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Resumo 
 

O arroz (Oryza sativa L.) é atualmente o alimento mais importante do 

mundo, sendo a base da alimentação de mais de metade da população 

mundial. Na Europa, Portugal é o principal consumidor, com os vales dos rios a 

serem as regiões privilegiadas para a cultura deste cereal. Ao contrário de 

outros países produtores, os programas de melhoramento ainda se baseiam 

muito nos métodos convencionais. A androgénese representa uma ferramenta 

muito útil para o desenvolvimento de novas variedades de arroz, reduzindo o 

tempo, o trabalho e os custos na obtenção de objetivos específicos no 

melhoramento do arroz. A cultura de anteras é a técnica mais aplicada para 

induzir a androgénese. 

Neste trabalho, que teve origem em 2010, a cultura de anteras foi 

efetuada em diversas linhas experimentais e variedades de arroz produzidas 

no campo experimental do Bico da Barca no vale do rio Mondego. As panículas 

de arroz sofreram um pré-tratamento com frio durante 10 dias a 4ºC em 2012. 

As anteras foram excisadas das espiguetas e inoculadas em meio N6 

modificado com 4 tratamentos de indução diferentes: A1 - 2 mg/L 2,4-D e 3% 

de sacarose; A2 - 2 mg/L 2,4-D, 1.5 mg/L kinetina e 3% de sacarose; A3 - 1 

mg/L 2,4-D, 1mg/L NAA, 2 mg/L kinetina e 3% de sacarose; A4 - 2 mg/L 2,4-D 

e 6% de sacarose. Os calos polínicos formados foram transferidos para 4 

meios de regeneração diferentes consistindo todos em meio base MS 

suplementados com 3% de sacarose: D3R - BAP (1 mg/L) e NAA (0.1 mg/L); 

RR1 - kinetina (4 mg/L) e NAA (1 mg/L); RR2 - kinetina (2 mg/L) e NAA (0,5 

mg/L); RR3 - kinetina (2 mg/L) e NAA (1 mg/L).  

As plântulas regeneradas foram aclimatizadas numa câmara de 

crescimento em condições controladas e num substrato muito semelhante 

àquele encontrado nos campos de cultura de arroz, sendo depois analisadas 

através de citometria de fluxo. Os resultados mostraram, no geral, que o 

genótipo e as condições de crescimento das plantas dadores desempenham 

um papel importante na indução de calos e na regeneração de plantas, com 

algumas linhas a apresentarem taxas de indução de calos e regeneração de 

plantas maiores que outras linhas cultivadas nos mesmos meios. O meio A3 

deu a melhor frequência de indução de calos e o meio RR1 apresenta os 
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melhores resultados na regeneração de plantas. A produção de plantas albinas 

foi observada, estando relacionada com todos os meios de indução e 

regeneração. 

A análise por citometria de fluxo revelou a obtenção tanto de plantas 

haplóides como de diplóides, com a presença também de alguns indivíduos 

triplóides, tendo sido os haplóides obtidos em maior percentagem. As plantas 

diplóides podem ter duas origens diferentes: através da duplicação espontânea 

dos cromossomas ou da formação de calos dos tecidos somáticos das anteras. 

As plantas resultantes da duplicação espontânea de cromossomas são 

chamadas de dihaplóides e são as mais importantes para os programas de 

melhoramento. As plantas obtidas estão ainda a ser analisadas e poderão ser 

usadas em programas de melhoramento com o objetivo de melhorar o sucesso 

dos métodos para a produção de novos cultivares. 

 

Palavras-chave: androgénese, arroz, citometria de fluxo, cultura de anteras, 

dihaplóides  
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Abstract 
 

Rice (Oryza sativa L.) is currently the main food crop in the world, 

feeding more than half the global population. Portugal is the main consumer of 

rice in Europe, with river valleys as privileged regions to exploit the culture of 

this crop. In opposition to other producer countries, breeding programs still rely 

mainly on conventional methods. Androgenesis represents a powerful tool for 

the development of new varieties of rice, reducing time, labor and money to 

achieve specific goals in rice breeding. Anther culture is the most common 

technique used to induce androgenesis.   

In the present work, which started in 2010, anther cultures where initiated 

from different experimental lines and cultivars of rice produced in the Bico da 

Barca experimental field in the Mondego river valley. Rice panicles were cold-

pretreated for 10 days at 4ºC on 2012. The anthers were excised from spikelets 

and cultured in modified N6 medium with four different induction treatments: A1 

- 2 mg/L 2,4-D and 3% sucrose; A2 - 2 mg/L 2,4-D, 1.5 mg/L kinetin and 3% 

sucrose; A3 - 1 mg/L 2,4-D, 1mg/L NAA, 2 mg/L kinetin and 3% sucrose; A4 - 2 

mg/L 2,4-D and 6% sucrose. Pollen calli, were transferred to four different 

regeneration media consisting in MS basal medium supplemented with 3% 

sucrose and: D3R - BAP (1 mg/L) and NAA (0.1 mg/L); RR1 - kinetin (4 mg/L) 

and NAA (1 mg/L); RR2 - kinetin (2 mg/L) and NAA (0.5 mg/L); RR3 - kinetin (2 

mg/L) and NAA (1 mg/L).  

The regenerated plantlets were acclimatized in controlled conditions in a 

growth chamber and in soil collected at Bioc da Barca, being analyzed 

afterwards by flow cytometry. The results showed, in general, that genotype and 

growth conditions of donor plants, play an important role in the induction of 

callus and plant regeneration, with some lines revealing a higher rate of callus 

formation and plant regeneration than other lines cultured in the same media. 

A3 medium gave best induction frequency of pollen calli and RR1 showed the 

best results for plant regeneration. The production of albino plants was 

observed and related to all induction and regeneration media.  

Flow cytometry analyses revealed the presence of both haploid and 

diploid plants among the regenerants.  A few triploids were also found. The 

diploid plants may have two different origins: through spontaneous chromosome 
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doubling or callus formation from anther somatic tissues. The plants resulting 

from spontaneous chromosome doubling are called dihaploids and are the ones 

with great interest for breeding programs. The plants so far obtained are still 

being analyzed and could be used for breeding programs with the aim to 

improve the yield of the methods for new varieties development.      

 

Key words: androgenesis, anther culture, dihaploids, flow cytometry, rice 
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Introduction 
 

1.1. Biotechnology – methodologies and applications 

 

According to recent estimations (FAO, 2012), world agriculture will need to 

feed more than 9 billion people by 2050, about 2 billion more than today. Most 

of the population growth will occur in countries where hunger and natural 

resource degradation are already prevailing. To feed this larger mostly urban 

population, food production will have to increase by 70%; for example, cereal 

production will need to reach about 3 billion tons, compared with the actual 2.1 

billion (Altman and Hasegawa, 2012). It should be also mentioned that the 

problem of food supply refers not only to caloric demands, but also to increased 

intake of vitamins, essential minerals, and other important nutritional factors via 

production of biofortified food to improve the health of undernourished people, 

especially in children and in poor countries.  

Three major causes can be mentioned in the urgent need for alternative 

biotechnologies, mostly in plants: 1) the already referred increase of world 

population; 2) recognition that human health is affected by disease-causing 

pathogenic organisms and by the nutritional quality of foods; and 3) global 

climatic changes which may be responsible for adverse biotic and abiotic 

stresses to crops and ecosystems. It is estimated that in developing countries 

80% of the necessary food production increase would come from yield increase 

and cropping intensity, and only 20% from expansion of arable land, which 

emphasizes an even greater need for improved agricultural technologies and 

biotechnologies (Altman and Hasegawa, 2012). 

Therefore, in a world where the population growth is overtaking food 

production, agricultural and plant biotechnologies need to be swiftly 

implemented. Classical agriculture is no longer sufficient to supply the demand 

of developed and developing countries worldwide for food production, as well as 

for new plant commodities; thus, in the last decade a phenomenally greater 

understanding of plants biology took place, which allowed the increase of plant-

derived food, fiber, biopolymer, biofuel, and metabolite production.  
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In the last years science has experienced a huge breakthrough thanks to 

diverse new methodologies and a respective range of applications. Such 

innovations are usually known as Biotechnology, which can be described as the 

commercial application of all types of biological reactions and processes. Living 

cells and its components can be used to produce a large number of useful 

compounds like therapeutics and other products also important (Nair, 2008). On 

this regard, advances in molecular biology, structural and functional genomics, 

bioinformatics and related fields have led to the development of biotechnology 

driven tools, methods, and products, making biotechnology a key area for the 

21st century. Focusing only in Plant Biotechnology, this one refers to the 

manipulation of plants to obtain new characteristics and using them to achieve 

certain products or performing several functions (Canhoto, 2010). 

Inside the extensive field of Plant Biotechnology, plant tissue culture, as it 

is generically referred to, is the most prominent plant biotechnology tool. It was 

developed primarily as a platform for basic research on cellular and tissue 

differentiation, and morphogenesis and hormone identification and function 

(Altman and Hasegawa, 2012). Plant tissue culture is a technique of culturing 

plant cells, tissues and organs on synthetic media under aseptic environment 

and controlled conditions of light, temperature, and humidity (Dagla, 2012), in a 

way to avoid contamination by microorganisms. The technique depends mainly 

on the concept of totipotency of plant cells which refers to the ability of a single 

cell to express the full genome by repeated divisions (Hussain et al., 2012). 

There are many applications for this technique including plant 

micropropagation, production of secondary metabolites, genetic transformation 

and somatic breeding methodologies, as protoplast fusion and generation of 

haploids (Canhoto, 2010).   

The beginning of the XX century was marked by systematic efforts made 

by several researchers to culture excised plant tissues and organs to 

understand their growth and development under controlled laboratory 

conditions. In 1838, Schlein and Schwann proposed that cells are the basic 

structural units of all living organisms, capable of autonomy and therefore it 

should be possible for each cell to regenerate into a whole plant (Hussain et al., 

2012). Based in this concept of totypotency, in 1898 the German botanist 

Gottlieb Haberlandt was the first to culture isolated, fully differentiated cells. His 
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goal was to achieve continued cell division in explanted tissues on nutrient 

media. Although he succeeded in maintaining isolated leaf cells alive for 

extended periods, the cells failed to divide because the lack of plant hormones 

in the nutrient media (Dagla, 2012). In 1926, Haberlandt’s vision came true with 

the discover of the first plant growth hormone, the indole-3-acetic acid (IAA) by 

Went: Later on (1939), White, Gautheret and Nobecourt reported unlimited 

growth of callus cultures (Dagla, 2012; Hussain et al., 2012).  This discovery 

boosted the researchers to understand the processes controlling development 

in plants (Pais, 2003). During the 50’s, tissue culture has achieved great 

successes, and in 1954 Muir was the first to break callus tissues into single 

cells, and Reinert and Steward in 1959 regenerated embryos from callus 

clumps and cell suspensions of Daucus carota (Hussain et al., 2012). 

A mass of proliferating non-organized cells is usually known as “callus” 

(Dagla, 2012), and its formation is frequent in tissue culture. Some callus have 

the ability to regenerate whole plants in the appropriate medium and conditions. 

Plant tissue culture media contain all the nutrients required for the normal 

growth and development of plants such as macronutrients, micronutrients, 

vitamins, a carbon source, and other organic components, the most important 

being the plant growth regulators (PGRs). PGRs play an essential role in 

determining the developmental pathway of plant cells and tissues in culture. 

Auxins, cytokinins and gibberellins are the most commonly used PGRs 

(Hussain et al., 2012). The type and concentration of hormones used vary 

according to the explants used and to the objectives of the culture process.  

One of the most important applications of plant biotechnology is haploid 

production. The general term “haploid” is applied to any plant possessing half 

the chromosome number of the sporophyte. Haploid plant formation may occur 

spontaneously in nature, resulting from the proliferation of haploid cells of the 

embryo sac but also, although less often, from the proliferation of male gametes 

(Bajaj, 1983).  

Haploids have attracted great interests of geneticists, plant embryologists, 

physiologists and breeders that long wished for the production of haploids due 

to their potential for plant breeding. The most important is that homozygous 

diploids (pure lines), can be obtained in one generation via chromosome 
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doubling of the haploid plants, hence drastically reducing the breeding cycle, in 

comparison to repeated cycles of inbreeding in self-pollinating crops, the 

traditional method of homozygous production (Maheshwari et al., 1980; 

Dunwell, 1985; Han and Hongyuan, 1986). Haploids may also be used to easily 

detect mutations and for the recovery of unique recombinants. Haploids 

possess only one allele at each locus which means that they cannot be hidden 

by dominant alleles. This is particularly valuable in mutation breeding and 

research of mutant genetics (Bajaj, 1983; Han and Hongyuan, 1986). Another 

application is to facilitate genetic analysis of recombinant gametes, since in 

haploids gametic genotypes are fully expressed at plant level (Han and 

Hongyuan, 1986). Haploids can also be useful in genetic transformation since if 

transformation is induced at the haploid level, chromosome doubling will give 

origin to genetic transformed plants homozygous for the transformed character 

(Huang, 1992).  

For breeding purposes is of great importance, to induce haploids in higher 

numbers (Reinert and Bajaj, 1977). Haploid formation has been reported in 

many species of angiosperms belonging quite distinct families and genus. 

However, for most of these species, haploid based breeding has been quite 

limited due to the low frequencies of induction (Han and Hongyuan, 1986; 

Wedzony et al., 2009).  Haploids can usually be induced by several methods, 

including ionizing irradiation and radioisotopes, thermal shocks, distant 

hybridization, delayed pollination, application of abortive pollen, spraying with 

various chemicals, in vitro parthenogenesis, chromosome elimination by culture 

of young embryos, culture of isolated pollen and protoplasts and the in vitro 

culture of the excised anthers or isolated microspores/pollen (Bajaj, 1983), this 

last method became the more important and reliable in the last 50 years.  

In 1922, Blakeslee, while working with Datura stramonium, reported the 

natural occurrence of haploids. Later on (1953), Tulecke succeeded in growing 

calli from pollen grains of the gymnosperm Ginkgo biloba when cultured in vitro. 

This calli had the haploid number of chromosomes; however it has not been 

possible to regenerate plants from them (Nitsch, 1977; Bajaj, 1983). Since this 

pioneer reports, efforts have been made to improve haploid plant production. It 

was only in 1964 that Guha and Maheshwari (1964, 1966) first reported the 

direct development of haploid embryos from microspores of Datura innoxia 
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(Solanaceae) by culture of excised anthers in vitro, which was later confirmed to 

have origin in pollen grains (Guha and Maheswari, 1967), given rise to a huge 

impulse to studies on the potentialities of a number of other angiosperm pollen 

for cell division and growth in vitro in several laboratories all over the world.  

