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Abstract 
Technology evolution is contributing for a sustainable change in 

engineering education. New resources and tools are continuously 

improving the teaching and learning processes, providing more pathways 

to both students and teachers for accessing better educational contents. In 

engineering courses, the experimental work, typically supported by 

traditional laboratories, is also encompassing technology evolution as 

denoted by the appearance of the so-called weblabs or remote 

laboratories. This type of laboratories allows both students and teachers 

to remotely access physical experiments enabling the control of 

laboratory equipment through a simple device connected to the Internet 

(e.g. a PC). Besides the provided flexibility (e.g. access to a real 

laboratory on a 24x7 basis) other advantages may be enumerated, such as 

the increase on students’ motivation and the cost reductions for all the 

involved actors in the teaching and learning process (e.g. students, 

teachers, institutions, etc.). However, current weblabs’ architectures and 

their underlying infrastructures follow specific and distinct technical 

implementations, i.e. there is no standard solution. Moreover, they are 

not able to be reconfigured with different instruments and modules, 

known as weblab modules. Whenever required in a traditional 

laboratory, these modules can be attached to the target experiments, 

provided that they are available in the laboratory facilities. Some 

weblabs’ implementations allow setting up connections between the 

target experiments and the weblab modules provided in the 

infrastructure, but these modules cannot be changed or replicated, i.e. the 

flexibility for changing the layout and the modules used in a particular 

weblab infrastructure is very reduced. Therefore, the lack of a standard 

access and design of weblabs, and the reduced flexibility for changing 

the required modules for conducting the target experiments, are two 

issues that are preventing their wide-spread adoption in engineering 

education. 

This thesis describes a research work conducted to design standard-

based reconfigurable weblabs. It analyses the possibility of using the 

IEEE1451.0 Std. to design the weblabs and the modules adopted by the 

underlying infrastructures to control/monitor the target experiments. 

Additionally, to provide reconfiguration capability to the weblab 

infrastructure, it considers the use of Field Programmable Gate Arrays 

(FPGAs) for accommodating the weblab modules, thus allowing: i) the 

use of standard Hardware Description Languages (HDLs) to describe the 

weblab modules, making them easily sharable and replicable and; ii) the 
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weblab infrastructures to inherit the reconfigurable nature of FPGAs, 

making them flexible in order to accommodate different embedded 

modules with the inherent reduction of costs that may arise from 

replacing traditional with embedded instrumentation.  

Besides contextualizing the role of weblabs in engineering education, 

presenting some examples and commenting the use of traditional 

instrumentation standards for their design, the thesis describes the 

IEEE1451.0 Std., suggesting extensions for its adoption in the design of 

weblabs. Supported on those suggestions and on FPGA technologies, it 

specifies the development of an IEEE1451.0-compliant reconfigurable 

weblab prototype and presents and analyses researchers’ opinions about 

its use and the benefits for engineering education. 

 

Keywords 
Remote experimentation, Weblabs, Remote laboratories, IEEE1451.0 

Std., FPGAs, Hardware reconfiguration. 
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Resumo 
A evolução da tecnologia tem contribuído para uma mudança 

sustentada na educação em engenharia. Novos recursos e ferramentas 

têm melhorado os processos de ensino e aprendizagem facilitando a 

alunos e professores o acesso a melhores conteúdos educativos. No caso 

particular dos cursos de engenharia, o trabalho experimental, tipicamente 

realizado em laboratórios tradicionais, tem sofrido alterações com base 

na evolução tecnológica, de que é exemplo o aparecimento dos 

denominados laboratórios remotos. Este tipo de laboratórios permite que 

alunos e professores possam aceder a experiências reais controlando 

remotamente o equipamento laboratorial através de um simples 

dispositivo ligado à Internet (e.g. PC). Para além da flexibilidade 

fornecida (acesso a um laboratório real 24 horas por dia, 7 dias por 

semana) outras vantagens podem ser enumeradas, tais como a crescente 

motivação dos alunos para a realização de trabalhos experimentais e a 

inerente redução de custos que estes laboratórios podem trazer para todos 

os actores envolvidos no processo de ensino e aprendizagem (alunos, 

professores, instituições, etc.). Contudo, as atuais arquiteturas de 

laboratórios remotos, bem como as infraestruturas subjacentes, seguem 

implementações técnicas distintas e específicas, i.e. não existe uma 

solução normalizada que suporte a reconfiguração com diferentes 

instrumentos e módulos, ambos genericamente denominados por 

módulos de laboratório. Quando necessário, esses módulos podem ser 

interligados às experiências em teste, desde que disponíveis nas 

instalações onde se encontra o laboratório. Algumas implementações de 

laboratórios remotos permitem a interligação das experiências com os 

módulos de laboratório disponíveis na infraestrutura subjacente. 

Contudo, esses módulos não podem ser substituídos ou replicados, i.e. a 

flexibilidade para modificar o layout e os módulos utilizados numa dada 

infraestrutura é ainda reduzida. Neste contexto, a inexistência de um 

acesso e desenvolvimento normalizados para laboratórios remotos, e a 

reduzida flexibilidade para substituir/replicar os módulos necessários 

para a realização de uma dada experiência, são dois aspetos que têm 

dificultado a disseminação e a utilização deste tipo de laboratórios na 

educação em engenharia. 

Esta tese descreve o trabalho de investigação realizado com vista ao 

desenvolvimento de laboratórios remotos normalizados e 

reconfiguráveis. Analisa-se a possibilidade de utilizar a norma 

IEEE1451.0 para o desenvolvimento de laboratórios remotos e de 

módulos usados pela infraestrutura subjacente para controlar/monitorar 
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as experiências. Adicionalmente, para fornecer capacidade de 

reconfiguração à infraestrutura laboratorial, sugere-se a utilização de 

dispositivos lógicos reconfiguráveis (Field Programmable Gate Arrays, 

FPGAs) para suportar os módulos de laboratório, permitindo desta 

forma: i) a utilização de linguagens normalizadas de descrição de 

hardware (Hardware Description Languages, HDLs) para a 

especificação dos módulos do laboratório, tornando-os facilmente 

partilháveis e replicáveis e; ii) que a infraestrutura herde a capacidade de 

reconfiguração das FPGAs, tornando-a flexível para suportar diferentes 

módulos de laboratório com a inerente redução de custos que uma 

solução semelhante pode trazer quando se substitui instrumentação 

tradicional por embutida. 

Para além de contextualizar o papel dos laboratórios remotos na 

educação em engenharia, da apresentação de alguns exemplos e 

comentários sobre a utilização de normas de instrumentação para a sua 

especificação, a tese descreve a norma IEEE1451.0. Sugerem-se 

extensões a esta norma para a sua adoção na especificação e 

implementação de laboratórios remotos. Tendo por base essas sugestões 

e a utilização de FPGAs, esta tese especifica o desenvolvimento de um 

laboratório remoto reconfigurável e compatível com a norma 

IEEE1451.0, e apresenta opiniões de investigadores sobre a sua 

utilização e benefício para a educação em engenharia. 

 

Palavras chave 
Experimentação remota, Laboratórios remotos, norma IEEE1451.0, 

FPGAs, Reconfiguração de hardware. 
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Notes to the reader 
While writing an extensive document, it is usual to take decisions that aim to 

facilitate the reading and understanding of its contents. 

Therefore, it was decided to create a list of acronyms and abbreviations, and a 

glossary with the most relevant terms and expressions found in the text. All acronyms, 

and most of the abbreviations, are presented in capital letters. They are typically 

specified only once, but the most relevant ones can be specified in more than one 

chapter or annex. The most common in science (e.g. CD) and the majority of those 

specifying names of conferences and institutions, are only defined in the acronyms and 

abbreviations list.  

To emphasize some terms and expressions during the thesis, the italic style was 

applied. Terms written in a different font from the remaining text refer to commands or 

software code. 

It was also decided to put some of the information and technical descriptions into 

annex. The criterion for the decisions was supported by their relevance, without hinder 

the access to specific details readers may want to consult, such as implementation 

details that are provided in some annexes.  

Most of the references to webpages describing software applications, tools, and 

specific technical information, were placed in footnotes, rather then listing them in the 

reference’s section. 

The DVD attached to this thesis provides some of the material referred during the 

text, namely: 

 an introductory webpage with the list of published papers; 

 software packages; 

 the supporting webpage used during the validation & verification process 

described in chapter 7; 

 videos exemplifying the validation & verification process; 

 photographs of the developed weblab; 

 this same thesis in a Portable Document Format (PDF). 
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Glossary 
E-learning: Concept comprising all forms of electronically supported teaching and 

learning processes. It gathers other common definitions of services and tools, e.g. CBT, 

LMS, VLE, among others. 

 

FPGA: Is an hardware reconfigurable integrated circuit able to be (re)configured by the 

customer or after manufacturing. Its (re)configuration is commonly specified using 

Hardware Description Languages (HDLs). 

 

FPGA-based board: Is a print circuit board with several electronic devices connected 

and controlled by an FPGA. Typically it comprises LCDs, interface ports, buttons, 

memories, D/A and A/D converters, among other devices. 

 

Hardware Description Language (HDL): Is a specialized computer language used to 

describe the structure, design and operation of electronic circuits, and most commonly, 

digital logic circuits. In contrast to most software programming languages (such as C or 

Java), HDLs also include an explicit notion of time, which is a primary attribute of 

hardware. The most common languages are the Verilog and VHDL (currently standard 

languages), which are typically adopted by all manufacturers to describe digital circuits 

embedded in FPGAs. 

 

IEEE1451.0 Std.: Is a standard for interfacing transducers (sensors and actuators) that 

defines a set of operating modes based on specifications provided by Transducer 

Electronic Data Sheets (TEDSs). Defined in 2007, this standard is the basis for all 

future and previous defined members of the IEEE1451.x Stds. so they can operate 

together. The operating modes defined by the standard are controlled using commands 

that can be applied using a set of APIs. It defines an architecture based in two modules 

that should be interconnected using an interface protocol: the TIM (Transducer Interface 

Module) and the NCAP (Network Capable Application Processor). 

 

Instrumentation server: Is the device adopted in the weblab infrastructure for controlling 

other equipment, such as: weblab modules, webcams and the target experiments. 

Typically it is implemented through PCs that interfaces those equipments using 

dedicated buses with high data rates and trusty data transmissions. 
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Network Capable Application Processor (NCAP): Defined by the IEEE1451.0 Std., is 

the hardware and software that provides the gateway function between the TIMs and the 

user network or host processor. 

 

Reconfigurability: Denotes the reconfigurable capability of a system, so its behaviour 

can be changed by reconfiguration, i. e. by loading different code describing a particular 

module. 

 

Reconfiguration Tool (RecTool): Is the tool that runs on the weblab server to build and 

define the weblab project used to reconfigure the weblab infrastructure. It provides a 

web interface so remote users may select the weblab modules to reconfigure the 

infrastructure. 

 

Remote Experimentation (RE): Is a sub-domain of the traditional E-learning extending 

the common features of virtual learning environments, providing resources, tools and 

methodologies for the conduction of real experiments through the Internet using remote 

laboratories / weblabs. 

 

Remote laboratory / Weblab: Usually defined in literature using both terms (remote 

laboratory or weblab), imply the remote access to real experiments, using an Internet 

connection. Different users (students, teachers, technicians, or others) interact with real 

equipment like in traditional laboratories, however they are not required to be in the 

laboratory, since they can access it through a simple network-capable accessing device 

(mobile or not). 

 

Target experiment: Comprises the experiment provided in a weblab able to be remotely 

accessed during a laboratorial activity. Typically it is interfaced to weblab modules to 

control/monitor physical phenomena. 

 

Transducer Channel (TC): Is the channel that establishes the interface to the weblab 

modules embedded in the TIM or externally located. 

 

Transducer Electronic Data Sheet (TEDS): Data block defined by the IEEE1451.0 Std. 

containing all transducers’ features. The standard defines mandatory and optional 

TEDSs that are usually implemented in 8 bit (octet) memories inside the TIM, or can be 

remotely located (named Virtual TEDSs).  
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Transducer Interface Module (TIM): Is a module defined by the IEEE1451.0 Std. with 

the interface, signal conditioning, A/D and D/A conversion and, in many cases, the 

transducers itself. 

 

Weblab infrastructure: Represents the infrastructure comprising the NCAP-TIM model 

adopted in the reconfigurable weblab. It is accessed by the weblab server to reconfigure 

different weblab modules, and by the users to control/monitor those modules, and 

therefore, the target experiments. 

 

Weblab modules: Devices (instruments and modules) adopted in every laboratory to 

control/monitor the target experiments. In the electrical domain these can be equipments 

like: Oscilloscopes, Multimeters, Function Generators; Digital and Analog I/O devices, 

dedicated Controllers, etc. 

 

Weblab project: Is the project created by the RecTool to define the layout of the weblab 

infrastructure. It is defined by different files, including the final bitstream file used to 

reconfigure the FPGA adopted in the weblab infrastructure. It comprises an 

IEEE1451.0-compatible module and all the selected weblab modules to be reconfigured 

in the weblab infrastructure. 

 

Weblab server: Is a computer acting as an HTTP server that supports all the pedagogical 

contents required for a specific course (documents, animations, simulations, assessment 

tools, etc.) and administrates users’ accesses to the laboratory, such as authentications. 

In current solution it also includes the use of the RecTool to reconfigure the weblab 

infrastructure with different weblab modules. 
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Chapter 1: Introduction 1 
 

 Chapter 1   

Introduction 
 

 

 

This chapter presents the candidate’s past experience in the area of remote 

experimentation and his motivations for the research & development work described in 

this thesis. The innovative aspects are emphasized, and the structure and organization of 

the whole thesis are presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 An IEEE1451.0-compliant FPGA-based reconfigurable weblab 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 1: Introduction 3 
 

1.1. Background and motivation 

The work presented in this thesis derives from the past experience acquired by the 

candidate in the remote experimentation domain, and from the new technological trends 

faced by the teaching and learning process in engineering education. 

During the last 12 years, the candidate has been gaining particular skills in 

instructional laboratories applied to engineering education through the supervision of 

final degree projects as a teacher at the DEE/ISEP
1
, and by the development of some 

laboratories for the conduction of real experiments through the Internet 

[1][2][3][4][5][6][7]. In this domain, it must be emphasized the participation in the 

European project PEARL
2
 in the period 2000-2003, whose key objective was to create 

platforms for remotely accessing experiments. Working as a researcher of the 

DEEC/FEUP
3
 (one of the participating institutions in the project) the candidate 

designed and developed an Internet accessible workbench infrastructure supporting 

experiments in three areas: microcontroller-based circuits, FPGA-based introductory 

logic design, and test of IEEE1149.1/.4-compliant circuits. Additionally, as a 

complement to the acquired knowledge in a Degree in Electrical Engineering concluded 

at FEUP (1999), the candidate also concluded an MSc. degree. This was attended at that 

same institution, in Electrical and Computer Engineering in the area of Industrial 

Informatics (2003), whose thesis described the work developed during his participation 

in the PEARL [8][9][10][11].  

Therefore, by joining the candidate’s background and the current significant changes 

in the teaching and learning processes, a motivation to the work presented in this thesis 

emerged. This motivation must be understood in an education context that is facing 

significant changes, namely by the use of new technological-enhanced tools and 

resources that have been creating enormous challenges in schools, universities and in 

the society in general. The amount of available information has been imposing 

additional pressure on people, since they are now obliged to be constantly updated to 

avoid cultural and social isolation from the surrounding society. Education has a big 

influence over this trend and must encompass current technological changes, so it 

should provide means to satisfy people requirements by creating new educational 

resources and tools. This has been happening since the 80’s with the emergence of PCs 

                                                
1 Department of Electrical Engineering at the School of Engineering of the Polytechnic Institute of 

Porto (DEE/ISEP) (http://www.isep.ipp.pt/). 
2 The project named Practical Experimentation by Accessible Remote Learning (PEARL) led by the 

Institute of Educational Technology of the Open University (OU-UK) (http://www.open.ac.uk/iet) 

was financed by the Information Society Technologies (IST) - FP5 - from 2000 to 2003. It included 

a consortium with the industrial automation company named Zenon SA (Zenon-Greece) 

(http://www.zenon.gr) and other universities, such as the University of Dundee (UD-Scotland) 

(http://www.computing.dundee.ac.uk), the Trinity College Dublin (TCD-Ireland) (https://www. 

tcd.ie), the Open University Worldwide (OUW-UK) (http://www.ouw.co.uk) and the University of 

Porto (DEEC/FEUP-Portugal) (http://www.fe.up.pt). 
3 Department of Electrical and Computer Engineering at the Faculty of Engineering of the University 

of Porto (DEEC/FEUP) (http://www.fe.up.pt). 

http://www.isep.ipp.pt/
http://www.open.ac.uk/iet/
http://www.zenon.gr-/
http://www.computing.dundee.ac.uk/
https://www.tcd.ie/
https://www.tcd.ie/
http://www.ouw.co.uk/
http://www.fe.up.pt/
http://www.fe.up.pt/
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and interactive digital storage media (e.g. CDs) with multimedia contents. Since the 

dawn of the digital era (mid 90’s), information circulates freely through the Internet and 

everyone has access to it, by using accessing devices, such as PCs, smart phones, PDAs 

and, more recently, tablets. This has been improving both the teaching and learning 

processes with several developed educational tools. The use of technology as a 

complement to traditional classrooms is now viewed as fundamental. While at the 

beginning, educational tools only satisfied the requirements of traditional lectures by 

providing access to static resources through the Internet, today its huge advances (more 

availability, larger bandwidth, improved communication tools, etc.) have being 

promoting the adoption of teaching and learning technologies in engineering courses, 

namely to fulfill the requirements posed by laboratorial work, through the use of 

instructional laboratories known as remote laboratories or weblabs. 

Nowadays, weblabs are becoming a widely used resource for supporting the 

laboratorial work in engineering courses, allowing students and teachers to interact with 

real equipment from everywhere and at anytime without physically being present in a 

traditional laboratory. This new type of instructional laboratories is an added value to 

education, enabling to include more laboratorial work in engineering courses and giving 

students the ability of performing and/or repeating experiments previously only 

conducted in traditional laboratories. Two key aspects have been contributing to 

increase the number of weblabs implemented at universities and schools, namely: i) the 

widely adoption of the Internet in the society, and the technological evolution that 

incentivized instruments used in laboratories to be factory-equipped with network-

access capabilities and; ii) the increasing number of students in some engineering 

courses, requiring more laboratories for their practical training, which may pose 

economical constraints for institutions. The use of weblabs contributes for cost savings 

in engineering courses. Instead of using several workbenches, a single one is able to be 

remotely shared by different students, promoting a flexible access to different types of 

experiments. Expensive equipment and specific experiments may be easily shared by 

different institutions, promoting an institutional collaboration and, therefore, a sharing 

of knowledge in different areas. Cost savings, flexible access to real experiments and an 

increasing collaboration among institutions, are just some of the advantages pointed to 

weblabs that have been contributing to their variety and number, the large majority 

found in engineering courses. 

Nevertheless, the implementation of weblab infrastructures may also become 

expensive depending on the costs of the adopted equipment. Typically, each weblab 

infrastructure is developed following specific and distinct technical implementations, 

with several hardware and software architectures that use different programming 

languages to remotely access the instruments and modules (the weblab modules) 

required to conduct the remote experiments. These aspects are impairing their 

widespread adoption, while the difficulties of reusing and interfacing different weblab 

modules, used in their infrastructures required for conducting the experiments, are 
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constraining the collaboration among institutions. To overcome these problems, some 

authors have been proposing generic software and hardware architectures, but more 

efforts and contributions are needed to promote a reduction of the development and 

maintenance costs. Therefore, the presented work contributes to this endeavour by 

proposing a reconfigurable and standard-based weblab infrastructure, which allows 

creating, sharing and reusing instruments and other experiment-related modules (the 

weblab modules) within the large engineering education community. 

1.2. Innovative aspects 

The innovations proposed and described in this thesis contribute for fulfilling the 

current lack of reconfigurable and standard weblab infrastructures. For that purpose, a 

weblab architecture based on the IEEE1451.0 Std. is proposed. Also, the adoption of a 

low-cost infrastructure based on FPGA-based boards is considered for accommodating 

the weblab modules required for conducting the target experiments. 

The IEEE1451.0 Std., which generically describes the structure and the 

functionalities of smart transducers and the way they can be network-interfaced, is 

carefully analysed. A special attention is given to its reference model, which follows a 

client-server architecture traditionally adopted by weblabs, and to the smart transducers 

that comprise a set of features controllable through IEEE1451.0 commands. Taking into 

consideration the described characteristics of the IEEE1451.0 Std. and the requirements 

posed by weblabs, adaptations and extensions to its definitions are proposed. The 

concept of smart transducer defined in the standard as a Transducer Channel (TC), is 

extended. Transducers are thus seen as the weblab modules typically adopted by the 

infrastructures for the conduction of the remote experiments. The main characteristics 

and functionalities of the infrastructures and of the modules are now able to be specified 

by data structures defined in the IEEE1451.0 Std. as TEDSs (Transducer Electronic 

Data Sheets).  

Taking into consideration the importance of spreading and sharing weblabs through 

the educational community, new extensions are proposed to the IEEE1451.0 Std. These 

focus on a new architecture supported by weblab infrastructures designed according to 

the reference model of the IEEE1451.0 Std. To validate the relevance and the feasibility 

of adopting the IEEE1451.0 Std. to develop reconfigurable weblabs, a prototype is 

developed supported by a new suggested thin implementation. Innovative issues are 

proposed, validated and verified during the development of the weblab, namely its 

capability of being reconfigured with different weblab modules. This is a relevant 

innovation, since current weblabs do not allow replacing and replicating the weblab 

modules required to conduct a particular remote experiment. Traditionally, the remote 

users can only select weblab modules available in the laboratory. The proposed solution 

innovates by suggesting the use of a reconfigurable weblab infrastructure supported by 

FPGA-based boards able to accommodate the weblab modules. These modules can be 

shared and replicated, and they are manufacturer independent, since they are described 
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through standard Verilog HDL files. Moreover, aiming the standard access to the 

weblab modules using the IEEE1451.0 Std., they are specified according to a particular 

architecture that enables their interface to a generic IEEE1451.0-complaint module. 

This module is entirely described in Verilog HDL, enabling its accommodation into any 

type of FPGA. Through this innovative reconfiguration process, users will be able to 

select different weblab modules to reconfigure and define the layout of the 

infrastructure to conduct remote experiments. 

1.3. Structure and organization 

This thesis is structured according to the time-line sequence followed during the 

research and development activities carried out in the work. Besides an introduction and 

a conclusion, it is divided into six chapters with inter-related topics, as conceptualized 

in figure 1.1. 

 

Engineering education

Experimental work

Weblabs
standard & reconfigurable infrastructures

Chapter 2

Chapter 3

IEEE1451.0 Std.
Sugested architectures and extensions to the standard.

Chapter 4

standard

Weblab prototype
IEEE1451.0 Std. and FPGA-based architecture

Reconfigurable framework

Chapter 5

Chapter 6

Resources, tools, reconfiguration process

reconfigurable

simplified implementation with extensions

Validation & verification Chapter 7

requirements

Implemented 
solution

(FPGAs)

 

Figure 1.1: Conceptual diagram with the thesis structure. 

 

After this introduction, chapter 2 provides a generic overview of the role of weblabs 

in engineering education. This type of instructional laboratory, used for the conduction 

of experimental work activities, is contextualized in the broad field of remote 

experimentation practice. Several actors and their relations are identified and described, 

and some considerations about pedagogical and technical issues are discussed. After 

presenting the most relevant and disseminated weblabs, problems and limitations 

currently faced by their architectures and infrastructures are emphasized, namely the 

lack of standardization in the access and design, and in the impossibility of performing 

reconfiguration of different weblab modules.  

Chapter 3 presents the rationale for designing standard and reconfigurable weblabs. 

It describes some instrumentation standards typically adopted for developing their 

architectures and presents some on-going initiatives for weblabs’ standardization. Based 

on the limitations presented in chapter 2, the use of the IEEE1451.0 Std. and the 

adoption of FPGAs for providing reconfiguration capabilities to the underlying weblab 

infrastructures are proposed. 

Considered as an interesting and promising solution for developing standard 

weblabs, chapter 4 then describes the main features of IEEE1451.0 Std. Joining its 
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features to the requirements posed by weblabs, some extensions are suggested to the 

standard to create IEEE1451.0-compliant weblab architectures.  

Supported by a simplified implementation and extensions suggested for the 

IEEE1451.0 Std., plus the use of FPGAs for developing reconfigurable weblab 

infrastructures, chapter 5 describes an implemented prototype of an IEEE1451.0-

compliant FPGA-based reconfigurable weblab. It describes the overall architecture and 

the underlying infrastructure that enables binding and remotely accessing the weblab 

modules required for conducting remote experiments. Since binding these modules 

requires the use of a predefined IEEE1451.0-compliant module, this is presented, as 

well as the mechanisms for accessing the reconfigured modules. Functional aspects of a 

software bundle developed to reconfigure the weblab infrastructure with the modules, 

are also presented. 

Chapter 6 describes all the involved resources and tools required to implement the 

reconfigurable weblab. It details the structure and functionality of the IEEE1451.0-

compliant module, highlighting the underlying aspects that enable binding the weblab 

modules. These modules are carefully described, in particular their layout, the required 

interfaces and the way they must be designed so they can be compatible with the 

IEEE1451.0-compliant module. This compatibility supports the access using 

IEEE1451.0 commands. To close this chapter, the reconfiguration process and 

implementation issues of the software bundle are detailed.  

Supported by the requirements posed for the experimental work using weblabs, 

chapter 7 describes the validation & verification process carried out by a set of 

researchers on the proposed and implemented solution. It presents the adopted strategy, 

the involved actors and the methodology applied during the process. The interaction 

conducted by the researchers with the implemented weblab is described, and their 

comments about it are presented and analysed. 

Chapter 8 concludes this thesis, providing some comments about the implemented 

weblab and its implications to experimental work in engineering education. It also 

presents future work perspectives, finally ending with some concluding remarks. 
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 Chapter 2   

Weblabs in engineering education 
 

 

 

This chapter starts by describing the impact that technology brought to engineering 

education, namely to instructional laboratories that are typically adopted for the 

conduction of experimental work activities in engineering courses. It then compares 

different laboratory types, namely traditional, hybrid and remote laboratories, the latter 

also named weblabs. Classified as the main resource of the Remote Experimentation 

concept, weblabs are contextualized and detailed using the Actor-Network Theory. To 

understand their relevance in engineering courses, pedagogical and technical issues are 

then discussed, and some important and disseminated architectures are presented. This 

chapter ends by highlighting some problems and constrains currently faced by weblabs’ 

architectures, which are still preventing their widespread adoption in engineering 

education. 
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2.1. The role of experimental work in engineering  

education 

Since the 80’s that the education landscape has been changing due to the technology 

evolution. New tools and resources are now available to facilitate the students’ access to 

knowledge, lowering barriers once difficult to overcome due to social and economical 

restrictions. The advent of computers and in particular the Internet, are encouraging 

students to have a proactive attitude for searching information, and forcing teachers to 

adapt their courses to the new technological landscape. As illustrated in figure 2.1, the 

traditional face-to-face instruction and the computer-mediated learning are being 

complemented with internet-mediated learning that is enriching the teaching and 

learning processes, namely by facilitating the remote access and the management of 

educational resources and tools. This type of learning, known as E-learning, is 

traditionally associated to the use of different concepts, some of them briefly described 

in table 2.1. More recently, the widespread of mobile devices in education, promoted 

the appearance of a concept known as Mobile learning (M-learning).  

Face-to-face instruction 
 - classroom teaching, laboratory experiments.

tim
e lin

e

Internet-mediated learning
- E-learning - remote access to multimedia  resources, Learning 

Management Systems (LMS) and Virtual Learning 

Environments (VLE), Personal Learning Environments (PLE), 

virtual tutors, collaborative tools for group work: synchronous 

(chats, videoconference,...) and asynchronous (e-mail, 

discussion forums, blogs, wikis, ...),  etc.

- M-learning - e-learning supported by mobile acessing devices such as 

mobile phones, smart phones, tablets, PDAs, etc.

Computer-mediated learning 
- simulations, multimedia, interactive courseware, etc.

in
stru

ctio
n

learn
in

g

80's

 

Figure 2.1: Educational landscape since the 80’s. 

 

Due to the diversity of resources and tools available in the internet, the traditional 

educational contexts are becoming more personalized, supporting the students’ design 

of their own educational environments so they can control and manage their learning 

process. It is precisely this autonomy that is recommended for the engineering education 

through the Problem Based Learning (PBL) theory [12]. According to this theory, 

students should focus on solving specific problems proposed by teachers, by 

researching and making decisions by their own, rather than having a passive attitude 

towards receiving instruction. Past and current trends show that this theory should be 

applied in engineering education [13][14][15], which requires understanding the 

structure of an engineering course and how the technological resources can be adopted 

to fulfill its learning objectives. 
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Table 2.1: Some concepts associated to E-learning.  

Computer-Based 

Learning (CBL), 

Computer/Web-

Based Training 

(CBT/WBT) 

Refers to the use of computers and/or web services and tools as key 

components for training and learning. 

Computer-Based 

Assessment (CBA) or 

Computer-Based 

Testing (CBT) 

Refers to the use of computers for assessment purposes. 

Virtual Learning 

Environment (VLE) 

Software systems designed to support online teaching and learning processes. 

Other definitions are also available, some with the same meaning and others 

focusing on a specific part of the learning environment (e.g. MLE, LMS, 

LCMS, etc.). 

Managed Learning 

Environment (MLE) 
Focus on the management of VLE systems. 

Learning 

Management System 

(LMS) 

A software application for the administration, documentation, tracking, and 

reporting of training programs, classroom and online events, E-learning 

programs, and training content. 

Learning Content 

Management System 

(LCMS) or Content 

Management System 

(CMS) 

A related technology to the LMS focused on the development, management 

and publishing the content that will typically be delivered via an LMS. 

Open Course Ware 

(OCW) 

An expression applied to course materials in a VLE created by universities 

and shared freely with the world via the Internet. 

Computer Supported 

Cooperative Work 

(CSCW) 

A generic expression, which combines the understanding of the way people 

work in groups with the enabling technologies of computer networking, and 

associated hardware, software, services and techniques. The work is divided 

in individual tasks. 

Computer-

Supported 

Collaborative 

Learning (CSCL) 

Refers to the adoption of innovative solutions to improve teaching and 

learning processes with the help of modern information and communication 

technologies, such as PCs and the Internet. People work together in the same 

tasks. 

Personal Learning 

Environments (PLE) 

Systems that help learners to take control of and to manage their own 

learning. 

Massive Open Online 

Course (MOOC) 

Is an online large-scale internet-mediated course. In addition to traditional 
course materials, such as videos, readings, and problem sets, MOOCs provide 

interactive user forums that help build a community for students/teachers. 

 

As presented in figure 2.2, the structure of an engineering course comprehends two 

important components: i) theoretical and ii) practical. The theoretical component 

concerns the transmission of knowledge using the traditional pedagogical contents 

supported by documents, images and animations, describing specific theories. The 

practical component requires students to be actively involved in the manipulation of 

variables and objects by doing experimental (or laboratory) work, researching, and 

participating in group activities, so they can understand, build, and verify theoretical 

concepts which, as reported by Feisel and Rosa in [16], are just some of the skills 

students should acquire in an engineering course. 

Both theoretical and practical components are fundamental in engineering courses, 

since almost every theory concerns practical issues, and vice-versa. These practical 

activities contribute for an autonomous learning, since students are able to compare the 
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results obtained, to the ones expected and described by the underlying theories. If those 

results do not correspond to the expectations provided by theory, students are invited to 

reformulate them. The relation between theoretical and practical components can be 

viewed as a cycle that, if applied, will promote more consistence, autonomy and 

responsibility in the learning process. Moreover, motivation increases, since students 

have the possibility to interact with the described phenomena in a learning-by-doing 

scenario.  

Documents 

Practical 

Images

Animations

Theoretical 

etc...
Exercises

Experimental 
(laboratory) work

Research
Group 

activities

etc...
 

Figure 2.2: Theoretical and practical components of an engineering course. 

 

In engineering education each practical activity has differences that must be analyzed 

in terms of their importance. While pen & paper exercise solving and/or simulations 

provide simulated results returned from theoretical models, the experimental work gives 

students the possibility to interact with real equipment to obtain real results 

demonstrating particular phenomena in nature [17]. Besides the importance of working 

with real results rather than simulated, since these are returned from mathematical 

models’ representations of nature and not from the nature itself, research studies show 

that students’ motivation increases when they interact with real equipment [18]. 

Reporting to the educational theorist Kolb [19], students have four different styles for 

perceiving and processing new information: feeling and thinking (perception), and 

watching and doing (processing). As indicated in figure 2.3, the analysis made in [20], 

based on the preferred learning styles of 49 engineering students, indicates that doing 

and thinking (typical of experimental work) are preferred to feeling and watching. 

Moreover, the results obtained from a questionnaire made to those same students 

indicated that the experimental work has the component that allows them to learn better, 

rather than lectures, homework exercises or reading. 
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15%

2%

survey results of how to learn 
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Figure 2.3: Preferred learning styles in engineering courses. 
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Therefore, supported by this analysis and by the research described by Ma and 

Nickerson in [21], experimental work in engineering education is classified as one of 

the most important component, since students are able to acquire experimental skills 

that are fundamental in a practice oriented field such as engineering. This has motivated 

the analysis of how can experimental work be enhanced through technology, namely by 

the use of different laboratory types. 

2.2. Laboratory types for conducting experimental work 

The proliferation of technical tools and services supported by the Internet allows 

creating several laboratory types so students may conduct the experimental work 

activities required in any engineering course. As illustrated in figure 2.4, it is possible to 

classify laboratories according to the access (remote or local) and resource (real or 

virtual) types: 

 Traditional laboratories - represent the traditional hands-on laboratories, where 

students are able to locally access real equipment binding it to an experiment 

under test (the target experiment). Students must be physically in the laboratory 

to conduct the experiment, and the data results may (or may not) be collected 

through a computer. 

 Remote laboratories or Weblabs - usually defined in literature using both terms, 

these laboratory types imply the remote access to real experiments, using an 

Internet connection. Students remotely interact with real equipment, like in 

traditional laboratories, through a simple network-capable accessing device 

(mobile or not). All actions should be carried out using an accessing device. 

 Hybrid laboratories - these laboratories comprehend both kind of accesses and 

resources. Considering a remote access, students may use a simple device to 

access an experiment through the Internet where, during the interaction with the 

equipment bound to the experiment, some parts can be real and others can be 

simulated. If the access is local, the laboratory includes some real equipment 

able to be locally controlled like in traditional laboratories, and some simulated 

using a computer. These laboratories are still uncommon but they are important 

to take into consideration in occasions when the equipment are expensive and/or 

unavailable, and in situations where the experimental variables are impossible to 

visualize (e.g. visualization of magnetic field lines [22][23]). By using these 

hybrid laboratories, students may collect data using either their accessing 

devices or the computer used to simulate specific equipment. 

 Virtual laboratories - all the equipment are simulated using a computer. 

Although this solution comprehends the simulation of an experimental work, the 

interface provided to students must give them the sense that they are controlling 

real equipment. The access type can be either local or remote, as students can 

control a simulated laboratory by installing specific software on their devices or 
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they can access a virtual laboratory through the Internet. All data can be 

collected using their accessing devices. 

Virtual

labs

Traditional labs

Remote labs

(Weblabs)A
cc

es
s 

ty
p

e

Resource type

Hybrid 

labs

real
virtual

re
m

o
te

lo
ca

l

 

Figure 2.4: Laboratory types available for conducting experimental activities. 

 

The choice for a specific laboratory depends on educational contexts, depending on 

the institutions’ budget, courses’ requirements, and essentially the type of 

students/teachers that will use it. The choice for the most adequate solution requires a 

detailed analysis based in a set of parameters comprising intrinsic characteristics and 

involved costs.  

The intrinsic characteristics to consider in an engineering laboratory are: 

 Availability - is the guarantee of readiness for correct laboratory services, i.e. the 

experiments. A specific laboratory should be available when needed, if possible 

24 hours per day, 7 days per week. Since typically there is a lack of 

infrastructures and equipment to satisfy all students enrolled in a specific course, 

it is usual to schedule accesses, so experiments can be shared through time slots. 

 Reliability - the laboratory should perform and maintain its correct functions in 

all circumstances (e.g. hostile or unexpected), so reliable and real data can be 

retrieved from a specific experience to prove or reformulate theoretical concepts. 

 Flexibility - the laboratory should be able to accommodate every kind of 

experiments without changing the platform (software and/or hardware), and it 

must be able to rewire connections in the experiments. 

 Reusability/Interoperability - a specific laboratory (or experiment) should be 

able to be used more than once, and the adopted equipment should be able to be 

shared, eventually replicated, with other experiments, i.e. they must be capable 

of being reused and interoperate without significant software/hardware changes. 

 Motivation - the provided experiments must be well designed to motivate 

students’ adoption. Setup and reconfigurability must be intuitive and easily 

defined, while interactivity and realism should be high, so students can have real 

time access to the equipment and to the data retrieved during the experimental 

activity. 
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 Group activities - the ability of sharing experiences and ideas during 

experimental work is fundamental to achieve the learning outcomes. Hence, it is 

important to enable the conduction of experiments in groups, by allowing 

student-student and student-teacher communications. At an institutional level, 

sharing resources and equipment will improve the quality of the experimental 

work, since each institution has its specific skills in different areas, which 

guarantees well-designed experimental activities. The sense of isolation and 

solitude, pointed as a major drawback in distance learning, must be overcome by 

this interaction. 

 

The costs associated to engineering laboratories can be divided in two groups: 

infrastructural, and those involving students, teachers, developers, technicians and the 

administrators (human actors): 

 Infrastructural - if a local access is adopted, a laboratory experiment requires a 

physical space to accommodate both human actors and the infrastructure. If the 

remote access is adopted, an experiment does not require a large place for 

accommodation, since human actors do not need to be in the laboratory place. 

Moreover, an analysis of the available equipment versus the costs of each unit 

together with the courses’ requirements, in terms of how many laboratory 

experiments must be created, should be analyzed. If the equipment is expensive 

and several experiments are required, probably the best solution is to create only 

one experiment able to be shared by several students. 

 Human actors - while the costs associated to developers are limited to the 

development of the laboratory, the setup and the maintenance require at least 

one technician and administrator staff paid by the institution to manage the 

laboratory access and to provide additional tools required for the conduction of a 

specific experiment. Although not directly related with the institution, if the 

local access type is adopted rather than a remote access, students and teachers 

may have associated dislocation costs. 

 

Reporting to all these parameters, table 2.2 provides a comparison among the 

laboratory types. Each parameter was classified with a mark from 0 (less favourable) to 

5 (more favourable) according to self-experience of the author acquired during the last 

years as a teacher, as a coordinator of several final degree projects, and as a researcher 

with an active participation in two international projects (PEARL [9] and RexNet [24]). 

The parameters were analyzed focusing on the use of software/hardware and on network 

requirements to access a specific experiment. The particular case of motivation was 

classified based on the adoption of technology and on the use of real or virtual 

equipment, i.e. higher motivation if students are using technology and real equipment. 

Adding up all lines, we may observe that virtual (remote) and weblabs have the highest 
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mark (32), and probably should be the preferred choices to conduct the experimental 

work. However, to fulfill good learning outcomes, real results must be considered as the 

most important parameter of analysis. Only with real data it will be possible to establish 

truly comparisons with the expected theoretical results, and with the obtained by pen & 

paper exercises and simulations that may have been conducted. Hence, supported by an 

empiric evidence, it was decided to emphasize the importance of the reliability factor 

multiplying it by 3, which brought weblabs and traditional laboratories to the top, with 

40 and 36 points, respectively [25]. This conclusion is inline with several theories that 

defend that experimental work should be provided by both solutions, placing weblabs as 

a complement to traditional laboratories [26].  

 

Table 2.2: A personal comparison among laboratory types. 
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Traditional 2 5 3 3 4 5 2 2 26 36 

Remote/Weblab 3 4 3 4 5 4 4 5 32 40 

Hybrid (remote) 3 2 4 4 3 4 3 5 28 32 

Hybrid (local) 4 3 4 4 3 4 3 2 27 33 

Virtual (remote) 4 1 5 5 2 5 5 5 32 34 

Virtual (local) 5 2 4 4 2 5 5 2 29 33 

 

At this phase it is notorious that getting good learning outcomes in engineering 

education requires well-designed courses, and the instructional design must be 

supported by the use of technologies for providing the required theoretical and 

experimental work activities. These experimental activities are essential, and they can 

be provided by several laboratory types, namely by weblabs. Supported on these 

considerations, it becomes important to understand the best conditions to apply weblabs 

for the conduction of experimental work. The next section makes a contextual analysis 

of weblabs in engineering education. This analysis is supported by a theory named 

Actor-Network Theory (ANT), since it allows representing humans’ interactions with 

inanimate objects, which is useful to understand the relevance and the relations of 

weblabs with other actors within a wide concept known as Remote Experimentation 

(RE). 

2.3. Contextual analysis of weblabs 

Weblabs can be seen as a resource of the RE concept that is classified as a sub-

domain of the traditional E-learning, since it extends the common features of Virtual 

Learning Environments (VLEs) providing resources, tools and methodologies that allow 
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the conduction of real experiments through the Internet. Basically, by applying weblabs 

in engineering education, a traditional (local) experiment becomes remotely accessible 

comprising real equipment that, connected to the Internet, allow both students and 

teachers to interact with it, like they do in a traditional laboratory.  

Historically, weblabs followed two motivational lines: i) the technical, supported on 

the control/monitor of weblab modules (instruments or dedicated modules), and/or 

physical phenomena using computers connected to the Internet [27][28] and; ii) to 

complement/replace experimental activities in traditional distance courses in 

engineering areas [29][30]. By combining both aspects, weblabs brought many 

potentialities (access to real experiments on a 24x7 basis; more flexibility, etc.) and 

educational advantages [31][32], proved by their proliferation, namely in prestigious 

schools like the Massachusetts Institute of Technology (MIT) with the iLab project
4
. It 

also contributed for the appearance of many projects
5
, electronic repositories

6
, and 

publications describing the state-of-the-art in this domain, namely [21], which includes 

171 references comparing traditional laboratories with virtual and weblabs, [33], which 

includes 50 references on reviewing the new paradigm of weblabs, and [34] that 

describes the trends of weblabs in engineering education, providing 95 references. 

There is extensive literature on this topic, namely books [35][36][37], special editions 

of scientific journals with recognized value in the pedagogical and technical domains
7
 

[38], and some publications about infrastructural, pedagogical and institutional aspects 

that are still open [39][40]. 

Therefore, it is fundamental to highlight the factors that influence weblabs’ adoption 

in educational contexts. In [24] authors used a conceptual map to describe relationships 

among some elements in RE, but they don’t use any specific theory sustaining the 

presented relations. This description can be done using the ANT, which is commonly 

applied for general socio-technical relations. Therefore, after an analysis of the ANT 

principles, it became clear that the ideas presented are suitable for contextualizing and, 

therefore, mapping the RE domain, since the model proposed could be of added value 

for decision making on how to create, maintain and disseminate weblabs [41]. 

2.3.1 Fundamentals of the Actor-Network Theory 

Mainly supported on Callon and Latour contributions [42][43][44], ANT stresses the 

idea that human and non-human actors influence and are influenced by the specific 

context where they dwell. It is a semiotic method, since it maps relations that are 

simultaneously between things and between concepts. Elements usually belong to 

several contexts that shape their attitudes and/or characteristics during their life-time. 

These elements are named actors, becoming actants when they take an active role in the 

whole context by influencing all other actors with beliefs and attitudes. As illustrated in 

                                                
4 http://icampus.mit.edu/projects/ilabs/   
5 http://elabs.fe.up.pt/, http://www.rexlab.net/ 
6 http://www.lila-project.org/ , http://www.lab2go.net/ 
7 http://www.ijee.ie/ , http://www.computer.org/portal/web/tlt/ , http://www.online-journals.org/i-joe/ 

http://icampus.mit.edu/projects/ilabs/
http://elabs.fe.up.pt/
http://www.rexlab.net/
http://www.lila-project.org/
http://www.lab2go.net/
http://www.ijee.ie/
http://www.computer.org/portal/web/tlt/
http://www.online-journals.org/i-joe/
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figure 2.5, the heterogeneity of actors with established associations creates networks 

that may belong to more than one context. A network is easily changed due to several 

influences of external contexts with their own networks. If a network includes several 

actors connected through extensive paths with a set of aligned interests, those 

associations become facts. The stronger and more extensive associations are, the more 

solid facts become. In ANT, those associations are known as black boxes and represent 

situations with undoubted and solid dependences among actors usually difficult to 

change (e.g. the dependency between theoretical and practical components in 

engineering courses is strong and required, and there is no doubt about its relevance for 

the learning outcomes). A network may integrate several facts that joined together lead 

to successful networks since there is an alignment of interests, motivations, and desires 

of each involved actor. Furthermore, an hierarchical approach can also be followed, 

since a specific actor may integrate several other actors interconnected, depending on 

the level of detail of the conducted analysis. 

Actor-Network

Actor/Actant 

Sub 

Actor-Network

Fact

(black box)

Context

context

context

context

Actor-Network

 

Figure 2.5: Conceptual model of the Actor-Network Theory. 

 

It is unusual that a specific network, composed of many actors influenced by several 

contexts, keeps stable during long periods of time. Usually, networks are dynamic 

structures facing frequent changes of interests and/or attitudes, as exemplified in RE by 

the relation between users and technology. This is a general example, but it is evident 

that there is a strong and unstable association between both, since recent trends show 

that weblabs are constantly changing their architectures and infrastructures based on 

technology evolutions essentially to: i) get users’ interest and motivation for its 

adoption in a specific course and; ii) improve the technical and pedagogical reliability 

of the provided experiments. Technology changes so rapidly that the development of a 

weblab must provide specific tools and procedures to enable its easy reconfiguration 

(e.g. changing a specific equipment should not affect the network of associations among 

actors). Analyzing RE using ANT requires a classification of each involved actor. It is 

fundamental to understand different interests, motivations and values for enrolling an 

actor into a network, requiring an alignment of interests, even if they are only 
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temporary. Additionally, it is important to contextualize weblabs by mapping the RE as 

a domain facing influences of different contexts. 

2.3.2 Influencing contexts 

RE must provide all mechanisms for remotely conducting experimental work 

activities. Applying ANT to RE is a challenge that requires analyzing the involved 

contexts that may influence its actors. As illustrated in figure 2.6, RE may be 

represented as an actor-network mapped into the interception of two contexts (technical 

and educational) surrounded by the social context. 

The social context is wide and corresponds to the expectations of many involved 

actors divided into several networks associated to one or more contexts. At least three 

sub contexts have direct impact in the social context, namely: i) cultural: people in 

different countries have different ways of thinking, acting and ruling their lives with 

distinct values; ii) political: governmental decisions have priorities that align and 

influence people acting and; iii) economical: ruling the production, distribution, and 

consumption of goods and services, are related with budget availability and influence 

cultural and political decisions. Hence, it is reasonable to say that every context must 

take into consideration a society integrating people with distinct interests, motivations, 

believes, past experiences, expectations, attitudes, etc. Understanding how they interact 

within other contexts, namely the technical and the educational, is therefore 

fundamental. 

Social
(cultural/economical/political)

Technical Educational

Current trends

Actor-Network

(Remote Experimentation / Weblabs)

 

Figure 2.6: Situating RE as an actor-network. 

