquem & 

Dadoune 1993; Dadoune et al. 1988; Auger et al. 1990). Finally, another simple 

colorimetric assay is the one that involves the use of Toluidine Blue (TB). This basic 

dye binds to DNA, increasing its staining with the increase of DNA availability, 

facilitated either by DNA damage or poor chromatin packaging (Erenpreiss et al. 2001; 

Erenpreisa et al. 2003). Notwithstanding their simplicity, the relevance of such tests in 

the ART context is not known. 

Despite the plethora of tests available, no consensus exist on which test should be 

used in clinical practice (Zini & Sigman 2009; Avendaño & Oenhinger 2011), probably 

because of the absence of valid cut-offs and the often involvement of extensive 

protocols and/or expensive reagents and equipment (e.g. flow cytometer, fluorescence 

microscope, software) that do not exist in many standard andrology laboratories. 

Though specific cases may guarantee more detailed information about sperm 

chromatin/DNA status, it is unlikely that most laboratories can routinely introduce this 

parameter in semen analysis (Perreault et al. 2003). Furthermore, simpler methods such 

as the AB, TB (Erenpreiss et al. 2001) or SCD (Fernandez et al. 2003, 2005) may 

require specific stains and other reagents that are not usually present in standard 

laboratories.  

Recently, we have described a simple, inexpensive and even quicker method than 

all mentioned above to analyze sperm chromatin status in both feline and human sperm 

using a simple modification of the Diff-Quik stain, a stain already implemented in most 

standard laboratories worldwide to evaluate sperm morphology under a standard bright-

field microscope (Mota & Ramalho-Santos 2006; Sousa et al. 2009). In fact, due to the 

high correlation observed between the proportion of sperm with dark nuclei and 

TUNEL-positive cells and the significant increase of spermatozoa exhibiting this same 

staining when exposed to DNAse I, hydrogen peroxide and heat, all conditions known 

to promote DNA fragmentation and chromatin decondensation in vitro, we suggest that 

this staining also distinguishes sperm with abnormal/damaged sperm chromatin (either 

decondensed or with fragmented DNA; darker stain) from those presenting normal 

chromatin integrity (lighter stain; Figure 1.8). Chromatin/DNA anomalies may modify 
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interactions between the thiazin dye present in the Diff-Quik kit and the DNA molecule, 

creating more stain-binding sites and thus increase the percentage of darker sperm 

nuclei (Sousa et al. 2009).  

 

 

 

 

 

 

 

Figure 1.8. Human sperm chromatin status assessed by the modified Diff-Quik staining assay.  

After fixation and coloration, sperm cells are visualized by standard bright-field microscopy. While 

spermatozoa with normal chromatin integrity exhibit lighter nuclear staining patterns (A), sperm with 

abnormal/damaged chromatin show darker staining patterns (B). This darker staining may reflect a higher 

amount of thiazin-bound sites generated by damaged chromatin/DNA. Different microscope/camera 

settings can lead to different backgrounds (from Sousa et al. 2009). 

 

As formerly observed with other techniques, abnormal chromatin status assessed 

by the Diff-Quik staining assay was negatively correlated with embryo development 

rate and higher levels were associated to lower quality embryos and negative clinical 

pregnancies among IVF/ICSI couples. A threshold of 32% was proposed given the 

strong decline in embryo development and pregnancy rates when the percentage of 

abnormal dark staining was above this value (Sousa et al. 2009).  

 

 

1.4.3 Influence of sperm chromatin/DNA damage on ART success 

Chromatin/DNA damage has been often related to a wide variety of poor 

reproductive outcomes. Regardless, the existing data is controversial, particularly in 

what concerns in vitro ART treatments.  
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Negative relationships between sperm DNA damage and fertilization rates in both 

ART treatments have been described in several reports (Sun et al. 1997; Lopes et al. 

1998; Benchaib et al. 2003; Huang et al. 2005; Muriel et al. 2006a; Velez de la Calle et 

al. 2008; Simon et al. 2011). In a large prospective multicenter study using the SCD 

assay, a DNA fragmentation value below 18% could be considered a significant 

predictor of oocyte fertilization among couples undergoing IVF/ICSI (Velez de la Calle 

et al. 2008). However, many others failed to observe any connection between these two 

parameters using several assays, including our own Diff-Quik staining (Larson et al. 

2000; Larson-Cook et al. 2003; Tomlinson et al. 2001; Tomsu et al. 2002; Henkel et al. 

2003, 2004; Lin et al. 2008; Sousa et al. 2009). A meta-analysis performed by Li et al. 

corroborated these findings by observing no differences in the fertilization rates among 

couples undergoing ICSI and IVF displaying high and low levels of DNA damage 

detected by TUNEL (Li et al. 2006). These results suggest that spermatozoa containing 

DNA damage are still capable of fertilizing an oocyte. This is not totally surprising as it 

is argued that the paternal genome is not expressed until the four to eight-cell stage and 

thus fertilization may not be dependent on sperm DNA status (Braude et al. 1988). 

It may be predicted though that sperm DNA damage may interfere with embryo 

quality and development as well as pregnancy success. In fact, although no differences 

have been reported in some studies (Lopes et al. 1998; Tomlinson et al. 2001; Benchaib 

et al. 2003; Larson-Cook et al. 2003; Lin et al. 2008), lower embryo quality and/or 

impaired embryo development have been associated with sperm DNA damage assessed 

by a variety of methods (Sun et al. 1997; Tomsu et al. 2002; Virant-Klun et al. 2002; 

Muriel et al. 2006a; Benchaib et al. 2007; Velez de la Calle et al. 2008; Sousa et al. 

2009; Simon et al. 2010, 2011). However, the relationship between sperm DNA damage 

and pregnancy success following IVF or ICSI is more conflicting. While some failed to 

detect any association between these parameters (Huang et al. 2005; Zini et al. 2005; 

Bungum et al. 2007; Lin et al. 2008; Velez de la Calle et al. 2008), others have 

observed that sperm DNA damage negatively influences the achievement of pregnancy 

following IVF and/or ICSI (Tomlinson et al. 2001; Benchaib et al. 2003, 2007; Henkel 

et al. 2003, 2004; Larson-Cook et al. 2003; Virro et al. 2004; Sousa et al. 2009; Simon 

et al. 2010, 2011). Benchaib and coworkers reported no pregnancies in IVF/ICSI cycles 

when DNA fragmentation measured by TUNEL was above 20% (Benchaib et al. 2003) 

and the same was observed by another study with a DFI value ≥27% (Larson-Cook et 
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al. 2003). Nonetheless, it has been demonstrated that full-term pregnancies can be 

achieved in assisted reproduction with higher levels of sperm DNA damage (Gandini et 

al. 2004; Boe-Hansen et al. 2006) although the chances of success may be reduced. 

Virro et al. reported decreased IVF/ICSI pregnancy rates when DFI≥30% (Virro et al. 

2004) and others have detected the same outcome among IVF couples when TUNEL-

positive spermatozoa exceeded 36.5% (Henkel et al. 2003). When 56% and 44% were 

respectively used as sperm DNA damage thresholds for both native and processed ART 

samples assessed by the COMET assay a similar decline in pregnancy rates after IVF 

was observed (Simon et al. 2010). Later on, comparable COMET threshold values were 

also found to be predictive of IVF pregnancy success by the same group (>52% and 

>42%, respectively; Simon et al. 2011). With the increasing number of reports 

evaluating DNA damage and its link to reproductive outcomes, meta-analyses have 

been performed with the purpose of increasing statistical power. According to Evenson 

and Wixon, couples experiencing IVF were about two times more liable to become 

pregnant if their DFI was below 30% (Evenson & Wixon 2006). Nevertheless, others 

reported that SCSA was not predictive of pregnancy rates among couples undergoing 

IVF and ICSI treatments (Li et al. 2006). In this same study, the authors found a 

significant reduction in pregnancy rate in IVF, but not in ICSI, in couples with high 

levels of sperm DNA damage assessed by TUNEL (Li et al. 2006). One should note that 

these meta-analyses involved a small subset of studies and when a larger meta-analysis 

was carried out a significant association between sperm DNA integrity assay outcomes 

and pregnancy success in both ART cycles was observed (Collins et al. 2008). 

Several studies have addressed the impact of sperm chromatin/DNA status on 

ART fertility outcomes in native samples instead of after sperm selection whenever IVF 

and ICSI treatments are required, as it has been suggested (Tomlinson et al. 2001). 

Density gradient centrifugation (DGC) and swim up, the most common techniques 

performed in Andrology laboratories, either alone or in combination, allow the selection 

of motile spermatozoa with normal morphology to carry out ART treatments (Bungum 

et al. 2008). Additionally, they have also been shown to improve chromatin/DNA 

integrity levels as detected by a wide range of assays (Spanò et al. 1999; Tomlinson et 

al. 2001; Gandini et al. 2004, Marchesi et al. 2010). Since theoretically only the best 

sperm are recovered after DGC and/or swim up selection, it is argued that a certain 

degree of homogenization occurs (Tomlinson et al. 2001). Consequently, while some 
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DNA integrity tests, such as SCSA or TUNEL, have shown to predict ART fertilization 

and pregnancy in raw heterogeneous samples, some authors have reported the loss of 

this predictive ability in both IVF and ICSI outcomes when using homogeneous 

populations (Larson et al. 2000; Gandini et al. 2004; Seli et al. 2004; Bungum et al. 

2008), possibly due to the “normalizing” effect promoted by the preparation techniques. 

Therefore this raises the question on whether our Diff-Quik staining assay and other 

tests actually predict ART success in processed samples that are used for ART cycles.  

 

 

1.5 Male reproductive dysfunction - the role of environmental endocrine 

disruptors  

In 1992 a meta-analysis published by Carlsen et al. revealed a decline of human 

sperm concentration from an average of 113
 
to 66 millions of spermatozoa per ml of 

semen over a 50-year period in men with no history of infertility (Carlsen et al. 1992). 

During the same phase, a similar decrease in mean semen volume was reported, thereby 

signaling a decrease in total sperm count (Carlsen et al. 1992). Subsequently, other 

studies have reported reduced sperm quality (concentration, motility and/or 

morphology; Auger et al. 1995; Zheng et al. 1997; Swan et al. 2000; Toft et al. 2004) 

paralleled by an increasing trend in testicular cancer and abnormalities in the male 

reproductive organs, such as hypospadias (abnormal localization of the male external 

urethral orifice) and criptorchidism (undescended testis; Toppari et al. 1996; Toft et al. 

2004). Although several factors have been suggested to affect male reproductive health, 

cumulating evidence attribute to environmental toxicants, particularly to substances that 

possess (anti)oestrogenic- or antiandrogenic-like activities termed endocrine disruptors 

(EDs), an important role in this aetiology.  

  

 

1.5.1 Environmental Endocrine disruptors - definition and sources of 

exposure 

Due to structural similarities, certain environmental toxicants can mimic 

endogenous steroid hormones such as testosterone and oestradiol (Figure 1.9) and 
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interfere with their synthesis, binding and/or action by interacting with their receptors 

(Phillips & Tanphaichitr 2008) present in the testis and in many cells of the body. Of 

these EDs, organochlorines such as polychlorinated dibenzo-p-dioxins (PCDDs), 

polychlorinated biphenyls (PCBs) and the major and most stable dichlorodiphenyl 

trichloroethane (DDT) metabolite, p,p′-dichlorodiphenyldichloroethylene (p,p’-DDE), 

are potentially serious hazards to the general human and animal populations given their 

ubiquitous distribution, persistency and bioaccumulation in the food chain (WHO 

2002). In fact, as these substances can be stored preferentially in body fat for long time 

periods, species at the top of the food chain are the most vulnerable because in addition 

to being directly exposed to them, they feed on animals with accumulations of these 

harmful compounds in their body tissue (Guillette 1994).
  

The representative compound of the PCDDs family, 2,3,7,8-tetrachlorodibenzo-p-

dioxin (hereafter, TCDD), has been originated from industrial sources as an unintended 

by-product in the production of certain chlorophenols or chlorophenoxy acid herbicides 

(Saracci et al. 1991), waste incineration, metal production and fossil-fuel and wood 

combustion (Harnly et al. 1995). PCBs, on the other hand, besides being generated 

through industrial processes (Kimbrough 1995), were also used in hydraulic fluids, 

capacitors, lubricants, plasticizers and electrical insulators (Hauser et al. 2002). 

Although their use and manufacture has been banned in most industrialized countries 

together with the pesticide DDT, which was used to control malaria-bearing mosquitoes 

(De jager et al. 2006, 2009; Aneck-Hahn et al. 2007), the general human population 

continues to be exposed to PCBs, p,p’-DDE and TCDD given their presence in the air, 

soil, water and food (e.g. fish, meat, milk; Hauser et al. 2002) and strong resistance to 

biodegradation. Although they accumulate preferentially in the fat tissue, substantial 

amounts of these organochlorines have also been found in body fluids such as those 

associated with reproduction (e.g. follicular and seminal fluids; Heinrich-Hirsch et al. 

1997; Tsutsumi et al. 1998; Dallinga et al. 2002; Younglai et al. 2002; Drbohlav et al. 

2005; Kunisue et al. 2005) and also in serum (Rignell-Hydbom et al. 2004, 2005a; 

Spano et al. 2005; Stronati et al. 2006; De Jager et al. 2006, 2009; Mocarelli et al. 

2008), breast milk and urine (Krauthacker et al. 1986; Chikuni et al. 1991; Schecter et 

al. 2002; Mocarelli et al. 2011). 
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Figure 1.9. Structural representations of reproductive hormones and selected organochlorines.  

Chemical structures of representative ED classes including polychlorinated dibenzo-p-dioxins (e.g. 

TCDD), polychlorinated biphenyls (e.g. PCB 77) and the pesticide DDT and its main metabolite p,p’-

DDE are similar to the major reproductive hormones, testosterone and oestradiol (adapted from Phillips & 

Tanphaichitr 2008). 

 

 

1.5.2 Influence of organochlorines on male reproductive status 

1.5.2.1 TCDD 

TCDD is the most powerful biological agent ever made by man and its interaction 

mostly with the aryl hydrocarbon receptor (AhR; Fernandez-Salguero et al. 1996; 

Schmidt et al. 1996; Mimura et al. 1997; Buchanan et al. 2000), a cytosolic-ligand 

transcription factor that is also expressed in testicular germ and somatic cells (Bidgoli et 

al. 2011) has shown to elicit (anti)oestrogenic responses in many tissues (Buchanan et 

al. 2000; Boverhof et al. 2006). Most of the research performed so far has focused on 

the toxicity of TCDD, on the basis that other related congeners will show the same 
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toxicity but with altered potency, determined by their relative agonism of the AhR and 

pharmacokinetics (Van den Berg et al. 2006).  

Experimental animal data have shown adverse effects in the male reproductive 

system after exposure to TCDD, particularly (but not exclusively) when they were 

exposed during the prenatal and perinatal periods, considered critical windows of 

development. Although refuted by some studies (Ikeda et al. 2005; Bell et al. 2007), 

TCDD exposure in utero and throughout lactation has led to a broad spectrum of effects 

at low concentrations (ng/kg body weight), including decreased daily sperm production, 

decreased epididymal sperm count (Mably et al. 1992; Gray et al. 1995, 1997; Faqi et 

al. 1998a; Hurst et al. 2000), concentration, motility and viability (Arima et al. 2009), 

reduced epididymis weight and accessory glands weight (Mably et al. 1992; Gray et al. 

1995, 1997; Faqi et al. 1998a) and altered anogenital distance, a measure of fetal 

androgen action (Jin et al. 2008).  

Furthermore, besides affecting steroidogenesis and altering reproductive hormone 

levels (Kleeman et al. 1990; Adamsson et al. 2009; Dhanabalan et al. 2013), TCDD-

induced alterations may also occur through other pathways, as Simanainen and 

colleagues have suggested after observing the same testosterone levels but variable 

levels of spermatogenesis defects in three different strains of rats with different 

susceptibilities to TCDD-induced toxicity (Simanainen et al. 2004). In fact, exposure to 

TCDD has been shown to cause oxidative stress in male rat testis by decreasing the 

activity of several antioxidant enzymes and increasing ROS levels and lipid 

peroxidation, whether rats were exposed during lactation or in adulthood (Al-Bayati et 

al. 1988; Latchoumycandane & Mathur 2002; El-Tawil & Elsaieed 2005; Jin et al. 

2010). TCDD-induced oxidative stress has also been reported in the epididymis of adult 

rats (Latchoumycandane et al. 2003) as well as in other non-reproductive tissues 

(Slezak et al. 2000; Aly & Domenech et al. 2009; Pereira et al. 2013). Furthermore, 

exposure of male mice to TCDD for 24 hours caused a dose-dependent loss of MMP in 

epididymal sperm due to increased ROS levels, an effect that was not perceptible in 

spermatozoa from AhR knockout mice (Fisher et al. 2005). Interestingly, these authors 

further reported the same loss of MMP in mouse epididymal spermatozoa exposed to 

TCDD in vitro. Taken together, these findings showed not only the involvement of AhR 

in mediating TCDD-induced oxidative stress in the male reproductive system but also 

that even though many of AhR-mediated effects involve alterations at the gene 
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expression level, AhR is also capable of mediating non-genomic TCDD-induced effects 

(Fisher et al. 2005). This latter notion arose from the fact that spermatozoa, which also 

express this receptor (Khorram et al. 2004), presented mitochondrial dysfunction in 

vitro, although all the transcription and translation processes cease in the end of 

spermiogenesis (Matsuda et al. 1989; Lewis & Agbage 2008). Also consistent with a 

role of mitochondrial deregulation in TCDD toxicity is the up-regulation of the 

expression of a pro-apototic Bcl-2 family member, BAX, in rat testis after treatment (Jin 

et al. 2010). 