After the first discoveries of Guha and Maheshwari (1964) a series of 

studies were made to obtain the same success in others species. Among 

dicotyledons, plants belonging to Solanaceae, have consistently proved to be a 

good source for induction of the pollen embryogenesis. On the other hand, in 

monocotyledons, there is a long list of plants belonging to Gramineae 

(Poaceae) in which haploid plants have been obtained, including several 

grasses and major crop plants, such as rice, wheat and maize (Canhoto, 2010; 

Olmedilla, 2010). So, it’s clear that Gramineae shares with Solanaceae a 

proeminent role as suitable material for research on androgenesis (Raghavan, 

1986). Most solanaceous plants have proved versatile in that embryoids 

developed directly from the pollen, unlike the monocots group which is 

characterized by the formation of a callus before organogenesis occurs 

(Narayanaswamy and George, 1982).   

In angiosperms, the micropore is the product of a reduction division of the 

pollen mother cell and is the basic entity from which the male gametophyte 

arises (Raghavan, 1986). Although during microgametogenesis pollen grains 

are programmed for differentiation into gametes and to form pollen tubes, 

immature pollen or microspores of many plants may also enter an alternative 

developmental pathway in a relatively simple salt medium, in which they initiate 

indeterminate growth giving rise to mature plants with the haploid or gametic set 

of chromosomes, a process usually known as pollen embryogenesis, 

microspore embryogenesis or androgenesis (Raghavan, 1986; Reynolds, 

1997), this last term being used in this work. 

Before analysis of the sporophytic pathway of pollen development, it is 

suitable to briefly review normal pollen ontogeny. 
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1.2. Microsporogenesis and microgametogenesis 

 

Pollen formation is the consequence of two temporal successive events 

occurring in the anthers: microsporogenesis and microgametogenesis. The first 

one begins when a diploid microsporocyte undergoes meiosis to produce a 

tetrad of haploid microspores which are held together by a callose wall, and 

ends with the degradation of the callose wall, and the release of individual 

microspores (Reynolds, 1997; Touraev et al., 1997). Microgametogenesis is the 

normal pathway of pollen development, and occurs with the continued growth of 

each microspore, which possesses a large central nucleus, ribosomes rich 

cytoplasm, and with various little vacuoles (Sangwan and Camefort, 1982) 

(Figure 1A-I).  The single nucleus migrates to a peripheral position in the cell 

where undergoes an asymmetric division, the first haploid mitosis (Reynolds, 

1997) (Figure 1A-II, III). This asymmetry of the mitotic fuse is due to the 

polarization of the nucleus, and consequently causes the unequal distribution of 

the cytoplasm in the daughter cells (La Cour, 1949).  

The resulting bicellular structure, the pollen grain, consists of a small 

generative cell and a large vegetative cell (Figure 1A- IV). The first one is 

destined to divide once more in the second haploid mitosis, to form the two 

sperm cells involved in double fertilization. In most of the species, pollen grains 

are shed as two-celled entities whereas in families such as Asteraceae, 

Cruciferae and Gramineae the pollen contains three cells at the time of 

shedding (Reynolds, 1997). The final stage of microgametogenesis take place 

when the pollen grain germinates by extruding a pollen tube. This singular 

structure is capable of extended growth and serves to transport the sperm to 

the embryo sac.    

 

1.3. An alternative route: androgenic pathways 

 

Based on observations performed along the years on the abnormal 

development of pollen grains, the origin of pollen embryoids and calluses has 

been described for a wide diversity of plants. Four pathways are usually 

indicated through which microspores can embark into an embryogenic pathway 

instead of the normal pathway of gamete formation. The first one, known as A 
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pathway (Sunderland, 1973), starts with an asymmetric division of the 

microspore, giving origin, as in vivo, to a large vegetative cell and a the small 

generative cell. The first one continues to proliferate to give rise to an embryo or 

a callus (Sunderland, 1973; Dunweel and Sunderland, 1976a) (Figure 1B-V). 

This route is an odd kind of event, but it is one of the most common pathways of 

pollen embryogenesis and one that has been thoroughly investigated. As the 

initial divisions of the vegetative cell are under way, the generative cell either 

disintegrates or undergoes a few divisions (Raghavan, 1986). The A pathway 

has been described for a series of plants such as Nicotiana tabacum (Horner 

and Street, 1978), Oryza sativa (Chen, 1977), and many others. 

In the second pathway, known as E pathway, the initial step is the same. 

However, it is the generative cell which proliferates and originates the 

multicellular pollen grains (Raghavan, 1986) (Figure 1B-IV). This route was first 

found by Raghavan (1978) in Hyoscyamus niger. The vegetative cell does not 

divide, or undergoes only a few divisions (Raghavan, 1986). This pathway is 

quite uncommon; however it has been observed in some species of cereals 

such as rice (Sun, 1978).  

In Datura innoxia, which has been a favored material for the study of 

androgenesis, another situation has been described. After the asymmetric 

division, the vegetative cell and the generative cell, rather than embark on 

pathways of independent divisions, can both embark on the sporophytic 

pathway of development by starting to divide simultaneously and then fuse with 

each other after a few divisions (Figure 1B-VI). This pathway is known as C 

pathway and was initially described by Dunwell and Sunderland (1976b).  

The last route, known as the B pathway, differs from all the above 

pathways. It starts with asymmetric division from which two morphologically 

identical cells arise. Further divisions of these cells produce a multicellular 

structure from which embryos or callus arise (Sunderland, 1973; Kaltchuk-

Santos and Bodanese-Zanettini, 2002) (Figure 1B-VII). This pathway has been 

demonstrated in several species such as Datura innoxia, Nicotiana tabacum, 

and Oryza sativa (Raghavan, 1986). 
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Figure 1 – A. Microgametogenesis: I. Young microspore with a central nucleus surrounded by 

small vacuoles; II. Vacuoles coalescence in a large one, the nucleus migrates to a peripheral 

position; III. Asymmetric mitosis; IV. Bicellular pollen grain with two structural and functional 

distinct cells, a small generative and a large vegetative cell. B. Androgenic pathways in vitro: 

I. Young microspore; II. Binucleate pollen; III. Binucleate pollen following a B mitosis; IV. E 

pathway – only the generative cell divides; V. A pathway – only the vegetative cell divides; VI. C 

pathway – both cells, vegetative and generative, divide; VII. B pathway – both cells continue to 

divide (adapted from Kaltchuk-Santos and Bodanese-Zanettini, 2002).     

 

1.3.1. Androgenesis – The process 

 

Regardless of the initial pattern, pollen grains suffer divisions until become 

multicellular, and in this stage there are two possible directions in the 

androgenic process to achieve the embryo stage: (1) the pollen acts like a 

zygote, undergoing various embryogenic stages resembling those of zygotic 

embryogenesis, the so-called direct androgenesis. This is observed in most of 
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the solanaceous and cruciferous species, e.g., Datura, Nicotiana, Atropa, 

Brassica; (2) multicellular pollen structures, instead of suffering normal 

embryogenesis, divide randomly to form a callus, which burst through the 

anther wall. This pathway is known as indirect androgenesis, and its common 

in species such as those of the genera Asparagus and Vitis, and among cereals 

(Sangwan and Sangwan-Norreel, 1987) (Figure 2). The callus either 

differentiates to form embryos or roots and shoots on the same medium, or it 

must be transferred to another medium to promote regeneration (Reinert and 

Bajaj, 1977). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Schematic representation of the culture of excised anthers and the two types of 

development of haploid plants by androgenesis, directly or through haploid callus (adapted from 

Reinert and Bajaj, 1977).  
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1.3.2. Androgenesis – Techniques 

The techniques by which immature pollen is induced to divide and 

regenerate may be separated into two main types: anther culture and 

microspore culture. In the first one, the pollen is cultured still enclosed by the 

somatic anther tissues, and in the microspore culture technique these somatic 

tissues are removed and the pollen grains isolated and cultured (Dunwell, 

1985). 

 

a) Anther culture 

This is the more commonly used technique to induced androgenesis in a 

number of species. It is a quite simple procedure in which anthers are removed 

from the plant and placed in a culture medium. Anthers are connected to the 

filament, and this one should be discarded from the culture to prevent somatic 

tissue callus, anthers have four pollen sacs where microspores are formed 

(Figure 3). A number of the microspores will survive and follow the androgenic 

pathway of development (Bajaj, 1983; Dunwell, 1985; Wedzony et al., 2009). 

Young flower buds at the appropriate stage of pollen development are 

surface-sterilized and the intact, uninjured dissected anthers inoculated on 

nutrient media (Narayanaswamy and George, 1982). During dissection, care 

should be taken to avoid injury to anthers as they often tend to produce callus 

from the injured surface, from the anther wall, so this anthers should be 

discarded (Maheshwari et al., 1980; Bajaj, 1983). Excised anthers must be 

placed in culture in direct contact with the nutrient medium as described by 

Sopory and Maheshwari (1976a), they found that placing the anthers 

horizontally on the surface of the medium resulted in the formation of the largest 

number of embryoids and that immersion of even a portion of the anther in the 

agar medium reduces anther response.  
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Figure 3 – A. A stamen comprising filament, connective tissue and anther. B. An outline of a 

cross section of an anther showing four pollen sacs containing uninucleate microspores 

(adapted from Bajaj, 1983). 

  

Anther culture is often the method of choice for haploid production in many 

crops because the simplicity of the approach allows large-scale anther culture 

establishment and application to a wide range of genotypes, and it was been 

widely used along the last years (Germanà, 2011). This technique is most used 

is cereals being a fast method for production of haploid or dihaploid plants that 

are used in breeding purposes, as an alternative to the numerous cycles of 

inbreeding or backcrossing usually needed to obtain pure lines in conventional 

plant breeding, becoming a well-established routine method in commercial plant 

breeding for some cereals (Jähne and Lörz, 1995).  

b) Microspore culture    

Anther culture technique suffers from one main disadvantage: plants may 

originate not only from the pollen grains, but also from various parts of the 

anther. The result can be a mixed population of plants with various levels of 

ploidy and different origins difficult to distinguish (Maheshwari et al., 1980). 

Furthermore its application to various crop plants is limited and, considering the 

large number of pollen grains in the anther, yields are still very low (Heberle-

Bors, 1989). To overcome these drawbacks a new method has emerged: the 

culture of isolated microspores. 

Microspore culture offers the advantage that the sporophytic anther wall 

tissues do not interfere in the process, and the development of the embryo can 

thus be followed directly (Touraev et al., 1997; Davies, 2003). The first success 

in culturing microspores free of the surrounding anther tissue was reported by 

Nitsch and Norreel (1973) in Datura innoxia. The technique of regenerating 

fertile plants from isolated microspores represents a potential tool for different 
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biotechnological applications. Microspores are very promising targets for 

genetic manipulation, because they are unicellular and can be regenerated to 

homozygous plants (Jähne and Lörz, 1995). The technique consists in the 

isolation of the microspores by gently squashing the anthers, in a liquid 

medium. Then the suspension has to be washed to eliminate the somatic 

tissues of the anther and then finally inoculate Petri dishes with the final 

suspension.  Several methods for separating pollen from somatic tissues have 

been developed. (Dunwell, 1985; Sangwan and Sangwan-Norreel, 1987).  

This technique offers the unique advantage of allow the sequence of 

androgenic events to be observed starting from a single cell, and thus more 

suitable for understanding the physiology and biochemistry of androgenesis, 

and the in vitro factors, that can directly affect the pollen behavior and haploid 

plant formation (Reinert et al., 1975; Bajaj, 1983; Heberle-Bors, 1989). Although 

microspores culture is an improvement over the anther culture method, only 

limited success has so far been achieved using this approach, due to the 

difficulty of the technique that requires higher skills and better equipment than 

anther cultures (Heberle-Bors, 1989). The need of an intermediate step of 

anther culture before microspore isolation to increase the efficiency of the 

process indicates that the anther wall may play a critical role in the early stages 

of development (Bajaj, 1983).  

 

1.4. Factors affecting androgenesis 

Androgenesis can be induced under adequate conditions, however there 

are numerous factors that influence the process and its efficiency, such as the 

physiological status of the anther donor plants, the genotype, the developmental 

stage of the microspores at the time of culture, the in vitro culture conditions, 

and the application of stress pretreatments.  

Also, the information about the mechanisms underlying induction is 

scarce, nonetheless studies have been shown that this redirection requires a 

stimulus-signal (Garrido et al., 1993). In anther culture systems stress is of 

critical relevance for blocking gametophytic development and for triggering 

androgenesis in competent microspores (Immonen and Robinson, 2000).   
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a) Growth of donor plants 

The quality of donor plants is a key factor for the success of androgenesis. 

The sample of microspores, their release from the anther, and their subsequent 

divisions leading to plant regeneration often depend on the conditions under 

which the donor plants grow in a particular environment (Datta, 2005). 

Experiments have shown that the number of microspores capable of division 

and regeneration can vary widely within a variety due to the environmental 

conditions in which the donor plants are grown (Vasil, 1980; Jähne and Lörz, 

1995).   

The main environmental factors affecting the vigor of donor plants include 

light intensity and quality, nutrition, photoperiod and temperature (Zheng, 2003). 

In order to establish a reproducible culture system the donor plants should be 

grown under controlled conditions either in a greenhouse or in a phytotron 

(Jähne and Lörz, 1995). Although well-ordered conditions seem to be essential 

for a controlled androgenesis, in general plants grown in the field have shown to 

be more effective as donors of anther or pollen (Pandey, 1973; Vasil, 1980).  

Seasonal variation in anther response is common in a number of species, 

therefore the age of the donor plants is an important aspect in androgenesis. In 

rice, plants grown during the dry season have provided the best microspore 

response (Datta, 2005). 

b) Genotype 

One of the most significant factors controlling the success of in vitro 

induction of haploids is plant genotype. It has been repeatedly observed that 

various species and cultivars exhibit different growth responses in culture 

(Bajaj, 1983, Datta, 2005).  

 One of these reports is the one made by Guha-Mukherjee (1973) that 

observed a strong effect of the genotype in the rice androgenesis. The 

occurrence of a strong genotype specificity is a general feature for all cereals. 