 

The socio-technical relation has being debated in the last years and currently is 

fundamental in several domains, since people’s lives depend on technology. This is 

evident in health, work and leisure, and in almost all countries technology plays an 

active role also in economics. At the same time, technology is constantly changing, 

which impacts the whole behaviour of society. This is clear with the social networks 

provided over the Internet (e.g. Facebook, Twitter, LinkedIn, etc.) which are changing 

the way people communicate. In fact, several examples can be presented that feed the 

association between these two contexts (social and technical), but the educational 

context is paramount, since it is seen as the platform for social development and 

evolution. 
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The whole society is ruled by what people learn and the learning outcomes tend to be 

defined according to society requirements. The socio-educational relation is strong and, 

in recent years, is being supported by technologies. The way teaching and learning 

methodologies are applied in engineering education is changing from a face-to-face era, 

where teachers lecturing, discussions and the conduction of practical work activities 

were made inside a classroom and/or laboratory, to a digitally mediated era, where new 

technologies are being applied to complement and, in some cases, replace the traditional 

teaching and learning methodologies. While the face-to-face era corresponds to the 

traditional socio-educational relation, the digitally mediated era corresponds to the 

intersection among the three analyzed contexts, i.e. the social-educational-technical 

relation. So, considering the current trends on technology evolution and the growing 

adoption from society, namely by younger people, becomes reasonable to say that there 

is a shifting in the educational context from the traditional in-classroom learning to an 

emergent distance learning computer-mediated trend. This intersection of contexts 

requires an analysis of each actor and their associations to understand RE and the 

importance of weblabs as an educational resource for every engineering course. 

2.3.3 Involved actors and associations 

In the last subsection, RE was analysed according to the ANT principles, mapping 

RE in the intersection of three main contexts: social, educational and technical. In this 

subsection, the involved actors and their associations, represented in figure 2.7, are 

specified and commented, so readers may understand the inherent complexity that 

involves the adoption of weblabs as the main resource for engineering education.  
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Figure 2.7: Weblabs in the RE actor-network. 

Actors 

As defined by ANT, an actor may be a human or a non-human element that influence 

and are influenced while participating in a specific social context. Several actors may be 

identified, from human that directly interact with a weblab, to non-human that involve 

technologies used by a specific weblab architecture, and also concepts representing 
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activities that must be assured by a remote experiment. In table 2.3 five human actors 

are identified, while table 2.4 identifies eight non-human actors, the first three 

belonging to the weblab infrastructure. 

Table 2.3: Human actors in Remote Experimentation. 

1. Students 

Conduct experiments remotely using a device connected to the Internet. The access to control/monitor a 

weblab, including the equipments and the experiment(s), is made through a web interface. Real data is 

retrieved from the weblab so students can analyze it as they would do in a traditional laboratory. 

2. Teachers 

Provide the theoretical and practical framework needed by students to conduct a remote experiment. They 
can take the role of assistants/tutors providing pedagogical support during an experimental activity, as 

they would do in a traditional laboratory. 

3. Developers 

Have the task of developing the entire weblab architecture so students, teachers and administrators may 

control/monitor the experiment(s) and, in some cases, the entire weblab infrastructure (namely when it is 

remotely reconfigurable). Although developers may be teachers, it depends on the domain of the 

experiment, because developing a weblab requires programming and electrical skills teachers may not 

have. 

4. Technicians 

Must ensure that the weblab infrastructure and the experiments are always ready to be accessed. The main 

requirements these actors should be aware of are: i) the correct operation of the equipment, by 

guaranteeing that they are always up and running (with network communications up) and; ii) the local 

setup of experiments when required to conduct a specific experimental activity. 

5. Administrators 

They are the institutional managers that should be concerned with the supporting tools required to provide 

remote experiments. They should be aware of issues like: i) ensure that collaborative tools are available; 

ii) the institutional network infrastructure is always up and running; iii) guarantee the correct access 
scheduling to the weblab, etc. 

 

Table 2.4: Non-human actors in Remote Experimentation. 

1. Networks 

Represent the communication channels used in every remote experiment. Without this actor it will be 

impossible to provide a remote access to a weblab infrastructure. Today there are several networks, but 

the most common one is the Internet that may be wired or wireless, since it provides high data rates 

and reliable connections. 

2. GUIs - Graphical User Interfaces - 

Are interfaces with graphical elements to control/monitor weblabs. They are strongly dependent on 

technology, since they depend on software development tools like LabVIEW, Java, HTML, etc. [45]. 

3. Infrastructure devices 

Represent the set of devices used by the weblab infrastructure. In the electrical domain they usually 

include several weblab modules (e.g. Oscilloscopes, Multimeters, and other dedicated modules) that 
allow to control/monitor experiments. Typically they are inter-connected by instrumentation buses 

controlled through a PC, acting as an instrumentation server, or independently, using integrated 

Ethernet interfaces, presently common in several instruments. In this last case, the instruments already 

have GUIs that enable their control/monitor8. 

4. Accessing devices 

The most common accessing device is the PC, although others may be adopted for accessing the 

remote weblab infrastructure. The PCs processing capabilities, which enable the use of several useful 

services and tools for remotely support experimental activities, makes them the most common choice. 

As indicated a few years ago [46][47], current trends show that mobile devices, such as smart phones, 

tablets and PDAs, are now being used as complementary choices to the traditional PCs, justified by 

some recent developments [48][49]. 

                                                
8 Technical issues of weblab infrastructures are presented in sections 2.4.3 and 2.4.4. 
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5. Institutions 

Institutions can be schools, faculties or others that provide all technical, human and physical resources 

to develop, maintain and accommodate weblabs. 

6. Experiments 

Represent the remotely accessible target experiments used in engineering courses for the execution of 

experimental activities. 

7. Pedagogical contents 

Represent the theoretical support required by every experimental activity. They usually comprise 

multimedia resources (simulations, animations, etc.) and/or simple documents. 

8. Teamwork 

Represents the collaborative and cooperative activities that must be guaranteed in any educational 

context [50]. It is the result of interactions between student-student and student-teacher that allow 

exchanging experiences and knowledge for improving the teaching and learning processes. 

 

Associations  

Every actor is associated with one or more actors in the actor-network. Those 

associations are constantly reshaped based on interests and needs of each involved 

actor, which may be strong or weak, and hopefully should never break. Together, they 

represent complex structures that require detailed analysis to understand what are the 

needs and interests of each actor, and to predict future directions (or associations) 

among them, which may expand or shrink the RE actor-network. This reshaping process 

must be carefully managed since it creates destabilization. However, in some situations 

it means innovation, but this is difficult to predict since it is usually associated with 

previously unforeseen issues. 

In spite of the involved complexity, the associations among actors provide a 

suggestion for a RE actor-network, and therefore, for contextualizing weblabs. Some 

actors were joined as sub actor-networks (technical and human) and some associations 

were established between those sub-networks and simple actors (e.g. pedagogical 

contents were associated with both sub actor-networks and with the experiment actor 

using the association named theoretical support). A special attention should be paid to 

the weblab infrastructure, which involves associations among some actors within the 

RE actor-network, as already referred. 

Each association will now be commented according to three tables. Table 2.5 

describes the associations among human actors, table 2.6 the associations among 

technical actors, and table 2.7 the associations between technical and human actors. 

 

Table 2.5: Associations among human actors in the RE actor-network. 

1. Students - Teachers: Learning outcomes 

Teachers define the learning outcomes of a specific experiment, shaping students’ interests and 

motivation. At the same time, the definition of the learning outcomes are not limited to subjects but 

also based on previous students’ backgrounds. The dependence of this association can be more or less 

strong depending on the teachers’ ability to capture students’ interests on conducting a specific remote 

experiment. 
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2. Students - Developers: Tools adoption 

When a specific experiment is provided, students are the target. The developer must take into 

consideration those targets, providing the best tools, so students feel comfortable interacting with the 

experiments. Adopting technological resources already known, is an approach that captures students’ 

interests. A developer may also innovate, although a previous analysis should be made for evaluating if 

new solutions will be well accepted by students. 

3. Teachers - Developers: Experiment requirements 

This association is essentially made during the weblab development phases. Developers should align 

their interests based on teachers’ requests, since the requirements for an experiment are defined by 

teachers. However, not all the requirements posed by teachers may be satisfied, because developing a 

weblab is strongly mediated by technology, which may pose constraints. 

4. Teachers - Technicians: Experiment setup 

Connecting a specific module into the weblab may be defined by technicians. In a specific experiment, 

the teacher may want to connect different modules or setup different experiments. If the weblab does 

not allow remotely control those aspects through a GUI, the technician should do it directly in the 

weblab infrastructure to satisfy teachers’ requirements. 

5. Technicians - Administrators - Developers: Technical requirements 

Developers define how to implement (or not) some features in a weblab infrastructure, e.g. some 

weblabs may be remotely reconfigurable which pose, as already referred, distinct technical 
requirements. In this situation, developers must define the appropriated GUI. Technicians will use 

developers’ definitions for setting up locally and/or remotely the weblab infrastructure and/or 

experiments. Aspects concerning the adoption of collaborative tools and scheduling techniques must 

also be defined by developers, based on the administrators’ indications. 

6. Students - Administrators: Access conditions 

If the weblab does not implement scheduling techniques, concurrent accesses to the same experiment 

will create problems, especially in experiments controlled/monitored in a real-time mode, i.e. remote 

actions retrieve real-time results. In this situation, and supposing that different students may want to 

access an experiment at the same time, the administrator should control the accesses without teacher’s 

guidance. For batch mode experiments, i.e. the remote actions go into a queue before retrieving results, 

some administrative support may also be required, but only if the number of accesses overloads the 

servers capacity of the weblab. 

 

Table 2.6: Associations among technical actors in the RE actor-network. 

1. Infrastructure devices - GUIs - Networks: Remote control/monitor I 

To allow the remote control/monitor of a specific device two issues are required: i) they must be 

connected to the Internet/Intranet and; ii) some GUIs must be available. While specific and old 

equipment require technical developments to provide their remote access, recent equipment already 

bring network connections with GUIs, facilitating, therefore, the remote access to the target 

experiment. At the beginning, the equipment (instruments) were attached to an instrumentation server 

using dedicated instrumentation buses (e.g. the General Purpose Interface Bus (GPIB)9, Peripheral 
Component Interconnect (PCI)10, PCI eXtensions for Instrumentation (PXI)11, etc.) requiring the 

development of specific GUIs. Currently, other options are available, namely the adoption of a 

standard solution named LAN eXtensions for Instrumentation (LXI)12 [51]. This solution is already 

integrated in many instruments, bringing Ethernet interfaces and GUIs that allow 

controlling/monitoring the weblab through the Internet, without technical developments. This way, this 

association is becoming simpler and may tend to become a fact in ANT terminology. 

                                                
9 http://standards.ieee.org/findstds/standard/488.2-1992.html  
10 http://www.pcisig.com/specifications/  
11 http://www.pxisa.org/  
12 http://www.lxistandard.org/  

http://standards.ieee.org/findstds/standard/488.2-1992.html
http://www.pcisig.com/specifications/
http://www.pxisa.org/
http://www.lxistandard.org/
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2. Accessing devices - GUIs - Networks: Remote control/monitor II 

This association emphasizes the importance of the adopted devices for accessing a weblab. PCs are 

already common choices, since they have high processing capabilities, which allow the inclusion of 

several and recent network interfaces together with large and advanced GUIs for conducting remote 

experiments. However, recent developments are placing new and powerful portable accessing devices 

in the market (e.g. smart-phones, tablets and PDAs with tactile displays and Wi-Fi network 

associations) that also satisfy weblabs accessing requirements. 

 

Table 2.7: Associations between technical and human actors in the RE actor-network. 

1. Institutions - Human actors: Institutional administration / personal interests 

Human actors are strongly connected with the institution where they belong to. Political and 

economical decisions made by a specific institution affect the interests of those actors, while 

requirements posed by them will also influence some of the decisions made by an institution. Several 

examples may be pointed out, but the most evident one is the influence that institutions have towards 

teachers and vice-versa. Providing an experimental work activity using a remote experiment is strongly 

related with teachers’ decisions but should also be supported by the institution where they belong to. 

Adopting a remote experiment is usually a more cost-effective solution and is an opportunity for 

collaborating with other institutions by sharing experiments and, thus, knowledge. 

2. Institutions - Technical actors: Adoption / take advantage 

Technical actors satisfy institutional needs by providing weblabs. Gathering the infrastructure devices 

available in the institution and connecting them to a network, allow the development of a weblab 

providing their remote access through GUIs. In this association it is also important to emphasize the 
possibility of reusing deprecated equipment for developing a weblab infrastructure, which may reduce 

institutional costs. 

3. Experiment - Technical/Human actors: Interaction 

The development of a specific experiment depends on technological resources and users’ requirements. 

Currently, technology is facing many improvements allowing the development of remote experiments 

with almost the same features provided by traditional laboratories, such as control/monitor equipments, 

interaction among students and students-teachers using communication tools, etc. Technology has a 

strong impact over the weblab infrastructure, but RE may dictate and contribute for some changes in 

technology, as exemplified by new instruments equipped with Ethernet interfaces (e.g. LXI). 

Therefore, this association is fundamental to be constantly analysed so better experiments can be 

delivered using new and more recent instruments. 

4. Pedagogical contents - Experiments - Technical /Human actors: Theoretical support 

Remote experiments require theoretical support provided by pedagogical contents. Disseminating those 

contents may benefit from current technologies, namely by using VLEs, since these allow students to 

access multimedia resources through their accessing devices. This way, the quality of the experimental 

work will improve, since students will have access to better contents (animations, simulations, images, 
etc.) and teachers will have their tasks simplified, since they can deliver and update more easily those 

contents, publishing them on the web. 

5. Teamwork - Students / Teachers - Technical actors: Collaboration 

This association emphasizes the importance of communication and collaboration among teachers and 

students during the conduction of an experimental activity using technological resources. The intention 

is to provide the same conditions available in a traditional laboratory when different students and 

teachers share ideas and opinions to solve a specific experimental activity. Adopting communication 

tools, enable students and teachers to communicate like they do in a traditional laboratory, even if they 

are geographically dispersed 
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6. Accessing devices - Human actors: Lab/experiment access 

This association is strong in the meaning that without it, RE does not make sense, but simultaneously it 

is very unstable since devices’ features are changing constantly. At the beginning, accessing a weblab 

was made using PCs. However, technology evolution is promoting the adoption of mobile devices (e.g. 

smart-phones, tablets and PDAs) that may complement or replace the common PC in experiments that 

do not need many software tools to support their conduction. This is a tendency, since those devices 

are improving their processing capabilities with good GUIs bringing several interface connections to 

the Internet. Gathering all these aspects, with the mobility they offer, make them an interesting solution 

for accessing weblabs. The relation between each human actor and the accessing devices has different 

implications, always depending on the experiment and the adopted tools, namely the communication 

tools. Every human actor interacts differently with the weblab. Students control/monitor the 

experiments gathering values for latter analysis, while teachers, technicians and administrators usually 

make some definitions in a specific experiment and in the weblab. Developers usually don’t use a 
device to access the weblab infrastructure since their task ends after the development phase. Besides 

the typical access to the weblab, the adoption of a particular device should also concern users with 

visual and audio impairments. In this situation, the adoption of a specific device must be well analysed 

since those users need large visual displays and specific software tools. 

 

By identifying the actors and their associations, it is possible to contextualize 

weblabs for the conduction of experimental activities in every engineering course. The 

next section discusses the pedagogical and technical issues of weblabs, and presents 

some relevant architectures adopted for their development. 

2.4. Pedagogical and technical considerations on weblabs 

Remote experiments are accessible through simple 2D interfaces, and more recently, 

through 3D interfaces [52], since they provide an immersive environment where 

students can interact with the entire laboratory, approaching remote to traditional 

laboratory environments and increasing students’ interest and motivation for the 

experimental work. This is proved by the increasing number of weblabs implemented at 

universities and schools [33][35][36] that give an added value to courses that usually 

only provide traditional laboratories, and to others courses that, due to a lack of 

resources (economical and/or technical), do not provide any experimental work. This 

will facilitate changing the curriculum courses, giving students, in spite of their social 

and economical conditions, access to real experiments and equipment, some expensive 

and others unavailable. By using weblabs there are no time constraints, since students 

become more autonomous for conducting and repeating experiments at their own pace. 

Additionally, they promote collaboration and enable more “learn-by-doing”, increasing 

students’ motivation [18]. 

This way, it is important to consider both pedagogical and technical issues when 

adopting weblabs in a specific course. While pedagogical issues are related with the 

requirements that a weblab should meet to provide all the facilities to attain good 

teaching and learning processes, technical issues concern the way those requirements 

should be implemented. As illustrated by figure 2.8, next subsections analyse: i) the 

pedagogical issues, relating experimental learning goals and the main pedagogical goals 

with weblabs and; ii) the technical issues, presenting the typical weblab architecture and 

the technologies involved in its development.  
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Figure 2.8: Pedagogical/technical issues for adopting weblabs in engineering education. 

 

2.4.1 Meeting experimental learning goals with weblabs 

The development of a laboratory requires a previous analysis of its learning 

objectives, i.e. what are the goals of a laboratory experience. In this domain, the 

Accreditation Board for Engineering and Technology (ABET)
13

 with the support of the 

Alfred P. Sloan Foundation
14

 organized in January 2002 a colloquium that gathered 

some of the best experts in engineering education, particularly in regard to the 

experimental work. In this colloquy, a set of 13 objectives was established addressing 

the role of the laboratory in engineering education using new technologies (like PCs, 

Internet, etc.) [16]. In table 2.8 those objectives are presented and some comments are 

added, concerning its application using weblabs. 

 

Table 2.8: Experimental learning goals with weblabs. 

1. Instrumentation: Apply appropriate sensors, instrumentation, and/or software tools to make 

measurements of physical quantities 

For acquiring specific skills in a particular domain, students must understand how to solve problems 

following the “learning-by-doing” approach. Besides understanding how to collect data from a specific 
experiment, they should also choose the appropriated instruments and transducers. In a remote 

experimental context this is achieved through an interface providing the access to the several 

equipments required for conducting the experimental activities. Moreover, data acquired from the 

experiment is usually analyzed by software tools. In some situations, the laboratory should provide 

only the data, and leave students free to choose the most appropriated software tool for data analysis. 

2. Models: Identify the strengths and limitations of theoretical models as predictors of real world 

behaviours. This may include evaluating whether a theory adequately describes a physical event and 

establishing or validating a relationship between measured data and underlying physical principles. 

Students must relate theoretical models learnt, either in traditional classroom or by their own research, 

and compare them with real experimental results. If results obtained in the experiment are the same as 

indicated by the theoretical models, it means that the models are in accordance with the reality. This is 

accomplished by all remote experiments since the returned results are real as in traditional laboratories. 

Traditionally, in engineering education students simulate their models through software tools, but latter 
they should compare their simulated results with real results for validation purposes. Weblabs have an 

important mission in this aspect, since they facilitate the accomplishment of this process giving more 

flexibility and motivation for students to access a real laboratory without the need of using a traditional 

one. 

3. Experiment: Devise an experimental approach, specify appropriate equipment and procedures, 

implement these procedures, and interpret the resulting data to characterize an engineering 

material, component, or system. 

Setup and select the instruments and the procedures for a specific experiment are crucial for students’ 

learning. There are some weblabs that already allow students to create the connections between the 

instruments and the target experiment as they do in a traditional laboratory (e.g. [53]). This is much in 

accordance with the Instrumentation objective, but focus on the instruments and procedures. 

                                                
13 http://www.abet.org/  
14 http://www.sloan.org/   

http://www.abet.org/
http://www.sloan.org/
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4. Data Analysis: Demonstrate the ability to collect, analyze, and interpret data, and to form and 

support conclusions. Make order of magnitude judgments, and know measurement unit systems and 

conversions. 

Reporting results acquired from experimental work is fundamental. VLEs provide many tools to 

accomplish this objective and currently there are some remote experiments already integrated into 

these environments, like the presented in [54] that uses the Moodle platform. Moreover, since weblabs 

are supported by technology (e.g. weblab servers and PCs) they are able to easily collect and provide 

data for students’ analysis, so they can support and report conclusions. 

5. Design: Design, build, or assemble a part, product, or system, including using specific 

methodologies, equipment, or materials; meeting client requirements; developing system 

specifications from requirements; and testing and debugging a prototype, system, or process using 

appropriate tools to satisfy requirements. 

Instrumentation and experimental objectives fall into this design objective. Setup a remote experiment, 

by selecting the most appropriate equipment and interconnecting it into the experiment itself, fulfils 

this objective. 

6. Learn from Failure: Recognize unsuccessful outcomes due to faulty equipment, parts, code, 

construction, process, or design, and then re-engineer effective solutions. 

The weblab should not automatically correct mistakes made by students. It must provide some 

feedback of the mistake and, eventually, provide some clue on how to solve it. Two situations are 

possible: i) in the setup procedure students may define wrong connections and/or select inappropriate 

equipment for conducting a specific experiment, or; ii) the results obtained can include errors. Both 

situations should not be automatically corrected by the weblab but only detected to avoid damaging the 

infrastructure. If students make a mistake, they must feel that something is wrong and they must 

research on how to correct the mistake. This is inline with the PBL theory [12] where students must 

research to solve a specific problem with autonomy, so that they can acquire skills and knowledge to 

handle future unforeseen situations. In some cases, depending on the course’s objectives, the weblab 

interface may report a mistake by presenting a pop-up window. For instance, the weblab created by the 

University of South Australia (NetLab) implements a circuit builder interface that pops-up a window 
when mistakes made by students are detected [53]. 

7. Creativity: Demonstrate appropriate levels of independent thought, creativity, and capability in 

real-world problem solving. 

Decide on how to prove a specific theoretical subject by specifying an experiment (selecting the 

equipment and the connections) already demonstrate creativity. Supposing students want to measure an 

analog signal, they can select an Oscilloscope or a Multimeter. Although each instrument has different 

characteristics, the student must select which is the most appropriated one to solve that specific 

problem. Besides applying to their creativity and independence for solving the problem, students also 

meet instrumentation, experiment and design objectives. 

8. Psychomotor: Demonstrate competence in selection, modification, and operation of appropriate 

engineering tools and resources. 

Deals with hands-on skills and can be achieved through manual manipulation. This is impossible using 

weblabs since students control real experiments using a device (e.g. PC). However, weblabs can 

provide the remote control of a manipulator to operate an experiment, like in a traditional laboratory. A 

well succeeded example is the VISIR project created by the Blekinge Institute of Technology presented 

in next subsection 2.5.3. Implemented in some universities like the University of Deusto, this weblab 

provides students the ability of connecting electronic components in a virtual breadboard [55], which, 

in part, fulfils psychomotor requirements. 

9. Safety: Recognize health, safety, and environmental issues related to technological processes and 

activities, and deal with them responsibly 

A weblab provides safety, since students are not physically near the infrastructure. This is especially 

relevant when dangerous experiments are available (e.g. experiments with radioactive elements). That 

same security should be guaranteed for the infrastructure, by avoiding specific erroneous procedures in 

the laboratory. Supposing a student established wrong connections between the equipment and the 

experiment, the laboratory should not make those connections in the infrastructure because it can be 
damaged. As described in the Learning from Failure objective, it should only provide some feedback, 

indicating to students that they made an error. 
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10. Communication: Communicate effectively about laboratory work with a specific audience, both 

orally and in writing, at levels ranging from executive summaries to comprehensive technical 

reports. 

Communication is fundamental, not only to solve specific experimental activities but also to share 

knowledge among users. The use of synchronous and asynchronous communication tools are good 

solutions to integrate into a weblab interface. Currently, some weblabs integrate those tools in the same 

interface used to control/monitor the remote experiment [53], and others adopt an independent 

solution, giving students the option to select the preferred communication tool [56]. 

11. Teamwork: Work effectively in teams, including structure individual and joint accountability; 

assign roles, responsibilities, and tasks; monitor progress; meet deadlines; and integrate individual 

contributions into a final deliverable. 

The use of technology to satisfy teamwork requirements is achieved through the communication tools 

referred in the previous Communication objective. Using those communication tools, students may 

divide work in individual sub-tasks (named cooperative work and related to the CSCW definition), or 

work together in the same task (named collaborative work and related with CSCL definition) [57], 
even if they are geographically dispersed. Moreover, the use of PCs connected to the Internet facilitates 

monitoring the progress and scheduling tasks more easily than in traditional laboratories, since a 

remote experiment is traditionally supported by VLEs that already integrate administrative and 

learning management tools. 

12. Ethics in the Lab: Behave with highest ethical standards, including reporting information 

objectively and interacting with integrity. 

This is an objective that does not depend on the experiment, but essentially depends on the students’ 

and teachers’ behaviour. However, since weblabs traditionally use weblab servers to manage the 

accesses to the experiments, they can also use log files to control all students’ actions. Therefore, 

students can not hide that they really interacted with the laboratory, the assessments can be controlled, 

and the teamwork can also be managed. This tight control may contribute to promote ethics during the 

conduction of a remote experiment. 

13. Sensory Awareness: Use the human senses to gather information and to make sound 

engineering judgments in formulating conclusions about real-world problems. 

Sensory awareness is partially achieved, since weblabs provide resources and tools to interact with real 
equipment, but students are not able to touch in the experiment and to feel possible results obtained 

from an experimental activity (e.g. the smell of a burned resistor or transistor is not detected like in a 

traditional laboratory). However, students are still able to judge the results and to formulate 

conclusions like in a traditional laboratory, but always mediated by technology. 

 

2.4.2 Mapping pedagogical goals against weblabs’ capabilities 

Supported on the objectives described in the previous subsection and in taxonomies 

of laboratory work [58], in 2006 Ma and Nickerson reviewed 37 papers from the 

literature on remote laboratories [21]. They concentrated their analysis on four 

principles said to be required to address the pedagogical goals of a laboratory, namely: 

 Conceptual understanding - activities should help the students’ understanding, 

the problems solving and the illustration of concepts and principles; 

 Design skills - students should learn how to design, construct and research; 

 Social skills - students must run experimental activities not only individually but 

also in groups; 

 Professional skills - technical skills and practical knowledge should be provided. 
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As illustrated in figure 2.9, the analysis showed that most of the papers discuss the 

conceptual understanding (19) and professional skills (13), rather than social skills (4) 

and design skills (1). 
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Figure 2.9: Division of a set of papers according to discussed weblabs pedagogical goals. 

 

These results show some problems still faced by weblabs that are not contributing to 

their wide spreading in education, despite they are usually considered as a good 

complement for traditional laboratories [59]. Thus, supported on this analysis and on the 

details provided for the 13 learning objectives for the experimental work, three main 

requirements should be addressed by a weblab to promote good teaching and learning 

experiences: 

 Requirement 1: enable the control and monitor of all the equipment in the same 

way as in a traditional laboratory (controlling all types of modules, enabling the 

setup of experiments, providing feedback errors if any mistake is made, etc.); 

 Requirement 2: provide the sense of realism so students can be motivated for 

conducting experiments (e.g. providing interfaces very similar to those available 

in a traditional laboratory, using feedback images of the laboratory, etc.); 

 Requirement 3: integrate collaborative tools so students can conduct 

experiments in groups, and enable student-teacher communications to clarify 

doubts that may appear during a specific experiment. 

 

To achieve the enumerated requirements it is necessary to develop the weblab 

infrastructure and its architecture so that human actors, in particular the students, may 

remotely conduct real experiments. While requirement 1 can be easily implemented 

using the Internet technologies that allow remotely accessing any type of equipment, 

and therefore control and monitor the target experiments typically provided by 

traditional laboratories, requirements 2 and 3 require some attention to the pedagogical 

aspects of engineering courses, which are related to the conditions students are used to 

face in an experimental activity. The ability of remotely accessing the equipment and 

the experiments should be complemented by an educational environment providing, if 

possible and depending on the pedagogical goals of a specific course, the same 
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conditions encountered in a traditional laboratory. Students should easily realize that 

they are interacting with real equipment rather then simulated, and they should be able 

to conduct the experimental activities in groups. Therefore, to fulfill all these 

requirements, technical considerations should be evaluated, namely by defining a 

weblab architecture and selecting the most appropriated technologies for its 

implementation. 

2.4.3 Traditional weblab architecture 

Traditionally a weblab follows a client-server architecture in order to provide remote 

access to real equipments using a simple web browser or a dedicated application. A 

coarse model of a weblab architecture with the infrastructure plus the involved actors in 

a typical remote experiment is illustrated in figure 2.10. This architecture is divided in 

three parts: i) users, that are able to access the remote experiments namely, the students, 

the teachers and the administrators; ii) a weblab server and; iii) the entire weblab 

infrastructure, commonly integrating an instrumentation server bound to a set of weblab 

modules (e.g. instruments) or mechanical devices, both connected to the target 

experiment. 

Users are able to remotely access the experiments using software applications 

running in their accessing devices. The interfaces can be either installed in those devices 

(thick-client approach) or accessed using a web browser without previous installation 

(thin-client approach). This last approach is becoming more common, due to the recent 

advances on the Internet (e.g. high bandwidth), improved GUIs, more powerful 

browsers, and because it is more flexible than the first approach, since an upgrade to the 

interface does not require a new installation in the client side. 
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Figure 2.10: A coarse model of a typical weblab architecture. 

 

By using one or both types of clients’ approaches, typically users use an Internet 

connection to directly access the weblab server, and this accesses the instrumentation 
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server through a LAN/WAN. Despite in some implementations these two logical 

servers can be implemented physically by a single machine, traditionally each of them 

has their own specific role in the weblab solution, namely: 

 Weblab server - supports all the pedagogical contents required for a specific 

course (documents, animations, simulations, assessment tools, etc.) and 

administrates users’ accesses to the laboratory, like authentication. Typically this 

is implemented using VLEs that use a database with all material and users’ 

registrations. 

 Instrumentation server - controls a set of devices: weblab modules, webcams 

and the experiments. Typically those devices are bound to the instrumentation 

server using dedicated buses with high data rates and trusty data transmissions. 

 

Although pedagogical aspects suggest that remote experiments should be controlled 

in the same way as in the traditional laboratories, i.e. with a real-time control mode, if 

reliable results are the main concern, batch control mode could also be applied. This last 

solution means that the interaction between users and the experiments is made 

according to queued requests, typically using a First-In First-Out (FIFO) approach for 

identical resources required. These two solutions have different technical implications. 

If synchronous control (real-time mode) is adopted, a booking system is required, so 

users can reserve time-slots to get full control over the remote experiment. 

Alternatively, if asynchronous control (batch mode) is applied, the weblab server must 

implement a queuing system. These types of control are traditionally managed in the 

instrumentation server running dedicated software applications to schedule the access to 

the shared environment.  

To address all these issues in a weblab architecture, there are many technologies that 

can be adopted. Those include hardware devices, that usually require computers binding 

the equipment through dedicated buses, and software applications used to control each 

of those devices, and therefore the target experiments.  

2.4.4 Involved technologies for implementing weblabs 

Implementing a weblab architecture requires the selection of hardware and software 

technologies. Typically the adopted hardware involves the use of computers acting as 

weblab or instrumentation servers, this last binding the equipment through 

instrumentation buses. The control of that equipment requires the use of server-side 

scripting languages (e.g. PHP
15

, ASP
16

, JSP
17

, etc.) supported by HTTP web servers 

(e.g. Apache
18

), and the GUIs are commonly developed using software 

                                                
15 http://php.net/ 
16 http://www.asp.net/ 
17 http://www.oracle.com/technetwork/java/javaee/jsp/index.html 
18 http://httpd.apache.org/  

http://php.net/
http://www.asp.net/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://httpd.apache.org/
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technologies/frameworks (e.g. applets in Java
19

, Adobe Flash
20

, AJAX
21

, HTML
22

, 

ActiveX
23

, or others). Nevertheless, it is very common the adoption of the LabVIEW 

software from National Instruments (NI)
24

, both in the client and server sides, since it 

facilitates the developments and provides attractive and user friendly GUIs. Moreover, 

NI has many instruments able of being controlled using the LabVIEW Application 

Program Interfaces (APIs), which simplifies all the development process and 

incentivizes teachers without specific technical skills to adopt weblabs.  

Traditionally the equipment adopted can be connected to the instrumentation server 

using different types of buses such as GPIB
25

, PCI
26

, VXI
27

 and PXI
28

. More recently, 

the LXI (LAN eXtensions for Instrumentation)
29

 is considered one of the best solutions, 

since it allows Ethernet-based instruments to communicate, operate and function, 

without requiring the use of the instrumentation server. Those instruments, or other type 

of equipment, are bound to the target experiment, traditionally monitored using a 

webcam connected to the instrumentation server using the Universal Serial Bus (USB)
30

 

or an Ethernet connection. This last solution is more common today, due to the 

appearance of webcams with built-in HTTP web servers.  

For teamwork activities, defined as a requirement for weblabs’ adoption in any 

engineering course, collaborative tools are adopted, such as chats and videoconference 

applications. Some of them able to integrate in GUIs (e.g. using Adobe Media Server 

products
31

), and others used as standalone applications (e.g. Skype
32

). 

There are many software technologies that can be adopted to implement a weblab 

architecture. An extensive comparison about those technologies is presented in [45],[60] 

and [61]. The following section presents some of the most disseminated weblab 

architectures traditionally adopted in electrical engineering courses, all of them adopting 

some of those technologies. 

2.5. Weblab architectures: a brief overview 

This section presents three of the most representative and disseminated weblabs’ 

projects, namely the MIT iLabs - USA, the NetLab - Australia, and the VISIR project - 

Sweden. The choice of these projects was justified by their distinct technical 

                                                
19 http://www.java.com/en/  
20 http://labs.adobe.com/technologies/flash/  
21 http://www.w3schools.com/ajax/  
22 http://www.w3.org/html/  
23 http://support.microsoft.com/kb/154544/  
24 http://www.ni.com/labview/  
25 http://standards.ieee.org/findstds/standard/488.2-1992.html/   
26 http://www.pcisig.com/specifications/  
27 http://www.ivifoundation.org/VXIPlug_Play/  
28 http://www.pxisa.org/  
29 http://www.lxistandard.org/  
30 http://www.usb.org/  
31 http://www.adobe.com/products/adobe-media-server-family.html  
32 http://www.skype.com/en/  
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http://standards.ieee.org/findstds/standard/488.2-1992.html/
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architectures and characteristics, plus their acceptance by the community as successful 

implementations of weblabs. While MIT iLabs describes a top level software 

framework architecture providing management resources and APIs that enables 

interconnecting distributed weblabs, the Netlab and the VISIR projects focus on the 

architecture and on their underlying infrastructures. These two last projects currently 

provide well designed and tested experiments in the electrical domain that have been 

used to evaluate the interest of weblabs for the engineering education. Since it is 

impossible to describe all projects currently available and the wide diversity of weblabs 

accessible across the world, at end of this section other initiatives are listed, including 

current and past projects, repositories of weblabs, consortiums, etc..  

2.5.1 MIT iLab project 

Started on 2000 at the MIT in USA, the iLab project 
33

 [62] comprehends a software 

framework designed for easily sharing different weblabs across the world. It provides 

all management resources and APIs, so that different experiments can be easily shared 

and integrated, such as microelectronics, chemical engineering, polymer crystallization, 

structural engineering, and signal processing. Since 2005 several weblabs from different 

countries were integrated. Currently, the iLab project has already established strong 

international partnerships working to develop and expand its architecture, namely the 

iLab-Africa, iLab-Australia, iLab-China, iLab-Europe, etc. 

Early versions of the iLab architecture (before 2002) were built as individual 

standalone systems, where a client, using a Java Applet, had the possibility of 

connecting directly to a server attached to the hardware. However, the increasing 

number of laboratory experiments led, in 2002, to the creation of the standard 

architecture named iLab Shared Architecture (ISA) [62] illustrated in figure 2.11. The 

aim of this architecture is to facilitate deployments of weblabs making them easy to 

share across institutions. It comprehends three major components: i) Lab Client; ii) 

Service Broker and; iii) the Lab Server. The Lab Client is the interface that allows users 

to control the weblab specifying parameters and monitor results. The Service Broker 

provides the generic administration services for managing communications between 

multiple lab servers and multiple lab clients. It allows grouping students by class, year 

or institution, for example, by specifying which weblabs are available to each group of 

students. Furthermore, it stores the data that completely describes a laboratory session 

whenever a student runs an experiment. It can also manage real-time and batched 

control modes. In real-time mode (figure 2.11a) a complete and exclusive control over 

the experiment setup is provided for a certain period of time. In batched mode (figure 

2.11b) students’ actions and results retrieved from the weblab infrastructure are 

managed like a FIFO queue. The Lab Server interacts directly with the weblab, 

managing all the equipment setup. Each Lab Server can interact with several Service 

Brokers to share several laboratories between institutions. Note however that each Lab 

                                                
33 http://ilab.mit.edu/ , http://ilabcentral.org/ 

http://ilab.mit.edu/
http://ilabcentral.org/


 

Chapter 2: Weblabs in engineering education 35 
 

Server is equipment specific, so different Lab Servers must be used for each set of 

laboratory instrumentation. All data flows between Lab Clients, Service Broker and Lab 

Servers using eXtensible Markup Language (XML) encoded messages. 

 
a) Architecture for interactive experiments. 

Synchronous control (real-time mode) 

 
b) Architecture for batched experiments. 

Asynchronous control (batch mode) 

Figure 2.11: Topologies of the iLab Shared Architecture (ISA). 

 

Since 2006 that the NI-ELVIS (NI Educational Laboratory Virtual Instrumentation 

Suite)
34

 platform was considered as a cost effective solution for implementing the iLab 

Server [63] in weblabs for conducting experiments in the electrical domain. Currently 

the iLab architecture is still the focus of several publications such as: i) a solution based 

on JAVA interfaces [64]; ii) a proposal for new switching mechanisms to the NI-ELVIS  

[65]; iii) an experiment based on the fundamentals of optical fiber communications 

[66]; among others. This proves that iLabs is one of the most solid projects in this 

domain. 

2.5.2 NetLab 

The NetLab
35

 is a weblab specialized in experiments for the electrical domain 

created in 2001 by the University of South Australia (UniSA) currently integrated in the 

LabShare consortium
36

. To fulfill educational needs, NetLab developers have been 

always improving its resources based on feedback responses acquired from students’ 

inquiries, taking a special attention to the requirements posed by the collaborative work 

[67][53]. NetLab is considered a very successful project, which justified the large funds 

received from the Australian Learning and Teaching Council [2009-2010], and by the 

Australian Government’s Diversity and Structural Adjustment Fund [2009-2011]. 

Despite current literature does not indicate further technical developments, this weblab 

is considered as a case-study due to its wide acceptance by the international community 

and by several students in engineering education. 
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The NetLab architecture, illustrated in figure 2.12, allows conducting experiments in 

groups and comprises a server that binds all weblab modules through a GPIB bus. A 

switching matrix module connected to the server using the VXI bus, allows students 

creating and selecting a specific circuit. A webcam, using the HTTP protocol, provides 

feedback images of the laboratory. 

Weblab server at 

the UniSA

Agilent 

Instruments

Webcam

Switching Matrix 

and VXI system

Remote users

(teachers & students)

GUI

GPIB

VXI   

LAN
(HTTP)
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Figure 2.12: NetLab architecture overview. 

 

Although the first version of NetLab used LabVIEW software for the web interface, 

in 2006 an interface using the Java language was adopted. All the interfaces were 

developed using the API provided by the Virtual Instrument Software Architecture 

(VISA) [68], which guarantees that the same interfaces can be adapted to similar 

instruments without many changes. Besides controlling the weblab modules, the GPIB 

bus also retrieves relevant data from them. This way, data can be gathered and exported 

to a file to be analysed by another software tool. A typical example pointed by NetLab 

developers concerns the use of an Oscilloscope where all data points can be acquired 

and latter displayed and analyzed using the Matlab software. 

Users have also the ability of creating their own circuit connections using an 

application named Circuit Builder. It aims to provide almost the same features available 

in a traditional laboratory allowing students to choose and wire instruments and 

components. The Circuit Builder is implemented by the switch matrix connected 

through a VXI bus. 

Collaborative tools are provided using an integrated chat window that allows 

students to conduct experiments in groups. For students’ motivation and engagement in 

the experimental work, an image of the laboratory is provided by a webcam, so they can 

perceive that they are controlling real instruments. Furthermore, the adoption of real 

images of the instruments provides students with a sense of physically being at the 

laboratory. This way, the weblab and the traditional laboratory are closely related. 

Figure 2.13a) presents the NetLab GUI, with all the referred interfaces, namely the 

instruments with photographic images, an image of the laboratory, the Circuit Builder 

and the collaborative tool (chat window), all integrated in the same GUI accessible 
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through a web browser. In addition, the NetLab allows the collaboration in teams of 2-3 

students interacting together in a real-time mode with the same experiment. For this 

purpose, a booking system is available so students can book time slots, as illustrated in 

figure 2.13b).  

 

 
a) Main Graphical User Interface. 

 
b) Booking system interface. 

Figure 2.13: NetLab web interfaces. 

 

When NetLab was introduced in 2001 the majority of students conducted 

experiments in computer rooms at UniSA campus. In 2006 the courses of Electrical 

Circuit Theory (second year course) and Signals and System (third year course) adopted 

the NetLab. Based on reported studies [69][53], the adoption of this weblab showed 

superior benefits for students learning. They start spending more time checking their 

calculations and repeating experiments, leading them to acquire better technical and 

collaborative skills than when they were using a traditional laboratory. 

2.5.3 The VISIR project 

The Virtual Instrument Systems In Reality (VISIR)
37

 [17][70], originated from a 

weblab created in 1999 at the Blekinge Institute of Technology (BTH), and started in 

2006 with the cooperation of the NI and the Axion Edutech, plus the financial support 

from the Swedish Governmental Agency for Innovation Systems (VINNOVA). Today, 

several universities integrate the VISIR consortium: FH Campus Wien and Carinthia 

University of Applied Sciences - Austria, University of Deusto and the National 

University of Distance Education (UNED) - Spain, University of Genoa - Italy, 

Gunadarma University in Indonesia, Uninova Institute for the development of new 

technologies, and the Polytechnic of Porto School of Engineering (ISEP) - Portugal. 

The project refers to an open laboratory platform offering software distributing releases 

and documentation that can be used to implement online workbenches with standard 

instruments. It uses a common unique interface with an instrument shelf able to be 
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adopted by several workbenches. Using the VISIR platform, students are able to create 

and configure their own experiments by selecting instruments from a virtual shelf and 

by defining the connections established with the instruments, like in a traditional 

laboratory. 

The VISIR project uses a platform supported by a client-server architecture, whose 

instruments are connected to an instrumentation server. The architecture is very similar 

to the one adopted for the NetLab, since it includes the Weblab server connected to the 

instrumentation server using the LabVIEW software to manage weblab modules (the 

instruments). Typically, the platform uses a switching matrix to control the terminal 

connections of a set of electronic components and of the adopted modules in a 

breadboard, which are able to be controlled through a virtual interface. Figure 2.14 

exemplifies a VISIR architecture based on modules compatible with the PXI bus, 

despite other buses can be adopted, such as the GPIB or LXI. 

In order to promote the reuse of the modules, the software developments are ruled by 

the Interchangeable Virtual Instrument (IVI) foundation
38

, which is a group of end-user 

companies system integrators and instrument vendors that defined standard instrument 

programming interfaces. Currently the IVI standard comprehends an open architecture 

with a set of instrument classes and software components that allow VISIR platform to 

integrate eight types of instruments: i) DC power supplies; ii) Digital Multimeters; iii) 

Function Generators; iv) Oscilloscopes; v) Power meters; vi) RF signal generators; vii) 

Spectrum analyzers and; viii) Switches. For sharing and adopting a particular 

instrument compatible with the VISIR platform, these should be developed according to 

the standard in order to increase the collaboration during the development of different 

weblabs. 

Internet

Users

Weblab server

Instrumentation
 server

(e.g. PXI system)
Switching matrix

LAN/

WAN
USB

Virtual 

breadboard

 

Figure 2.14: Overview of a VISIR architecture based on the PXI bus. 

 

As indicated, by using the VISIR platform students are able to define instruments-

experiments connections, and to setup component connections within the experiment, 

such as replacing a resistor in an electronic circuit using a virtual breadboard similar to 

the one illustrated in figure 2.15a). Internally, after defining the connections using the 

virtual breadboard, the system creates a netlist file that is analyzed before proceeding 

with the real connections on the laboratory. If an error is found, a message will be 

                                                
38 http://www.ivifoundation.org/  

http://www.ivifoundation.org/
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displayed indicating that a dangerous connection was made, which avoids damaging the 

weblab infrastructure. To fulfil educational purposes, it is the student that should solve 

the problem, because the system only indicates that there was an error. Furthermore, so 

students may feel they are interacting with real equipment, besides a visual feedback of 

the remote experiment provided by a webcam, the use of real images of all instruments 

in the virtual shelf is also adopted, as represented in figure 2.15b).  

 

 
a) Virtual breadboard. 

 
b) Virtual instrument shelf. 

Figure 2.15: Interfaces used in the VISIR project. 

 

The VISIR platform is now installed by several institutions and used as a platform 

for evaluating the interest on using weblabs in engineering education [71][72]. 

Moreover, a recent work integrated the VISIR-based labs with the iLab architecture 

[73], which proves the quality, the reliability and the interest of the research community 

in the VISIR and iLabs architectures. 

2.5.4 Other weblabs and projects 

Beyond the presented projects, there are other remotely accessible weblabs across the 

world with experiments in different engineering domains. The diversity of available 

weblabs, which is seen as an advantage for the educational community since it has a 

wide offer of remote experiments, at the same time creates difficulties for searching the 

most adequate to apply in a specific engineering course. Aware of this difficulty, 

educational communities created several repositories of weblabs, in particular for the 

electrical domain. To consult more information about the current trends on weblabs’ 

adoption for engineering education, table 2.9 lists repositories, projects and consortiums 

involved on the research and dissemination of remote experiments. 

Traditionally, weblabs follow client-server architectures with a diversity of solutions 

and technologies. There is no standard solution for developing weblabs, which is an 

issue that is getting a special attention from the research community. Organized 

consortiums have been joining efforts from different institutions to define a solution to 

unify weblabs in a common platform. However, and despite those efforts, a set of 
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problems and limitations in current weblabs still remain that, if solved, will incentivize 

their widespread adoption in engineering courses. 

 

Table 2.9: Weblabs’ repositories, projects and consortiums. 

LiLa - “Library of Labs”- Consortium headed by the Stuttgart University that provides an 

organizational framework for the exchange of experiments between institutions. Further information 

available on http://www.lila-project.org/  

Labshare - Consortium, since 2011 an Institute, composed by several Australian universities. It aims 

to provide a set of services for the integration and development of remote experiments in Australia. 