In humans, the available data is limited and most of the information on the effects 

of TCDD originates from studies performed with the Seveso population (Italy) after an 

explosion in a trichlorophenol manufacturing plant that released high amounts of TCDD 

to the environment in 1976 (Di Domenico et al. 1990; Needham et al. 1997, 1999). In 

this population, TCDD exposure was associated with a lower male/female sex ratio at 

birth, which is a hallmark of endocrine disruption (Mocarelli et al. 1996), and the 

likelihood of fathering a female child was augmented with increasing serum TCDD 

concentrations from the fathers, particularly when they were younger than 19 years old 

at the time of the accident (Mocarelli et al. 2000). This sex ratio reduction was further 

observed in the progeny of Russian pesticide workers exposed to TCDD (Ryan et al. 

2002) and in the offspring of rats exposed in utero and through lactation (Ikeda et al. 

2005). Nevertheless, this finding has not been observed in men working in the factories 

that produced the TCDD-contaminated Agent Orange (Schnorr et al. 2001) nor in 

American Vietnam veterans who sprayed it during the war (Michalek et al. 1998). 

These men were exposed to TCDD at levels hundreds of times greater than the ones 

reported in the general population (Schecter et al. 1996; Schnorr et al. 2001). More 

recently, Mocarelli and co-workers have investigated sperm quality and hormone 

concentrations in men born between 1977 and 1984 to Seveso mothers exposed to 

TCDD. The breast-fed sons whose mothers had a serum dioxin concentration as low as 

19 pg/g fat at conception presented lower sperm count, concentration and motility than 

controls and altered serum FSH and inhibin B levels, showing that in utero and 

lactational exposure of children to reasonably low TCDD concentrations can 

permanently decrease sperm quality (Mocarelli et al. 2011). Furthermore, the same 

authors have also found that men exposed to TCDD during childhood presented 

abnormal sperm concentration, motility and hormone levels even 22 years after 
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exposure, whereas men exposed during puberty or adulthood showed an increase or no 

differences in relation to controls, respectively. However, exposure during either 

infancy or puberty led to a permanent alteration of FSH and oestradiol levels. As semen 

parameters outcomes were divergent in both groups despite the same abnormalities in 

hormone levels (Mocarelli et al. 2008), other pathways rather than hormonal 

deregulation are probably involved in these TCDD-induced effects. These permanent 

alterations occurred at serum TCDD concentrations below 68 pg/g fat, which was 

within one order of magnitude of those in the industrialized countries in the 1970s and 

1980s, leading to the hypothesis that TCDD may be responsible, at least in part, for the 

reported decrease in sperm quality, particularly in younger men (Mocarelli et al. 2008). 

Esquenazi et al have also found dose-related increases in the time taken to conceive 

(commonly dubbed as time to pregnancy) and infertility associated with individual 

serum TCDD levels in the Seveso women directly exposed to the organochlorine. Every 

10-fold increase in serum TCDD levels corresponded to a 25% increase in time to 

pregnancy and approximately doubled the chances of infertility (Esquenazi et al. 2010). 

In a different study reporting an occasional episode of food poisoning, adult men 

exposed to TCDD presented decreased testosterone levels and reduced semen volume, 

probably as a result of the functional deregulation of the heavily androgen-dependent 

accessory glands, the secretions of which primarily constitute the seminal fluid (Dhooge 

et al. 2006). Occupational exposure to TCDD have also been shown to alter 

testosterone, LH and FSH levels in adult men (Egeland et al. 1994) but no significant 

associations between paternal exposure and pregnancy outcomes were detected 

(Townsend et al. 1982; Schnorr et al. 2001). 

 

 

1.5.2.2 PCBs 

PCBs are a class of compounds that comprise a total of 209 different congeners 

presenting varying patterns of toxicity. A small group of congeners with one or no 

chlorine atoms in their ortho-positions on the biphenyl molecule (i.e, mono- ortho and 

non-ortho, respectively) resembles the TCDD molecular conformation, binding to the 

same receptor, AhR, and presenting the greatest toxicity of all PCBs (Figure 1.9; Safe 

1994). Nevertheless, evidences from in vivo studies have also shown that the non-
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dioxin-like congeners are also able to induce toxic effects on diverse systems (Hansen 

1999). 

To determine whether environmental levels of PCBs were associated with lower 

sperm quality, Hauser and co-workers selected a study population without specific 

exposure to these organochlorines. They found that individuals presenting sperm 

samples below normal concentration, motility, and morphology tended to have higher 

serum PCBs concentrations than normozoospermic subjects (Hauser et al. 2002). A 

number of human studies have also shown inverse relationships between serum or 

seminal plasma PCBs within the range of current levels for most European populations 

and standard sperm parameters, particularly with sperm motility, which was found to be 

more vulnerable to PCB exposure than sperm concentration or morphology (Bush et al. 

1986; Hauser et al. 2003; Ritchthoff et al. 2003). The negative impact of PCB 

congeners on this sperm parameter is suggested to be, at least in part, caused by post-

testicular mechanisms, involving a reduced epididymal function (Elzanaty et al. 2006). 

 Concomitant with a decrease in sperm motility, a decline in the percentage of 

morphologically normal spermatozoa and more importantly, reductions in both sperm 

binding and penetration of hamster oocytes two hours after in vitro insemination were 

observed in men exposed in utero to contaminated rice oil containing high levels of 

PCBs and their pyrolytic products, mainly polychlorinated dibenzofurans (PCDFs; Guo 

et al. 2000). Supporting these findings, others have found impaired sperm quality and 

reduced sperm fertilizing ability in men postnatally exposed to this accidental 

contamination (Hsu et al. 2003). As in TCDD studies (Mocarelli et al. 2008, 2011), the 

fact that these latter outcomes were found 20 years after PCBs/PCDFs exposure 

indicates long-lasting damage to the male reproductive system (Hsu et al. 2003). 

Besides affecting conventional sperm parameters, chromatin/DNA integrity which is 

critical for the full expression of an individual fertility potential has been found to be 

decreased with increasing serum concentrations of PCBs in European populations 

(Spano et al. 2005; Rignell-Hydbom et al. 2005a; Stronati et al. 2006). A potential 

mechanism whereby PCBs may produce chromatin/DNA damage is through oxidative 

stress, which has been already reported to occur in animal models exposed to Aroclor 

1254, a commercial mixture of PCBs (Krishnamoorthy et al. 2007). 
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Among the dioxin-like PCB congeners, the AhR-agonist non-ortho coplanar 

3,3’,4,4’-tetrachlorobiphenyl (PCB 77; Figure 1.9) is indisputably one of the most toxic 

congeners (Van Den Berg et al. 2006). Although scarcely studied, PCB 77 exposure has 

been shown to reduce male fertility in laboratory animals. Adult rats exposed in utero to 

a single dose of 100 µg/kg body weight showed altered serum testosterone levels, daily 

sperm production and testis weight (Faqi et al. 1998b). Furthermore, acute postnatal 

exposure to PCB 77 was found to induce several other anomalies (Hsu et al. 2004). 

Besides altering testis weight, rats exposed to 20 mg/kg PCB 77 presented decreased 

sperm counts and motility and increased AR rates. Moreover, sperm-oocyte penetration 

rates were significantly reduced at this or even lower PCB 77 concentrations (Hsu et al. 

2004), suggesting reduced sperm fertilizing ability, a finding already reported by others 

in mice exposed throughout their entire development (Huang et al. 1998). Interestingly, 

Kholkute and co-workers have also reported an inhibition of fertilization rates when 

capacitated sperm and oocytes obtained from superovulated female mice were cultured 

in a PCB 77-containing medium (Kholkute et al. 1994). This is especially relevant as 

PCB 77 has been described in follicular fluid of infertile women undergoing ART 

(Drbohlav et al. 2005). Nevertheless, studies on the effects of PCB 77 on human male 

gametes are virtually inexistent with only one study reporting no effects on motility and 

viability when spermatozoa were exposed in vitro to this compound (Pflieger-Bruss et 

al. 2006a). 

 

 

1.5.2.3 p,p’-DDE 

Reproductive abnormalities attributed to p,p’-DDE exposure have been reported in 

a variety of wildlife species (Guillette et al. 1994, 1996; Fry 1995; Lundhorn 1997; 

Edwards et al. 2006) and laboratory animals (You et al. 1998; Loeffler & Peterson 

1999). In rats, exposure to p,p’-DDE in utero and through lactation significantly 

decreased cauda epididymal sperm counts (Loeffler & Peterson 1999) and affected 

anogenital distance and nipple retention, both accurate indicators of endocrine 

disruption (You et al. 1998; Loeffler & Peterson 1999). p,p’-DDE was also identified as 

a cause of egg shell thinning in birds (Lundhorn 1997) and related to poorly organized 

testes, abnormally small phalli and altered testosterone levels in a population of male 
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juvenile alligators living on Lake Apopka, Florida, an heavily p,p’-DDE-contaminated 

area (Guillete et al. 1994, 1996). Although these alterations could be mediated by the 

ER, they are consistent with inhibition of androgen receptor (ARec)-mediated events. In 

fact, Kelce and co-workers reported that p,p’-DDE powerfully inhibits testosterone 

action by binding to the ARec and concomitantly suppresses testosterone-induced 

transcriptional activity in developing, pubertal and adult male rats, therefore suggesting 

that abnormalities in male sex development induced by p,p'-DDE might be mediated by 

interaction with the ARec (Kelce et al. 1995, 1997).   

In humans, epidemiological studies on the effects of p,p’-DDE exposure on 

adequately contrasted populations have been performed. Both outdoor and indoor 

annual DDT spraying of dwellings as a strategic plan to control malaria vectors in 

several countries has put at risk male reproductive health, given the extremely high 

DDT and p,p’-DDE concentrations to which men were exposed to, not only through 

inhalation but also by dermal contact (soil and house dust) and ingestion of 

contaminated food and water (Aneck-Hahn et al. 2007). In these non-occupationally 

exposed individuals, whose serum p,p’-DDE concentrations were far superior than that 

reported for non-exposed populations (De Jager et al. 2006), semen quality was deeply 

decreased. In South African young males living in the malaria-endemic area of 

Limpopo Province, semen volume, sperm count, concentration, motility, morphology 

(Aneck-Hahn et al. 2007) and chromatin integrity (De Jager et al. 2009) were adversely 

affected by p,p’-DDE detected in serum. These findings were further corroborated by 

other studies performed in Mexican men living in the same circumstances (Ayotte et al. 

2001; De Jager et al. 2006). In parallel, p,p’-DDE exposure was negatively correlated 

with the bioavailable/total testosterone ratio (Ayotte et al. 2001). These findings clearly 

showed that a high p,p′-DDE body burden is associated with poor semen parameters and 

altered androgen status, culminating in decreased testicular function.  

Despite these results, contradictory reports have been published so far, and 

particular attention has been paid to an European Union-supported large-scale research 

project aimed at estimating the impact of organochlorines such as p,p’-DDE on human 

reproductive health in different populations, including Greenlandic Inuits, Swedish 

fishermen and Kharkiv (Ukraine) and Warsaw (Poland) men. All these studies reported 

no correlations between p,p’-DDE serum concentrations and semen volume (Rignell-

Hydbom et al. 2004), sperm concentration (Rignell-Hydbom et al. 2004; Toft et al. 
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2006), morphology (Toft et al. 2006), chromatin/DNA damage (Rignell-Hydbom et al. 

2005a; Spanò et al. 2005; Stronati et al. 2006) and markers of epididymal and accessory 

glands function (Rignell-Hydbom et al. 2005b; Elzanaty et al. 2006). However, sperm 

motility and serum testosterone and inhibin B levels in the Inuit population were altered 

by p,p’-DDE exposure (Giwercman et al. 2006; Toft et al. 2006). Although serum p,p’-

DDE concentrations were considered elevated due to the high intake of contaminated 

food, which was the primary source of p,p’-DDE exposure in these men, they were at 

least 1000-fold lower than the ones reported in subjects from malaria-endemic regions, 

possibly explaining the conflicting results. In agreement, other studies have failed to 

detect any relationship between p,p’-DDE concentrations in individuals from the 

general population (with no obvious exposure to p,p’-DDE) recurring to fertility clinics 

and standard semen parameters (Hauser et al. 2003). Regardless, higher p,p’-DDE 

concentrations were found in the semen of infertile patients when compared to fertile 

men (Pant et al. 2004).  

Overall, this means that while mostly relying on the evaluation of conventional 

semen parameters (e.g. sperm count, concentration, motility and morphology) to 

address the exposure of this and other environmental EDs (including TCDD and PCBs) 

at low concentrations, studies may be underestimating their potential damaging effects 

in human male reproductive function and fertility. Thus, the analysis of more accurate 

sperm functional markers such as capacitation, AR, mitochondrial function and Ca
2+

 

levels, among others, formerly referred as of great importance for spermatozoa to 

fertilize an oocyte, is mandatory in these men. Furthermore, the fact that during their 

journey towards the oocyte, human spermatozoa steep in reproductive fluids that 

contain important amounts of these organochlorines represents an important direct route 

of exposure that should be considered. As observed in animals, individual EDs (e.g. the 

pesticide atrazine) and mixtures containing p,p’-DDE and PCBs may interact with pre-

existing signaling pathways in spermatozoa and produce undesirable effects, possibly 

contributing to a decrease in male fertility (Campagna et al. 2002, 2009; Maravilla-

Galván et al. 2009). p,p’-DDE concentrations found in human reproductive fluids have 

been also linked to failed fertilization (Younglai et al. 2002), suggesting that it may play 

a role in infertility. 
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1.6 Objectives 

 

The present work aimed at evaluating the effects of specific organochlorines on 

human sperm function by using a direct approach that allowed mimicking the 

continuous exposure of spermatozoa to these compounds in the female reproductive 

tract in vivo (chapters 2 and 3). This study distinguishes itself from others by allowing 

the evaluation of more accurate functional sperm parameters, which are crucial for male 

fertility, than standard sperm parameters and for more than a few hours of in vitro 

exposure. Our purpose allowed using a more controlled environment to gain new 

insightful information on the non-genomic mechanisms of action by which each 

organochlorine may affect human spermatozoa. Furthermore, we intended to determine 

if our recently developed Diff-Quik staining assay was clinically useful in evaluating 

sperm chromatin status and predicting ART fertility outcomes after sperm selection 

(chapter 4). This assay might be practical in assessing this important marker of male 

fertility in large-scale EDs studies. 
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Chapter 2    Exposure to Persistent Environmental Organochlorines: 

Effects on Sperm Motility, Mitochondrial function, Energy status, 

Capacitation and Viability 
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(2012) Acute effects of TCDD administration: special emphasis on testicular and sperm mitochondrial 

function. Asian Pacific Journal of Reproduction 1(4): 269-276. *Co-first authors of the paper.
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Abstract 

Organochlorines such as TCDD, PCB 77 and p,p’-DDE can be found at the site of 

fertilization in vivo. However, whether they are able to directly target human 

spermatozoa and affect important functional parameters remains to be explored. Thus, 

the present work was undertaken to evaluate their effects, at several concentrations, 

using a 3-day incubation approach that better mimic the in vivo putative exposure of 

spermatozoa to toxicants in the female reproductive tract. 

While TCDD failed to induce changes in any sperm parameter studied (p>0.05), 

p,p’-DDE treatment significantly decreased both sperm MMP (p<0.05) and cellular 

ATP levels (p<0.05), which combined resulted in a remarkable decline of sperm 

motility (p<0.05). PCB 77 equally affected mitochondrial functionality and sperm 

motility following at least 2 days of exposure (p<0.05 and p<0.01, respectively) but 

contrarily to p,p’-DDE, it primarily caused a reduction in sperm motility followed by 

mitochondrial dysfunction, highlighting different mechanisms of action. Furthermore, 

p,p’-DDE, but not PCB 77, strongly inhibited capacitation after 24 hours of incubation 

to the highest concentration (p<0.05). Higher levels of PCB 77 and p,p’-DDE promoted 

cell death after at least 48 hours of exposure (p<0.05 and p<0.01, respectively). 

In summary, individual exposure to p,p’-DDE or PCB 77 directly targeted 

spermatozoa in vitro, ultimately causing cells to die prematurely and thus 

compromising male fertility. On the other hand, TCDD treatment was found to be 

ineffective. It seems therefore that the reported effects of TCDD on human sperm 

parameters may rather result from alterations at the level of spermatogenesis and/or 

during the transit through the male reproductive tract. Lastly, one should also keep in 

mind that more relevant concentrations than the ones employed here may perhaps 

hamper human sperm function and further compromise male fertility due to their 

potential synergistic effects in vivo.  
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2.1 Material and methods 

2.1.1 Materials  

All reagents were provided by Sigma-Aldrich (St. Louis, MO, USA) unless stated 

otherwise. 99% chemically pure p,p’-DDE, PCB 77 and TCDD (LGC Standards, 

Barcelona, Spain) were dissolved in dimethyl sulphoxide (DMSO) to final stock 

concentrations of 62.88 mM, 3.42 mM and 0.207 mM, respectively.  

