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Abstract 

Parkinson disease (PD) is the second most common neurodegenerative disorder and is 

mainly characterized by motor dysfunction, as the result of selective loss of 

dopaminergic neurons. Autosomal Recessive-Juvenile Parkinson’s disease (AR-JP) is a 

rare genetic form, showing symptoms resembling idiopathic PD, although being 

characterized by a young age-at-onset (usually under 40). This disorder is caused by 

mutations in the PARK2 gene which encodes parkin, an E3-ubiquitin ligase.  

The unfolded protein response (UPR), leading to the activation of three protective 

cellular pathways, is required for the cells to cope with stressful conditions and results 

in the upregulation of endoplasmic reticulum (ER) stress genes. Recent observations 

support the existence of escorting machinery, which connects the ubiquitinated 

substrates at the ER-membrane with the proteasome, in a process known as ER-

associated degradation (ERAD). Also, it has been shown that misfolded proteins and 

aggregates are able to induce ER stress, probably by suppressing proteasome function, 

an essential component of the ERAD machinery.  

Our aim was to clarify the role of different cellular response mechanisms in the 

formation and clearance of parkin aggregates, including the endoplasmic reticulum 

stress response and ERAD. To accomplish this we studied nine mutations covering all 

parkin domains. First, we evaluated the role of ERAD in wild-type and mutant parkin 

clearance, by potentiating or suppressing ERAD in the different cellular models. Then, 

we explored the effect of the different parkin mutants on ER stress by assessing the 

levels of UPR-related proteins in these cellular models.  

Our data show that VCP may have a role in the clearance of parkin aggregates and that 

VCP overexpression may result in an increase in parkin expression levels. Moreover, 

our data do not support the activation of an UPR in the presence of the different parkin 

mutants. Also, we observed a striking increase in the expression of ER molecular 

chaperones in cells co-expressing parkin and WT or DN VCP. 

In conclusion, our results suggest that mutations in PARK2 lead to parkin misfolding, 

contributing to the formation of aggregates that co-localize with VCP. With this work 

we enlarge the amount of data relating parkin with the ER and in particular with ERAD, 

raising the possibility that modulation of VCP and ERAD activity might have potential 

therapeutic significance for AR-PD. 

Keywords: Parkinson disease; PARK2; Parkin; ER-Stress; ERAD 
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Sumário 

A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais comum e é 

caracterizada principalmente por disfunção motora, como resultado da perda selectiva 

de neurónios dopaminérgicos. A doença de Parkinson Juvenil de transmissão 

Autossómica Recessiva (ARJP) é uma forma genética rara, apresentando sintomas 

semelhantes à DP idiopática, embora seja caracterizada por uma idade de início jovem 

(normalmente antes dos 40). Esta doença é causada por mutações no gene PARK2 que 

codifica a parkina, uma E3-ubiquitina ligase. 

A resposta a proteínas unfolded (UPR) leva à activação de três vias celulares 

protectoras, necessárias para a célula lidar com as situações de stress e resulta no 

aumento da expressão de genes de stress do Retículo Endoplasmático (RE). Dados 

recentes reforçam a existência de uma maquinaria de suporte, que liga os substratos 

ubiquitinados da membrana do RE ao proteossoma, num processo conhecido como 

degradação de proteínas associadas ao RE (ERAD). Além disso, foi demonstrado que as 

proteínas misfolded e os agregados são capazes de induzir uma resposta de stress do RE, 

provavelmente devido à supressão da função do proteossoma, um componente essencial 

da maquinaria da ERAD.  

O nosso objectivo era esclarecer o papel de diferentes mecanismos de resposta celular 

na formação e na limpeza de agregados de parkina, incluindo a resposta de stress do RE 

e a ERAD. Para isso, estudamos nove mutações que cobrem todos os domínios da 

proteína parkina. Primeiro, foi avaliado o papel da ERAD na limpeza da parkina normal 

e mutada, através da potenciação ou supressão da ERAD nos diferentes modelos 

celulares. Em seguida, foram explorados os efeitos de diferentes mutantes da parkina no 

stress do RE, de modo a avaliar os níveis de proteínas relacionadas com a UPR nestes 

modelos celulares. 

Os nossos dados mostram que a VCP pode ter um papel na limpeza de agregados de 

parkina e que a sua sobrexpressão pode resultar no aumento dos níveis de expressão da 

parkina. Por outro lado, os nossos dados não suportam a activação da UPR na presença 

dos diferentes mutantes de parkina. Além disso, observou-se também um aumento na 

expressão das chaperones moleculares do RE nas células que co-expressam a parkina e 

VCP WT ou DN. 

Em conclusão, os nossos resultados sugerem que mutações no gene PARK2 podem 

levar ao misfolding da parkina, contribuindo para a formação de agregados, que co-
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localizam com a VCP. Com este trabalho, conseguimos obter mais dados que 

relacionam a parkina com o RE e em particular com a ERAD, reforçando a hipótese de 

que a modulação da VCP e da actividade da ERAD pode ter um potencial terapêutico 

significativo na ARJP.  

 

Palavras-chave: Doença de Parkinson, PARK2; Parkin; Stress do ER; ERAD 
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1. Introduction 

 

Neurodegenerative diseases have a high worldwide prevalence, being defined as 

hereditary and sporadic conditions characterized by progressive and irreversible 

degeneration of specific groups of neurons, the cell that processes and transmits 

information, responsible for the functions of the nervous system. When this happens, 

depending on the disease, it causes substantial disability with gradual loss of motor 

functions, physiological and / or cognitive capacities creating a burden on individuals, 

families, communities and societies all over the world. Neurodegenerative disorders are 

currently the major cause of morbidity, disability and mortality, as the result of an 

increased life span, and are a fundamental issue in both medical care and research for 

the 21
st
 century. Therefore, new efforts have focused on identifying crucial changes on 

genetic, epigenetic, or environmental factors that hamper normal neuronal function.  

Protein misfolding and aggregation occurs due to a chronic imbalance in the generation 

and clearance of misfolded proteins, potentiated by alterations in primary structure 

caused by mutations, RNA modification, environmental insults or oxidative damage. 

These accumulations of misfolded proteins could play a role in the dysfunction and 

neuronal death that characterizes several common neurodegenerative disorders, such as 

Parkinson’s disease (PD), one of the protein misfolding diseases. 
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1.1. Parkinson Disease  

Parkinson disease, first described by James Parkinson in 1817, is the second most 

common neurodegenerative disease and the most frequent movement disorder. 

Approximately 1% of the population above 65 years suffers from this slowly 

progressive neurodegenerative disease with no known cure and its prevalence increases 

to approximately 5% above 85 years[1]. In Portugal, in 1994 a cross-sectional study was 

performed in which PD prevalence was estimated to be 130/100,000[2]. The mean age 

of diagnosis of PD is in the seventh decade of life but the disease can be diagnosed at 

any age, and it is estimated that 3% of the cases are initially recognized in individuals 

younger than 50 years old [3, 4]. The mean life expectancy following diagnosis is 

approximately 15 years, although affected individuals can frequently survive two 

decades or longer [5, 6]. 

PD is clinically characterized by four cardinal signs: resting tremor, rigidity (increased 

muscular tone), postural instability and bradykinesia (slowed movements) [7]. 

Nevertheless, non-motor symptoms are also present, including constipation, urinary 

symptoms, sleep disturbances, and olfactory impairment, which are now believed to 

presage the clinical recognition of bradykinesia, tremor or gait impairment by many 

years [3].  However, the cardinal motor symptoms apparently appear at a late stage of 

the disease when 60 to 70% of the substantia nigra dopaminergic cells are already dead, 

resulting in a concomitant 80% depletion in striatal dopamine [8, 9]. 

 

1.1.1. Pathophysiological mechanisms 

PD pathology results from the highly specific progressive and selective loss of 

dopaminergic neurons in the pars compacta of the substantia nigra (SNc) and from the 
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dysfunction of the basal ganglia which is accompanied by a dramatic reduction of 

striatal dopamine levels. In normal conditions (figure 1), dopamine from the SNc 

facilitates putaminal neurons in the direct pathway (putamen- GPi) and inhibits those in 

the indirect pathway (putamen-GPe-STN-GPi/SNr). Activation of the direct pathway 

leads to reduced neuronal firing in the GPi/SNr and movement facilitation, while 

activation of the indirect pathway suppresses movements. In Parkinson's disease (B), 

dopamine deficit leads to an increased activity of the indirect circuit by STN 

hyperactivity (key feature) and hypoactivity in the direct circuit, resulting in an increase 

of the inhibitory output from the Gpi to the VL and in the reduction of the activation of 

cortical and brainstem motor regions. Thus, this mechanism is repressing the initiation 

of movements and leading to the main motor features (tremor and rigidity) [9]. 

 

 

Figure 1. Summary of the classic pathophysiological model of the basal ganglia in healthy (A), 

parkinsonian (B) states. (adapted by Rodriguez-Oroz MC, 2009). 

Green arrows indicate excitatory activity and red arrows indicate inhibitory activity. 