Obviously, genetic factors are important in determining the level of anther and 

microspore culture response (Jähne and Lörz, 1995). 
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c) Microspore Stage 

In general, there are two distinct phases of pollen development more 

adequate for switching pollen towards a sporophytic pathway: just before and 

immediately after the first haploid mitosis. The first haploid mitosis marks the 

end of the “juvenile” or “uncommitted” period of the pollen. Before this division 

the microspore has a large central vacuole, a thin-layer cytoplasm with few 

undifferentiated organelles. After this unequal asymmetric division, pollen enters 

into the maturation or gametophytic phase. Thus, the first haploid mitosis can 

serve as a marker, indicating the end of a dedifferentiated or a reversible state, 

and the beginning of a differentiated or an irreversible state (Sangwan and 

Sangwan-Norreel, 1987). 

The formation of atypical pollen grains lacking the usual generative-within-

vegetative cell arrangement has been reported in anther cultures of several 

species. These structures, designated P-grains by several authors, provide 

recognized pathways of androgenesis and are thought by some researchers to 

be the principal route in the formation of haploid embryos (Nitsch and Norreel, 

1973; Dunwell and Sunderland, 1976c). These P-grains are usually smaller, uni 

or bi-nucleated with a thin exine (Kaltchuk-Santos and Bodanese-Zanettini, 

2002). Horner and Street (1978) reported that all grains in Nicotiana tabacum 

that underwent androgenesis were of this type. 

The production of embryos from the haploid microspore represents a very 

dramatic switch in development that can only be achieved in the cells during a 

brief period immediately prior to, and following, the first pollen mitosis (Zaki and 

Dickinson, 1990). The significance of the age of the pollen in anther culture has 

been widely discussed. The critical stage varies from species to species. 

Generally, pollen cultured just prior to or after the first mitosis gave a positive 

response by producing typical embryos or callus masses, opposed to those 

showing meiotic stages in pollen mother cells and older ones with starch-filled 

grains that failed to produce embryos (Narayanaswamy and George, 1982). 

Observations on induced growth of anthers in several species seem to suggest 

that the most responsive phase for an anther to produce embryoids or callus is 

when microspores are at the uninucleate stage (Pandey, 1973).  
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In N. tabacum the number of anthers producing plantlets increased as the 

pollen at the time of anther excision approached the first mitosis, and a 

maximum response was shown by anthers containing early bicellular grains 

(Horner and Street, 1978, Garrido et al., 1993). On the other hand, in cereals 

and Brassica species the optimum stage is the early uninucleate period 

(Dunwell, 1985). It seems then that the stages most responsive to androgenic 

induction are either mid- to late-uninucleate or early-binucleate (Raghavan, 

1986; Reynolds, 1997) (Figure 4).  

Although the growth conditions influence the morphology of the donor 

plants it is possible to correlate the developmental phase of a tiller to the 

developmental stage of the microspores. Usually spikes can be preselected on 

the basis of the inteligule length between the flag leaf and the second leaf, and 

on the thickness of the tiller (Jähne and Lörz, 1995). 

 

 

 

 

 

 

 

 

Figure 4. A. Late-uninucleate microspore. B. Early-binucleate microspore. 

 

d) Culture conditions 

Many efforts have been made to optimize culture media for androgenesis 

induction, especially in cereals. The induction medium has as a role not only 

microspore nourishment, but also to direct the pathway of embryo development 

(Jähne and Lörz, 1995; Datta, 2005). Thus, the composition of the medium is 

one of the most important factors determining not only the success of anther 

culture but also the mode of development (Bajaj, 1983). Generally, an induction 

medium contains macro and microelements, vitamins, sugars, and growth 

regulators. Sucrose (or other carbon source) is indispensable in the medium, 

because it acts both as a carbon source and as an osmoregulator compound 
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decreasing the water potential of the environment where the anthers/polle are 

present (Vasil, 1980; Bajaj, 1983; Hu and Zheng, 1984). For most species, 2 to 

3% sucrose in the media is adequate, although in some cases a higher 

concentration has been used. In cereals, the induction of haploid embryoids 

requires a high sucrose content and a corresponding high osmotic pressure in 

the culture medium (Heszky and Mesch, 1976). The nutritional requirements 

vary greatly among species (Narayanaswamy and George, 1982).  

Chu et al. (1975) found that high concentrations of ammonium ions inhibit 

pollen callus formation in rice showing the role of this nutrient on pollen 

embryogenesis (Datta, 2005). Based on this premise, the N6 medium with 

reduced concentration of ammonium ions and with a modified ammonium to 

nitrate ratio was developed and proved to be more efficient than other synthetic 

media for anther culture of rice and as well as in other cereals (Hu and Zheng, 

1984). Since then on, two basal media, the chemical defined N6 medium and 

the Murashige and Skoog (1962) medium, have been generally used with 

modifications (Datta, 2005). 

Over the years, some studies reported the apparent toxic effects of 

sucrose on cultured microspores (Scoot and Lyne, 1994). In some studies 

maltose has been used as an alternative carbon source with promising results 

in species such as wheat (Last and Brettell, 1990; Scott and Lyne, 1994).  

PGRs, particularly auxins and cytokinins, have been successfully used for 

the induction of androgenic development. Anthers of many cereals, such as 

barley and rice, require auxins. The presence of auxins in the medium promotes 

rapid cell proliferation and subsequent callus formation (Vasil, 1980, Sangwan 

and Sangwan-Norreel, 1987). However, media rich in growth regulators 

encourage the proliferation of tissues other than microspores, like anther wall or 

filament, and should be avoided, because in such cases mixed calli with cells of 

different ploidy levels may be obtained (Reinert and Bajaj, 1977). Indole-3-

acetic acid may induce direct embryogenesis, whereas 2,4-

Dichlorophenoxyacetic acid (2,4-D) favors rapid cell proliferation and callus 

formation. When 2,4-D is replaced by α-naphtaleneacetic acid (NAA), a weaker 

auxin, haploid plants are formed in the induction medium without the need of 

callus transfer to a regeneration medium (Ball et al., 1993).  
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An adequate balance of exogenous hormones in the culture medium is 

crucial for both the yield and quality of embryos. Although there is no general 

agreement on the optimal PGRs concentrations and combinations, the 

consensus is to use the lowest possible concentrations, since higher PGRs 

levels in induction culture are generally detrimental to plant production as cell 

division and differentiation shift towards calli rather than embryos (Zheng, 

2003). It seems that the presence of growth hormones always increased the 

percentage of responding anthers unless they were added in very low or very 

high concentrations (Sopory and Maheshwari, 1976b). Even though auxins and 

cytokinins are the two types of PGRs most widely used in media for 

anther/microspore cultures, cytokinins were found to be the best in favoring the 

production of embryoids (Sopory and Maheshwari, 1976b; Zheng, 2003). 

Other important conditions affecting androgenesis arelight and 

temperature. Anther and microspore cultures are usually incubated at 25ºC, but 

in many species an improved response is obtained by increasing the 

temperature to 30ºC (Vasil, 1980). Light is known to be required for the 

induction of androgenic development. However the effect or even the 

requirement of light for haploid production is not clearly understood, varying 

from species to species (Vasil, 1980). In most cereals, incubation of cultures in 

darkness promoted callus growth from microspores, but regeneration of 

plantlets occurred only when cultures were transferred to light (Narayanaswamy 

and George, 1982). 

e) Stress pretreatments 

Several lines of research have shown to be important to directing the 

microspores towards embryogenesis. The deviation from a gametophytic to a 

sporophytic developmental pathway has been induced in microspores by 

applying various pretreatments either in vivo or in vitro (Touraev et al., 1997; 

Immonen and Robinson, 2000). Stress can be the signal to initiate the 

androgenic process, since stress proteins have been detected during the 

induction process, indicating that these proteins may be involved in cell 

reprogramming (Kiviharju and Pehu, 1998).  

There are a number of pretreatments that are known to trigger 

androgenesis, such as high or low temperature. Starvation and colchicine 
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treatment are two of the most common stresses applied at the time of culture 

and have shown to play a vital role in the reprogramming of microspores, 

repressing the gametophytic pathway of microspores to fertile pollen, which 

leads to an intermediate stage of dedifferentiation and cell totipotency (Islam 

and Tuteja, 2012). Although these pretreatments can induce androgenesis, the 

type and duration of pretreatment varies according to species and type of 

explant (Roberts-Oehlschlager and Dunwell, 1990).  

Anther wall seems to act as some kind of barrier to the flow of nutrients 

from the culture medium to the microspores, and this starvation apparently 

stimulates the abnormal divisions of microspores triggering androgenesis 

(Heberle-Bros, 1989). Another treatment that has been shown to be a powerful 

factor to promote androgenesis is colchicine. This c-mitotic agent is the most 

frequently drug used for chromosome doubling in plants. It acts by blocking 

tubulin polymerization and spindle function during mitosis disturbing normal 

polar segregation of sister chromatids. The result is the formation of a restitution 

nucleus containing twice the number of chromosomes (Levan, 1938; Zhao et 

al., 1996; Hansen and Andersen, 1998). According to Zaki and Dickinson 

(1990), application of colchicine before the first mitosis resulted in a significant 

increase in the number of cells undergoing B-mitosis and androgenesis. 

When this drug is used in low concentrations it only inhibits cell division for 

a short time, therefore stimulates a symmetric division which consequently 

increase the frequency of embryos of microspore origin. However in high 

concentrations the drug has a toxic effect that reduces the frequency of 

androgenesis (Hansen and Andersen, 1998; Barnabás et al., 2001). Colchicine 

application and the comprehension of its beneficial effects on androgenesis 

needs to be clarified by further studies.  

Temperature-stress pretreatment is a means of enhancing the production 

of pollen plants from cultured anthers. Several studies have shown that the 

efficacy of the pretreatment, when applied to excised flower buds prior to culture 

of the anthers, depends upon various factors, such as the temperature and the 

duration of the treatment, plant age, the developmental stage of the anthers and 

genotype. There was significant genotypic variation in the response of anther 

culture to temperature, and growth conditions of the plants, given that, even 

anthers from the same genotype may give different culture responses if the 
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donor plants are grown under different conditions (Huang and Sunderland, 

1982; Ouyang et al., 1987). Temperature treatments, hot or cold, or a 

combination of both, may cause different responses in different species 

(Pandey, 1973). 

High temperature seemed to trigger or at least enhance androgenesis 

(Baillie et al., 1992; Custers et al., 1994). For example, in wheat and tocacco 

high temperatures (32-34ºC) pretreatment applied to anthers or isolated 

microspores increases callus and embryoid yields (Ouyang et al., 1987; Zheng, 

2003). The effects of heat treatments in androgenesis were investigated over 

the years, and Binarova et al. (1997) revealed the presence of heat-shock 

proteins (HSPs), and a high correlation between the androgenesis and HSPs 

synthesis was also found (Cordewener et al., 1995).  

One of the most applied and successful pretreatments used is cold 

pretreatment. This approach has been used in a variety of plant species for 

induction of androgenesis (Jähne and Lörz, 1995). Cold incubation of excised 

flower buds before culture has been used to increase the frequency of 

androgenesis. In wheat the response increased two times when anthers were 

pretreated at 1-4ºC for 48 hours; in rice and other cereals cold pretreatment 

proved also to be favorable (Hu and Zheng, 1984). Thermal shocks (3-4ºC for 2 

days) given to anthers before culturing encouraged equal division of the 

microspore nucleus, which eventually resulted in about 10 % increase in 

androgenesis (Bajaj et al, 1977). Nitsch and Norreel (1973) found an increased 

response of D. innoxia anthers that were taken from excised flower buds stored 

for 48 hours in a refrigerator. These initial observations have been confirmed by 

several other studies, and the cold preatreatment is now used extensively 

(Sangwan-Norreel, 1977; Camefort and Sangwan, 1979; Sunderland and 

Roberts, 1979).  

Chilling of anthers prior to culture increases the number of microspores 

that undergo an atypical mitosis, resulting in the formation of two equal and/or 

identical cells instead of the distinct and characteristic generative and 

vegetative cells (Nitsch and Norreel, 1973; Maheshwari et al., 1980). The 

exposure of anthers to low temperatures for 2-3 days drastically reduces their 

metabolic activity, which possibly results in the accumulation of a larger 

percentage of microspores at the most suitable stage for effecting the 
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developmental shift required for androgenic development (Vasil, 1980). Cold 

pretreatment may act in different ways: delaying the first haploid mitosis, 

inducing the formation of two equal nuclei, increasing the viability of competent 

microspores, increasing the permeability of the pollen wall, or modifying the 

microspore wall through the disorganization of the tapetum (Sangwan and 

Sangwan-Norreel, 1987). It seems that the cold pretreatment does not induce 

androgenesis, but it enhances the viability of cultured pollen, and cause 

repression of the gametophytic differentiation which results in higher frequency 

of androgenesis. Hence the effect of cold pretreatment is indirect (Bajaj, 1983). 

Therefore cold incubation of donor spikes prior to culture may have a dual effect 

by interrupting normal gametophytic development and allowing sufficient time 

for the embryo to be nursed by the anther (Mejza et al., 1993; Zheng, 2003).  

As referred in the previous sections, rice is one of the most used plants for 

haploids formation through anther or pollen culture, and with some considerable 

success over the years. This is particularly important since rice is one of the 

most cultured cereal crops in the world which means that all the scientific 

improvements of this species may have a positive impact on food production. 

 

1.5. Rice (Oryza sativa L.) 

 1.5.1. Characterization of the world’s most important crop plant 

 

Rice (Oryza sativa L.; 2n = 2x = 24) belongs to family Poaceae and to the 

genus Oryza which includes 24 recognized species. Two of them, O. sativa and 

O. glaberrima Steud., are species used in agriculture, the first one in many 

countries but particularly in Asia, and the second one mostly in Africa (Gosal et 

al., 1997). The genus Oryza seems to have originated about 130 million years 

ago in the super continent Gondwanaland that eventually broke up and drifted 

apart become Asia, Africa, The Americas, Australia and Antarctica (Khush, 

1997). 

Rice is an annual grass, its culm is erect, cylindrical and smooth slightly 

swollen at the node which is solid but hollow in the internode. The leaves are 

distichous and the base of each ligulate leaf forms a tube (sheath), completely 

enclosing the whole of the upper internode but split down the side opposite the 
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blade except at the node of its insertion (Majumdar and Saha, 1956) (Figure 5). 