 

 

2.1.2 Human Biological samples 

Fresh sperm samples from healthy subjects undergoing routine semen analysis or 

fertility treatments in the Human Reproduction Service at University Hospitals of 

Coimbra were used in agreement with the appropriate ethical and Internal Review 

Board of the participating Institution. All individuals signed informed consent forms. 

Samples were obtained by masturbation after 3 to 5 days of sexual abstinence and 

seminal analysis was performed according to the WHO guidelines (WHO 2010). All 

samples used were normozoospermic and had no detectable leukocytes or any other 

round cells. Spermatozoa were prepared by DGC (Isolate
®

 Sperm Separation Medium, 

Irvine Scientific, CA, USA) and were allowed to capacitate in Sperm Preparation 

Medium (SPM; Origio, Medicult, Jyllinge, Denmark) for at least 3 hours at 37°C and 

5% CO2 prior exposure to environmental endocrine disruptors (except for the 

capacitation status assay as mentioned below). All samples used in this study had more 

than 80% viable spermatozoa after processing. 

 

 

2.1.3 Exposure to p,p’-DDE, TCDD and PCB 77 

In order to mimic sperm continuous exposure to p,p’-DDE, TCDD and PCB 77 in 

the female reproductive tract in vivo, sperm cells were independently exposed to p,p’-

DDE (1-100 µM), TCDD (1 nM and 1 µM) or PCB 77 (1- 4 µg/ml = 3.4-13.7 µM) for 3 

days at 37°C and 5% CO2. 10 million cells/ml were used for each condition and kept in 

a phosphate buffered saline medium (PBS, GIBCO - Invitrogen, Paisley, UK) 

containing 0.9 mM CaCl2, 0.5 mM MgCl2, 5 mM D-glucose, 1.0 mM Na-pyruvate, 10.0 



 Chapter 2 Exposure to Persistent Environmental Organochlorines 

 

44 

mM Na-lactate, 0.3% (wt/vol) bovine serum albumin (BSA) and 1% (v/v) 

penicillin/streptomycin, pH 7.2-7.4, previously described as optimal to keep 

spermatozoa for longer time periods (Amaral et al. 2011). Proper controls were 

performed by adding 0.3%, 0.5% or 0.4% (v/v) DMSO to the medium, according to the 

endocrine disruptor used (p,p’-DDE, TCDD or PCB 77, respectively). Several sperm 

parameters were assessed daily and the medium were changed every day after a 10-

minute centrifugation at 528 x g.  

 

 

2.1.3.1 Viability and mitochondrial function 

In order to evaluate membrane integrity and MMP, indicative of mitochondrial 

function, spermatozoa were incubated with 100 nM SYBR14 and 240 nM propidium 

iodide (PI; LIVE/DEAD Sperm Vitality kit, Molecular Probes, Eugene, OR, USA) 

coupled with 2 µM JC-1 (5,5’,6,6’-tetra-chloro-1,1’,3,3’-tetraethylbenzimidazolyl- 

carbocyanine iodide; Molecular Probes) for 20 minutes at 37°C in the dark (Amaral & 

Ramalho-Santos 2010; Baptista et al. 2013). SYBR14 is a cell membrane-permeant 

fluorescent dye that stains all sperm nuclei green whereas PI only stains red the sperm 

nuclei with compromised membrane integrity, overpowering the SYBR14-signal. The 

JC-1 dye exhibits potential-dependent accumulation in mitochondria, shifting its 

fluorescent emission from orange/reddish to green according to the high or low MMP, 

respectively. Therefore, this assay distinguishes between highly and less active 

mitochondria, respectively (Figure 2.1). Sperm cells were classified according to the 

staining patterns of the head (green or red) and midpiece (green or reddish) and results 

were expressed as percentage of viable spermatozoa or with highly active MMP. For 

each slide, at least two hundred spermatozoa were observed in different fields using a 

Zeiss Axioplan 2 Imaging fluorescence microscope equipped with a triple band pass 

filter (Carl Zeiss, Göttingen, Germany).  
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Figure 2.1. Sperm MMP assessed by the JC-1 fluorescent marker. 

The spermatozoon on the left present low MMP (green midpiece) while the spermatozoon with a 

orange/reddish midpiece exhibit highly active mitochondria (high MMP; right side). The image was taken 

using a fluorescence microscope under a 100x objective magnification. 

 

 

2.1.3.2 Motility  

Motility was assessed by phase contrast microscopy (Nikon Instruments Inc, 

Melville, NY, USA). Two hundred spermatozoa were scored in four different fields and 

results were expressed as total motility, i.e. the percentage of spermatozoa displaying 

progressive motility in addition to cells commonly identified as motile but that do not 

progress (in situ motility). 

 

 

2.1.3.3 ATP content levels  

Sperm intracellular ATP levels were determined accordingly to the previous 

described methodology (Amaral et al. 2006; Sousa et al. 2013). After exposing 

spermatozoa to 0.6 M perchloric acid and 25 mM ethylenediaminetetraacetic acid 

disodium salt (EDTA-Na), sperm cells were centrifuged at 18 470 x g for 2 minutes at 

4°C. The supernatants were neutralized on ice with a drop wise addition of 3 M KOH in 

1.5 M Tris and analyzed for ATP levels in a Beckman System Gold high-performance 

liquid chromatography (HPLC) system that included a 126 Binary Pump Model and a 

166 Variable UV model detector. Detection was performed at 254 nm and the column 

used was a Lichrosphere 100 RP-18 (5 mm; Merck, Darmstadt, Germany). An isocratic 

elution with 100 mM phosphate buffer (KH2PO4; pH 6.5) and 1.0% methanol was 
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carried out with a constant flow rate of 1 ml/minute. Peak identity was established by 

following the retention time of standards.  

 

 

2.1.3.4 Capacitation status 

To further analyse if these organochlorines interfered with the capacitation 

process, spermatozoa were allowed to capacitate under p,p’-DDE, TCDD or PCB 77 

exposure in the above PBS-based medium supplemented with 25 mM NaHCO3 for the 

entire set of experiments. Capacitation was evaluated daily through the detection of 

phosphorylated tyrosines (Ramalho-Santos et al. 2007). Briefly, spermatozoa were 

fixed with 2% (v/v) formaldehyde in PBS for 40 minutes, permeabilized [1% (v/v) 

Triton X-100 in PBS; 20 minutes] and blocked with 0.1% (wt/v) BSA and 100 mM 

glycine in PBS for 30 minutes at room temperature. Afterwards, cells were incubated 

with a rabbit anti-human phosphotyrosine polyclonal antibody (1:10; Zymed, CA, USA) 

overnight at 37°C and washed with 0.1% Triton X-100 in PBS for 30 minutes. 

Spermatozoa were then exposed to an anti-rabbit secondary antibody (Texas Red®-X 

Goat Anti-Rabbit IgG; 1:200; Molecular Probes) for 1 hour at 37°C followed by a 15-

minute wash with 0.1% Triton X-100 in PBS. A final labeling with the DNA-binding 

dye 4,6-diamino-2-phenyl-indole (DAPI; Molecular Probes) was used to counterstain 

spermatozoa nuclei. Only fully capacitated spermatozoa, i.e spermatozoa whose tails 

were entirely labeled, were considered positive (Figure 2.2). For each slide, at least two 

hundred spermatozoa were observed in different fields using a Zeiss Axioplan 2 

Imaging fluorescence microscope (Carl Zeiss). 

 

 

 

 

 

 

Figure 2.2. Tyrosine phosphorylation assessed by immunocytochemistry. 

 While a fully capacitated spermatozoon exhibited red fluorescence in both the flagellum and midpiece, 

the non-capacitated spermatozoon only displayed the blue DAPI counterstain. The image was taken using 

a fluorescence microscope under a 100x objective magnification.  
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2.1.4 Statistical analysis 

Statistical analysis was carried out using the SPSS version 20.0 software for 

Windows (SPSS Inc., Chicago, IL, USA). Values are expressed as mean percentage ± 

standard error of mean (SEM) relative to control (except for ATP levels). All variables 

were checked for normal distribution using the Shapiro-Wilk test and comparisons 

between concentrations and their respective controls were performed by paired t-test. 

Further comparisons between all concentrations within each endocrine disruptor set of 

experiments were performed by one-way analysis of variance (ANOVA).  p≤0.05 was 

considered significant. 

 

 

2.2 Results 

2.2.1 p,p’-DDE and PCB 77 compromise sperm survival 

Although no effect on sperm viability was noticed during TCDD treatment 

(p>0.05 Figure 2.3A), both 100 and 50 µM p,p’-DDE significantly reduced sperm 

survival when compared to control groups (Figure 2.3B). In fact, while 50 µM p,p’-

DDE compromised cell viability only after 3 days of exposure (p<0.05), 100 µM p,p’-

DDE markedly decreased sperm viability earlier in time, as observed by the decreased 

percentage of spermatozoa with green head after 2 days of treatment (p<0.01, Figure 

2.2B). Nevertheless, its maximal effect was only reached after 3 days of exposure 

(p<0.001, Figure 2.3B). Comparisons among concentrations revealed that both 100 and 

50 µM p,p’-DDE reduced cell survival more drastically than smaller doses (25, 10 and 1 

µM) after 2 and 3 days of exposure (p<0.05, Figure 2.3B). Furthermore, the effect 

promoted by 100 µM p,p’-DDE was so great that it even promoted higher cell death 

than 50 µM p,p’-DDE at both days 2 and 3 (p<0.05, Figure 2.3B).  

Finally, exposure to 13.7 µM PCB 77 revealed a significant decline in sperm 

survival after 2 and 3 days of exposure, when compared to their respective controls 

(p<0.05, Figure 2.3C). No effect was observed at lower doses (p>0.05, Figure 2.3C). 

Following 3 days of exposure, cell viability significantly differed between the highest 

and the lower (3.4 and 6.8 µM) PCB 77 concentrations (p<0.05; Figure 2.3C). 
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Figure 2.3. Daily percentages of viability in spermatozoa continuously exposed to A) TCDD (n=6), 

B) p,p’-DDE (n=5) or C) PCB 77 concentrations (n=6) for 3 days at 37ºC and 5% CO2. 

Results represent mean percentage ± SEM relative to control (% viable cells / % viable cells in DMSO x 

100). * (p<0.05), ** (p<0.01) and *** (p<0.001) symbolize significant differences when compared to 

control. Different letters denote statistical differences between concentrations within the same day of 

exposure (p<0.05). 

 

Longer incubation periods were not carried out since the percentages of viable 

sperm in control groups were below 50% after 4 days of exposure (data not shown). 

 

2.2.2 p,p’-DDE and PCB 77 diminish both mitochondrial function and motility 

TCDD induced no effects on both MMP and motility (p>0.05, Figure 2.4).  Yet, in 
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Figure 2.4. Daily percentages of A) high MMP and B) total motility in spermatozoa continuously 

treated with different TCDD concentrations for 3 days at 37ºC and 5% CO2 (n=6).  

Results represent mean percentage ± SEM relative to the respective control (% sperm parameter / % 

sperm parameter in DMSO x 100). No significant differences were observed when compared to controls 

(p>0.05). Similar letters denote no statistical differences between concentrations within the same day of 

exposure (p>0.05). 

 

cells exposed to p,p’-DDE both parameters were significantly decreased when higher 

concentrations were used (Figure 2.5). While 24 hours of exposure to the maximal p,p’-

DDE concentration was enough to adversely affect sperm motility (p<0.01, Figure 

2.5B) and dramatically decrease the proportion of sperm with highly functional 

mitochondria (p<0.001, Figure 2.5A), 50 µM p,p’-DDE was only able to reduce both 

parameters following 48 hours of exposure (Figure 2.5). Moreover, the effects promoted 

by 100 and 50 µM p,p’-DDE treatments were found to be more severe in subsequent 

days (Figure 2.5). 

Although sperm viability became compromised at these p,p’-DDE concentrations, 

both the proportions of sperm motility and MMP had already decreased, showing that 

the alterations in both parameters preceded cell death. A 3-day incubation with 25 µM 

p,p’-DDE promoted a significant decrease in the proportion of spermatozoa with highly 

functional mitochondria (p<0.01; Figure 2.5A); however, no difference was observed in 

total motility (p>0.05; Figure 2.5B). Comparisons between concentrations revealed 

significant differences in both the percentages of spermatozoa with high MMP and total 

motility already at day 1 (p<0.05, Figure 2.5).  
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Figure 2.5. Daily percentages of A) high MMP and B) total motility in spermatozoa continuously 

exposed to different p,p’-DDE concentrations for 3 days at 37ºC and 5% CO2 (n=5).  

Results represent mean percentage ± SEM relative to the respective control (% sperm parameter / % 

sperm parameter in DMSO x 100). * (p<0.05), ** (p<0.01) and *** (p<0.001) symbolize significant 

differences when compared to controls. Different letters denote statistical differences between 

concentrations within the same day of exposure (p<0.05). 

 

Exposure to 13.7 µM PCB 77 clearly provoked a significant decline in both 

motility and high MMP following 2 and 3 days of exposure, when compared to controls 

(Figure 2.6). However, contrarily to p,p’-DDE exposure, 13.7 µM PCB 77 seemed to 

primarily induced a severe decrease in motility (p<0.01, Figure 2.6B) and then 

adversely affect MMP (p<0.05 and p<0.001 after 2 and 3 days of treatment, 

respectively, Figure 2.6A). In fact, while less than 20% of spermatozoa were motile, 

64.7±10.8% and 36.5±10.6% of spermatozoa still presented high MMP when exposed 

to 13.7 µM PCB 77 at both days 2 and 3, respectively (Figure 2.6).  

Though sperm survival was significantly reduced at the same time periods in 

which motility and MMP were affected, the greater percentages of viable sperm using 

the same samples indicate that both motility and MMP were impaired before cell death 

(Figures 2.3C and 2.6). Comparisons between concentrations have shown that the 

percentage of spermatozoa with highly functional mitochondria at the highest dose 

tested was significantly lower than the one observed in the 6.8 µM PCB 77-exposed 

group following 2 days of incubation and from all the others after 3 days of exposure 

(p<0.05, Figure 2.6A). Finally, spermatozoa incubated with 13.7 µM PCB 77 presented 

lower motility when compared to all other concentrations following 2 and 3 days of 
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exposure (p<0.05, Figure 2.6B). Due to the observed effects on sperm MMP, motility 

and viability only the highest PCB 77 concentration was used in further studies. 

 

 

 

 

 

 

Figure 2.6. Daily percentages of A) high MMP and B) total motility in spermatozoa continuously 

exposed to different PCB 77 concentrations for 3 days at 37ºC and 5% CO2 (n=6).  

Results represent mean percentage ± SEM relative to the respective controls (% high MMP or total 

motility / % high MMP or total motility in DMSO x 100). * (p<0.05), ** (p<0.01) and *** (p<0.001) 

symbolize significant differences when compared to the controls. Different letters denote statistical 

differences between concentrations within the same day of exposure (p<0.05). 

 

 

2.2.3 p,p’-DDE reduces cellular ATP levels 

Individual exposure to p,p’-DDE adversely affected both motility and MMP before 

compromising sperm viability (Figures 2.3B and 2.5). Considering that ATP, which is 

mainly produced by mitochondria, is required for several purposes including sperm 

motility and viability maintenance (Ramalho-Santos et al. 2009), we hypothesized that 

ATP levels might be affected. Detection of cellular ATP levels by HPLC was only 

performed in spermatozoa exposed to p,p’-DDE at time points where viability was 

unaffected and at concentrations found to negatively influence sperm mitochondrial 

function and motility. Exposure to 100 µM p,p’-DDE significantly decreased sperm 

ATP levels after 24 hours of exposure when compared to control (p<0.001, Figure 2.7). 

Additionally, ATP levels were diminished in sperm treated with 50 µM p,p’-DDE after 

1 and 2 days of exposure (p<0.001 and p<0.05, respectively; Figure 2.7) but not when 

exposed to 25 µM p,p’-DDE (p>0.05, Figure 2.7). Comparisons between concentrations 
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revealed that after 24 hours of incubation ATP levels from spermatozoa exposed to 25 

µM p,p’-DDE were significantly higher than in those exposed to 100 µM p,p’-DDE 

(p<0.05, Figure 2.7). Accordingly, ATP levels from spermatozoa treated with 25 µM 

p,p’-DDE were significantly higher than the ones detected in spermatozoa exposed to 

50 µM p,p’-DDE  following 2 days of treatment (p<0.05, Figure 2.7).   

 

 

 

Figure 2.7. Daily ATP levels in spermatozoa continuously exposed to different p,p’-DDE 

concentrations for 3 days at 37ºC and 5% CO2 (n=4).  

Results represent mean levels of ATP (in picamols/ million of spermatozoa) ± SEM. * (p<0.05) and *** 

(p<0.001) symbolize significant differences in comparison to the respective controls. Different letters 

denote statistical differences between concentrations within the same day of exposure (p<0.05). 

 

 

2.2.4 p,p’-DDE hampers sperm capacitation 

Sperm capacitation entails numerous physiological and functional alterations, 

including the phosphorylation of tyrosine residues (Ramalho-Santos et al. 2007). The 

detection of such phosphotyrosines is therefore broadly accepted as a good marker of 

capacitation.  