Further information available on http://www.labshare.edu.au/  

Lab2Go - A repository to locate educational online laboratories created by the Carinthia University of 

Applied Sciences Villach, Austria. It is an online web portal where developers can describe their own 

weblabs using a predefined Online Laboratory Metadata - Reference Model Specification. Further 

information available on http://www.lab2go.net/   

iSES - internet School Experimental System - is a complex tool for real time acquisition and remote 

data acquisition, data processing and control of experiments and other processes. It is an open system 
consisting of a basic iSES hardware with the controlling software ISESWIN and software ISES WEB 

Control kit for remote laboratory. Further information available on http://www.ises.info  

UNEDLabs - Is a network of collaborative virtual and weblabs supported by a web portal designed 

and maintained by the Informatics department of the National University of Distance Education, 

known in Spanish as Universidad Nacional de Educación a Distancia (UNED). Further information 

available on: http://unedlabs.dia.uned.es/  

RexLab - Brazilian consortium, headed by the Federal University Santa Catarina (UFSC) that manages 

and provides several remote experiments. Currently it integrates some partners from south American 

and European universities. Further information available on http://www.rexlab.ufsc.br/  

NUS Internet Remote Experimentation - Remote experiments available in the National University of 

Singapore (NUS). Further information available on http://vlab.ee.nus.edu.sg/~vlab/index.html 

eLabs-FEUP - Repository of projects and experiments headed by the Faculty of Engineering of the 

University of Porto. Further information available on  http://elabs.fe.up.pt/ 

WebLab-Deusto - Research group of the University of Deusto/Spain, aims to provide different 

solutions to different scenarios related to Remote Experimentation. Further information available on 

https://www.weblab.deusto.es/web/ 

GOLC - Global Online Laboratory Consortium - Consortium that aims to define standard solutions for 
creation of sharable, online experimental environments. Further information available on 

http://www.online-lab.org/ 

 

2.6. Current limitations and problems of weblabs 

Despite technological evolution has contributed for the development of well 

designed weblabs, there are still several unsolved issues. As described in the previous 

section, each weblab is typically developed following specific and distinct technical 

implementations supported by a client-server approach, with several hardware and 

software architectures and technologies using different programming languages. It is 

precisely this diversity of solutions that is still hampering the use of weblabs in some 

institutions, since their architectures and underlying infrastructures still face a number 

of problems and limitations, namely: 

 lack of standard architectures and infrastructures; 

 lack of standard access to the weblab modules (e.g. instruments); 

http://www.lila-project.org/
http://www.labshare.edu.au/
http://www.lab2go.net/
http://www.ises.info/
http://unedlabs.dia.uned.es/
http://www.rexlab.ufsc.br/
http://vlab.ee.nus.edu.sg/~vlab/index.html
http://elabs.fe.up.pt/
https://www.weblab.deusto.es/web/
http://www.online-lab.org/
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 low reusability and interoperability, since there are still difficulties for sharing 

and replicating the weblab modules through different infrastructures, which is 

not promoting a larger collaboration among institutions; 

 difficulty of joining efforts during the weblabs’ development, since developers 

do not use any common standard; 

 low flexibility, because it is difficult redesigning every type of experiments 

using the same infrastructure (VISIR and NetLab are limited to the provided 

weblab modules available in the infrastructure); 

 potential high costs, since creating weblabs requires a PC and associated 

software, together with several and independent modules, eventually with 

features not required for running a specific experiment; 

 updating and stability problems, since the many software layers usually adopted 

create incompatibility issues between versions, requiring high laboratory 

maintenance, and; 

 some institutions do not develop weblabs for supporting their courses, because 

they lack the required technical skills. 

 

All these limitations and problems motivated researching a standard solution for 

developing weblabs. Moreover, to facilitate the development, reuse and share of 

different weblab modules, and to increase the flexibility for redesigning different 

experiments using the same weblab infrastructure, reconfiguration was also an issue 

under analysis. The next chapter provides some considerations for designing standard 

and reconfigurable weblabs, by proposing solutions based on the IEEE1451.0 Std. and 

on the FPGA technology to support the reconfiguration capability of future weblab 

infrastructures.  

2.7. Summary 

This chapter briefly described the impact technology brought in the last 30 years to 

the experimental work in engineering education, in particular by enhancing the 

traditional laboratory environment. The experimental (or laboratory) work was 

emphasized by presenting the different laboratory types currently available for the 

conduction of experimental work activities considered fundamental in every 

engineering course. After analysing the different laboratory types supported by a set of 

intrinsic parameters and the involved costs for their development and access, weblabs 

were considered as a valuable resource, since they provide a flexible and a cost effective 

solution for remotely conducting real experiments through the Internet. To understand 

the relevance of weblabs and their contextualization, the RE concept was then 

described, presenting all the involved actors and contexts that influence weblabs’ 

adoption in engineering education. Pedagogical and technical considerations for 
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applying and developing weblabs were then detailed, and some of the most 

disseminated weblab architectures for the electrical domain were presented. This 

chapter ended by referring current limitations and problems faced by weblabs that are 

still preventing their widespread adoption in engineering education. 
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 Chapter 3   

Considerations for designing standard and 

reconfigurable weblabs 
 

 

 

The previous chapter contextualized weblabs in engineering education, 

demonstrating why they are important resources for supporting experimental work 

activities. The presented weblabs’ architectures revealed the lack of standardization in 

their design and access, and the impossibility for being remotely reconfigured with 

different modules required to conduct experiments. 

This chapter provides some considerations for designing standard and reconfigurable 

weblabs. It resumes current instrumentation standards, focusing on hardware and 

software architectures that enable interfacing and remotely accessing different types of 

instruments typically used in electrical and electronic experiments. On-going initiatives 

for standardizing weblabs are also presented, followed by an overview of the 

IEEE1451.0 Std. and its other family members, perceived as a valid complementary 

solution for designing standard weblab architectures. The use of FPGAs is discussed at 

the end of this chapter as the technology for enabling the reconfiguration with different 

modules, described and accessed according to the IEEE1451.0 Std. 
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3.1. Weblab architectures based on instrumentation standards 

Traditionally, weblab architectures adopt commercial test & measurement 

instruments with physical interfaces based on instrumentation standards. The 

instruments may be interfaced to an host system acting as an instrumentation server, or 

they may provide network connections enabling remote access with minor (or none) 

software developments. Currently, the large majority of instruments is accessed through 

command-based protocols using instrument-specific ASCII
39

 strings, and provides 

software drivers and APIs that facilitate the development of software applications. 

Therefore, it is important to distinguish the available instruments for designing weblabs, 

namely the adopted standards at hardware and software levels, and to consider emerging 

technological solutions, such as embedded instruments. 

3.1.1 Stand-alone and modular instrumentation 

The field literature normally divides instruments in two types: i) Stand-alone and ii) 

Modular [74]. Stand-alone, also referred as traditional instruments, integrate all 

necessary hardware and software components within the device to acquire or generate 

specific raw data without support of an external system. Modular instruments always 

require the use of an external system, because each instrument only has the minimum 

resources to perform the intended function. They are traditionally cards that can be 

plugged or unplugged according to the requirements of a specific experiment, and it is 

the host system that gathers all the data acquired or to be generated.  

As illustrated in figure 3.1, both types of instruments establish connections among 

them using instrumentation buses and, if required, with an external host system to 

manage their features, including synchronization, data storage, or others.  
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Figure 3.1: Stand-alone and modular instrumentation. 

 

Adopting stand-alone instruments without a LAN interface in a weblab infrastructure 

requires the use of an external system similar to the one adopted for modular 

instrumentation. This system should act as an instrumentation server, so the connected 

                                                
39 American Standard Code for Information Interchange (ASCII) is a numerical representation of 

characters (http://www.asciitable.com/).   

http://www.asciitable.com/
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modules may be remotely accessed using software applications running in the users’ 

accessing devices. These applications are commonly known as Virtual Instruments (VI), 

defined as customizable applications to create user-defined measurement systems able 

to control real instruments [74]. The hardware control, data analysis and presentation 

are handled entirely by those VIs, which can be developed in different programming 

languages using traditional client-server architectures. The way each instrument can be 

remotely accessed is dependent on the instrumentation bus and on the selected software 

framework. 

3.1.2 Instrumentation standards 

Choosing instruments to adopt in a weblab infrastructure depends on the target 

experiments and on their characteristics, such as the measurement functionality, the 

bandwidth, the latency, the performance, and in particular the connectivity they provide. 

This is partially defined by the selected instrumentation buses that implement I/O lines, 

with shared triggers and timing synchronization signals, so they can be integrated and 

inter-communicate within the same infrastructure. The remote access to the instruments 

should be controlled by an host system through VIs, so different instruments, even using 

distinct buses, may be easily replaced or integrated. This is accomplished by the use of 

software frameworks that can be accessed through different programming languages to 

develop the software applications. The access to the instruments is made through an 

abstracted interface using ASCII commands, APIs or drivers. 

As represented in figure 3.2, an instrumentation system can be structured into 4 

layers: i) the buses that represent the hardware and the I/O libraries to access each type 

of instrument; ii) the software framework with ASCII commands, APIs and drivers; iii) 

the programming languages integrated into software frameworks to develop 

applications and; iv) those applications, which can be user defined or predefined by the 

manufacturers to remotely access the instruments. 
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Figure 3.2: A layered architecture for an instrumentation system. 
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The first layer represents the instrumentation buses and all the involved hardware 

that allows inter-connecting or binding instruments to an instrumentation server. The 

instrumentation buses are traditionally associated to the type of equipment, i.e. stand-

alone instruments traditionally bring one or more interfaces compatible with the RS-

232, GPIB, USB or LAN/LXI standards, while modular instruments traditionally bring 

one or more interfaces compatible with the VXI, PCI, PXI and PXI/PCI Express 

standards. These are the most known instrumentation buses, and each one has different 

characteristics that should be analyzed before adopting them in a weblab infrastructure, 

as briefly described in table 3.1. 

 

Table 3.1: Overview of some well known instrumentation bus standards. 

RS-232 

The first standard used for interfacing data communication equipment (1962) 

revised by the EIA40 and by the TIA41 concerning timing and voltage issues, 

which justifies other denominations (RS-232-C, EIA RS-232, EIA 232, TIA 
232, etc.). It has a serial interface with low throughput (up to 115,200 bits 

per second) when compared to new instrumentation standards. Most of the 

new instruments do not bring anymore this type of bus, but there are several 

bridges in the market that allow its interface to other buses. 

GPIB  

(General Purpose 

Interface Bus)
42

 

The oldest robust and most reliable bus ruled by the IEEE488.1 (1987) for 

mechanical, electrical, and basic protocol parameters, and by the IEEE488.2 

(1992) for standard codes, formats, protocols, and common commands. It 

adopts SCPI commands43 to control programmable instrumentation. It uses 

an 8 bit parallel bus where each instrument has its own address. Due to the 

large number of GPIB compatible instruments, there are many interfaces 

available in the market so they can be connected to PCs or modular systems 

using interface bridges, such as PCI-GPIB, USB-GPIB or PXI-GPIB. 

USB  

(Universal Serial 

Bus)
44

 

It is a popular industry-standard (mid-1990s) and a common choice for 
stand-alone instruments. It has an high bandwidth (USB 3.0 up to 4 Gbit/s) 

and provides a plug&play facility to connect computers systems that 

traditionally bring USB interfaces. It includes the USBTMC (USB Test and 

Measurement Class) that is a protocol built on the top of the USB for GPIB-

like communications with USB devices using messages based on the GPIB 

standard.  

LAN (Local Area 

Network) / LXI (LAN 

eXtensions for 

Instrumentation)
45

 

The LXI was created (2005) based on the LAN features that allow to 

interconnect computers in a limited area using network media. Besides this 

feature, LXI integrates the VXI-11 specification, now extended by the 

HiSLIP standard created by the IVI Foundation46, which provides a set of 

protocols for communication with message-based instruments over TCP/IP, 

with trigger and synchronization signals, service request mechanisms, among 
others. 

                                                
40 Electronic Industries Alliance (EIA) - (http://www.eciaonline.org/eiastandards/).  
41 Telecommunications Industry Association (TIA) - (http://www.tiaonline.org/).  
42 http://standards.ieee.org/findstds/standard/488.2-1992.html 
43 Std. Commands for Programmable Instrumentation (SCPI) - (http://www.ivifoundation.org/scpi/).  
44 http://www.usb.org/ 
45 http://www.lxistandard.org/  
46 http://www.ivifoundation.org/  

http://www.eciaonline.org/eiastandards/
http://www.tiaonline.org/
http://standards.ieee.org/findstds/standard/488.2-1992.html
http://www.ivifoundation.org/scpi/
http://www.usb.org/
http://www.lxistandard.org/
http://www.ivifoundation.org/
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VXI  

(VME eXtensions for 

Instrumentation)
47

: 

Based on an older bus standard named VMEbus (Versa Modular Eurocard 

bus) created in the 80’s, VXI defines additional bus lines for timing and 

triggering control, as well as mechanical requirements and standard protocols 

for configuration, message-based communication, multi-chassis extension, 

and other features. This bus is maintained by the VXIplug&play Systems 

Alliance, now integrated in the IVI foundation. 

PCI (Peripheral 

Component 

Interconnect)
 
/  

PXI (PCI eXtended 

to Instrumentation)
48

 

Introduced in 1997, PXI combines PCI electrical-bus features extending 

them to instrumentation. It provides low latency, high throughput with 

timing and trigger signals using rugged and modular euro cards similar to the 

VXI. PXI is promoted and maintained by the PXI Systems Alliance 

(PXISA)49. 

PCI/PXI Express 

These standards were created in 2004 (PCI Express) and 2005 (PXI 

Express). They include the characteristics of the PCI/PXI buses with the 

compactPCI Express specification, improving them with higher throughputs, 
lower I/O pin count and smaller physical footprint, among others. 

 

The second layer includes commands, APIs and drivers that bridge the hardware and 

the software to simplify configurations and the development of software applications. 

This layer comprehends several possibilities for accessing the instruments. The most 

common one uses ASCII commands, typically provided by stand-alone instruments 

supporting message-based command protocols such as the SCPI. This protocol was 

originally created for the IEEE488 Std. (GPIB), but can also be used with RS-232, 

USB, VXI, and others compatible instrumentation buses. Since those commands 

traditionally differ according to the adopted instrument, currently this layer includes 

instrument drivers that implement an abstract software interface using predefined and 

standard commands. An example is the VXIplug&play drivers, also known as VXIpnp, 

plug&play or as Universal Instrument Drivers. These were considered the industry 

standard for many years, but have been largely replaced by the denominated 

Interchangeable Virtual Instrument (IVI) drivers that are supported by newer 

instruments, such as instruments bringing LXI interfaces. Despite those drivers can be 

adopted to directly interface some compatible instruments, due to the diversity of I/O 

libraries used to access the hardware, the Virtual Instrument Software Architecture 

(VISA) is now a solution to take into consideration. The VISA is a software framework 

that provides APIs to communicate with the hardware using low-level I/O libraries. It 

ensures a successful integration of various instruments in a single infrastructure, 

enabling instruments’ connectivity using distinct buses. It can be used independently of 

the IVI drivers, since it delivers a standard set of function calls to communicate with 

instruments based on PXI, VXI, GPIB, LAN/LXI and others [75]. Nevertheless, for 

facilitating the software integration, the IVI drivers can be used with the VISA, since 

they simplify the replacement of the instruments without the need of changing the 

software. Due to the time-line evolution that brought a diversity of solutions for 

accessing programmable instruments, the SCPI, VXIplug&play, VISA and IVI 

specifications are now maintained by the IVI Foundation. This foundation is the 

                                                
47 http://www.vxibus.org  
48 http://www.pxisa.org/  
49 http://www.pcisig.com/  

http://www.vxibus.org/
http://www.pxisa.org/
http://www.pcisig.com/
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responsible for the older VXIplug&play Systems Alliance and SCPI Consortium. It 

concentrates its efforts in improving those specifications and the compatibility of the 

VISA and IVI drivers with different instruments, in order to simplify interchangeability, 

improve performance, facilitate software developments and reduce maintenance costs. 

The third and fourth layers represent the programming software languages and the 

applications used to access the instruments. The applications can directly send ASCII 

commands, using the APIs provided by the VISA or they can access the IVI drivers. 

Despite VISA is well accepted by the industry, proved by the NI-VISA (an 

implementation made by the National Instruments) [76], IVI drivers provide an higher 

software abstraction level subdividing instruments into classes and implementing many 

other extended features [77], which justifies the existence of many predefined 

applications (e.g. TestStand
50

). Besides the instrument-specific functionalities provided 

by the IVI classes, they can be used in several software architectures through different 

drivers, namely the IVI-C, IVI-COM or IVI.NET, accessed by structured languages 

such as C, objected-oriented languages such as C++ or VB.NET, and by graphical 

languages such as G, provided by the LabVIEW (Laboratory Virtual Instrument 

Engineering Workbench)
51

 platform. This G language is generically known as 

LabVIEW, and integrates a set of graphical blocks that facilitate the development of VIs 

for local and remote control of the instruments. Currently, many instruments already 

provide LabVIEW drivers used as wrappers on top of IVI drivers or VISA APIs, which 

proves the wide acceptance of LabVIEW for designing weblabs infrastructures 

[63][78][79][80]. 

3.1.3 Hybrid architectures  

Many weblabs adopt commercial instrumentation equipped with standard interfaces, 

namely GPIB, PXI and, more recently, LXI. To guarantee the required flexibility for 

swapping the instrumentation in a weblab infrastructure, developers traditionally prefer 

the use of modular instrumentation rather than stand-alone instrumentation, since it is 

typically a most cost-effective solution. An example is the PXI bus, now being widely 

used for implementing weblabs (e.g. [10][70][81]), since it provides a robust solution 

with the high performance and the throughput of the PCI bus available in traditional 

PCs, adding a rugged design, dedicated trigger lines for synchronization, among other 

features. Moreover, companies like the NI and Agilent have many PXI compatible 

instruments (e.g. Oscilloscopes, Function Generators, etc.), which incentivize their 

adoption for designing weblab infrastructures. 

Although using modular instruments presents many advantages, stand-alone 

instruments should also be considered, as many institutions have them in their 

laboratories and some may have particular features that require their adoption for 

                                                
50 Software application developed by National Instruments for monitoring components integrated in a 

measurement system (http://www.ni.com/teststand). 
51 http://www.ni.com/labview/  

http://www.ni.com/teststand
http://www.ni.com/labview/
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running a particular experiment. Therefore, it is important to guarantee the connectivity 

among distinct instruments in the same infrastructure, while still using different 

interface standards. Sharing data buses with a specific bandwidth and latency, and the 

trigger and synchronization signals, are some aspects to take into consideration. This 

compatibility among different instrumentation buses is guaranteed by the many 

interfaces available in the market that allow adopting different instruments in the same 

infrastructure creating the so-called hybrid systems [82]. Figure 3.3 represents an hybrid 

system that can be adopted for implementing a weblab infrastructure. Despite the 

involved costs may increase due to the use of additional interfaces, such as MXI
52

 

compatible cards, these are very popular and are being largely used for expanding and 

interfacing VXI and PXI buses to the PCI bus. A PC may control the modular 

instrumentation, which can be very useful in situations where the host system is not 

embedded in the modular system. The software compatibility among all instruments is 

guaranteed by the IVI and VISA, enabling the replacement of the instruments according 

to the weblab requirements. 
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VXI
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LXI

LAN
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MXI

PXI
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Figure 3.3: Example of an hybrid system applicable to weblab infrastructures. 

 

Reporting to the weblab architectures presented in the previous chapter, NetLab
53

 

uses an hybrid architecture. It adopts stand-alone instruments with the GPIB interface 

and modular instrumentation using the VXI bus for implementing a switching matrix 

module, which is interfaced to a PC and controlled using the VISA. This architecture 

represents a typical reutilization of resources available in the laboratory, since the 

involved technologies require using MXI cards and GPIB-PCI interfaces, which would 

imply higher costs when compared to solutions that use a single instrumentation bus. 

An example is the VISIR implementation at the BTH
54

, which uses an architecture 

supported by a PXI bus and adopts IVI drivers. A more recent research based on this 

same VISIR project indicated LXI instruments and IVI drivers as the most valuable 

technologies for implementing weblabs [83][84]. LXI has the same advantages of PXI 

but provides larger bandwidth, higher data rate, and brings the advantage of stand-alone 

                                                
52 Multisystem eXtension Interface (MXI), also named MXIbus, is an open standard developed by 

National Instruments currently named as MXI-2 (http://www.ni.com/pdf/manuals/340007b.pdf). 
53 http://netlab.unisa.edu.au/ 
54 http://openlabs.bth.se/index.php?page=ElectroLab# 

http://www.ni.com/pdf/manuals/340007b.pdf
http://netlab.unisa.edu.au/
http://openlabs.bth.se/index.php?page=ElectroLab
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instrumentation, since compatible instruments are connected to a LAN, which, as 

reported by the authors, makes it a flexible and an affordable solution for weblab 

infrastructures. Additionally, these instruments are also accessible through VISA, which 

guarantees the software flexibility required for developing weblabs. 

More recently, a new technological trend for instrumentation is emerging. This trend 

suggests that instruments may be implemented within chips for performing specific 

validation, test and debug functions of other electronic circuits. These are called 

embedded instruments, and they should be considered as a possible solution for 

implementing weblab infrastructures. 

3.1.4 Embedded instrumentation 

According to the Moore’s law, in the last decades the number of transistors within 

chips has been doubling every two years. Despite this law is becoming deprecated 

because miniaturization is now facing its physical limits, the processing capability of a 

single chip has been increasing, incentivizing the design of more complex and 

processing demand capable devices such as the so-called embedded instruments. These 

types of instruments may be an alternative to stand-alone or modular instrumentation 

referred in subsection 3.1.1. Embedded instruments are mainly circuits implemented 

within chips that perform specific validation, test and debug functions of other 

electronic circuits in the same chip or circuit boards [85]. They are classified as a most 

cost-effective and flexible solution, since they are essentially supported by hardware 

descriptions able to be adaptable according to the requirements of the circuit under test. 

Additionally, these types of instruments have been receiving a large interest of the 

research community, focusing their attention on standards to enable non-intrusive 

access and control, namely by using the JTAG interface
55

, recently improved with the 

Internal JTAG (IJTAG)
56

, specifically created for embedded instrumentation. 

Additionally, some researchers are also suggesting architectures for remote and real-

time access of embedded instrumentation and sensor management [87]. 

Therefore, adopting embedded instruments in weblabs should also be taken into 

consideration. As illustrated in figure 3.4, embedded instrumentation may access 

circuits (experiments) according to three architectures: i) System-on-Chip (SoC), 

integrating the instruments and the experiments within the same chip; ii) board, 

integrating the instruments within chips bound to the experiments located in the same 

board or; iii) external, using a board with chips accommodating the embedded 

instruments, bound to external experiments. The access to the chips is traditionally 

made using the JTAG (in the future the IJTAG), but when the experiments are in the 

                                                
55 Joint Test Action Group (JTAG) is a common name for what later became the IEEE1149.1 Std. that 

stands for Standard Test Access Port and Boundary-Scan Architecture [86]. 
56 Internal Joint Test Action Group (IJTAG) is an interface standard to instruments embedded in chips 

that defines a methodology for their access, automating their operations and analyzing their outputs. 

It is currently defined by the IEEEp1687 Std. (http://standards.ieee.org/develop/wg/IJTAG.html). 

http://standards.ieee.org/develop/wg/IJTAG.html
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board or externally located, the more common buses should be considered, such as the 

RS-232, USB, LAN, or others. 
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Figure 3.4: Architectures for embedded instruments in weblab infrastructures. 

 

Although only architectures i) and ii) are traditionally adopted for embedded 

instrumentation, architecture iii) may also be used, in particular for implementing 

weblab infrastructures where traditional instruments (stand-alone or modular) can be 

replaced by embedded instruments. Typical experiments able to be implemented using 

architectures i) and ii) are those described through software, such as digital/analog 

circuits implemented using reconfigurable devices, such as FPGAs or Field 

Programmable Analog Arrays (FPAAs). However, these two architectures do not allow 

the conduction of any type of experiment, since the interfaces are limited to the internal 

circuits provided within the chips or boards. To promote the adoption of embedded 

instrumentation for weblabs, architecture iii) should be considered, since it allows 

interfacing any type of experiment using the I/O analog or digital interface drivers 

provided by the board. 

This diversity of technological solutions, both at hardware and software levels, for 

implementing weblabs, are creating some difficulties for institutional collaboration and 

resource sharing. Most weblabs use commercial devices adopting instrumentation 

standards, but new technological solutions, such as embedded instrumentation, may be 

considered for implementing the infrastructures. Additionally, current user-defined 

applications use different APIs and architectures, which are difficulting the use of a 

common platform for accessing weblabs and the provided experiments. This is 

particularly true on interoperability issues, since weblabs traditionally use different 

terminology and distinct metadata for their classification. These problems are impairing 

the dissemination, integration and the interoperability of weblabs, which led to weblab 

standardization initiatives. 
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3.2. On-going initiatives for weblabs standardization: GOLC 

and IEEEp1876 Std.  

The adoption of instrumentation standards gives an added-value for weblabs since 

they can integrate in the same infrastructure several instruments accessible through 

standard commands, APIs and drivers. Software developments and interoperability 

among different types of instruments can be therefore facilitated, since they can 

communicate using standard buses, and the software applications for the remote access 

can then be reused. Besides the remote access to the adopted instrumentation, weblabs 

should implement a set of requirements so they can be used in an educational context, 

as already described in the previous chapter. They should provide most of the features 

available in traditional laboratories, such as enabling the access to the equipment for 

controlling and setting-up the experiments, facilitate the collaboration among students 

when conducting experiments, among others. Additionally, the widespread of weblabs, 

some providing experiments dedicated to specific engineering areas, alerted the 

educational community for the interest on spreading them as much as possible, so that 

they can be accessed all around the world and included in engineering courses to 

improve their curricula and/or to overcome the lack of facilities and equipments. Aware 

of this situation, the research community, including teachers, has been involved in 

projects focused on the development of software frameworks using ontologies for 

organizing information about weblabs and their features, APIs for accessing the adopted 

instrumentation, and architectures that facilitate their development and widespread 

adoption. The most important projects that gave significative contributions in this 

domain are: i) the iLabs
57

 that defines an architecture for designing distributed weblabs 

independently of the adopted technology (already detailed in chapter 2); ii) the 

Lab2Go
58

 project that describes a vocabulary model for weblabs, enabling them to be 

searched according to their characteristics and provided experiments; iii) the Labshare
59

 

that is a consortium in Australia that includes, among other projects, the NetLab 

(already detailed in chapter 2) and a generic framework defined by the SAHARA Labs
60

 

for setting up heterogeneous laboratories and; iv) the LiLa
61

 project that defines another 

software framework for building a repository of weblabs using reusable educational 

modules defined through the denominated LiLa Learning Objects, which are compatible 

with SCORM
62

 objects, and therefore able to run in VLEs such as the Moodle
63

. These 

projects are well disseminated within the research and educational communities, 

providing common and distinct features, all considered important for designing a 

standard framework for weblabs. All are focused on the use of software frameworks for 

                                                
57 http://ilab.mit.edu/, http://ilabcentral.org/  
58 http://www.lab2go.net/  
59 http://www.labshare.edu.au/  
60 http://sourceforge.net/projects/labshare-sahara/  
61 http://www.lila-project.org/  
62 Sharable Content Object Reference Model (SCORM) is a collection of standards and specifications 

for web-based e-learning (http://scorm.com/). 
63 https://moodle.org/  

http://ilab.mit.edu/
http://ilabcentral.org/
http://www.lab2go.net/
http://www.labshare.edu.au/
http://sourceforge.net/projects/labshare-sahara/
http://www.lila-project.org/
http://scorm.com/
https://moodle.org/
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implementing remote access to experiments, access management systems and the way 

pedagogical contents are provided and integrated in a course. However, each project 

uses its own architecture, which difficults their interface in a common, scalable and 

sharable framework. This diversity of solutions alerted the research community for the 

benefits of designing a unique and standard solution for developing and disseminating 

educational laboratories, in particular the weblabs.  

As a result of a series of discussions commenced in early 2009, on June 25
th

 2010 the 

Global Online Laboratory Consortium (GOLC)
64

 formally came into existence as an 

independent organization. GOLC is an initiative of the iLabs founders that aims to 

promote the development, share and research of online laboratories for educational use, 

focusing on a software framework that supports their integration in education, 

independently of the adopted technology. GOLC is mainly supported by the know-how 

acquired from the referred projects, from contributions of the VISIR project created at 

BTH
65

, and from the Weblab-Deusto research group
66

. It integrates several members 

(individuals and organizations) organized into committees, as represented in figure 3.5.  
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·LabShare (SAHARA Labs)
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GOLC Executive Committee )(Global Online Laboratory Consortium)

 

Figure 3.5: Overview of the Global Online Laboratory Consortium. 

 

Members are divided into groups, according to the type of institution, the voting and 

the advisory rights within the consortium. All provide an annual contribution to support 

activities of the consortium including annual meetings that have been commonly 

organized in parallel with the REV
67

 and FIE
68

 international conferences. The 

committees include: i) the Executive Committee, who is the responsible for the overall 

governance and oversight; ii) the Membership and Communications Committee, who 

manage members and is the responsible for communications and; iii) the Technical and 

Education Committees who are responsible for handling the entire research aiming for a 

common technical and educational framework for online laboratories. Currently, GOLC 

                                                
64 http://www.online-lab.org/  
65 http://openlabs.bth.se/  
66 https://www.weblab.deusto.es  
67 Remote Engineering & Virtual Instrumentation (REV) (http://www.rev-conference.org/) is a series 

of annual events in the area of remote engineering and virtual instrumentation. The REV 

conferences are the annual conferences under the umbrella of the International Association of 

Online Engineering (IAOE) (www.online-engineering.org).  
68The annual Frontiers in Education (FIE) conference is a major international conference about 

educational innovations and research in engineering and computing (http://fie-conference.org/). 

http://www.online-lab.org/
http://openlabs.bth.se/
https://www.weblab.deusto.es/
http://www.rev-conference.org/
http://www.online-engineering.org/
http://fie-conference.org/
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committees are being redefined according to a different structure, but with the same 

objectives. The Executive Committee is maintained, but the other committees will be 

replaced by a membership forum, and a set of committees and special interest working 

groups established by the GOLC Executive Committee. Applications such as booking 

systems, descriptions of the offered experiments, terminology and interoperability 

issues are some of the technical issues under discussion. Defining narratives for good 

practice in the use of online laboratories (e.g. library of videos showing their effective 

use), a standardized vocabulary for tagging research papers, metadata for describing 

educational aspects, and guidelines for assisting users with the selection of an online 

experiment, are some educational objectives currently under GOLC research and 

development. 

Based on previous projects, GOLC is currently working on technical documents to 

be applied for online laboratories: i) the adopted terminology; ii) an ontology able to be 

described using a set of metadata profiles and; iii) an interoperability standard for 

accessing the laboratories. The terminology currently proposed uses a set of core 

concepts illustrated in figure 3.6a). These are adopted by the ontology represented in 

figure 3.6b) that is described through metadata profiles divided according to sets of 

packages. These define features and components belonging to a laboratory, such as the 

applied booking system, the rig attributes (in the scope of this thesis is an instance of the 

weblab infrastructure), interaction issues, such as the required plug-ins to install in the 

clients’ accessing devices, media packages for supporting pedagogical contents, and 

others. The interoperability standard mainly defines the APIs and interaction models for 

accessing the online laboratories.  
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Figure 3.6: Current terminology and ontology defined by the GOLC. 

 

A more recent initiative supported by the IEEE standards association is also 

emerging for the standardization of online labs. The members of this initiative that 

belongs to the IEEE Networked Smart Learning Objects for Online Laboratories 

Working Group (NSLOL WG), have agreed that laboratory work is a requirement for 

any engineering course and currently online labs, which include weblabs, are seen as a 

fundamental resource. Since the smart learning environments (traditionally adopted by 
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weblabs) are built using different approaches, the NSLOL WG is involved in 

developing the IEEEp1876 - Standard for Networked Smart Learning Objects for 

Online Laboratories
69

. The main goal of this standard is to establish the relationship 

between all the involved components in a remote experimentation scenario (software, 

hardware and learning systems) in order to facilitate the design and implementation of 

pedagogically driven remote experiments. The first meeting was held in 2012 and more 

recently another meeting was held at the IEEE EDUCON’2013
70

 conference. In this 

conference, some papers were presented with different solutions for developing online 

laboratories, focusing on a new ontology [88], a proposal for designing interoperable 

bridges among different laboratories [89], and new development paradigms [90][91]. 

Currently, no other developments are known about the IEEEp1876 Std., but the NSLOL 

WG is open to receive new members and contributions, such as from the on-going 

European research project named Go-Lab [92]. This project intends to create a large 

federation of online laboratories involving the use of a technical framework designed to 

support the construction and the exploitation of learning spaces. 

Both the GOLC and the NSLOL WG (IEEEp1876 Std.) initiatives intend to gather 

several researchers, so their developments and solutions may contribute for the 

standardization of online labs. They are mainly focused on defining the software 

frameworks for describing and accessing the laboratories, which, according to the 

layered structure defined in the previous section (figure 3.2), position them as user 

defined applications. Despite fundamental, the hardware is underestimated in both 

initiatives, in particular for the possibility of using a standard for designing and 

accessing instrumentation and for enabling their reconfiguration in a weblab 

infrastructure. These aspects, together with the several solutions still running in parallel, 

incentivized researching the use of a standard that specifies software and hardware 

layers for designing weblabs, namely the IEEE1451.0 Std. 

3.3. Using and extending the IEEE1451.0 Std. for designing 

weblabs 

The IEEE1451.0 Std. was specified to network-interface transducers in a plug&play 

basis. This section introduces the IEEE1451.0 Std. and presents other family members. 

The most disseminated projects and research work, which involve the use of this and 

other members of the IEEE1451.x Std. family, are also presented, and some 

considerations for applying the IEEE1451.0 Std. in the design of weblabs are discussed. 

 

                                                
69 http://ieee-sa.centraldesktop.com/1876public/  
70 The IEEE Global Engineering Education Conference is a series of conferences that rotate among 

central locations in IEEE Region 8 (Europe, Middle East and North Africa). The IEEE EDUCON 

2013 was held at the Technische Universität Berlin, Berlin, Germany from March 13-15, 2013 

(http://www.educon-conference.org/educon2013/). 

http://ieee-sa.centraldesktop.com/1876public/
http://www.educon-conference.org/educon2013/
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3.3.1 Overview of the IEEE1451.0 Std.  

The IEEE1451.0 Std. [93][94] aims to network-interface transducers (sensors and 

actuators) and defines a set of operating modes, based on specifications provided by 

Transducer Electronic Data Sheets (TEDSs). Defined in 2007 as an initiative of the 

National Institute of Standards and Technology (NIST)
71

, this standard is the basis for 

forthcoming and previous members of the IEEE1451.x family [95][96], so they can 

operate together to provide a unified interface. The operating modes defined by the 

standard are controlled using commands that can be applied using a set of APIs. All 

transducers are referred as smart since they support different modes of operation and 

interfacing controlled by a set of TEDSs, i.e. data structures with information that 

enable to define, control and monitor the smart transducers functional specifications 

using software applications. Through TEDSs, the transducers are classified as sensors or 

actuators, it is indicated the data they acquire/generate, are specified timing and 

synchronization issues, among others. This standard does not define a communication 

protocol for interfacing transducers. It establishes standardized interfaces, defined 

according to other IEEE1451.x Stds., for using wired or wireless protocols (e.g. USB or 

Bluetooth), in an architecture based on the reference model illustrated in figure 3.7. 
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Figure 3.7: Reference model of the IEEE1451.0 Std. 

 

The IEEE1451.0 Std. architecture includes one or more Transducer Interface 

Modules (TIMs) connected to a Network Capable Application Processor (NCAP) using 

communication modules defined according to other IEEE1451.x Stds. and accessed 

using a Module communication API. The aim of these intermediate standards is to 

provide a plug&play capability for all transducers, so the Transducer services API may 

access every TIM through the Module communication API and independently of the 

adopted physical layer. The TIM implements a set of services accessed using 

commands, issued by the Module communication API, for controlling and monitoring 

the transducers according to TEDS specifications, and it may use the IEEE1451.4 Std. 

                                                
71 http://www.nist.gov/el/isd/ieee/ieee1451.cfm  

http://www.nist.gov/el/isd/ieee/ieee1451.cfm
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[97] for adding plug&play capabilities to analog transducers. The NCAP may include 

TEDSs, implements a set of services accessed through the Transducer services API, and 

is able to be remotely accessed using: i) the object model and interface specification 

defined by the IEEE1451.1 Std. [98]; ii) the standard IEEE1451.0-HTTP API to send 

commands, or; iii) other proposals, such as the Smart Transducer Web Services 

[99][100]. The IEEE1451.0 Std. must operate with other IEEE1451.x Stds. so it can 

bind transducers according to the adopted physical interface, such as point-to-point, 

distributed multi-drop, wireless or others. Most current IEEE1451.x Stds. were defined 

before the appearance of the IEEE1451.0 Std., and some are intended to be redefined or 

created in the future. Table 3.2 resumes current IEEE1451.x standards according to 

information retrieved from the IEEE Standards Association (IEEE-SA) and provided in 

[94].  

Table 3.2: The IEEE1451.x Std. family. 

IEEE1451.0 - 2007 
Defines a set of common operations and TEDSs for the IEEE1451.x family. 

The functionality is independent of the TIM-NCAP physical interface [93]. 

IEEE1451.1 - 1999 

Defines a common object model and programming paradigm for smart 
transducers. Runs on the NCAP and describes communications between 

groups of NCAPs and higher-level systems supported by a network-neutral 

interface [98]. It is an active standard compatible with the IEEE1451.0 Std. 

and is being revised by the IEEEp1451.1 Std. working group. 

IEEE1451.2 - 1997 

Defines a TIM-NCAP interface and TEDS for point-to-point configurations. 

Transducers are part of a Serial TIM (STIM). The original standard describes 

an interface layer based on the serial SPI interface with additional lines for 

flow and timing control. It is an active standard being revised to support 

other popular serial interfaces such as UART and USB, and to become 

compatible with the IEEE1451.0 Std. [101].  

IEEE1451.3 - 2003 

Defines a TIM-NCAP interface and TEDS for multi-drop transducers. It 

allows transducers to be arrayed as nodes, on a multi-drop network, sharing a 

common pair of wires [102]. It is an obsolete standard, no longer maintained. 

IEEE1451.4 - 2004 

Defines the protocol and the interface so analog transducers may 

communicate digital information with an IEEE1451 object [97]. It is 
currently active and compatible with the IEEE1451.0 Std. The 

IEEE/ISO/IEC 21451-4 standard [103] published in 2010 adopts this 

IEEE1451.4 Std. and the IEEE1451.2 Std. 

IEEE1451.5 - 2007 

Defines an interface for sensors specifying radio-specific protocols, such as 

Wi-Fi (IEEE802.11 Std.), Bluetooth (IEEE802.15.1 Std.) or ZigBee 

(IEEE802.15.4). It defines communication modules that connect a Wireless 

TIM (WTIM) and the NCAP [104]. It is currently active and compatible with 

the IEEE1451.0 Std. 

IEEEp1451.6 - 2007 

Defines a TIM-NCAP interface and TEDS using the high-speed CANopen 

network interface (Controller Area Network)72. Maps TEDSs to the 

CANopen dictionary entries as well as communication messages, process 

data, configuration parameters, and diagnosis information. Adopts the 

CANopen device profile for measuring devices and closed-loop controllers. 
It has not yet been published as an IEEE standard. 

IEEE1451.7 - 2010 

Defines data formats, designed to facilitate communications between Radio 

Frequency Identification (RFID) systems, TEDSs and commands for smart 

RFID tags [105]. It is currently active and compatible with the IEEE1451.0 

Std., but it has been superseded by the ISO/IEC/IEEE21451-7-2011 [106]. 

                                                
72 Control Area Network (CAN) - is a message-based protocol, designed specifically for automotive 

applications but also used in other areas such as aerospace, industrial automation and medical 

equipment (http://www.can-cia.de/). 

http://www.can-cia.de/
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3.3.2 Overview of current projects and research 

Despite the inherent complexity of the IEEE1451.x Stds. [107], they have been 

applied for interfacing transducers in several domains. Many research works have been 

published in the last years, demonstrating the interest received from research groups and 

companies. One of the first implementations was a framework developed at the NIST 

using the IEEE1451.1/.2 Std. describing an Internet-based distributed measurement and 

control system [108]. So different types of TIMs may interface the NCAP, this last was 

suggested to be implemented by a μC able to be dynamically reprogrammable 

[109][110]. Other publications suggest architectures for remote accessing IEEE1451.2-

based transducers for controlling a robot wrist using the CAN bus [111], and for 

temperature control using a quartz transducer implemented in a μC [112]. The 

advantages of using the IEEE1451.1/.2 Std. were discussed for implementing flexible 

and distributed time-services, so they can meet real-time demands with synchronized 

clocks [113], and there are implementations using FPGA devices [114][115][116], some 

based on embedded processors [117], and a proposal for using FPGAs and FPAAs for 

implementing IEEE1451.4-compliant sensors [118]. After the publication of the 

IEEE1451.0 Std., research has been focused on its adoption for network-interface 

transducers. Some examples can be pointed, such as: i) a system for monitoring and 

diagnosing power transmissions lines [119]; ii) a proposal for an home healthcare 

monitoring system [120]; iii) an integration analysis of electronic equipments into 

intelligent road-traffic management systems [121]; iv) a server with the IEEE1451.0-

HTTP API implemented using LabVIEW web services for accessing real-time data 

from a marine sensor network [122], among others.  

In order to interface several NCAP through the network layer, some suggestions to 

improve their architectures have been suggested. Two examples can be mention, namely 

an implementation using the Microsoft .NET framework that provides communications 

based on XML
73

 messages through the enhancement of the IEEE1451.1 Std. 

[123][124], and an unified web service based on SOAP
74

 messages that uses the 

IEEE1451.0 and the IEEE1451.5 Stds. to interface Wi-Fi networks [99][100]. 

Additionally, a recent work alerted for security on web services communications. It 

proposes a cross-layer mechanism that deals with the requirements of authentication, 

integrity, confidentiality, and availability across the communication process in smart 

transducers [125]. 

Recent projects can be found in the Open1451 Project website
75

, which provides a 

repository with implementations, examples, and free applications of the IEEE1451.x 

Std. Currently, it integrates 3 free projects: i) an IEEE1451.0 implementation in Java 

                                                
73 eXtensible Markup Language (XML) is a markup language that defines rules for encoding 

documents in human/machine-readable format (http://www.w3.org/XML/).  
74 Simple Object Access Protocol (SOAP) is a protocol for exchanging structured information in the 

implementation of Web Services in computer networks (http://www.w3.org/TR/soap12-part1/). 
75 http://sourceforge.net/projects/open1451/ 

http://www.w3.org/XML/
http://www.w3.org/TR/soap12-part1/
http://sourceforge.net/projects/open1451/


 

60 An IEEE1451.0-compliant FPGA-based reconfigurable weblab 
 

using SunSPOTs
76

; ii) a multiplatform library to debug TEDSs and; iii) a 

communication protocol plug-in for WireShark (formerly known as Ethereal)
77

 for 

parsing basic IEEE1451.1 packets and argument arrays. Although most of the solutions 

are essentially supported by research groups, there are also companies that have been 

developing compatible IEEE1451.x modules, for instance: Microchip, which has a 

Serial TIM (STIM) implemented according to the IEEE1451.2 Std. [126]; the NI, which 

provides LabVIEW applications for adapting sensors to the IEEE1451.4 Std.
78

; and 

some other companies, which have IEEE1451 compatible products, such as the 

Esensors
79

, Telemonitor
80

 or Senit
81

.  

3.3.3 Adopting the IEEE1451.0 Std. for weblabs 

Adopting the IEEE1451.0 Std. for designing weblabs is an interesting and promising 

approach since it defines an architecture supported by software and hardware layers for 

developing smart transducers and for enabling their remote and standard access [25]. 

These smart transducers can be designed as instruments [127] or dedicated modules 

commonly adopted in weblabs (i.e. the weblab modules). Per example, a sensor can be 

an Oscilloscope and an actuator can be a Function Generator, both typically used in 

electronic workbenches. These, or other weblab modules, can then be embedded within 

one or more TIM bound to the experiments, and able to be remotely accessed using 

standard commands provided by NCAP APIs.  

Despite the IEEE1451.0 Std. requires the use of an interface described by another 

IEEE1415.x Std., some of these are currently not yet compatible. Per example, the 

IEEE1451.2 Std., adopted for NCAP-TIM serial communications, is not yet compatible, 

despite some suggestions [128] and implementations [129]. Furthermore, the adoption 

of these intermediate standards may increase the complexity of the developments, 

requiring more technological resources for implementing a weblab infrastructure. 

Removing the intermediate layers, namely the Module communication API, 

implemented by an IEEE1451.x Std., and the Transducers services API, is therefore a 

solution to take into consideration, since the standardized remote access is guaranteed 

by the use of IEEE1451.0-HTTP API to issue IEEE1451.0-commands. Establishing a 

map between the methods provided by the API (or the object model defined by the 

IEEE1451.1 Std.), provided by the NCAP, and the commands, provided by the TIM, 

should be taken into account when adopting this simplified architecture. This is an 

option that simplifies developments but, at the same time, reduces part of the plug&play 

flexibility provided by the intermediate layers implemented by the IEEE1451.x Std., in 

particular when different NCAP-TIM physical connections are adopted (e.g. when the 

NCAP is connected to different TIMs using distinct physical connections such as Wi-Fi 

                                                
76 http://www.sunspotworld.com/  
77 Ethereal is a network analyzer now denominated as WireShark (http://www.wireshark.org/). 
78 http://www.ni.com/sensors/  
79 www.eesensors.com/ieee-1451.html  
80 http://www.telemonitor.com/ieee1451.html  
81 http://www.senit.biz/  

http://www.sunspotworld.com/
http://www.wireshark.org/
http://www.ni.com/sensors/
http://www.eesensors.com/ieee-1451.html
http://www.telemonitor.com/ieee1451.html
http://www.senit.biz/
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or Serial). Nevertheless, using the proposed simplified architecture for adopting the 

IEEE1451.0 Std. in the design of weblabs, still guarantees the plug&play capability 

between the TIM and NCAP modules, in particular when the mapping between the 

commands provided by the NCAP APIs and the commands provided by the TIM is well 

defined. 

The TEDSs are the core of the IEEE1451.0 Std., and they can provide an added-

value for designing weblab architectures. Besides describing each weblab module and 

the TIM, they can also be used for describing weblabs, indicating their location, the 

pedagogical and technical resources they provide, among others. The information 

traditionally defined as metadata elements for describing weblabs can be defined within 

TEDSs since, according to the IEEE1451.0 Std., it is possible to define the so-called 

Manufacturer-Defined TEDS. The information can then be accessed (for read or write) 

using the same commands issued by standard APIs, namely by the IEEE1451.0-HTTP 

API, which is one solution for accessing the weblab modules and the entire weblab.  

The standardized access, using the APIs, may also facilitate the implementation of 

automatic monitoring tools. The adoption of intelligent tutoring systems [130] is 

facilitated, since all commands issued to the weblab (for accessing weblab modules and 

TEDSs) can be logged for automatic analysis. Currently, this solution can be greatly 

facilitated by the adoption of the communication protocol dissector plug-in for 

WireShark, available in the Open1451 Project website
82

. The assessment results can be 

automatically provided for students’ and/or teachers’ analysis, and a feedback of all 

actions made during an experimental activity can be automatically monitored and 

retrieved, fulfilling some of the learning goals pointed out in chapter 2 (e.g. the Learn 

from failure goal that suggests students must get feedbacks of their actions during an 

experimental activity). 

The last aspect that incentivized considering the use of the IEEE1451.0 Std. as a 

complementary solution for designing weblabs resulted from the detailed functionalit ies 

defined for designing the smart transducers, and therefore the weblab modules. The 

provided description allows defining each weblab module independently of the adopted 

technology, which facilitates selecting the most appropriate one for providing the 

reconfiguration capability for a particular infrastructure. The different modules may 

then be defined according to the standard and the adopted technology and, since 

reconfiguration is not considered in the IEEE1451.0 Std., extending the APIs for this 

purpose is a possibility to take into consideration. Additionally, the different described 

layers also allow splitting tasks during developments, facilitating and promoting 

collaboration between institutions during the design of weblabs. 