The rice grain, a caryopsis, is a dry one-seeded fruit in which the seed occupies 

all the fruit and the pericarp is fused to seed coat. (Skider et al., 2006). Rice is 

the world’s single most important food crop and a primary food source for more 

than a third of the world’s population. More than 90% of the world’s rice is 

grown and consumed in Asia where 60% of the earth’s people live. Rice 

accounts for 35 to 65% of the calories consumed by 3 billion Asians (Figure 6) 

(FAO). Rice is the only major cereal crop that is consumed almost exclusively 

by humans and it’s planted on about 148 million hectares annually, or on 11% 

of the world´s cultivated land (Khush, 1997). Keeping in view the annual 

average population growth rate of approximately 1,5% and estimated per capita 

consumption of about 250 g of rice per day, the demand for rice is expected to 

increase 40% by 2025 (Khush, 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Schematic representation of a rice plant (adapted from Itoh et al., 2005). 

 

All the rice cultivars grown in Asia, Europe and America are O. sativa, 

whereas many of those cultivated in West Africa are O. glaberrima. It is 

probable that domestication of wild rice started about 9000 years ago in Asia. 

O. sativa consists of two distinct subspecies, recognized first by the Chinese 

since the Han dynasty, the indica, or Hsien, and japonica, or Keng. The 
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supspecies indica is grown in the humid tropics whereas japonica cultivars are 

cultivated in Japan and Northern China under cooler climate. The Portuguese 

introduced tropical japonica cultivars and lowland indica cultivars in Brazil and 

Spanish people brought them to other Latin American countries. The distinction 

between indica and japonica is partly based on the existence of reproductive 

barriers between them (Gosal et al., 1997; Khush, 1997).  Rice is grown under 

diverse growing conditions. Four major ecosystems are generally recognized as 

follows: irrigated, rainfed lowland, upland and floodprone. Approximately 55% of 

the world rice area is irrigated (Khush, 1997).   

Figure 6 – World rice production in 2011, where it’s obvious the Asia supremacy, representing 

the major areas of production, with more than 200 million tons of rice produced in only a year 

(adapted from FAO, http://faostat.fao.org).   

 

During the 1950 and 1960, the rapidly increasing world population caused 

great concern about the availability of sufficient food to forestall massive 

starvation, so in 1960, a group of forward-looking leaders of the Rockfeller 

Foundation and the Ford Foundation decided to establish an institution which 

the main objective would be to improve the production efficiency of rice and to 

do this for the benefit or rice farmers and consumers. In this context IRRI 

(International Rice Research Institute) was born with the support of the 

Philippines government (Khush, 1997). A considerable improvement of rice has 

been done through traditional rice breeding, and higher yielding, semi-dwarf, 

photoperiod-insensitive and pest resistant cultivars emerged (Gosal et al., 1997; 

Skider et al., 2006). To meet the global demand for rice consumption, there is 

an urgent need for rapid development of even higher yielding rice. 
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Biotechnology offers great potential for production, conservation, 

characterization and utilization of germplasm for rice breeding programs. By 

using biotechnological techniques, such as anther culture, more than 100 new 

rice cultivars were already developed (Gosal et al., 1997).  

Rice has become, over the years, a model plant in anther culture 

improvement, not only by its immense economic and nutritional importance, but 

also because it has a relatively small genome (~430Mb), the smallest between 

the major crop plants, which has been completely sequenced and it can be 

genetically modified by various transformation methods (International Rice 

Genome Sequencing Project, 2005; Summart et al., 2008).  

 

1.5.2. Anther culture in rice 

 

Anther culture, is an important technique for immediate fixation of 

homozygosity thereby reducing the breeding cycles and providing opportunity to 

recessive genes to be full expressed (Sah and Niroula, 2007). After the discover 

by Guha and Maheshwari (1964) in Datura, several other researchers attempt 

to reach the same success in other species, and four years later Japanese 

researchers Niizeki and Oono (1968), first demonstrated that haploid plants of 

rice could be obtained from in vitro culture of immature anthers. They showed 

that when anthers of rice were cultured on a medium supplemented with IAA, 

2,4-D and kinetin, multicellular bodies appear from within the anther in about 4 

to 8 weeks. These later yield a dense callus. Cytological examination of the 

callus confirmed its haploid nature and its origin from pollen grains. These 

results were further confirmed by Iyer and Raina (1972).  

After this discovery several studies succeeded to achieve haploid plants 

from anther culture in both indica and japonica cultivars. However the indica has 

shown to be more difficult to regenerate via callus culture (Lee et al., 2000).  

In rice anther culture, a microspore can be induced to form a plantlet by 

callus or embryo pathway which is determined mainly by the concentration and 

combination of hormones in the induction medium (Ying, 1986). In hormone-

free media microspores give rise to plantlets directly, but the induction 

frequency is rather low (Ying, 1986). When a higher concentration of 2,4-D is 

used as exogenous hormone, a microspore is usually induced to form callus 
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which subsequently differentiates into a plantlet after being transferred to a 

medium without 2,4-D (Ying, 1986). There are two pathways in rice 

androgenesis. In the first pollen division is unequal and forms two cells: 

vegetative and generative. The vegetative or the generative cell kept on 

dividing, and forms callus/embryos. In the second route the first pollen division 

is equal leading to two identical cells (Gosal et al., 1997).  

In rice, factors affecting androgenesis are various, such as pollen stage, 

medium, incubation condition, physiological sate of donor plant, and genotype. 

The developmental stage of pollen at the time of anther inoculation is a key 

factor (Cornejo-Martin and Primo-Millo, 1981). Comparative studies have 

indicated that callus induction was highest when anthers containing 

microspores in mid-uninucleate stage were used. However, early uninucleate 

stage, late unicleate stage and bi-nucleate stage have been also reported to be 

involved in the androgenic pathway (Chen, 1977; Cornejo-Martin and Primo-

Millo, 1981; Ying, 1986). Usually boots are collected from the field when the 

distance between the base of the flag leaf and the auricle of the last leaf is 3-8 

cm, depending upon the cultivar. The middle part of the collected panicle 

contains microspores at the uninucleate stage, therefore those anthers should 

be used (Gosal et al., 1997). Other criteria can be used, such as the color and 

size of spikelets and anthers (Chen and Chen, 1979).  

Culture medium is another important factor controlling rice androgenesis. 

Since Chu et al. (1975) developed the N6 medium, with low levels of 

ammonium, specifically for rice anther culture that this medium has been 

demonstrated to be the most suitable as induction medium (Chen et al., 1982a; 

Tsay et al., 1982). Chen (1978) reported that the rate and subsequent 

organogenesis increased as the sucrose concentration increased from 3 to 9%; 

however, calli initiated on a medium with 9% sucrose regenerated more albino 

plantlets. A combination of 6% sucrose in the callus induction medium and 3% 

in the plant regeneration medium gave the highest frequency of regenerated 

green plants, and it has also been suggested that optimal sucrose concentration 

for callus induction is 3% (Kavi Kishor et al., 1989). Chaleff and Stolarz (1981) 

suggested that the influence of sugar concentration on callus formation may be 

its effect on the water potential of the medium rather than its utilization as a 

carbon source. 
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The formation of callus is regulated by the type and level of the auxin in 

the culture medium (Trejo-Tapia et al., 2002). A high auxin concentration 

causes dedifferentiation in rice tissues, while the removal of an auxin causes 

the differentiation or redifferentiation (Nishi et al., 1973). A combination of 

auxins, such 2,4-D, NAA, IAA and cytokinins, such as kinetin has been widely 

used in rice anther culture (Gosal et al., 1997). Reddy et al. (1985) reported that 

NAA was better to induce callus, but 2,4-D was better for plantlet regeneration 

of indica cultivars. However, high amounts of either NAA or 2,4-D enhanced 

callus formation and simultaneously reduced plant regeneration. The addition of 

NAA alone to the regeneration medium resulted in regeneration inhibition, but 

when NAA is added together with kinetin, a substantial degree of regeneration 

was observed (Tsukahara and Hirosawa, 1992). Nevertheless, the addition of 

2,4-D completely inhibits the organogenesis of the calli (Cornejo-Martin and 

Primo-Millo, 1981). Reddy et al. (1985) have shown that both 2,4-D and NAA at 

high concentrations increased callus induction but plantlet yield was poor. Chen 

et al. (2001) showed that 2,4-D promoted the formation of callus in anthers of 

rice, but in concentrations higher than 10 µM the induction started to decline 

(Figure 7). Results shared by Gupta et al. (1989) in 2,4-D and kinetin, indicating 

a possible synergism between auxins and cytokinins in embryogenic callus 

induction.  

As Maheshwari et al. (1980) stated, certain physical and chemical 

treatments given to flower buds or anthers prior to culture, can be highly 

inductive. The most significant is cold treatment. According to Genovesi and 

Magill (1982), rice cold treated anthers containing uninucleate microspores form 

callus at a much higher rate. The beneficial effects of cold treatment in rice have 

been reported by several studies (Ying et al., 1982; Zapata et al., 1982; Sathish 

et al., 1995, Xie et al., 1997). The most common treatment is to submit boots at 

4ºC for 7-10 days (Gosal et al., 1997). For optimal anther culture response, the 

cold pretreatment requirement depends on the cultivar (Cho and Zapata, 1980). 

Thanks to anther culture, new rice varieties, including “Huayu Nº1” a more 

yielding and resistant variety, were developed in China, opening the doors for 

new cereal varieties that can now be developed in four or five years, and their 

breeding cycle is much shorter than that in the past. Hence, haploid breeding 
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proves in practice to be a new and effective technique for improvement crops 

(Han et al., 1978).  

 

 

 

 

 

 

 

 

 

 

Figure 7 – Relationship between the number of calli formed (No./100 anthers) and concentration 

of 2,4-D supplemented in the induction medium (adapted from Chen et al. 2001). 

 

1.5.3. Albinism 

 

The greatest problem in androgenesis of cereals, is the formation 

chlorophyll-deficient plantlets usually known as albinos (Brettel et al., 1981). It is 

not uncommon that more than 90% of the regenerated plantlets could be 

albinos, with strong variations among genotypes (Ying, 1986). It has been found 

that the albinos, at least in barley and rice, do contain plastids or protoplastids 

indicating that they are not likely to have developed from the generative cell. It 

has also been reported that in rice albinos the protoplastids are devoid of rRNA 

and the large subunit of the fraction-1 protein, which is coded by chloroplastidial 

DNA (Vasil, 1980). Four main possibilities have been proposed to explain the 

high rates of albinos formation: (1) the albino plants are derived either from 

genetically deficient or from dimorphic pollen; (2) the culture procedure induces 

a genetic change in embryogenic pollen, leading to permanent destruction of 

chloroplastidial information; (3) a purely physiological basis due to unsuitable 

culture conditions, such as temperature; (4) abnormalities during cytokinesis 

lead to production of micronuclei which are somehow linked to inhibition of 

chlorophyll synthesis. This means that the cause of the albinism can be genetic 

physiologic or both (Dunwell, 1978).  
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1.5.4. Ploidy 

It must not be assumed that the products of anther or microspore culture, 

are haploid plants. In many species haploids are even the exception and 

ploidies up to hexaploidy have been found (Dunwell, 1985). The wide range of 

ploidy levels seen in androgenic plants has been attributed to endomitosis 

and/or the fusion of various nuclei, with the first one causing diploidy, whereas 

the second would give rise to triploids and pentaploids (Vasil, 1980). In rice, 

plants ranging from haploid to pentaploid have been found; however, haploids 

and diploids are generally the most common (Chen et al., 1982b). It has been 

observed that cells in culture exhibit cytological instability. Moreover, it has been 

established that haploid cell lines have a greater tendency to increase in ploidy 

level to diploid, this tendency is a major obstacle to the maintenance of haploid 

cells in culture (Vasil, 1980; Bajaj, 1983). 

One of the most common techniques of doubling of the chromosome set in 

plants is by using colchicine. This technique has been employed for obtaining 

homozygous diploid plants from haploid cultures (Bajaj, 1983). However, the 

toxic effects of the drug and the need to control the concentrations and time of 

application make necessary the search for an alternative technique.  

The diploid plants in general appear to arise from the somatic anther 

tissue, although some could be also originated from the fusion of pollen nuclei. 

The embryos and plants obtained from such pollen would be completely 

homozygous, this spontaneous chromosome doubling reduces the chances of 

nuclear aberrations in diploid cells, making this feature one of the most 

important attributes of anther culture (Vasil, 1980; Bajaj, 1983). Spontaneous 

chromosome doubling is frequently observed in rice haploids, being assessed 

by the formation of fertile panicles (Reiffers and Freire, 1990). 

It is well-known that chromosome numbers and ploidy level are highly 

variable in regenerated plants derived from callus. The resulting plants by 

anther culture are not only haploid but also diploid, and some plants become 

polyploids or aneuploids. Generally, the diploid plants are named doubled-

haploid and, in rice, were first obtained by Niizeki and Oono (1968). Although 

the ploidy levels can be identified by analyses of morphological features such 

as fertility, culm length, glume length, awns and other phenotypic characters, a 
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more reliable method, allowing for a better evaluation of the DNA content of the 

regenerated plant is required. Flow cytometry is this method and during the last 

years it has become a very important tool for ploidy analysis. 

 

1.6. Main goals 

In Portugal, rice culture dates back to the VIII century (Bajaj, 1991). And, 

nowadays the country leads rice consumption in Europe with values greater 

than 17kg/person/year (EUROSTAT) The Mondego valley is one of the most 

important regions for rice production together with the valleys of the rivers Sado 

and Tejo, in the South. However, Portugal rice improvement has been made 

mostly by conventional breeding methods, opposed to the international 

scenario, where great advances have been obtained by using biotechnological 

approaches (Uchimiya and Toriyama, 1991). These advances will make 

substantial contributions to crop improvement and human nutrition (Bhullan and 

Gruissem, 2013).  

The main objective of this work was to test the androgenic potential of 

several cultivars usually grown in the Mondego valley and also of genotypes of 

a breeding program which is being developed by the INIAV and ITQB. All the 

genotypes used were growing at the experimental field of Bico da Barca, near 

Montemor-o-Velho (40º 10’ 37.39’’ N, 8º 39’ 44.36’’ W). In this experimental field 

the cultivars are selected through pedigree method, which consists in the 

selection of plants from F2 generation and the subsequent generation and 

testing their progenies. 