TCDD and PCB 77 concentrations failed to induce significant changes in sperm 

tyrosine phosphorylation under capacitating conditions (p>0.05, Figure 2.8A). 

Furthermore, comparisons between TCDD concentrations showed no differences within 

each day of exposure and the same was observed when the highest concentration of the 

dioxin-like PCB 77 was compared to both doses of TCDD (p>0.05, Figure 2.8B).  On 
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the other hand, continuous exposure of non-capacitated spermatozoa to 100 µM p,p’-

DDE significantly inhibited sperm capacitation after 24 hours of exposure (p<0.05, 

Figure 2.8B). Furthermore, this inhibition still persisted after 2 and 3 days of exposure 

(p<0.01, Figure 2.8B) despite the loss of viability (Figure 2.3B). Exposure to lower 

concentrations failed to affect the proportion of capacitated sperm (p>0.05, Figure 

2.8B). Differences between p,p’-DDE concentrations were observed at both days 2 and 

3 (p<0.05; Figure 2.8B). 

 

 

Figure 2.8. Daily percentage of capacitated spermatozoa continuously treated with A) TCDD or 

PCB 77 (n=6) and B) p,p’-DDE (n=5) concentrations for 3 days at 37ºC and 5% CO2. 

Results represent mean percentage ± SEM relative to the respective controls (% capacitated cells / % 

capacitated cells in DMSO x 100). * (p<0.05) and ** (p<0.01) symbolize significant differences when 

compared to controls. Different letters denote statistical differences between concentrations within the 

same day of exposure (p<0.05). Comparisons between TCDD and PCB 77 concentrations retrieved no 

differences (p>0.05).  
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2.3 Discussion 

In recent years there has been an emerging concern regarding the putative decline 

of male reproductive health induced by environmental organochlorines. As these 

organochlorines can be found in reproductive tissues and secretions, it is imperative to 

analyse whether compounds such as TCDD, PCB 77 and p,p’-DDE may directly target 

human spermatozoa altering important functional parameters that may jeopardize 

further spermatozoa-oocyte interactions and fertilization. Moreover, since spermatozoa 

are transcriptionally inactive, they are excellent models for the analysis of non-genomic 

effects promoted by environmental pollutants/endocrine disruptors. Herein, using a 

long-term protocol we were able to pinpoint effects that had been undetected so far. 

Contrarily to previous reports that established a decline in sperm motility 

following a long-term exposure to TCDD in different stages of life (El-Sabeawy et al. 

1998; Mocarelli et al. 2008, 2011; Arima et al. 2009), we failed to detect any in vitro 

alterations in motility as well as in viability, mitochondrial function and capacitation, 

even at 1 µM TCDD, a concentration far greater than background levels (Schecter et al. 

1996; Tsutsumi et al. 1998). Yet, our results are in accordance with that of Hanf and 

colleagues who also reported a lack of effect on human sperm motility in vitro after 60 

hours of incubation (Hanf et al. 1992). In the only study that addressed the effect of 

TCDD in sperm mitochondria, Fisher et al. described an increased proportion of 

C57BL/6 mouse epididymal sperm with low MMP when the animals were injected with 

TCDD for 24 hours, and this alteration was AhR-dependent. The same effect on MMP 

was further observed by the same authors in spermatozoa exposed to 1 or 5 nM TCDD 

for 45 minutes in vitro, suggesting that sperm cells are direct targets of TCDD (Fisher et 

al. 2005). In this case, either human sperm are more resistant to TCDD, as suggested by 

the characteristics of the human AhR, more closely related to the allele present in 

TCDD resistant DBA/2J mice (Ema et al. 1994), or mitochondria from human sperm 

differ greatly from their mouse sperm counterparts. The dioxin-like PCB 77, on the 

other hand, was able to promote a decrease in both motility and high sperm MMP, 

finally leading to cell death at the highest concentration tested. The doses employed 

here were higher than those chosen for TCDD given that the PCB 77 toxicity 

equivalency factor (TEF), which is an estimate of its toxicity in relation to the reference 

dioxin TCDD in assumed AhR-mediated events, is 0.0001 meaning that PCB 77 is 10 
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000 times less potent than TCDD (Van der Berg et al. 2006; U.S. Environmental 

Protection Agency 2010). In light of our findings it seems unlikely that the effects 

promoted by PCB 77 are mediated by the AhR in spermatozoa.  

In vitro studies regarding the direct impact of PCBs on spermatozoa are scarce and 

evidence suggest that they may not affect sperm function greatly, although all studies 

have used fairly shorter incubation periods than we did. In fact, exposure to 5 and 10 

µg/ml PCB 77 failed to produce any effect on both human sperm flagellar movement 

and viability, despite the high doses tested, and the same lack of effects was observed in 

single or combined exposure to the dioxin-like PCB congeners 118 (2,3',4,4',5-

pentachlorobiphenyl) and 126 (3,3',4,4',5-pentachlorobiphenyl), and the di-ortho PCB 

153 (2,2’,4,4’,5,5’-hexachlorobiphenyl) for 5 hours (Pflieger-Bruss et al. 2006a,b). It 

was only when porcine sperm cells were treated with an organochlorine mixture 

containing several PCB congeners (e.g. PCB 77) and a  panoply of other compounds, 

including p,p’-DDE, that both sperm parameters were found reduced (Campagna et al. 

2002, 2009). The idea that sperm motility is particularly susceptible to PCBs action 

reported in both human and animal in vivo studies (Bush et al. 1986; Hauser et al. 2003; 

Ritchthoff et al. 2003; Hsu et al. 2004) is further strengthened in this study. 

Mitochondria play a central role in sperm function due to their participation in 

numerous events/pathways crucial for fertilization (Ramalho-Santos et al. 2009; Amaral 

et al. 2013a). To date, no study has addressed the effect of PCB 77 on sperm or even 

testis mitochondria. Taking advantage of isolated rat liver mitochondria, which is 

normally used as a general toxicological indicator, Nishihara et al. found no obvious 

effects in mitochondrial functionality following PCB 77 treatment (Nishihara et al. 

1985), which clearly contradicts our findings. Nonetheless, this is not surprising as we 

have previously reported that liver mitochondria differ from their testis counterparts in 

sensitivity, thus indicating that the former is not the best toxicological model to evaluate 

the possible effects of environmental toxicants on male fertility (Mota et al. 2011). In 

parallel, this study also showed that p,p’-DDE promotes mitochondrial dysfunction in 

the testis (Mota et al. 2011). Accordingly, p,p’-DDE was able to reduce the percentages 

of spermatozoa with highly functional mitochondria and also cellular ATP levels in the 

present study. The combined decrease of both parameters was associated with a clear 

decline in motility. As pinpointed in the introduction section, numerous reports have 
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established the important contribution of mitochondria in supplying energy required for 

sperm motility. Additionally, mitochondrial function has been extensively correlated 

with several parameters including sperm viability (Papaioannou et al. 1997; Spinaci et 

al. 2005) and fertilizing ability (Kasai et al. 2002; Marchetti et al. 2002; Gallon et al. 

2006). When considering our results it is tempting to suggest that proper mitochondrial 

function is disrupted by p,p’-DDE exposure leading to a severe impairment of motility. 

Although this is not untrue, we may also hypothesize that p,p’-DDE may disturb other 

ATP-generator processes and thus contribute for the observed decline in motility. 

Interestingly, exposure to 13.7 µM PCB 77 induced a more prominent decrease in 

motility than in MMP at the same time points which clearly indicates a different 

mechanism of action from that of p,p’-DDE. Similarly to p,p’-DDE, other 

organochlorine pesticides including alachlor were able to decrease human sperm 

motility and affect mitochondria by promoting a decline in MMP in vitro (Grizard et al. 

2007), further supporting our results.  

To become functionally competent cells spermatozoa must undergo capacitation. 

However, little is known about the effects of environmental toxicants in such process. 

By incubating human spermatozoa in a capacitating medium containing our 

organochlorines we found that neither TCDD nor PCB 77 influenced sperm 

capacitation, as determined by tyrosine phosphorylation. Yet, p,p’-DDE significantly 

inhibited capacitation at the highest concentration. As ejaculated spermatozoa cannot 

immediately fertilize an oocyte, requiring a preparatory period in the female 

reproductive tract to capacitate, one may hypothesize that inhibition of this process by 

p,p’-DDE may prevent all further key steps, i.e. AR, sperm-oocyte fusion and 

fertilization. Our results are in agreement with other studies that have reported the same 

inhibition in spermatozoa exposed to atrazine in vitro (Maravilla-Galván et al. 2009) 

and to the pesticide fenvalerate in vivo (Shi et al. 2011). Conversely, Campagna and 

coworkers described the opposite effect when testing a mixture of several toxicants 

including PCBs and p,p’-DDE in spermatozoa for 2 and 4 hours (Campagna et al. 

2009).   

Taken together, individual exposure to PCB 77 or p,p’-DDE was shown to 

promote non-genomic effects, affecting sperm functional parameters important for 

fertilization, some of which often ignored in both in vivo and in vitro studies on this 

topic. Furthermore, using a 3-day incubation approach we observed that all 
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organochlorines act differently. In contrast to both PCB 77 and p,p’-DDE, that directly 

targeted human spermatozoa and compromised male fertility, no alterations were found 

in this study using TCDD. Therefore, the effects described for TCDD in human sperm 

reported by others seem to be indirect, i.e. they may arise from alterations at the 

spermatogenesis level and/or during the transit through the male reproductive tract. 

Finally, although the concentrations used here were not environmentally-relevant, one 

should also keep in mind that spermatozoa are directly exposed to a wide broad of 

environmental endocrine disruptors (Schecter et al. 1996; Kumar et al. 2000; Dallinga 

et al. 2002; Younglai et al. 2002; Pant et al. 2004; Drbohlav et al. 2005; Kunisue et al. 

2005) and little is known about possible synergistic effects of these and other 

compounds on their functional parameters, an issue that should be considered in further 

studies. Thus, when acting together, more relevant concentrations may eventually 

hamper human sperm function and compromise male fertility. 
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Chapter 3    Exposure to Persistent Environmental 

Organochlorines: Effects on Intracellular Ca2+ levels and AR 
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Abstract 

The environmental organochlorines TCDD, PCB 77 and p, p′-DDE may promote 

non-genomic actions and interact directly with pre-existing signaling pathways, as 

already reported in other cell types. However, although dioxins, PCBs and pesticides are 

often found in both male and female reproductive fluids, their effects in gamete 

function, particularly in what concerns Ca
2+ 

homeostasis
 
and AR remain to clarify.  

While both TCDD and PCB 77 did not affect [Ca
2+

]i greatly, p,p’-DDE was able to 

rapidly increase [Ca
2+

]i (p<0.05) in most cells with magnitudes of response up to 200%, 

without affecting sperm viability (chapter 2). Strikingly, even at extremely low doses 

such as 1 pM and 1 nM p,p’-DDE affected intracellular Ca
2+

 homeostasis in 21.1±3.0% 

and 28.0±10.65% of cells, respectively (p<0.05). Furthermore, experiments performed 

in a low Ca
2+

 medium demonstrated that extracellular Ca
2+

 influx was responsible for 

this Ca
2+ 

elevation (p<0.01). Mibefradil and NNC 55-0396, both inhibitors of the 

sperm-specific Catsper channel, reversed the p,p’-DDE-induced [Ca
2+

]i rise, suggesting 

the participation of Catsper in this process (p<0.05). In fact, whole cell patch-clamp 

recordings confirmed Catsper as a target of p,p’-DDE action by monitoring an increase 

in CatSper currents of more than 100% (p<0.01). Finally, taking advantage of our 

previously described extended incubation protocol we found that acrosomal integrity 

was adversely affected after 2 and 3 days of exposure to p,p’-DDE, suggesting that 

[Ca
2+

]i rise may cause premature acrosome reaction (p<0.05). On the other hand, PCB 

77-induced acrosomal loss at both days 2 and 3 (p<0.05) may have resulted from the 

increased cell death previously observed at these specific time points (chapter 2). TCDD 

failed to induce any change in acrosomal status (p>0.05).  

In conclusion, a novel non-genomic p,p’-DDE mechanism specific to sperm is 

shown in this study. p,p’-DDE was able to induce [Ca
2+

]i rise in human sperm through 

the opening of Catsper consequently compromising sperm parameters important for 

fertilization and ultimately, male fertility. The promiscuous nature of CatSper activation 

may turn human sperm more vulnerable to the action of some persistent endocrine 

disruptors.  
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3.1 Material and methods 

3.1.1 Materials  

All reagents were provided by Sigma-Aldrich unless stated otherwise.   

 

 

3.1.2 Human biological samples 

Fresh normozoospermic sperm samples from both human healthy donors recruited at 

the Biosciences School, University of Birmingham, and Medical Research Institute, 

University of Dundee; as well as healthy patients undergoing routine semen analysis or 

fertility treatments in the Human Reproduction Service at University Hospitals of Coimbra 

were used accordingly to the proper ethical and Internal Review Board of the participating 

Institutions. All individuals signed informed consent forms. Samples were obtained by 

masturbation after 3 to 5 days of sexual abstinence and seminal analysis was performed 

according to the WHO guidelines after liquefaction (WHO 2010). All samples used in this 

study had no detectable leukocytes (or any other round cells) and presented more than 

80% viable sperm after processing. 

 

 

3.1.3 Single-cell Ca2+ imaging experiments 

Spermatozoa were prepared by swim up and allowed to capacitate in a supplemented 

Earle’s balanced salt solution (sEBSS) containing 1.8 mM CaCl2, 5.4 mM KCl, 0.81 mM 

MgSO4, 25.0 mM NaHCO3, 1.0 mM NaH2PO4, 116.4 mM NaCl, 5.5 mM D-glucose, 2.5 

mM Na-pyruvate, 41.8 mM Na-lactate and 0.3% (w/v) BSA for at least 3 hours at 37°C 

under 5% CO2. [Ca
2+

]i measurements were then carried out after loading 4 million 

sperm/ml with the Ca
2+

 fluorescent marker Oregon Green BAPTA-1AM (10 µM; 

Molecular Probes) for 1 hour at 37°C under 5% CO2 in a purpose-built, perfusable, 

imaging chamber composed of a coverslip previously coated with 1% (wt/v) air-dried 

poly-D-lysine solution on the lower surface. Cells adhered to this coated area and were 

observed under a Nikon TE200 inverted microscope (Nikon Instruments Inc.). The 

chamber was connected to a perfusion apparatus and any loose cells and extracellular dye 

were removed by perfusion of the chamber with sEBSS prior to start recording. All tests 
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were carried out in a dark room at 25ºC with a steady perfusion rate of 0.4 ml/minute. 

Real time recordings were performed at intervals of 2.5 seconds using an acquisition 

software platform (IQ Andor Technology, Belfast, UK).  

To evaluate the effects of p,p’-DDE, TCDD and PCB 77 on [Ca
2+

]i, spermatozoa 

were exposed to a wide range of concentrations diluted in standard sEBSS. Furthermore, 

experiments using a low-Ca
2+

 sEBSS medium (CaCl2 was adjusted to 5 mM with the 

addition of 6 mM ethylene glycol tetraacetic acid (EGTA; final [Ca
2+

]<500 nM) were 

performed to further assess the contribution of the internal Ca
2+ 

stores on the p,p’-DDE-

induced [Ca
2+

]i rise. Finally, inhibition studies were performed using 30 µM mibefradil 

and 10 µM NNC 55-0396 (Brenker et al. 2012). These drugs have been shown to 

effectively block CatSper currents at these concentrations. When a plateau in the p,p’-

DDE-induced [Ca
2+

]i rise was reached, either mibefradil or NNC 55-0396 was added, 

allowing the amplitudes of agonist and antagonist effects to be compared in each cell. 

Before finishing each experiment, spermatozoa were washed with standard sEBSS and 

exposed to 3.2 µM progesterone to determine if they were responding properly to the 

physiological stimuli (positive control). Solvent controls were carried out with 0.3%, 0.5% 

or 0.4% (v/v) DMSO, respectively. 

Analysis of images, background correction and normalization of data was performed 

as described in previous studies with minor modifications (Kirkman-Brown et al. 2000). 

The region of interest was drawn around the head and neck region (midpiece) of each cell 

and raw intensity values were imported into Microsoft Excel and normalized using the 

equation F = [(F – Fbasal) / Fbasal] x 100%, where F is % change in intensity at time t, F 

is fluorescence intensity at time t and Fbasal is the mean basal F established in the 

beginning of each experiment before application of any stimulus. Each cell was 

considered to respond when the mean f 10 determinations of normalized F during the 

exposure period differed significantly from the mean f 10 determinations of normalized F 

during control (or inhibitor) treatment (p<0.05). Mean amplitudes and percentage of 

responsive cells were calculated for each concentration in each sperm sample analyzed. 
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3.1.4 Whole-cell patch-clamp experiments 

Cells were prepared by swim up in an artificial human tubal fluid solution containing 

98.0 mM NaCl, 4.7 mM KCl, 0.3 mM KH2PO4, 2.0 mM CaCl2, 0.2 mM MgSO4, 21.0 mM 

HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid), 3.0 mM D-glucose, 

21.0 mM lactic acid, 0.3 mM Na-pyruvate, pH 7.4 (Lishko et al. 2011). Spermatozoa were 

then resuspended and allowed to capacitate in a HEPES-buffered solution (HS; 130.0 mM 

NaCl, 5.0 mM KCl, 1.0 mM MgSO4, 2.0 mM CaCl2, 5.0 mM D-glucose, 1.0 mM Na-

pyruvate, 10.0 mM lactic acid and 20.0 mM HEPES, pH=7.4) supplemented with 20% 

(w/v) fetal bovine serum and 25.0 mM NaHCO3 (pH 7.4) for at least 3 hours at 37°C and 

5% CO2 (Lishko et al. 2010).  