Therefore, using the IEEE1451.0 Std. for designing weblabs is interesting and very 

promising, since it defines a standard architecture for accessing smart transducers (the 

weblab modules), and describes development issues supported on TEDSs’ contents. 

                                                
82 http://sourceforge.net/projects/open1451/ 

http://sourceforge.net/projects/open1451/
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Furthermore, the IEEE1451.0-HTTP API allows a standardized access to the weblab 

modules. The API provides methods for issuing commands to read and control the 

weblab modules’ states and to access the associated TEDSs. The independence of the 

adopted technology for implementing the architecture and the modules is also 

important. Reconfiguration can be implemented by extending some aspects of the 

standard, namely the available commands and the TEDSs, which can be used for 

describing the weblabs including the provided experiments, technical resources for 

reconfiguring the underlying infrastructure, and others.  

Therefore, in order to design IEEE1451.0-compliant and remotely reconfigurable 

weblabs able to accommodate different modules running in parallel, lead to consider the 

use of reconfigurable technology. 

3.4. Providing reconfigurability to weblabs through FPGAs 

Changing the weblab modules according to the requirements of an ongoing 

experiment requires using reconfigurable technology [131]. For this purpose two issues 

must be analysed: i) the infrastructural one, namely the hardware required for its 

implementation and; ii) the architecture, which enables its remote configuration with 

different modules and the access to the experiments following a standard, such as the 

IEEE1451.0 Std. 

3.4.1 Infrastructure 

Traditional weblab architectures include PCs acting as instrumentation servers with 

individual instruments connected through instrumentation buses and accessed according 

to different software architectures. Although these solutions guarantee high performance 

by using dedicated instruments (stand-alone or modular), they can be expensive 

including features eventually not necessary for conducting some experiments. To reduce 

costs and to target a general architecture for implementing weblabs with reconfiguration 

capabilities, there are technologies that can be adopted to accommodate different 

modules. These can be implemented within chips as embedded instruments, and 

selected according to the requirements posed by a specific experiment.  

The use of FPAAs is a potential solution for implementing a weblab infrastructure, 

since they allow embedding Analog and Mixed Signal (AMS) circuits, which could be 

the weblab modules required for conducting an experiment. However, current FPAAs 

still integrate few configurable analog blocks, and there is only a reduced number of 

products in the market (e.g. Anadigm
83

) with the reconfiguration processes too much 

manufacturer dependent. Despite the available languages for describing AMS circuits 

(VHDL-AMS [132], Verilog-AMS
84

, and SystemC-AMS
85

), they are not being used by 

current FPAA development tools. Describing weblab modules as embedded instruments 

                                                
83 http://www.anadigm.com/fpaa.asp  
84 http://www.designers-guide.org/VerilogAMS/  
85 http://www.systemc-ams.org/  

http://www.anadigm.com/fpaa.asp
http://www.designers-guide.org/VerilogAMS/
http://www.systemc-ams.org/
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using HDL-AMS does not guarantee compatibility among the available FPAAs’ 

architectures and, due to the reduced number of analog blocks they provide, only a 

limited number of modules could be described. Additionally, the reconfiguration of 

these devices does not allow selecting every type of voltage and current levels, which 

would still require the use of external drivers for interfacing the weblab infrastructure to 

the target experiments. Adding all these considerations to the manufacturing difficulties 

for integrating many analog circuits into a single chip, suggests disregarding FPAAs as 

a good solution for designing reconfigurable weblabs. 

Although not bringing the same analog reconfiguration capability provided by 

FPAAs, there are currently two well tested technological solutions facing continuous 

improvements that may be considered for designing reconfigurable weblab 

infrastructures, namely: μCs/μPs and FPGAs. Both allow implementing digital circuits 

that, due to the current digital signal processing techniques, allow implementing almost 

every type of circuits available in the analog domain (e.g. filters, comparators, and 

others) able to use in weblab infrastructures. Although μCs/μPs have well defined 

hardware architectures with high processing rates and functionalities changing 

according to software code, they do not have the same flexibility guarantied by FPGAs 

that may be reconfigured with several cores specifying μCs/μPs, dedicated controllers, 

and the required weblab modules (annex A provides an overview of an FPGA internal 

architecture). Rather than using specific manufacturer dependent languages, those cores 

may be described through standard HDLs (VHDL [133], Verilog [134], or SystemC 

[135]), and the multitasking is facilitated, since developers have low-level control over 

the hardware, regardless of the manufacturer, which enables running multiple weblab 

modules in parallel like instruments in a traditional laboratory. Typically, FPGAs have 

several I/O pins and, currently, their processing rates are approaching those of μCs/μPs. 

Although the reconfiguration capability provided by FPGAs may be seen as an 

interesting advantage when compared to other solutions, they can only work with digital 

I/O signals, which is not sufficient for implementing weblab infrastructures. FPGAs 

need to acquire/supply analogue signals from/to the experiments; and the analogue 

signals may have different voltages and currents levels, which require external drivers 

to interface to the experiments. To overcome these issues, there are nowadays many 

FPGA-based boards bringing associated components such as: A/D and D/A converters, 

memories, LCD displays, interface ports, etc. (annex B shows an example of an FPGA-

based board). Since these boards provide the required analog interfaces to access the 

target experiments, and the reconfiguration capability of FPGAs, they are seen as the 

most indicated hardware platforms for implementing a reconfigurable weblab. As 

illustrated in figure 3.8, they may accommodate the weblab modules as embedded 

instruments and replace the instrumentation server, plus specific instrumentation buses 

traditionally adopted for their interface. 
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Figure 3.8: FPGA-based reconfigurable weblab infrastructure. 

 

At this moment, one should consider possible limitations due to insufficient FPGA 

resources for accommodating all the required weblab modules, at the same time. To 

overcome this limitation, figure 3.9 illustrates two possible architectures: i) using one 

FPGA with several weblab modules or; ii) using one FPGA for each weblab module. 

Although the second architecture is technically easier, since each defined module is 

embedded in different FPGAs, not requiring specific routing tasks inside them, costs 

may increase. Additionally, the required physical space will also be higher to 

accommodate the infrastructure, when compared to the first architecture that uses a 

single FPGA to accommodate all the modules. 
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Figure 3.9: Architectures for embedding weblab modules in FPGA-based boards. 

 

Although both architectures may be applied together or independently, typically the 

first architecture may impose more technical challenges than the second one, since it 

implies a more regular swap of modules within the FPGA. This situation occurs when a 

single FPGA does not have enough space for accommodating several instruments at the 

same time. This is illustrated in the first architecture of figure 3.9, that represents a 

situation that a single FPGA encapsulates several instruments (a Multimeter, a Function 

Generator and a dedicated Controller) and a new one (an Oscilloscope) is required for 

conducting a particular experiment. Since the FPGA does not have enough space to 

accommodate all the instruments at the same time, an instrument swapping mechanism 

is required to be implemented. This can be made using two reconfiguration options 

provided by FPGA technology, namely: i) total reconfiguration or ii) partial 
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reconfiguration (using static or dynamic approaches). Total reconfiguration requires 

reconfiguring the entire core of the FPGA for swapping a particular instrument, which 

implies stopping the weblab operation. By using partial reconfiguration only part of the 

FPGA is reconfigured, i.e. the space occupied by a particular instrument. This may 

require stopping the weblab when adopting a static approach or it may keep running 

when using a dynamic approach (these aspects are further discussed in annex C). 

In addition to all these considerations and advantages of using FPGAs for 

implementing reconfigurable weblabs, it is also fundamental to understand and analyse 

how to remotely access them to conduct an experiment and to reconfigure the 

infrastructure with different weblab modules. 

3.4.2 Remote access 

Typically, weblabs use several modules that require a web interface for their remote 

access. All modules and their interfaces should be shared, so the entire community may 

reuse them to reconfigure the infrastructure, and new remote experiments may be 

created. For this purpose, it is suggested an architecture similar to the one illustrated in 

figure 3.10, where at least one main weblab interface must be available from the 

infrastructure or from the weblab servers. 

 

Internet

HDL files describing 
the weblab modules 

Weblab 
infrastructure 

web server
Weblab 
server

main weblab interface

Interfaces 
for each weblab module

mobile phones, PDAs, 
smart phones, tablets or PCs E

th
er

n
et

P
H

Y

 

Figure 3.10: Proposed weblab architecture using FPGA-based weblabs. 

 

The main weblab interface provides a bridge to the other resources available in 

weblab servers, i.e. the HDL files describing the weblab modules and their interfaces. It 

should provide a mechanism to transfer the HDL files into the FPGAs, and the weblab 

interfaces, used for remotely access each module, into the users’ accessing devices. 

Since all resources may be distributed among different servers, the amount of available 

memory in the FPGA-based board is not relevant. At the same time, this architecture 

facilitates collaboration among institutions, allowing them to share and reuse the weblab 

modules and their interfaces. 
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Additionally, the weblab infrastructure must allow remote users to access the 

embedded weblab modules. Two solutions may be considered for this purpose, namely: 

 Hybrid, by using an independent Micro Web Server (MWS) connected to the 

FPGA-based board; 

 System-on-Chip (SoC), by using a TCP/IP core inside the FPGA. 

 

Hybrid solution 

The hybrid solution uses a MWS connected to an FPGA-based board, as illustrated 

in figure 3.11. Inside this MWS an interface implemented through any web software 

language (e.g. HTML, JAVA or other) is available, so users may access the 

infrastructure. Connecting the MWS to the Internet, through the Ethernet physical 

interface, allows accessing the experiments using a set of I/O signals or a JTAG 

interface, typically provided by all FPGA-based boards. 
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Figure 3.11: Hybrid solution for remote accessing weblab infrastructures. 

 

Users typically download the interface from the MWS to their accessing devices for 

accessing the MWS pins. Some run as switching I/O signals, while others control the 

JTAG infrastructure. Commonly, this test infrastructure is used to reconfigure an FPGA 

and should also be adopted if the number of pins required to monitor the FPGA is 

higher than those available in the MWS. By using the weblab interfaces, users may 

control the modules inside the FPGA, which send or receive data from/to the target 

experiment using A/D and D/A converters, or digital I/O signals. The advantage of this 

solution is related to the simplicity of the implementation, since there are already 

several MWS available in the market whose offer is expected to grow in the near future. 

Noteworthy, some MWS are implemented into FPGAs, which illustrates the power and 

wide acceptance of these devices for building microelectronic circuits [136] and the 

capability they offer for implementing a weblab infrastructure. Based on a web search, 

table 3.3 presents a selection of commercial MWS able to support and provide a remote 

access to the weblab modules. 
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Table 3.3: A selection of commercial MWS. 

Company Product Website 

Lantronix XPort AR; Micro100 http://www.lantronix.com/ 

Olimex CS8900A-H http://www.olimex.com/ 

Microchip PICDEM.net™ 2 http://www.microchip.com/ 

Cyan  USB/Ethernet Module http://www.cyantechnology.com/ 

NetBurner SB70LC Serial.-Eth. http://www.netburner.com/ 

Modtronix SBC65EC  http://www.modtronix.com 

 

Typically, each MWS allows users to establish a web connection to access its I/O 

pins, and some provide several Internet services such as FTP, HTTP, SSH and Telnet, 

among others. However, this solution requires at least two devices (FPGA + MWS), and 

each MWS has specific characteristics hampering its adaptation to different weblab 

infrastructures. Therefore, depending on the chosen MWS, prices may be higher and 

flexibility may be lower when compared to a SoC solution. 

SoC solution 

In the SoC solution, the FPGA has an embedded TCP/IP core. As illustrated in figure 

3.12, the TCP/IP core will send/receive commands through the Internet to access all 

weblab modules accommodated inside the FPGA. 
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Figure 3.12: SoC solution for remote accessing weblab infrastructures. 

 

All commands are sent using a specific weblab interface available from a weblab 

server or from a memory located in the FPGA-based board. Once downloaded to the 

remote accessing device, the interface allows a user to control/monitor the experiment 

through a set of I/O pins (digital or analog), in the same way as in the hybrid solution.  

Two options are available for implementing the SoC solution: a) using an 

independent TCP/IP core, or b) using a TCP/IP core dependent of a commercial μC/μP 

core. Usually, in both solutions TCP/IP cores are sold by companies. However, using a 

solution dependent of a μC/μP core will not guarantee the platform independence 

required for a weblab infrastructure, since they only work with a specific μC/μP 

embedded as a soft/hard core inside the FPGA. A solution based on an independent 

TCP/IP core is therefore preferred, because it is usually described through HDL files 

http://www.lantronix.com/
http://www.olimex.com/
http://www.microchip.com/
http://www.cyantechnology.com/
http://www.netburner.com/
http://www.modtronix.com/
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accepted by any Integrated Development Environment (IDE)
86

. After some research on 

the web, table 3.4 presents several TCP/IP cores, where only Xilinx provides a μC/μP 

dependent core. Nevertheless, since low prices and high flexibility are the main goals 

for building a reconfigurable weblab infrastructure, the use of stand-alone TCP/IP cores 

is considered the most appropriated solution. These can be found in the OpenCores 

website that is being constantly fed with different modules described through HDL files. 

Table 3.4: A selection of TCP/IP cores. 

Company Product Website 

IP Cores WPA2 802.11i for Wi-Fi  http://www.ipcores.com/ 

System Level IPRETHTMFP001-Eth. MAC http://www.slscorp.com/ 

Sarance High Speed Ethernet IP  http://www.sarance.com/ 

OpenCores Eth. MAC 10/100/1000 Mbps http://www.opencores.org/ 

Xilinx Ethernet Lite MAC http://www.xilinx.com/ 

HiTech Global 40G/100G Eth. MAC & PC http://www.hitechglobal.com/ 

CAST MAC-10/100 Eth. Lite http://www.cast-inc.com/ 

Aurora VLSI SSN8006:Eth. 10/100 MAC http://www.auroravlsi.com/ 

 

Although the SoC solution does not require the use of MWSs, it is considered less 

indicated for designing reconfigurable weblabs than the hybrid solution, because: i) 

TCP/IP cores may use too many resources of the FPGA, which limits the weblab 

modules able to adopt, at the same instant, in the infrastructure; ii) the reconfiguration 

process is hard to implement, since it requires routing techniques to connect the weblab 

modules (partial reconfiguration); iii) the use of some TCP/IP cores depends on the 

FPGA manufacturer (less flexibility), and requires the use of FPGAs with partial 

reconfiguration capabilities (higher costs) and; iv) when adopting the infrastructure for 

providing the weblab interfaces or for managing the access to the modules, traditionally 

the memory space provided in FPGA-based boards is reduced, since this is mainly 

adopted to accommodate HDL files used to reconfigure the FPGA core. 

Thus, table 3.5 resumes the 4 options for designing a weblab infrastructure based on 

hybrid architectures and supported by FPGA technology, taking into account the 

number of FPGA versus the number of weblab modules required for conducting a 

remote experiment. 

Whatever the adopted solution, using FPGA-based boards is an opportunity for 

simplifying the design of weblab infrastructures, since they can be reconfigured with 

several weblab modules described through HDL files. Developing all weblab modules 

and accommodating them inside an FPGA as embedded instruments, can be made using 

the reconfiguration capabilities provided by current FPGA technology. However, to 

promote collaboration among institutions and to facilitate the development of weblab 

infrastructures by sharing those modules, requires following rules, so different 

institutions and developers may easily split tasks for creating a specific weblab module. 

Therefore, it is important to follow a standard for their development, specifying the 

                                                
86 Usually manufacturers support the required changes to adapt TCP/IP cores for a specific FPGA. 

http://www.ipcores.com/
http://www.slscorp.com/
http://www.sarance.com/
http://www.opencores.org/
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http://www.cast-inc.com/
http://www.auroravlsi.com/
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HDL files and the weblab interfaces that enable their remote access. Two solutions 

allow fulfilling these main requirements: i) specify a specific standard or; ii) adopt an 

already existing standard, such as the IEEE1451.0 Std. Technical aspects of the first 

solution were discussed and presented in [131], which describes the implementation of a 

Function Generator (FG) in a single FPGA-based board.  

During the development phase there was an institutional collaboration between ISEP 

and the Heriot-Watt Univesity (HWU). ISEP developed the HDL files describing the 

FG, while the weblab interface for its remote control was developed by HWU. Since no 

standard was adopted for controlling the FG, a specific one was defined at ISEP, which 

posed many problems, since HWU developers had to familiarize themselves with all 

protocol details. This fact delayed developments and alerted for problems arising from 

failing to adopt standards for creating and sharing the weblab modules. To overcome 

the limitations already detected and other potential ones, solution ii) is viewed as the 

best choice, in particular using the IEEE1451.0 Std. 

 

Table 3.5: Considerations about the number of FPGAs versus the weblab modules 

required for implementing a reconfigurable infrastructure based on an hybrid 

architecture. 
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- Costs may increase, since traditionally a 

weblab requires using more than one weblab 

module, which implies more than one FPGA; 

- Some of the space in the FPGA can be 
unused, when a particular module only 

occupies a small part of it; 

- Total reconfiguration is the preferable 

choice, since there is a unique module to 

reconfigure. 

- Only adopted if an FPGA does not offer 

enough space to accommodate the entire 

weblab module; 

- Total reconfiguration is the preferable 
choice, since each FPGA is occupied by 

only a part of a single weblab module. 

N
 

- Most cost effective solution; 

- Total or partial reconfiguration are 

suggested according to the requirements of 

the weblab operation, i.e. if swapping a 

module should not stop the weblab operation 

then partial dynamic reconfiguration is 

preferable, otherwise total or partial static 
reconfigurations should be adopted. 

- Merges all the other solutions, bringing 

more reconfiguration complexity; 

- Weblab modules may be distributed by 

one or more FPGAs and they can 

accommodate part of or an entire module; 

- Total or partial reconfiguration may be 

applied, but the complexity can explode. 

 

As already referred in subsection 3.3.3, the IEEE1451.0 Std. provides all details for 

developing and interfacing transducers (sensors/actuators), which can be the weblab 

modules. This standard is an added-value for designing the weblab infrastructures since 

it specifies a layered architecture providing software and hardware guidelines, 

supported by TEDSs, which can be used to control and describe weblabs. Additionally, 

by describing the weblab modules using standard HDL, such as Verilog, VHDL or 

SystemC, the independence from FPGA manufacturers is addressed. Depending on the 
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available FPGA resources (logic blocks, internal memories, I/O blocks, and others), 

every module can be embedded into any FPGA, since the associated IDE traditionally 

allows describing the modules using the referred standard HDL. 

Therefore, associating the characteristics of the IEEE1451.0 Std. to the 

reconfiguration capability of FPGAs addresses the problems of current weblabs listed in 

chapter 2 (section 2.6), namely: 

 weblab architectures and underlying infrastructures can be standardized using 

the IEEE1451.0 Std. reference model; 

 all weblab modules are accessed (controlled and monitored) through standard 

APIs; 

 institutional collaboration may be improved, since the weblab modules are 

embedded into an FPGA and described through HDL files according to the 

IEEE1451.0 Std., enabling their reuse, sharing and replication through different 

infrastructures; 

 the redesign of the infrastructure is ensured, since the weblab modules can be 

swapped and redefined according to the requirements of a particular experiment; 

 since a common standard is followed, the development of weblabs (architecture, 

infrastructure and modules) is facilitated, incentivizing joint collaboration efforts 

from different institutions; 

 costs can be reduced, since the infrastructures adopt embedded instruments 

rather than traditional ones, all able to be redefined and replicated through HDL 

files. Additionally, the instrumentation server may be suppressed, since all 

weblab modules are interfaced inside the FPGA, without using instrumentation 

buses controlled by specific software applications; 

 the infrastructure becomes more stable requiring less maintenance, since by 

removing the instrumentation server, the traditional software problems caused 

by their upgrade are vanished, and; 

 the possibility of easily sharing weblab modules and integrating them in 

standardized infrastructures incentivize the adoption of weblabs in different 

courses, overcoming possible technical limitations faced by institutional staff 

(the human actors involved in the educational context). 

3.5. Summary 

The adoption of weblabs for conducting experimental work activities is considered 

an added-value for engineering education. Several and distinct architectures have been 

created using instruments interfaced by different standards. Those instruments were 

classified in two types (stand-alone or modular), and considerations about their adoption 

for designing weblab architectures were discussed, presenting the most relevant 
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instrumentation standards, namely the buses and the software frameworks, drivers and 

APIs that allow developing software applications for their interface and remote access. 

The use of hybrid architectures was also referred as an actual and future trend to design 

weblabs, justified by the many interfaces, based on instrumentation standards, provided 

by commercial instruments. A particular attention was paid to embedded 

instrumentation as a possible solution to consider when designing new weblab 

infrastructures. 

The diversity of technological solutions and weblab architectures led to a lack of 

standardization in their design, which promoted the appearance of two competing 

standardization initiatives (GOLC and IEEEp1876 Std.), both presented in this chapter. 

Since these initiatives essentially focus on the software frameworks for accessing and 

managing the weblab resources, using traditional instrumentation, a possible 

complementary solution based on the IEEE1451.0 Std. was suggested and presented. 

After an overview of this standard, its family members and current research and 

projects, the added-value that the IEEE1451.0 Std. can bring to the design of weblabs 

was discussed, together with some considerations about the use of FPGA technology for 

enabling the remote reconfiguration of a weblab infrastructure.  

Finally, the use of FPGAs as an alternative to other technologies, and the way they 

can be reconfigured using embedded weblab modules required for conducting a 

particular experiment was justified and presented. A possible architecture and two 

solutions for designing the underlying infrastructure were suggested. This chapter ended 

referring the importance of using standards for design and accessing the weblab 

modules indicating in which way the IEEE1451.0 Std. and FPGA technology may 

address the problems faced by weblabs referred in the previous chapter. The following 

chapter details the IEEE1451.0 Std., the architectures and extensions applicable to this 

standard, so that it can be used for designing reconfigurable weblabs.  
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 Chapter 4   

The IEEE1451.0 Std. as a 

smart framework for weblabs 
 

 

 

The IEEE1451.0 Std. was considered an interesting and promising solution for 

designing weblabs. This chapter details the most important issues covered by this 

standard. It describes the reference model and the technical and functional aspects of the 

associated modules named NCAP and TIM. A special attention is given to data 

structures named TEDSs, since their contents define the entire operation of smart 

transducers that, in the scope of this thesis, are the weblab modules required to control 

and monitor the target experiments. Different types of TEDSs are presented, as well as 

their structural and functional characteristics. A number of solutions for designing 

weblab infrastructures, as a part of the proposed IEEE1451.0 Std. enhanced architecture 

and supported by the NCAP and TIM smart operations and associated models, are then 

described. At the end, the use of weblab infrastructures supported by a simplified 

approach for the NCAP-TIM reference model is suggested. 
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4.1. Reference model: NCAP and TIM smart modules 

The IEEE1451.0 Std. was specified in 2007 as a common basis for the whole Std. 

family [93]. It aims to network-interface sensors and actuators (transducers) in a 

plug&play basis, and to remotely access them through the web, using standard 

commands. As illustrated in figure 4.1, it follows a reference module based on a NCAP 

connected to one or more TIMs using different physical (PHY) protocols ruled by 

interfaces defined by other IEEE1451.x Stds.  
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Figure 4.1: Reference model of the IEEE1451.0 Std. 

 

Both the NCAP and the TIM are smart, since they combine processing units with 

communication interfaces, and implement a set of services and APIs that enable 

remotely accessing the transducers according to specifications defined in TEDSs. These 

TEDSs can be implemented in the TIM, in the NCAP, or remotely located (the last two 

named virtual TEDSs). There are mandatory and optional TEDSs, and each one is 

divided into several groups of fields able to be read/written using a set of commands for 

controlling and monitoring Transducer Channels (TCs). TCs run as transducers and 

implement all associated signal conditioning and conversion components. They can be 

completely contained within a TIM (named as embedded TCs) or connected to the 

physical world to acquire or generate physical quantities into/from internal buffers 

named Data Sets (DSs). Additionally, they can be bound to other transducers making 

them smart, since they become remotely accessible and controllable according to the 

IEEE1451.0 Std.  

The generic characteristics of all TIMs are defined through single and mandatory 

Meta-TEDSs. The TCs are defined by mandatory TC-TEDSs that specify associated 

features such as: the units and ranges of the monitored/controlled physical phenomena, 

data sampling and time control issues, and in particular their types, namely: 

 actuators - accept data samples and convert them into an action within or outside 

the TIM; 

 sensors - convert physical, biological, or chemical values into electrical signals 

that will be handled by the TIM, or;  

 event-sensors - detect changes in the physical world to trigger specific actions 

within the TIM. 
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Both TIMs and TCs are recognized by addresses, operate on specific states, and have 

associated status registers to monitor their events and errors. To control the TCs, the 

IEEE1451.0 Std. provides a set of mandatory and optional commands divided into 

classes and functions. They can be issued to the TIM, to a specific or group of TCs, or 

to both, depending on the selected addresses and on their operating states. This means 

that a command can only be accepted if a TC or a TIM is in a compatible operating 

state, otherwise an error message is reported, and an internal status register bit is set. 

When a particular event occurs (e.g. an internal or external event is detected), the TIM 

can send an automatic message to the NCAP using a TIM-initiated message.  

To interface TIMs to the NCAP, the standard defines the Module communication 

API. This is a symmetric point-to-point and network interface implemented on NCAP 

and TIM sides, and contains methods to register and access the IEEE1451.x layer. It 

works as a wrapper on top of commands, providing interfaces to manage NCAP-TIM 

communications independently of the selected physical protocol and associated 

IEEE1451.x Std. The NCAP uses the Transducer services API for accessing internal 

services, and to access/manage TCs and TEDSs. This API can be remotely accessed 

using the HTTP-1451.0 API that contains methods to read and write TCs and TEDSs, 

and to send configuration, control, and operation commands to TIMs. 

Error and event detection mechanisms are also implemented both in the NCAP and 

in the TIM. The NCAP provides a set of codes indicating error sources, while the TIM 

uses the status registers to indicate other specific errors and information about the 

operation of the TIM and of each TC. In both situations, this information can be 

accessed using the referred APIs or it can be automatically transmitted through TIM-

initiated messages when an internal status-event protocol is enable. This protocol is 

activated using particular commands and is ruled by internal logic controlled by a set of 

registers able to be read/written, so users may easily debug all errors and control the 

TIM and the TCs.  

Beyond these mandatory smart features, the IEEE1451.0 compatible infrastructure is 

essentially managed by TEDSs, which are the most important components of the 

standard. Therefore, it is important to analyse their structure and the way they are 

accessed and managed. 

4.2. Transducer Electronic Data Sheets 

The smart operations described in the IEEE1451.0 Std. are defined by TEDSs, whose 

contents can be binary, text-based or user-defined, all identified by a specific ID code. 

They are defined as data structures divided into group of fields describing all 

characteristics and features of the TIM and of each TC. As referred in the previous 

section, there are mandatory and optional TEDSs, each one grouping related 

information. As conceptualized by figure 4.2, there are 4 mandatory TEDSs required for 

designing compatible IEEE1451.0 devices, namely:  
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 Meta-TEDS [binary content] - defines generic features such as: timing 

parameters for NCAP-TIM communications, and the number and groups of TCs 

within a TIM; 

 User’s Transducer Name TEDS [user-defined content] - required for the TIM 

and recommended for all TCs, provides a place to store their names;  

 PHY-TEDS [binary content] - provides read-only information for accessing each 

TC and the TIM, according to the adopted IEEE1451.x Std. for the NCAP-TIM 

interface, and;  

 TransducerChannel TEDS (TC-TEDS) [binary content] - specifies 

characteristics and operational issues of a TC. 
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........................
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PHY-TEDS
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NCAP

(Network Capable 

Application 

Processor) PHY

 

Figure 4.2: Mandatory TEDSs in an IEEE1451.0 compatible device.  

 

There is one Meta-TEDS for the entire device. It has binary content and, besides 

defining timing parameters of the NCAP-TIM communications, it specifies the number 

of available TCs, all identified by sequential addresses. In order to control/monitor 

physical phenomena, TCs can be grouped as a:  

 control group, to control a phenomenon that uses related TCs (e.g. one can run 

as an event-sensor that when detecting a particular event, triggers other grouped 

actuators); 

 vector group, essentially used to group actuators for defining particular 

mathematical relationships (e.g. defining a 3-dimensional axis); 

 proxy group, for combining proxy TCs
87

 and; 

 specialized vector group, for providing information about their geographic 

location.  

 

                                                
87 A proxy TC is an artificial construct used to combine I/Os of multiple TCs into a single structure. It 

is assigned to an address and may be read or written, but it does not have the other characteristics of 

a TC such as the TC-TEDS and other associated TEDSs. It represents either a sensor or an actuator 

but never represents both. It may use two methods for combining DSs, namely: block method that 

allows DSs with different lengths, or the interleaved method that uses DSs with the same length. 
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There is also one PHY-TEDS for the entire device. It has binary content and depends 

on the adopted IEEE1451.x Std. since it provides static information about the PHY 

protocol adopted for the NCAP-TIM interface. This TEDS is important for 

implementing the plug&play capability, enabling commands sent to the NCAP to 

transparently access a particular TC according to the adopted PHY protocol. Both the 

NCAP and the TIM should decode the information provided by the PHY-TEDS, so they 

can be easily interfaced. 

The User’s Transducer Name TEDS is adopted for associating a name to the TIM 

and to the TCs. It can have binary, text-based or any other user-defined contents. The 

TIM must have an associated name, while the TCs’ names are optional, despite 

recommended by the standard. This means that at least one of these TEDSs must be 

defined. 

Although the relevance of both User’s Transducer Name and PHY TEDSs, TC-

TEDSs provide all detailed and relevant information about each TC. Each TC-TEDS is 

associated to a particular TC and is divided into distinct groups defining operational 

aspects such as: the calibration capability, its type (actuator, sensor or event-sensor), the 

data able to acquire/generate specific physical units and ranges of values over which it 

operates, timing and sampling information, operation modes, among others. The TIM 

must read the TC-TEDSs before starting the operation of a particular TC, since they 

define all device characteristics.  

Besides mandatory TEDSs, there are optional ones for specifying particular 

characteristics of IEEE1451.0 compatible devices. They are not required to be 

implemented, but they provide additional information about the TIM and about each 

TC, such as additional commands, geographic location, extensions to the units defined 

by mandatory TC-TEDSs, calibration and mathematical operations required to manage 

acquired/generated data, and other user-defined aspects. The optional TEDSs can be 

divided according to their data contents, as documented in the diagram of figure 4.3 that 

also depicts the group of mandatory TEDSs previously described.  

Text-based TEDSs belong to an optional class. They provide data structures 

encapsulating one or more blocks of textual information presented in specific languages 

and encoded in XML. In order to promote the compatibility of the IEEE1451.0 Std. 

with the other family members, this same class integrates a subclass of identification 

TEDSs. Binary TEDSs focus on operations for handling data, while user-defined 

TEDSs may be implemented for adding other additional information, such as the 

Manufacturer-Defined TEDSs (MD-TEDSs) that can provide additional fields for 

characterizing the operation of a particular TC. 



 

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 79 
 

Meta-TEDS

TC-TEDS 

PHY-TEDS

User's 
Transducer 
Name TEDS

binary

Mandatory TEDSs

user-defined

Commands-TEDS
Specifies 
additional 
commands.

Geographic 
location-TEDS

Units extension-
TEDS

Indicates the 
TIM location 
installation.

Includes text for extending SI units.

Represents 
TEDSs 
defined by 
other 
standards.

text-based

Constants necessary to 
convert sensor and actuator 
data into engineering units.

Characterize the frequency 
and phase response of a TC.

Series of constants used to 
describe TCs’ transfer 
functions (e.g. Z transform).

Location and Title-
TEDS

Location for TCs (e.g. URL) and any other user-
defined information. 

Meta id-TEDS

TC id-TEDS

Calibration id-
TEDS

identification TEDS

Transfer 
Function-TEDS

Frequency 
Response-TEDS

Calibration-
TEDS

binary

Optional TEDSs

Storage for application-
dependent data user wants 
to keep with the TIM or 
TC (much like the User's 
Transducer Name TEDS).

Enables users to 
define any type of 
information.

End User 
Application 

Specific-TEDS

Manufacturer-
defined-TEDS

user-defined

 

Figure 4.3: Diagram illustrating the group of TEDSs defined in the IEEE1451.0 Std. 

 

Every TEDS (mandatory or optional) is defined by 8-bit data structures divided into 

3 blocks of fields, namely: 

 the length, to indicate the current size; 

 a data block, to gather the main information and; 

 the checksum, to verify the data integrity. 

 

Figure 4.4a) illustrates all these blocks, and the number of octets used by each one. 

The length block uses 4 octets for defining the size of the remaining data blocks. Since 

the size defined through these octets includes the 2 octets used by the checksum block, 

it means that the data block may have up to 2^32 - 2 (4.294.967.293) fields. The last 2 

octets, used by the checksum, keep the result of a one’s complement of the sum of all 

octets, included in the length and the data block. A TEDS is validated by comparing this 

checksum with another similar calculation using the current data block, reducing the 

changes of erroneous operations that may occur in IEEE1451.0 devices. 
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Figure 4.4: Structure and identification header defined for all TEDSs. 
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While the length and the checksum blocks have a limited and fixed size, the data 

block has a variable size and its fields differ according to the adopted TEDS. Since the 

information available in the data block defines the device operation characteristics, each 

field must be able to be read/written by the TIM itself, and by the remote users through 

standard commands. For this purpose, all fields within the data block are organized 

according to Type-Length-Value (TLV) structures, as represented in the same figure 

4.4a). In these structures, each field has a specific size and implements a particular task. 

The Type occupies 1 octet and identifies the TLV structure defined for a particular 

TEDS. The Length has a size defined in a TLV IDentification header represented in 

figure 4.4b). It is adopted for specifying the number of octets of the value field that has 

the main data. Although every TEDS has its own TLV structures, the IDentification 

header is a sub-block common to all TEDSs that indicates the number of octets used for 

defining the Length field in a TLV structure (length), the IEEE1451.x Std. family 

(family), the TEDS access ID code (class) and its version (version). 

TEDSs have a set of particular and associated characteristics that rules their access 

and update. Although not mapped in their structures, they must be specified according 

to a set of attributes, indicating if they are: read-only, virtual, text-based, or unsupported 

for a particular TC, among others. It is also up to the manufacturer (or developer) to 

specify some other associated characteristics, such as the status during a particular 

access and its maximum size. Annex D provides examples of TEDSs’ structures, 

namely the Meta-TEDS and the TC-TEDS, and required attributes and status.  

The access to the TEDSs’ fields is made using four of the commands that will be 

described in subsection 4.3.5, namely QueryTEDS, ReadTEDSsegment, 

WriteTEDSsegment and UpdateTEDS, whose arguments must indicate the target TC(s) 

or the TIM, and the TEDS access ID code. All provide replies indicating if they were 

successfully executed, and only WriteTEDSsegment command does not retrieve 

additional information about the accessed TEDS. These commands can be issued 

through the APIs defined by the IEEE1451.0 Std., thus reducing their inherent 

complexity that requires using a particular command message format, as described in 

subsection 4.3.4. 

4.3. Smart modules: access and operation 

The IEEE1451.0 Std. does not suggest any particular technology for designing 

compatible devices. While the NCAP focus on network issues, mainly on the APIs and 

some network services, the TIM focus on most of the smart features provided by the 

TCs, namely: an addressing mechanism to identify TCs, their operating states and 

modes, and a set of status registers for monitoring the operation of a device using a 

service request generation logic and a status-event protocol. Additionally, it also defines 

type of messages (command, reply and TIM-initiated), and a set of standard commands 

to control IEEE1451.0 compatible devices. 
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4.3.1 Addressing mechanism 

Both TIMs and TCs are recognized through two addressing levels. The first 

addresses are the destination ID used by the NCAP to identify a particular TIM. The 

second addresses specify to the TIM how should a message be issued to a particular or 

group of TCs or to the TIM itself, and to tell to the NCAP where a specific reply 

message or TIM-initiated message came from. 

As represented in figure 4.5, the NCAP can access several TIMs, identified by their 

IDs, and these can have four types of addresses defined through a 16-bit word, namely: 

 a global address, adopted when a particular message is associated to all TCs; 

 group addresses, which identify a group of TCs; 

 TC addresses, which identify a particular TC and; 

 a TIM address, which indicates that a particular message is associated to the 

TIM and not to any particular or group of TCs.  
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Figure 4.5: Addressing mechanism used by the IEEE1451.0 Std.  

 

All addresses are associated to a specific or to a range of addresses indicated in 

hexadecimal format in figure 4.5. The TIM and the global addresses have a fixed value 

of 0x0000 and 0xFFFF respectively. The TCs’ addresses have a value between 0x0001 

and 0x7FFF, which means that one TIM may have up to 32767 TCs. The group 

addresses have a value between 0x8000 and 0xFFFE. In order to send/receive messages 

to/from multiple groups, these addresses can be defined according to two possible 

solutions: i) bit mapped or ii) binary.  

The bit mapped solution is used when few group addresses are needed and it is 

desired to send a command to multiple groups at the same time. The address value must 

be between 0x8000 and 0xBFFF, which means that the most two significative bits have 

the binary value 10, and the remaining ones indicate the group address. This way, it is 

possible to use an OR logic approach for referring more than one group.  
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The binary solution is used when a large number of group addresses are required. 

The address value must be between 0xC000 and 0xFFFE, which means that the two 

most significative bits are always set, and the remaining ones define the group address 

number. This means that a TIM may have up to 16383 groups using the binary solution, 

while when using the bit mapped solution only 14 groups are available, despite able of 

being addressed simultaneously using an OR logic.  

4.3.2 Operating states and modes 

During the operation of a smart device, the TIM and each TC operate in pre-defined 

states running processes according to the state diagrams illustrated in figure 4.6. The 

TIM has a unique state diagram, while each TC has its own state diagram enabling their 

independent operation. The state transitions are automatically handled during the device 

operation or when users send some particular commands. Both TIM and TCs start by an 

initialization process that, when completed, place the TIM in the active state and each 

TC in the idle state. The TIM must remain active so each TC may go to the operating 

state or latter repositioned in the idle state using the Reset or TCIdle commands. The 

dependence between the TIM and each TC is also evident when the TIM goes to the 

sleep state caused by a Sleep command. When this occurs, all TCs go to the idle state 

becoming inactive and requiring to be enabled to start running, and therefore, to be 

(re)positioned in the operating state. 
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Figure 4.6: TIM and TC operating states. 

 

When in the operating state, the TCs may run in different data sampling and data 

transmission modes according to what is defined in their associated TC-TEDSs. Most of 

these modes are ruled by trigger signals that can be applied by particular commands or 

internally generated. They depend on the selected sampling modes and on the way a TC 

runs (sensor, event-sensor or actuator). Due to the very specific information provided by 

the trigger states diagrams, it was decided to present them in annex E of this thesis. 

As represented in figure 4.7, a sampling mode defines the way a TC acquires/outputs 

data into/from its DSs, and the data transmission mode represents the way those same 

samples are transmitted/received to/from the NCAP. 
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Figure 4.7: Conceptual diagram of the TIM operation modes. 

 

A TC may run as a sensor, an event-sensor or an actuator in up to 5 sampling modes, 

and operate with other complemented modes specified in the associated TC-TEDS, 

generically described in table 4.1. The data available within DSs are sent to the NCAP 

according to 3 transmission modes, detailed in table 4.2, that are also specified in the 

associated TC-TEDSs. 

 

Table 4.1: IEEE1451.0 main TC sampling modes and complemented modes. 

Main sampling modes 

Trigger initiated 

Available for TCs operating as sensors and actuators. After a trigger signal 

they start storing data into DSs (sensors) or outputting data from the DSs 

(actuators) until all are processed. 

Free-running without 

pre-trigger 

Available for TCs operating as sensors and actuators. TCs operating as a 

sensors start receiving data after entering in the operating state. All data are 

discarded until the reception of a trigger. Once received, the data are stored in 

DSs until they become full. TCs operating as actuators start outputting data 

after entering in the operating state according to the End-of-DS operation 
mode defined in its TC-TEDS. 

Both types of transducers stop their operation if they leave the operating 

state. If triggers are received during data reception or outputting, the DSs are 

placed in their first position used to store/output a sample. 

Free-running with 

pre-trigger 

Available for TCs operating as sensors with or without buffers enabled. They 

start acquiring data into DS(s) after entering in the operating state and stop if 

a DS is completed (number of samples in a DS = DS size - pre-trigger count 

value defined in the associated TC-TEDS). If a trigger is received, they start 

storing samples into another DS if operating with buffers enabled, or start 

storing data samples again into the same DS if operating without buffers 

enabled. 

Continuous 

Available for sensors, event-sensors and actuators. When operating as 

sensors it is much similar to the Free-running without pre-trigger mode using 

multiple buffers, but it does not require trigger signals to switch from DSs. 
When operating as event-sensors, they are able to detect changes in the 

inputs and, once detected, store the samples into multiple DSs. When 

operating as actuators, they start outputting samples from a DS when 

receiving a trigger. When all samples were outputted from a DS they 

automatically switch to others. It uses the End-of-DS operation mode when 

the last DS outputs its last sample. 

Immediate 

Available for TCs operating as sensors or actuators, they are able to store 

(sensor) or output (actuator) data in/from DSs only after the reception of 

Read/WriteTCDSsegment commands. 

Complemented modes 

Buffer 

Non-buffered 

Defines the behaviour of the DSs for sensors and actuators, i.e. the way 

samples available in the DSs are stored or sampled. 

End-of-DS operation 
Method used by TCs operating as actuators for transmitting data when a DS 

reaches its last sample (hold or recirculation). 
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Streaming 

operation 

Applicable for TCs running in the continuous sampling operation mode, with 

either the Streaming when Buffer full or Streaming at a fixed interval modes 

(described in the next table). The TCs do not require any trigger signals or 

commands for start storing or outputting samples into/from DSs.  

Edge-to-report 

operation 

Used by event-sensors for defining transition signals detections modes 

(falling transitions, rising transactions or all-transitions mode). 

Actuator halt mode 
Defines what should do an actuator when it is in an idle state (halt 

immediate, halt at the end of the DS or ramp to a predefined state). 

 

Table 4.2: IEEE1451.0 TIM to NCAP transmission modes. 

Commanded 
A TIM transmits data from a DS only in response to a ReadTCDSsegment 

command. 

Streaming when 

Buffer full 

Data are transmitted as soon as a DS is full without waiting for the NCAP to 

issue a ReadTCDSsegment command. 

Streaming at a fixed 

interval 

The DSs are transmitted at a fixed interval. The TIM can be designed to stop 

using the current DS when it reaches a specified number of data samples. 
When this happens, the TIM can start transmitting data to the NCAP (without 

waiting for a ReadTCDSsegment command) while using other DSs for storing 

other data. 

 

4.3.3 Status registers and the status-event protocol 

In order to monitor the entire operation of a device, including internal events (e.g. an 

internal trigger) and errors that may appear, the standard provides a set of 3 status 

registers with 32 bits for each TC and for the TIM, namely:  

 condition registers, containing the current state of reported events and errors; 

 event registers, which gather the previous state of the condition registers after 

the generation of a new event or error and;  

 masks registers, used to activate a Service Request (SR) generation when a 

particular event or error occurs. 

Each of the 32 bits indicates a particular event or error, some are optional, and they 

are able to be read or written using specific commands. Annex F presents the status bits 

defined for each TC and TIM.  

To enable an automatic request of a particular TC or TIM, the status registers are 

organized according to the status message generation logic illustrated in figure 4.8a). It 

enables a SR signal (similar to an interruption) to be generated when a particular event 

or error occurs in a TC or in the TIM itself. There is a single SR for each TC/TIM, but 

traditionally these can be joined using an OR logic, which means that the entire device 

can have a single SR, as illustrated in figure 4.8b). When this SR is generated and a so-

called status-event protocol is enabled, the device sends a TIM-initiated message to the 

NCAP with a status message including the contents of the event register associated to 

the TC and/or to the TIM that caused the SR. 
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Figure 4.8: Status message generation logic and TIM SR generation. 

 

4.3.4 Message structures at the PHY channel 

There are 3 types of messages for accessing an IEEE1451.0 compatible device, 

namely:  

 command messages, to send commands; 

 reply messages, for commands’ replies and; 

 TIM-initiated messages, for streaming data and for receiving status messages 

(e.g. when the status-event protocol is enable).  

As illustrated in figure 4.9, all these messages are divided into structures of octets, 

each one representing particular information.  
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Figure 4.9: Message structures. 
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Both command and TIM-initiate messages have the same structure. They use the first 

two octets to indicate the destination address for a particular command or from where a 

specific TIM-initiated message comes from (e.g. the TIM, a TC or a group of TCs). The 

second two octets indicate the class and command identification (specified by the 

command function) or, for TIM-initiated messages, the associated command that could 

have generated the dependent octets indicated in the last octets. Before these dependent 

octets (required for some commands), the structure provides the message length, which 

is also used by the reply messages after indicating, through one bit, the success (1) or 

the failure (0) when applying a command
88

. 

4.3.5 Commands 

The IEEE1451.0 Std. provides two categories of commands: standard and 

manufacturer-defined. All are issued using command message structures, and the replies 

are provided by reply message structures. Regardless of the category, the commands are 

divided into 2 octets. The most significant octet defines the class of the commands. The 

least significant octet, called the function, identifies a specific command within the 

class. There are mandatory and optional commands, and they can only be issued if the 

TIM or a specific TC is in a compatible state, otherwise some are ignored and others 

generate errors by setting bits in the status registers. Table 4.3 presents the different 

classes of standard commands, exemplifying some of them.  

Smart operations for an IEEE1451.0 compatible device are essentially implemented 

by the TIM, according to TEDSs’ definitions. The devices may be designed using 

different technological solutions, but they should implement all the described smart 

operations able to be accessed through standard commands. These commands are 

provided by the TIM and follow message structures whose fields are divided according 

to different octets specifying distinct aspects, such as the addressed TC(s) or the TIM. 

In order to let users remotely access these devices through standard commands, the 

standard provides a set of APIs with methods to simplify and manage the access to the 

referred commands, and therefore, to the smart transducers. 

 

 

 

 

                                                
88 Messages may contain up to 65.535 octets plus the octets in the headers. If a message contains more 

octets than can be sent with a single message, it is broken into multiple messages, named packets. It 

is the responsibility of the data link layer, in the protocol stack, to break messages down into 

multiple packets for transmission. 
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Table 4.3: Classes of standard commands. 

0 reserved 

1 Common commands  

Required commands addressed to the TIM in the active state or to TCs in any state*. Reads, writes or 

updates TEDSs (QueryTEDS, ReadTEDSsegment, WriteTEDSsegment, and UpdateTEDS); accesses the 

status registers (e.g. ReadStatusEventRegister), and controls the status-event protocol operation (Read / 

WriteStatusEventProtocolState).  
* the WriteStatusEventProtocolState requires the TCs in the idle state. 

2 TC idle state commands 

Addressed to all TCs in the idle state and to the TIM in the active state. Specifies the TCs’ operation 

modes (e.g. BufferedState, SetTCdataRepetitionCount). 

3 TC operating state 

Addressed to a single TC. Requires all TCs in the operating state and the TIM in the active state. 

Includes commands to read/write DSs’ segments (readTCDSsegment, writeTCDSsegment) and to control 

triggers (TriggerCommand, AbortTrigger). 

4 TC either idle or operating states 

Addressed to a single TC in the operating or idle states, and the TIM in the active state.  