The effect of culture media (induction and regeneration) and the levels of 

ploidy of the regenerated plantlets were analyzed. Other of the objectives was 

to obtain seeds from the pollen derived plants for further studies in the scope of 

the breeding program above mentioned.  
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2. Materials and Methods 
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Materials and methods 
 

2.1. Plant material 

 

The anthers of rice used in this work were gathered from plants growing in 

the experimental field of Bico-da-Barca, Montemor-o-Velho (Regional Direction 

of Agriculture and Fisheries of the Center), in the Mondego valley (Figure 8 and 

9). All rice varieties and breeding lines used in this work belong to the sub-

species japonica. The experimental lines cultured in this field are selected 

through the pedigree breeding method. 

The first assays were carried out in 2010, in which four rice varieties, 

Ariete, Dardo, Eurosis and Sirio, and six experimental F3 breeding lines, 2501, 

2503, 2506, 2509, 2531 and 2536 were tested. In 2011, another four varieties, 

Ariete, Eurosis, Opale and Ronaldo; three F2 lines, 1131, 1133 and 1134; and 

three F3 lines, 2520, 2524 and 2527 were used. Finally, in 2012, the same four 

varieties of 2012 were used, and four F3 lines, 2503, 2510, 2515 and 2523 

(former F2 line 1134), and four F4 lines, 3514 and 3515 (formers F3 line 2520), 

and 3521 and 3523 (formers F3 line 2527), were assayed, according the 

scheme of figure 10.  

Figure 8 – Google earth image from the rice culture fields in Mondego valley with Bico da Barca 

experimental field indicated by the red limits.  
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Figure 9 – Rice fields from Bico da Barca experimental fields. 

 

The flowering tillers were all collected in the field in the last days of July, 

when the base of the flag leaf and the auricle of the last leaf was 3-8 cm length 

depending upon the cultivar, prior to the emergence of the panicles from the 

flag leaf sheath, as described by Chaleff and Stolarz (1981). This is called the 

booting stage, and is when the anthers in the middle of the panicle contain 

microspores at the late uninucleate stage.  

 

2.1.1. Culture media 

  

The MN6 basal medium, a modification of the N6 medium (Chu and Hill, 

1988) was used for pollen embryogenesis induction. The basal medium was 

supplemented with 2,4-D , NAA  or kinetin and 3 or 6% sucrose according to 

table 1.  

For plant regeneration the MS medium (Murashige and Skoog, 1962), was 

tested also with four variations (Table 2).
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Figure 10 – Scheme of rice breeding program in 2012 at Bico da Barca experimental field, Montemor-o-Velho. The red circles indicate 

the position of the lines that were used in this work in 2012. The cultivars were on the right side of the road and are signaled by 

numbers.  
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Table 1 – Composition of the induction media used for anther culture. 

 

                    

                    Supplements 

    Medium                            

Basal medium Hormones Sucrose (%) 

A1 MN6 2 mg/L 2,4-D 3 

A2 MN6 
2 mg/L 2,4-D 

1.5 mg/L Kinetin 
3 

A3 MN6 

1 mg/L 2,4-D 

2 mg/L Kinetin 

1 mg/L NAA 

3 

A4 MN6 2 mg/L 2,4-D 6 

 

For callus maintenance the induced pollen callus were transferred for the 

same induction medium approximately 1 week after their formation.  Pollen 

plantlets obtained in the regeneration medium were transferred to MS medium 

with 3% sucrose to promote further development.  

    

 Table 2 – Composition of the four regeneration media. The MS was used 

as basal medium. 

                    

                    Supplements 

    Medium                            

Basal medium Hormones Sucrose (%) 

D3R MS 
1 mg/L BAP 

0.1 mg/L NAA 
3 

RR1 MS 
4 mg/L Kinetin 

1 mg/L NAA 
3 

RR2 MS 
2 mg/L Kinetin 

0.5 mg/L NAA 
3 

RR3 MS 
2 mg/L Kinetin 

1 mg/L NAA 
3 
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Both in the regeneration and developing media sucrose was also used as 

carbon source. The concentration was 3 to 6% (w/v) in the induction media (see 

Table 1) and 3% in regeneration media. The pH of all media was adjusted to 

5.6-5.8 with HCl (0.1-1N) or KOH (0.1-1N), and 6 g/l agar (Panreac) was added. 

The media were sterilized by autoclaving at 120 ºC at 1.1 atm for 20 minutes.  

 

2.1.2. Sterilization 

 

For sterilization whole panicles were surface sterilized for 15 minutes in a 

filtered solution of calcium hypochlorite (7%) containing two drops of Tween 20 

followed by  three rinses in sterilized distilled water. 

 

2.2. In vitro culture methods – Androgenesis 

 

2.2.1. Cold-pretreatment 

 

In 2012, some collected boots from certain varieties and lines, were 

wrapped and sealed in polyethylene bags and kept in the refrigerator for cold 

treatment at 4ºC for 10 days. The varieties were Ariete and Ronaldo, and the 

lines were 2523 and 2510 from the F3 generation, and 3514 and 3521 from the 

F4 generation. Panicles without cold-pretreatment were used as a control.  

 

2.2.2. Anther culture 

 

Before proceeding with anther culture, some anthers off the middle 

spikelets were squashed directly in a drop of acetocarmine (1%) on a slide and 

observed in an optical microscope to assess the stage of pollen grain 

development.  

In a laminar flow hood, the spikelets containing microspores at the 

appropriate developmental stage (late uninucleate stage), were gently dissected 

with a sterile needle to remove the anthers which were then cultured 

horizontally on the media indicated in table 1. Twelve anthers were placed on 

each test tube and 40 tubes were used for each genotype (Figure 11). In the 

assays performed in 2012 only 20 test tubes were used per culture medium and 
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genotype. After cold pretreatment anthers were aseptically removed and 

cultured in the same method as the non-treated anthers. The tubes were placed 

in a growth chamber at 25ºC ± 1ºC, under dark conditions for 6-8 weeks, and 

periodically examined. After two months of culture the number of anthers 

showing at least one embryo or pollen callus was recorded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Protocol adopted for rice anther culture. The middle spikelets were excised in a 

Petri dish, in sterile conditions, and the anthers (12) placed horizontally in a test tube.    

 

2.2.3. Plant regeneration 

 

After calli were observed emerging from the anther, induced calli were 

kept 1-2 weeks in the same induction media to grow. After that period, calli were 

transferred to regeneration media, one callus per tube.  

The tubes were incubated at 25ºC ± 1ºC, under 16 hours daily illumination 

with fluorescent light for plant regeneration. 

Some calli were transferred to the same induction medium, and after 2-3 

weeks were transferred to regeneration medium to evaluate the regeneration 

response after sub-culturing.  
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2.2.4. Plantlet growth and acclimatization 

 

Approximately 2 weeks after calli were transferred to the regeneration 

media, the obtained plantlets with well-developed roots, were transferred to MS 

medium without growth regulators for further development. The same happened 

with some albino plants. However, in 2012, some plantlets were cultured again 

in the same regeneration medium where they have developed. The large 

majority of the regenerated plantlets, with well-developed root systems were 

transferred to pots containing autoclaved soil collected from the field where the 

anther donor plants were grown. The pots were placed in a growth chamber 

under 20 ºC, 80-90% relative humidity and a 16h light/ 8h dark photoperiod. 

The large majority of the regenerated plantlets, with well-developed root 

systems were transferred to pots containing autoclaved soil collected from the 

field where the anther donor plants were grown. Plantlets were carefully 

removed from test tubes, gently washed to remove agar and callus debris. The 

roots were immersed in a solution of fungicide benlate (0.6%), to avoid 

contaminations and to protect the plantlet after transfer to soil. The potted 

plantlets were placed in a growth chamber under 20 ºC, 80-90% relative 

humidity and a 16h light/ 8h dark photoperiod. They were daily observed and 

regularly watered, with an interlude of 2 days.  

 

2.3. Cytological studies 

  

 2.3.1. Acetocarmine squashes 

 

 This technique was used to evaluate the microspore stage before and 

during anther culture. On a microscope slide the anthers, dissected from the 

spikelet or removed from the culture tube, were squashed with a needle on a 

drop of acetocarmine (1%) to liberate and stain the microspores. The slides 

were then slightly heated on a Bunsen burner, covered with a cover slip and 

analyzed on a microscope (Nikon Eclipse E400), and the images were captured 

by a Nikon Digital Sight DS-U1 camera and observed on Act-2U software. 
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 2.3.2 Feulgen method 

 

The roots collected from the regenerated plants were treated with 0.05% 

colchicine for 2.5 h, washed with water, and subsequently fixed in acetic alcohol 

(1:3) over night.  

The roots were then transferred to 1N HCl and incubated at 60ºC by 8 

minutes in a water bath.  After this hydrolysis, roots were briefly washed with 

water and treated with Feulgen reagent for 2-3 hours in the dark. The roots tips 

were placed in a microscope slide along with a drop of acetic acid 45% and 

squashed. The microscope slides were observed at microscope. 

 

2.4. Flow cytometry  

 

Flow cytometry is a technique that involves the analysis of particles optical 

proprieties flowing in a liquid suspension. The flow cytometer is a 5 elements 

system: radiation source(s), flux camera, optical filters units to select a specific 

wave length, photomultipliers that detect and process the interest signs and a 

sign processing unit (Figure 12) (Silva et al., 2004). 

 

 

 

 

 

 

 

 

 

Figure 12 – Flow cytometer configuration (adapted from Silva et al., 2004). 

 

The nuclei liberation technique is quite simple and fast, consisting in cut, 

“chopped”, small portions of leafs with a razor blade in a Petri dish containing a 

buffer solution, after the “chopping” the vegetal particles are filtered and 
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1 ml buffer solution Portion of rice leaf 

plus a portion of 

standard plant leaf 

+ 

“Chopping” of plant 

tissue to isolate the 

nuclei 

Plant tissue filtration 

Addition of 50 µg/ml 

of propidium iodide 

and RNase 

Sample analysis 

in a flow 

cytometer  

50µg/ml of propidium iodide and RNase are added (50µg/ml) to the resulting 

solution, then the examination in the flow cytometer takes place (Figure 13). 

 The data was obtained in the form of graphics of fluorescence pulse 

integral (FL) vs Nuclei counts, among others, through a computer software, 

FloMax®, that process the data in real time. The computer is connected to a 

flow cytometer CyFlow Space (Partec®).  

  

        

 

  

 

 

 

 

        

 

 

 

 

 

 

  

 

 Figure 13 – Schematic diagram of the methodology used to analyze the ploidy level 

using plant tissue and a flow cytometer.   

 

The ploidy level of each sample was given as a relative DNA index to the 

reference standard, Pisum sativum (DI, ratio between the sample G0/G1 peak 

mean and that of P. sativum), and for further confirmation of the ploidy level, the 

ratio between the G0/G1 peak of our sample and that of the control diploid 

standard used. Since two plant material were analyzed simultaneously, 

histograms generate two G1 pikes, the first one relative to samples of rice 

plants, while the second one represents the standard plant.  
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 The ploidy genome size in pg of our samples was estimated by 

multiplying the DI by 9.09 pg (the genome size of the reference standard, Pisum 

sativum). Knowing that O. sativa have a small genome of approximately 2C = 

1.00 pg of DNA content, the ploidy of the regenerated plants was obtained. 

 

2.5. Statistical analysis 

 

Statistical analysis was performed with Statistica 7 for Windows®, 

employing a significance level (α) of 0.05. The evaluation of the effect of 

induction media was performed by One-way ANOVA, after a square root data 

transformation. For assessment of the cold-pretreatment on each line and 

variety and the induction medium was tested by using a t-student test.    
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3. Results 
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Results 
 

3.1. Androgenesis induction 

 

3.1.1. Effect of the microspore stage of development 

 

Squashes in acetocarmine before anther culture have shown that most of 

the microspores were at the uninucleate vacuolated stage, usually known as 

mid-uninucleate stage. The uninucleate microspores showed a central large 

vacuole and a peripheral nucleus indicating the proximity of the first pollen 

mitosis, (Figs. 14A-B). However, some smaller microspores containing starch 

grains were also observed (Fig. 14C). Cytological observations of the 

microspores were also performed after the cold-pretreatment showing the 

presence of late-uninucleate microspores and a large number of plasmolyzed 

microspores (Fig. 14D). The stage of the microspores varied depending on the 

panicle location.  

Within 3-4 days of culture the smaller grains degenerated, and only the 

bigger microspores were viable and started to divide, presenting two nuclei 

approximately of the same size (Fig. 14E). After 10-15 days of culture, cell 

division rate increased, resulting in the formation of multicellular pollen (Fig. 

14F), though some microspores showed a certain degree of plasmolysis.  

 

3.1.2. Callus formation and development 

 

The continued cell division eventually caused the rupture of the exine and, 

about 2-3 weeks after the anther culture, unorganized calli were formed 

emerging from within the anther (Fig. 15A). Sometimes, more than one callus 

per anther were produced, but at later stages they merged to form a unique 

callus mass in which calli of different origins were difficult to distinguish (Fig. 

15B).  

On these calli nodular calli embryoids at the globular stage of development 

appeared. At the same time, the anther tissues have turned brown indicating 

their senescence (Fig. 15C). After 4-5 weeks of anther culture the calli reached 
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a considerable size (3-4 mm), and were transferred to the regeneration media 

(Fig. 15D).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Pollen behavior during anther culture. A and B: uninucleate microspores showing a 

large central vacuole and a peripheral nucleus (arrow) at the time of the anther culture; C: small 

microspore with starch grains which latter degenerate; D: partial plasmolyzed microspore 

(indicated by the arrow); E: binucleate microspore where a large vacuole can be seen (arrows 

indicate the nuclei); F: multicellular pollen.  Bars = 50µm. 
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Figure 15 – Callus formation and development in rice anther cultures. A: Callus emerging from 

inside the anther through the dehiscence lines; B: two microcalli formed in the same anther; C: 

callus in continued cell division showing an embryo at the globular stage (arrow); D: well-

developed callus with globular embryos (black arrows), and one more advanced embryo (white 

arrow). Bars = 2mm 

 

3.2. Induction results  

 

Assays carried out in 2010: 

 

In 2010 the effect of the induction media on the induction rate was tested. 