Whole cell currents were evoked by 1 second voltage ramps from -80 mV to +80 mV 

from a holding potential of 0 mV (before correction for junction potential). Seals between 

the patch pipette and human spermatozoa were formed in standard HS either at the human 

sperm cytoplasmic droplet or, if the cytoplasmic droplet was not clear, in the 

neck/midpiece region (Lishko et al. 2011). Pipettes were filled with a Cs
+
-based solution 

comprising 130 mM CsMeSO3, 40 mM HEPES, 1 mM Tris-HCl, 3 mM EGTA, 2 mM 

EDTA, pH adjusted to 7.4 with CsOH. A divalent-free caesium (Cs
+
)-based medium 

(DVF) comprising 140 mM CsMeSO3, 40 mM HEPES and 3 mM EGTA (pH 7.4 adjusted 

with CsOH) was used to allow proper recordings of CatSper monovalent currents. Besides 

seal formation, HS was used to record baseline current as Ca
2+

 contained in this solution 

inhibits monovalent CatSper currents and causes Ca
2+

-dependent inactivation of CatSper 

channels (Lishko et al. 2011). 5µM p,p’-DDE was added to DVF at specific time points. 

All experiments were performed at 25ºC. 

 

 

3.1.5 Exposure to p,p’-DDE, TCDD and PCB 77 

Spermatozoa were isolated by density gradient centrifugation (Isolate
®
 Sperm 

Separation Medium, Irvine Scientific) and allowed to capacitate for at least 3 hours at 

37°C under 5% CO2. As described in chapter 2, spermatozoa (10 million/ml) were 

independently exposed to several concentrations of p,p’-DDE (1 - 50 µM), TCDD (1 nM 

and 1 µM)  and PCB 77 (13.7 µM) for 3 days at 37°C and 5% CO2. Acrosomal status was 

assessed daily and appropriate controls were performed with the vehicle, DMSO.  
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3.1.5.1 Acrosomal integrity  

Acrosomal integrity was evaluated using PSA, a lectin that binds to the acrosomal 

contents, particularly to glycoproteins present in the matrix (Liu & Baker 1988), 

conjugated with fluorescein isothiocyanate (PSA-FITC). Briefly, spermatozoa were fixed 

with 2% (v/v) formaldehyde in PBS for 40 minutes, permeabilized [1% (v/v) Triton X-100 

in PBS; 20 minutes] and blocked with 0.1% (wt/v) BSA and 100 mM glycine in PBS for 

30 minutes at room temperature. Afterwards cells were incubated with PSA-FITC (1:200) 

for 1 hour at 37°C followed by washing with 0.1% (v/v) Triton X-100 in PBS for 15 

minutes. A final labeling with DAPI (Molecular Probes) was used to counterstain sperm 

nuclei. At least 200 sperm cells were scored in different fields in each slide using a Zeiss 

Axioplan 2 Imaging fluorescence microscope (Carl Zeiss). Only acrosomes presenting a 

homogeneous green fluorescence were considered intact (Figure 3.1).   

 

 

 

 

 

 

 

 

Figure 3.1. Acrosomal integrity evaluated by PSA-FITC. 

Spermatozoa presenting homogenous green fluorescence on the posterior region of the head possess intact 

acrosomes whereas acrosome-reacted cells exhibit blue fluorescence resulting from the DAPI nuclear 

counterstain. The image was taken using a fluorescence microscope under a 100x objective magnification. 

 

 

3.1.6 Statistical analysis 

Statistical analysis was carried out using the SPSS version 19.0 software for 

Windows (SPSS Inc., Chicago, IL, USA). All variables were checked for normal 

distribution using the Shapiro-Wilk test (or the Kolmogorov-Smirnov test for n>25) and 

multiple comparisons were performed by the paired t-test or ANOVA for normal 

variables. Correlations were performed by the Spearman non-parametric test. Results are 
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expressed as mean percentage ± SEM. Statistical significant differences were considered 

when p values ≤0.05. 

 

 

 

3.2 Results 

3.2.1 p,p’-DDE, but not PCB 77 or TCDD, promotes a relevant [Ca2+]i rise  

Single cell assessment of [Ca
2+

]i showed that within seconds of exposure a wide 

range of p,p’-DDE concentrations (1 pM - 50 µM), and to a lesser extent PCB 77 and 

TCDD doses, caused an increase in Ca
2+ 

levels, reversible upon sEBSS media washout 

(Figures 3.2A and 3.3A). In reality, after adjusting the effect of DMSO exposure 

throughout time (by performing the same kind of experiment in figure 3.2A but with the 

purpose of analyzing the sole effect of the solvent DMSO for the 7 minutes of exposure 

and ensure that [Ca
2+

]i rise in the last 3.5 minutes was due to the endocrine disruptor used; 

data not shown) we found that only small fractions of cells exposed to either TCDD or the 

dioxin-like PCB77 increased their [Ca
2+

]i significantly above the control (4.90±2.40%, 

7.50±3.70% and 5.22±2.37% for 1 nM TCDD, 1 µM TCDD and PCB 77, respectively, 

p<0.05; Figure3.2B), showing the low biological relevance of this finding. In sharp 

contrast, p,p’-DDE was able to induce a remarkable increase in sperm intracellular Ca
2+ 

levels when compared to the respective control (Figure 3.3A). At 25 µM and 50 µM p,p’-

DDE >91% of sperm showed a significant increase in [Ca
2+

]i (p<0.05, Figure 3.3B) and 

similar mean Ca
2+

 response amplitudes (55.6±6.7% and 55.5±8.1% respectively; Figure 

3.3C). p,p’-DDE was found to be so effective that even at concentrations as low as 1 pM 

and 1 nM, we observed elevated Ca
2+

 levels in 21.1±3.0% and 28.0±10.65% of cells 

(p<0.05, Figure 3.3B), with mean amplitudes of response of 16.7±2.8% and 15.4±3.6%, 

respectively (Figure 3.3C). Whereas the dose-effect curve for the proportion of responsive 

cells was roughly sigmoidal, the curve for [Ca
2+

]i response amplitudes appeared biphasic, 

with markedly greater responses at 25 µM and 50 µM p,p’-DDE (Figure 3.3B,C). When 

we examined the amplitude distribution of the single cell responses we observed that from 

1 pM to 10 µM p,p’-DDE most responsive cells showed an increase in fluorescence 

intensity of up to 20%, but at higher doses the shape of the distribution was completely 

different, with ‘enhanced’ response amplitudes ranging between 20% and 100% and 

occasional responses of up to 200% (Figure 3.3D).  
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Figure 3.2. Intracellular Ca
2+

 levels during TCDD or PCB 77 exposure in human sperm. 

A) Fluorescence-time traces representing intracellular Ca
2+

 changes in 3 individual cells exposed to different 

conditions. DMSO was added after 3 min of perfusion with sEBSS followed by exposure to 1nM TCDD 

(dark grey trace), 1µM TCDD (dark green trace) or 13.7µM PCB 77 (dark red trace). After a further 3.5 min 

exposure TCDD or PCB77 were washed out by perfusion with fresh sEBSS. Arrows indicate the exact time 

points at which spermatozoa were bathed with different solutions. P4– 3.2µM progesterone. B) Proportion of 

cells responsive to TCDD or PCB 77.  Results represent mean percentage ± SEM from 500 cells analyzed 

individually in a total of 5 independent experiments for each TCDD or PCB 77 concentration. Similar letters 

denote no statistical differences between TCDD concentrations (p>0.05). Comparisons between the 

percentages of responsive cells to TCDD and PCB 77 concentrations retrieved no differences (p>0.05).  

 

 

A positive control was included in all experiments by adding the physiological 

stimulus progesterone, which causes increased Ca
2+

 levels and triggers AR, to ensure that 

all samples were responding normally. 
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Figure 3.3. Intracellular Ca
2+

 levels during p,p’-DDE exposure in human sperm.  

A) Fluorescence-time traces representing intracellular Ca
2+

 changes in 3 individual cells exposed to different 

conditions. DMSO (black trace), 1pM (green trace) or 25µM p,p’-DDE (blue trace) were added after 6 min 

of perfusion with sEBSS. After a further 3 min p,p’-DDE was washed out by perfusion with fresh sEBSS. 

Arrows indicate the exact time points at which spermatozoa were bathed with different solutions. P4– 3.2µM 

progesterone. B) Proportion of cells responsive to p,p’-DDE.  C) Magnitude of Ca
2+

 response in responsive 

cells. D) Amplitude distribution of [Ca
2+

]i increase (significant increase in fluorescence) at each dose tested. 

Results represent mean percentage ± SEM from 500 cells analyzed individually in a total of 5 independent 

experiments for each p,p’-DDE concentration. Different letters denote statistical differences between 

concentrations (p<0.05). 



 Chapter 3 Exposure to Persistent Environmental Organochlorines 

 

67 

3.2.2 The effect of p,p’-DDE on [Ca2+]i is abolished in low Ca2+ medium 

Given the striking results obtained with p,p’-DDE we next evaluated whether its 

effect on human sperm could be due to a Ca
2+

 influx from the medium or the mobilization 

of intracellular Ca
2+

 stores present in sperm (Jimenez-Gonzalez et al. 2006; Costello et al. 

2009). These and subsequent Ca
2+

 imaging experiments were performed with 1 pM and 1 

nM p,p’-DDE, the concentrations within the range often found in human reproductive 

fluids (mean values ranging from 47 pM to 111 nM according to Kumar et al. 2000; 

Dallinga et al. 2002; Younglai et al, 2002; Pant et al. 2004) and also at 25 µM, the 

minimal saturating concentration for the observed effects on [Ca
2+

]i.  

Perfusion of the recording chamber with low Ca
2+

 medium (<500 nM) caused an 

immediate decrease in sperm [Ca
2+

]i that stabilized at a new level within 3 minutes of 

exposure and remained unaltered when p,p’-DDE was added (Figure 3.4A). At 1 pM and 

1 nM no cells showed [Ca
2+

]i responses (p<0.01 compared to experiments in standard 

sEBSS, Figure 3.4B) and at 25 µM p,p’-DDE only 2.0±1.2% of cells responded with an 

increase in Ca
2+

 levels (p<0.01 when compared to the 91.9±3.7% of cells in standard 

sEBSS; Figure 3.4B). Moreover, the magnitude of response provoked by 25 µM p,p’-DDE 

 

Figure 3.4. Effect of p,p’-DDE in a low Ca
2+

 sEBSS medium (<500 nM).  

A) Fluorescence-time traces representing intracellular Ca
2+

 changes in 2 individual cells exposed to different 

conditions. DMSO (black trace) or 25µM p,p’-DDE (blue trace), both diluted in low-Ca
2+

-sEBSS medium, 

were added after 6 minutes of perfusion. Arrows represent the exact time points in which spermatozoa were 

bathed with different solutions. P4– 3.2µM progesterone. B) Percentage of p,p’-DDE responsive cells. 

Results represent mean percentage ± SEM from 500 cells evaluated individually in a total of 8 independent 

experiments for each p,p-DDE dose. ** corresponds to statistical differences between concentrations 

subjected to different conditions (p<0.01). Similar letters represent lack of statistical significance (p>0.05). 
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was only of 22.8±10.7% compared to the 55.6±6.7% observed in standard sEBSS 

(p<0.05). When we analyzed the distribution of the single cell response we found that 

72.2±14.7% of cells responded with an increase in fluorescence intensity of up to 20%, 

resembling the response observed in spermatozoa exposed from 1 pM to 10 µM p,p’-DDE 

in standard sEBSS medium. In all these experiments, when standard sEBSS was returned 

to the chamber [Ca
2+

]i levels increased as expected, and responded normally to the 

progesterone stimulus (Figure 3.4A).  

 

 

3.2.3 p,p’-DDE effect on [Ca2+]i is reversed by CatSper blockers 

CatSper, the only Ca
2+

 conductance channel that has been detected in patch clamped 

human sperm so far (Kirichok & Lishko 2011) is highly promiscuous, activating in 

response to a wide range of small organic molecules (Brenker et al. 2012). In order to 

investigate whether activation of CatSper might mediate p,p’-DDE-induced Ca
2+

 influx, 

we used 30 M mibefradil and 10 M NNC 55-0396, both of which inhibit Catsper 

currents in human sperm (Lishko et al. 2011; Strünker et al. 2011). Cells were first 

exposed to p,p’-DDE (1 pM, 1 nM and 25 M) to establish Ca
2+

-influx and after a delay 

of 2.5 minutes the inhibitors were added in separate experiments (Figure 3.5A). Both 

drugs caused a transient increase in fluorescence, as previously illustrated (Strünker et al. 

2011; Brenker et al. 2012) which also occurred in control experiments in the absence of 

p,p’-DDE (Figure 3.5A DMSO trace). However, within few minutes [Ca
2+

]i significantly 

decreased and stabilized at a new, lower level (Figure 3.5A). 30 M mibefradil strongly 

reversed the effect of p,p’-DDE in >90% of cells (Figure 3.5A-C). This effect was 

observed at all doses and when mibefradil was applied during 1 pM or 1 nM p,p’-DDE 

exposure [Ca
2+

]i decreased below control conditions (p>0.05; Figure 3.5A), therefore 

showing a reversal effect higher than 100% (Figure 3.5C). Examination of individual cell 

responses showed that the magnitudes of the rise in fluorescence caused by p,p’-DDE and 

the subsequent decrease upon application of mibefradil were clearly correlated (p<0.05; 

Figure 3.5D), confirming that mibefradil was acting by blocking the effect of  p,p’-DDE. 
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Figure 3.5. Mibefradil and NNC 55-0396 effects following p,p’-DDE-induced [Ca
2+

]i rise. 

 A) Fluorescence-time traces representing intracellular Ca
2+

 changes in 6 individual cells exposed to different 

conditions. DMSO (black traces), 1pM (green traces) or 25µM p,p’-DDE (blue traces) were added after 3 min of 

perfusion with sEBSS. 30µM mibefradil or 10µM NNC 55-0396 were applied after a further 2.5 min when effects 

on [Ca
2+

]i had stabilized. Arrows represent the exact time points at which sperm were bathed with different 

solutions. P4 – 3.2µM progesterone. B) Proportion of responsive cells. C) Percentage of reversal by mibefradil and 

NNC 55-0396 of the preceding p,p’-DDE-induced increase. Mibefradil and NNC 55-0396 alone had no effect (not 

shown). Results represent mean percentage ± SEM from 500 cells analyzed in a total of 5 independent 

experiments for each concentration. Different letters denote statistical significance between doses within each 

inhibitor experiments (p<0.05) and * represent statistical differences between the same dose exposed to both 

inhibitors (p<0.05). D) Correlation between amplitudes of the p,p’-DDE-induced [Ca
2+

]i rise and the subsequent 

fall in [Ca
2+

]i upon mibefradil application in individual sperm exposed to 1nM (left panel) or 25µM p,p’-DDE 

(right panel). Significant correlations were found for both 1nM (rho=0.492, p<0.05) and 25µM p,p’-DDE 

(rho=0.804, p<0.001). Each panel shows all cells from a single experiment.  
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10 µM NNC 55-0396 also reversed the p,p’-DDE-induced [Ca
2+

]i rise in most cells 

(p<0.05; Figure 3.5A-C). However, NNC 55-0396 reversal of the [Ca
2+

]i rise caused by 25 

M p,p’-DDE was only partial when compared to mibefradil (p<0.05; Figure 3.5C). 

Analysis of individual spermatozoa responses showed that, similarly to the effect of 

mibefradil, the amplitude of the effect of NNC 55-0396 was correlated with the amplitude 

of the preceding rise induced by p,p’-DDE (p<0.05; Figure 3.6). 

 

 

 

  

Figure 3.6. Correlation between amplitudes of the p,p’-DDE-induced [Ca
2+

]i rise and subsequent fall in 

[Ca
2+

]i upon NNC 55-0396 application in individual sperm cells. 

Spermatozoa were exposed to 1 nM (left panel) or 25 µM p,p’-DDE (right panel). Significant correlations 

were found for both 1 nM (rho=0.506, p<0.05) and 25 µM p,p’-DDE (rho=0.635, p<0.001). Each panel 

shows all cells from a single experiment. 

 

 

3.2.4 p,p’-DDE enhances CatSper currents in human sperm 

The action of p,p’-DDE on [Ca
2+

]i is mediated by Ca
2+

 influx and can be reversed by 

CatSper antagonistic drugs, suggesting that this DDT metabolite activates CatSper. To 

confirm this we investigated the effect of 5 µM p,p’-DDE (a concentration that gave 

detectable [Ca
2+

]i responses in 50.0% of cells but where response amplitude was not 

‘enhanced’ as suggested by Figure 3.3) on CatSper in sperm held under whole cell clamp. 