Includes commands to change the TC operation states (TCoperate, TCidle) and to read or write some 

TCs’ operating states (e.g.: WriteTCtriggerState). 

5 TIM sleep state commands 

Addressed to the TIM (address 0) in the sleep state. Implements a single optional command for forcing 

the TIM to go to an active state (Wake-Up). 

6 TIM active state commands 

Addressed to the TIM (address 0) in the active state. Includes commands to read the TIM and the 

IEEE1451.0 version (ReadTIMversion/IEEE1451.0Version), to store and recall operational setup 

information (Store/RecallOperationalSetup), and to put the TIM into a low-power state (TIMsleep). 

7 TIM any state commands 

Addressed to the TIM (address 0) in any state. Implements a single and optional command to reset the 

entire device, i.e. the TIM and all TCs (Reset). 

8-127 Reserved 

128-255 Open for manufacturers 

 

4.4. The APIs: module communication, transducer services 

and HTTP 

The standard defines 3 APIs for the NCAP-TIM interface and for enabling the access 

to the commands provided by the TIM. The APIs are organized according to a layered 

structure represented in figure 4.10a), each one performing a particular role: 

 Transducer services interface - is a NCAP-only API used by measurement and 

control applications to access the IEEE1451.0 layer. It provides methods for 

reading and writing TCs and TEDSs, send configuration, control and operation 

commands to the TIM. It defines an optional interface for supporting non-

blocking read/write operations and to receive data from measurement streams. 

 Module communication interface - is a symmetric interface implemented on the 

NCAP and TIM sides containing methods implemented by an IEEE1451.x layer. 

It specifies point-to-point and network interfaces. 

 HTTP API - is a NCAP-only API used for remotely accessing TIMs, TCs and 

TEDSs using the HTTP 1.1 protocol.  
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Figure 4.10: IEEE1451.0 Std. API layered structure and the HTTP schematic access. 

 

The methods available in the APIs are supported by the Args and Util packages. The 

Args package extends basic data types defined in the standard (e.g. Integers) to 

structured types (e.g. IntegerArray). Additionally, it defines codes for specifying errors 

originated from the physical NCAP-TIM interface or from the TIM itself, methods for 

measurement the Quality of Service (QoS) on the communications, and others to 

facilitate data manipulation. Data conversion methods are provided by the Util package 

for encoding and decoding structured data types to/from octet arrays. 

The logical communication between the NCAP and TIMs or between TIMs is 

handled by the Module communication API. It is divided in two groups providing 

methods for point-to-point or network communications. Each group defines three 

interfaces: i) communication, implemented by the IEEE1451.x layer to control the 

NCAP-TIM communications; ii) registration, to register the selected IEEE1451.x into 

the system and; iii) receive, to notify the IEEE1451.0 layer that a message has been 

received, or for aborting a communication. 

The access to the TIMs is managed by the Transducer services API according to a 

set of methods sequentially applied. It is entirely implemented in the NCAP side and 

provides discovery methods for specifying the target TIM ID and TCs’ addresses. 

Through the returned IDs the TCs are accessed using the transducer access methods. 

These enable two types of TCs’ operations: i) blocking, where the TCs stop their 

execution waiting for a read/write operation (stay blocked) and ii) non-blocking, where 

the TCs wait (block) during a specific period of time (specified in a TEDS) for a 

read/write operation before becoming unblocked. Other methods are provided in this 

API for enabling a more precise control over the TIM, and in particular to handle 

TEDSs’ data, namely by the possibility they provide to read, write or update TEDSs, 

and to manage NCAP-side TEDSs’ cached information. 

For enabling a remote access to the TIM, TCs and associated TEDSs, the 

IEEE1451.0 Std. provides the HTTP API. As illustrated in figure 4.10b), the HTTP API 

runs on an HTTP web server interfacing the other APIs. It is an optional solution, since 
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the standard permits the use of other applications designed according to the object 

model defined by the IEEE1451.1 Std. [98], or the use of other proposals, such as the 

Smart Transducer Web Services [99][100] that may facilitate network interfacing 

NCAPs. Besides other available solutions, the HTTP API is the only described by the 

IEEE1451.0 Std. for implementing simple client-server architectures (traditionally 

implemented by weblabs). It provides the set of methods described in table 4.4 that 

indicates the target NCAP (identified through its IP and port numbers), followed by the 

path with the command and its parameters (arguments), using the following HTTP 

message format: 

                            http://<host>:<port>/<path>?<parameters> 

Although the arguments are defined according to each command using the data types 

specified in the Args package, all have in common the target TIM and TC. Additionally, 

all specify the reply message format in an argument, which can be in XML, HTML or 

text format. 

This way, by using the HTTP API, it is possible to design thin or thick web 

applications to run in the users’ accessing devices for remote accessing weblab modules 

designed as smart transducers. The weblab infrastructures can be designed according to 

the IEEE1451.0 Std., taking the advantage of its smart and standardized architecture 

supported on TEDSs that define the operation of all TCs. 

 

Table 4.4: IEEE1451.0 Std. HTTP API (paths and methods). 

Discovery  

1451/Discovery/TIMDiscovery Discovers IEEE1451.x communications modules, 

TIMs and TCs. 1451/Discovery/TCDiscovery 

Transducer Access 

1451/TransducerAccess/ReadData 

Reads and writes TCs. 

1451/TransducerAccess/StartReadData 

1451/TransducerAccess/MeasurementUpdate 

1451/TransducerAccess/WriteData 

1451/TransducerAccess/StartWriteData 

TEDS Manager 

1451/TEDSManager/ReadTeds 

Reads and writes TEDSs and manages NCAP-

side TEDSs’ cached information. 

1451/TEDSManager/ReadRawTeds 

1451/TEDSManager/WriteTeds 

1451/TEDSManager/WriteRawTeds 

1451/TEDSManager/UpdateTedsCache 

Transducer Manager 

1451/TransducerManager/SendCommand 

Provides control functions over TIM accesses, 

e.g. to lock the TIM for exclusive use and to send 

arbitrary commands to it. 

1451/TransducerManager/StartCommand 

1451/TransducerManager/CommandComplete 

1451/TransducerManager/Trigger 

1451/TransducerManager/StartTrigger 
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4.5. Suggested weblab infrastructures compliant with the 

IEEE1451.0 Std. 

Besides providing several APIs for accessing transducers, the IEEE1451.0 Std. 

defines their functional structure without specifying any particular technology for their 

implementation. Taking into consideration the wide range of applicability provided by 

the standard specifications, it is seen as an interesting solution to standardize the access 

and the design of weblabs. The defined smart transducers implemented or accessed by 

TCs, can be weblab modules, such as Oscilloscopes, Multimeters, dedicated 

Controllers, among others, since they provide processing units and I/O interfaces to 

access the target experiments. The access to these modules embedded (or not) in the 

TIM, can be implemented through an architecture supported by an infrastructure similar 

to the one illustrated in figure 4.11 that uses the NCAP-TIM reference model. 
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Weblab server

NCAP TIM
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Target 

experiment
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Figure 4.11: Adopting the IEEE1451.0 Std. for designing a weblab infrastructure. 

 

The weblab modules can be implemented inside or outside the TIM and designed or 

accessed as smart transducers to interact with the target experiments. Embedded weblab 

modules must be always designed according to the IEEE1451.0 Std. and bind to the 

TIM using the same technological solution, such as FPGAs. Weblab modules outside 

the TIM can be IEEE1451.0-compliant modules or stand-alone and modular 

instrumentation originally not compliant with the standard. These instruments can 

preserve their inherent characteristics (e.g. their particular accessing commands, 

accessing buses and architectures) since it will be the TCs the responsible for 

guarantying the compatibility with the standard. The weblab server integrates all 

pedagogical contents and administrative tools for supporting a particular course and to 

manage the accesses to the infrastructure (as already detailed in chapter 2). 

Both NCAP and TIM can be implemented using any type of technology, and these 

can either be separately defined, as an hybrid solution, or integrated in a unique device. 

It is up to the developer to adopt one of these solutions, even though hybrid 

architectures may provide a more versatile option since the NCAP and the TIM can be 

more easily replaced. Whatever the adopted solution, the standard also permits the use 

of several TIMs connected to a single NCAP, these also able to be interfaced through 

the Internet. The option to use one or more TIMs and NCAPs depends essentially on the 
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available technology for their implementation, and on the required weblab modules for 

conducting a particular experiment.  

As illustrated in figure 4.12, four conceptual solutions can be identified for 

implementing weblab infrastructures. The first uses a single NCAP-TIM connection to 

access one target experiment. This is the simplest solution, and involves the adoption of 

a simple point-to-point interface. The second solution also uses a single NCAP-TIM 

connection, but the TIM interfaces different target experiments accommodating or 

interfacing different weblab modules. Each module is adopted for a different experiment 

placed in the same physical location. This solution intends to exploit all TIM resources 

to access more than one experiment. The third solution uses more than one TIM 

connected to the NCAP. It can be adopted for traditional experiments or for experiments 

divided into several parts geographically dispersed, each requiring the use of dedicated 

modules. It is also suggested when the device adopted for implementing the TIM cannot 

accommodate or interface all required weblab modules. Through different physical 

interfaces, in both cases the TIMs can be interfaced to a single NCAP providing the 

remote access and all the services (eventually using virtual TEDSs) required for 

managing the accesses to each weblab module and therefore to the target experiment. 

The fourth solution can use any of the previously referred solutions since it focus on 

interfacing NCAPs. It can be applied for situations when a particular weblab requires 

more than one infrastructure to provide remote experiments. This is much like the third 

solution where a particular experiment is divided into different parts geographically 

dispersed. Nevertheless, in this solution the access management must be firstly handled 

by an external weblab server that selects the appropriated infrastructure. Only after this 

selection, the NCAP of the selected infrastructure may handle the access to the TIM(s) 

to control/monitor the target experiment using the associated weblab modules.  
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Figure 4.12: Possible weblab infrastructures based on the IEEE1451.0 Std. 

 

Whatever the adopted solution for implementing the weblab infrastructure, some of 

the characteristics provided by the IEEE1451.0 Std. can be extended to improve 
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weblabs standardization and dissemination levels, in particular by designing enhanced 

architectures for facilitating the dissemination of experiments and resources through the 

educational community, implementing a reconfiguration capability and an assessment 

mechanism during the conduction of a specific experiment. This way, weblabs can be 

more easily adopted and selected as a tool for the conduction of the required laboratory 

work in engineering education. 

4.6. Extending the IEEE1451.0 Std. to enhance weblab 

architectures 

Despite the well defined architecture of the IEEE1451.0 Std. that led to the suggested 

solutions, the access management to different weblabs and target experiments is an 

important issue that can be implemented by other weblab architectures already 

available. In chapter 2 some projects with well defined architectures were described, 

namely the iLabs, NetLab and VISIR. Although the NetLab and the VISIR projects 

have successful architectures, enabling a standard access to stand-alone and modular 

instruments using the ISA and the VISA, each one has its own management system and 

adopts commercial instruments for accessing the target experiments. Furthermore, they 

are seen as complementary solutions since they were not designed to be integrated with 

other architectures. The iLabs and other briefly referred projects, such as the LiLa and 

the Lab2Go, follow a different approach. They have the objective of supporting 

different architectures with software models and frameworks. Their acceptance by the 

educational community is proved by their large influence in some of the most important 

decisions in GOLC, which incentivize understanding how can the proposed 

IEEE1451.0-compliant weblab infrastructures be adopted together with those 

architectures. 

Through the brief conducted analyses to iLabs, it was seen that its software 

framework architecture is more focused on the access management to different types of 

weblabs, implementing scheduling mechanisms. Therefore, adopting the iLabs 

architecture
89

 [62] for managing the accesses to IEEE1451.0-compliant weblab 

infrastructures may be considered. Mapping the iLabs APIs with the APIs defined in the 

IEEE1451.0 Std. can be a solution for implementing this complementarity. The Lab 

server suggested in iLabs can be implemented by one of the suggested weblab 

infrastructures defined in the previous section, integrating this way the iLabs access 

management system. The LiLa project
90

, that also implements scheduling systems, 

stands out for having a collection of SCORM compliant learning objects that can be 

included into VLEs, such as Moodle. This can be adopted for integrating pedagogical 

contents for the conduction of experimental activities in engineering courses. The last 

relevant project is the Lab2Go that can be the basis for describing the features of the 

suggested weblab infrastructures, since it provides a Metadata - Reference Model 

                                                
89 http://ilab.mit.edu/, http://ilabcentral.org/ 
90 http://www.lila-project.org/  

http://ilab.mit.edu/
http://ilabcentral.org/
http://www.lila-project.org/
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Specification adopted for describing some of the features provided by online labs
91

 

[137]. 

Despite the relevance of all these architectures, and their possible complementarity 

with the suggested IEEE1451.0-compliant weblab, none of them considers the design 

and the reconfiguration of weblab modules in the infrastructures. Moreover, the 

diversity of available solutions and the software/hardware layers covered by the 

IEEE1451.0 Std. incentivize its adoption for designing weblabs, providing standard 

access to the weblab modules, reconfiguration capability and a mechanism for 

supporting assessments during the conduction of an experimental activity. Nevertheless, 

the spread and share of weblab infrastructures and experiments through the educational 

community, can be implemented using some of the provided features of the iLabs 

architecture for users’ access management, the LiLa portal to accommodate pedagogical 

contents and, in particular, the Lab2go Metadata - Reference Model Specification to 

organize the features of a particular weblab and associated experiments. Thus, the 

definition of an extended IEEE1451.0 architecture able to autonomously implement a 

weblab but also able to adopt some of the referred features of the described projects, can 

be an important contribution for the widespread adoption of weblabs in engineering 

education.  

4.6.1 Suggested architecture 

The suggested architecture gathers information into the weblab server regarding the 

infrastructures and the target experiments [138]. This server may be located anywhere 

and it operates as a central provider for all infrastructures. As illustrated in figure 4.13, 

the architecture allows remote accessing target experiments through weblab 

infrastructures based on the referred NCAP-TIM reference model. Through the NCAPs, 

these infrastructures are connected to the Internet to one or more weblab servers that 

provide their URL (Unified Resource Location). These same infrastructures also 

provide other relevant information, such as the experiments they may handle and 

technical characteristics of the weblab infrastructure (e.g. processing power, interface 

ports, etc.). This way, for reconfigurable infrastructures (e.g. the ones developed using 

FPGA technology), teachers or students may decide if they can accommodate the 

weblab modules required for conducting a specific experiment. 

As presented in the previous sections, the IEEE1451.0 Std. specifies a set of TEDSs 

able to define the behaviour of a weblab infrastructure and its modules. An additional 

TEDS can also be specified to enhance weblabs, namely to facilitate users to find the 

infrastructures and the experiments, and the institutions to create a network with several 

weblabs. These suggested TEDSs, named LabTEDSs, are available in each NCAP. 

They provide information about each infrastructure, namely the URL, a description of 

the available experiments, and technical features, among other information. During a 

registration process, each URL defined in a LabTEDS is sent to the weblab server. 

                                                
91 http://www.lab2go.net/ 

http://www.lab2go.net/
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Through an internal application, it reads all LabTEDSs to provide information about the 

infrastructure and associated experiments. After this process, users may select one 

infrastructure, and all data transferred during the conduction of a specific experiment, 

can be automatically monitored for assessment purposes. 
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Figure 4.13: Suggested weblab architecture based on the IEEE1451.0 Std. 

Next subsections present the LabTEDS and the operational sequence for registering, 

discovering and accessing a specific infrastructure and the associated experiments, 

using a set of new IEEE1451.0 HTTP API methods detailed in annex G, namely: 

 NCAPRegister [table G.1], to register or unregister the NCAPs of the 

infrastructures into the weblab server (new Register API);  

 NCAPDiscovery [table G.2], to discover those NCAPs (Discovery API); 

 ReadLabTEDS [table G.3] and WriteLabTEDS [table G.4], to read and write 

LabTEDSs (TEDS manager API); 

 ReadTIM [table G.5] and WriteTIM [table G.6], to reconfigure the weblab 

infrastructures (new Reconfiguration API), and; 

 ReadLog [table G.7] and WriteLog [table G.8], to read and write a log file for 

assessment purposes (new Log access API). 

 

4.6.2 LabTEDS 

Following the same structure defined for all TEDSs, the LabTEDS establishes a 

standardized way to disseminate and share weblabs, and to specify infrastructural 

resources. It provides information about the number and TIMs associated to the 

infrastructures, their locations, if they provide log files, the type of implementation (thin 

or standard), among others. To describe the available resources in the infrastructures 

(e.g. power processing capabilities, memory space, etc.) and the associated experiments, 

some fields are defined as a text-based TEDS according to the Lab2go Metadata - 

Reference Model Specification illustrated in figure 4.14. 
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Figure 4.14: Lab2go Metadata - Reference Model Specification. 

 

Table 4.5 presents the LabTEDS’s structure including the proposed fields, namely: 

 Field 3 (TEDSID) [required] - TEDS IDentification Header: uses the same 

format specified for all other TEDSs specifying the access ID code with the 

number 16. 

 Field 10 (numLabs) [optional] - Number of weblab infrastructures: this field is 

required when a weblab architecture is supported by several infrastructures. In 

this situation, it indicates the number of required infrastructures (number of 

NCAPs), the URL and technical resources of each one. The group of fields with 

related information should specify information about the TIMs and the 

experiments (or parts) they may handle. In other words, if an experiment needs 

more than one weblab infrastructure, eventually located in different places, this 

field should indicate the number of required infrastructures. In this case, the 

remaining fields should specify both infrastructures and the experiment(s) they 

handle, and should also be located in all NCAPs. If this field is omitted, users 

must consider that there is a single weblab infrastructure containing all required 

resources to run the experiment(s) detailed in the remaining fields. 

 Field 11 (accessURL) [required] - Location of the weblab infrastructure: 

represents the IP address and port number of a specific weblab infrastructure. If 

the accessURL element of the Lab2go Metadata - Reference Model 

Specification is defined in the XML-based text block, this field should have the 

same value. 

 Field 12 (logURL) [optional] - Location of the log file: represents the IP address 

and port number of the log file used to gather all data transferred between users 

and the weblab infrastructure. If this field does not exist, it means the current 

weblab does not implement the logging process (this aspect is further discussed 

in the next subsection). 

 Field 13 (implType) [required] - Implementation type: specifies if the weblab 

infrastructure follows a thin (≠ 0 (true)) or standard (= 0 (false)) implementation 

(this aspect is further discussed in the next subsection). 
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 Field 14 (NumTIMs) [required] - Number of TIMs connected to the NCAP: 

Indicates the number of TIMs adopted by the weblab infrastructure. This is a 

required field since some weblab infrastructures may use more than one TIM 

(e.g. more than one FPGA or more than one PC). Technical data of each TIM 

should be provided in text-based format through the remaining fields using the 

Lab2go Metadata - Reference Model Specification. It is up to the developer to 

describe the technical data according to each TIM specification. 

 Fields 15, 16 and 17 [optional]: gather data information using the Lab2go 

Metadata - Reference Model Specification according to text-based format TEDS 

described in the IEEE1451.0 Std. Information already indicated in previous 

fields of this LabTEDS should be repeated if defined in the metadata model (e.g. 

the accessURL). 

 

Table 4.5: LabTEDS fields. 

Field 

num. 
Field name Description 

Data 

type 

Num. 

Octets 

-  Length UInt32 4 

0-2 - reserved - - 

3 TEDSID TEDS IDentification Header UInt8 4 

4-9  reserved - - 

10 numLabs Number of weblab infrastructures (NCAPs) UInt8 1 

Weblab infrastructure related information (repeated for each weblab infrastructure / NCAP) 

Web Location - URL 

11 
Access 

URL 

Weblab URL 

[ IP addr. (first 4 octets) + port number (last octet) ] 
UInt8 5 

12 
Log 

URL 

Log file URL 

[ IP addr. (first 4 octets) + port number (last octet) ] 
UInt8 5 

Technical resources 

13 implType 
Implementation type (thin≠0 (true), standard=0 

(false) ) 
Boolean 1 

14 numTIMs Number of TIMs connected to the NCAP UInt8 1 

Related information (should be repeated for each TIM and for each supported language) 

15 numLang The number of language blocks in this TEDS = N UInt8 1 

16 dirBlock Language block description (repeated N times) - - 

20 langCode Language code from ISO639 UInt8 2 

21 offset Language offset UInt32 4 

22 length Language length = LL UInt32 4 

23 compression Enumeration identifying the compression technique UInt8 1 

17 subSum Non-displayable data checksum UInt16 2 

- XMLText XML-based text block (Lab2go semantics) text LL-2 

- XMLSum Text block checksum UInt16 2 
 

18-19/ 

24-127 
- Reserved - - 

128-
255 

- Open to manufacturers - - 

-  Checksum UInt16 2 
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This way, all weblab infrastructures and/or experiments can be described using 

LabTEDSs. However, its adoption implies following a particular operational sequence 

to enable their standard and distributed access. 

4.6.3 Operational sequence 

As illustrated in figure 4.15, the operational sequence includes three processes: 

 Registration: registers weblab infrastructures created according to the 

IEEE1451.0 Std. The IP addresses and port numbers included in the accessURL 

field of each LabTEDS are copied into the weblab server, registering the 

infrastructures into the network. 

 Discovery: implements a discovery process, so users may find the appropriate 

weblab they want to use, requesting a list of infrastructures and available 

experiments already registered in the weblab server. This list may be 

dynamically created using the NCAPDiscovery method. As described in the 

following subsections, this method gets the URL of all registered weblab 

infrastructures. Through their URL, each LabTEDS may be accessed using the 

readLabTEDS method to create, for example, a webpage describing the 

infrastructures and associated experiments. 

 Access: enables the access to weblab infrastructures to: i) control experiments; 

ii) reconfigure weblab infrastructures with weblab modules (when they provide 

this feature) and; iii) monitor all data transferred between students/teachers and 

the infrastructures. This last sub-process is relevant for assessment purposes, 

since all data transferred use methods for issuing standardized commands that 

can be logged into a file for future analysis using, per example, intelligent 

tutoring systems [130][139][140]. 

 

LabTEDS 1

Weblab infrastructuresWeblab server

registration

accessURL 2

LabTEDS 2

registration

accessURL 1

users

discovery

access
...........

.......

Internet

 

Figure 4.15: Operational sequence for accessing weblab infrastructures. 

 

All these processes are now described below using illustrative diagrams with the set 

of new IEEE1451.0 HTTP methods. 
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Registration 

The registration process is automatically executed after connecting a weblab 

infrastructure to the Internet. It uses the NCAPRegistration method to send the URL to 

the weblab server, so it can create a map table with all registered weblabs. It is up to the 

weblab server to periodically query if all infrastructures are still running, for example, 

using a ping command to check if the destination IP address is available. If the response 

to this command indicates the inexistence of the target IP, it means that the registered 

infrastructure is not available anymore, and its URL should be deleted from the map 

table, unregistering it. A weblab infrastructure may also unregister itself without being 

disconnected from the Internet, using the same NCAPRegistration method. Figure 4.16 

illustrates the proposed register/unregister process. 
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infrastructure

Query the infrastructures is 
made periodicaly

The infrastructure may be unregistered depending on the ping command reply

T
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Infrastructure 
connected in 
the Internet

 

Figure 4.16: Process for registering/unregistering weblab infrastructures. 

 

Discovery 

The discovery process uses the NCAPDiscovery and ReadLabTEDS methods. The 

NCAPDiscovery follows a similar approach provided by the TIMDiscovery and 

TransducerDiscovery methods. It discovers the location of all registered infrastructures 

(the NCAPs) by retrieving their IP addresses and port numbers provided by each 

accessURL field of the associated LabTEDS. The ReadLabTEDS is much similar to the 

methods included into the TEDS Manager API, namely to the ReadRawTEDS and 

ReadTEDS
92

. Using the URL retrieved by the NCAPDiscovery, the ReadLabTEDS reads 

all information within each LabTEDS to create, for example, a webpage listing all 

available infrastructures and associated experiments. Caching LabTEDSs is not 

considered for the proposed architecture, since they should be always implemented in 

the NCAP or remotely located. No redundant information is required, despite 

developers may implement a mechanism to replicate LabTEDSs in more than one 

location. 

                                                
92 The IEEE1451.0 Std. adopted these two methods because it suggests caching the same TEDS 

available in a TIM inside the NCAP, to improve speed and security by implementing redundant 

information. The same ReadRawTEDS reads TEDSs available in TIMs, and the ReadTEDS may read 

these same TEDSs only if they are not available in the NCAP, otherwise it reads the cached TEDSs. 
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The new NCAPDiscovery and ReadLabTEDS methods can be used by user-side or 

weblab server-side applications. As illustrated in figure 4.17, in both situations the 

NCAPDiscovery method retrieves the URL of a specific weblab infrastructure. 
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Figure 4.17: Using the NCAPDiscovery and ReadLabTEDS methods to access registered 

weblab infrastructures. 

 

In the first solution (user-side), users start sending the NCAPDiscovery to get an array 

with the URLs of all registered infrastructures. Based on this information, users read all 

features of each weblab infrastructure and/or experiments using the ReadLabTEDS. 

Supported on the retrieved information from the LabTEDS, users create a list of all 

available infrastructures and/or experiments. 

In the second solution (weblab server-side), the NCAPDiscovery and ReadLabTEDS 

are applied by the weblab server itself. An application constantly uses the 

NCADiscovery method to get the URL of all registered infrastructures. Using the URLs 

retrieved from that method, the weblab server consults each LabTEDS using the 

ReadLabTEDS method, in the same way as described for the first solution. Unlike the 

first solution, where all processing is made in the user-side, this second solution requires 

a specific application inside the weblab server to handle the information retrieved from 

each infrastructure. 

Access (reconfiguration and logging) 

The access process is divided in three sub-processes: i) control; ii) reconfiguration 

and; iii) logging. The control sub-process is already covered by current methods 

provided by the IEEE1451.0 HTTP API. It allows users to interact with the experiments 

provided by the infrastructures. The other two (reconfiguration and logging) require 

using new methods, as detailed in the following items. 
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a) Reconfiguration 

To remotely reconfigure weblabs, such as the ones using FPGA-based boards for 

implementing the infrastructures, two new IEEE1451.0-HTTP API methods are 

suggested, namely the ReadTIM and the WriteTIM. These methods are handled by the 

NCAP and their adoption depends on the technological architecture of each TIM. While 

the ReadTIM may be used without the previous methods, the WriteTIM should only be 

applied after reading the technical characteristics of the target TIM. It is necessary to 

use the ReadLabTEDS to get the technical data from the metadata defined in the XML 

text-fields to evaluate if the TIM is capable of accommodating or accessing a specific 

weblab module. Figure 4.18 illustrates the reconfiguration sub-process sequence using 

the WriteTIM and ReadTIM methods. 

b) Logging 

The logging sub-process monitors users’ actions during their interaction with a 

specific infrastructure. The objective is to provide a mechanism for assessment purposes 

so teachers, eventually supported by automatic intelligent tutoring systems, may consult 

a specific log file to evaluate students’ behaviour during the conduction of an 

experiment. Field 12 of the LabTEDS (LogURL) indicates if a specific weblab 

infrastructure has the logging activated by the URL of the log file. When active (i.e. the 

LogURL is defined), all data used to access the infrastructure are logged into that file 

located in the NCAP or remotely in the weblab server. The file, e.g. a database table, 

should keep track of all data exchanged between the weblab infrastructure and the 

users’ accessing devices according to the XML schema format presented in figure 4.18, 

namely: the title of the experiment (expTitle), user’s identification (userID), a date 

indicating when a specific action was applied (date), and the standardize methods 

(method) with associated parameters (data). 

The WriteLabTEDS activates the logging session writing the URL of the log file into 

field 12 of the LabTEDS. Teachers may then read all students’ actions described in the 

log file, using the ReadLogFile method. To clean or update that same log file (i.e. to 

change its contents) teachers may use the WriteLogFile method. It is up to the developer 

to establish some constrains on using both methods, since in most situations they should 

only be accessible for teachers (e.g. for assessment purposes). 

Despite the proposed architecture may contribute for the dissemination and wide 

adoption of weblabs in education, the complexity of the IEEE1451.0 Std. may difficult 

the development of their infrastructures. To overcome this situation, when less 

demanding infrastructures are required to implement weblabs (e.g. weblab modules 

implemented/accessed with a single TIM and/or implemented by technological devices 

with limited resources), a single NCAP-TIM connection may be adopted using a thin 

implementation of the IEEE1451.0 Std., following the first two solutions proposed in 

section 4.5. 
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Suggested log file XML schema

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:element name="LogFile">

  <xs:complexType> 

    <xs:sequence>

      <xs:element name="expTitle"      type=" stml: _String"/>

      <xs:element name="userID"        type=" stml: _String"/>

      <xs:element name="date"            type=" stml: timeInstance"/>

      <xs:element name="method"       type=" stml: _String"/>

      <xs:element name="data"            type=" stml: StringArray"/>

    </xs:sequence> 

  </xs:complexType>

</xs:element> 

</xs:schema>

 

Figure 4.18: Using the WriteTIM and ReadTIM for reconfiguring weblab infrastructures 

and the suggested XML schema for the log file. 

 

4.7. A thin implementation of the IEEE1451.0 Std. applied to 

weblabs 

According to the IEEE1451.0 Std., the NCAP and the TIM should be connected 

through physical protocols (e.g. Bluetooth) following another IEEE1451.x Std. Despite 

the standard intends to form the basis for future and previous IEEE1451.x Stds., some 

of those are not yet compatible. Furthermore, the NCAP-TIM connection requires using 

two additional APIs (Transducer services and Module communication) that imply 

overloading developments and do not bring any added value for weblab infrastructures 

that use single NCAP-TIM connections. These require a point-to-point interface that, 

according to the IEEE1451.0 Std., requires using the IEEE1451.2 Std. However, this 

standard is not yet compatible with the IEEE1451.0 Std. despite some suggestions [128] 

and implementations [129], and it can overload the selected devices for implementing 

the infrastructures. In these situations, removing both APIs from the reference model 

does not limit the standardization advantages provided by the standard. The design of 

all weblab modules still follows the same defined specifications, which includes their 

design and access using standard commands and the HTTP API. The differences focus 

on the way NCAP-TIM interface is internally managed. Although the plug&play 

facility of the NCAP-TIM interface becomes dependent on development options, there 

is the advantage of using an infrastructure more easily implemented with less 

demanding technological devices, and not dependent on actualizations of other 

IEEE1451.x Stds.  

Therefore, a thin implementation can be implemented for infrastructures using point-

to-point NCAP-TIM connections using any type of physical protocol. This implies 

removing the Transducer and Communication APIs of the layered structure, simplifying 

the access to the commands by directly mapping them to the HTTP methods, as 
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represented in figure 4.19. It is up to the NCAP to implement this mapping and to 

handle the HTTP methods and their arguments, so they can be structured according to 

the message structures defined in the IEEE1451.0 Std. and already presented in section 

4.5. Table 4.6 presents the proposed mapping between the HTTP methods and the 

commands, with all information detailed in annex H. It is important to notice that not all 

methods are mapped, which means some are considered irrelevant for controlling the 

TIM or they are exclusively handled in the NCAP side. However, this thin 

implementation is just an alternative solution that, according to the proposed and 

enhanced IEEE1451.0 architecture, must be indicated in field 13 (implType) of each 

LabTEDS. 
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Figure 4.19: A thin implementation of the IEEE1451.0 Std. layered structure. 

 

Table 4.6: Mapping of HTTP APIs’ methods to TIM commands. 

HTTP APIs and methods Commands Observation 

Registration API 
No map - 

NCAPRegistration (new) 

Discovery API 

No map - 
NCAPDiscovery (new), 

TIMDiscovery and 

TransducerDiscovery 

Transducer Access API   

ReadData, StartReadData, 

MeasurementUpdate  

SamplingMode and 

ReadTCDSsegment  
Tables H.1, H.2 

WriteData 
SamplingMode and 

WriteTCDSsegment 
Table H.3 

StartWriteData 
SamplingMode and 

WriteTCDSsegment 
Table H.4 

TEDS Manager API   

ReadTEDS, ReadRawTEDS,  

UpdateTEDSCache 
ReadTEDSsegment Tables H.5, H.6 

WriteTEDS, WriteRawTEDS WriteTEDSsegment Table H.7 

Read/WriteLabTEDS (new) No map - 

Transducer Manager API   

SendCommand, StartCommand 

and CommandComplete  
Any command Tables H.8, H.9 
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Trigger or StartTrigger 

ReadTEDSsegment and 

SamplingMode and 

TriggerCommand 

Table H.10 

Reconfiguration API 
No map - 

WriteTIM or ReadTIM (new) 

Log access API 
No map - 

WriteLog or ReadLog (new) 

 

4.8. Summary 

This chapter described the main aspects of the IEEE1451.0 Std., which is 

characterized by a well-defined layered architecture including specifications for 

designing and interfacing weblab modules required for controlling and monitoring the 

target experiments. Its reference model was presented, which includes one or more 

TIMs remotely accessed through a NCAP for controlling the TCs implementing or 

binding weblab modules. Associated characteristics were also detailed, such as the 

operation modes, accessing mechanisms and commands to control the TIM and each 

TC, the available APIs for the NCAP-TIM interface and for their remote access, and in 

particular the set of defined TEDSs, as well as their internal structures. Supported on 

features defined by the IEEE1451.0 Std., this chapter suggested some compliant 

infrastructures, which can be part of a generic and enhanced architecture to facilitate the 

widespread sharing of weblabs through the educational community. The proposed 

enhancements involve the use of a new TEDS, named LabTEDS, for providing generic 

information about the infrastructures and associated experiments, and the use of new 

HTTP-based interfaces and methods for managing weblab resources. Finally, this 

chapter emphasized the possibility of simplifying the layered architecture of the 

standard, through a thin implementation, for facilitating the design of weblab 

infrastructures compatible with the proposed enhanced architecture.  

Next chapter presents a prototype of this thin implementation developed using FPGA 

technology to enable its remote access and reconfiguration. 
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 Chapter 5   

A weblab implementation supported by 

FPGA-based boards 
 

 

 

The features of the IEEE1451.0 Std., suggested extensions and proposed 

architectures establish the framework that supports the IEEE1451.0-compliant and 

FPGA-based weblab prototype described in this chapter. The overall weblab 

architecture and the underlying infrastructure able to be reconfigured with different 

weblab modules controlled/monitored according to the IEEE1451.0 Std., are described 

in the following sections. A special attention is given to the infrastructure designed 

according to the thin implementation of the IEEE1451.0 Std. reference model. 

Characteristics and functionalities provided by an IEEE1451.0-compliant module are 

also described, since it enables the interface and the standard access to different and 

compatible weblab modules embedded in an FPGA-based infrastructure. This access is 

further explored, by presenting the provided accessing mechanisms to the weblab. The 

chapter ends by describing a tool that enables reconfiguring the weblab infrastructure 

with the modules required for conducting remote experiments, using IEEE1451.0 

commands.  
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5.1. Overall architecture: weblab server and underlying 

infrastructure 

The overall architecture proposed follows the same generic approach of a traditional 

weblab, comprising an infrastructure supported by a weblab server. These are connected 

to the Internet, and each one is able to provide the services required for conducting 

remote experiments, as part of an engineering course. The weblab server is capable of 

using solutions already developed, such as the iLabs architecture
93

 for users’ access 

management, and the LiLa portal
94

 to accommodate pedagogical contents. However, the 

developed prototype does not integrate any of them. Additionally, the different 

scenarios suggested in the previous chapter for developing weblab architectures based 

on extensions proposed for the IEEE1451.0 Std., can be also easily applied in future 

designs. With few changes, the operational sequence described in section 4.6.2, namely 

the processes of registering, discovering and accessing the infrastructures, can be latter 

implemented to disseminate the weblabs and share the associated experiments through 

the educational community. The WriteTIM method of the suggested reconfiguration API 

was adopted for reconfiguring the infrastructure. It is precisely the way this 

infrastructure can be reconfigured and accessed the focus of the developed weblab 

prototype, to illustrate the usage of the IEEE1451.0 Std. supported by FPGA technology 

for designing reconfigurable weblabs. 

The prototype follows an architecture that provides an IEEE1451.0 standard access 

to the underlying infrastructure and to the adopted weblab modules. It enables 

reconfiguring those modules without changing the hardware platform that forms the 

infrastructure. Instead of using traditional instrumentation to interact with the target 

experiments, the architecture adopts embedded modules. These are described through 

HDL files according to the IEEE1451.0 Std., able to be synthesized to FPGAs, which 

form the core of the infrastructure. 

As illustrated in figure 5.1 and figure 5.2, the architecture is supported by a weblab 

server and by an underlying infrastructure designed according to the NCAP-TIM 

reference model. Among all the possible solutions described in section 4.5, the 

prototype adopts a single NCAP-TIM connection and uses the proposed thin 

implementation that establishes the direct mapping between the methods of the 

IEEE1451.0-HTTP API and the commands implemented in the TIM. The weblab server 

runs in a standard PC acting as an HTTP web server. It integrates a Reconfiguration 

Tool (RecTool) to create a bitstream file that defines the so-called weblab project. This 

weblab project comprises the weblab modules required to control/monitor the target 

experiments that will be reconfigured in the infrastructure. This infrastructure adopts an 

NCAP-TIM connection using an hybrid solution. A thin computer acting as a light 

                                                
93 http://ilab.mit.edu/, http://ilabcentral.org/ 
94 http://www.lila-project.org/  

http://ilab.mit.edu/
http://ilabcentral.org/
http://www.lila-project.org/
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HTTP web server implements the NCAP. The TIM, where all modules are embedded 

and accessed using TCs, is implemented in an FPGA-based board. 
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Figure 5.1: Bock diagrams of the implemented weblab architecture. 
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Figure 5.2: Picture of the implemented weblab architecture. 

 

To create the weblab project, users directly interact with the weblab server for 

accessing the RecTool. They may select a set of files describing each weblab module 

(provided by the weblab server) and synthesize them with a predefined IEEE1451.0-

compliant module described through HDL files, which is already available in the 

weblab server as a part of the RecTool. Through a reconfiguration process, that will be 

described in chapter 6, its HDL files are automatically redefined (connections, 

associated TEDSs, etc.) to bind the selected weblab modules, and latter synthesized to 

create a bitstream file describing the weblab project used to reconfigure the FPGA-

based board. This way, all weblab modules selected for conducting a particular 

experiment are accessed and controlled according to the IEEE1451.0 Std. using 

methods from the IEEE1451.0-HTTP API, since all features provided by the weblab 

modules are compliant with the standard.  
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5.2. The weblab infrastructure: NCAP and FPGA-based TIM 

The weblab infrastructure is the main element of the proposed architecture, since it 

provides the platform for embedding the weblab modules used to control/monitor the 

target experiments. It follows a thin implementation of the NCAP-TIM reference model 

according to an hybrid solution, with each module being implemented through a 

different device, namely: i) the NCAP using a thin-client computer and; ii) the TIM 

using an FPGA-based board [141]. Both are interfaced using a point-to-point 

connection so the infrastructure can be designed, accessed and reconfigured according 

to the IEEE1451.0 Std. 

5.2.1 The NCAP-TIM interface 

As represented in figure 5.3, the NCAP-TIM interface is established using two types 

of connections: i) a reconfiguration connection, implemented through a JTAG bus to 

reconfigure the FPGA and; ii) a control/monitor connection implemented through a RS-

232 interface to access each embedded weblab module. This way, users are able to 

reconfigure the infrastructure with different weblab modules and, once reconfigured, 

they can be remotely controlled/monitored using standard commands issued by the 

methods provided by the IEEE1451.0-HTTP API.  
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Figure 5.3: Designed weblab infrastructure based on the IEEE1451.0 NCAP-TIM 

reference model.  

 

According to the IEEE1451.0 Std., the control/monitor connection should be 

implemented through specific protocols following other IEEE1451.x Stds. However, 

most of them are not yet compatible with the IEEE1451.0 Std. and using the Transducer 

services and Module communication APIs will overload developments and will add 

additional computational tasks without added value for weblab infrastructures that use 

single NCAP-TIM connections. To overcome these issues, the infrastructure follows the 

thin implementation already detailed in the previous chapter, interfacing the NCAP and 

the TIM through a simple RS-232 interface. A mapping between commands provided 

by the TIM, and the HTTP methods implemented by the NCAP, was established, 

removing, this way, the referred APIs. 
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Since the IEEE1451.0 Std. does not consider the reconfiguration issue proposed and 

implemented in the current architecture, no mapping was required for using the 

suggested WriteTIM method. For its adoption, the reconfiguration connection uses a 

single JTAG bus, but if more than one TIM were connected to the NCAP, several 

reconfiguration connections should be implemented (one for each TIM). This particular 

implementation uses an USB–JTAG cable
95

 controlled by a reconfiguration module 

implemented by the UrJTAG software
96

 running in the NCAP. 

5.2.2 The NCAP 

The NCAP was implemented in a thin-client computer from Epatec
97

 illustrated in 

figure 5.4. It provides the remote access to the TIM through the IEEE1451.0-HTTP API 

supported by a software package that implements the services of each method, the 

mapping mechanism between methods and commands, a cached TEDS for facilitating 

the management and the access to the infrastructure and to the embedded modules, and 

the physical connections. The software package is portable and able to be recompiled 

for different Linux distributions according to instructions defined in a makefile. It is 

denominated as NCAP-package and comprises a C-CGI (C Common Gateway 

Interface) application. Integrated in the Apache HTTP web server
98

 installed in the 

Ubuntu operational system
99

, it allows remote users to use IEEE1451.0-HTTP methods 

to control the TIM and, therefore, every reconfigured weblab module. As represented in 

figure 5.5, the package is organized in a set of directories each with its specific 

relevance, namely the 1451 directory and the cgi-bin directory. The 1451 directory 

comprises a set of symbolic links to access a server.cgi file (created after every 

compilation) to handle IEEE1451.0-HTTP methods applied according to the message 

format http://.../1451/command. The cgi-bin directory contains all files and directories 

used by the NCAP-package. It comprises a set of source (*.c), header (*.h) and object 

(*.o) files, integrating all the interfaces defined in the IEEE1451.0-HTTP API (e.g. 

IEEE1451TransducerManagerAPI.c), whose accesses are made by the server.cgi file 

used to manage all users’ requests. The NCAP-package also integrates the utils.c file 

that provides some useful conversion functions, and a file named serial.c to control the 

NCAP RS-232 interface. Besides all these files, the package has two other important 

directories: the teds directory to keep cached-TEDSs, which according to the 

IEEE1451.0 Std. may represent copies or updates of TEDSs defined within the TIM, 

and the urjtag directory containing the files and applications required for reconfiguring 

the TIM. This last aspect is not considered by the IEEE1451.0 Std. but, as already 

suggested, current NCAP-package implements the WriteTIM method integrated in the 

new Reconfiguration API.  

                                                
95 Mini Altera FPGA CPLD USB Blaster programmer JTAG. 
96 http://urjtag.org/  
97 http://www.epatec.de/en/home/  
98 http://httpd.apache.org/  
99 http://www.ubuntu.com/server  

http://urjtag.org/
http://www.epatec.de/en/home/
http://httpd.apache.org/
http://www.ubuntu.com/server
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Figure 5.4: Photograph of the NCAP implemented using a thin-client computer. 

 

Symbolic links to the implemented 
methods in the *.c files of the cgi-bin 
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command. All TEDSs are in the binary 
format and use the following format: 
t_tc_c_.teds, [t- TIM number; tc- TC 
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Figure 5.5: NCAP-package folder organization. 

 

Through a simple web browser users can access the services provided by the NCAP-

package to control/monitor the embedded weblab modules through the associated TCs. 

They are able to issue IEEE1451.0 commands through the methods of the IEEE1451.0-

HTTP API using a thin-client approach, i.e. without requiring the installation of any 

additional software in their accessing devices. A simple web browser with the HTTP 



 

112 An IEEE1451.0-compliant FPGA-based reconfigurable weblab 
 

protocol active is the only requirement for accessing the infrastructure, which may 

facilitate the development of weblab interfaces using any type of software language. For 

validation purposes, the package also provides a set of HTML forms that enables users 

to issue IEEE1451.0 commands through the HTTP API, and a supporting webpage with 

the implemented error codes mapped from the errors generated by the TIM.  

Annex I presents the error codes that may be retrieved from current NCAP 

implementation. 

Since the infrastructure follows a thin implementation, the Args and Util packages 

defined by the IEEE1451.0 Std. were not implemented. Some of their services, namely 

data conversion and manipulation, and the encoding and decoding of the message 

structures, were implemented in the C source files of the implemented APIs using some 

functions of the utils.c file. 

5.2.3 The TIM 

The TIM was implemented in an FPGA-based board from Xilinx with a XC3S1600E 

Spartan 3E FPGA
 100

 illustrated in figure 5.6. It accommodates the weblab project with 

all the weblab modules required for accessing the target experiments. The decision for a 

solution based on an FPGA-based board was essentially supported on four main 

reasons: i) it integrates several digital and analog I/O interfaces to access the target 

experiments; ii) it can use weblab modules described through HDL files, which make 

them easily shared by different infrastructures; iii) it can run those modules in parallel 

like in a laboratory that uses traditional instrumentation and; iv) it is able to be 

reconfigured, enabling to change the entire functionality of the weblab infrastructure 

without replacing the hardware platform required to access an experiment. Additionally, 

supported by the considerations presented in section 3.4, the implemented weblab 

architecture adopts a solution based on a total reconfiguration of the FPGA. This means 

that every change in the infrastructure (e.g. swapping a weblab module) requires 

creating an entirely new bitstream file of the weblab project using the RecTool. This 

option led to adopt FPGAs with total reconfiguration capability, rather than partial 

reconfiguration that would increase the associated costs of the infrastructure (FPGAs 

with partial reconfiguration are usually more expensive) and would limit the freedom of 

choice of an FPGA, since not all provide the partial reconfiguration capability. 

Internally, the TIM integrates a generic IEEE1451.0-compliant module with different 

weblab modules able to be accessed and controlled according to the IEEE1451.0 Std. 

This approach is versatile since it allows binding several weblab modules able to control 

using standard commands, and it is reusable because the IEEE1451.0-compliant module 

and the weblab modules are described using standard HDL files able to embed into 

different types of FPGAs. 

                                                
100 http://www.xilinx.com/products/boards-and-kits/  

http://www.xilinx.com/products/boards-and-kits/
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Figure 5.6: Picture of the FPGA-based board where the TIM is implemented.  

 

5.3. An IEEE1451.0-compliant module for binding weblab 

modules 

The IEEE1451.0-compliant module, named as IEEE1451.0-Module, is embedded in 

the FPGA that implements the TIM. This module implements IEEE1451.0 Std. features 

to control/monitor the weblab modules bound through a reconfiguration process. To 

simplify and reduce the FPGA resources required to implement the IEEE1451.0-

Module, without hampering its operation, current solution does not implement group 

addresses and most of the optional commands. It enables the use of a single sampling 

mode, and only commanded transmission mode is available, which requires the use of 

the Read/WriteTCDSsegment IEEE1451.0 commands to transfer data between the TIM 

and the NCAP, and therefore to the remote users. 

The TCs operate as interfaces to establish the communication between the 

IEEE1451.0-Module and the parameters able to control in the weblab modules. The 

way these TCs are accessed is exactly the same as described by the standard, operating 

according to the definition of TEDSs. The DSs are not exclusively associated to a single 

TC, but rather they should be seen as internal buffers within the weblab modules able to 

be accessed by one or more TCs. All these implementations are in accordance with the 

IEEE1451.0 Std. and allow defining a versatile architecture to develop and bind the 

modules to the IEEE1451.0-Module. 