GPe=globus pallidus pars externa. GPi=globus pallidus pars interna. SNc=substantia nigra pars 

compacta. SNr=substantia nigra pars reticulata. STN=subthalamic nucleus. VL=ventrolateral 

nucleus. 
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The most popular treatment for PD is through medication that increases the level of 

dopamine in the brain (e.g. L-dopa), enhancing abnormal putaminal dopaminergic 

activation which will lead to hypoactivity in the indirect circuit and hyperactivity in the 

direct circuit, resulting in reduced inhibitory output activity from the basal ganglia [6, 

9]. Dopamine supplementation in the early stages of the disease can suppress the 

symptoms but, with PD progression, dopamine supplementation becomes ineffective 

and exacerbates motor symptoms [10]. 

Why and how DA neurons are preferentially lost in PD is not clear. A potential clue to 

the vulnerability of these neurons is the opening of L-type calcium channels during 

autonomous pacemaking, resulting in sustained calcium entry into the cytoplasm of SNc 

DA neurons, increasing mitochondrial oxidative stress and susceptibility to toxins 

known to induce PD in animal models [11]. Hence, oxidation of cytosolic DA (and its 

metabolites) leads to the production of damaging free radicals resulting in neuronal loss. 

Also, dopaminergic neurons have been shown to exhibit distinct physiology intrinsically 

associated with elevated reactive oxygen species production, which has been indicated 

as determinant for substantia nigra degeneration under oxidative stress conditions. 

Although there are diverse causes for PD, the disease pathogenic mechanism converges 

in a subset of pathways namely mitochondrial impairment, oxidative stress and 

impaired protein handling. Nevertheless, the role for this type of cellular stress in 

normal aging and PD is still to be fully understood [12, 13]. 

 

1.1.2. Histopathology 

PD is characterized by the intracytoplasmic accumulation of amyloide-like inclusions, 

known as Lewy bodies (LB), in the spared dopaminergic cells. PD pathology is not 

restricted to the DA system, progressively involving noradrenergic and serotonergic 
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neurons within the locus coeruleus, dorsal motor nucleus of the vagus, nucleus basalis 

of Meynertm, the olfactory systems and nerve cells of peripheral autonomic ganglia 

[14-16]. 

1.1.3. Environment and Genetics 

In the recent years, it has become clear that genetic factors  are implicated in the 

etiopathogenesis of PD although environmental factors are also major determinants and 

cannot be discarded [17]. Environmental causes are generally associated with toxins 

and/or free radicals, in part due to pesticide exposure (specifically, the pesticides 

rotenone and Paraquat (PQ) and the fungicide Maneb) and intravenous drugs 

contaminated with methyl-phenyl-tetrahydropyridine (MPTP) [18-20]. Some meta-

analysis studies show that both cigarette smoking and coffee consumption are 

associated with reduced PD susceptibility but the biological mechanisms underlying this 

potentially protective effect are still poorly understood [21]. Nevertheless, a causal role 

for these environmental factors in the etiology of PD has yet to be definitively 

established, although it is known that exposure to these agents lead to an array of 

consequences such as lipid peroxidation, oxidative DNA damage and mitochondrial 

dysfunction [22, 23]. 

Most of PD cases occur sporadically and the specific etiology of the disease remains 

unknown.  In the last few years, however, the discovery of genes linked to rare familial 

forms of the disease, supports a substantial genetic component (Table1) [24].  
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Table 1 – The major genetic forms of PD. 

 

 

 

 The genes encoding alpha-synuclein (SNCA), ubiquitin carboxyl-terminal esterase L1 

(ubiquitin thiolesterase) (UCHL1), leucine-rich repeat kinase 2 (LRRK2) are responsible 

for autosomal dominant PD, whereas mutations in the genes encoding Parkin, PTEN 

(phosphatase and tensin homologue deleted on chromosome 10)-induced putative 

kinase 1 (PINK1) and DJ-1 cause autosomal recessive parkinsonism with early onset 

[25-27].  

 

 

 

 

 

 

 

 

 

Locus Chr. Gene/Protein Function Heredit. Phenotype/ AO 

PARK1 4q21 SNCA/α-

Synuclein 

Synaptic protein AD PD, ~46y  

PARK4 Vesicle traffic Lewy bodies 

PARK5 4p14 UCHL1 Ubiquitin 

hydrolase/ligase 

AD PD ~50y 

PARK2 6q25 PARK2/Parkin Ubiquitin E3 

ligase 

AR Parkinsonism,  

Juvenil < 40y 

PARK6 1p36 PINK1 Mitochondrial 

kinase 

AR Parkinsonism, 

30-50y 

PARK7 1p36 DJ-1/DJ-1 Oxidative stress 

defence 

AR Parkinsonism, 

20-40y 

PARK8 12p12 LRRK2/LRRK2 Kinase 2 AD Late onset 
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1.2. Juvenile Parkinson Disease 

First identified in Japan by Yamamura et al. in 1973, Autosomal Recessive-Juvenile 

Parkinson’s disease (ARJP), is the most frequent type of familial PD and is 

characterized by a young age at onset (usually under 40). In general, the pathogenic 

parkin mutations are inherited in a recessive manner in patients and ARJP has been 

mostly linked to homozygous or compound heterozygous mutations. Nevertheless, 

single heterozygous mutations in parkin have also been found but their role in disease 

causality is controversial [28]. The symptoms of ARJP resemble those of idiopathic PD 

besides prominent foot dystonia, hyperactive tendon reflexes, diurnal fluctuation, sleep 

benefit (with an excellent response to levodopa) and frequent and early occurrence of L-

dopa-induced dyskinesias.[29] ARJP diverges from idiopathic PD because patients do 

not appear to develop non-motor manifestations of PD (e.g., loss of olfaction) and 

because Lewy bodies, the diagnostic hallmark of PD, are usually not present. 

Nevertheless, LB pathology has infrequently been described in patients with parkin 

mutations, suggesting that parkin may play a more direct role in the typical LB 

parkinsonism [30-33]. 

The gene PARK2 is responsible for ARJP in some patients and, is located on 

chromosome 6 (6q25.2-q27), spanning more than 500kb and comprising 12 exons [34]. 

Mutations in PARK2 range from point mutations to complex rearrangements, including 

deletions and/or duplications of one or more exons [35]. Mutations in PARK2 are the 

most common cause of early onset PD (EOPD),being responsible for approximately 

50% of all ARJP, and of 77% of sporadic cases with disease onset before the age of 20 

[28, 36]. 
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The parkin protein is derived from a 4.5 kb transcript, has 465 amino acids and a 

molecular weight of 52 kDa. Parkin has remained essentially unchanged throughout 

evolution, with orthologs in many different organisms, including Caenorhabditis 

elegans, Drosophila melanogaster, Mus musculus, Rattus norvegicus, and other species 

[37-40]. Parkin is predominantly a cytosolic protein but also co-localizes to cellular 

vesicles, the Golgi complex, endoplasmic reticulum, and the mitochondrial outer 

membrane [25]. Although expressed in many human tissues this protein is abundant in 

the brain, including the substantia nigra, as well as in heart and skeletal muscle, testis, 

stomach, adrenal gland, thyroid, and spinal cord [41]. Parkin has structural and 

functional homology to E3 ubiquitin ligases that specifically recognizes its substrate 

protein, promoting its ubiquitination and subsequent degradation by the proteasome [42, 

43]. Furthermore, parkin is involved in mitochondrial maintenance and might induce 

subsequent autophagy of dysfunctional mitochondria [44-46]. 

1.2.1. Parkin Domain Structure and Function 

Parkin is a multidomain E3 ubiquitin ligase with an ubiquitin-like domain at its NH2-

terminus followed by a RING0 domain (a unique parkin-specific domain) and a RBR 

(RING-between-RING) motif at its COOH-terminus (Figure 2). 

The N-terminus ubiquitin-like domain (Ubl) interacts with ubiquitin interacting motifs 

(UIMs), found in the 19S proteasome regulatory subunit S5a and Eps15, positioning 

substrate proteins for degradation by the ubiquitin proteasome system (UPS) [47]. Even 

though not directly involved in E2 interactions, the Ubl domain has been shown to be 

essential for the ligase activity of parkin because deletion or mutation of this domain 

results in impaired E3 ligase activity [48]. The Ulb domain also binds the Rpn10 

subunit of 26S proteasomes, which is likely to recognize proteins that are poly-
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ubiquitinated by parkin [49]. Additionally, this domain may work as a part of the SCF-

like (Skp1-Cullin-F-box protein) ubiquitin ligase complex where parkin interacts with 

F-box/WDrepeat protein hSel-10 and Cullin-1[50]. 

 

 

Figure 2. Domain structure of parkin and its interaction partners. (adapted by Suzuki, 2006). 