The results showing the frequency of callus induction and plantlet 

regeneration are presented in table 3. For each induction medium about 2400 

anthers were cultured per line/cultivar. The regenerated plants are represented 

in the same tables as the induction frequency since none of the regenerated 

plantlets survived when transferred for pots with a substrate different from that 

found in rice culture fields. 
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Table 3 – Callus induction frequency and number of regenerated plantlets on 

the induction media in 2010. Callus formation (%) was obtained by the ratio of 

anthers that produce callus and the total number of cultured anthers. 

Induction Medium Line/Variety Callus formation (%) 

Number of Regenerated plantlets 

Green Albino 

A1 

2501 1.25 0 0 

2503 4.17 4 5 

2504 3.75 4 2 

2506 1.67 3 0 

2531 0.83 0 0 

2536 0.00 0 0 

Eurosis 0.42 0 0 

Ariete 0.00 0 0 

Dardo 4.17 0 0 

Sirio 1.67 0 0 

A2 

2501 0.00 0 0 

2503 4.17 2 1 

2504 2.92 0 0 

2506 0.00 0 0 

2531 0.00 0 0 

2536 0.00 0 0 

Eurosis 0.42 0 0 

Ariete 0.00 0 0 

Dardo 0.00 0 0 

Sirio 0.00 0 0 

A3 

2501 10.0 4 13 

2503 4.17 2 0 

2504 4.58 1 1 

2506 2.08 0 0 

2531 12.9 1 2 

2536 0.83 1 0 

Eurosis 3.75 0 0 

Ariete 0.42 0 0 

Dardo 4.17 1 6 

Sirio 0.83 1 2 

A4 

2501 0.42 0 0 

2503 5.00 5 6 

2504 2.92 6 10 

2506 1.25 0 6 

2531 1.67 0 0 

2536 0.00 0 0 

Eurosis 0.00 0 0 

Ariete 0.83 0 0 

Dardo 1.25 0 0 

Sirio 0.00 0 0 
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Taken together, the results of this assay showed that callus formation in all 

the lines/cultivars tested was better on the A3 medium (4.38%) followed by the 

A1 medium with an induction rate of 1.79%. The A2 and A4 media produced the 

lowest responses with 0.75% and 1.33%, respectively (Fig. 16). Callus induction 

was significantly affected by the induction media (p= 0.003561), with A3 

medium callus induction being statistically different from the A2 medium. The 

number of regenerated green plantlets obtained was the same for all induction 

media (11 plantlets) except in A2 in which only 2 green plantlets were formed. 

 

 

 

 

 

 

 

Figure 16 – Induction response on the four different induction media. Bars followed by different 

letters were significantly different. 

 

When comparing the breeding lines and cultivars it can be seen that 

cultivars gave, in general, better results  with the line 2503 presenting the best 

induction rate. Nevertheless, the lowest induction rate was obtained with line 

2536. Among cultivars, Dardo was the most responsive (Fig. 17).     

 

 

 

 

 

 

 

 

 

 

Figure 17 – Pollen callus formation in different lines and cultivars tested in 2010. Results 

obtained after 2 months of culture.  
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Assays performed in 2011: 

 

In 2011, six more lines and four cultivars were tested. However, in this 

assay, only the most two responsive medium tested in 2010 were used (A1 and 

A3). Table 5 shows the induction rates obtained in the assay. 

 

Table 5 - Callus induction frequency on the A1 and A3 induction medium in 

2011. Callus formation (%) was obtained by the ratio of anthers that produce 

callus and the total number of cultured anthers. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results were in line with the 2010 experiments, showing that A3 

medium was the best for androgenesis induction, with a mean induction rate of 

5.44%, a value slightly higher than the result of 2010. F2 line 1133 was the 

most responsive line on both media. The line giving the worst results was the 

Induction Medium Line/cultivar Callus formation (%) 

A1 

1131 0.00 

1133 11.25 

1134 6.47 

2520 2.08 

2524 5.63 

2527 1.66 

Ariete 5.00 

Eurosis 1.04 

Opale 1.88 

Ronaldo 2.71 

A3 

1131 0.00 

1133 9.58 

1134 7.71 

2520 8.96 

2524 3.96 

2527 5.63 

Ariete 3.54 

Eurosis 5.21 

Opale 4.38 

Ronaldo 5.42 
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F2 line 1131 in which callus formation could not be achieved. In the cultivars 

Eurosis and Opale pollen embryogenesis was reduced (Fig. 18).  

 

Figure 18 – Response of different cultivars and breeding lines on media A1 and A3. Results 
obtained after 2 months of culture. 

 

Data analysis indicate that F2 lines (1133 and 1134) usually gave better 

results than the F3 (2524 and 2527) lines. However, all the tested breeding 

lines were able to undergo androgenesis. Calli transferred to the regeneration 

media were unable to produce plants in any of the media and lines tested. 

Assays carried out in 2012: 

Five of the lines used in 2012 were descendants of lines used in the year 

before: line 2523 F3, was the F2 line 1134; the F4 lines 3514 and 3515, 3521 

and 3523, were the F3 lines 2520 and 2527, respectively.  
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Table 6 - Callus induction in different lines and cultivars cultured in 2012, on A1 

and A3 medium. Callus formation (%) was obtained by the ratio of anthers that 

produce callus and the total number of cultured anthers.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 shows that cultivars Ariete and Ronaldo did not produce 

androgenic calli, which is in marked contrast with the results obtained in 2011. 

Eurosis and Opale were the only cultivars to respond on both media, with 

Eurosis induction being slightly higher than in Opale (Figure 19). 

 

 

 

 

 

Induction Medium Line/cultivar Callus formation (%) 

A1 

2503 0.00 

2510 0.63 

2515 0.21 

2523 4.58 

3514 0.21 

3515 1.46 

3521 4.79 

3523 2.29 

Ariete 0.00 

Eurosis 1.25 

Ronaldo 0.00 

Opale 0.21 

A3 

2503 0.21 

2510 0.83 

2515 0.63 

2523 2.08 

3514 0.63 

3515 12.71 

3521 3.10 

3523 1.04 

Ariete 0.00 

Eurosis 2.50 

Ronaldo 0.00 

Opale 1.04 



65 
 

0

0,5

1

1,5

2

2,5

3

Ariete Eurosis Ronaldo Opale

In
d

u
ct

io
n

 r
at

e 
(%

)

Varieties

A1 A3

0

2

4

6

8

10

12

14

2503 2510 2515 2523 3514 3515 3521 3523

In
d

u
ct

io
n

 r
at

e 
(%

)

Lines

A1 A3

 

 

 

 

 

 

 

 

Figure 19 – Induction rate in the cultivars used in 2012. Results obtained after 2 months of 

culture. 

 

Regarding the response of breeding lines, it was obvious that the F4 

lines have a better androgenic response compared to F3 lines, with 3515 line 

exhibiting a high induction rate on A3 medium (12.71%), higher than last’s year 

when was the F2 line 2520. The exception is line 3514, with the same parent 

line, but presenting a very low response on both media. Lines 3521 and 3523, 

previous 2527, had similar results between 2011 and 2012 with a slightly 

decrease on the last one. The F3 lines, which in 2011 showed an interesting 

behavior as F2 lines, showed a pronounced decrease. For example, the 2523 

line which as F2 line 1134 gave the highest frequencies of induction during 

2011 suffered a huge reduction of induction, even though still represents the 

best results between their homologous, since the remain F2 lines had a very 

low induction rate (Figure 20).            

 

 

 

 

 

 

 

Figure 20 – Comparison of the induction frequencies between F2 and F3 lines used in 2012. 
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3.2.1. Effects of sucrose and plant growth regulators  

 

Sucrose and plant growth regulators (PGRs) were tested on the pollen 

embryogenesis induction. On the induction media used on this work, two 

sucrose concentrations were used: 3% and 6%, the last one only on A4 

medium. Three growth hormones were used in different concentrations, 2,4-D, 

NAA and kinetin.  

The results showed that A3 medium, that had the three growth hormones, 

gave the best induction response, with statistical differences when compared to 

A2 medium that gave the lowest response.   

 On the regeneration media sucrose concentration was the same for the 

four media, 3%, however growth hormones and their concentration had some 

variations. To induce plant regeneration the auxin NAA and cytokinins BAP (6-

Benzylaminopurine) and kinetin were used. BAP was only used on D3R 

regeneration medium at 1 mg/L. whereas NAA was tested at different 

concentrations (0.1 mg/L; 0.5 mg/L; 1 mg/L), as well as kinetin (2 mg/L; 4 mg/L). 

Plantlet regeneration were mainly obtained on RR1 medium, supplemented with 

4 mg/L of kinetin and 1 mg/L of NAA.  

 

3.3. Cold-pretreatment effect on androgenesis induction 

   

 In 2012, the effect of cold-pretreatment of 10 days at 4ºC on 

androgenesis induction was tested on some lines and cultivars.  

On A1 medium, the cultivars used, Ariete and Ronaldo gave different 

responses: the first one did not produced calli on control neither after cold 

shock, whereas Ronaldo do not produced any callus on control conditions as 

well, but after cold shock some calli were induced. Among F3 lines clear 

differences could be seen. Line 2510 that had less than 0.1% induction 

response on control, gave more than 0.5% callus induction after cold-

pretreatment. By contrast the second F3 line tested, 2523, had a higher 

response without the cold-pretreatment, with only 0.05% induction success on 

treated anthers. F4 lines displayed similar results, with line 3514 having the 

higher induction rate on A1 medium after cold-pretreatment (0.725%), and line 
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3521 lacking response on cold-treated anthers opposed to the control where a 

rate of 0.575% occurs (Figure 21).  

  

 

 

 

Figure 21 – Callus induction on A1 medium with and without cold-pretreatment. Values are the 

mean ± SE. Results obtained after 2 months on the induction medium. 

 

Testing the cold-pretreatment effect on A1 medium with a t-student test 

(α = 0.05), statistical differences were found on every line and cultivar, although 

line 3514 presented the higher differences between control and cold-

pretreatment (p=0.000169). 

In general, identical results could be found on A3 medium. Ariete cultivar 

did not respond both in control and with cold shock, and Ronaldo only respond 

after the cold-pretreatment. Among F3 lines, 2510 presented the higher 

induction rate after cold-pretreated, with 1.13% of callus formation, and in 2523, 

control had again a higher response when compared with cold-pretreatment. In 

what concerns F4 lines, 3514 had a better induction rate after the cold shock; 

however, lower than in A1 medium, and finally line 3521, that do not respond to 

cold-pretreatment on A1 medium, had a 0.35% induction rate on A3 medium, 

however slightly lower than the control (0.375%, Fig. 22). 
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Figure 22 - Callus induction on A3 medium with and without cold-pretreatment. Values are the 

mean ± SE. Results obtained after 2 months on the induction medium. 

After statistical analysis on the results on A3 medium, statistical 

differences could not be found between lines 2523 and 3521, nonetheless clear 

statistical differences among the remain lines and in Ronaldo were found, with 

line 2510 presenting the higher statistical difference (p<0.01). 

 

3.4. Plant regeneration 

  

 In 2010, D3R medium allowed the regeneration of 35 green plants and 

54 albinos. However none of the green plants survived acclimatization, in a 

different soil than the one used in 2012. In 2011, not a single plant was obtained 

when the same medium was used. 

 In 2012, the regeneration process was different, and four regeneration 

media were tested: the same D3R medium and three new media, RR1, RR2 

and RR3. The number of calli placed on each regeneration media following 

induction is shown in table 7. A total of 343 plantlets were regenerated on the 

four media.   
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Table 7 – Number of calli placed per regeneration medium following induction 

on A1 or A3 media. 

Regeneration medium 

Number of callus Regenerated plants 

Induction medium 

A1 A3 A1 A3 

RR1 35 36 36 202 

RR2 34 34 56 1 

RR3 27 44 0 22 

D3R 31 43 0 26 

 

Well-developed calli were placed on the regeneration media, and the 

embryos started to develop evolving into plantlets showing well developed 

shoots and roots (Figs. 23A-B). Although plantlet regeneration had been 

obtained in all media, some calli initially regenerated roots, and none of these 

calli that regenerated roots prior to shoots would differentiate into plants, dying 

afterwards (Fig. 23C). On the contrary, calli that initiated shoots would 

eventually develop into complete plants, with roots appearing after shoot 

development (Fig. 23D). More than one plant could be usually regenerated per 

callus, and sometimes albino plants and green plants developed on the same 

callus (Fig. 23E). 
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Figure 23 – Plantlet formation. A: well-developed callus with embryos (indicated by the arrows) 

on regeneration medium. B: differentiation of the callus with formation of shoots. C: Root 

formation. D: callus that regenerate shoots before roots and then started to form roots along the 

process. E: regeneration of green and albino plantlets on the same callus. Bar = 1cm. 

     

The number of calli was similar in the four regeneration media, with 74 

tubes (calli) of D3R, 71 of RR1, 68 of RR2 and 71 of RR3. Nevertheless, the 

number of plantlets obtained was considerably different for all the four media. 

Not all the lines and varieties that succeeded on forming callus could 

regenerate plants, and only four lines and one cultivar regenerated plantlets. 

Eurosis was the only cultivar that regenerated plants.  

Among the breeding lines, F4 lines 3523, 3515 and 3521 and the F3 line 

2510 were able to produce plantlets, though all the plantlets of line 2510 and a 

part of 3521 plantlets resulted from the calli of cold-pretreated panicles, named 

from now on 2510F and 3521F.  

The number of culture tubes per line/cultivar were approximately the 

same, yet the regeneration success is quite different in breeding lines and 

Eurosis. Thus, line 2510F presented the highest number of regenerated 

plantlets (238 plantlets), whereas in the cultivar Eurosis only 13 plantlets were 

obtained (Figure 24).   
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Figure 24 – Number of regenerated plantlets in breeding lines and cultivar Eurosis. Results 

recorded after 2 weeks in the regeneration media. 

 

The figure above clearly shows that neither the breeding lines or Eurosis, 

were able to form plantlets on all four regeneration media, and only lines 2510F 

and 3515 regenerated on three of the four  media, with line 2510F being the 

most responsive, especially when RR1 medium was used. Comparing line 3521 

with and without cold-pretreatment, it can be seen that there is no considerable 

differences on the number of regenerated plantlets, with 3521F only 7 plantlets 

over than control 3521 (Fig. 24). 

 RR1 medium presented the best results (Fig. 25), however, a great part 

of the regenerated plantlets on this line and medium were obtained by placing 

recent regenerated plantlets on the same regeneration medium. This procedure 

allowed the formation of shoots around the inoculated plantlet (Figs. 26A-B). 
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Figure 25 – Plantlet regeneration in different media. Results obtained after approximately 2 

weeks of culture. 