Using divalent free conditions and CsMeSO3-based bath and pipette media, large CatSper 

currents, carried by Cs
+
, were induced by 1 second voltage ramps from -80 mV to +80 mV 

(Lishko et al. 2011). 5 µM p,p’-DDE increased CatSper current by 116.0±10.0% (n=5, 
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p<0.01) without changing reversal potential or the characteristic outward rectification of 

the current (Figure 3.7A), similarly to the agonistic effect of 3.2 µM progesterone (Figure 

3.7B). Analysis of the time-course of the action of p,p’-DDE showed that showed that 

currents increased slowly over a period of 10-20 seconds and then stabilized (Figure3.7C).  

 

 

 

Figure 3.7. Effect of 5 µM p,p’-DDE on monovalent CatSper currents in human sperm.   

A) Example of currents induced by applying a 1 sec voltage ramp from -80 mV to 80 mV to a cell bathed in 

divalent cation-containing medium (black trace), after superfusion with divalent-free Cs
+
-based medium 

(DVF; dark blue trace) and then after application of 5µM p,p’-DDE (red trace). B) Example of a similar 

experiment in which the current was recorded first in divalent cation-containing medium (black trace), then 

after superfusion with DVF (dark blue trace) and finally in the presence of 3.2µM progesterone (P4; green 

trace). C) Time-course of changes in current induced by 5µM p,p’-DDE. Current amplitude was quantified 

using the average current over the last 3 mV of the voltage ramp (77-80mV). Traces show responses of 3 

different cells. The first arrow shows superfusion with DVF and the second shows application of 5µM p,p’-

DDE. 
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In most cells seals became unstable after 1-2 minutes and recordings were lost abruptly or 

after a second rapid rise in current. 

 

 

3.2.5 p,p’-DDE causes acrosomal loss 

To evaluate if changes in [Ca
2+

]i could affect sperm function, acrosomal integrity was 

assessed (Figure 3.8). In accordance to the negligible TCDD-induced [Ca
2+

]i rise, no 

differences in the proportion of spermatozoa displaying intact acrosomes were detected 

with TCDD (p>0.05; Figure 3.8A). Yet, 13.7 µM PCB 77 was able to induce acrosomal 

loss following 2 and 3 days of exposure (p<0.05; Figure 3.8A), albeit the minor proportion 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.8. Daily acrosomal integrity during the continuous exposure to different concentrations of A) 

TCDD, PCB 77 or B) p,p’-DDE at 37ºC and 5% CO2.  

Results represent mean percentage ± SEM relative to the control (% acrosome intact / % acrosome intact in 

DMSO x 100), n=6. * (p<0.05) and ** (p<0.01) denote significant differences towards control and different 

letters between concentrations (p<0.05). Comparisons between TCDD and PCB 77 concentrations retrieved 

no differences (p>0.05).  
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of spermatozoa with increased [Ca
2+

]i upon exposure (Figure 3.2B). This significant loss 

may, nonetheless, merely reflect the strong decrease in viability previously reported in 

chapter 2 at these specific time points. Alternatively, 25 µM and 50 µM p,p’-DDE were 

able to significantly reduce acrosomal integrity after 2 days of exposure (p<0.01 and 

p<0.05, respectively, Figure 3.8B), without affecting viability (chapter 2). This effect was 

also observed at day 3 for both 25 µM and 10 µM p,p’-DDE-exposed cells (p<0.05). 

Following 3 days of treatment with 50 µM p,p’-DDE acrosomal loss was further 

enhanced, though, in this case, this might be the consequence of cell death (chapter 2). No 

differences among 1 µM p,p’-DDE-exposed spermatozoa and control were observed in 

this 3-day incubation approach (p>0.05). Furthermore, comparisons between 

concentrations showed significant differences in acrosomal integrity only at day 3 

(p<0.05, Figure 3.8B). 

It should be noted that, while subtle changes in Ca
2+

 levels were detected in the 

above experiments, acrosomal integrity monitored here reflects an all-or-nothing 

measurement, and relevant changes in the sperm secretory vesicle may occur much earlier 

without being detected by this less sensitive assay. Further experiments are warranted to 

clarify this difference in time between acrosomal loss and Ca
2+

 levels. 

 

3.3 Discussion 

Several studies have focused on the likely genomic effects of TCDD, PCB 77 and 

p,p’-DDE on male fertility (El-Sabeawy et al. 1998; Faqi et al. 1998a,c; Gray et al. 1997; 

Huang et al. 1998; You et al. 1998; Loeffler & Petersen 1999; Hsu et al. 2004; Rignell-

Hydbom et al. 2005a,b; Dhooge et al. 2006; De Jager et al. 2006; Stronati et al. 2006; 

Aneck-Hahn et al. 2007; Choi et al. 2008; Mocarelli et al. 2008), without exploring 

possible rapid non-genomic actions on human sperm. This is especially relevant as sperm 

can be directly exposed to organochlorines as previously mentioned. We found that p,p’-

DDE, but not TCDD or PCB 77, promoted a remarkable [Ca
2+

]i rise in human sperm, with 

high concentrations causing a large and rapid rise in [Ca
2+

]i fluorescence by up to 200%, 

and low concentrations (1 pM and 1 nM) also producing significant responses. 

Effects on cytosolic Ca
2+

 levels after exposure to several toxicants, including p,p’-

DDE, have been reported in many cell types, apparently mimicking the action of steroids 
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(Ruehlmann et al. 1998; Nadal et al. 2000; Younglai et al. 2004, 2006; Wu et al. 2006), 

but dose dependence and magnitude of the effect vary greatly. p,p’-DDE and other 

pesticides such as kepone, methoxychlor and the isomer o,p-DDE were found to increase 

cytosolic Ca
2+

 levels in human umbilical vein endothelial and granulosa-lutein cells 

(Younglai et al. 2004; Wu et al. 2006), although in the latter cells Ca
2+

 changes induced 

by methoxychlor and o,p-DDE were not as clear or consistent as those induced by kepone 

(Wu et al. 2006). Furthermore, methoxychlor at high concentrations (2.8-280 µM) failed 

to induce changes in Ca
2+

 levels (Wu et al. 2006). In fact, contrary to the sigmoid curve of 

dose-response found in this study, the effect of methoxychlor is another example of a non-

classical response, showing an inverse U-shaped curve (Wu et al. 2006). The traditional 

dose-response effect observed in many toxicological studies is not always applicable, 

especially when environmental toxicants acting as endocrine disruptors are involved 

(Krimsky 2001).  

In mouse β pancreatic cells bisphenol A (BPA), diethylstilbestrol and o,p’-DDT 

increased the frequency of glucose-provoked [Ca
2+

]i fluctuations (Ruehlmann et al. 1998). 

A similar response was observed at pico- and nanomolar concentrations in a GH3/B6 

pituitary cell line exposed to o,p-DDE (Wozniak et al. 2005), showing the concerning 

extensive range of action of these environmental endocrine disruptors. Although 10 µM 

p,p’-DDE failed to affect [Ca
2+

]i in rat myometrial smooth muscle cells, 50 and 100 µM 

p,p’-DDE induced [Ca
2+

]i rise by 586% and 921%, respectively (Juberg et al. 1995), 

effects far greater than those reported here. In 2005, Wróbel and Kotwica also 

demonstrated that nanomolar concentrations of PCB 77 were able to increase basal [Ca
2+

]i 

in bovine myometrial cells although, in this case, after 48 hours of exposure (Wrobel & 

Kotwica 2005). This same effect was later reported by Yilmaz and coworkers in mouse 

thymocytes following treatment with 5 µM or 10 µM PCB 77, albeit for smaller periods of 

time (5, 15, 30 and 60 minutes; Yilmaz et al. 2006). This was nevertheless refuted by 

others that have found no effect on Ca
2+

 homeostasis in rat cerebellar granule cells at 

similar concentrations (Kodavanti et al. 1993; Tan et al. 2004) or with 100 nM PCB 77 in 

rat insulinoma cells (RINm5F cells; Fischer et al. 1999). However, in these latter cells 

pure non-coplanar PCB congeners [PCBs 47 (2,2',4,4'-tetrachlorobiphenyl) and 153] and 

the commercial PCB mixture Aroclor 1254 produced a meaningful sustained [Ca
2+

]i rise 

within 20-30 seconds of exposure (Fischer et al. 1999), similarly to what we observed 

with p,p’-DDE. 
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TCDD effect on Ca
2+

 levels is also variable. While TCDD at 15.5, 31.1 and 46.6 µM 

increased cytosolic Ca
2+

 in mouse B6C3F1 neutrophils and monocytes (Levin et al. 2007) 

100 nM was enough to provoke a statistically significant increase in Ca
2+

 levels in human 

CD19+ B cells but not in CD3+ T cells or monocytes, inevitably showing differences in 

the responses of subsets of lymphoid cells (Mounho et al. 1997). In contrast, [Ca
2+

]i was 

significantly elevated in a 10 nM TCDD-treated rat microglial cell  line (HAPI cells; Xu et 

al. 2013) and this result was consistent with the observation of a rapid concentration-

dependent rise in Ca
2+ 

levels in primary cultures of rat hippocampal cells treated with 10-

100 nM TCDD (Hanneman et al. 1996). Nevertheless, 30 nM TCDD failed to alter Ca
2+

 

homeostasis in a human mammary epithelial cell line (MCF-10A cells) after 2-, 6-, and 18 

hours of exposure (Tannheimer et al. 1999). 

To further assess the p,p’-DDE mechanism of action in human sperm we exposed 

cells to the compound in a low Ca
2+

 medium. Under these conditions the effect was 

largely abolished, showing that p,p’-DDE mainly promotes Ca
2+

 influx at the plasma 

membrane. Intriguingly, although higher concentrations of p,p’-DDE resulted in larger 

[Ca
2+

]i signals (Figure 3.2C), this effect apparently occurred by ‘recruitment’ of a larger 

‘type’ of Ca
2+

 signal (Figure 3.2D). This may possibly reflect a secondary release of stored 

Ca
2+

 downstream of Ca
2+

 influx (Harper et al. 2004).  

To further explore which plasma membrane Ca
2+

 channel(s) was involved, a 

pharmacological approach was used. In mouse and human sperm, CatSper is believed to 

be the principal plasma membrane Ca
2+

 channel (Kirichok et al. 2006; Qi et al. 2007; 

Smith et al. 2013). Using the Catsper blockers mibefradil and NNC 55-0396 (Lishko et al. 

2011; Strünker et al. 2011), we observed a strong suppression of the p,p’-DDE-induced 

Ca
2+

 increase in the large majority of cells. NNC 55-0396, the putatively more potent 

Catsper inhibitor (Lishko et al. 2011) induced a lower decrease of Ca
2+

 levels at 25 µM 

p,p’-DDE when compared to mibefradil, but this may mirror the significant rise in [Ca
2+

]i 

caused by NNC 55-0396 itself (Strünker et al. 2011). 

 We further confirmed p,p’-DDE action on Catsper using whole cell patch-clamp 

recordings with divalent cation-free bath and pipette solutions containing Cs
+
, conditions 

under which the large monovalent currents show CatSper activity (Kirichok et al. 2006; 

Lishko et al. 2011; Strünker et al. 2011). Treatment with p,p’-DDE caused instability and 

ultimately loss of the seal within 1-2 minutes, an effect that is apparently related to patch 
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formation and/or the recording conditions used, since cell viability was not affected. It has 

been shown by patch clamp that human sperm Catsper currents are powerfully potentiated 

by progesterone (Kirichok & Lishko 2011; Strünker et al. 2011), whereas the steroid had 

no effect on currents in sperm from an infertile CatSper-deficient patient (Smith et al. 

2013) suggesting that CatSper is central to the non-genomic action of the steroid. The high 

potency of p,p’-DDE in elevating [Ca
2+

]i in human sperm may therefore reflect a steroid-

like effect and p,p’-DDE might even bind the same activating site as progesterone and 

thus promote Ca
2+

 influx, although the sustained nature of the p,p’-DDE-induced signal 

does not resemble the biphasic [Ca
2+

]i elevation induced by progesterone. Alternatively, 

this action of p,p’-DDE may reveal a more general feature of CatSper. In addition to 

progesterone the channel is activated by membrane potential, internal pH, prostaglandins, 

odorants and other small organic molecules (Lishko et al. 2011; Strünker et al. 2011; 

Brenker et al. 2012), apparently acting as a polymodal sensor upon which diverse stimuli 

converge to generate [Ca
2+

]i signals in sperm. The promiscuous nature of the channel, 

though apparently important for detection of cues in the female reproductive tract 

(Brenker et al. 2012), may render sperm sensitive to some EDs such as p,p’-DDE.  

 After observing the intracellular Ca
2+

 changes promoted by p,p’-DDE we 

hypothesized that AR, a strongly Ca
2+

-dependent event, might be compromised. 

Furthermore, although the other organochlorines caused negligible effects on sperm Ca
2+

 

levels we further decided to analyse TCDD- and PCB 77-induced AR as well. In fact, by 

mimicking the female reproductive tract conditions, where sperm can be maintained for 

several days, potentially with constant exposure to organochlorine pollutants, we found 

decreased acrosomal integrity suggesting the induction of spontaneous AR following 2 

and 3 days of p,p’-DDE exposure. While this outcome was also noted during PCB 77 

exposure, possibly due to the loss of sperm viability, TCDD treatment did not differed 

from control.  

Although other pathways may certainly be involved, and further studies are 

warranted, we hypothesize that p,p’-DDE effect on acrosomal status was possibly 

achieved by the continuous Ca
2+

 entry and sustained Ca
2+

 overload. Elevated p,p’-DDE 

concentrations not only promoted [Ca
2+]i rise in a higher percentage of cells with higher 

magnitudes of response but also induced acrosomal loss earlier in time. In contrast, since 

10 µM p,p’-DDE induced smaller magnitudes of response a decrease in acrosomal 

integrity was only detected after 3 days of exposure. In accordance, a mixture containing 
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p,p’-DDE was found to increase [Ca
2+

]i and potentiate spontaneous AR rates in porcine 

sperm in vitro (Campagna et al. 2009). Although the authors did not explore which was 

the source responsible for the observed higher Ca
2+

 levels, they suggested that this mixture 

could modify sperm plasma membrane, allowing non-regulated Ca
2+

 entry that would 

finally lead to AR, thus lowering sperm survival, among other effects (Campagna et al. 

2009). On the contrary, the organochlorine pesticide lindane was found to inhibit 

spontaneous AR in human sperm in vitro (Silvestroni & Pallesch 1999). This compound 

was able to quickly depolarize sperm plasma membrane, opening Ca
2+

 channels and 

causing an increase in intracellular Ca
2+

 levels, but probably by altering sperm membrane 

dipole potential, AR was found reduced (Silvestroni et al. 1997; Silvestroni & Pallesch 

1999). Conversely, others failed to detect differences in acrosomal integrity after an in 

vitro exposure to lindane for 5 hours (Pflieger-Bruss et al. 2006a). The same outcome was 

reported by these authors when spermatozoa were individually exposed to a number of 

PCBs including the congener 77 using the same settings (Pflieger-Bruss et al. 2006a,b). 

Regarding the effect of TCDD on acrosomal status the only study available reported a 

decrease in AR rate in the presence of heparin in rat epydidimal spermatozoa treated 

during puberty (El-Sabeawy et al. 1998).  

In general, all these data clearly support the involvement of different mechanisms of 

action through which endocrine disruptors exert their effects, but the highly promiscuous 

nature of CatSper may cause sperm sensitivity to some compounds that interact with key 

site(s) on the channel. p,p’-DDE-induced [Ca
2+

]i rise may prematurely trigger acrosomal 

loss long before they reach the oocyte, thus adversely affecting male fertility. p,p’-DDE 

concentrations in follicular fluid have already been correlated with failed fertilization 

(Younglai et al. 2002) and described as being higher in semen from infertile patients (Pant 

et al. 2004), suggesting an important role of p,p’-DDE in human (in)fertility.  

Concluding, even at concentrations found in reproductive fluids, p,p’-DDE was able 

to induce a rise in [Ca
2+

]i in human sperm through a novel non-genomic mechanism 

involving the opening of the sperm-specific cation channel Catsper and ultimately 

compromising male fertility.  
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Chapter 4     Sperm abnormal nuclear staining after selection and in 

vitro ART fertility outcomes 

 

 

 

 

 

 

 

The contents of this chapter have been published in: 

 

Tavares RS*, Silva AF*, Lourenço B, Almeida-Santos T, Sousa AP & Ramalho-Santos J. (2013) 

Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain 

indicates embryo quality and pregnancy outcomes following in vitro fertilization. Andrology 1, 

830-837. *Co-first authors of the paper. 
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Abstract  

Sperm chromatin/DNA damage can be measured by a large number of assays. 

However, it has been reported that some tests may lose prognostic value in ART when 

assessed in post-processed samples, possibly due to the “normalizing” effect promoted by 

the sperm preparation procedures before performing ART treatments. Recently, we have 

implemented a modified version of the Diff-Quik staining assay that allows the evaluation 

of human sperm chromatin status in native samples. However, its relationship with both 

IVF and ICSI fertility outcomes after sperm selection required further clarification.  