 

Hristova et al, in 2009, identified the RING0 domain within the UPD (unique parkin 

domain), previously thought to have no recognizable domain structure. RING0, a novel 

Zn
2+

-binding domain, is located in the central ~150 residues of parkin separating the 

Ubl from the RBR region [51]. This region contains cleavage sites for the pro-apoptotic 

caspase 1 and 8 and is positively regulated by PINK1 and DJ-1, proteins that when 

mutated are responsible for familial PD [52, 53]. Mutations in this segment of parkin 

have been shown to lead to dysfunction of parkin E3 ligase activity [54, 55]. 14-3-3eta, 

one of the 14-3-3 family members, interacts directly with the RING0 region as BAG5 

and inhibits parkin E3 ubiquitin protein ligase activity [54].  



 

10 
 

The parkin C-terminus consists of three consecutive domains, each of approximately 50 

amino acids: two really interesting new gene (RING1 and RING2) fingers flanking a 

cysteine-rich domain, known as the in between RING fingers (IBR) region [56]. These 

domains appear to be important for binding and ubiquitination of ligase substrates (E2 

enzymes) [57, 58]. Parkin interacts with the E2 ubiquitin-conjugating enzymes UbcH7, 

UbcH8, Ubc7, and Ubc13 and controls parkin-mediated ubiquitination of a variety of 

substrates such as Pael-R, synphilin-1, Sept5, p38 and synaptotagmin XI among others, 

through its C-terminal RING finger domains [59-61]. 

Some proteins interact with RBR domain but are not necessarily targets for 

ubiquitination, like PICK1, SIM2, PCNA, tubulin, HDAC6, CHIP and hsp70 [62-67].  

At the extreme C-terminus of parkin, is present one specific short peptide sequence 

(amino acids FDV), functioning as a class II PDZ (PSD-95/discs large/ZO-1) binding 

motif that binds the PDZ protein, CASK [68]. 

1.2.2. Parkin Mutations 

 In 1998, a linkage study discovered, for the first time, mutations of PARK2 in Japanese 

ARJP families [41]. A large spectrum of parkin gene mutations has been identified, 

including missense and nonsense mutations, exon deletions and duplications and 

frameshifts, distributed in all the different domains along the protein. The clinical 

manifestations are influenced by the number of mutations, their location and if the 

mutations found were present in heterozygosity [56]. (Figure 3) 
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Figure 3. Representation of the mutations found in parkin, linked to familial PD. (adapted by 

Hristova et al, 2009) 

 

Mutations that result in a truncated N-terminal, which includes the ubiquitin-like 

domain (UBL), as well as the pathogenic parkin mutant R42P, may induce a 

conformational change, decreasing the stability of parkin and leading to rapid 

degradation by the proteasome of these mutants [48]. The mutation C212Y, in RING0 

domain, compromise zinc-coordinating residues by affecting zinc binding to parkin in 

order to maintain its three-dimensional structure, which causes near complete unfolding 

of the protein. Mutations in this domain could affect parkin solubility and/or 

ubiquitination [51]. Wang et al (2005) reported that C212Y mutation produces an 

insoluble form of parkin, leading to the formation of aggresome-like inclusions in SH-

SY5Y cells. Until now, ubiquitination studies have not been reported on the RING0 

C212Y mutants [51]. The R256C and R275W RING finger 1 mutations, have been 

shown previously to retain activity towards at least one of its putative substrates, 

synphilin-1. These mutations which reduce Parkin solubility were found in cellular 

inclusions which may contribute to the pathogenic mechanism of these specific 

mutations [69]. In the C-terminus IBR-R2, T415N is considered “ligase dead” due to its 

inability to self and substrate ubiquitination; additionally, this mutant has been shown to 

impair self-degradation [70]. Also, this mutation shows highly reduced abilities to bind 
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synphilin-1 and induces the formation of large mitochondrial aggregates in the 

perinuclear region [71]. Kahsn et al, tested whether the mutation G430D affected the 

caspase activity; however cleavage was not significantly affected [52]. Other studies 

evaluated the location of parkin based on its behavior in Triton X-soluble and Triton X-

insoluble fraction although the mutation G430D showed a similar intracellular 

localization to wild-type parkin [70]. The effects in the structure and consequently in the 

function of parkin of the mutations T415N and L358RfsX77, located in the interdomain 

IBR-RING2 and in the IBR domain, have not yet been clarified. Therefore, gathered 

data show that parkin mutations result in a broad range of effects such as in the 

ubiquitination-degradation process, parkin-protein interaction, intracellular localization 

and enzymatic function.  
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1.3. Endoplasmic Reticulum 

Recent studies have investigated the role of the endoplasmic reticulum (ER) in protein 

degradation and in neurodegeneration. Due to this fact, the physiological and 

pathophysiological function of parkin in ER stress is discussed.  

The ER is a eukaryotic organelle responsible for the maintenance of calcium 

homeostasis, lipid biogenesis, synthesis and maturation of cell surface and secretory 

proteins. Among the many functions of ER it is noteworthy the important function in 

protein quality control through the central role in folding and processing newly 

synthesized secretory proteins. ER quality control (ERQC) is a surveillance mechanism 

that allows that only properly folded proteins exit the ER, on their way to other 

intracellular organelles and the cell surface [72]. Cellular stress, chemical environment, 

toxic compounds and fundamentally genetic mutations are some of the factors that can 

compromise folding efficiency. Thus, the ER is the entry gate for the vast majority of 

newly synthesized proteins; these proteins are transported into the ER lumen where 

chaperones and folding sensors often assist and alert the cell to the presence of 

misfolded proteins, triggering the folding process. Once folded, the protein is 

transported by vesicular trafficking to the Golgi apparatus for further processing. 

Disruption of these functions is a severe source of cellular stress [73]. 
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1.3.1 ER-Stress  

Sustained accumulation of unfolded or misfolded proteins results in the failure of the 

ER to cope with the excess of protein load, which is termed ER stress. These proteins 

form aggregates (which are hallmarks of degenerative disorders) that can elicit an ER 

stress response, the unfolded protein response (UPR). This signaling pathway is 

characterized by the induction of chaperones, degradation of misfolded proteins and 

attenuation of protein translation [73]. It is thought that the UPR is an evolutionarily 

conserved response that is triggered to adapt to the changing environment, and 

reestablish normal ER function. 

 

Figure 4. Representation of the three transmembrane proteins in response of an unfolded 

proteins. 
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In mammalian ER there are three ER transmembrane proteins that operate as stress 

sensors: double-stranded RNA-activated protein kinase-like endoplasmic reticulum 

kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring kinase 1 

(IRE1) (Figure 4) [74]. These proximal sensors are regulated by chaperones such as 

binding immunoglobulin protein (BIP). In normal unstressed conditions BIP maintains 

the UPR sensor proteins in an inactive state, by bounding to them and thus prevent their 

activation and downstream signaling. Under conditions associated with ER dysfunction, 

BIP binds the unfolded protein promoting its refolding and preventing its transport to 

the cis-Golgi. 

PERK (PKR-like ER kinase) is a Ser/Thr protein kinase, that upon removal of BIP leads 

to PERK homodimerization and auto-phosphorylation resulting in its activation, and 

subsequent phosphorylation, on Ser51, of the translation eukaryotic initiation factor 2 

(eIF2α). Phosphorylation of eIF2α will promote a selective translation of activating 

transcription factor 4 (ATF4) mRNA, thereby inhibiting protein biosynthesis to reduce 

the workload on the ER. 

ATF6 is a type II ER transmembrane protein encoding a bZIP transcriptional factor on 

its cytosolic domain that when released from BIP control is translocated to the Golgi 

compartment where it is cleaved by SP1 (site-1 protease) and SP2 (site-2 protease). The 

cleaved ATF6α migrates to the cell nucleus where, in the presence of the transcription 

factor NF-Y, recognizes ER-stress response element (ERSE) minimal motif 

(CCAAT(N9)CCACG), (e.g. in the XBP1), and by binding to unfolded protein response 

element (UPRE) induces the expression of genes encoding ER resident molecular 

chaperone proteins, such as BIP, GRP4, PDI. 

Finally, after dissociation of BIP, IRE-1 is activated, leading to dimerization, to activate 

its kinase and RNase activities. IRE-1 cuts out a sequence of 26 bases from the mRNA 
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encoding X-box binding protein (XBP) 1, generating a 54kDA protein (XBP1s) with 

considerably higher stability that translocates to the nucleus and functions as a specific 

transcription factor that binds to UPRE or ERSE sequences in many UPR target genes. 

When oligomerized, IRE1 also binds TNF receptor-associated factor 2 (TRAF2) leading 

to the activation of protein kinases like apoptosis signal-regulating kinase 1 (ASK1), 

which by its turn activates c-Jun NH2-terminal kinase (JNK) and kinases linked to NF-

κB [75, 76]. Moreover, JNK then inhibits anti-apoptotic BCL-2 and activates pro-

apoptotic BIM. An excessive and/or prolonged stress leads to the activation of an ER- 

mediated apoptotic pathway and in the consequent cell death [77].   

These three protective cellular responses, required for the cells to cope with stressful 

conditions, allow for adjustment of the endoplasmic reticulum associated protein 

degradation (ERAD)-related genes involved in ER expansion, folding, protein 

maturation, as well as export and degradation of misfolded proteins. 