 RR1 medium presented the best results per culture tube, with more than 

200 plantlets regenerated in total; on the other side RR3 and D3R medium gave 

the lowest responses.  

Albino plant formation was a common feature of this work (Fig. 26C). In 

2010, a total of 54 albino plantlets were regenerated, especially in the 2501 and 

2504 lines. In 2012, despite the high number of green plantlets achieved, 151 

albino plantlets were formed during the regeneration process, with RR3 medium 

being the medium in which the highest rate of regenerated albino plantlets was 

recorded (Fig. 27).  

 

 

 

 

 

 

 

 

Figure 26 – Plantlet formation. A-B: regenerated green plantlets placed again on regeneration 

medium and the consequent formation of various plantlets through time. C: regeneration of 

albino plantlets. Bar = 1cm. 
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Among the lines, 2510F presented the highest number of albino plantlets 

(64). The cultivar Opale and line 3514F did not regenerate any green plantlet 

but had the formation of 3 albinos each. In Eurosis no albino plantlets appeared 

(table 8).    

 

 

 

 

 

 

Figure 27 – Albino plantlet formation in different regeneration media. 

 

RR3 medium was the more prone to albino plantlet formation whereas 

RR1 gave the lowest frequencies. This results reinforce the idea that RR1 

medium is more appropriate for plantlet regeneration because not only gave the 

best frequencies of regeneration but also the lower rate of albino formation.  

 

Table 8 – Number of albino plantlets regenerated in the cultivars and breeding 

lines tested  

Lines/cultivars N0. of albino plantlets regenerated 

2510 1 

2510F 64 

3514F 3 

3515 17 

3521 25 

3521F 20 

3523 18 

Eurosis 0 

Opale 3 
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3.5. Flow cytometry  

 After complete acclimatization of the plants, those who survived were 

analyzed by flow cytometry to determine ploidy level. Using common pea 

(Pisum sativum L.) as the reference plant of known genome size (2C = 9.09 

pg), the DNA content assessment was made through the relative position of 

G0/G1 pike of the analyzed plant compared to the reference standard plant 

G0/G1 pike position.  

 The flow cytometry histograms usually generate G0/G1 and G2 pikes, 

that indicates, respectively, that the major part of the nuclei are in G0/G1 phase 

of interphase and those who are in G2 phase. The G2 pike is not always 

detected. The interlude between the two pikes represents the DNA synthesis 

period, the S phase.  

 Over the 114 plants analyzed, haploid, diploid and triploid plants were 

obtained (Fig. 28).  
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Figure 28 - Flow cytometry histograms of three different lines of regenerated plants. The left G1 

pike refers to the regenerated rice plant sample and the second one to the standard plant. G2 

pike is not perceptive on rice samples. Among the regenerated plants, ploidy varies from 

haploid to triploid. Haploid: line 2510; Diploid: line 3523; Triploid: line 3521.  

 

 From the 114 regenerated plants analyzed the haploid condition was the 

most common (77.19%). Line 2510 with cold-pretreatment represent most of 

the haploid plants (95.46%), with line 3515 and Eurosis the other haploid plants 

source (Figure 29). 
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Figure 29 – Haploid plants regenerated by cultivar/line. 

 

 Among diploid plants F4 lines, 3523 and 3521, gave the highest number 

of plants regenerated (Figure 30). All the lines and Eurosis regenerated diploid 

plants (20.18%), and although spontaneous chromosome doubling is frequently 

observed during callus development in rice haploids, the possibility that these 

diploid plants were initiated from the somatic cells of the anthers could not be 

entirely excluded.  

 

 

 

 

 

 

Figure 30 – Diploid plants regenerated by cultivar/line. 

 Triploid plants were also found among the regenerated plants: 3 plants, 

all from line 3521 following cold-treatment. This F4 line gave the highest rate of 

diploid plants as well, and did not regenerated any haploid plant.  

 Some calli were also analyzed by flow cytometry after two sub-cultures 

showing tetraploid and mixoploid conditions (Fig. 31).  
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Figure 31 – Flow cytometry histograms of two different callus. Tetraploid: callus from line 2523. 

Mixoploid: callus from variety Eurosis.  

 Over the three years of work it became clear that, after two sub-cultures, 

callus lose their regeneration capacity, and not a single plant was obtained after 

that moment. The histograms of figure 31 clearly show what happens in sub-

cultures, with calli changing their ploidy status rapidly.  

 A ploidy evaluation was also made to an albino plant, showing a diploid 

condition.  

 

 3.6. Chromosome counting using the Feulgen technique 

 

 In this work chromosome counting was tried in root tips of the 

regenerated plantlets. However, rice chromosomes are very small and have the 

tendency to aggregate which makes difficult their observation and counting.  

Nevertheless, some microscope observations at 1000x magnification 

allowed the visualization of chromosomes in some root tips of haploid plants. 

Although the exact number of chromosomes could not be counted, observations 

of a few samples seem to indicate they have only half the set chromosomes (n 

= 12, Figure 32).        
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Figure 32 – Haploid chromosome set in root tips, 12 chromosomes. Aggregation is visible on 

both images, and counting was very difficult to make. Bar = 50µm 

 

3.7. Plant acclimatization and flowering  

 

The regenerated plantlets were placed on a suitable substrate in a 

growth chamber Aralab, with controlled conditions. From the 343 regenerated 

plantlets only 114 survived to acclimatization (Fig. 33). The first week is critical 

for the acclimatization, and then constant careful with watering is necessary, 

with the rice plants being in constant contact with water simulating the field 

conditions.  

About 2-3 months the plants had grown from a small plant to 

considerable size (Figs. 34A-B), and started to flower (Fig. 34C).     

 

 

 

 

 

 

 

 

 

Figure 33 – Acclimatized plants on controlled conditions. The recent potted plants are on the 

front sector of the figure, smaller and still very fragile, then the older ones, already with a 

considerable size are visible in the back. 
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 Two days watering is needed to maintain the water level on the cups.   

 

 

 

 

 

 

 

 

Figure 34 – Plant maturation in growth chamber. A – one-week old plantlet in controlled 

conditions. B – one-month old plant, with tillers. C – spikelets formed in plant approximately 

after three months in substrate.  

 

3.8. Phenotypic differences between haploid and diploid plants 

 

 After ploidy evaluation by flow cytometry, phenotypic characteristics were 

observed in haploid and diploid plants. Although both haploid and diploid plants 

produced flowers, there are clear distinct features between them.  

 The first obvious difference among the plants is the size: haploid plants 

were clearly smaller, and sometimes presented more shoots than diploid plants 

(Figure 35).  
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Figure 35 – Size and plant architecture differences between haploid (H) and diploid (D) plants. 

 

 Although the plants on the figure above were placed in acclimatization at 

the same time the size differences are clear.  

 Triploid plants had approximately the same size of diploid plants with no 

clear distinct differences between them.  

 Among the haploid and diploid plants the differences are quite obvious, 

and the observation of the sexual structures confirmed the differences.  

Haploid spikelets are smaller than diploid ones, and sexual structures are 

clearly smaller and atrophied, and both male and female structures were 

different on diploid and haploid plants (Fig. 36).  
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Figure 36 – Haploid (H) and diploid (D) spikelets. Bar = 1cm. 

 

Anthers and ovary differs from haploid to diploid plants, and in haploid 

plants these structures were smaller and have an atrophied form (Figure 37). 

 

 

 

 

 

 

 

Figure 37 – Phenotypic differences between haploid and diploid sexual elements. A: anthers 

from diploid (D) and haploid (H) plants. B: ovaries from diploid (D) and haploid (H) plants. Bar = 

2mm. 

 

 Observing the structures on the figure 37 it is clear that a diploid 

chromosome set is essential to the normal development of functional sexual 

structures. Haploid plants, with only half of the genetic patrimony, are sterile, 

and pollen could not be observed within the anthers (Fig. 38). 
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Figure 38 – Haploid anther tissue. Anther tissues without any pollen grains. Bar = 50µm. 

Diploid sexual structures and pollen grains seem to be phenotypically 

normal and well-developed (Fig. 39).  

 

 

 

 

 

 

 

 

 

Figure 39 – Spikelet dissected from a diploid plant and pollen from the anthers. A: dissected 

spikelet of a diploid plant with well-developed sexual structures. Bar = 2mm. B: pollen grains 

“squashed” of diploid plant anthers, they seem to be normal reticulated grains with a single pore 

(indicated by the arrow). Bar = 50µm.  

 

 Most of diploid plants produced panicles approximately after 3 to 4 

months in controlled conditions, and seeds are produced in some spikelets. 

These seeds appear to be completely normal and viable, presenting a normal 

embryo (Fig. 40). 

 Until now none of the haploid and triploid plants produce any seed, some 

of the haploid plants formed panicles, but not a single seed was produced.  

 

A B 
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Figure 40 – A: Diploid caryopsis. B: Diploid seed collected from a diploid regenerated plant, 

showing the embryo (arrow). Bar = 2mm. 
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4. Discussion  
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Discussion 
 

Androgenesis in cereals, mainly in rice, has been studied over the years, 

and efforts to make this technique a powerful tool in rice improvement are being 

made across the world (Gosal et al., 1997).  

Many researchers have tried to improve haploid production through 

androgenesis, mainly in crop species, applying different pre-treatments to the 

plants and evaluating the diversity of factors that control the process (Germanà, 

2011; Islam and Tuteja, 2012). Rice was one of the most used species to obtain 

haploids through anther or pollen culture, and since the first report by Niizeki 

and Oono (1968), several studies were carried out to obtain the ideal protocol to 

achieve rice haploid production and homozygous lines. Genotype influence, 

microspore stage, effects of various treatments to rice donor plants, are some of 

the features tested in this studies (Chen et al., 2001; Trejo-Tapia et al., 2002; 

Herath et al., 2009; Khatun et al., 2012).         

In this work, the androgenic potential of different breeding lines and 

cultivars growing in the Mondego valley were tested in order to evaluate 

possible improvement of rice culture in this area and in Portugal. 

 

4.1. Androgenesis induction 

 

Through this work, the induction of androgenesis, was always made when 

microspores were at middle or late-uninucleate stage. Androgeneis success 

rarely exceeds 1% for the majority of species, including rice, although the 

results of this work, had often shown induction rates higher than 2%. Similar 

results, have been reported by many researchers such as Cho and Zapata 

(1990) and Chen et al. (2001), who also obtained good induction rates when 

anthers were cultured containing pollen at the same maturation stage. 

During anther culture, a few of the larger microspores, highly vacuolated, 

represented the portion that suffered divisions and initiate the androgenic route, 

whereas smaller microspores, sometimes with starch grains, usually do not 

underwent androgenesis and finished to die. Progressive decrease in total 

pollen viability during culture was also observed by Cho and Zapata (1990) and 

is a common feature of the androgenic process. 
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Over the years, studies on androgenesis have proved that sucrose 

concentration and hormone type and concentration on the induction media can 

highly influence the whole process (Trejo-Tapia et al., 2002; Shahnewaz et al., 

2004; Islam et al., 2004). Our results also showed that these two factors are 

important for the success of pollen embryogenesis.   

The A3 medium proved to be the most effective for androgenesis 

induction, although statistical significant differences could only be found 

between A2 and A3 media. A3 was the only medium supplemented containing 

NAA, which seems to indicate that this auxin may have a positive role on the 

induction mechanism. This auxin was also used and proved to be a highly 

useful PGR in the assays carried out by Woo and Huang (1982) in rice. By the 

contrary, 2,4-D which was present in all media, does not seem to be so effective 

as NAA for pollen embryogenesis. 

2,4-D has been used for androgenesis induction in a wide range of 

species and the best concentration to trigger the androgenic pathway seems to 

be different among the species. For example, Chen et al. (2001) reported that 

higher or lower concentrations beyond the optimal10-15µM, slightly decreased 

pollen callus formation. These results seem to indicate that some synergism 

between PGR, namely auxins and cytokinins, and eventually other factors (e.g. 

stress conditions) are responsible for the initiation of the androgenic pathway 

(Gupta et al., 1989).  

The results indicated that sucrose is not a crucial factor for androgenesis 

in the rice genotypes that were tested. A previous report by (Chen, 1977) gave 

similar results although this author had claimed that a 6% sucrose concentration 

resulted in remarkable increases in the frequency of callus production, what did 

not occur in the present study. However sucrose level was not tested singularly, 

and the type and concentration of hormones in the media could be, and most 

likely was, determinant in these results. 

An interesting feature of the results obtained in this work was the 

observation that during the three years of the experiment the breeding lines 

consistently gave better results than the cultivars. This may be caused by the 

great genetic diversity. However, more assays need to be carried out to more 

strongly support the role of the genotype. 
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Another interesting result is that different generations respond differently 

to androgenesis induction. In 2011, F2 generation lines had a higher induction 

rate than F3 lines, and the same happens in 2012, where F4 lines presented 

better results than F3. This may be also related to the genotype of the donor 

plants but, as stated before, needs further elucidation.  

In 2012, F2 lines were not collected, being replaced by F4 lines. Studying 

the generation effects on the induction of androgenesis, it appears, by the 

results recorded in 2011 and 2012, that F3 is the generation that had the 

smaller induction response, being less susceptible to androgenesis induction 

that both F2 and F4 generations. Another prominent point, is that in 2012 the F3 

descendants of F2 lines from 2011, gave in general, better induction results. 

This fact is not clearly understood and further studies on the genotype and its 

changes over generations are needed. Nevertheless, a possible cause for the 

response differences over the years could be related to the growth conditions 

(temperature, water supply….etc.) of the donor plants.   

In 2012, another unexpected result occurred, this time among cultivars. 

Ariete, that on previous years produced pollen calli, could not be induced during 

this year experiments.  The growth conditions of the anther donor plants may 

again be related with this result. 

These results are identical to numerous studies on rice androgenesis, 

where it is proved that genotypic differences have an important role in 

conditioning the ability to microspore, even in the uninucleate stage, to rise 

embryoids and consequent haploids, as Guha-Mukherjee (1973) first reported.  