Sperm chromatin integrity from 138 couples undergoing IVF or ICSI cycles was 

significantly improved after density gradient centrifugation and swim-up techniques 

(p<0.001), but no correlations were found with fertilization or embryo development rates 

(p>0.05). Nonetheless, sperm samples presenting lower percentages of damaged 

chromatin were associated to better quality (grade I) embryos in both ART treatments 

(p<0.05) and clinical pregnancy success among IVF couples (p<0.05). Moreover, 

regression analysis confirmed the clinical value of Diff-Quik staining in predicting IVF 

clinical pregnancy (OR 0.927, 95% CI: 0.871-0.985, p=0.015) and a threshold value of 

34.25% was further established. The proportion of IVF couples achieving a clinical 

pregnancy was reduced 1.9-fold when the percentage of abnormal dark staining was 

≥34.25% (p=0.05).  

In conclusion, the Diff-Quik staining assay provides useful information about ART 

success, particularly in IVF cycles, where some degree of “natural” sperm selection may 

occur; but not in ICSI, where spermatozoa are chosen by the operator. This quick and low 

cost assay is suggested as an alternative method to detect sperm chromatin status in 

minimal clinical settings, when no well-implemented and robust assays (e.g. SCSA, 

TUNEL) are available.  
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4.1 Material and methods 

4.1.1 Materials  

All chemicals were supplied by Sigma-Aldrich unless otherwise described. 

 

 

 

4.1.2 Patients 

A total of 138 cycles (57 IVF and 81 ICSI) from 138 couples experiencing infertility 

for at least 1 year, with no viral infections, and whose female partners were <40 years old 

and presented baseline FSH levels below 12 IU/l were included in this study. Couples with 

normal standard semen parameters according to the WHO criteria (WHO 2010) were 

referred to IVF, while ICSI was performed either on couples with poor sperm quality (e.g 

low concentration and/or motility) or with a previous IVF history of failed fertilization or 

low fertilization rates. 

Sperm samples were used in agreement with the appropriate ethical and Internal 

Review Board of the Institution, who approved the experimental work. All subjects signed 

informed consent forms and samples were obtained by masturbation after 3-5 days of 

sexual abstinence. Sperm cells were treated in accordance to the WHO guidelines (WHO 

2010).  

 

 

 

4.1.3 Sperm preparation for ART procedures 

After sample collection and liquefaction, spermatozoa were sequentially isolated by 

DGC and swim up techniques (Amaral et al. 2007; Sousa et al. 2011). Briefly, sperm were 

placed on top of a density gradient medium containing the 50% upper and 90% lower 

layers (Isolate
®
 Sperm Separation Medium) and centrifuged at 528 x g for 10 minutes. 

After discarding both the seminal fluid and the 50% upper layer that usually contains dead 

sperm, white cells, and miscellaneous debris, spermatozoa from the 90% lower layer were 

washed with SPM (Origio Medicult) and centrifuged at 528 x g for another 10 minutes. 

Motile cells were then allowed to swim up for 30 minutes at 37°C and 5% CO2 in the 

latter medium. The motile sperm fraction was used in ART procedures. 
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4.1.4 Sperm chromatin status assessment from both unprocessed samples and 

motile sperm fractions  

Sperm chromatin status from both native samples and their respective motile sperm 

fractions after sperm selection (n=138) was evaluated by the Diff-Quik
® 

(Dade Behring 

Inc, Newark, NJ, USA) staining as stated elsewhere (Ramalho-Santos et al. 2007; Sousa et 

al. 2009). This commercially available kit is composed by a fixative (methanol), a dye that 

stains basic proteins red (eosin) and a thiazin which stains sperm DNA blue. Briefly, 10 µl 

of the sample was dragged with a coverslip and allowed to air dry. Slides were then 

sequentially dipped in each kit solution for no longer than 10-20 seconds each and finally 

rinsed in water to remove excess dye. This is crucial in order to avoid a uniformly dark 

staining on all sperm, useful to assess morphology, but which does not provide any 

chromatin status information. Slides were observed under a bright-field microscope 

(Nikon Instruments Inc.) and staining features were constantly evaluated within each slide. 

Both light- and darkly stained sperm heads were visible in each slide, the latter 

representing abnormal chromatin status (Mota & Ramalho-Santos 2006; Sousa et al. 

2009). The proportion of sperm with abnormal dark nuclei representing 

abnormal/damaged chromatin was established after scoring 200 cells in four different 

fields in each slide. Counts were performed blindly by at least two observers, and intra- 

and inter-observer variability was negligible. 

 

 

4.1.5 Ovarian stimulation 

Individualized ovarian stimulation protocols were performed after evaluation of each 

patient reproductive status (e.g. ovarian reserve and hormone levels). Long and short 

protocols of pituitary desensitization with GnRH agonists and antagonists, respectively, 

were performed. Follicular growth was stimulated by recombinant FSH (37.5-325 IU/day 

GONAL-f
® 

[Merck Serono, London, UK] or Puregon
®
 [N.V. Organon, Oss, the 

Netherlands]) or human menopausal gonadotropin (hMG; 50-300 IU/day Menopur
®
, 

Ferring Pharmaceuticals, West Drayton, UK) and when at least one leading follicle 

reached a 18-mm-diameter (monitored by ultrasound), ovulation was induced with human 

chorionic gonadotropin (hCG; 5 000 IU Pregnyl
®
, N.V. Organon). Ultrasound-guided 

vaginal oocyte aspiration was performed 35-36 hours post-hCG administration.  
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4.1.6 IVF and ICSI Protocols 

Following sperm preparation and oocyte retrieval, IVF and ICSI procedures were 

performed (Santos et al. 2006). For ICSI cycles, cumulus cells were removed from the 

aspirated cumulus-oocyte-complexes (COCs) by incubation with 50 µl of hyaluronidase 

(SynVitro
®

 Hyadase; Origio Medicult) and intermittent pipetting for a maximum of 30 

seconds. Sperm suspensions were then placed in SpermSlow
™

 medium (Origio Medicult) 

and only free and motile spermatozoa were immobilized and injected into the oocytes with 

holding and microinjection pipettes. For IVF, each COC insemination was carried out 

with 100 000 spermatozoa. Injected and inseminated oocytes were cultured at 37ºC and 

6% CO2 in IVF medium (Origio Medicult). Fertilization was assessed after 17-20 hours.  

 

 

4.1.7 Fertility outcome parameters 

Fertilization and embryo development rates were scored as the number of 2PN 

oocytes/number of inseminated or injected oocytes and the number of embryos/number of 

inseminated or injected oocytes, respectively (Sousa et al. 2009). 48 hours post-

fertilization, embryos were graded from I to IV in accordance to the number, form and 

symmetry of blastomeres and the presence of blastomere fragmentation (Elder & Dale 

2000). Grade I embryos, i.e embryos with regular blastomere shape and simetry, light 

cytoplasmic appearance and blastomere fragmentation up to 10%, from couples only 

displaying this high embryo quality were included in the “G1” group whereas couples 

having at least one embryo classified differently were included in the “other grade” group 

(Sousa et al. 2009). Embryo transfer rate was determined as the number transfers 

performed/number of cycles which obtained embryos. Finally, clinical pregnancies were 

determined by ultrasound detection of the gestational sac(s). Clinical pregnancy rate was 

scored as the number of couples with positive clinical pregnancy/number of transfers. 

 

4.1.8 Statistical analysis 

Statistical analysis was carried out using the SPSS version 20.0 software for 

Windows (SPSS Inc., Chicago, IL, USA). Values are expressed as mean ± SEM. All 
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variables were checked for normal distribution by the Kolmogorov-Smirnov test (or the 

Shapiro-Wilk test for n<25) and the independent t-test for normal variables were 

performed to compare abnormal dark staining before and after sperm selection, between 

the two embryo quality groups and between pregnancy outcome groups in both IVF and 

ICSI cycles. As fertilization and embryo development rates presented a non-normal 

distribution, Spearman’s non-parametric correlation coefficient test was performed to 

determine if there were any correlations with the abnormal dark staining. The sample sizes 

used in this study provided power values equal or greater than 80% to detect a 10-15% 

difference in the proportion of abnormal dark staining between groups in each condition 

assessed. Demographic data comparisons between ART treatments and pregnant versus 

non-pregnant couples were performed by the independent t-test or the related Mann-

Whitney test for non-normal variables and the χ
2
-test for categorical data. Logistic 

regression analysis was carried out to assess the predictive value of several factors in ART 

pregnancy outcomes. Receiver-operating characteristic (ROC) curve analysis allowed the 

determination of a significant threshold for IVF clinical pregnancy and the χ
2
-test was 

performed to find a possible threshold effect.  p≤0.05 was considered significant. 

 

 

4.2 Results 

 4.2.1 Characteristics of the study population 

Demographic data from 57 IVF and 81 ICSI cycles are displayed in Table 4.1. 

Although the female factor (e.g. tubal anomalies, endometriosis, polycystic ovary 

syndrome) was the major cause of infertility in both IVF and ICSI couples (64.91% and 

51.90%, respectively), the proportion of couples experiencing infertility exclusively due to 

a male factor (e.g. varicocele) was significantly higher among couples referred to ICSI 

cycles (22.78% and 1.75%, p=0.001). Since one of the criteria used to perform ICSI is 

poor semen quality (e.g. low concentration and/or motility), the decrease observed in the 

sperm concentration of these patients was not surprising (74.21±6.88 x10
6
/ml and 

93.40±6.5 x10
6
/ml, p<0.05). However, total motility did not differ between treatments 

(p>0.05). Among IVF couples, the number of inseminated/injected (11.03±0.88 and 

4.07±0.32, p<0.001) and fertilized oocytes (6.11±0.62 and 2.49±0.20, p<0.001), as well as 
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Table 4.1 Background information on both IVF and ICSI cycles. 

 

 

2PN – 2 pronuclei; Fertilization rate - number of 2PN oocytes / number of inseminated or injected oocytes;  

Embryo development rate - number of embryos / number of inseminated or injected oocytes; Embryo 

transfer rate - number of transfers performed / number of cycles that obtained embryos; Clinical pregnancy 

rate - number of pregnant couples /number of transfers.  

  IVF ICSI p-value 

Cycles/couples included (n) 57 81 

 Female age (years±SEM) 33.00±0.49 33.14±0.36 >0.05 

Male age (years±SEM) 35.16±0.73 35.37±0.57 >0.05 

Diagnosis of infertility (%) 

   
unexplained 21.05 12.66 >0.05 

male factor 1.75 22.78 0.001 

female factor 64.91 51.90 >0.05 

male and female factors 12.28 12.66 >0.05 

Type of infertility (%) 

   
primary 72.73 72.15 >0.05 

secondary 27.27 27.85 >0.05 

Duration of infertility (years±SEM) 5.16±0.45 6.09±0.35 >0.05 

No. of inseminated/injected oocytes (mean±SEM) 11.03±0.88 4.07±0.32 <0.001 

No. of 2PN oocytes (mean±SEM) 6.11±0.62 2.49±0.20 <0.001 

Fertilization rate (%) 57.22±3.77 64.33±3.53 >0.05 

No. of embryos (mean±SEM) 4.85±0.50 2.09±0.13 <0.001 

Embryo development rate (%) 50.00±3.44 56.70±3.37 >0.05 

No. of transferred embryos (mean±SEM) 1.95±0.07 2.05±0.01 >0.05 

Embryo transfer rate (%) 86.00 94.20 >0.05 

Clinical pregnancy rate (%) 41.86 27.69 >0.05 

Mean sperm concentration (10
6
/ml±SEM) 93.40±6.50 74.21±6.88 0.018 

Sperm motility (mean %±SEM) 60.89±2.52 56.68±2.46 >0.05 
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the number of embryos retrieved (4.85±0.50 and 2.09±0.13, p<0.001) were significantly 

higher than the ones obtained by couples undergoing ICSI treatments. No differences were 

observed regarding male and female age, type and duration of infertility, and fertilization, 

embryo development, embryo transfer and clinical pregnancy rates (p>0.05, Table 4.1).   

 

 

4.2.2 Sperm chromatin damage after DGC and swim up selection 

To potentially maximize ART outcomes, and thus achieve pregnancy, sperm cells are 

traditionally processed by DGC and/or swim up procedures worldwide. Sperm chromatin 

integrity was significantly improved after this selection, as observed by the decreased 

proportion of abnormal dark staining in the motile sperm fraction when compared to their 

unprocessed counterparts (41.13±2.15 and 51.40±1.92, p<0.001, Figure 4.1). It seems thus 

that the Diff-Quik staining efficiently detects an enrichment of sperm cells with chromatin 

integrity in post-prepared samples, as others have reported using different assays (Spanò et 

al. 1999; Tomlinson et al. 2001; Gandini et al. 2004; Marchesi et al. 2010). 

 

 

 

Figure 4.1.  Proportion of abnormal dark staining in both native samples and respective motile sperm 

fractions after sperm selection.  

Bars represent mean percentage ± SEM of a total of 138 samples analyzed. *** symbolizes p<0.001. 
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4.2.3 Chromatin damage, fertilization and embryo development rates  

No correlation was detected between the percentage of sperm with dark nuclei and 

IVF (rho=-0.105, n=57, p>0.05) or ICSI fertilization rates (rho=-0.123, n=81, p>0.05). 

Moreover, the same lack of association was found between abnormal dark staining and 

embryo development rates in both IVF and ICSI cycles (rho=-0.029, n=51 and rho=-

0.067, n=74, respectively, p>0.05).  

 

 

4.2.4 Chromatin damage, embryo quality and clinical pregnancy 

To further analyse if sperm dark nuclei had any effect on embryo quality, embryos 

were graded from I to IV according to several embryo features (Elder & Dale 2000) and 

couples with only good quality embryos, commonly classified as Grade I, were included 

in the “G1” group, while couples that exhibited at least one embryo with a different grade 

were involved in the “other grade” group. The two embryo quality groups in IVF cycles 

were produced by sperm with distinct proportions of dark nuclei, with samples that 

generated the “G1” group showing a significant lower proportion of sperm with dark 

staining (32.41±4.03%, n=22, and 47.04±5.77%, n=22, respectively, p<0.05). Similarly, 

ICSI couples included in the “G1” group (n=38) presented a significantly lower 

percentage of abnormal dark staining than the ones (n=30) in the “other grade” group 

(35.26±3.97% and 47.8±4.69%, respectively, p<0.05). 

Several factors may affect pregnancy success in both IVF and ICSI treatments (Table 

4.2). Pregnant IVF couples presented a higher number of inseminated (11.22±0.95 and 

9.00±1.39, p<0.05) and fertilized oocytes (6.78±0.70 and 4.89±0.60, p<0.05) and a 

decreased proportion of spermatozoa with dark nuclei (36.89±4.52% and 51.75±5.63%, 

p<0.05) than their non-pregnant counterparts. Conversely, only the number of embryos 

obtained (2.60±0.19 and 2.09±0.14, p=0.05) and transferred (2.40±0.16 and 1.89±0.12, 

p<0.05) were significantly increased among pregnant couples following an ICSI cycle. No 

difference was detected between the percentages of abnormal dark staining when pregnant 

and non-pregnant ICSI groups were compared (35.45±4.40% and 44.93±4.15%, p>0.05, 

Table 4.2). From all variables listed in Table 4.2, only female age (OR 0.632; 95% CI: 

0.431 - 0.926, p<0.05, Table 4.3), total motility (OR 1.092;  95% CI: 1.016-1.174, p<0.05, 
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Table 4.2 Comparison of several variables among pregnant and non-pregnant groups that underwent 

IVF or ICSI treatments. 

 IVF  ICSI  

 
pregnant  non-pregnant 

p-

value 
pregnant non-pregnant 

p-

value 

No. of couples/cycles included 18 25 

 

18 47 

 Female age (years±SEM) 31.67±0.79 33.72±0.93 >0.05 34.27±0.62 32.59±0.51 >0.05 

Male age (years±SEM) 33.33±0.67 35.65±1.50 >0.05 35.91±1.22 35.17±0.88 >0.05 

No. of inseminated/injected oocytes 

(mean±SEM) 11.22±0.95 9.00±1.39 0.023 3.93±0.37 4.61±0.50 >0.05 

No. of 2PN oocytes (mean±SEM) 6.78±0.70 4.89±0.60 0.031 3.13±0.34 2.77±0.28 >0.05 

Fertilization rate (mean %±SEM) 63.87±5.68 60.57±5.29 >0.05 81.00±5.07 68.80±4.06 >0.05 

No. of embryos (mean±SEM) 5.17±0.54 4.44±0.59 >0.05 2.60±0.19 2.09±0.14 0.05 

Embryo development rate (mean %±SEM) 50.70±6.07 53.36±4.75 >0.05 71.33±6.05 58.21±4.13 >0.05 

No. of transferred embryos (mean±SEM) 2.11±0.08 1.89±0.11 >0.05 2.40±0.16 1.89±0.12 0.023 

Mean sperm concentration (10
6
/ml±SEM) 112.22±9.55 85.39±12.45 >0.05 89.14±18.26 72.25±8.76 >0.05 

Motility (mean %±SEM) 68.83±3.30 58.67±4.51 >0.05 63.47±3.83 55.55±3.74 >0.05 

Abnormal dark staining (mean % ±SEM) 36.89±4.52 51.75±5.63 0.047 35.45±4.40 44.93±4.15 >0.05 

 

2PN – 2 pronuclei; Fertilization rate - number of 2PN oocytes / number of inseminated or injected oocytes;  

Embryo development rate - number of embryos / number of inseminated or injected oocytes.  