1.3.2. ERAD 

In general, protein aggregates do not accumulate in unstressed, healthy neurons, in part 

due to the existence of the ERQC, which include the endoplasmic reticulum associated 

protein degradation (ERAD). The ERAD components and the molecular chaperones 

that increase the folding capacity of the ER and the clearance of accumulating 

misfolded proteins are upregulated by UPR [78]. To ensure efficient dispatching of the 

improperly folded proteins, this complex ubiquitin-proteasome-mediated process 

involves a multi-protein complex on the ER membrane, and interacts with proteasome 

in the cytosol. ERAD was found in yeast, however, the ERAD ubiquitination machinery 

in both yeast and mammals comprises the same mechanism: the protein conducting 

channel, the ER-resident transmembrane E3s and their cognate E2s, the complex that 
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intermediate the retrotranslocation from the ER lumen back into cytoplasm and the 26S 

proteasome which degrades the misfolded proteins (figure 5) [78].  

 

Figure 5. Representation of the ERAD machinery in mammals. 

 

The ERAD process can be divided in 3 stages, which are going to be described in more 

detail, based on the mammalian proteins and processes: 

Recognition of misfolded proteins in the endoplasmic reticulum 

The recognition of misfolded or mutated proteins depends on the chaperones (BIP), 

lectin-like chaperones (OS-9, XTP3-B) and others proteins (SEL1L, ERdj, EDEM) that 

interact with ERAD transmembrane complex, contributing to the maintenance of 

protein folding efficiency and help in the extraction of misfolded proteins by conducting 

channels [78, 79]. 
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Retro-translocation into the cytosol 

In general, proteins are co-translationally inserted into the ER in order to be evaluated 

by ERQC. After this, they have to be transported from the ER lumen back into 

cytoplasm because the ubiquitin-proteasome system (UPS) is localized in this cellular 

compartment. This process is referred as “retro-translocation”, which occurs through 

conducting channels like Sec61 and a multi-spanning membrane protein, Derlin-1 [80]. 

Further, this retro-translocation requires a driving force that determines the direction of 

transport. Over 500 different E3 (such as HRD1, Parkin) and  E2 (UBC6 and UBC7) 

conjugating proteins work together with ubiquitin to perform the highly regulated 

ubiquitination process,  an essential driving force for ER substrate export [81].  Derlin-

1, interacts with VIMP, forming a membrane protein complex that serves as receptor for 

p97. The AAA-ATPase p97, which is recruited by VIMP, facilitates the translocation of 

misfolded ER-proteins into the cytosol, by an ATP-driven process [82]. A recent study 

has provided a new model for transport the ubiquitinated proteins out of the ER.  

Figure 6. Model based on results in Ernst et al. (adapted by Yien Tsai et al, 2011) 

 

Ernst et al, showed, based in their results, that it is necessary a deubiquitination for 

protein dislocation from the ER [83]. So, the p97 complex (hexamer of the AAA-

ATPase p97 and accessory proteins such as Ufd1 and Npl4) recognizes polyubiquitin 
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chains on the proteins as it moves through the protein-conducting channel. But, the 

protein dislocation might require trimming off the polyubiquitin chain to let the 

substrate enter the central channel of the p97 complex during retro-translocation, so, 

there are deubiquitinating enzimes (DUBs) associated with the p97 complex or 

potentially free in the cytosol that trim off the polybiquitin chain on the substrate, 

allowing it to be threaded into the narrow channel of the p97 complex [84].   

Ubiquitin-dependent degradation by the proteasome 

For the 19S capping complex of the 26S proteasome recognize and degrade proteins, 

these must be ubiquitinated. Therefore, E3 and their cognate E2 ligases, will again 

conjugate and bind the ubiquitin molecules to the dislocated substrate for targeting to 

the proteasome. Hereafter, the proteins are conducted into the central chamber of the 

20S core region that contains the degradation machinery (proteolytically active sites)  

[84, 85]. 

1.3.3. Parkin and ER Stress/ERAD 

It has been shown that misfolded proteins and aggregates, even when involving 

cytosolic proteins, are able to induce ER stress, probably by suppressing proteasome 

function, an essential component of the ERAD machinery. Additionally, Imai et al. 

(2000) reported that overexpression of parkin specifically prevent cell death resulting 

from ER stress [43]. 

One of the putative substrates of parkin is Pael-R, which has been associated with 

inherited PD, because there is a possibility that accumulation of unfolded Pael-R in the 

ER might lead to the death of dopaminergic neurons as a result of unfolded protein 

stress (Figure 7) [86]. Pael receptor (Pael-R) is a G protein-coupled orphan receptor, 

that is abundantly expressed in dopaminergic neurons in the substantia nigra and that is 
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detected in an insoluble form in the brain of ARJP patients. Defects in parkin lead to the 

accumulation of Pael-R, due to the direct involvement of parkin in ERAD. Parkin binds 

to the ER-associated E2s involved in ERAD (Ubc6 and Ubc7) and ubiquitinate Pael-R 

to target it for proteasomal degradation [56]. 

 

 

 

 

 

 

 

 

 

Figure 7. Putative mechanism of parkin mutants in the etiology of ARJP. (adapted by 

Takahashi et al, 2003) 
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2. Objectives 

 

Our main aim was to clarify the role of different cellular response mechanisms in the 

formation and clearance of parkin aggregates, including the endoplasmic reticulum 

stress and endoplasmic reticulum (ER)-associated protein degradation.  

To accomplish this, we studied nine mutations, located in different parkin domains, 

including the N52MfsX29 (c.155delA) and R275W (c.823C>T), the most frequent 

mutations in Portuguese patients with juvenile Parkinson disease (our unpublished 

results).  

Our specific objectives were: 

1) To evaluate the role of ERAD in wild-type and mutant parkin clearance, by 

potentiating or suppressing ERAD in the different cellular models.  

2) To explore the effect different parkin mutants on ER stress by assessing the 

levels of UPR-related proteins in these cellular models.  

 

 

  



 

22 
 

3. Material and methods 

3.1. Expression constructs 

A pEGFP-C1 vector with the cDNA for the human parkin was kindly provided by Dr. 

Sumihiro Kawajiri from Juntendo University School of Medicine, Tokyo, Japan. A 

pCMV6-myc vector with the cDNA for the human VCP was purchased from TrueORF 

Gold, OriGene. A pCMV6-myc empty vector was generated by excising VCP with 

MluI and AsiSI restriction sites.  

3.2. Site-directed mutagenesis 

Nine parkin mutants (Table 2) were generated with the QuikChange® Site-Directed 

Mutagenesis Kit (Agilent Technologies) according to the manufacturer’s instructions. 

Briefly, and for each intended mutation, 1,5 μg of plasmid DNA were added to a 

reaction mix containing 125 ng of each primer (forward and reverse, see table 3), 10x 

reaction buffer, 50 ng (10 mM) of a dNTP mix, 250 U of PfuTurbo DNA polymerase 

and ddH2O up to a final volume of 50 μL. In order to amplify the mutant plasmids, all 

samples were denatured at 95°C for 30 s, followed by 18 cycles comprising a cycle of 

denaturation at 95°C for 1 min, annealing at 65°C for 1 min, and then an extension at 

68°C for 25 min. Following the reaction, the product was incubated with DpnI, at 37°C 

for 2 hours, in order to degrade the methylated non-mutated DNA (template). The 

reaction product was transformed into competent cells, XL-1 Blue Escherichia coli 

using heat shock method: 50 μL of Library Efficiency XL-1 Blue Competent Cells 

(Invitrogen) were thawed on ice, mixed gently with 2 μL of plasmid DNA (pDNA) and 

incubated for 30 minutes on ice. After a heat shock for 45 seconds at 42°C, cells were 

incubated on ice for 2 minutes. The culture was re-suspended in 0.5 mL of SOC 

medium, incubated for 1 hour at 37°C with vigorous shaking. Cells were centrifuged for 
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5 minutes at 3000 rpm and the pellet re-suspended in the remaining medium. 

Transformed bacteria were plated on Luria Bertani (LB) agar plates, containing 50 

μg/mL kanamycin for positive clone selection, and incubated at 37°C overnight.  

Table 2. Parkin mutants generated by site-directed mutagenesis. 

Mutation 
Domain 

Protein cDNA 

p.R42P c.125G>C Ubl 

p.N52MfsX29 c.del155delA Ubl 

p.C212Y c.635G>A  RING0 

p.T240M c.719C>T  RING1 

p.R275W c.823C>T RING1 

p.L358RfsX77 c.1072_1073delCT IBR 

p.R402C c.1204C>T IBR-RING2 

p.T415N c.1244C>A IBR-RING2 

p.G430D c.1289G>A RING2 

 

A VCP
E305Q\E578Q

 double mutant was generated from the pCMV6-VCP
wt

-Myc construct 

also by site-directed mutagenesis with specific primers (table 3) and following the same 

procedure.  