The effect of anther tissues in androgenesis induction is also an important 

characteristic of the process. Pelletier and Ilami (1972), conducted a series of 

transplantation experiments and demonstrated that pollen from one cultivar of 

tobacco would successfully develop into an embryo even transferred into 

anthers of another cultivar. This work introduced the concept of “Wall factor”, 

according to which the somatic tissues of the anther play an important role in 

the induction of sporophytic divisions in pollen, with the diffusion of nutrients 

through the anther walls often considered to be one of the factors affecting 

androgenesis due the growth-inhibiting substances leaking out of the 

degenerating anther tissue. The main active tissue in the anther wall is the 

tapetum, and all nutrients to the developing pollen grains must pass through it 
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or be metabolized in it (Nitsch, 1977; Vasil, 1980; Bhojwani and Razdan, 1996; 

Germanà, 2011). Pollen grains are surrounded by the anther which is a barrier 

to direct contact with the culture medium, so in the interrelation of pollen and 

culture medium the anther wall should be seen as a bioactive filter (Heszky and 

Mesch, 1976). 

A number of studies on the role of the anther wall in androgenesis have 

shown that it not only acts as a barrier to nutrient flow but that it also provides 

both beneficial and inhibitory substances (Heszky and Mesch, 1976). Some 

studies on this subject indicate that pollen grains do indeed experience a period 

of starvation within excised anthers, as the anther wall obviously act as a barrier 

to the flow of nutrients, such as sugar, amino acids and minerals, from the 

culture medium to the pollen. These conditions seem to stimulate the abnormal 

divisions of the microspores. Starvation appears to be the principal factor 

triggering tobacco pollen grains into androgenesis (Heberle-Bors, 1989).  

 

4.2. The effects of cold-pretreatment 

 

Cold-pretreatment at 4ºC for 10 days, on four lines and two cultivars (2012 

assays), showed a positive effect on the androgenic induction. Most of the lines 

and varieties tested presented a higher induction rate on cold-treated samples 

in both A1 and A3 media. Although, lines 2523 and 3521 gave a better 

response in control than after the cold-treatment, the positive effect of the 

treatment is clearly visible on the response of cultivar Ronaldo. This variety do 

not respond on both media in control. However when suffering the cold shock 

calli production occurred, and with high rates of induction. Nonetheless, Ariete, 

one of the varieties also subjected to a cold-treatment period, did not show any 

response. 

Temperature stresses, in particular cold treatments, have been used over 

the years by many researchers to promote androgenesis in rice. The results in 

this work are in line with those obtained by several authors that proved that the 

induction of androgenesis in vitro was strongly influenced by cold-pretreatment 

of the panicles, and sometimes increased callus producing 50% over that in 

control. This results could be explained by the possible delay of the senescense 

of anther somatic tissues, delaying the degeneration of microspores and thus 
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inducing pollen mother cell to produce two identical nuclei instead of one 

vegetative and one generative nucleus, allowing the androgenic route to take 

place (Zapata et al., 1982; Ying et al., 1982; Trejo-Tapia et al., 2002; Reddy et 

al., 1985). 

 

4.3. Plantlet regeneration 

 

Plantlet regeneration is one of the most important steps of haploid 

production, and through the years this process has been optimized, in order to 

take the maximum yield from the process (Sah and Niroula, 2007; Bagheri and 

Jelodar, 2008; Tariq et al., 2008). 

In this work, four different regeneration media, with changes in hormone 

composition, were used. Three of them had exactly the same hormones, NAA 

and kinetin, but at different concentrations. The other one, D3R, was the only 

medium in which BAP was tested. It has been claimed by many reports that 

NAA, is of extreme importance in the regeneration medium, since maximum 

regeneration rates are usually obtained through the addition of this auxin (Tsay 

et al., 1982; Woo and Huang, 1982;). 

RR1 medium gave the best regeneration rate, opposite to RR3 medium. 

This shows that, although both NAA and kinetin are important in regeneration, 

their levels in the media have a high influence in the success of the process. A 

close correlation between the two PGRs was observed, and even a slightly 

change in their concentrations can positively or negatively impact the 

regeneration of plantlets.  

These results support the idea of synergism between the PGRs, and that 

there is an optimum level for both PGRs, and that their effect could be 

supplemented by each other, creating an ideal balance that allow a maximum 

regeneration yield. In our work NAA concentrations lower that 1 mg/L resulted in 

a decrease of plantlet regeneration, and the addition of kinetin stimulated 

regeneration at concentrations up to 2 mg/L. Similar results were obtained by 

Tsukahara and Hirosawa (1992), even though they had the highest number of 

regenerated plantlets with the combination of 2 mg/L NAA and 1 mg/L kinetin. 

The genotype is important not only for androgenesis induction but plays 

also an important role in controlling regeneration. Following the same trend 
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observed in callus induction, breeding lines gave higher regeneration rates than 

cultivars and, in 2012, only one cultivar, Eurosis, was able to regenerate 

plantlets. Although induction and regeneration responses of different genotypes 

to media is strongly governed by genetic and environmental factors, the 

composition of the media and a balance of auxin and cytokinin also influences 

the responses of the different genotypes (Karim and Zapata, 1990; Chaleff and 

Stolarz, 1981; Reddy et al., 1985).  

Another significant factor that may control the success of the androgenic 

response, is the timing of callus induction from anthers and subculture on the 

regeneration media. This seems to influence the breeding efficiency, and callus 

in earlier stages not only possessed higher differentiation ability but also 

produced more green plants. In this work, a close correlation between the age 

and differentiation ability of callus could be found, being observed that young 

calli produce more green plants. Similar observations were reported by Tsay et 

al. (1982). 

Calli initiated from microspores of rice are usually friable, shiny white, and 

nodular in nature (Sathish et al., 1995). This description is consistent with our 

observations and is an indication that callus are produced from microspores and 

not from anther wall somatic tissues. As the calli aged, it seems that part of the 

cell population turned non-embryogenic, losing their ability to differentiate into 

green plants as also observed by other authors (Tsay et al., 1982; Sathish et 

al., 1995).   

Regeneration started about two weeks after callus transfer to the 

regeneration media and both green and albino plants were obtained. Some of 

the calli differentiated only into albino plantlets whereas others yielded 

exclusively green plants. In addition, a small number of calli, produced both 

albinos and normal plants in the same test tube. Similar results were reported 

by Woo and Huang (1982). The formation of green and albino plants in the 

same callus indicates that cells in the callus are quite heterogeneous in nature 

and possess different genetic backgrounds resulting in plantlets with different 

phenotypes after expression of totipotency. A callus mass either generated only 

one or two plants or in some cases large number of plants were produced. 

Moreover, a number of calli produced only roots.  



93 
 

Albino plants are a current problem in androgenesis in cereals. In our 

experiments, although a large number of albino plants were produced, 

especially in the experiments carried out in 2010, in 2012 experiments this 

problem was substantial reduced, and the number of greens plants were 

considerably higher than the albino plants.  

Albino plant formation is known to be affected by several factors, although 

the exact mechanisms underlying this process have not been completely 

understood. However, the results in 2010 and 2012 could be explained by 

genetic differences between the lines and cultivars used, since the genotype is 

known to be a critical factor in the process. On the other hand, the reduction of 

albino regeneration and consequent higher yield of greens plants in 2012 may 

due to the cold-treatment applied before the culture, since some studies have 

shown the positive effect of this pre-treatment not only in callus induction but 

also in green plant regeneration (Sathish et al., 1995; Reddy et al., 1985; 

Woo and Huang, 1982). 

RR3 medium showed the lowest regeneration ability, nonetheless, albino 

plant production was higher in this regeneration medium. This fact indicates the 

strong influence of hormones in the regeneration process, not only influence the 

plant regeneration itself, but also the type of plants regenerated. The hormone 

levels used in this medium (NAA – 1 mg/L and kinetin – 2 mg/L) must trigger 

some genetic feature changing the process, causing albinos regeneration. RR1 

gave opposite results with the lowest number of albino plants regenerated and 

the highest rate of green ones, showing once again that could be a useful 

regeneration medium in the optimization of rice androgenesis. Some albino 

plantlets have been maintained in vitro and grow well since sucrose is present 

in the culture medium 

  When developing plantlets were transferred not to a hormone-free 

medium, but to a fresh regeneration medium of the same composition it was 

found that new plantlets arise, thus increasing the efficiency of the process.  On 

these conditions, a single plantlet could gave origin to more than 20 new ones. 

Plantlets thus produced seem to emerge from shoots originated at the basis of 

the original plantlet, in a process resembling tillering in field conditions. Whether 

plants have origin in pre-existing meristems or are the result of newly formed 

meristems in an organogenic process remains unclear.   
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The regeneration results have shown that experimental lines presented a 

higher response than cultivars. For instance, in 2012, only Eurosis cultivar has 

the ability to regenerate plantlets. Among lines, it seems that donor plants from 

the F4 generation are the best for plant regeneration, with a higher number of 

formed plants, and lines 3521 and 3523 not only have a high rate of 

regeneration but also, all the plants regenerated from these two F4 lines 

showed to be diploid. This could be a very important condition, since F4 lines 

appears to spontaneous double their chromosome set during culture, although 

further studies must evaluate the plant origin. 

 

4.4. Flow cytometry analysis 

 

From the 114 plantlets that survived to acclimatization, it was found that 

haploid plants was the prevailing condition (77.19%). In other works the ratio 

haploid/diploid plants is different, and opposite to the results obtained in this 

work,  Woo and Huang (1980), regenerated a higher number of diploid plants 

instead of haploid ones. The results obtained in this work by flow cytometry 

analysis also show that calli were obtained mostly from microspores and not 

from the somatic anther tissues. Despite the high number of haploid plants 

regenerated, diploid plants were also found (20.18%). It can be argued that 

these plantlets may be produced from anther somatic calli. However, as has 

been reported in other experiments with rice (Woo et al., 1973; Woo and 

Huang, 1980) and with other species (Zheng, 2003), these may be also of 

pollen origin and may be the result of cell fusions at earlier or more advanced 

stages of androgenesis induction, as the regeneration of triploids indicates.  

In rice, as in other cereals, the main mechanisms of spontaneous doubling 

of the haploid chromosome complement are endoreduplication (chromosome 

reduplication during interphase) or endomitosis (mitosis without formation of 

mitotic spindles) before the first microspore division (Chen and Chen 1980, 

Chen and Wu 1983). This characteristic could indicate that the diploid plants 

regenerated in this study were from microspore origin and that during the callus 

culture the chromosome number was doubled, which was also observed by 

Woo et al. (1973). Further analysis are needed in order to confirm these 

possible origins. 
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Flow cytometry analysis revealed that plants derived from the same callus 

presented the same ploidy status. This is complemented from the phenotype 

observation, thus these plants have identical phenotypic characters between 

them.  

Callus flow cytometry analyses have shown that over two to three 

subcultures, ploidy condition suffered constant variations, and this could be 

associated to their regeneration ability loss. Rice microspore callus behavior 

during subculture is not well known yet, still it has been shown that this type of 

in vitro culture are generally characterized by instability of chromosome number 

and structure. During callus culture chromosome instability may occur, causing 

not only decrease in plant regeneration but also the elimination of haploid cells 

(Chen and Chen, 1980). 

 

4.5. Phenotype analysis 

 

As could be expected, haploid and diploid plants displayed different 

phenotypic characteristics such as size and flowers. The fertility of regenerate 

plants varied from plant to plant. Until now, all haploid plant that have completed 

full development were sterile, showing small panicles and abnormal sexual 

structures. Similar results were obtained by other researchers, and some of 

them only obtained seeds from haploid plant through a colchicine treatment 

(Woo et al., 1973; Woo and Huang, 1980). 

Seeds from two diploid plants have been already recovered, and the 

formation of phenotypic normal panicles and spikelets in another ones, foresees 

the possibility of further recover of new seeds. Triploid plants do not show any 

type of panicle formation so far.  

 

  

 

 

 

 

 

 



 

96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

 

 

 

 

 

 

 

 

5. Future perspectives 
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Future perspectives 

 

Haploid plants have been considered to be useful materials for genetic 

studies and plant breeding. Since only half of their genomes is involved, the 

function of recessive genes and the interaction of alleles can be studied easily. 

Nonetheless, the frequency of haploid occurrence is very low, and some 

treatments, such as cold-pretreatment have been used with some success over 

the years to enhance androgenesis. Although some treatments could increase 

haploid formation, genotype is a very important factor, and every treatment 

must be studied for each genotype individually.  

Another important problem in androgenesis, the albinism, has been 

studied by several researchers in order to evaluate the causes and consequent 

possible solutions, and some new perspectives over this feature opens new 

doors to a possible control of albino formation. However, albinism still remains a 

problem, and although some treatments can reduce the number of albino 

plants, those are constant in every study in rice androgenesis made so far. 

Culture media, both induction and regeneration, are an important factors 

that influence the whole androgenic process. Media elements, such hormones 

or sucrose are critical for the success, or not, of the culture. Induction results 

shows that auxin 2,4-D is essential to initiate callus formation and the 

association with NAA and kinetin appears to be important for induces 

androgenesis. A sucrose level of 3% showed to be the most effective in this 

study: However, further studies must be performed to evaluate the positive 

effects of sucrose 6% or higher concentrations both in terms of induction and 

regeneration as well on the rate of green to albino plant formation. 

The time at which callus must be transferred from the induction to the 

regeneration media is very important, since a long exposure to induction 

conditions can prevent the regeneration ability. This suggests that in further 

works, a maximum possible number of calli should be placed in regeneration 

media a few days after their formation in order to maximize the number of 

regenerants.   

A remarkable output of these assays was the regeneration of new 

plantlets from a single one when it is placed in a medium with hormones, 

usually in the same regeneration medium. In some cases, it was observed that 
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a single plant could originate more than 20 new plants, these new plants seems 

to be genetically and phenotypically identical, and ploidy analysis indicates the 

same chromosome set. This discovery needs further studies, but unlocks new 

possibilities to increase plant regeneration yield from androgenesis, one of the 

major problems of this technique.  

New approaches in regeneration should be taken, and hormones could 

play a crucial role, not only in regeneration of plantlets from callus, but also in 

multiplication of single new plantlets, increasing the number of haploid plantlets 

and also spontaneous diploid plants. This could be a major breakthrough in 

androgenesis not only in rice but other important crop species.  

Although rice breeding programs in Portugal remain mainly conventional, 

new approaches could be applied in a closed future, and Bico da Barca 

experimental field in Mondego valley is one of the most promising sites for rice 

breeding in association with in vitro techniques that could, and should create a 

new era in rice cultures in this country, in order to achieve the same success 

that in other European countries.        
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