The weblab modules, which are described using the Verilog HDL, can be of any type 

depending on the requirements posed by the target experiment, such as: Function 

Generators, Oscilloscopes, Step-motor controllers, and others able to be embedded into 
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an FPGA-based board, like embedded instruments. They must be compatible with the 

IEEE1451.0-Module, so they can be controlled by the TCs using IEEE1451.0 

commands to interact with the parameters and associated DSs, according to 

specifications defined in TEDSs.  

The IEEE1451.0-Module comprises a specific architecture described through Verilog 

HDL files. It is able of being redefined for binding compatible weblab modules, 

enabling their standard access. The modules are bind according to a specific 

reconfiguration process handled by the RecTool, and synthesised to any type of FPGA. 

As represented in figure 5.7, the architecture of the IEEE1451.0-Module comprises four 

submodules. The core is the Decoder/Controller Module (DCM) that manages the 

behaviour of the whole module, decodes and generates commands from/to an UART 

Module (UART-M). This interfaces the NCAP using an RS-232 interface, and 

implements mechanisms to guarantee that the transferred data is in accordance with 

command and reply messages structures defined in the IEEE1451.0 Std. To 

control/monitor the behaviour of each weblab module, the DCM accesses two other 

modules: i) a TEDS Module (TEDS-M), that internally implements all required TEDSs, 

and; ii) the Status/States Module (SSM), that integrates internal memories to keep the 

state and status of all TCs and of the TIM. Both modules are supported by internal 

controllers that enable the DCM to read, write or update the TEDSs and the status and 

state memories. Errors generated by these internal modules or by a particular weblab 

module are handled by the DCM. 
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Figure 5.7: Overview of the IEEE1451.0-compliant module (IEEE1451.0-Module). 

 

As already referred, besides the access and the control of the weblab modules, the 

IEEE1451.0-Module is capable of being redefined and reconfigured in the 

infrastructure. This was one of the main challenges for implementing the reconfigurable 

infrastructure, namely the definition of an internal architecture capable of connecting 

the weblab modules to the DCM. The reconfiguration of this weblab requires redefining 

all internal modules of the IEEE1451.0-Module, in particular the DCM by adding or 

removing TCs, the TEDS-M that should gather the required TEDSs, and the SSM to 

keep the states and the status of the TIM and of each TC. The UART-M is the only 

module that is not changed during the reconfiguration process since its main task focus 
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on receiving and sending IEEE1451.0 commands. This process is entirely handled by 

the RecTool that is responsible of redesigning the entire weblab project and sending it 

to the TIM to reconfigure the FPGA using a JTAG interface. 

5.4. Weblab accessing mechanisms 

The use of the IEEE1451.0 Std. for designing weblab infrastructures aims to 

standardize the design and the access to the weblab modules. The standard defines a 

layered architecture divided into several APIs that facilitates the access to TCs and to 

TIMs using standard commands. These commands are implemented in the TIM and 

they are issued according to message structures. Current implementation of the 

IEEE1451.0-Module recognizes most of the commands that enable 

controlling/monitoring the TCs/TIMs and, therefore, the attached weblab modules. Each 

command is issued to the TIM through the RS-232 interface. The UART-M is 

responsible for receiving and verifying if the received command messages structures are 

in accordance with the IEEE1451.0 Std. The decoding is made by the DCM that, 

according to the selected command, will manage the entire IEEE1451.0-Module for 

controlling each weblab module. It also generates the associated replies, defining reply 

messages structures to be transmitted to the NCAP using the same RS-232 interface. 

According to the IEEE1451.0 Std., the construction of message structures should be 

made in the Communication API that is the responsible for managing the NCAP-TIM 

connections. Since current architecture follows a thin implementation, when the NCAP 

receives remote commands through the HTTP methods, they are decoded and directly 

mapped to command messages structures recognized and sent to the TIM using the RS-

232 interface, as depicted in figure 5.8. The same process is followed when replies are 

generated by the TIM. In this situation, the NCAP receives reply messages structures 

through the same RS-232 interface, decodes them, and defines the reply messages, 

whose formats (XML, text or HTML) are previously indicated in a parameter of the 

HTTP methods that originated those replies. Despite the TIM may also generate TIM-

initiated messages, currently the NCAP does not handle this type of messages, i.e. it is 

not able to decode and generate HTTP messages caused by TIM-initiated messages.  
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Figure 5.8: NCAP-TIM accessing mechanism. 
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The well-defined and standard division between the message structures of the TIM 

and the message formats of the NCAP guarantees a clear separation between these two 

modules. The adopted thin implementation of the IEEE1451.0 Std. does not adopt the 

APIs used for interfacing the NCAP and TIM, but it stills guarantees a plug&play 

facility between both, since they follow the message formats defined by the IEEE1451.0 

Std. This means that NCAPs and TIMs that follow this same implementation may also 

be easily interfaced without further developments. The collaboration during the 

developments can be therefore guaranteed. Developers that follow the proposed thin 

implementation, in particular the described accessing mechanisms, may split their work 

by developing independently the NCAP, the TIM and the different weblab modules that 

should be compatible with the IEEE1451.0-compliant module.  

During developments, the verification of the TIM operation independently of the 

NCAP was facilitated, since they can be independently accessed. Previously 

reconfigured with a simple I/O weblab module (described in chapter 6) compatible with 

the IEEE1451.0-Module, the TIM was controlled using IEEE1451.0 commands and 

monitored through the associated replies
101

. As represented in figure 5.9, several 

commands were issued and the replies observed, proving that the TIM and the 

associated weblab module operation are in accordance with the IEEE1451.0 Std. 

TC number

Command (class + function) - ReadTEDSsegment 

length

TEDS access ID code

offset

Reply error 

message

Reply 

message 

success

length

TEDS contents

 

Figure 5.9: Example of commands sent to the TIM reconfigured with an I/O weblab 

module using the Comm Operator Pal serial port tool. 

 

                                                
101 This was achieved by using a simple PC running a serial communication tool named Comm 

Operator Pal attached to the FPGA-based board through the RS-232 interface 

(http://www.serialporttool.com/CommPalInfo.htm). 

http://www.serialporttool.com/CommPalInfo.htm


 

Chapter 5: A weblab implementation supported by FPGA-based boards 117 
 

Therefore, the TIM can be attached to any type of device able to understand 

IEEE1451.0 commands. Enriched software applications can then be developed for 

controlling the weblab, extending its application to different solutions and domains that 

require a local or a remote control through the web. This was precisely the objective of 

using the NCAP. Despite the thin implementation of the NCAP-TIM reference model, 

the software package developed for the NCAP permits accessing the IEEE1451.0 

commands using the HTTP-IEEE1451.0 API. Moreover, as already referred, it provides 

a set of HTML pages to facilitate issuing those commands using the different methods 

provided by the API allowing, this way, to verify the correct operation of the 

infrastructure when remotely controlled. Figure 5.10 exemplifies the use of the 

ReadTEDS command, which accesses the MD-TEDS of a weblab module connected to 

the IEEE1451.0-Module using the TC number 3, and presents the associated reply in 

XML format. 

Another possibility for accessing the TIM is provided by the Reconfiguration API 

also implemented in the NCAP. In the current implementation, was adopted the 

WriteTIM method to send the bitstream file (describing the weblab project) to the 

reconfiguration module installed in the NCAP. This module, supported by the UrJTAG 

software, sends the file to the FPGA-based board reconfiguring the infrastructure. In 

this situation, users do not have a direct interaction with the WriteTIM method since this 

is issued by the RecTool. The advantage of using the WriteTIM and the ReadTIM 

methods is the possibility they offer for providing a standard access to the NCAP for 

reconfiguring the infrastructure. This means that if a different RecTool were created, 

developers should take into consideration that reconfiguring the infrastructure would 

require using the methods provided by the Reconfiguration API, which will incentivize 

the collaboration during developments. 

b) XML format reply a) command
 

Figure 5.10: Example of a ReadTEDS command and the associated reply in XML format 

issued using the IEEE1451.0-HTTP API. 
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5.5. The weblab reconfiguration tool 

The RecTool enables to reconfigure the weblab infrastructure with different weblab 

modules, changing it according to the requirements posed by the target experiments. 

This tool is accessed through an interface using a web browser able to parse HTML 

tags, without any specific plug-ins or software tools installed in the users’ accessing 

device. The reconfiguration of the infrastructure is much dependent on the redefinition 

of the internal architecture of the IEEE1451.0-Module that is pre-defined and available 

in the weblab server. The files describing these modules are included in the weblab 

Server File System (WSFS) of the RecTool software, providing all the applications 

required to redefine the IEEE1451.0-Module to bind the weblab modules. Although a 

reconfiguration process is automatically implemented by the RecTool, users should 

follow a specific sequence that includes: i) selecting the weblab modules; ii) defining 

their connections within the infrastructure; iii) building and synthesizing the weblab 

project and; iv) reconfiguring the infrastructure. 

The interaction with the RecTool is performed using the web interface illustrated in 

figure 5.11. It is divided in three main sections, enabling users to control all the 

reconfiguration process: 

 upload - Allows uploading configuration and project files to create the weblab 

project, and/or files, already synthesized by this same RecTool, to reconfigure 

the infrastructure; 

 information - All feedback actions made by the users are displayed in this 

section, which also presents the current weblab server state, namely its current 

time and if it is busy synthesizing a weblab project; 

 panels - This section is divided in three panels: i) build panel, which presents all 

files required to build the weblab project and enables users to start the building 

process; ii) reconfiguration panel, which enables users to start the synthesis and 

the reconfiguration processes and has all synthesized files used to reconfigure 

the FPGA and; iii) reports panel, which provides reports generated during the 

users’ interaction with the RecTool. 

 

The WSFS provides a space shared by different users for generic files and for the 

applications used in the RecTool, and another space reserved for each user, so they can 

store their own files. Those files may be divided into two groups: i) files used for 

building a weblab project (available in the build panel) and; ii) files generated by the 

RecTool, available in the reconfiguration and reports panels, that have in their names 

the date and time of their creation so users may understand the action(s) that originated 

them. 
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Figure 5.11: Web interface of the weblab reconfiguration tool. 

 

The build panel has two subgroups of files for building the weblab project: 

 configuration files (*.conf) - Text files containing all rules for redefining the 

weblab project, namely to check consistency, generate and interface the project 

files into the IEEE1451.0-Module and to specify all configurations required for 

binding the weblab modules to that same infrastructure; 
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 project files (*.v/vh/map/teds/ucf) - Comprise five types of files required for 

building the weblab project: i) Verilog HDL files with the design of each weblab 

module (*.v); ii) Verilog HDL files with the interface for binding those modules 

to the IEEE1451.0-Module (*.vh); iii) binary files describing the TEDSs used by 

the IEEE1451.0-Module to control and monitor the weblab modules (*.teds); iv) 

a binary file to map those same TEDSs into the IEEE1451.0-Module (*.map) 

and; v) one file to describe the pinout used by the FPGA-based board (*.ucf). 

 

The reconfiguration panel provides two types of files generated by the weblab server 

for reconfiguring the FPGA, namely: 

 bitstream files (*.bit) - Contain the binary code used to reconfigure the FPGA, 

and/or; 

 Simple Vector Format (SVF) files (*.svf) - Contain boundary scan vectors to 

send the same binary code available in the bitstream files to an FPGA using a 

JTAG interface.  

 

The reports panel may provide five types of report files (*.rep) generated during the 

interaction with the RecTool: 

 Bbind_date.rep - Describes the interface established by the weblab modules with 

the IEEE1451.0-Module; 

 Bteds_date.rep - Provides information about the TEDSs’ consistency check, 

generation of HDL files with TEDSs’ contents and their interface with the 

IEEE1451.0-Module; 

 Syn_date.rep - Reports the results of the weblab project synthesis; 

 Svf_date.rep - Indicates if the *.svf file was successfully created; 

 Reconf_date.rep - Reports the final result of the reconfiguration process, 

indicating if it was successful. 

 

The inherent complexity of the reconfiguration process and of the modules that form 

the weblab infrastructure will be detailed in the following chapter. It will focus on the 

structure and functionalities of the IEEE1451.0-compliant module, layout and interfaces 

for binding and designing the weblab modules, and on the implementation and 

utilization of the RecTool.  
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5.6. Summary 

Supported by the features described in the IEEE1451.0 Std. that involves the use of a 

well-defined reference model, the previous chapter suggested a thin implementation for 

designing standard based weblabs. Since the suggested implementation does not hamper 

the standard access to weblabs, it was considered an interesting solution for verifying 

the advantages of using the IEEE1451.0 Std. for designing reconfigurable weblabs. This 

chapter presented an implementation of a reconfigurable weblab based on that thin 

implementation using FPGA-based boards for designing the underlying infrastructure. 

For its reconfiguration, one of the extensions proposed for the IEEE1451.0 Std., namely 

the use of the WriteTIM method, was adopted. The overall weblab architecture and 

functionalities were presented, namely the possibility of reconfiguring the infrastructure 

with different weblab modules able to be controlled/monitored according to the 

IEEE1451.0 Std. The NCAP-TIM reference model and their connections were detailed, 

explaining the functionalities provided by each. It was provided an overview of the 

IEEE1451.0-complaint module and of its internal structure, since this is the main 

element that enables the reconfiguration of the weblab by the ability it has of being 

automatically redefined for binding the weblab modules selected for the conduction of a 

given remote experiment. Before presenting the functionalities of the RecTool and its 

interface, mechanisms for accessing the weblab were presented, emphasizing the way 

IEEE1451.0 commands can be applied to the weblab for controlling/monitoring the 

weblab modules and the entire infrastructure. Since the redefinition of the weblab is 

automatically processed using the RecTool installed in the weblab server, a generic 

overview of its functionalities was presented, leaving the other details to the following 

chapter. 
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 Chapter 6   

The weblab reconfigurable framework 
 

 

 

The two previous chapters described the IEEE1451.0 Std. and presented a compliant-

weblab prototype, whose infrastructure is supported by an FPGA-based board able to 

accommodate weblab modules required to conduct remote experiments. 

This chapter details the reconfigurable framework provided by the designed weblab 

prototype, describing all the involved resources and tools required for reconfiguring the 

infrastructure with the weblab modules. The different interactions among those 

resources and tools, and the role of students, teachers, technicians and developers in the 

reconfiguration process, is also referred. Since the reconfiguration capability is mainly 

provided by the IEEE1451.0-compliant module configured in the FPGA, a particular 

attention is given to its structure and functionality, and to the layout and interface of 

compatible weblab modules. The IEEE1451.0-compliant module is detailed, namely its 

internal structure that includes a set of modules, whose capabilities of being 

automatically redefined for binding the weblab modules during a reconfiguration 

process are highlighted. The weblab modules are also detailed, in particular their layout 

and interfaces. The chapter ends by presenting the reconfiguration process, namely the 

functional and technical details of the Reconfiguration Tool (RecTool). 
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6.1. Involved resources and tools 

Besides the adoption of the IEEE1451.0 Std. for the standard access and design of 

weblabs, the 2
nd

 innovation proposed in this work focus on the capability for 

reconfiguring the weblab infrastructures [142]. The weblab modules are able to be 

reconfigured in the infrastructure, overcoming the usual limitations of today’s weblabs 

that only allow setting up connections among traditional instruments and the target 

experiments. By using a reconfigurable framework, students, teachers and technicians 

can select weblab modules required to conduct a particular experiment and include them 

into the weblab infrastructure, as done in a traditional laboratory by selecting the 

instruments and connecting them to the target experiments. Additionally, the adoption 

of weblab modules described through HDL files according to the IEEE1451.0 Std. 

provides an added-value to common weblabs, since those modules can be easily 

replicated and shared, as previously referred in this thesis.  

As illustrated in the conceptual diagram of figure 6.1, the reconfigurable framework 

comprises different resources and tools implying the interaction of two main groups of 

human actors: i) students, teachers and technicians, to reconfigure the weblab with 

different weblab modules and; ii) developers, whose tasks focus on designing 

compatible weblab modules able to be shared by the educational community when 

adopting similar weblab architectures.  
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Figure 6.1: Conceptual diagram with tools, resources and the human actors involved in 

the reconfiguration process. 

 

The RecTool provided by the weblab server is responsible for creating the so-called 

weblab project, which is the bitstream file used to reconfigure the TIM of the 

infrastructure implemented by the FPGA-based board. The weblab project is the result 

of a reconfiguration process that involves the selection of the weblab modules required 



 

126 An IEEE1451.0-compliant FPGA-based reconfigurable weblab 
 

to reconfigure the infrastructure. This process is essentially made by students, teachers 

or technicians to design a workbench to conduct the remote experiments. They select a 

set of files (HDL files and binary files with the TEDSs) describing the weblab modules, 

and bind them to a generic IEEE1451.0-compliant module predefined and available in 

the RecTool. This process implies an interaction with a web interface provided by the 

RecTool that requires the definition of a configuration file with a set of rules for 

reconfiguring the weblab infrastructure. According to those rules, two software modules 

named Bind and Config (part of the RecTool) redefines the IEEE1451.0-compliant 

module, entirely described through Verilog HDL files, and bind the selected weblab 

modules. This process is entirely transparent to students, teachers and technicians, since 

they just need to interact with the RecTool interface without describing any module 

used to create the weblab project that is sent to the FPGA-based board for reconfiguring 

the infrastructure. 

Since the idealized and implemented architecture for reconfiguring weblabs seeks to 

improve collaboration among the educational community by sharing different weblab 

modules, these should be designed to be compatible with the IEEE1451.0-compliant 

module available in the RecTool. These are precisely the tasks for the involved 

developers. They should focus their efforts on designing the weblab modules according 

to a set of specifications, so they can be easily shared and bound to weblab 

infrastructures similar to the one described in this thesis. Therefore, it is important to 

understand the structure and functionalities provided by the IEEE1451.0-compliant 

module, so it may be redefined to connect compatible weblab modules. Additionally, 

the design of those modules should follow a particular layout and interface, which is 

mainly implemented by the IEEE1451.0-compliant module redefined according to the 

reconfiguration process. 

6.2. Structure and functionality of the IEEE1451.0-compliant 

module 

The IEEE1451.0-compliant module, named as IEEE1451.0-Module, implements the 

main IEEE1451.0 specifications for accessing and binding the weblab modules adopted 

for interfacing the target experiments. It is entirely described through Verilog HDL 

files, which makes it portable for being embedded into any type of FPGA implementing 

the TIM of the weblab infrastructure. To provide the reconfiguration capability to the 

weblab, the IEEE1451.0-Module is able to be redefined to bind the selected weblab 

modules using TCs controlled according to the IEEE1451.0 Std.  

The TIM is structured according to a modular approach separating the main 

controller (the IEEE1451.0-Module) from the weblab modules. This way, it is possible 

to reconfigure different modules in the infrastructure, by automatically redefining the 

internal structure of the IEEE1451.0-Module, namely the number of TCs, the adopted 

TEDSs, internal connections, status and state memories adopted for managing the way 
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the TCs operate, among other particular issues. Although the IEEE1451.0 Std. defines a 

TC as a transducer and all the signal conditioning and conversion components, for 

implementing the reconfiguration capability of the infrastructure, the range covered by 

TCs is extended. TCs are not seen as simple transducers but as the channels that enable 

accessing the weblab modules making them smart, since they are controlled and defined 

according to the requirements posed by the IEEE1451.0 Std. They control internal 

parameters and access the DSs of the weblab modules according to TEDSs’ definitions. 

For this purpose, the internal structure of the IEEE1451.0-Module comprises four other 

internal modules illustrated in figure 6.2 and further described in the next subsections: 

 Decoder/Controller Module (DCM) - Is the Central Processing Unit (CPU) that 

controls all the other modules, by decoding commands received from an 

Universal Asynchronous Receiver/Transmitter Module (UART-M) or by the 

reception of an event signal generated by a weblab module. It uses two 

memories described in the following sections, namely the Memory Buffer (MB) 

and the Map Table (MT); 

 TEDS Module (TEDS-M) - Accommodates TEDSs in memories accessible 

through a set of commands provided by an internal controller. The commands 

are issued by the DCM through a specific hardware API entirely described in 

Verilog HDL that provides a set of instructions to read/write the TEDSs; 

 Status/State Module (SSM) - Manages the operating states and the status 

registers of each TC and TIM defined in two internal memories. It also 

comprises an internal controller that enables the access to those internal 

memories through a set of commands issued by the DCM using a specific 

hardware API described in Verilog HDL; 

 UART Module (UART-M) - Interfaces the NCAP and the TIM through the 

control/monitor connection established using an RS-232 interface. This module 

extends the common features of a typical UART, since it also implements a 

verification mechanism to guarantee that the transferred data is in accordance 

with the message structures defined by the IEEE1451.0 Std. 
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Figure 6.2: Internal modules of the IEEE1451.0-Module. 
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6.2.1 Decoder/Controller Module (DCM) 

This is the CPU that controls the entire IEEE1451.0-Module. It contains several 

internal registers detailed in annex J.1, and provides the following features: i) manages 

IEEE1451.0 commands; ii) provides error detection mechanisms; iii) controls both the 

TEDS-M and the SSM by reading, writing or updating their internal memories; iv) 

controls the UART-M and; v) controls the TCs connected to the weblab modules. 

Internally the DCM follows a structured architecture including three groups of 

embedded tasks, namely: 

 Internal-tasks (detailed in annex J.2.1) - Manage internal functions like errors, 

message structures, etc.; 

 Command-tasks (detailed in annex J.2.2) - Implements the IEEE1451.0 

commands; 

 TC-tasks - These tasks interact with the weblab modules for controlling each TC 

using a specific handshake protocol. They are described by the developers of the 

weblab modules according to particular rules, to guarantee the compatibility of 

those modules with the IEEE1451.0-Module. Further details about theses tasks 

are presented in subsection 6.3.3. 

 

The DCM uses a set of buses and lines to interface the other internal modules of the 

IEEE1451.0-Module, namely the TEDS-M, SSM, UART-M, the MB and MT 

memories, and the weblab modules reconfigured in the infrastructure. Most of the buses 

are predefined, but some differ in the number of lines. This is the case for the required 

buses to interface each TC, since they depend on the weblab modules specified to be 

bound during the reconfiguration process. Annex J.3 depicts the DCM schematics, 

detailing all adopted buses and lines. 

Internally, the DCM implements several features to control the IEEE1451.0-Module. 

It interfaces the other modules according to the received IEEE1451.0 commands, whose 

operations are supported by the MB and MT memories. Additionally, it manages 

internal and external errors caused by the weblab modules, enables the use of the status-

event protocol, implements triggers and event detections mechanisms on TCs running 

as event-sensors. 

External modules 

The DCM interfaces the UART-M using a set of buses and lines for data 

transmission/reception to/from the NCAP. It sends/receives commands to/from the 

NCAP to control the entire infrastructure, and therefore the weblab modules. When the 

UART-M receives commands, it triggers the DCM to decode those commands by an 

internal procedure that verifies if data within the command message structure is in 

accordance with the IEEE1451.0 Std. (e.g. verifies if the destination TC may receive the 
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command defined by the class and function fields, verifies if the specified length is in 

accordance with the selected field, etc.). When the DCM detects an invalid command, it 

generates an internal error that will be mapped into an IEEE1451.0 error by activating 

one or more bits in the registers of the status memory available in the SSM. 

To manage both the TEDS-M and the SSM, the DCM uses hardware APIs to access 

a set of commands provided by those modules, to read or write their internal memories, 

namely the TEDSs and the status/state memories that gather information about each 

TC/TIM. The access is established through bus lines controlled by a specific handshake 

protocol that manages multiplexing mechanisms internally provided by both the TEDS-

M and the SSM. The interface to the TCs is defined during the reconfiguration process, 

since it depends on the implementation of each weblab module, namely on the adopted 

TC-tasks. 

Memory Buffer (MB) 

To manage the NCAP-TIM data-flow and to support the implementation of 

commands to write or update TEDSs, the DCM accesses the MB. The length of this 

memory is defined according to the TEDS with maximum data length. It gathers 

temporary data fields before they can be written into a TEDS memory provided by the 

TEDS-M, and also acts as a bridge between DSs and the data within the IEEE1451.0 

commands used to read/write data from/to the weblab modules. During the 

reconfiguration, the MB is synthesized to a RAM, enabling to read and write its internal 

data locations by managing a set of buses and lines. Annex J.4 presents the DCM-MB 

interface, describing internal parameters to create the MB, buses, lines and the internal 

HDL code sequences adopted by the DCM to access the MB. 

Map Table (MT) 

The MT is a memory that associates each TEDS, defined in the TEDS-M, to a 

particular TC or TIM, according to a specific ID code. It is defined in a *.map file by 

students, teachers or technicians before starting a reconfiguration process of the weblab 

infrastructure, since the number of TEDSs differs according to the implemented 

functionalities and the selected weblab modules. Based on the association established in 

the MT, the DCM selects which TEDS’s memory should be accessed.  

As exemplified in figure 6.3, the MT is implemented according to a structure very 

similar to the one available for TEDSs. It includes a data block, and the same length and 

checksum blocks of a common TEDS for specifying the length and for guaranteeing the 

data integrity. The data block is organized into structures, whose fields specify the TCs 

or TIM IDs (defined by 2 octets) followed by a length field (1 octet) that indicates the 

number of associated fields. This length field must have an even value since the 

remaining fields are always defined in pairs of 2 octets; the first indicating the TEDS ID 

code, and the second the associated TEDS memory number identified by the DCM.  
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Figure 6.3: MT structure and an example with 3 TCs. 

 

The contents of the MT cannot be changed during the operation of the DCM, since it 

is automatically synthesized to a ROM during the reconfiguration process. Annex J.5 

presents the DCM-MT interface, describing the buses, lines and the internal HDL code 

sequences adopted by the DCM to access the MT. 

Errors 

The DCM handles errors according to their sources. There are errors generated 

internally by the DCM, by the external modules (TEDS-M, SSM and UART-M), and by 

the weblab modules. Generated errors are mapped into IEEE1451.0 errors by setting up 

specific status bits in the condition register of each TC/TIM provided by the status 

memory available in the SSM. This process is handled by a DCM internal-task named 

errorHandler() that, after mapping errors, sends a reply message to the NCAP indicating 

the existence of an error that can be latter monitored by reading the condition or event 

registers
102

. In the current DCM version, there is no distinction between TC or TIM 

errors. When an error is detected, it is mapped to both the TC and the TIM condition 

registers using an OR logic approach. For example, if an invalid command is detected, 

the 2
nd

 bits of the condition registers, which indicate invalid commands, are set in the 

TC and in the associated TIM, unless the command has only been sent to the TIM. In 

this situation, only the 2
nd

 bit of the condition register associated to the TIM is set. 

When new weblab modules are connected to the IEEE1451.0-Module, the internal error 

lines of the DCM are automatically redefined during the reconfiguration process to 

detect and handle possible generated errors. When an error caused by a weblab module 

is detected after receiving a command message, a reply message is sent to the NCAP 

indicating the existence of an error. Currently, the DCM implements a simplified 

version to handle external errors, by mapping all of them to an hardware error specified 

by the IEEE1451.0 Std. In future versions of the IEEE1451.0-Module this aspect may 

be easily improved by modifying the errorHandler() internal-task.  

                                                
102 The NCAP can read the condition or event registers using an IEEE1451.0 HTTP method named 

sendCommand to send the ReadStatusEventRegister or the ReadStatusConditionRegister commands to 

the TIM. It can also automatically evaluate an error when the status-event protocol is active, since 

the reply message sends the event register of the associated TC/TIM that caused the error. 
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Finally, annex J.6 provides a detailed description about the adopted registers and 

buses in the DCM for implementing the error detection mechanism, and annex J.7 

describes the error codes internally specified in the IEEE1451.0-Module, namely in the 

condition registers, and their mapping to an internal register, named error_reg, adopted 

by the error detection mechanism.  

Status-event protocol 

For facilitating the detection of errors or events internally generated in the TIM, the 

status-event protocol can be activated in the IEEE1451.0-Module, namely for each 

TC/TIM, using the WriteStatusEventProtocolState command. As illustrated in figure 

6.4, when the TIM, or a specific TC, has the status-event protocol active, and a Service 

Request (SR) signal is generated by the associated TC/TIM, the DCM sends a TIM-

initiated message if all commands issued were completed
103

 and no error is being 

attended by the internal-task errorHandler()104. This message has the contents of the 

TC/TIM event register defined in the status memory provided by the SSM, as described 

in the IEEE1451.0 Std. 

 

Service Request TC/TIM

No errors being attended

Status-event protocol enabled 
for the TC/TIM that generated 
the service request

Sends a TIM-initiated message 

whose contents have the event 

register of the TC/TIM that 

generated the SR

&

Commands issued to 
TC/TIM completed

SR

 

Figure 6.4: Implemented logic for the status-event protocol. 

 

Triggers 

If a specific TC operates in a trigger-dependent sampling mode, namely: i) Trigger 

initiated; ii) Free-running without pre-trigger; iii) Free-running with pre-trigger or; iv) 

Continuous; it means it depends on a trigger signal to control its operation. The trigger 

capability of a specific TC is defined within the associated state memory of the SSM 

that defines its state indicating if it is enabled or disabled. The trigger state definition 

can be read using the ReadTCtriggerState command and changed by the 

WriteTCtriggerState command. Once in a trigger dependent sampling mode, and if the 

trigger capability is enabled, by using the adopted TC, students/teachers may issue the 

TriggerCommand command to send a trigger signal to start an operation on the 

associated weblab module, and the AbortTrigger to abort that same operation. 

                                                
103 A command completed means that a command message was received, decoded and the associated 

reply message was sent to the NCAP. 
104 Current NCAP version does not handle TIM-initiated messages, but these were implemented in the 

TIM so it may be adopted in other architectures with improved NCAPs. 
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Events generated by the weblab modules 

TCs running as event sensors use dedicated TC-event lines to inform the DCM that a 

specific event occurred. A TC can only have one event line with no handshake protocol 

required. A multiplexing mechanism is defined during the reconfiguration process 

according to the number of TCs that may handle events. Internally, when a specific 

event is detected by the DCM, it accesses an associated TC-task named event() for 

performing the actions defined in its description (e.g. send a TIM-initiated message). 

Figure 6.5 provides an illustrative diagram about the reconfigurable multiplexing 

mechanism adopted for attending external events
105

.  
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Figure 6.5: Adopted architecture to handle events generated by weblab modules. 

 

6.2.2 TEDS-Module (TEDS-M) 

TEDSs provide generic information about the whole infrastructure, i.e. the TIM, each 

TC, and the associated weblab module. As part of its functionality, a TEDS contains 

data fields with descriptive and control parameters for controlling the weblab modules’ 

operation. Current solution implements all TEDSs within the TEDS-M, which 

integrates an internal controller that provides particular commands to write, read or 

update each TEDS. The TEDSs’ contents are accessed by the DCM using command-

tasks and TC-tasks, through an hardware API. All TEDSs follow a particular structure 

and are interfaced with an internal controller using a multiplexing mechanism. 

Internally, the TEDS-M comprises a controller, a multiplexer and the TEDSs 

memories, as illustrated in figure 6.6a). The DCM-TEDS-M access is made through a 

set of commands according to a particular handshake protocol using a set of buses and 

lines. As represented in figure 6.6b), each TEDS is divided in a memory comprising two 

main blocks: i) a number of fields with the structure of TEDSs and; ii) 12 fields that 

gather extra information about the TEDSs, namely current and maximum lengths, 

status, etc. (similar to the reply of a QueryStatus command).  

                                                
105 The TC-event lines are automatically connected to the multiplexer through an internal bus named 

event_im. The bus width is specified in the configuration file defined during the reconfiguration 

process and depends on the number of adopted TCs running as event-sensors, i.e. TCs with event 

signals.  
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Figure 6.6: The TEDS-M architecture and the data structure of a TEDS. 

 

The TEDSs are constantly accessed with read and write operations. For this purpose, 

the TEDS-M implements eight commands accessed according to a code defined in the 

access bus, as represented in table 6.1. These commands will be issued to a particular 

TEDS, whose number is identified in the select bus. While the access bus has a fixed 

width of three lines to specify each command, the length of the select bus is 

automatically defined during the reconfiguration process. This definition is made 

according to the number of adopted TEDSs, so the controller may select the associated 

memory when a specific command is issued. Table 6.2 exemplifies the use of the select 

bus to access six TEDSs reconfigured in the TEDS-M. 

 

Table 6.1: Implemented commands to access the TEDS-M. 

access Commands 

000 Read Field - Reads a value from a specific field. 

001 
Read With Offset - Starting in a specific field, returns all values from the TEDS. The 

offset must be previously defined using the Define Offset command. 

010 Query Status - Returns the 12 fields with the extra information of the TEDS. 

011 
Find Field - Returns ‘1’ if a specific field exists, or ‘0’ if it does not exist or there was 

an error. 

100 
Write Field - Writes a value to a specific field.  
Note 1: The length should be the same of the old field; otherwise extra data will be missed.  

Note 2: To change the length, the Write With Offset command must be issued. 

101 
Write With Offset - Starting in a specific field, writes all values in the TEDS. The 
offset must be previously defined using the Define Offset command. 

110 Write Status - Writes the 12 fields with the extra information of the TEDS. 

111 
Define Offset - Defines the offset used by the Read/Write With Offset commands.  
Note: The offset starts from the most significant octet representing the length of a TEDS. 

 

Table 6.2: Memory selection in the TEDS-M. 

select TEDS memory number select TEDS memory number 

000 0 011 3 

001 1 100 4 

010 2 101 5 
Note: The width of the select bus depends on the number of 

TEDSs reconfigured in the TEDS-M. 
111 not used 
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The TEDS-M responds to: i) DCM internal-tasks, used when the IEEE1451.0-

Module receives commands and; ii) TC-tasks, belonging to a particular implementation 

of a weblab module, which are automatically embedded into the DCM during 

reconfiguration. Therefore, since the main objective is to provide a reconfigurable 

infrastructure able to control different weblab modules agnostic to implementation 

details of the TEDS-M, an abstraction layer implemented by an hardware API was 

created to simplify the access to the TEDSs’ contents. As illustrated in figure 6.7, the 

API accesses the commands of the TEDS-M using an handshake protocol. It is 

implemented by different tasks within the Access_ModTEDS.vh file, providing the 

instructions described in table 6.3, which have a set of I/O parameters to interact with 

DCM internal registers.  
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Figure 6.7: Layered structure supported by the Access_ModTEDS hardware API to 

access the TEDSs memories reconfigured in the TEDS-M. 

 

Table 6.3: Instructions provided by the Access_ModTEDS hardware API. 

ModTEDS_ReadField 

Reads all fields associated to a TLV structure defined in a TEDS memory. 

ModTEDS_WriteField 

Writes all fields associated to a TLV structure defined in a TEDS memory. 

ModTEDS_ReadWithOffset 

Reads all fields of a TEDS memory after a selected offset. 

ModTEDS_WriteWithOffset 

Writes all fields of a TEDS memory after a selected offset. 

ModTEDS_QueryStatus 

Returns the status register of a TEDS memory. 

ModTEDS_WriteStatus 

Writes the status register of a TEDS memory. 

ModTEDS_FindField 

Finds a field in a TEDS memory. 

 

Annex J.8 presents details about the TEDS-M, namely the definition of internal 

variables, the internal schematics, the handshake protocol adopted for interfacing the 

DCM, and details about the instructions provided by the hardware API. 
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6.2.3 Status/State Module (SSM) 

This module provides access to two independent memories, whose contents specify 

the status and operating states of the TCs/TIM. During DCM operations those memories 

will be accessed by different tasks to update their status and states. The access to those 

memories is made through a set of commands provided by an internal controller, whose 

access can be made by another hardware API.  

Internally, the SSM comprises a controller, a multiplexer and the status and the state 

memories, as illustrated in figure 6.8a). The length of these memories depends on the 

number of adopted TCs, and their structures are divided into several segments, as figure 

6.8b) represents. The status memory has segments with 3 registers of 32 bits wide, each 

associated to a particular TC/TIM, namely the condition, event and mask registers. 

These are changed according to the status message generation logic defined by the 

IEEE1451.0 Std., implemented by the internal status/state controller. The state memory 

has segments with 2 registers of 8 bits wide, each also associated to a particular 

TC/TIM. The segments gather the: i) operating states of each TC/TIM, namely if they 

are in the initialization, active, sleep, operation or idle states and; ii) the trigger state, 

that indicates if a specific TC has its trigger enabled or disabled (the TIM does not have 

trigger states). The length of both memories is defined through internal parameters 

changed during the reconfiguration process. 
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Figure 6.8: The SSM architecture and the status/state memories structures. 

 

To simplify the access to both the status and the state memories, the SSM provides a 

set of four commands decoded by its internal controller, as indicated in table 6.4. 

Issuing a command to this module does not require selecting the memory to access, 

since it is the command itself that handles this issue, indicated by the access bus. The 

memory addresses must be defined by the address bus, whose width is automatically 

defined during reconfiguration, according to the number of implemented TCs. When the 

controller detects one command, it is decoded to trigger a specific procedure according 

to the accessed memory and the executed operation (read or write). 
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Table 6.4: Implemented commands to access the SSM. 

access Commands 

00 
writesStatus - Writes into a status register.  

The type of register is automatically detected (condition, event or mask). 

01 
readsStatus - Reads a status register.  
The type of register is automatically detected (condition, event or mask). 

10 
writesState - Writes into a state register.  

The type of register is automatically detected (state or trigger). 

11 
readsState - Reads a state register.  

The type of register is automatically detected (state or trigger). 

 

Reading the state memory using the readState command does not require any 

specific procedure within the controller. Forcing a transaction between states, i.e. 

issuing the writesState command to change the operating state of a specific TC/TIM, 

requires evaluating if that transaction is valid. This is internally made by consulting an 

internal Look Up Table (LUT) that contains all valid transactions. Since the current 

version does not distinguish the trigger states of any TC/TIM, changing a trigger state 

only sets or resets bit 0 of each register, and no further processing is made, except when 

trying to change the TIM trigger state. In this situation, an error will be generated, since 

the TIM does not have any associated trigger.  

The complexity increases when using the writesStatus and the readsStatus 

commands. When these commands are issued, the SSM automatically detects what type 

of register will be accessed (condition, event or mask). By issuing a writesStatus to a 

condition or mask registers, the controller activates the status message generation logic 

defined by the IEEE1451.0 Std. Since there is no IEEE1451.0 command able to change 

the event register, the SSM does not enable writing event registers, generating an error 

if there is a request to do such operation. By issuing the readsStatus, the controller reads 

a register of any type and, if it is an event register, it will also clear its contents. 

As represented in figure 6.9a), all bits of the TIM condition register represent an OR 

logic of all bits in each TC condition register. In other words, when a bit is set in a TC, 

the correspondent bit in the TIM will be also set. In situations where an error is caused 

only by the TIM, i.e. not associated to a particular TC, only the bits in the TIM are set. 

The same OR logic is applied when a SR is generated according to the status message 

generation logic, as represented in the same figure 6.9b). Every SR generated by TCs or 

by the TIM, sets a specific bit in an internal register named servReq, whose length 

depends on the adopted TC defined during reconfiguration. Since an OR logic is 

adopted for generating a SR to the whole infrastructure, every SR generated by a 

specific TC or by the TIM, triggers a generic signal, which may originate a TIM-

initiated message if the status-event protocol is active for that TC/TIM, as previously 

described. 
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Figure 6.9: Implemented logic for the condition registers and for the SR signal. 

 

Both the status and state memories are accessed by: i) DCM internal-tasks, used 

when this last module receives commands and; ii) TC-tasks belonging to particular 

implementation of a weblab module, which will be automatically embedded into the 

DCM during the reconfiguration process. With a schema similar to the one adopted for 

the TEDS-M, an hardware API facilitates the access to those status and state memories 

using the commands of the SSM, as illustrated in figure 6.10. This API is implemented 

by different tasks within the Access_ModStatusState.vh file, providing the instructions 

described in table 6.5, which have a set of I/O parameters to interact with DCM internal 

registers. 
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Figure 6.10: Layered structure supported by the Access_ModStatusState hardware API 

to access the SSM status and the state memories. 

 

Table 6.5: Instructions provided by the Access_ModStatusState hardware API. 

ModStateStatus_Read 

Reads the status or the states of a particular TC or TIM. 

ModState_Write 

Defines the state for both TCs and TIM, and defines if the trigger is active for a particular TC. 

ModStatus_Write 

Changes the condition, event or mask registers of a particular TC or TIM. 
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Annex J.9 presents several details about the SSM, namely the definition of internal 

variables, the schematics with the adopted buses and lines, the handshake protocol 

adopted for interfacing the DCM, and the instructions provided by the hardware API. 

6.2.4 UART Module (UART-M) 

The UART-M establishes the interface between the IEEE1451.0-Module and the 

NCAP using the control/monitor connection implemented by an RS-232 interface. It is 

controlled by the DCM using an handshake protocol that manages a set of signals to 

access two internal buffers and to control all data-flow during transmissions. The 

UART-M also implements a mechanism for validating and creating command, reply 

and TIM-initiated messages structures defined by the IEEE1451.0 Std. 

As represented in figure 6.11, the UART-M comprises three independent modules: 

the Tx, Rx and the BR_generator. The Tx and Rx modules manage all data 

transmissions, and the BR_Generator module defines the data rate according to a clk 

signal that is also used to synchronize all the other modules within the IEEE1451.0-

Module. Data transmissions are made through the tx and the rx lines.  
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Figure 6.11: The architecture of the UART-M and the interface with the remaining 

modules of the IEEE1451.0-Module. 

 

Besides providing the interface to the whole TIM, it also implements specific 

features in the Tx and Rx modules. The Rx module has an internal mechanism that 

evaluates if the received command message structures are in accordance with the 

IEEE1451.0 Std. It verifies if the format and length of the received structures are valid, 

and if the synchronization bits follow the implemented solution that uses one start bit 

and two stop bits without parity check. If valid, the Rx module fills-in its internal 

buffer. Otherwise, if an inconsistency is detected, i.e. the length does not correspond to 

the remaining data sent in a specific structure, or if it does not have the delimiters start 

and stop bits, the UART-M generates an error, sending it to the DCM by turning high 

the logic signal of the error line. The Tx module gathers all data sent by the DCM in its 
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internal buffer, so it may transmit TIM-initiated messages or command reply messages. 

The baud rate is controlled by the BR_generator module that receives a clock signal in 

the clk line and generates a new clock with a lower frequency through the clk_out line. 

This line is used for synchronizing all modules of the IEEE1451.0-Module and some 

weblab modules, except the ones that run at different frequencies, which may use other 

clock signals generated by other modules designed by weblab modules’ developers.  

Annex J.10 illustrates the UART-M schematics, and the buses, lines and handshake 

protocols used by the Rx and Tx modules to receive/transmit data from/to the NCAP. 

6.3. The weblab connecting modules: layout and interface 

To bind weblab modules to the IEEE1451.0-Module, developers should follow a 

specific process and define all parts, which include one or more modules connected 

through TCs using a set of TC-tasks described in Verilog HDL and embedded in the 

DCM [143][144]. As previously referred, these TC-tasks establish the interface between 

the IEEE1451.0-Module and each weblab module, enabling their control according to 

TEDSs, also defined by the developer. The number of TCs depends on the architecture 

and parameters to control on each weblab module. In the next subsections all parts 

required to define the weblab modules are detailed, namely their architecture, the 

number of TCs and their operating modes, the TC-tasks embedded in the DCM and, the 

methodology for developing those modules. 

6.3.1 Internal architecture 

A weblab module compatible with the IEEE1451.0-Module comprises an 

architecture divided in 3 distinct parts: i) HDL files describing the module itself; ii) TC-

tasks to control and interface the module with the DCM and; iii) TEDSs to define the 

behaviour of the entire IEEE1451.0-Module and of each TC adopted to interface the 

weblab module and the DCM. As illustrated by figure 6.12, each weblab module is 

accessed by one or more TCs controlled by TC-tasks managed according to the data 

available within the TEDS and status/state memories.  
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Figure 6.12: Parts required for defining a weblab module compatible with the 

IEEE1451.0-Module. 
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The TC-tasks are responsible for accessing the TEDS-M, the SSM, the UART, and 

the MB, which gathers temporary data used by some IEEE1451.0 commands and by the 

weblab module itself during read/write operations in their DSs. To simplify the design, 

each TC-task accesses the weblab modules using the hardware APIs referred in previous 

subsections 6.2.2 and 6.2.3, facilitating this way their description and independence 

towards the specificities of the DCM implementation. 

There are required and optional TC-tasks that should be defined according to the 

adopted TC, so the DCM may automatically use them to handle received commands 

from the NCAP or events generated by the weblab modules. The number of adopted 

TCs depends on developers’ options and should take into consideration the parameters 

to control in a particular weblab module, the TEDSs’ definitions, and the resources 

available in the FPGA. 

6.3.2 Required Transducer Channels 

In a traditional weblab module, several commands are required to start a 

measurement or to read/write a specific signal from/into an external device connected to 

a target experiment. For example, to generate a waveform signal using a Function 

Generator (a type of a weblab module), developers should define, at least, three 

parameters: the waveform type, the amplitude and the frequency. These or other 

parameters should also be controlled in similar weblab modules connected to the 

IEEE1451.0-Module. The control of the weblab modules is managed by TCs, whose 

behaviour is defined according to TEDSs, in particular by the contents of the associated 

TC-TEDSs able to be changed using IEEE1451.0 commands (e.g. WriteTEDSsegment). 

Depending on the defined sampling mode, different commands may be issued to a 

particular TC. Per example, if specific data is required to read/write from/to a weblab 

module, the associated TC should provide access to its internal DSs, whose contents 

will be transferred to/from the MB, according to the data flow illustrated in figure 6.13. 
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Figure 6.13: Data flow between the DCM and the weblab modules. 

 

Dashed lines 1 represent data writing operations and dashed lines 2 data reading 

operations. Using the MB to gather all data during both operations is fundamental in 

order to guarantee an abstraction layer between the IEEE1451.0-Module, in particular 
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the DCM, and the TC-tasks described for each weblab module. This way, during their 

description, developers only need to know how to access the MB and the external DCM 

modules (TEDS-M and SSM), which is simplified using the interfaces provided by the 

hardware APIs described in subsections 6.2.2 and 6.2.3. 

As illustrated in figure 6.14, there are two solutions for controlling the parameters of 

the weblab modules: i) using several TCs for individually controlling each parameter or; 

ii) using one TC controlling more than one parameter through encoding/decoding 

processes. 
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Figure 6.14: Possibilities for controlling weblab modules parameters using TCs. 

 

In the first solution (figure 6.14a), users control individually each weblab module 

through several TCs. This means that a weblab module requiring the control of several 

parameters also requires several TCs and associated TC-tasks, several buses attached to 

the IEEE1451.0-Module and, at least, one TC-TEDS for each TC. Despite the 

possibility of a well defined control over the parameters of a weblab module, this 

solution is more resource-consuming, which may become impracticable when using a 

single FPGA to accommodate the IEEE1451.0-Module and all the weblab modules. 

The second solution (figure 6.14b), is less resource-consuming (less TEDSs and a 

single bus attached to the weblab module), but it requires extra-processing units to 

encode/decode the data transferred using the TC, both in the TC-tasks and in the 

modules indicated in the figure as the Embedded weblab module. By 

encoding/decoding the data transferred through the TC, the IEEE1451.0-Module can 

define the required parameters to control the weblab module. 