Single isolated colonies were inoculated in liquid media with selection and incubated 

overnight, at 37°C, for plasmid DNA isolation.  
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Table 3. Primers for site-directed mutagenesis. Fw- Forward; Rv-Reverse 

Parkin Mutation 
Direction Primer Sequence 

(cDNA/protein) 

c.125G>C /  Fw 5'-CGGCTGACCAGTTGCCTGTGATTTTCGCAGG-3' 

p.R42P Rv 5'-CCTGCGAAAATCACAGGCAACTGGTCAGCCG-3' 

c.del155delA / Fw 5'-GGGAAGGAGCTGAGGATGACTGGACTGTGC-3' 

p.N52MfsX29 Rv 5'-GCACAGTCCAGTCATCCTCAGCTCCTTCCC-3' 

c.635G>A /  Fw 5'-GGACTAGTGCAGAATTTTTCTTTAAATATGGAGCACACCCCA-3' 

p.C272Y Rv 5'-TGGGGTGTGCTCCATATTTAAAGAAAAATTCTGCACTAGTCC-3' 

c.719C>T /  Fw 5'-AGTCGGAACATCACTTGCATTATGTGCACAGACGT-3' 

p.T240M Rv 5'-ACGTCTGTGCACATAATGCAAGTGATGTTCCGACT-3' 

c.823C>T / Fw 5'-CTGTGTGACAAGACTCAATGATTGGCAGTTTGTTCACG-3' 

p.R275W Rv 5'-CGTGAACAAACTGCCAATCATTGAGTCTTGTCACACAG-3' 

c.1072_1073delCT / Fw 5'-CGAAGGGGGCAATGGCAGGGCTGTGG-3' 

p.L358RfsX77 Rv 5'-CCACAGCCCTGCCATTGCCCCCTTCG-3' 

c.1204C>T / Fw 5'-CGCCGAGCAGGCTTGTTGGGAAGCAGC-3' 

p.R402C Rv 5'-GCTGCTTCCCAACAAGCCTGCTCGGCG-3' 

c.1244C>A / Fw 5'-ACCATCAAGAAAACCAACAAGCCCTGTCCCCG-3' 

p.T415N Rv 5'-CGGGGACAGGGCTTGTTGGTTTTCTTGATGGT-3' 

c.1289G>A / Fw 5'-CAGTGGAAAAAAATGGAGACTGCATGCACATGAAGTG-3' 

p.G430D Rv 5'-CACTTCATGTGCATGCAGTCTCCATTTTTTTCCACTG-3' 

VCP Mutation 
Direction Primer Sequence 

(cDNA/protein) 

c.913G>C / Fw 5'-CTCCTGCCATCATCTTCATTGATCAGCTAGATGCCA-3' 

p.E305Q Rv 5'-TGGCATCTAGCTGATCAATGAAGATGATGGCAGGAG-3' 

c.1732G>C / Fw 5'-CCCTGTGTGCTATTCTTTGATCAGCTGGATTCGA-3' 

p.E578Q Rv 5'-TCGAATCCAGCTGATCAAAGAATAGCACACAGGG-3' 

 

3.3. Plasmid DNA isolation  

Plasmid DNA was extracted using the Qiaprep Spin Miniprep Kit (Qiagen) according to 

manufacturer’s instructions. In brief, the liquid cultures were centrifuged for 10 minutes 

at 3000 rpm and the supernatant was discarded. The pelleted bacteria were then re-

suspended in buffer P1, containing 50 mM Tris-HCl (pH 8.0), 10 nM EDTA and 100 

μg/mL of RNase A. Cells were lysed in 200 mM NaOH and 1% SDS (Buffer P2). After 

centrifuging cell extracts at 13000 rpm for 10 minutes at room temperature, the 

supernatant was applied to the QIAprep spin columns, which were then centrifuged for 
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1 minute. The columns were afterwards washed with PB and PE buffers, with 1 minute 

centrifugation after each wash. Any remaining buffer was removed from the columns by 

one extra 1 minute centrifugation. The spin columns were then incubated with EB (10 

mM Tris-Cl, pH8.5) and the plasmid DNA recovered with a final 1 minute 

centrifugation. Plasmid DNA concentration was determined using the NanoDrop 2000 

spectrophotometer (Thermo Scientific). 

3.4. Direct sequencing 

All mutations and the entire inserts were confirmed by direct sequencing with the 

primers presented in table 4. Sequencing reactions were performed using 2 μL of Big 

Dye Terminator Cycle Sequencing v1.1 Ready Reaction (Applied Biosystems), 0.5 μL 

of primers (forward or reverse), 1 μL of purified DNA fragment and 6.5 μL of ddH2O. 

The cycling conditions used were: an initial denaturing at 95°C for 5 minutes, followed 

by 35 cycles of denaturation for 10 seconds at 96°C, annealing for 5 seconds at 50°C, 

and an extension for 4 minutes at 50°C. Then, the samples were purified using DyeEx 

96 well plates (QIAGEN) according to manufacturer’s instructions, and were loaded in 

an ABI-PRISM 3130 XL genetic analyzer (Applied Biosystems). 
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Table 4. Primers designed for cDNA sequencing. 

Parkin –pEGFP 

Primer ID Primer Sequence 

PARK2_F1 5'-CTGGATCAGCAGAGCATTGTTCAC-3' 

PARK2_F2 5'-TCCAAACCGGATGAGTGGTGAATG-3' 

PARK2_F3 5'-AGTATGGTGCAGAGGAGTGTGT-3' 

PARK2_R1 5'-GTCGCCTCCAGTTGCATTCATTTC-3' 

pCMV6-VCP-Myc 

Primer ID Primer Sequence 

VCP_F1 5'-CAGATCCTAGCCCTTATTGC-3' 

VCP_F2 5'-GTCCTTGAATGAAGTAGGGT-3' 

VCP_F3 5'-GGTAGATATTGGAATTCCTG-3' 

VCP_F4 5'-GGGGAGTCTGAGGCCAATGT-3' 

VCP_R1 5'-ATCAGCCATGGAGGTAGAAG-3' 

 

3.5. Cell Culture and transfection 

The human neuroblastoma cell line SH-SY5Y (from ATCC) was grown in DMEM 

(Dulbecco's Modified Eagle Medium) with GlutaMAX (Gibco by life technologies), 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Invitrogen) 

and 1% of antibiotic/antimycotic solution (Invitrogen) at 37°C in 5% CO2, 95% 

humidified air atmosphere. At 80% of confluence, SH-SY5Y cells were detached by 

tripsinization with a trypsin-EDTA (0.25% Trypsin and 1 mM EDTA, Invitrogen) for 5 

minutes at 37°C. The medium containing cells was centrifuged at 500g for 4 minutes 

and then the pellet was re-suspended in 6 ml of fresh medium. Cells were counted in a 

hemocytometer, and seed at 5x10
5
 cells per well for 12-well plates or 39,5x10

3
 cells per 

well for 96-wells plates.  

SH-SY5Y cells were co-transfected 24h after plating with parkin and wild-type VCP; 

parkin and mutant VCP; and parkin withpCMV6-myc empty vector. The co-

transfections were performed using a 3:1 ratio between FuGENE HD (Roche) and the 

plasmid DNA, 75 μL of the resulting complex mixture were used for each transfection.  
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3.6. RNA isolation 

Total RNA was isolated from cells at 24h, 48h and 72h post-transfection using the 

TRIzol Reagent (Invitrogen), according to the manufacturer’s recommendations. 

Briefly, cells were lysed in 500 μL of TRIzol and incubated for 5 minutes at room 

temperature, after which 100 μL of chloroform were added and mixed with each 

sample. After 3 minutes of incubation, samples were centrifuged at 12000g, for 15 

minutes and at 4°C, for phase separation. The supernatant was removed, and the RNA 

was precipitated with 250 μL of isopropyl alcohol and pelleted, after 10 minutes of 

incubation at room temperatures, by centrifugation at 12000g for 10 minutes at 4°C. 

The supernatant was discarded and the RNA pellet was washed with 500 μL of 75% 

ethanol.  Samples were centrifuged again at 7500g for 5 minutes and at 4°C, and the 

RNA pellet was air dried and re-suspended in DEPC-treated ddH2O. Finally, the 

samples were incubated at 50°C for 10 minutes to allow RNA solubilization and stored 

at -80°C. 

Total RNA quantification was performed using the NanoDrop 2000 spectrophotometer 

(Thermo Scientific). 

3.7. Reverse transcriptase and real-time PCR 

After RNA isolation, reverse transcription was performed with Superscript III First-

Strand Synthesis System for RT-PCR (Invitrogen) according to manufacturer’s 

instructions, using 1µg of total RNA of each sample and the standard oligo(dT)20 

primer. 

To measure the PARK2, VCP and the housekeeping gene ACTB expression in the 

transfected cells, analysis was conducted using quantitative Real-time PCR. Real-time 

PCR was performed using a iQ Real-time PCR detection system (Bio-Rad) with a mix 
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of 10 μL of iQ SYBR Green Supermix (Bio-Rad), 0.25 μL of the 10 μM primer 

(forward and reverse) (table 5), 1 μL of cDNA at 0.1 μg/ μL (10-fold dilution of the 

cDNA synthesis reaction) and 8.5 μL of ddH2O. After an initial denaturing cycle at 

95°C for 3 minutes, amplification was performed by 40 cycles of denaturation at 94°C 

for 30 seconds, annealing at 57°C for 30 seconds, and an extension at 72°C for 30 

seconds. Two replicas of each sample and for each gene were done and the average Ct 

was determined. Expression levels of PARK2 and VCP were normalized to the 

housekeeping gene ACTB. 