 

Table 4.3) and abnormal dark staining (OR 0.927, 95% CI: 0.871-0.985, p<0.05, Table 

4.3) were found to be predictors of clinical pregnancy among IVF cycles. Though female 

age seems to be the factor that most contributes to pregnancy success in IVF treatments in 

this particular study, our staining foresees a decrease in pregnancy chances of 7.3% per 

each 1% increase of abnormal dark staining observed. Contrary to this, the number of 

embryos obtained (OR 4.054; 95% CI: 1.308-12.561, p<0.05, Table 4.3), but not the 

abnormal dark staining (OR 1.01, 95% CI: 0.957-1.106, p>0.05), was predictive of clinical 

pregnancy for ICSI cycles.  
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Considering the prognostic value of the Diff-Quik staining in IVF pregnancy 

success, a ROC analysis was performed in an attempt to identify a threshold value for 

abnormal dark staining beyond which clinical pregnancy would be compromised. With an 

area under the curve of 0.700 cm
2
 (p<0.05), a threshold value was set at 34.25% with a 

sensitivity of 77.8% and a specificity of 52.9%. The proportion of pregnant couples 

having an abnormal dark staining ≥34.25% was 1.9-fold reduced when compared to the 

fraction of pregnant couples with sperm dark nuclei below this cut-off (p=0.05).  

 
 

Table 4.3 Odds ratio and 95% confidence intervals from several predictors of clinical pregnancy in 

both IVF and ICSI cycles. 

 

 

 

 

 

 

 

OR – Odds Ratio; CI – Confidence Interval 

 

 

4.3 Discussion 

Routine semen analysis does not include the evaluation of sperm DNA damage, 

despite the multitude of available assays. This lack of assessment has been extensively 

criticized, as it has become more evident that men with normal standard semen parameters 

may possess abnormal levels of DNA damage (Agarwal & Allamaneni 2004), therefore 

potentially contributing to the limited success of ART.  

Recently, we modified the Diff-Quik staining method to allow the assessment of 

sperm morphology and abnormal chromatin status in the same slides (Mota & Ramalho-

Santos 2006; Sousa et al. 2009). Despite its clinical value when used in unprocessed 

   OR (95% CI)  p-value 

IV
F

 

 Female age 0.632 (0.431-0.926) 0.018 

  Motility 1.092 (1.016-1.174) 0.017 

  Abnormal dark staining 0.927 (0.871-0.985) 0.015 

IC
S

I 

No. of embryos 4.054 (1.308-12.561) 0.015 



 Chapter 4  Abnormal Dark Staining and ART Fertility Outcomes 

 

89 

samples, its relationship with ART fertility outcomes after sperm selection was further 

probed in this study. Since many tests may lose their predictive value when assessed in 

post-prepared samples (Larson et al. 2000; Gandini et al. 2004; Seli et al. 2004; Muriel et 

al. 2006b; Bungum et al. 2008), it has been suggested that the evaluation of sperm DNA 

integrity must be carried out in the whole ejaculate when it concerns in vivo conception 

and after sperm selection when ART treatments are needed (Tomlinson et al. 2001). 

Sperm preparation techniques such as DGC and swim up favor the selection of live, 

highly motile and morphologically normal spermatozoa that will be used in ART cycles 

(Bungum et al. 2008). However, some conflicting results exist on whether these 

techniques, alone or in combination, select sperm with lower levels of DNA damage. 

Nevertheless, as previously reported by several authors (Spanò et al. 1999; Tomlinson et 

al. 2001; Gandini et al. 2004; Marchesi et al. 2010), a significant improvement of sperm 

chromatin integrity following sperm preparation procedures was found in this study, thus 

suggesting the use of better quality sperm in ART procedures. Furthermore, these results 

support the clinical usefulness of the Diff-Quik staining assay.  

Although many reports have indicated an obvious influence of sperm DNA damage 

on fertilization rates (Sun et al. 1997; Lopes et al. 1998; Benchaib et al. 2003; Velez de la 

Calle et al. 2008; Simon et al. 2011), we did not observe any relationship between 

abnormal chromatin status, as monitored by this assay, and fertilization rates in both IVF 

and ICSI treatments. These findings are, however, in agreement with several other studies 

involving both IVF (Tomlinson et al. 2001; Tomsu et al. 2002; Henkel et al. 2003, 2004; 

Lin et al. 2008) and ICSI cycles (Henkel et al. 2003; Lin et al. 2008). As pinpointed in the 

introduction section, the activation of the paternal genome is thought to only occur at 4-8-

cell stage embryo (Braude et al. 1988; Borini et al. 2006) which may explain why paternal 

chromatin status might not affect fertilization significantly (Ahmadi & Ng 1999). 

However, abnormal levels of DNA damage may affect later stages of development (Virro 

et al. 2004; Borini et al. 2006; Simon et al. 2010). In the current study we failed to 

observe any relationship between the percentages of abnormal dark staining and embryo 

development rates in post-prepared samples in both IVF and ICSI cycles, but embryo 

quality and pregnancy success were adversely affected by abnormal chromatin status 

monitored by this assay. Abnormal dark staining was found to have a small but significant 

prognostic value in IVF pregnancy success. Obviously one may not exclude that other 
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factors besides sperm chromatin/DNA damage (e.g. female age) may also influence these 

reproductive parameters.  

Reports focusing on the relationships between DNA damage and embryo or 

pregnancy outcomes in ART are conflicting probably because the type and degree of DNA 

injury differ among studies, as do the DNA integrity assays employed. For instance, single 

stranded DNA breaks are thought to be easier to repair by the oocyte than double-stranded 

nicks (Sakkas & Alvarez 2010) but the large majority of tests cannot tell which 

spermatozoon possesses what. Furthermore, the ability of the oocyte to mend such damage 

is limited (Ahmadi & Ng 1999) and the efficiency of repair relies on oocyte quality which, 

in turn, is influenced by numerous factors including female age (Alvarez 2005).  

Similarly to what is described here, Simon and co-workers have also found a 

decrease in embryo quality and pregnancy success with increased sperm DNA 

fragmentation assessed by the Comet assay after DGC among IVF couples, but not 

between pregnant and non-pregnant groups after ICSI cycles (Simon et al. 2010). 

However, contrary to our data, they failed to observe any relationship with embryo quality 

after ICSI treatments (Simon et al. 2010). Additionally, an inverse correlation between 

embryo quality and Comet sperm DNA damage among IVF couples was detected in 

processed samples by Tomsu and colleagues; however, no correlation with pregnancy 

outcomes was shown (Tomsu et al. 2002). In other studies positive clinical pregnancies 

and lower pregnancy loss rates were observed among ICSI couples that presented a lower 

proportion of sperm with fragmented DNA detected by TUNEL after DGC (Benchaib et 

al. 2003; Borini et al. 2006). Conversely, others failed to observe any relationship between 

DNA damage, evaluated in post-prepared spermatozoa by SCSA, TUNEL or ISNT, and 

embryo quality or clinical pregnancies in IVF and/or ICSI cycles (Sun et al. 1997; Larson 

et al. 2000; Tomlinson et al. 2001; Benchaib et al. 2003; Gandini et al. 2004; Seli et al. 

2004; Borini et al. 2006; Bungum et al. 2008). 

Although the percentage of sperm with DNA damage may considerably decrease 

after sperm preparation techniques, as we demonstrated here, there is still a reasonable 

likelihood of the technician choosing a spermatozoon with damaged chromatin (i.e. 

decondensed chromatin and/or DNA damage) when performing ICSI, which may explain 

our findings. This is particularly worrisome given that DNA damage may not be fully 

repaired by the oocyte machinery, but still allow for embryo development, increasing the 
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risk of conceiving a child with genetic anomalies (Marchetti & Wyrobek 2005; Aitken & 

De Iullis 2010). On the other hand, our data suggests that there may be some degree of 

“natural” selection in IVF cycles, thus favoring sperm with no or less damage to the 

chromatin/DNA to successfully achieve pregnancy.  

Clinical pregnancy success was severely reduced in IVF couples having at least 

34.25% of abnormal dark staining in this report. Interestingly, several other studies 

showed similar cut-offs for IVF. Lower pregnancy rates were observed among couples 

presenting samples with at least 35% (Frydman et al. 2008) or more than 36.5% TUNEL-

positive spermatozoa (Henkel et al. 2003, 2004). The same outcome was found by Virro 

and colleagues when DFI ≥30% using SCSA (Virro et al. 2004). 

Taken together, the modified Diff-Quik staining assay provides useful information 

about ART success in post-prepared samples, particularly in IVF treatments where an 

operator does not choose the sperm that will fertilize the oocytes. However, despite its low 

cost and simple methodology, this staining displays a certain degree of subjectivity and 

exposure to the thiazin dye for longer periods than those described here will produce a 

uniformly dark staining that will compromise chromatin damage assessment. Proper 

training, nevertheless, allows the achievement of consistent and reproducible results, with 

minimal variability. Although SCSA is a very robust assay that analyzes 5 000 - 10 000 

sperm cells, using objective, machine-defined criteria and with high levels of repeatability 

(Evenson et al. 1999, 2002), it is not used in most Andrology laboratories as a routine 

procedure, nor are many other chromatin/DNA integrity tests. The need of extensive 

protocols and/or expensive reagents and equipment (e.g. a flow cytometer, fluorescence 

microscope and/or dedicated software) are limiting factors when the goal is to routinely 

implement DNA damage analysis worldwide. Based on our present and previous results 

(Sousa et al. 2009) we therefore suggest that the modified Diff-Quik staining may be used 

as an alternative method to detect sperm chromatin damage, in the absence of more robust 

tests.  
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5.1 Exposure to environmental organochlorines 

 Many studies regarding the effects of environmental endocrine disruptors (EDs) 

have particularly centered their attention on long-term influences on the testis and male 

reproductive tract, with reproductive tract anomalies and standard semen parameters 

frequently being assessed as biologically important endpoints.  

Despite the importance of these studies, we now provide evidence that p,p’-DDE 

concentrations produce direct (non-genomic) effects in mature sperm function. We 

reported that through the opening of Catsper p,p’-DDE primarily promotes Ca
2+ 

influx 

which, due to its high and sustained nature, impairs cell function, ultimately 

compromising sperm fertilizing capacity and male fertility. In accordance with others, 

non-regulated Ca
2+ 

entry may trigger acrosome reaction (Campagna et al. 2009) and since 

Ca
2+

 is involved in several other signaling pathways (Jimenez-Gonzalez et al. 2006; 

Costello et al. 2009), alterations in its homeostasis may also be implicated in the effects 

reported in the present study.  

Keeping in mind the role of mitochondria not only as an important cellular energy 

source but also in regulating Ca
2+

 homeostasis, the extracellular Ca
2+

 uptake by these cells 

may lead to a mitochondria Ca
2+

 overload that will culminate in a general mitochondrial 

dysfunction and cellular ATP depletion, which will further compromise sperm motility 

and ultimately lead to cell death (Crompton 1999; Halestrap 2005; Orrenius et al. 2007).  

However, we cannot exclude that other pathways might be involved. Given the 

comparable Ca
2+

 responses produced by 25, 50 and also 100 µM p,p’-DDE (data not 

shown) and the increasing time periods required by the lower concentrations to produce 

such effects, we hypothesize that besides Ca
2+

 other component(s) might be affected by 

p,p’-DDE exposure, which under the action of lower doses need(s) more time to induce 

observable effects. As only 100 µM p,p’-DDE inhibited the process of capacitation we 

imagine that p,p’-DDE may also affect other aspects of the capacitation signaling pathway 

that at lower concentrations may not be as affected despite the extended incubation 

periods. These assumptions, nevertheless, require confirmation in future studies. 

Considering our results and taking into account that spermatozoa can survive in the 

female reproductive tract for more than 3 days, continuous exposure to decreasing p,p’-
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DDE doses might still affect sperm function later on. Spermatozoa may acrosome-react, 

lose motility and die before reaching the oocyte, further losing their fertilizing capacity.  

Direct exposure to PCB 77 was also found to impair sperm function at the highest 

dose tested. Although this concentration is non-physiological we cannot assume that 

human spermatozoa are resistant to PCB 77. In fact, as previously mentioned, we should 

always consider that spermatozoa are exposed to a wide range of environmental EDs that 

can act synergistically at the site of fertilization in vivo, producing effects even at smaller 

and more relevant concentrations than the ones found to independently affect 

spermatozoa. Importantly, PCB 77 acted through a different mechanism when compared 

to p,p’-DDE, yet it culminated in cell death, possibly attributable to mitochondrial 

dysfunction. The observation that motility was compromised before any detectable 

alteration in mitochondrial function may seem odd; however, there might be several 

explanations for this. PCB 77 might be affecting metabolic pathways other than OXPHOS 

that were not addressed in the present work and/or induce alterations in sperm motor 

machinery, similarly to what has been suggested with sildenafil citrate (Sousa et al. 2013). 

Further studies are warranted to determine how PCB 77 affects flagellar propulsion.  

On the other hand, our in vitro approach failed to detect any effect of TCDD in 

human spermatozoa. Overall, although all the compounds used here are organochlorines, 

our results clearly point to different mechanisms of action. Further in vivo validation of 

our results is, nevertheless, required.  

Importantly, recent reports concerning the potential transgenerational effects induced 

by environmental EDs in rodents retrieved worrisome conclusions: EDs may change the 

DNA methylation programming of the male germ line which will subsequently transmit 

this altered epigenome in an imprinted-like manner across generations to promote adult 

onset disease (Manikkam et al. 2012, 2013). These studies showed that although pregnant 

dams (F0 generation) were the only ones transiently exposed to EDs at the time of male 

sex determination, F3 and F4 males presented transgenerational inheritance of testis 

pathology which included increased germ cell apoptosis (Anway et al. 2006, 2008; 

Guerrero-Bosagna et al. 2012), decreased motility and reduced spermatid (Anway et al. 

2006) and epididymal sperm numbers (Anway et al. 2006, 2008; Guerrero-Bosagna et al. 

2012). This represents a totally new research field that remains largely unexplored and so 

far few EDs have been screened. As neither p,p’-DDE nor PCB 77 were studied, it is our 
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intention to evaluate their potential epigenetic transgenerational effects and analyze sperm 

epigenome which will allow the identification of DNA methylation regions that can be 

potentially used as epigenetic biomarkers for transgenerational exposure and disease. This 

could be done using human sperm samples.  

Furthermore, to determine in vivo effects more accurately it would be interesting to 

analyze animals living in the area of Souselas (district of Coimbra), suggested as being 

under the action of environmental EDs formed as byproducts of incineration processes 

(Cardoso 2002; Nunes & Matias 2003). This was actually one of our initial goals; however 

this has proven difficult to carry out. 

 

 

5.2 Assessment of sperm chromatin/DNA damage  

The influence of sperm chromatin/DNA fragmentation on achieving pregnancy either 

naturally or through ART has being recognized as a valuable addition to the conventional 

semen analysis but no test has been routinely implemented worldwide. The Diff-Quik 

staining is neither time-consuming nor requires expensive reagents and equipment and has 

proved to be a reliable and useful assay to detect sperm chromatin/DNA damage in a 

standard clinical ART setting. Furthermore, a clear cut-off was established for IVF 

pregnancy success that was similar to what has been described for other assays. Although 

Diff-Quik staining was not predictive of pregnancy success in ICSI couples, further 

studies are required to address its possible prognostic value in ICSI pregnancy loss as 

other studies have shown that sperm DNA damage may also affect ongoing pregnancies. 

Accordingly, increased miscarriage rates significantly differed between patients with high 

and low sperm DNA damage undergoing ICSI (Borini et al. 2006; Benchaib et al. 2007) 

and a meta-analysis involving a total of 741 ICSI cycles have confirmed the predictive 

value of sperm DNA damage in pregnancy loss (Zini et al. 2008).  

On the same vein, it is also crucial to evaluate the impact of chromatin/sperm DNA 

damage, determined by our method, on intrauterine insemination (IUI) pregnancy success. 

In fact, IUI is not only the less invasive of all ART procedures but also the first line of 

treatment in couples that cannot achieve pregnancy naturally, despite the lack of severe 

infertility problems (Muriel et al. 2006b). So far, few studies have actually addressed the 
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effect of sperm DNA damage on IUI fertility outcomes and the large majority used SCSA 

(Bungum et al. 2004, 2007, 2008). A meta-analysis published by Evenson and Wixon 

concluded that IUI couples whose male partners presented a DFI below 30% were 7.3 

times more prone to achieve a pregnancy/delivery than the ones exhibiting higher values 

(Evenson & Wixon 2006). Thus, it will be essential to tackle if, as SCSA, the Diff-Quik 

staining may also be useful in predicting IUI pregnancy success and establish a threshold 

that may help the clinician to decide whether IUI is the best treatment option for a given 

couple or if, on the contrary, more invasive techniques should be carried out. 

Although some degree of subjectivity can be attributed to our method proper training 

allows reliable results, as discussed previously. Furthermore, this subjectivity could also 

be easily reduced if an automated image analysis software could be developed for the 

quantification of sperm chromatin damage in any sample. 

Given its consistency and minimal variability observed during this and an earlier 

study by our group (Sousa et al. 2009), we consider that our simple, fast and low-cost 

technique is suitable for further large-scale studies, such as those concerning the impact of 

environmental EDs on sperm DNA damage in human populations. 
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