The flexibility provided by both solutions may be applied to situations that use a 

chain of several weblab modules connected through a daisy chain bus, as represented in 

figure 6.15. In this situation, developers should define the handshake protocol between 
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each TC-task and the TC encoder/decoder that should also provide a multipoint protocol 

to access each parameter. An example of a multipoint protocol that can be adopted is the 

Wishbone Bus
106

, which is an open source hardware computer bus typically used to 

interface different modules within an FPGA. The entire protocol can be implemented by 

the TC encoder/decoder (defined outside of the TC-tasks) to manage the daisy chain 

bus, providing an access to each weblab module and, in particular, to its parameters. 
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Figure 6.15: Control of a daisy chain bus with the modules connected to the 

IEEE1451.0-Module. 

Developers may adopt one or both solutions that require TEDSs to characterize the 

behaviour of a weblab module. This is the case for TCs, which must be associated with 

a single TC-TEDS that may not provide all fields required to characterize their 

behaviour. When this situation occurs, developers may define extra fields in the TC-

TEDS, or they may adopt other TEDSs, such as MD-TEDSs. Both options are in 

accordance with the IEEE1451.0 Std., and satisfy the requirements posed by every 

weblab module, since they allow users to monitor or define the behaviour of the TCs 

through specific TEDSs’ fields. Then, developers should evaluate their options upon the 

control level required for each weblab module, and the coherence of the TC-TEDS and 

other associated fields of the adopted TEDSs, with the characteristics of the I/O signals 

(e.g. associated units, ranges, etc.). In other words, a solution based on a single TC able 

to control several parameters of a specific weblab module should be only adopted if the 

TEDSs’ contents describe all relevant features of the associated I/O. 

Whatever the adopted solution, its implementation should be made either in each 

weblab module or in the daisy chain bus structure, and in the IEEE1451.0-Module by 

defining a set of TC-tasks for each adopted TC. These TC-tasks are embedded into the 

DCM through an automatic reconfiguration, and may implement any type of handshake 

protocol to interface the weblab modules. 

                                                
106 The Wishbone Bus is SoC architecture describing a flexible design methodology for interfacing 

portable IP cores (http://opencores.org/opencores,wishbone). 

http://opencores.org/opencores,wishbone
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6.3.3 TC-tasks 

Depending on the operation mode defined for a particular TC and the applied 

command, a specific procedure should be used to access the TEDSs, configure the 

parameters of a weblab module, and to transfer data between the MB and the DSs 

available within each weblab module. The TCs lines and the associated handshake 

protocol, used to access a weblab module, are defined by the developers. There are no 

restrictions, since the definition of a weblab module includes the definition of the 

associated HDL modules and the TC-tasks to be embedded into the DCM, as illustrated 

in the previous figure 6.12. This means that developers may define their own protocol 

or select a specific one, like the Wishbone Bus. The only requirement posed to 

developers is to follow a set of operational rules defined for the TC-tasks, since most of 

these tasks are accessed when a specific command is received by the DCM. 

There are mandatory and optional TC-tasks that, according to the association 

illustrated in figure 6.16, are embedded into the DCM and accessed when a specific 

command, numbered by its class and function, is issued, or when an event is generated 

by a TC running as an event sensor. The DCM automatically decodes received 

commands and accesses associated TC-task. It automatically accesses the event() TC-

task when is the weblab module that generates an event. The internal tasks descriptions 

include instructions to access the TEDS-M and the SSM to read, write or update their 

internal memories according to the operation of a weblab module, and the UART-M to 

enable the data transmission to/from the NCAP. TC-tasks have their specific functions, 

since most of them are associated to a particular command. The exception is the init() 

that is always accessed during power-up, and the event() that is not associated to any 

particular command. This last particular TC-task is accessed when an event is 

generated, and it may interact with all the other modules connected with the DCM. 
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Figure 6.16: Association between IEEE1451.0 commands and TC-tasks. 
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Thus, seven TC-tasks (some optional), may be specified for each TC, according to 

the adopted sampling mode defined in the TC-TEDS, and each one should implement 

specific features, namely: 

 start() and stop() - [optional] - Used by TCs that adopt sampling modes with 

triggers. These tasks start/stop the operation of the weblab modules indicating 

they can begin/end acquiring or sampling data to/from their internal DSs. 

Accessed by the commands AbortTrigger (3.4) and TriggerCommand (3.3); 

 rd() - [optional] - Performs a read operation. DSs are copied into the MB so they 

may be automatically accessed by the DCM. Accessed by the command 

ReadTCDSsegment (3.1); 

 wr() - [optional] - Applied to TCs running as actuators. It performs a write 

operation by copying the contents of the MB into the DSs. These contents can be 

immediately outputted if the TC runs in an immediate mode, otherwise it can 

only output data on the reception of a trigger command using the start() TC-task. 

Accessed by the command WriteTCDSsegment (3.2); 

 init() - [required] - Initializes TCs by accessing the contents of the associated 

TEDSs and defining their current operation (e.g. sampling time). The TCs go to 

an idle state. Accessed by the command Reset (7.1) and during a power-up; 

 update() - [required] - Updates the operation of TCs based on the contents of 

TEDSs. Accessed by commands Read/WriteTCDSsegment (3.1/3.2), 

TriggerCommand (3.3) and updateTEDS (1.4); 

 event() - [optional] - Only used by TCs running as event sensors, which generate 

event signals. This task may access different features of the IEEE1451.0-

Module, such as TEDSs and status/state memories, the MB, or simple transmit a 

TIM-initiated message to the NCAP. It is not associated to any command. 

 

Annex K.1 exemplifies the HDL code required for all TC-tasks specified by the 

developers of each weblab module. 

The init() TC-task is accessed after a power-up or after the reception of a reset 

command. It should initialize the weblab modules associated to a particular TC, which 

typically includes an access to the TEDS-M and SSM memories. The other TC-tasks 

impose some other operational sequences when accessed, as illustrated in figure 6.17. 

For TCs operating in trigger-dependent modes, issuing the TriggerCommand and the 

AbortTrigger commands, enables the DCM to access the update() TC-task, as 

represented in figure 6.17a). This should configure the parameters of a weblab module 

associated to the TC, by accessing the TEDS-M and the SSM. Latter, the DCM may 

access the start() TC-task to start a specific operation in the weblab module associated 

to that TC, such as I/O data to/from its internal DSs. The reception of the AbortTrigger 
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command accesses the stop() TC-task, whose internal implementation should stop that 

same operation. 
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Figure 6.17: Operational sequences performed by the TC-tasks. 

 

When a weblab module generates events, the associated TC should implement a 

trigger event mechanism. This is defined by the handshake protocol that should 

implement an event signal connected to the DCM so, as represented in figure 6.17b), the 

event() TC-task may be automatically accessed. Internally, this TC-task can access 

every module within the DCM, and in most situations it is expected to generate a TIM-

initiated message to the NCAP, eventually containing data read from the associated 

DSs. 

The remaining Write/ReadTCDSsegment commands allow writing or reading the 

DSs. As illustrated in figure 6.17c) and figure 6.17d), when issued, both commands 

automatically access the update() TC-task configuring the weblab module to enable the 

access to the TEDS-M and to the SSM. Once configured, they access the wr() or the rd() 

TC-tasks to transfer data between the DSs and the MB. Issuing the WriteTCDSsegment 

command allows to fill-in the MB with all transferred data, which is latter copied into 

the DSs of the weblab module using the wr() TC-task. Issuing the ReadTCDSsegment 

command will transfer the data into the DSs to the MB, which is latter accessed and 

transferred to the NCAP using the rd() TC-task. In both situations, the MB acts as data-

bridge to facilitate the implementation of the weblab modules by standardizing the 

access to their contents using in the wr()/rd() TC-tasks. 
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6.3.4 Development methodology 

Following the presented guidelines, the development of weblab modules compatible 

with the IEEE1451.0-Module must follow the sequence presented in the diagram of 

figure 6.18. 
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Figure 6.18: Methodology for designing weblab modules compatible with the 

IEEE1451.0-Module. 

 

Developers should start by evaluating the requirements and features of the weblab 

module they want to design. It is fundamental to evaluate its complexity to understand 

what modules should be defined in the FPGA. For this purpose, the I/Os should be 

selected, namely the associated signals, and if they act as actuators, sensors or event 

sensors. In the current architecture, those I/Os are managed by one or more parameters 

that should be controlled using one or more TCs. Therefore, after selecting the I/Os and 

the parameters to control, developers should define the number of TCs. That definition 

should be made according to the type of parameters they want to control and the 

requirements posed to the FPGA, since the use of several TCs may require many 

associated TEDSs, which may require many FPGA resources. Once the number of TCs 

is selected, developers should define the TEDSs to describe the TIM architecture and 

the weblab module behaviour. Current solution suggests that at least the TC-TEDS 

should be defined for each selected TC. Nevertheless, developers may define other 

TEDSs described by the IEEE1451.0 Std., like a MD-TEDS that allows defining extra 

fields to specify the behaviour of a particular TC, and therefore, of the weblab module. 

The way TCs are controlled is made by the TC-tasks selected according to the 

adopted sampling mode using any type of signals connected to the weblab modules. So, 

it is up to developer to decide which will be the TC-tasks used to control each TC and 

the way they are implemented, so they can provide the interface to the other modules 

within the IEEE1451.0-Module. In order to simplify the developments, during the 

description of each TC-task, developers may use the hardware APIs provided to access 

the TEDS-M and the SSM and, for the event() TC-task, the protocol adopted in the TC 

to control the data transmission/reception of the UART-M. After all these definitions, a 

specific weblab module is available to connect to the IEEE1451.0-Module using the 

reconfiguration process supported by the RecTool. 

Therefore, developing the weblab modules requires defining their TEDSs and their 

internal layouts and interfaces. To avoid going into many details in this chapter, it was 
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decided to provide some annexes with an example of a TEDS and a MT design,
107

 and 

with examples of compatible weblab modules, some of them adopted in the validation 

& verification process described in the next chapter 7.  

Annex K.2 exemplifies the design of TEDSs (and MTs).  

Annex K.3 presents some weblab modules, namely: i) two digital I/O modules 

(annex K.3.1); ii) one step-motor controller module (annex K.3.2) and; iii) a simple 

event sensor (annex K.3.3) designed just to validate the operation of the IEEE1451.0-

Module with TCs running as event-sensors. 

6.4. The reconfiguration process 

To reconfigure the weblab infrastructure, namely the TIM, it is necessary to select 

weblab modules and specify the way they are connected to the IEEE1451.0-Module. 

Students, teachers or technicians must specify a set of rules in a configuration file, and 

select other project files describing the weblab modules and other internal connections. 

They must follow a specific methodology supported by the RecTool already presented 

in the previous chapter, whose panels and files are illustrated in figure 6.19.  

 

Weblab 

modules 

(*.teds, *.v, 

*.vh) - Files 

describing the 

weblab modules.

MT file (*.map) - 

Mapping file required to 

associate the TEDSs’ 

memories to the TCs and 

to the TIM.

UCF file (*.ucf) - Specifies 

the I/O pinout of the FPGA-

based board used by the 

weblab modules.

Weblab 

projects 

(*.bit or 

*.svf) - 

Binary files 

of the 

generated 

weblab 

projects.

Reports 

(*.rep) - 

Reports 

generated 

during the 

reconf. 

process.

2013-04-17_14:34:12.svf

Upload section 

- Enables 

uploading files 

to the weblab 

server.Information  section - Presents all information 

during users’ interaction with the RecTool.

Panels section - Has all files required for reconfiguring the weblab 

infrastructure. It is divided in three other panels: i) build panel, has the 

files required to created the weblab project; ii) reconfiguration panel, 

has all synthesized files for reconfiguring the infrastructure and; iii) 

reports panel, provides the reports generated during the reconfiguration.

Configuration 

files (*.conf) - 

Contain the rules 

for redefining 

the weblab 

project (e.g. 

generate and 

interface project 

files, specify the 

configurations 

for interfacing 

the weblab 

modules, etc.).

 

Figure 6.19: The RecTool interface panels and files used for reconfiguring the weblab 

infrastructure. 

                                                
107 MTs are used in the reconfiguration process and they are designed in the same way as TEDSs. 
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This tool generates the weblab project bitstream file that includes the selected weblab 

modules, and reconfigures the TIM according to a particular reconfiguration sequence. 

6.4.1 The reconfiguration sequence 

The RecTool was developed to allow users (students/teachers/technicians) keep 

tracking of all operations made during the reconfiguration process. The most common 

sequence involves three main operations: i) build the weblab project binding the weblab 

modules to the IEEE1451.0-Module; ii) synthesize the project to create a *.bit or a *.svf 

file and; iii) sending that file to the weblab infrastructure, namely to the NCAP that will 

reconfigure the TIM. During this sequence, users interact with the RecTool interface 

from different access stages, according to the sequence illustrated in figure 6.20.  

The access stage depends on users requirements, i.e. if they want to create a new 

weblab project or to use an already synthesized one, available in the RecTool. Five 

access stages are considered: 

 Access stage 1 - After uploading the project/configuration files, users either 

follow the entire sequence or go to access stages 4 or 5 to reconfigure the TIM; 

 Access stage 2 - Users have already all project files in the RecTool to create a 

new weblab project. No uploading is required, but they should follow the 

remaining sequence; 

 Access stage 3 - The weblab project is already built and available to be 

synthesized; 

 Access stage 4 - The binary files (*.bit) for reconfiguring the FPGA are already 

available in the RecTool. Users should select one *.bit file that will be converted 

to an *.svf file to reconfigure the TIM; 

 Access stage 5 - An *.svf file is available to reconfigure the TIM. This access 

stage is the simplest one because the weblab server only needs to send the file 

and monitor the reconfiguration process. No file conversion (*.bit to *.svf) is 

required, only a report will be generated. 

 

During upload, only relevant file types are allowed (*.conf/ucf/vh/v/teds/map). Once 

selected and uploaded, they will be placed in the users’ Weblab Server File System 

(WSFS) space appearing in the RecTool interface panel (e.g. if users select a 

configuration file, it will be automatically placed in the build configuration panel). 

Next, users should select the files to build the weblab project. In this operation, the 

RecTool activates a validation mechanism to guarantee that only allowed files are 

selected with the correct cardinality (e.g. only one *.map and *.ucf files can be 

selected).  
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At the end, users should initiate the build operation, which is concluded almost 

instantaneously because the processing power required from the weblab server machine 

is reduced, and therefore, the time consumed is short (a few seconds), which does not 

happen during the synthesis operation. If there are no reported errors after the build 

operation, users should start the synthesis. This may be much time consuming, from a 

few minutes to hours, depending on the complexity of the weblab project that is related 

with the selected weblab modules, the weblab server processing power, and the reported 

errors, i.e. if during the synthesis operation an early error is detected, it stops the 

synthesis in a short period of time, otherwise it may take hours before stopping and 

retrieving that error. Although users may stop the synthesis by pressing the StopSyn 

button, it was decided to run the synthesis operation in background, so they can keep 

interacting with the RecTool, but with some restrictions, namely: i) they cannot start 

another synthesis, since the involved consuming processing power may stuck the 

weblab server machine or increase much more the time required to finish the operation 

and; ii) the build operation becomes inactive, because users cannot change the weblab 

project files while a synthesis operation is running. Nevertheless, users can still access 

the RecTool at access stages 4 and 5, i.e. they can reconfigure the weblab infrastructure 

with solutions already available in their WSFS space. To alert users that a synthesis 

operation has finished, the RecTool automatically sends an e-mail indicating users 

should consult the RecTool interface, namely the Syn report to evaluate if the synthesis 

was successful. If there are no reported errors, a *.bit file becomes available so users 

may select it to start the reconfiguration operation.  

The reconfiguration operation is not so time consuming as a synthesis operation. It 

involves sending an *.svf file to the weblab infrastructure through the NCAP. Users start 

the reconfiguration process by selecting a *.bit or *.svf files in accesses stages 4 or 5. In 

access stage 4, the selection of a *.bit file requires using the RecTool to create the *.svf 

file that will be automatically transferred to the NCAP, becoming available in the 

reconfiguration panel for future reconfigurations. In access stage 5, the *.svf file is 

already available to be transferred, and no file conversion is required. Both accesses 

require some processing in the RecTool but, since they are concluded in a few seconds, 

they do not run in background. The generated reports give possible errors occurred 

during the reconfiguration (Reconf_date.rep) and during the creation of the *.svf file 

(svf_date.rep). When errors occur, information will be displayed in the information 

panel and in the generated reports. In the situation of an unsuccessful reconfiguration 

not detailed in reports, users may consider that the NCAP is offline or the network, 

which interfaces the NCAP with the weblab server, is down. If no errors are reported, 

this means the weblab infrastructure (the TIM) was correctly reconfigured, and users 

should evaluate it using IEEE1451.0-HTTP methods. 

Annex L.1 presents some examples of report files generated during the 

reconfiguration process. 
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6.4.2 The role of the configuration file 

To reconfigure the weblab infrastructure, it is fundamental to understand the process 

of connecting the weblab modules to the IEEE1451.0-Module, which is made according 

to a set of rules defined in a configuration file (*.conf). This is a text file divided in set 

of blocks delimitated by tags, whose rules are automatically decoded by the Bind and 

Config software modules running in the RecTool, which redefine the entire weblab 

project, as conceptualized in figure 6.21a). During this redefinition, several HDL files 

describing the weblab project, in particular the IEEE1451.0-Module and its connections 

are changed and others created, specifying the architecture required for implementing 

the infrastructure, as represented in figure 6.21b). By decoding the configuration file, 

the software modules configure the following aspects: i) module, internal and external 

bus connections, whose widths are automatically redefined according to the number of 

TCs and TEDSs adopted for binding the weblab modules; ii) internal parameters and 

processes, such as multiplexing schemas; iii) other HDL files, namely the MT and the 

TEDSs associated to each weblab module; iv) the TC-tasks used to attend commands 

received from the NCAP and the events generated by TCs and; v) event, error and clock 

lines. 
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Figure 6.21: Role of the software modules running in the RecTool and connections 

established within the TIM. 

 

A particular attention should be paid to the event, error and clock lines. A weblab 

module using a TC operating as an event sensor, should have a dedicated event line to 

trigger an event in the IEEE1451.0-Module using the associated event() TC-task, as 

already described in previous subsection 6.3.3. Since weblab modules run 

independently, they may also generate their own error signals. To handle these errors, 

the TIM enables the definition of several error lines connecting each weblab module to 

the IEEE1451.0-Module. The associated errors are automatically mapped into hardware 

errors, according to the IEEE1451.0 Std. Concerning the clock lines, the TIM provides 
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two types of lines: i) a clock line (clk), which represents the maximum clock frequency 

provided by the oscillator available in the FPGA-based board and; ii) an internal clock 

line (internal clk), which has a lower frequency than the previous clock, and is adopted 

for synchronizing all modules available in the TIM, and for defining the baud rate used 

for the NCAP-TIM data transmissions. Since all weblab modules are synchronized with 

the IEEE1451.0-Module and, in some situations, they may need to run at higher 

frequencies, each weblab module may use these two clock lines simultaneously, by 

defining the appropriate rules in the configuration file. 

Defining the reconfiguration file involves specifying several issues, namely: i) the 

adopted TEDS, i.e. their files and locations; ii) the MT file, originally created as a 

binary file, so the software modules may generate the correspondent HDL file; iii) the 

default value of the mask registers that will define the behaviour of each TC; iv) all 

connections defined through pieces of HDL code; v) the number of adopted TCs; vi) the 

adopted HDL files describing the TC-tasks and the internal modules of each weblab 

module; vii) the length of the MB; viii) the baud rate for NCAP-TIM messages and for 

the internal synchronization of all modules within the TIM and; ix) the number of errors 

and events caused by the weblab modules able to handle by the IEEE1451.0-Module. 

To avoid going into many details in this chapter but, at the same time, to give an idea 

of the complexity involded in the reconfiguration process, five annexes are provided. 

Annex L.2 exemplifies some parts of a configuration file used for creating a weblab 

project. 

Annex L.3 provides the internal reconfiguration schematics with the associated buses 

and lines defined in the configuration file, used to bind each weblab module to the 

IEEE1451.0-Module. 

Annex L.4 presents some examples of HDL files created by the software modules 

Bind and Config according to the rules defined in a configuration file. 

Annex L.5 lists the FPGA resources used by each HDL module using the two 

configurations adopted in the validation & verification process, which will be described 

in the next chapter 7. Although the resources used by the FPGA depend on the weblab 

modules bound to the IEEE1451.0-Module, the objective of this annex is to give an idea 

of the FPGA resources required for designing the weblab infrastructure. 

6.4.3 Implementation issues of the RecTool 

All actions made by the RecTool are supported by the WSFS. It gathers files and 

applications required to manage and reconfigure the TIM using a specific software 

application in the NCAP to send the bitstream code, available in a *.svf file, to the 

FPGA. The weblab server was implemented in a computer with an Ubuntu Linux 

distribution
108

 running the Apache HTTP server
109

 and the PHP Hypertext 

                                                
108 http://www.ubuntu.com/server  

http://www.ubuntu.com/server
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Preprocessor
110

 to provide remote access to the RecTool using a web interface. To 

reconfigure the TIM, the RecTool uses several software modules and applications 

controlled and monitored by a Weblab Server Controller (WSC) developed using the 

PHP server-side scripting language. As illustrated in figure 6.22, the build, reconfigure 

and synthesize actions made in the RecTool interface are managed by the WSC that, 

supported by the WSFS, uses a set of software modules and applications to create the 

weblab project that reconfigures the TIM. 
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Figure 6.22: Weblab server internal modules and the actions used for creating the 

weblab project that reconfigures the TIM.  

 

Despite the current RecTool interface version does not manage users’ accesses (only 

a simple login access schema is implemented), the organization of the WSFS guarantees 

that future developments may easily handle this issue. For this purpose, besides the 

installation of several proprietary software applications in the weblab server, the WSFS 

was divided in two folder groups: i) the TIM folder, which provides all HDL files and 

configuration programs to create the weblab project according to the selected weblab 

modules and; ii) the users folder, which contains all files belonging to a specific user, 

namely the build, configuration and report files, and the project files created in the 

ise_project folder during the synthesis operation. 

The files of the weblab modules selected by each user in the build panel, and the 

HDL files describing the IEEE1451.0-Module, which are already available within 

project folders inside the TIM/IEEE1451.0-infrastructure folder, are automatically 

redefined by the Bind and Config software modules available in the TIM folder, as 

already referred in previous subsection 6.4.2. These modules, developed specifically for 

the RecTool, change some of the HDL files of the IEEE1451.0-Module based on the 

configuration and project files selected in the build panel of the RecTool interface. This 

way, it is possible to connect different weblab modules to the same IEEE1451.0-

Module, since all changes are automatic and transparent to the user. 

                                                
109 http://httpd.apache.org/ 
110 http://www.php.net/  

http://httpd.apache.org/
http://www.php.net/
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Internally, after pressing the build button, the weblab server manages the files of the 

WSFS so the Bind and Config software modules may create the weblab project 

according to the rules specified in the selected configuration file. Those rules are 

defined through a set of predefined tags that should be in accordance with the files 

selected in the project panel, otherwise the Bind and Config software modules retrieve 

errors. While the build operation is independent of the adopted technology for 

implementing the TIM, the synthesis operation, initiated after building the weblab 

project, requires the use of technological dependent applications. Therefore, since the 

TIM was implemented in an FPGA-based board with a Xilinx FPGA Spartan3E-1600 

device, the ISE Webpack design software from Xilinx, currently named Vivado Design 

Suite,
111

 was selected. Based on the weblab project created during the build operation, 

in the synthesis operation, the WSC creates an ISE project inside the user/ise_project 

folder. Since the synthesis is usually time and computational resource consuming, the 

RecTool only runs a single synthesis operation. In this operation, the WSC starts 

evaluating the weblab server availability by checking if a synthesis is already running. If 

no synthesis is running, the WSC starts the synthesis operation by setting an internal 

variable (shared by all users) indicating the weblab server became busy, and creating a 

Tool Command Language (TCL) script file
112

 that is interpreted by the ISE Webpack 

design software. This script contains all the instructions to control the execution of the 

ISE Webpack during the synthesis operation, namely: i) the name of the project that will 

be created in the user/ise_project folder; ii) the adopted FPGA device; iii) synthesis 

directives; iv) indication of all files used in the project and; v) writes specific 

instructions to send an automatic email to the user when the synthesis operation has 

finished. Considering the long time time required to finish the synthesis, the TCL script 

is executed in background using the xtclsh tool that belongs to the ISE Webpack. 

Annex L.6 exemplifies a TCL script file created by the RecTool. 

The last operation is the reconfiguration, which involves sending an *.svf file to the 

weblab infrastructure using the HTTP WriteTIM command. During this operation, the 

management made in the weblab server depends on the selected file in the 

reconfiguration panel. Since the NCAP can only handle *.svf files to reconfigure the 

TIM, if users select an *.bit file it will be converted to an *.svf file. Internally, the WSC 

starts by evaluating the selected file type, and if it is a *.bit file it runs a tool named 

iMPACT to convert the *.bit into an *.svf file. As with the xtclsh tool used for the 

synthesis operation, the iMPACT also belongs to the ISE Webpack, since the target is an 

FPGA from Xilinx. Hence, if an FPGA from a different manufacturer was selected, 

other applications would need to be adapted to the RecTool, since both the xtclsh and 

the iMPACT are accessed using Linux commands defined through bash files. 

                                                
111 http://www.xilinx.com/products/design-tools/vivado/ 
112 http://www.tcl.tk/  

http://www.xilinx.com/products/design-tools/vivado/
http://www.tcl.tk/
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To upload the *.svf file from the weblab server to the NCAP, the WSC uses the 

libcurl API that is a multiprotocol file transfer library
113

 that enables using the HTTP 

WriteTIM method. Once uploaded to the NCAP, the reconfiguration module named 

UrJTAG
114

, already referred in this thesis, reads the *.svf file and, using the 

reconfiguration connection established through a JTAG interface, sends the file to the 

FPGA-based board, thus reconfiguring the FPGA. The success of this operation can be 

monitored using the information panel and the output of the UrJTAG module, which is 

outputted in the Reconf_date.rep report file (see annex L.1, table L.5). 

6.5. Summary 

This chapter described in detail the functional and technical aspects about the 

reconfiguration framework provided by the implemented weblab. It started by providing 

a generic overview of the involved resources and tools in the reconfiguration process, 

conceptualizing their tasks and interactions. Besides highlighting the role of the 

RecTool, it was also described its interaction with the involved human actors during a 

weblab reconfiguration. Those are students, teachers and technicians, whose tasks focus 

on preparing the infrastructure to conduct experiments by reconfiguring it with different 

weblab modules and the developers, which are mainly focused on creating those weblab 

modules compatible with the implemented weblab, namely with the IEEE1451.0-

Module. Since binding the weblab modules with the IEEE1451.0-Module requires its 

redefinition according to a set of rules, a special attention was given to this module. Its 

structure and functionality were detailed, in particular its internal modules and the way 

they are redefined to bind the weblab modules selected during the reconfiguration 

process. Although the compatibility of the weblab modules with the IEEE1451.0 Std. is 

guaranteed by the functionalities provided by the IEEE1451.0-Module, the specificity 

of the reconfiguration process required a particular specification of their design. Their 

layout and interface were then detailed, focusing on the internal architecture that 

comprises the use of interfaces supported by TCs. Some considerations were referred to 

the use of these TCs, and a methodology for developing the weblab modules was 

presented. At the end, the reconfiguration process was detailed, by specifying the 

reconfiguration sequence and stressing the importance of the configuration file adopted 

by the RecTool to create the weblab project used to reconfigure the weblab 

infrastructure. The chapter ended by presenting implementation issues of the RecTool, 

indicating the involved software modules and tools, their operation and role during the 

reconfiguration process.  

The next chapter describes the validations and verifications aspects of the 

implemented weblab, conducted by some experts in weblabs design. 

 

                                                
113 http://curl.haxx.se/  
114 http://urjtag.org  

http://curl.haxx.se/
http://urjtag.org/
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 Chapter 7   

Validation & verification 
 

 

 

The previous chapters contextualized weblabs in engineering education alerting to a 

current lack of standard access and design, and to limitations from the need to use 

different weblab modules to conduct distinct remote experiments. To overcome these 

issues, a reconfigurable weblab architecture based on the IEEE1451.0 Std. and 

supported by FPGA technologies was described and implemented. 

This chapter presents the validation & verification process of the implemented 

architecture, conducted by a set of experts in the development of weblabs. Their 

interaction with the weblab prototype is described, which includes the reconfiguration 

of the underlying infrastructure with a set of pre-defined weblab modules adopted for 

the conduction of two different target experiments. Initially guided by a supporting 

webpage and by a set of videos detailing the entire validation & verification sequence, 

the researchers were asked to answer some questions about the implemented 

architecture and the added-value it may bring to experimental work in engineering 

education. The presentation and analysis of the obtained responses concludes the 

chapter. 
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7.1. Adopted strategy: scenario and objectives 

The current weblab implementation is a prototype solution intended to prove the 

possibility of using and/or adopting the IEEE1451.0 Std. to design standard-based and 

reconfigurable weblab architectures. Although the implemented solution proves the 

viability of adopting similar architectures for the development of weblabs, it was 

important to get opinions about it, from specialists. For this purpose, a set of 

experienced experts in the development of weblab architectures was invited to interact 

with the implemented weblab [145]. The selection was made in view of expected 

opinions being more focused on technical rather than pedagogical aspects. Moreover, 

the implemented solution is a prototype without attractive GUIs that would be required 

if other type of human actors were invited. Therefore, the adopted scenario envisages 

contributions from people able to understand current implementation not just as a 

typical weblab, but essentially as a set of ideas and suggestions that, may lead to the 

design of several reconfigurable and standard-based weblabs’ architectures comprising 

low-cost infrastructures able to accommodate sharable and replicable weblab modules.  

The implemented weblab supported by the IEEE1451.0 Std. and FPGA technology 

involves many innovative technical aspects impossible to be all validated and verified 

by the invited researchers. While the reconfiguration and standard control of the 

infrastructure is the focus of the present validation & verification process, the proposed 

methodology for designing compatible weblab modules was not considered. This is 

justified by the lack of weblab designers with specific knowledge on the IEEE1451.0 

Std. Additionally, the proposed methodology for designing compatible weblab modules 

is rather time consuming and requires FPGA design skills, which hampers the 

involvement of several weblab designers known by the author. 

Therefore, the adopted scenario focused on validating and verifying the 

reconfiguration capability of the weblab infrastructure with predefined and compatible 

weblab modules, and on the possibility of their standard access using the IEEE1451.0-

HTTP API. Several human and non-human actors were involved during the interaction 

with the weblab, as conceptualized in the diagram of figure 7.1. 

Since the weblab architecture involves distinct technologies and a particular model 

defined according to the IEEE1451.0 Std., this and other specific issues associated to 

the current infrastructure were presented to the researchers using a supporting webpage. 

They had access to an introduction about the weblab and involved technologies for its 

development, the methodology followed to reconfigure and control/monitor the weblab 

during the validation & verification process and, to a questionnaire. The questionnaire 

was answered at the end, resulting in a set of reports describing the importance and the 

added-value of the proposed architecture. The adopted methodology guided researchers 

during the interaction with the weblab, involving its reconfiguration with three weblab 

modules and the control/monitor of two distinct experiments. This methodology had 

three main objectives: i) validate the importance of the weblab for designing and 
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conducting remote experiments; ii) verify if the associated infrastructure runs correctly 

and; iii) get further suggestions to improve the weblab and, new ideas for possible 

users’ scenarios. 
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Figure 7.1: Scenario adopted to validate and verify the implemented weblab. 

 

Next sections detail the validation & verification process, namely by describing: i) 

the actors; ii) the different stages adopted on the defined methodology to verify the 

weblab and; iii) the results obtained from the questionnaires answered by the invited 

weblab designers. 

7.2. Actors involved: researchers, experiments and tools 

The validation & verification process involved the use of the RecTool and other tools 

designed to support the researchers’ interaction with the weblab. 

The invited researchers 

The researchers remotely interacted with the weblab server and the underlying 

infrastructure. By using the RecTool, they reconfigured the infrastructure with different 

modules, controlling them issuing IEEE1451.0 commands through the methods 

provided by the HTTP API. A relevant factor for their selection was their past and 

current research activity concerning the development and maintenance of weblabs, and 

also their skills as lecturers in engineering courses. As represented in figure 7.2, the 

selection was: i) Unai Hernández, from the WebLab-Deusto Research Group
115

, Spain 

[51][146][147]; ii) Danilo Z. Zutin, from Carinthia University of Applied Sciences
116

, 

Austria [148][137][149]; iii) Willian Rochadel, from the RexLab
117

 at the Federal 

University of Santa Catarina, Brazil [150][151][152] and; iv) Johan Zackrisson, from 

                                                
115 https://www.weblab.deusto.es/web/  
116 http://www.fh-kaernten.at/en.html  
117 http://www.rexlab.ufsc.br/  

https://www.weblab.deusto.es/web/
http://www.fh-kaernten.at/en.html
http://www.rexlab.ufsc.br/
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the Blekinge Institute of Technology, Karlskrona
118

, Sweden [70][55][153]. All of them 

participated in the entire process, excluding Unai that focused his contribution in more 

generic aspects about the relevance of the implemented weblab in engineering 

education
119

. 

PT - Weblab (Portugal)

BR - Willian Rochadel (Brazil)

AT - Danilo Z. Zutin (Austria)

SE - Johan Zackrisson (Sweden)

ES - Unai Hernández (Spain) 

BR

ES

SE

AT

PT

 

Figure 7.2: Involved researchers in the validation & verification process. 

 

The target experiments, adopted modules and layouts  

Since the two issues under analysis focused on the reconfiguration and control, two 

different configurations to the infrastructure using three weblab modules compatible 

with the IEEE1451.0-compliant module were prepared. In each configuration, 

researchers were able to run two experiments, namely the control of an hardware loop 

and of a bipolar step-motor. In both, the weblab modules were reconfigured in the 

infrastructure using two layouts. The objective was to prove the reconfiguration 

capability of the weblab that enables remotely changing and replicating the modules 

without modifying the physical infrastructure, and the associated pinout of the FPGA-

based board. Three weblab modules, all presented in annex K.3, were accessed using 

single TCs, namely the: 

 8-Bit Input Module - monitors 8 input digital lines [annex K.3.1]; 

 6-Bit Output Module - controls 6 output digital lines [annex K.3.1]; 

 Step Motor Controller Module (SMCM) - a more complex module that controls 

a bipolar step-motor (speed, number of steps, the rotation direction, etc.), 

according to parameters defined in a MD-TEDS [annex K.3.2]. 

                                                
118 http://www.bth.se/eng  
119 Unai Hernández did not interact with the weblab, but he provided opinions about generic aspects 

faced by current weblab architectures and the added value current solution may bring to engineering 

education. 

http://www.bth.se/eng
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The 1
st
 configuration, illustrated in figure 7.3a), adopted all the three weblab 

modules. The hardware loop was controlled using the two digital I/O modules accessed 

using TC 1 and 2, while the step-motor was controlled using the SMCM accessed by 

TC 3. 

The 2
nd

 configuration, illustrated in figure 7.3b), adopted the same experiments, i.e. 

the hardware loop and the step-motor control. In this configuration, the SMCM was not 

reconfigured in the infrastructure, being replaced by a replication of the 6-Bit Output 

Module. The I/O pinout adopted in the FPGA-based board was not modified, but the 

weblab modules were rearranged in the TIM according to two different layouts 

changing the adopted TCs for their control. In this configuration, the I/O modules 

adopted for the hardware loop were controlled by TC 2 and 3. The step-motor was 

controlled using the 6-Bit Output Module accessed by TC 1, which required remote 

users to send digital sequences for controlling its rotation. 
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Figure 7.3: Configurations defined to the weblab infrastructure. 

 

To emphasize the possibility of changing the infrastructure, changes to the adopted 

TEDSs were made for each configuration. As illustrated in figure 7.4, the infrastructure 

uses the mandatory Meta-TEDS and the User’s Transducer Name TEDS (XdrcName-

TEDS) with its associated name, and all TCs use the mandatory TC-TEDSs. In 

configuration 1, the TCs connecting the I/O weblab modules only use the TC-TEDSs, 

and the SMCM uses the TC-TEDS and the MD-TEDS. In configuration 2, all the I/O 

weblab modules also use the associated XdrcName-TEDSs with their names. The 

adoption of some of these TEDSs was an option for the current implementation and had 

implications during the researchers’ interaction with the weblab, since they read the 

TEDSs contents, as it will be described in the next subsection 7.4.2.  
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Figure 7.4: Adopted TEDSs in each configuration. 

 

Tools (supporting webpage and videos) 

Due to the specificity of the implemented weblab prototype, researchers were guided 

during the validation & verification process using a supporting webpage. This webpage, 

whose layout is illustrated in figure 7.5 through some screenshots, was divided in three 

main sections: i) introduction; ii) validation & verification sequence and; iii) 

questionnaire.  

videos

 

Figure 7.5: Screenshots of the supporting webpage and videos provided to guide 

researchers during the validation & verification process. 

 

In the introduction, the weblab architecture, the underlying infrastructure and the 

involved technologies selected for its implementation, were presented. Introductory 

texts about the research work and the contribution it intends to give to the experimental 

work, namely to the development of weblabs were also provided. Web links to previous 

publications and a detailed description about the implemented infrastructure were also 

presented and explained. To allow researchers understanding their expected contribution 
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in this process, the three main objectives defined in the previous section, and the two 

main issues to explore, were clearly defined right from the start. These objectives focus 

on: i) reconfiguring the infrastructure with different modules using the RecTool and; ii) 

controlling those same modules using a set of IEEE1451.0 commands issued through 

the IEEE1451.0-HTTP API. Since all invited researchers were more familiar with 

software than hardware architectures, a set of texts about the IEEE1451.0 Std. and 

FPGAs were suggested for consultation before proceeding with the validation & 

verification process. Additionally, researchers were explained how they could issue 

commands through a set of buttons, monitor the messages through internal status 

registers, and restart the infrastructure in case it enters in a dead-lock state. In all these 

interactions they were able to issue IEEE1451.0 commands using the message format 

headers defined in the IEEE1451.0-HTTP API.  

In the validation & verification section, the two different configurations applied to 

the weblab infrastructure were presented and detailed through illustrative diagrams. A 

table was provided with a methodology involving the phases followed by the 

researchers to validate and verify the weblab, which includes reconfiguring, verifying, 

and controlling the weblab modules adopted to interact with the target experiments. 

While the reconfiguration was made using the RecTool, the verification and the control 

were made through IEEE1451.0 commands. Since the current weblab prototype does 

not provide GUIs for controlling the weblab modules reconfigured in the weblab 

infrastructure, and it was not expected researchers to understand all the details of the 

IEEE1451.0 Std., the commands used to control the reconfigured weblab modules were 

previously selected and pre-defined. These commands were issued using interfaces 

similar to the one illustrated in figure 7.6 that provides: i) a window with a set of 

buttons that when pressed issue a particular command; ii) a command window that 

presents the HTTP message format header adopted to send the command; iii) a reply 

window that presents all replies in a XML format, whose schema is in accordance with 

the IEEE1451.0 Std. and; iv) a button to clear the reply window. Additionally, to 

complement this section, the execution of the involved stages was demonstrated through 

a set of videos
120

. They were uploaded to the YouTube platform so the researchers may 

observe the different stages they should follow to interact with the weblab. 

For getting the researchers’ opinions, a questionnaire was provided in the third 

section of the supporting webpage divided in three parts, namely: i) current weblab 

problems; ii) operation of the implemented weblab and; iii) relevance of the proposed 

weblab architecture. Parts one and three of the questionnaire mainly focus on validating 

the innovative solution, while part two focus on verifying if the current implementation 

runs correctly. All these parts provided grid questions, where researchers may select 

their accordance with specific statements, and open questions where they can express 

their opinions.  

                                                
120 The videos were created using the CamStudio software (http://camstudio.org/) and can be 

consulted in the DVD annex to this thesis. 

http://camstudio.org/
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Figure 7.6: Typical interface adopted for issuing IEEE1451.0 commands using the 

IEEE1451.0-HTTP API. 

 

Therefore, researchers were guided during the interaction with the weblab, without 

the need for understanding all the details of the IEEE1451.0 Std., which could make the 

process too complex. The specificity of the implemented weblab infrastructure, which 

involves several technologies and a particular architecture, required researchers to 

follow the methodology presented in section two of the supporting webpage, which 

comprises a set of sequential phases each with its particular objective. 

Annex M.1 presents the main page of the supporting webpage, annex M.2 some 

screenshots with videos exemplifying the interaction with the weblab, and annex M.3 

the questionnaire provided to the researchers during the validation & verification 

process. 

7.3. Applied methodology 

The adopted methodology to validate & verify the implemented weblab comprises 

three phases, which include the sequence illustrated in figure 7.7 in order to: i) 

(re)configure the weblab infrastructure according to the described layouts; ii) verify 

those (re)configurations and; iii) control the weblab modules. 

 

1st configuration  Verify 1st configuration
Modules’ control

(1st configuration)

2nd configuration

(reconfiguration)

 Verify 

2nd configuration

Modules’ control

(2nd configuration)

phase 1 phase 3phase 2

 

Figure 7.7: Phases adopted for the researchers’ interaction with the weblab. 

 

During the 1
st
 phase, researchers used the RecTool. They selected a set of predefined 

files that define each weblab module, plus the files required to configure the 
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infrastructure. Using the RecTool, those files were uploaded to the weblab server 

defining a new layout for the infrastructure. To verify if the configuration process was 

running correctly during this phase, researchers were able to consult the reports 

automatically generated by the RecTool. 

In the 2
nd

 phase, researchers issued a set of IEEE1451.0 commands to the weblab, in 

order to verify if the configuration made in the previous phase was really successfully 

applied to the infrastructure. For this purpose, researchers issued ReadRawTEDS 

commands to read a set of TEDSs from each configuration. The associated replies 

retrieved all data of the selected TEDSs, so researchers could understand that a specific 

configuration was available in the weblab. All commands’ headers were predefined with 

a set of parameters that specify the target TC, the TEDSs, the XML format reply, and 

others; this way reducing the inherent complexity involved in this process. 

The 3
rd

 phase comprehended the access/control of the weblab modules, and 

consequently of the target experiments. This phase was divided in two sections. The 

first to the hardware loop control and the second to the step-motor control. The 

hardware loop control used write and read commands, namely the IEEE1451.0 

Write/ReadTCDSsegment commands, since both configurations adopted the same I/O 

weblab modules. The difference was the interface with the IEEE1451.0-compliant 

module, since those modules were bound through different TCs to verify the 

reconfiguration capability of the infrastructure. The step-motor control was made in a 

distinct way for each configuration and, due to the specificity of this type of experiment, 

users were able to visualize its axis through captured webcam video frames
121

 available 

in the supporting webpage, as represented in figure 7.8. 

 

  

Figure 7.8: Picture of the adopted step-motor and video frame of its axis provided by 

the supporting webpage. 

 

In configuration one, the step-motor was controlled using the SMCM, whose 

operation is defined through a MD-TEDS. Researchers were able to read and write 

                                                
121 The webcam was connected to an USB port of the weblab server and streamed the video frames 

using the MJPG-streamer software (http://sourceforge.net/projects/mjpg-streamer/).  

http://sourceforge.net/projects/mjpg-streamer/
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specific fields of this TEDS, before starting the step-motor rotation. As represented on 

the sequence of figure 7.9, a set of commands were issued using the methods of the 

IEEE1451.0-HTTP API to verify the possibility of using the IEEE1451.0 Std. to control 

the step-motor. Researchers were invited to use the ReadRawTEDS method whenever they 

wanted to read the current MD-TEDS configuration. Initially, the SMCM had a 

particular configuration that forces the step-motor to rotate continuously in a specific 

direction at a speed of 4 steps/s. Researchers started the rotation of the step-motor by 

sending a trigger signal to the SMCM using the StartTrigger method and stopped its 

rotation using the StopTrigger method. These methods were able to be issued any time 

researchers wanted to. After testing the continuous rotation of the step-motor, 

researchers updated the MD-TEDS’s fields using the WriteTEDS and UpdateTEDS 

commands issued by the SendCommand method of the IEEE1451.0-HTTP API. The new 

MD-TEDS configuration forced the step-motor to rotate one turn (400 steps) at a speed 

of 400 steps/s after each received trigger using the StartTrigger method. All commands 

were issued and the replies monitored using methods of the IEEE1451.0-HTTP API, 

similar to the one presented in previous figure 7.6. 
 

Start continous step-
motor rotation 

(triggerCommand)

Stop rotation
(stopTrigger)

Update MD-TEDS
(WriteTEDS & 
UpdateTEDS)

Start one step-motor 
rotation

(triggerCommand)

SMCM operation changed. 

MD-TEDS: 400 steps, speed=400 steps/s

Stop rotation
(stopTrigger)

MD-TEDS was suggested to read 

whenever researchers want to

(ReadRawTEDS)

Default SMCM operation. 

MD-TEDS: infinite steps & speed=4 steps/s

end

init

 

Figure 7.9: Command sequence applied to control the step-motor rotation in the 1
st
 

configuration. 

In configuration two, the step-motor was controlled through the 6-Bit Output 

Module. This required introducing the basis of step-motor control through a small text 

and through an illustration in the supporting webpage. By consulting these resources, 

researchers (at least the ones not familiar with this type of control) were able to 

understand the reason for sending a set of code sequences to energize the coils of the 

step-motor, so it could rotate through half-steps. These sequences were sent, using the 

WriteDataSetSegment command sequentially, to rotate the motor in the same direction. 

Once concluded the interaction with the weblab, the involved researchers filled-in 

the questionnaire, providing their opinions about the implemented weblab prototype and 

its added value to the experimental work in engineering education.  

Examples of webpages with the methodology provided in 2
nd

 section of the 

supporting webpage are presented in annex M.4. 
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7.4. Reported results and corresponding analysis 

This section presents the reported questionnaire’s results and analyses the comments 

provided by the researchers. As previously referred, the questionnaire was provided in 

section three of the supporting webpage, divided in three parts including grid and open 

questions, namely: i) about the current weblabs’ problems; ii) regarding the operation of 

the implemented weblab and; iii) for evaluating the relevance of the proposed weblab 

architecture for the experimental work in engineering education. Parts one and three 

focus on validating the innovative solution and had the participation of all researchers. 

Part two, which required researchers to follow the different phases of the validation and 

verification methodology, had the participation of three researchers. It is more focused 

on verifying the correct implementation of the weblab, and gave the researchers the 

possibility to feel the inherent advantages and disadvantages of using similar weblab 

implementations. Although one researcher did not participated in this interaction with 

the weblab, his answers to parts one and three of the questionnaire were considered 

valid. He had the opportunity to understand the required interaction students and 

teachers may have with similar weblab architectures by consulting the different texts 

provided through the supporting webpage, and the videos exemplifying the interaction 

with the weblab. 

Therefore, using an empiric method based on a Likert-type scale, all results 

illustrated in tables and graphs of this section indicate the answers of each researcher 

(R) and their agreement level with particular statements (St) scaled from 1-(low) to 5-

(high). The average value (μ) and the standard deviation (σ) of their answers are 

provided, calculated using equations 1 and 2. The deviation indicated in all graphs is 

centered on the calculated average value.  

 

N - Number of answers       xi - Provided result (1 to 5)

i - integer value indicating the number of the researcher 

μ - Average      σ - Standard Deviation

equation 1 equation 2

 
 

 

The results presented in the tables and graphs, and the relevant answers provided in 

the open questions of each part of the questionnaire are commented. To guarantee the 

privacy of the researchers’ participations, their answers are presented as a whole, which 

means their contributions are not personalized.  
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7.4.1 Current weblabs’ problems 

Table 7.1 and graph of figure 7.10 indicate the researchers’ accordance with six pre-

selected problems faced by weblabs, specified through 6 statements. 