 
Table 5. Primers used for Real Time PCR. 

Gene Direction Primer Sequence 
Amplicon 

Tanneling 
size (bp) 

Parkin 
Fw 5’-CAGCCTCCAAAGAAACCATCAAG-3’ 

149 57ºC 
Rv 5’-CAGCCTCCAAAGAAACCATCAAG-3’ 

VCP 
Fw 5’-GGTAGAGGTGCCACAGGTAAC-3’ 

162 57ºC 
Rv 5’-CAGCCAGGAGGTCCATAGAAC-3’ 

ACTB 
Fw 5’-GCACTCTTCCAGCCTTCCTTC-3’ 

176 
57ºC 

Rv 5’-GTGATCTCCTTCTGCATCCTGTC-3’ 

 

 

3.8. Protein extracts and western blotting 

SH-SY5Y cells expressing the target proteins were lysed 24h, 48h and 72h after 

transfection using a cell-lysis buffer (RIPA buffer; Sigma-Aldrich) supplemented with a 

cOmplete Protease Inhibitor Cocktail (Roche). The cell extracts were sonicated and 

protein concentration was determined using a colorimetric assay (DC Protein Assay, 

Bio-Rad) in microplates according to the manufacturer’s instructions. 

Protein equivalent samples were denatured for 10 minutes at 100°C in an equal volume 

of 2x Laemmli buffer (with 0.7% β-mercaptoethanol). Protein were separated on 8% 

and 10% denaturating polyacrylamide gels and then transferred to Polyvinylidene 

Difluoride (PVDF) membranes. The membranes were blocked in a 3% non-fat powder 
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milk PBS-T solution, for 1 hour at 4°C and then incubated overnight at 4°C with the 

primary antibodies: anti-KDEL antibody detecting GRP78/BiP and GRP94 (mouse 

monoclonal, 1:500, Abcam), anti-Parkin (rabbit monoclonal, 1:1000, Novus 

Biologicals), anti-VCP (rabbit polyclonal, 1:1000, Cell Signaling) and anti-β-actin 

(mouse monoclonal, 1:10000, Santa Cruz) diluted in 3% milk PBS-T solution. After 

three washes with PBS-T, the membranes were incubated with the secondary antibodies 

(diluted in 3% milk PBS-T solution): anti-mouse (1:5000, Santa Cruz) or anti-rabbit 

(1:10000, Calbiochem) for 1 hour or 1hour and 40 minutes, respectively, at 4°C.  After 

three washes with PBS-T, chemiluminescent detection was performed by FemtoMax 

Chemiluminescent Western blot Kit (Rockland) and bands were visualized by 

autoradiography with Hyperfilm ECL (GE Healthcare). Quantification of band intensity 

was performed using GS-800 calibrated imaging densitometer (Bio-Rad). 

3.9. Immunofluorescence assays 

Cells were seeded in 12-well plates with a coverslips previously coated with 0.2mg/ml 

collagen type I (Stemcell), after an acid wash. Cells were plated and allowed to adhere 

for 48h before transfection. After 24h, 48h and 72h post-transfection, cells were fixed 

with 4% paraformaldehyde for 15 minutes at room temperature, washed in PBS and 

permeabilized with 0.5% Triton X-100 solution for 15 minutes. After washed in PBS, 

cells were blocked for 1 hour at room temperature using 10% FBS. Cells were 

incubated overnight at 4°C with the primary antibody anti-myc (1:1800, Roche). After 

three washes with PBS, cells were incubated at room temperature for 1 hour with the 

secondary antibody, Alexa Fluor-568 (1:800, Invitrogen). Nuclei were stained with 

Hoechst 33342 (1:10000, Invitrogen) at room temperature for 5 minutes. After washed, 

the coverslips were mounted in ProLong Gold antifade reagent (Invitrogen), allowed to 
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dry and sealed with nail polish. Images were acquired using a Carl Zeiss Axio Imager 

Z1 microscope with a coupled device camera, using 10X or 63X (oil) objectives. 

3.10. Quantification of intracellular parkin aggregates 

The quantification of parkin aggregates was performed using the ImageJ software. The 

12 bit images were converted to 8 bit and a ten-pixel background was substracted to the 

GFP channel. The number of particles per cell was analyzed by counting the area of 

every particle with 0.01 μm
2
 and higher, which allowed the exclusion of single pixels. 

At least 20 cells were analyzed per condition.  

3.11. Statistical analysis 

Number of cells with and without aggregates was compared between wild-type and 

mutant cells using the χ2 test.  

Aggregate quantification data are expressed as mean ± SEM. Comparison of the number 

and area of parkin aggregates was done using one-way ANOVA with a Bonferroni post-

hoc test for multiple comparisons. This test was applied to the three tested conditions 

(cells expressing only parkin, cells expressing parkin and wild-type VCP and cells 

expressing parkin and mutant VCP). Comparisons between the different testing 

conditions, to assess the effect of wild-type and mutant VCP on parkin aggregation, was 

performed by the non-parametric Kruskal-Wallis test. Differences were considered to be 

significant when p<0.05. Statistical analysis was performed using PASW Statistics 18.  
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4. Results 

 

During this project we have explored the effect of VCP, a protein involved in the ERAD 

machinery, in the clearance of parkin aggregates. We selected mutations located in 

different parkin domains in order to have a broader insight into the impact of ERAD on 

the diverse mutations. Our data show that VCP may have a role in the clearance of 

parkin aggregates and that VCP overexpression may result in an upregulation of parkin 

expression levels. Moreover, our data do not support the involvement of an UPR in the 

presence of the different parkin mutants, at least after 24 hours of expression. 

Nevertheless, the number of experiments needs to be enlarged and other time-points 

explored. Also, we have observed a striking increase in the expression of ER 

chaperones when co-expressing parkin and WT or DN VCP that we will further explore 

in order to get additional insight into the role of ER stress in parkin-associated 

pathogenesis.  

4.1. Co-transfection efficiency in SH-SY5Y cells 

Although neuroblastoma cells have been shown to be a difficult cell line to transfect we 

have optimized our transfection protocol and obtained high transfection efficiencies for 

parkin and VCP co-transfection. We have applied a 3:1 ratio between the transfection 

reagent and the plasmid DNA that resulted in a good balance between transfection 

efficiency and cytotoxicity. Under these conditions we were able to estimate 

transfection efficiencies between 80% and 90% in the SH-SY5Y cultures (Figure 8). 
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Figure 8. Co-transfection efficiency. SH-SY5Y cells transfected with pEGFP-parkin and 

pCMV6-VCP using FuGENE HD (Roche). Images obtained with a 10X objective on a Zeiss 

Axio Imager Z1, 48h after transfection. 

 

4.2. Influence of VCP in parkin aggregates clearance 

VCP is a component of the ERAD machinery, which contributes to the elimination of  

misfolded proteins by the proteasome. Previous data from our lab showed that some 

parkin mutants result in aggregate formation, when overexpressed in neuroblastoma cell 

lines. In order to explore the role of the ERAD machinery in aggregate clearance we co-

transfected cells with parkin − wild-type (WT) and nine different mutants − and VCP, 

either WT or double-negative (DN), and assessed aggregate formation.  

4.2.1. Parkin and VCP expression levels 

In order to assess co-transfection efficiency PARK2, VCP WT and VCP DN mRNA 

expression levels were quantified through real-time PCR and their expression levels 

DAPI Parkin 

VCP Merge 
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were normalized towards ACTB. Quantitative analysis results from two replicas, of each 

sample and for each gene from one experiment, at 24, 48 and 72 hours after transfection 

are shown in Figure 9. Overall our data suggests that the relative expression of normal 

and all PARK2 mutants do not differ at each time point. Thus, we can infer that 

transfection efficiency of the different construct does not present significant variation 

allowing us to proceed with mutants’ characterization and comparison. In co-

transfection of PARK2 with WT or DN VCP, although we have slightly less VCP 

expression when compared to PARK2, the expression does not differ between the 

different mutants, and thus, allows us to proceed with mutants’ characterization and 

comparison. These results still need to be replicated in additional experiments in order 

to perform the statistical analysis to confirm the comparable transfection efficiency.  
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Figure 9. Quantitative analysis of parkin and VCP mRNA levels at 24 h (A; D), 48 h (B; E), 

and 72 h (C; F) after co-transfection with VCP WT or DN. 

Quantitative analysis of parkin expression levels by western-blot, in SH-SY5Y cells has 

been a challenging task, with often-inconsistent results, that are consequently not shown 

here. Nevertheless, immunoblots of protein extracts collected 24h after transfection are 

shown in figure 10 as an example.  
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Figure10. Immunoblot of wild-type and mutant parkin protein levels in SH-SY5Y, 24 hours 

after transfection in cells expressing only parkin and co-transfected with WT VCP, using an 

anti-parkin antibody. 

 

The analysis of the immunoblots suggests increased parkin protein levels in the cells co-

transfected with parkin (WT and mutant) and WT VCP. Nevertheless, there is still the 

need to reproduce these results and to exclude an effect of the overexpression of WT 

VCP in β-actin protein levels that was used as loading control.  
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4.2.2. Wild-type and mutant parkin aggregation: modulation by VCP 

In order to explore the role of VCP in aggregate formation of mutant parkin, fluorescent 

imaging was carried out. Data shown in figure 11 reflects the results for one of the 

experiments, where the total numbers of cells analyzed are depicted, as well as the 

relative number of cells with or without aggregates, at 24 and 48 hours post 

transfection. In our model system, at a given time point only some of the mutants 

showed statistically significant differences from the wild-type form. Moreover, our 

analysis suggests that VCP is involved in the clearance of these aggregates.  
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Figure 11. Quantitative analysis of aggregate formation of wild-type and mutant parkin in SH-

SY5Y when co-transfected with WT or DN VCP, at 24 h (A) and 48 h (B) after transfection. 

Representation of one experiment is shown. *p<0.05. (w/- cells with aggregates; w/o- cells 

without aggregates) 

At 24 hours after transfection we have found a significant effect of wild-type VCP on 

aggregate clearance in five different parkin mutants: R42P (p=0.004), T240M 

(p=0.021), T402C (p=0.005), T415N (p=0.008) and G430D (p=0.020), showed by a 

reduction in the number of cells with aggregates. At 48 hours after transfection our 

results indicate a significant effect of wild-type VCP in the number of cells with 

aggregates for N52Mfsx29 (p=0.031) and R275W (p<0.001). 

Regarding, the effect of the double-negative VCP in parkin mutants, our analysis does 

not correspond to the expected results that would be an increase in the number of cells 

with aggregates, which was not observed either at 24 or 48 hours after transfection. 

However, at 48 hours the overexpression of the dominant negative VCP appears to 

significantly increase the number of cells with aggregates for wild-type parkin 

(p=0.002). On the other hand, the effect of this dominant negative VCP on parkin 

R275W results in a significant reduction of the number of cells with aggregates 

(p=0.001). 
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Figure 12. Representative images of SH-SY5Y, 24 hours (A) or 48 hours (B) after transfection 

in cells expressing only Parkin (first column) or co-transfected with Parkin and WT VCP 

(second column) or Parkin and DN VCP (third column). The cell nucleus is counterstained with 

Hoechst 3342.   
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Regarding the mean number of aggregates per cell showing parkin aggregation we did 

not observe any statistically significant differences at 24h and 48h (figure 13). 

 

 
Figure 13. Mean number of aggregates per cell with parkin aggregates at 24 h (A) and 48 h (B) 

after co-transfection. Results are presented as mean ± SEM. No statistically significant 

differences were found. 
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Regarding the cellular distribution of aggregates, no particular distribution in any 

intracellular location was observed. Representative images of parkin aggregation are 

displayed in figure 12, randomly selected from each condition at a given time point. 

4.3. VCP co-localizes with parkin aggregates 

Concerning the cellular location of parkin and VCP in the cells showing aggregates our 

data suggests that parkin aggregates co-localize with WT and DM VCP. In particular, 

for the R275W mutant aggregates formed in neuroblastoma cells (Figure 14).  

    

  

    

 

Figure 14. VCP co-localizes with parkin aggregates (A) Co-localization of parkin aggregates 

(green) and DN VCP
 
(red) in SH-SY5Y cells. (B) Co-localization of parkin aggregates (green) 

and WT VCP
 
(red) in SH-SY5Y cells. (C) Parkin aggregates (green) in cells co-transfected with 

pCMV6-myc empty vector
 
(red). Co-locaization is shown in the merge pictures (fourth column). 

Images were obtained 48 hours post-transfection (63x). 
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4.4. Expression of GRP78 and GRP94 in SH-SY5Y expressing parkin and VCP 

Sustained accumulation of misfolded proteins within the ER may activate an ER stress 

response known as UPR, which results in three protective cellular responses, leading to 

the upregulation of ER stress genes, including binding immunoglobulin protein 

(GRP78/BIP). 

To explore the possibility of ER stress activation by parkin mutants, and the effect of 

WT and DN VCP in this stress response we started to evaluate ER stress activation by 

assessing GRP78/BIP and GRP94 expression levels through western-blot in extracts of 

cells transfected only with parkin and co-transfected with parkin and WT or DN VCP 

(figure 15).  

 

Figure 15. An example of immunoblot of GRP78 and GRP94 protein levels in SH-SY5Y, 48 

hours after co-transfection with DN VCP, using an anti-KDEL antibody. 

 

Data obtained from one experiment at 24 hours after transfection are shown for 

GRP78/BIP and GRP94 (Figure 16). 
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Figure 16. Quantitative analysis by western-blot of GRP78 (A) and GRP94 (B) protein levels in 

SH-SY5Y cells expressing parkin or parkin and WT or DN VCP, at 24 hours after transfection, 

using anti-KDEL antibody.  
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Our results show a tendency towards an increase in GRP78/BIP expression in cells 

expressing parkin mutants in the presence of WT VCP. Even in cells expressing parkin 

and the DN VCP, GRP78/BIP levels although decreased when compared to the cells 

expressing parkin and WT VCP, are higher than the levels observed in cells transfected 

only with Parkin (Figure 16A). 

Regarding GRP94 expression, the levels of this protein are increased in cells expressing 

only parkin when compared with cells co-expressing parkin and WT VCP for all the 

mutants, except for the mutant T415N. Conversely, in cells co-expressing parkin and 

the DN VCP, GRP94 shows higher protein levels for both frameshift mutations 

(N52MfsX29 and L358RfsX77) (Figure 16B). 
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5. Discussion 

 

Although the aetiology and pathogenesis in PD are still poorly understood, central 

players causing rare genetic forms of PD should prove useful to understand idiopathic 

PD. Among those is a juvenile, autossomal recessive, form of PD (PARK2 gene), 

caused by mutations in parkin, an E3-ubiquitin ligase. In this study we selected nine 

mutations covering all protein domains, including the most frequent mutations found in 

Portuguese patients (our group’s unpublished results).  

Parkinson’s disease is a proteinopathy or protein conformational disorder that is 

characterized by the accumulation of misfolded proteins into aggregates that adversely 

affect neuronal function and result in cell death. Aggregate formation in AR-PD is 

controversial, but recent studies showed that missense mutations resulting in retention 

of ubiquitin ligase activity lead to parkin aggregation [69]. In this context we aimed to 

clarify the role of different cellular response mechanisms in the formation and clearance 

of parkin aggregates, namely the endoplasmic reticulum stress and endoplasmic 

reticulum (ER)-associated protein degradation. 

In this study, we used a neuroblastoma cell line, SH-SY5Y, to take advantage of their 

neuronal-like nature and of the properties shared with dopaminergic neurons, namely, 

the intracellular substrates for dopamine synthesis, metabolism and transportation. This 

neuronal cell line is one of the most widely used for study the mechanisms involved in 

PD [87]. Although previous work from our group has shown that three of the parkin 

mutants, N52MfsX29, R275W and L358RfsX77, are highly prone for aggregation 

(unpublished results), in the present project we did not observed this severe phenotype. 

One possible explanation is the fact that in this study we are using co-transfection and 

thus less parkin construct in each experiment. This is corroborated by the fact that in the 
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present work we have more cells with low intensity of GFP expression than when 

transfecting only parkin constructs, that most probably will need increased expression 

times to develop a comparable phenotype, a question we will further explore. 

 

5.1. ER-associated protein degradation is involved in parkin clearance   

Recent studies confirm the involvement of VCP in the clearance aggregates in different 

neurodegenerative disorders. Namely, VCP was found to mediate and reduce ataxin-3 

aggregation in a dose-dependent manner and to reduce the toxicity of this polyQ 

expansion responsible for Machado-Joseph disease [88]. Also, VCP was found to 

modulate TDP-43 neuronal inclusions in frontotemporal lobar degeneration [89].  

VCP is an AAA-ATPase that facilitates the translocation of misfolded ER-proteins into 

the cytosol and thus is an essential component of the ERAD machinery [90]. 

Interestingly, parkin is an ubiquitin ligase (E3) directly involved in ERAD that 

ubiquitinates specific substrate proteins playing a protective role by tagging misfolded 

proteins [42].   

To explore the involvement of ERAD in parkin-associated PD we co-expressed WT or 

DN VCP together with WT or different parkin mutants and assessed aggregate 

formation in these cellular models. 

Here, we show that parkin is probably a new substrate for VCP, which will promote its 

retrotranslocation and delivery to the proteasome to be degraded. Also, VCP may have a 

role in the clearance of misfolded mutated parkin.    

Our results show that at 24 hours after transfection the expression of WT VCP leads to a 

generalized reduction in the number of cells with parkin aggregates for all the studied 
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mutants except the N52MfsX29 mutation. This mutant shows a particular behavior, as 

this reduction on the number of cells with aggregates is not observed even at 48 hours 

after transfection. The number of cells with aggregates for this mutant does not differ 

much in the three different conditions (parkin, parkin co-transfected with WT VCP and 

parkin co-transfected with DN VCP). This mutation causes the deletion of the entire 

RBR domain and thus the resulting protein consists of only the UBL domain. We may 

hypothesize that somehow this small protein may be interpreted as an ubiquitin 

molecule and thus not be recognized by VCP for translocation.  

Another hypothesis may be the involvement of a nonsense mediated mRNA decay 

(NMD) mechanism in the modulation of this frameshift, as we see reduced levels of this 

mutant by western-blot. NMD is an evolutionarily conserved mRNA surveillance 

pathway that preferentially destroys mRNAs harboring premature translation 

termination codons (PTCs), as it occurs in the N52MfsX29 mutation, to protect the cells 

from potentially harmful effects [91]. 

Although we still need to enlarge the amount of data and to quantify aggregation at 72 

hours after transfection we have evidence for the involvement of ERAD in wild-type 

and mutant parkin clearance. Also, our results suggest that perhaps the ERAD 

machinery needs more time to be able to clear the parkin with frameshift mutations, and 

consequently result in a reduction on the number of cells with aggregates.  

Previous data from our group, shows that two mutants N52MfsX29 (located in the 

ubiquitin-like domain) and R275W (located in the RING1 domain) are highly prone to 

aggregation, resulting an increased number of cells with aggregates, as well as an 

increased number of aggregates in cells with aggregates when compared with WT 

parkin. In contrast, our data are not consistent regarding the aggregation-proneness of 

these two mutants, maybe due to the lower levels of parkin expression under co-
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transfection conditions. Interestingly, our results indicate that these are the only two 

mutants, that when co-transfected with WT VCP show a significant decrease in the 

number of cells with aggregate only at 48 hours, corroborating the need to increase 

expression time in order to have comparable results.  

Additionally, we co-transfected SH-SY5Y cells with WT and mutant parkin with a DN 

VCP. Dominant negative (DN) VCP  consists of mutations in both the D1- and D2-

domains which abolishes ATPase activity and functions as dominant negative when 

expressed exogenously, and this mutant has been extensively used to interrogate VCP 

function [92]. Contrary to what we would expect, our results did not show evidence of a 

major increase in the number of cells with parkin aggregates when we co-transfected 

DN VCP, when compared to the cells transfected only with parkin. However, Taeko et 

al, showed similar results with experiments with expanded polyQ aggregates, in which 

VCP had been knockdown through RNA interference. Other studies with severe VCP 

KD or expression of a DN VCP have been reported to diminish aggresome formation 

[93, 94]. In order to clarify this issue in parkin-associated aggregation we need to assess 

aggregation at 72 hours after transfection with the DN VCP and maybe assess parkin 

aggregation in cells with silenced VCP instead of the overexpression of a DN.  

Several studies have reported a co-localization of VCP with ubiquitin-positive 

inclusions in patients with Alzheimer's and Parkinson's disease [95]. Moreover, VCP 

also co-localized with nuclear inclusions in neurons of Huntington's and Machado–

Joseph’s disease [96].   

In this study, we have also found VCP labeling co-localized with parkin aggregates, 

which may suggest that these proteins do share the same biological pathway, and that 

they may interact. However, additional co-localization experiments and 

immunoprecipitation assays are needed to confirm this hypothesis. In particular it will 
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be very interesting to explore the co-localization and interaction of VCP with the 

different parkin mutants.  

 

5.2. Parkin mutants do not induce an ER stress response 

The accumulation of unfolded proteins can induce ER stress and activate an unfolded 

protein response (UPR), which results in three protective cellular pathways, required for 

the cells to cope with stressful conditions; nevertheless, too severe and prolonged ER 

stress results in the induction of apoptosis. 

In general, protein aggregates do not accumulate in unstressed, healthy neurons, in part 

due to the existence of cell “quality control machineries”, which include molecular 

chaperones. Chaperones are believed to provide a defence mechanism against the 

toxicity of misfolded proteins, by preventing inappropriate interactions, within and 

between polypeptides, and promoting protein refolding.  

It has been shown that misfolded proteins and aggregates, even when involving 

cytosolic proteins, are able to induce an UPR, resulting in the upregulation of ER stress 

genes, such as BIP/GRP78 or GRP94 or even PARK2. 

We explored the possibility of an UPR activation by assessing the expression of ER 

chaperones protein levels, namely GRP78 and GRP94, through western-blot in extracts 

from cells expressing only parkin or co-expressing parkin and WT or DN VCP.  

The results obtained until now do not support the activation of an UPR in the presence 

of mutant parkin, although we still need to assess GRP78 and GRP94 levels after 

prolonged parkin expression. Interestingly, we observed an increase in the expression of 

the ER chaperone GRP78 in cells expressing parkin and WT VCP when compared with 

cells expressing only parkin, 24 hours after transfection. These results are consistent 
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with an increase of parkin protein levels in the cells co-transfected with WT VCP. 

Yuzuru et al, demonstrated that Parkin is up-regulated in response to unfolded protein 

stress and suppresses unfolded protein stress-induced cell death, suggesting that the 

physiological role of Parkin involves dealing with unfolded protein stress responses 

[43]. Also, recently it has been shown that stress-induced upregulation of parkin is 

mediated by ATF4 a transcription factor of the unfolded protein response (UPR) [97]. 

In contrast, West et al, evaluated endogenous parkin in the SH-SY5Y cell line at the 

promoter, RNA, and protein levels in response to unfolded protein stress induced by 

tunicamycin and no significant changes were detected in parkin levels, thus suggesting 

that parkin is not regulated by the unfolded protein response in human neuroblastoma 

cells [98]. 

In addition, we observed an increase of GRP78 and even GRP94 levels in SH-SY5Y 

cells expressing parkin and the DN VCP. This probably relates to the increased burden 

on the cell, as it has to deal with the additional expression of the dominant negative 

VCP. We can even hypothesize that in this condition the cell might have to react earlier 

and may trigger an ER-stress response earlier than 24 hours.  

In an ER-stress response situation, GRP78 is the first ER molecular chaperone that was 

shown to bind assembled immunoglobulin and prevent its transport from the ER lumen 

[99]. Afterwards, it was demonstrated that prolonged unfolded mutants trigger another 

molecular chaperone, GRP94, leading to the designation of this signaling pathway as 

the UPR [100]. 

 The role of aggregates in pathology is still controversial and it is also not clear whether 

the different evidences of ER stress activation in PD is largely neuroprotective or 

whether it directly contributes to the disease process.  
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6. Conclusion 

 

In the present study we explored the effect of parkin and VCP on ER function, in order 

to get additional insights into ER stress in Parkinson disease, and to better understand 

the crosstalk between ER and UPS, through ERAD. 

Our results show that VCP overexpression results in a decrease in the number of cells 

with parkin aggregates and thus supports the hypothesis that parkin is a VCP substrate 

and the role of ERAD in parkin-associated PD. Also, we found an up-regulation of 

parkin in response to ER stress, when dopaminergic neuroblastoma cells were co-

expressing WT VCP. Also, we observed a striking increase in the expression of ER 

molecular chaperones in cells co-expressing parkin and WT or DN VCP.  

In conclusion, our results suggest that mutations in PARK2 lead to parkin misfolding, 

contributing to the formation of aggregates that co-localize VCP. Also, we do not have 

evidence of the activation of an UPR in the presence of mutant parkin. With this work 

we enlarge the amount of data relating parkin with the endoplasmic reticulum and in 

particular with ERAD, raising the possibility that modulation of VCP and ERAD 

activity might have potential therapeutic significance for AR-PD. 
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7. Future Perspectives 

 

Taking into account the obtained results it will be most important to assess aggregate 

formation in all conditions at 72 hours after transfection. Also, some of these results still 

need to be further explored and other time-points assessed in order to perform the 

statistical analysis and confirm the present data. In particular for the ER stress response, 

we can also assess expression levels at the mRNA level through real-time PCR.  

To better understand the neuroprotective or cytotoxic effect of the three pathways 

activated in the UPR, specific inhibitors will be used for each, as well as the expression 

levels of proteins downstream GRP78 and GRP94. 

Other important points to clarify are the total ubiquitination level in the different 

experimental conditions as well as proteasome activity level to better understand the 

involvement of parkin aggregates in UPS-ERAD crosstalk. 

Co-localization of VCP and parkin needs to be carefully explored paying special 

attention to the impact of the different mutants in these proteins’ subcellular location. 

To clarify the impact of VCP functional impairment in aggregate formation and in ER 

stress this will be addressed by silencing VCP by small interference RNA. 

Finally, it will be important to evaluate the effect of VCP expression in cell viability, 

using SH-SY5Y cells co-transfected with parkin and WT or DN VCP, or under VCP 

silencing. 
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