 

Table 7.1: Accordance with six problems currently faced by weblabs. 

  R1 R2 R3 R4 μ σ 

1 
There is a lack of standards for developing weblab 

architectures. 
3 4 2 3 3 0,71 

2 There is a lack of standards to access weblab modules. 4 5 5 4 4,5 0,50 

3 
It is impossible to share/replicate weblab modules 

through different infrastructures. 
4 4 5 4 4,25 0,43 

4 

There is a low flexibility in current weblabs, which 

difficults redesigning experiments using the same 
infrastructure. 

4 4 5 4 4,25 0,43 

5 
Typically, the costs can be high for developing weblabs 

and designing experiments. 
4 5 4 4 4,25 0,43 

6 
There is a reduced collaboration among institutions in 

the development of weblabs. 
4 5 2 3 3,5 1,12 
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Figure 7.10: Graph results with the accordance with six problems currently faced by 

weblabs. 

 

Observing the results, it is evident that there is a general agreement that most of the 

selected problems must be solved. However, most of the researchers do not consider the 

lack of a standard architecture important, and the reduced collaboration among 

institutions in the development of weblabs important, despite the divergence of their 

answers. Rather, supported on further responses, the lack of standard interfaces is a 

more relevant problem that should be solved briefly. One of the researchers even 

defended that it is perfectly normal the existence of a diversity of architectures, since 

different laboratories have different requirements and, therefore, distinct equipments. 

The common idea to all is that weblabs in the future should follow a plugged&shared 
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approach using friendly interfaces supported by standard APIs, despite they may use 

different architectures. 

Reusability, flexibility and scalability in the integration of weblabs are seen as 

fundamental issues to improve. This can be done using standard APIs to access, share 

and maintain weblab sessions independently of the implemented architecture. In this 

domain, a researcher indicated the current efforts made on GOLC for defining a 

standard description language to allow different systems (weblab management systems, 

architectural repositories and other systems) to exchange information about their 

installations. Providing a more reliable interaction with the experiments, giving to the 

students/teachers the capability of managing connections like in traditional laboratories, 

was also pointed as an issue to investigate, since it has implications in the pedagogical 

aspect that still requires a special attention. The difficulty of sharing experiments among 

institutions was also pointed out as an inherent problem caused by the lack of a standard 

access to those weblabs, which has incentivized a recent research for creating a 

federation model for remote laboratories [154]. 

7.4.2 Operation of the implemented weblab 

With the contribution of three researchers, part two of the questionnaire focused on 

verifying the implemented weblab, namely the control and the configuration of the 

infrastructure with the weblab modules adopted for each experiment. This part was 

divided in three sections, according to the methodology described in subsection 7.3 of 

this thesis, namely: i) configurations; ii) verification of those configurations and; iii) 

weblab modules’ control. The following tables and graphs provide the level of 

accordance each researcher had with a set of statements, following the same 

classification made for the previous table and graph. 

In table 7.2 and graph of figure 7.11 five statements about the configuration phases 

were classified. Observing the results, it can be seen that there was considerable 

deviations in the answers, with one of the researchers giving low classifications to most 

of the statements. It can be said that the RecTool interface was easily understood by two 

of the researchers, while the other had some difficulties to understand all its details. One 

of them indicated the simplicity of the design that may promote the users’ adoption and 

experience, since all files and reports, generated during the reconfiguration process, are 

located in a single and well organized interface. Another indicated that the layout can be 

improved concerning usability issues, despite the added value it may bring for sharing 

resources, namely the weblab modules. Nevertheless, some issues were suggested to 

improve and some facilities did not run as expected. To overcome this difficulty, during 

the configuration process some files were previously uploaded using the same RecTool 

interface by accessing it through the same network where the weblab server was 

running. 
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Table 7.2: Accordance with the configuration phases. 

  R1 R2 R3 μ σ 

1 It was easy to configure the weblab infrastructure. 2 4 4 3,3 0,94 

2 
The layout of the RecTool interface was easy to use and 

understand. 
2 3 5 3,3 1,25 

3 
The reports provided were fundamental to verify the success 

of each step. 
3 5 5 4,3 0,94 

4 
It was ease to change the configuration of the weblab 
infrastructure. 

2 4 4 3,3 0,94 

5 

The approach applied in the configuration steps is satisfactory 

for designing remote experiments without changing the 

infrastructure 

3 4 4 3,7 0,47 

 

Uploading several files one by one to the weblab server, was also a suggestion to 

improve in future versions of the RecTool. Two of the researchers suggested that it will 

be more user-friendly to send several files at once, per example, by concatenating them 

into a single archive. This meant that uploading files to the weblab server was 

considered the most difficult task during the reconfiguration process. 

Some researchers also pointed the process of building the weblab project as a 

difficult task. They reported some lack of information during this process, and the long 

time spent, which took about 20 minutes to be concluded. 
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Figure 7.11: Graph results with the accordance with the configuration phases. 

 

It can be seen through statement three that, although some faced difficulties using the 

RecTool for reconfiguring the weblab infrastructure, the reports provided during this 

stage were useful. It was also evident that one of the researchers experienced more 

difficulties than the others, but all of them concluded this stage successfully, 

reconfiguring the infrastructure with the selected weblab modules. 

Next step involved the verification of the configuration. Researchers sent several 

IEEE1451.0 commands to the weblab and observed the replies in an XML format. 
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Divided according to generic and particular issues of each configuration, table 7.3 and 

the graph of figure 7.12 present their agreement with nine statements. 

 

Table 7.3: Accordance with the verify configuration phases. 

  R1 R2 R3 μ σ 

1 

After configuring the weblab I sent several IEEE1451.0 

commands and the replies were useful to verify the correct 

configuration of the weblab infrastructure. 

3 4 5 4,0 0,82 

2 

I feel that if I understand all details of the IEEE1451.0 Std. 
the replies returned from the issued commands will be better 

understood. 

2 5 5 4,0 1,41 

3 

In configuration 1 I easily got the expected result after issuing 

the ReadRawTEDS [XdrcName-TC1], i.e, an error 

code=24599 indicating that the weblab module controlled by 

TC1 does not had any associated XdrcName TEDS. 

4 4 5 4,3 0,47 

4 
In configuration 1 I easily got the expected result after issuing 

the ReadRawTEDS [Meta-TEDS]. 
4 4 4 4,0 0,00 

5 
In configuration 1 I easily got the expected result after issuing 

the ReadRawTEDS [MD-TEDS]. 
4 4 5 4,3 0,47 

6 

In configuration 2 I easily got the names of all weblab 

modules after issuing the ReadRawTEDS [XdrcName-TCx] 

commands. 

3 4 5 4,0 0,82 

7 
In configuration 2 I easily got the expected result after issuing 

the ReadRawTEDS [Meta-TEDS]. 
4 4 4 4,0 0,00 

8 

In configuration 2 I easily got the expected result after issuing 

the ReadRawTEDS [MD-TEDS], i.e, an error code=24599 

indicating that the weblab module controlled by TC3 does not 

had any associated MD-TEDS. 

4 5 5 4,7 0,47 

9 

In configuration 2 the results retrieved after issuing 

IEEE1451.0 commands indicated me clearly that the weblab 

has a new configuration. 

2 5 5 4,0 1,41 
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Figure 7.12: Graph results with the accordance with the verify configuration phases. 
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Despite the deviations on statements two and nine, caused by the answers of one 

researcher, it can be said that the results were satisfactory, which means all researchers 

were able to verify that the weblab infrastructure was reconfigured as expected, 

according to the replies retrieved from the TEDSs read after each configuration. To 

more easily interpret the information that was retrieved as a raw of data, it was 

suggested the development of an interface to provide the information in a more human 

readable fashion. Improvements to the communication between the NCAP and TIM 

were also suggested, since the infrastructure reported some errors in the reply messages 

after sending some commands, which justifies the average classification of 4 in both 

configurations. As in the previous phase, it was also evident that, during this process, 

one of the researchers experienced more difficulties than the others. 

Table 7.4 and figure 7.13 report the researchers’ opinions about the interaction with 

the weblab modules using IEEE1451.0 commands for each configuration and target 

experiment. Eight statements were provided. 

Despite the satisfactory answers regarding the control of each experiment in both 

configurations, some difficulties were reported, in particular by one of the researchers, 

which justify some of the deviations on the results. The control of the step-motor in 

configuration one was considered easier than in configuration two, since a single trigger 

started the rotation of the motor. Some errors were pointed when sending 

WriteTCDSsegment commands to the weblab, namely to the I/O modules, which 

justifies the lowest classification of statements one and three in the graph. This was 

evident regarding the step-motor control rotation in the second configuration, since it 

required sending several step-codes to the output module to rotate the motor through 

half-steps. Moreover, some difficulties were referred when observing the rotation of the 

motor using the axis image available in the supporting webpage, since each half-step 

corresponds to a very small rotation of 0.9º.  

 

Table 7.4: Accordance with the weblab modules’ control. 

  R1 R2 R3 μ σ 

1 In configuration 1 it was easy to control the I/O modules. 3 4 4 3,7 0,47 

2 
In configuration 1 the retrieved replies during the control of 

the I/O modules were satisfactory. 
4 5 5 4,7 0,47 

3 In configuration 2 it was easy to control the I/O Modules. 3 4 4 3,7 0,47 

4 
In configuration 2 the retrieved replies during the control of 

the I/O modules were satisfactory. 
4 4 5 4,3 0,47 

5 
In configuration 1 the control of the step-motor was easy to 

do using the SMCM. 
4 5 5 4,7 0,47 

6 

In configuration 1 the ability of redefining the MD-TEDS of 

the SMCM to control the step-motor is an interesting solution 

for controlling every type of weblab module. 

4 5 5 4,7 0,47 

7 

In configuration 1 the use of the ReadRawTEDS [MD-TEDS] 

command gave me a concrete understanding that I was 

changing the contents of the MD-TEDS. 

3 5 5 4,3 0,94 

8 
In configuration 2 it was easy to control the step-motor using 
the output module. 

3 5 4 4,0 0,82 
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Figure 7.13: Graph results with the accordance with the weblab modules’ control. 

 

By observing the graph and analysing the replies of some researchers, it can be said 

that the weblab modules were able to be controlled using the IEEE1451.0 commands, 

despite some sporadic errors retrieved when several commands are sent to the NCAP. 

This is an alert for future improvements that should be made to the NCAP-TIM 

interface, which is probably the cause of those sporadic errors. 

7.4.3 Relevance of the proposed solution 

The four researchers participated in the last section of the questionnaire, which asks 

about the contribution the implemented architecture may bring for developing weblabs. 

Researchers were invited to classify their accordance level with 10 statements described 

in table 7.5. 

By observing this table and the graph of figure 7.14, it is obvious the possible 

contribution the implemented weblab may provide for the standardization of weblabs. 

However, it indicates that researchers are not much interested in contributing for the 

development of new weblab modules and in adopting this type of infrastructures in their 

classes. This was justified in remaining comments by the inherent complexity of the 

architecture and of the IEEE1451.0 Std. These observations are stressed when they 

classify the solution as interesting but essentially as a proof of concept. The 

development and replication of weblab modules and the reconfiguration capability were 

seen as an added value for future implementations of extensible and scalable weblabs, 

since these are standard-based. No other scenarios were suggested, but the selected one 

(two configurations for two experiments) was considered appropriated to validate and 

verify the capability provided by this type of weblabs. 
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Table 7.5: Accordance with the proposed weblab. 

  R1 R2 R3 R4 μ σ 

1 
The IEEE1451.0 Std. is interesting for implementing 

weblabs architectures. 
3 5 4 4 4 0,71 

2 
The IEEE1451.0-HTTP API provides a useful standard 

to access the weblab modules. 
3 5 5 4 4,25 0,83 

3 

The proposed weblab architecture (reconfigurable and 
standard-based) enables sharing/replicating weblab 

modules by different infrastructures. 

4 4 4 4 4 0,00 

4 

The proposed weblab architecture (reconfigurable and 

standard-based) increases the flexibility for designing 

experiments using the same the infrastructure. 

4 4 4 4 4 0,00 

5 

The proposed weblab architecture (reconfigurable and 

standard-based) contributes for reducing the costs 

involved in the development of weblab infrastructures 

and in the design of experiments. 

3 5 3 4 3,75 0,83 

6 

The proposed weblab architecture (reconfigurable and 

standard-based) increases the collaboration among 

institutions in the design of experiments and in the 

development of weblabs infrastructures. 

3 5 5 3 4 1,00 

7 

The proposed weblab architecture (reconfigurable and 

standard-based) is interesting, since it enables defining 
different configurations and weblab modules to access 

target experiments without changing the physical 

platform that implements the underlying infrastructure 

(e.g. the feedback connection lines and the step-motor). 

4 5 5 4 4,5 0,50 

8 
In the future I consider the use of an infrastructure 

similar to this one in my institution/classes. 
3 5 3 2 3,25 1,09 

9 

In the future I consider developing more weblab 

modules compatible with infrastructures similar to this 

one (eventually as a supervisor of a student). 

2 3 4 2 2,75 0,83 

10 
Creating a worldwide repository of weblab modules 

will be an interesting solution to use similar weblabs. 
4 5 5 4 4,5 0,50 
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Figure 7.14: Graph results with the accordance with the proposed weblab. 
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At the end of this questionnaire, researchers were invited to give their opinions about 

the advantages and disadvantages this weblab may bring to the human actors described 

in chapter 2. The weblab was classified as interesting for students, since it provides 

standard and transparent access to the weblab modules, approaching its characteristics 

to hands-on laboratories (traditional laboratories) that allow redefining experiments 

using different instrumentation. However, since students should only focus on the 

experiment itself, the reconfiguration process was considered as a possible difficulty. 

One of the researchers even reported that reconfiguration could be interesting if the 

target experiments involved learning how to program FPGAs, otherwise it should be 

skipped, due to the inherent complexity. This consideration highlights the importance of 

simplifying the reconfiguration process for future weblab architectures supported on 

FPGA technology. 

The capabilities of designing, sharing and interacting with the weblab modules 

adopted in particular experiments, were considered issues able to be fulfilled by this 

type of weblabs and an inherent advantage for teachers. These are the responsible for 

designing new experiments, and the current capabilities of the weblab give them the 

possibility to prepare new students’ experimental activities involving new layouts. A 

researcher also stressed that this weblab could be useful as a support for theoretical 

lessons that involves the study of FPGAs as a topic. 

Developers were described as the most profit actors, since they can replicate 

experiments and reuse the modules. Nevertheless, the difficulty of developing new 

modules was considered as a probable hard task, since they should have very particular 

skills and knowledge about the implemented infrastructure. Questions related to the 

scalability and to the integration of this weblab with others already implemented, were 

again stressed by one of the researchers, as an issue that should be solved and 

investigated. 

The correct weblab operation, traditionally ensured by technicians, was classified as 

a possible drawback due to the specificity of the weblab modules (that comprises 

several files and involves a specific reconfiguration process). This justifies that in this 

type of laboratory one of the researchers defended that technicians should take the role 

of the administrators, due to the inherent complexity of the infrastructure, which 

requires some skills that go behind the IT specialization of a traditional administrator. 

7.5. Summary 

This chapter described a validation & verification process of the implemented 

weblab architecture and underlying infrastructure described in previous chapters 5 and 

6. It had the contribution of four researchers with large experience and expertise in the 

development of weblabs, contributing with valuable opinions about the overall 

functionalities of the implemented architecture and, in particular, the use of the 
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IEEE1451.0 Std. and FPGA technology for designing standard-based and 

reconfigurable weblabs. 

Researchers were able to reconfigure the weblab infrastructure with a set of weblab 

modules using the RecTool. They define two distinct configurations to the weblab 

infrastructure using three pre-defined weblab modules to control two experiments. In 

these configurations the weblab modules were embedded into the infrastructure using 

different layouts, being one of the modules replicated without further developments. 

By using IEEE1451.0 commands issued through the IEEE1451.0-HTTP API, both 

configurations were verified and the weblab modules accessed to conduct the two 

adopted experiments. Due to the specificity of the implemented weblab, a set of tools 

were provided to guide researchers through the entire validation & verification process. 

The most important one was the supporting webpage that detailed the implemented 

weblab, presented the methodology with the different stages followed by the 

researchers, and provided the questionnaire that was filled-in at the end of the validation 

& verification process. A particular relevance to the methodology described in the 

supporting webpage, complemented with some illustrative videos, was made, since it 

describes the different stages followed by the researchers during the interaction with the 

weblab. At the end, this chapter presented the results obtained from the questionnaire, 

and provided some comments that indicate the valuable and promising contribution this 

type of low-cost, standard-based and reconfigurable weblabs may bring to the 

experimental work in engineering education.  
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 Chapter 8   

Conclusions and future work 
 

 

 

This chapter provides the conclusions about the work described in this thesis, 

emphasizing its innovative aspects and the implications for engineering education. 

Future work perspectives and some concluding remarks close the chapter. 
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8.1. Adopted architecture: implications for the experimental 

work in engineering education 

Engineering education must include theoretical and practical-oriented components to 

fulfill the students’ learning outcomes. It is fundamental to provide all the facilities to 

enable students validating & verifying learning theories, otherwise they fail to acquire 

the required competences associated to an engineering course. This is fulfilled by the 

practical work, which includes three main components: i) solving pen & paper 

exercises; ii) doing simulations and; iii) conducting experimentations. A well-structured 

engineering course should comprise these components that are inter-related, i.e. they 

should be applied sequentially and the results obtained in each one should be 

concordant, otherwise reformulations are required, as conceptualized in figure 8.1. 

 

Pen & paper 

exercises

Simulations 

(virtual laboratories)

Real experimentations

(remote laboratories / weblabs)

Experimental activities
Practical work

Experimentations differ largely from simulationsSimulations differ from exercises

reformulation reformulation

 

Figure 8.1: Suggested sequence for the engineering practical work in distance learning. 

 

After gaining the required theoretical knowledge, students should practice it by 

solving exercises. In electrical engineering, for instance, these are typically associated to 

electrical circuits’ analysis. Latter, they should conduct experimental activities through 

simulated and real experiments. In many subjects, simulations are adopted using virtual 

laboratories to confirm the results obtained from pen & paper exercises. Since these 

virtual laboratories are always based on mathematical models, which do not exactly 

represent a true dialogue with nature [17], the use of real laboratories for successfully 

concluding the indicated practical work sequence, is therefore fundamental. However, 

its application to every course and to all covered subjects has been difficult. Institutions 

do not have all the required resources to provide real experiments for all students at any 

time, and the duration of engineering courses is being reduced. This is being even more 

relevant since the Bologna agreement
122

 that reduced the duration of the courses and 

incentivized the application of new teaching and learning methods focused on students’ 

autonomy. These are just two issues that, with the evolution of the Internet and 

associated technologies and equipments, incentivized the emergence of weblabs. 

Weblabs are being adopted in engineering education, but two main problems were 

identified during the research work: i) the lack of standard access/design to/of their 

infrastructures and; ii) the lack of flexibility, which hampers reconfiguration, replication 

                                                
122 http://www.ond.vlaanderen.be/hogeronderwijs/bologna/  

http://www.ond.vlaanderen.be/hogeronderwijs/bologna/
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and sharing of different weblab modules for conducting a particular experiment. The 

lack of standardization is mainly a problem associated to the design of weblabs, that 

influence their (non-)adoption in a particular course. The lack of flexibility for using the 

weblab modules, besides reducing collaboration during the design of weblabs and of the 

associated experiments, also difficults attaining design and psychomotor objectives 

indicated as fundamental by ABET for every engineering course
123

. To contribute for 

solving these problems, seeking always for a cost-effective solution, the research work 

done was supported by two main issues: 

 the evaluation of the IEEE1451.0 Std. for designing standard weblab 

architectures and underlying infrastructures, and; 

 the adoption of reconfigurable technology, namely FPGAs, for enabling the 

reconfiguration of the infrastructure with weblab modules, described and 

accessed according to the IEEE1451.0 Std. 

 

The IEEE1451.0 Std. features were considered appropriated to implement weblabs, 

since this standard specifies different layers for network-interfacing, accessing and 

designing the so-called smart transducers. Due to their internal structure and the ability 

for implementing smart operations, these transducers were seen as the weblab modules 

required to conduct remote experiments. By joining the IEEE1451.0 Std. features and 

the reconfiguration capabilities provided by FPGAs, a weblab architecture was 

conceived and implemented, enabling the reconfiguration of weblab modules in its 

underlying infrastructure.  

The implemented weblab was a consequence of the conducted research in the 

domain of weblabs that led to new suggestions and implementations based on the 

IEEE1451.0 Std. and FPGA technology. Besides contextualizing the role of weblabs in 

engineering education (chapter 2), the research work focused on technical issues about 

their architectures and underlying infrastructures. Some considerations were provided 

about the traditional solutions and on-going initiatives for standardizing the 

implementation of weblabs (chapter 3). After a brief overview of the possibility and 

relevance for using the IEEE1451.0 Std. and FPGAs in the design of weblabs (chapter 

3), new and innovative aspects were described and implemented during the remaining 

work, namely: 

 new weblab infrastructures based on the NCAP-TIM reference model of the 

IEEE1451.0 Std. (chapter 4); 

 new extensions to the IEEE1451.0 Std. (chapter 4); 

                                                
123 The 13 learning objectives established for addressing the role of laboratories in engineering 

education are detailed and commented in section 2.4.1 of this document. 
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 a reconfigurable weblab supported on the reconfiguration capabilities of FPGAs 

and on the proposed extensions for the IEEE1451.0 Std., which includes a thin-

implementation for its reference model (chapter 5); 

 an IEEE1451.0-compliant module developed in Verilog HDL to implement part 

of the TIM, and an NCAP to enable its remote access (chapter 5 and 6); 

 a layout and an interface for designing and binding the weblab modules to the 

IEEE1451.0-compliant module (four weblab modules were described according 

to a conceived layout and interface) (chapter 6); 

 a reconfiguration tool and a methodology to facilitate the reconfiguration of 

those weblab modules into the infrastructure (chapter 5 and 6), and; 

 a validation & verification methodology applied to the implemented weblab, 

involving a number of worldwide recognized experts in weblabs design (chapter 

7). 

 

The previous suggestions and implementations, and the researchers’ opinions 

described and commented in chapter 7, support the claim that this type of standard-

based and reconfigurable weblabs may contribute for the widespread of weblabs in 

engineering education. The possibility of having a unique weblab infrastructure able to 

accommodate different weblab modules facilitates the design of experiments without 

further developments. In many weblabs, when a new experiment is provided, the 

required weblab modules are locally changed in the infrastructure. A technician must go 

to the infrastructure and replace them to conduct a particular experiment. Currently, 

some weblabs facilitate this task by providing several weblab modules in the 

infrastructure so users (teachers, students and technicians) may remotely setup the 

infrastructure by establishing the required connections between the target experiments 

and the required weblab modules [70][53][155]. The proposed weblab solution 

improves this feature by enabling the total replacement of the weblab modules in the 

underlying infrastructure. Since these modules are essentially described through 

standard Verilog HDL files, they can be easily shared and replicated, which facilitates 

setting-up the infrastructure for conducting the target experiments and contributes for a 

drastic reduction in weblabs development costs. 

Currently, the use of FPGAs for implementing the reconfigurable weblab 

infrastructure is seen as the most appropriated technology to accommodate the weblab 

modules. However, technology is always changing, and other types of devices can be 

considered in the future. It is important to highlight that the description of the weblab 

modules through files using the standard Verilog HDL guarantees their reutilization in 

different types of FPGAs and, eventually, in other reconfigurable devices that may be 

adopted. This reconfiguration and the facility of sharing the weblab modules is only 

efficient because the proposed and developed weblab architecture, the underlying 
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infrastructure and the weblab modules are accessed and developed according to the 

IEEE1451.0 Std.  

The access is made through standard commands, using the IEEE1451.0-HTTP API. 

The importance of having standard commands issued by a standard API is especially 

important for the adoption of weblabs in engineering education, since this is another 

main problem reported by the research community. Traditionally, weblabs use their own 

APIs, which hampers collaboration among institutions since different weblabs require 

different types of access to the underlying infrastructure and to the weblab modules, 

thus difficulting the share of experiments, tools and resources. The use of the 

IEEE1451.0 Std. overcomes this problem. By using the IEEE1451.0-HTTP API, the 

widespread of weblabs in engineering education and the collaboration among 

institutions in the development and share of their own experiments is incentivized. More 

standard tools and resources can be developed, per example, for assessment purposes to 

evaluate the conduction of a particular experiment by monitoring the command and 

reply messages exchanged between the users and the experiments.  

The developments were made according to the specifications defined in the standard. 

Besides using a NCAP-TIM thin implementation, the use of TEDSs is an advantage for 

adopting the IEEE1451.0 Std. for designing these types of weblabs. TEDSs specify the 

operation and characteristics of each weblab, providing information about the 

infrastructure and the reconfigured weblab modules. Remote users may then understand 

the characteristics of a particular infrastructure and of each weblab module by issuing 

standard commands. The conducted research also suggested an architecture supported 

by the new LabTEDS, which evidences the relevance of this type of data structures for 

designing standard weblab architectures. By using the architecture supported by the 

LabTEDS, the dissemination of weblabs through the educational community can be 

improved, since it provides information about a particular weblab, what kind of 

experiments they provide, the resources adopted by the underlying infrastructures, 

among others. 

The weblab modules were developed according to the IEEE1451.0 Std., which 

incentivize their share through distinct compatible infrastructures and the collaboration 

among the developers. By using the developed IEEE1451.0-compliant module the 

weblab modules can be accessed and accommodated into distinct weblab infrastructures 

without further developments. Traditional infrastructures, which can be expensive with 

specific and unnecessary features for running some experiments, can now be 

reconfigured with dedicated, pre-defined and cost-effective modules. 

Therefore, the proposed solution based on the IEEE1451.0 Std. and FPGA 

technology, can be seen as an important contribution for using weblabs in engineering 

education. The costs can be largely reduced and the collaboration among institutions in 

sharing experiments and modules, and during the developments, can be increased.  
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8.2. Future work perspectives 

During the research and the developments described in this thesis, it became evident 

the involved complexity for creating a standard-based and reconfigurable weblab. 

Despite the broad range covered by the IEEE1451.0 Std., it involves too many 

possibilities and layers that require extensive developments to adopt all of them in the 

design of weblab infrastructures. It was precisely this complexity that incentivized the 

description and the adoption of a thin implementation of the IEEE1451.0 Std. reference 

model for the design of a reconfigurable weblab infrastructure.  

The adopted solution for reconfiguring the weblab infrastructure separates, as much 

as possible, the features described by the IEEE1451.0 Std. from the features associated 

to each weblab module. During the reconfiguration process, the IEEE1451.0-compliant 

module is redefined according to a specific methodology using a reconfiguration tool, as 

described in sections 5.5 and 6.4. This tool automatically reconfigures the weblab 

infrastructure binding the modules according to a set of complex files difficult to be 

defined by teachers and students, namely the TEDSs, the map and the configuration 

files. Since their definition requires particular knowledge about the standard and the 

implemented infrastructure, namely about the IEEE1451.0-compliant module, a tool to 

facilitate their specification is currently being developed by an MSc. student, as 

illustrated in figure 8.2. However, more efforts are required to simplify this process, 

since the interfaces still require detailed knowledge about the implemented weblab and 

about the IEEE1451.0 Std. The development of a graphical tool, where users 

transparently bind the weblab modules to the infrastructure, is certainly a topic of future 

development and research. 

A complementary solution would be the improvement and the simplification of the 

entire reconfiguration process. According to the validation & verification process 

described in chapter 7, this step was considered complex and too much time consuming. 

Since the reconfigurable infrastructure was implemented on FPGA technology, this 

issue is currently difficult to simplify, essentially because of the inherent complexity for 

synthesizing HDL files, such as the ones that describe the weblab project. With the 

evolution of FPGA technology or using other types of reconfigurable devices, this issue 

should be further analysed. The current solution adopts FPGAs with total 

reconfiguration rather then partial reconfiguration. This option was made since binding 

the weblab modules to the IEEE1451.0-compliant module requires its internal 

redefinition (number of TCs, adopted buses, etc.), and therefore a new synthesis, 

whenever a different weblab module is bound. The use of automatic routing 

mechanisms to bind the weblab modules to a pre-defined IEEE1451.0-compliant 

module, previously synthesized and embedded in the FPGA, can be an issue to explore 

in future implementations. For now, current FPGA tools for routing HDL modules 

inside their cores are too manufacturer dependent and require a manual control, which 

makes it impracticable for an automatic reconfiguration.  
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Figure 8.2: Screenshots of a tool being developed to facilitate the design of TEDSs, map 

and configuration files adopted during the reconfiguration process. 

 

Alternatively, the IEEE1451.0-compliant module structure can be redesigned. This is 

the most complex module that is embedded in the TIM and currently the different tasks 

described in section 6.2.1 (command, internal and TC) are embedded into the DCM 

during its redefinition, making it extremely complex, which delays the synthesis 

operation during the reconfiguration process.  

As a consequence of the inherent complexity for designing new weblab modules, 

only four weblab modules were developed, according to the methodology described in 

section 6.3. In the future, other weblab modules can be developed and verified in similar 

infrastructures. Only with more weblab modules will it be possible to validate and 

verify similar weblabs in real educational scenarios, by getting opinions from students 

and teachers during the conduction of remote experiments.  

Additionally, and in that same section 6.3, different solutions for binding the weblab 

modules to the IEEE1451.0-compliant module were proposed. The use of one or more 

TCs and the possibility of accessing the weblab modules according to a daisy chain bus 

were suggested and described. Nevertheless, the implemented weblab modules only 

adopted a single TC using a point-to-point connection to control their internal 

parameters. For validation purposes, future weblab modules’ designs may adopt the 

other suggestions. 
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Although the implemented weblab adopts a thin implementation of the IEEE1451.0 

reference model, it will be interesting to validate the use of all NCAP-TIM layers for the 

design of weblabs. Other types of weblab infrastructures based on the NCAP-TIM 

reference model suggested in section 4.5 can also be implemented in order to analyse 

their viability in the design of weblabs. 

Moreover, due to time constrains, it was impossible to validate many of the 

extensions proposed in section 4.6 for the IEEE1451.0 Std., namely the use of the 

LabTEDS and the suggested operational sequence for registering, discovering and 

accessing distributed weblab infrastructures. This is another issue that should be 

explored in the future, since it is a promising contribution for the dissemination of 

weblab infrastructures and associated experiments through the educational community. 

8.3. Concluding remarks 

Standard-based and reconfigurable weblabs can be the ultimate solution to approach 

the facilities provided by this type of laboratories to those offered by traditional 

laboratories. The costs and the collaboration among different institutions can be 

improved by using a solution similar to the one proposed in this thesis. The standardized 

approach, at design and access levels, may contribute for the creation of a world wide 

weblab federation, where different weblab modules, described according to distinct 

standard HDL files, can be freely exchanged and replicated by different and compatible 

infrastructures. 

Currently, there are still some aspects that must be overcome, namely the limitations 

imposed by FPGA technologies and tools. FPGAs still have space and resources 

limitations, and the drivers to interface the target experiments available in FPGA-based 

boards hinder part of the required flexibility for reconfiguring weblab infrastructures. 

Nevertheless, this is associated with the technological solution selected for 

implementing the reconfigurable weblab that will surely be improved by using other 

solutions, such as FPAAs, referred in chapter 3, which can be analysed in the future for 

designing reconfigurable weblabs supported by the IEEE1451.0 Std. 

The conducted research proposed several solutions for designing weblabs compatible 

with the IEEE1451.0 Std. However, only some were verified and implemented, and the 

validation focused essentially in the whole implementation and its relevance for 

designing weblabs. Ideally, all of the suggested solutions should be implemented, 

verified and validated. However, due to time constrains and to the extreme difficulty in 

getting contributions from more researchers with FPGA design skills, that task remains 

open. Nevertheless, the researchers’ opinions and the acquired expertise during the last 

years in the domain of weblabs, allow to say that similar solutions compatible with the 

IEEE1451.0 Std., able to be developed, accessed and reconfigured with sharable weblab 

modules described through a set of standard files, may contribute for the dissemination 

of weblabs in engineering education. 
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 Annex A   

FPGA internal architecture overview 
 

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed to be 

configured. The configuration is generally specified using Hardware Description 

Languages (HDLs) such as Verilog, VHDL or SystemC. FPGAs can implement any 

logical function that an Application Specific Integrated Circuits (ASICs) could perform, 

with the advantage to update the functionality through total or partial reconfiguration 

methods (annex B provides a brief overview about these types of reconfigurations). 

FPGAs contain programmable logic components called logic blocks, and an 

hierarchy of reconfigurable interconnections that allow the blocks to be wired together, 

somewhat like many (changeable) logic gates that can be wired in (many) different 

configurations. Logic blocks can be configured to perform complex combinational 

functions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic 

blocks also include memory elements, which may be simple flip-flops or more complete 

blocks of memory. The access to the exterior is made using I/O blocks, which are also 

reconfigurable. Figure A.1 presents the structural elements of an FPGA. 

 

 

Figure A.1: Structural elements of an FPGA. 
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Example of an FPGA-based board 
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 Annex C   

FPGA reconfiguration: options for weblabs 
 

As illustrated in figure C.1, FPGA technology provides two possible solutions for 

reconfiguring weblab modules, namely for swapping or for adding new modules to the 

infrastructure: i) total reconfiguration or; ii) partial reconfiguration, this able to be 

implemented using static or dynamic approaches. 

FPGA 

reconfiguration with 

weblab modules

total 

reconfiguration

partial 

reconfiguration

static

dynamic

FPGA

FPGA

Weblab 
modules

New weblab 
module

Partial reconfiguration: only part of the FPGA is changed. Static reconfiguration stops the other modules. 

Dynamic reconfiguration allows that the others modules keep running during the adding/swapping process.

Possible weblab 
module to swap

Possible weblab 
module to swap

Total reconfiguration: the entire FPGA is changed, even if only a module is added/swapped. 

The FPGA stops its operation.

New weblab 
module

Completely 
redefined  

Only the 
module is 
redefined  

 

Figure C.1: Possibilities for reconfiguring an FPGA with different weblab modules. 

 

Total reconfiguration requires reconfiguring the entire FPGA, which implies 

stopping its operation whenever a new weblab module is needed. Although being the 

most appropriated option when using a single FPGA for a single module, it may also be 

used when a single FPGA is adopted for accommodating, at the same instant, more than 

one weblab module. This option is less interesting, since it requires stopping the weblab 

operation for adding or swapping the modules. Moreover, depending on the complexity 

of the new modules and on the current FPGA configuration, this option typically 

requires more time for the reconfiguration process when compared to the partial 

reconfiguration
124

. This second option should be considered when using a single FPGA 

to encapsulate more than one module. It allows reconfiguring only part of the FPGA 

                                                
124 M.G. Gericota et al., ‘Run-time management of logic resources on reconfigurable systems’, in 

Design, Automation and Test in Europe Conference and Exhibition (DATE’2003), Munich, 

Germany, 3-7 March, 2003, pp. 974–979. 
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with one or more weblab modules, without changing the others inside. Two alternatives 

are available for partial reconfiguration: a) static or b) dynamic. Static reconfiguration 

requires stopping the FPGA to add/swap a module. In contrast, if dynamic 

reconfiguration is adopted, an experiment my keep running even if a module is 

added/swapped. Besides the high complexity of partial reconfiguration, the costs 

involved are also higher than total reconfiguration, because not all FPGAs support this 

option. Furthermore, adopting partial reconfiguration requires knowing the present 

configuration inside the FPGA to rearrange the logic resources and to free the space for 

the new module, which may create additional difficulties for implementing this option, 

since it is much dependent on the tools provided by a particular manufacturer. Then, 

considering the involved complexity of partial reconfiguration when compared to total 

reconfiguration, suggests this last option as a valid one for every type of architecture. 

Table C.1 maps the main differences between these reconfiguration options and 

indicates in which architecture they should be mostly applied. 

 

Table C.1: Options for reconfiguring FPGAs. 

Total reconfiguration 
Partial reconfiguration 

Static Dynamic 

Implemented by all FPGAs Implemented in some FPGAs 

The entire configuration logic 

blocks are changed 
Only some configuration logic blocks are changed 

Requires stopping the operation  

(e.g. Cyclone - Altera) 

Requires stopping the operation  

(e.g. Spartan3- Xilinx) 

Does not require stopping the 

operation  

(e.g. Virtex4 - Xilinx) 

low FPGA prices  medium FPGA prices high FPGA prices  

Applied to all architectures 

with one or more FPGAs and 

modules, but best suggested 

when a single FPGA 

accommodates a single 

module. The weblab will be 

stopped. 

Preferable when using a single FPGA to accommodate several 

weblab modules. Selecting one of these configurations depends 

on the reconfiguration capability of the adopted FPGA and if 

the weblab can be stopped (static configuration) or should run 

continuously (dynamic configuration). Typically it is too much 

manufacturer dependent and hard to implement. 
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 Annex D   

TEDS: examples, attributes and status 
 

For exemplifying the TEDSs’ structures, table D.1 and table D.2 present two 

mandatory TEDSs adopted in every compatible IEEE1451.0 device, namely the Meta-

TEDS and the TC-TEDS. Although not directly specified in these structures, every 

TEDSs has associated attributes enumerated in table D.3, and particular status listed in 

table D.4, both defined through two octets.  

 

Table D.1: Meta-TEDS structure. 

Field 

num. 

Field 

name 
Description 

Data 

type 

Num. 

Octets 

-  Length UInt32 4 

0-2 - reserved - - 

3 TEDSID TEDS Identification Header UInt8 4 

4 UUID Globally Unique Identifier UUID 10 

5-9  reserved - - 

Timing-related information 

10 OholdOff Operational time-out Float32 4 

11 SHoldOff Slow-access time-out Float32 4 

12 TestTime Self-Test Time Float32 4 

Number of implemented TCs 

13 MaxChan Number of implemented TCs UInt16 2 

14 CGroup ControlGroup information sub-block - - 

Types 20, and 21 define one ControlGroup. 

20 GrpType ControlGroup type UInt8 1 

21 MemList ControlGroup member list 
UInt16 

Array 
variable 

15 VGroup VectorGroup information sub-block - - 

Types 20 and 21 define one VectorGroup. 

20 GrpType VectorGroup type UInt8 1 

21 MemList VectorGroup member list 
UInt16 

Array 
variable 

16 GeoLoc Specialized VectorGroup for geographic location - - 

Types 24, 20, and 21 define one set of geographic location information. 

24 LocEnum 
Enumeration defining how location information is 
provided 

UInt8 1 

20 GrpType VectorGroup type UInt8 1 

21 MemList VectorGroup member list 
UInt16 

Array 
variable 

17 Proxies TC proxy definition sub-block - - 

Types 22, 23, and 21 define one TC proxy. 

22 ChanNum TC number of the TC proxy UInt16 1 

23 Organiz TC proxy data-set organization UInt8 1 

21 MemList TC proxy member list 
UInt16 

Array 
variable 

18-19 - Reserved - - 

25-127 - Reserved - - 

128-

255 
- Open to manufacturers - - 

-  Checksum UInt16 2 
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Table D.2: TC-TEDS structure. 

Field 

num. 

Field 

name 
Description 

Data 

type 

Num. 

Octets 

-  Length UInt32 4 

0-2 - reserved - - 

3 TEDSID TEDS Identification Header UInt8 4 

4 UUID Globally Unique Identifier UUID 10 

5-9  reserved - - 

TC related information 

10 CalKey Calibration key UInt8 1 

11 ChanType TC type key UInt8 1 

12 PhyUnits Physical Units UNITS 11 

50 UnitType Physical Units interpretation enumeration UInt8 1 

51 Radians The exponent for Radians UInt8 1 

52 SterRad The exponent for Steradians UInt8 1 

53 Meters The exponent for Meters UInt8 1 

54 Kilogram The exponent for Kilograms UInt8 1 

55 Seconds The exponent for Seconds UInt8 1 

56 Amperes The exponent for Amperes UInt8 1 

57 Kelvins The exponent for Kelvins UInt8 1 

58 Moles The exponent for Moles UInt8 1 

59 Candelas The exponent for Candelas UInt8 1 

60 UnitsExt TEDS access code for units extension UInt8 1 

13 LowLimit Design operational lower range limit Float32 4 

14 HiLimit Design operational upper range limit Float32 4 

15 OError Worst-case uncertainty Float32 4 

16 SelfTest Self-test key UInt8 1 

17 MRange Multi-range capability UInt8 1 
Data converter-related information 

18 Sample  - - 

40 DatModel Data model UInt8 1 

41 ModLenth Data model length UInt8 1 

42 SigBits Model significant bits UInt16 2 

10 DataSet  - - 

43 Repeats Maximum data repetitions UInt16 2 

44 SOrigin Series origin Float32 4 

45 StepSize Series increment Float32 4 

46 SUnits Series units UNITS 11 

47 PreTrigg Maximum pre-trigger samples UInt16 2 
Timing-related information 

20 UpdateT TC update time (tu) Float32 4 

21 WSetupT TC write setup time (tws) Float32 4 

22 RSetupT TC read setup time (trs) Float32 4 Float32 4 

23 SPeriod TC sampling period (tsp) Float32 4 

24 WarmUpT TC warm-up time Float32 4 

25 RDelayT TC read delay time (tch) Float32 4 

26 TestTime TC self-test time requirement Float32 4 
Time of the sample information 

27 TimeSrc Source for the time of sample UInt8 1 

28 InPropDl Incoming propagation delay through the data transport logic Float32 4 

29 OutPropD Outgoing propagation delay through the data transport logic Float32 4 

30 TSError Trigger-to-sample delay uncertainty Float32 4 
Attributes 

31 Sampling Sampling attribute - - 

48 SampMode Sampling mode capability UInt8 1 

49 SDefault Default sampling mode UInt8 1 

32 DataXmit Data transmission attribute UInt8 1 

33 Buffered Buffered attribute UInt8 1 
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34 EndOfSet End-of-data-set operation attribute UInt8 1 

35 EdgeRpt Edge-to-report attribute UInt8 1 

36 ActHalt Actuator-halt attribute UInt8 1 
Sensitivity 

37 Directon Sensitivity direction Float32 4 

38 DAngles Direction angles 2 Float32 8 
Options 

 ESOption Event sensor options UInt8 1 

61–127 - Reserved - - 
128–
255 

- Open to manufacturers - - 

-  Checksum UInt16 2 

 

Table D.3: TEDS’ attributes implemented in an octet. 

Bit Data type Field name Definition 

0 Boolean TEDSAttrib.ReadOnly 
Read-only - Set to true if TEDS may be read but 
notwritten. 

1 Boolean TEDSAttrib.NotAvail 
Unsupported - Set to true if TEDS is not supported by 

a TC. 

2 Boolean TEDSAttrib.Invalid 
Invalid - Set to true if the current TEDS image is 

invalid. 

3 Boolean TEDSAttrib.Virtual 
Virtual TEDS - This bit is set to true if this is a virtual 

TEDS (not stored in the TIM).  

4 Boolean TEDSAttrib.TextTEDS Text TEDS - Set to true if the TEDS is text based. 

5 Boolean TEDSAttrib.Adaptive 

Adaptive - Set to true if the contents of the TEDS can 

be changed by the TIM or TC without the NCAP 

issuing a WriteTEDSsegment command. 

6 Boolean TEDSAttrib.MfgrDefine 

MfgrDefine - Set to True if the contents of this TEDS 

are defined by the manufacturer and will only conform 

to the structures defined in the standard if the 
TextTEDS attribute is also set. 

7 Boolean TEDSAttrib.Reserved Reserved. 

 

Table D.4: TEDS’ status implemented in an octet. 

Bit Data type Field name Definition 

0 Boolean TEDSStatus.TooLarge 
Too Large - The last TEDS image received was too 

large to fit in the memory allocated to this TEDS. 

1-3 Boolean TEDSStatus.Reserved Reserved. 

4-7 Boolean TEDSStatus.Open Open to manufacturers. 
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 Annex E   

Sensors and actuators trigger states 
 

The transitions on the operating states follow two trigger state diagrams represented 

in figure E.1, for sensors, and in figure E.2, for actuators. Each state represents the 

transducer operating state that changes according to the defined operation mode. 

Information concerning these diagrams is provided in figure E.3. 
 

Trigger 

initialize

Trigger 

operating

Pré-

trigger
Wait for 

trigger

Free 

running

Wait for 

read

Sampling

TC trigger 

enabled

[sampling mode]

Free running 

with pré-trigger

[sampling mode]

Wait for trigger

[sampling mode]

Free running with/

without pré-trigger 

or continous

[sampling mode]

Immediate

Sampling and 

discarding

*done

Sampling 

into data-set

Sampling 

into data-set

[read TC data set segment]

*trigger
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*trigger or 

[read TC data

set segment]

POWER ON

*exit or
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Figure E.1: Sensor trigger states. 
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Figure E.2: Actuator trigger states. 
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*trigger if one of the following occur:

1. received the trigger command;

2. events within the TIM.

*exit if one of the following occur:

1. received [reset] or [device clear] or  [abort trigger] or [write TC trigger state] = disabled;

2. TIM no longer in TIM active state;

3. transducer no longer in transducer operating state.

*done 

[actuator] if the TC has transversed to the end of all DSs (all buffers) and the End of DS 

operation is set to hold.

[sensor]if not in continous sampling mode and one of the bellow occur:

1. TC done with repetitive count (fills-in DSs and buffers if appropriate)

2. event sensor got the enabled event (rising, falling, both).

Notes:

[name] indicates a command.

name state indicates a state.
 

Figure E.3: Information notes for the trigger state diagrams. 
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 Annex F   

IEEE1451.0 status bits  
 

To monitor internal operations, namely if a specific command was correctly applied, 

if there was a change in a TEDS, etc., the IEEE1451.0 implements status registers with 

32 bits (condition, event and mask registers) for each TC and another for the TIM. As 

represented in table F.1, most of the registers have the same bits for the TIM and for all 

TCs (excluding the mask register that does not use bit 0). The TCs and the TIM can 

associate the same registers according to an OR logic, which means that if a bit on a TC 

status register is set, the correspondent bit on the TIM may also be set (if they are used 

for the same purpose).  

Table F.1: Status bits defined by the IEEE1451.0 Std. 

Bit 
Status bits 

TIM TC 

0 Service request Service request 

1 TEDS changed TEDS changed 

2 Invalid command Reserved (implemented as an invalid command) 

3 Command rejected Command rejected 

4 Missed data or event Missed data or event 

5 Data/event Data/event 

6 Hardware error Hardware error 

7 Not operational Not operational 

8 Protocol error Reserved 

9 Data available / processed Data available  / processed 

10 Busy Busy 

11 Failed calibration Failed calibration 

12 Failed self-test Failed self-test 

13 Data over/under range Data over/under range 

14 Corrections disabled Corrections disabled 

15 Consumables exhausted Consumables exhausted 

16 Reserved Not-the-first-read-of-this-data-set 

17-23 Reserved Reserved 

24-31 Open to manufactures Open to manufactures 
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 Annex G   

New IEEE1451.0 HTTP API  

methods and interfaces 
 

This annex presents the extensions proposed to the IEEE1451.0-HTTP API for 

implementing the architecture specified in section 4.6. The interfaces and methods are 

much similar to the ones already specified in the IEEE1451.0 Std. The following tables 

detail the arguments of each corresponding method. 

 

Table G.1: NCAPRegister method. 

Name: NCAPRegister 

Path: http://<LabServer IP address>:<port>/NCAPRegister?register=<value>& 

IPadd=<value>& portNum=<value>&responseFormat=<value> 

Parameters:  

Input  

 _Boolean register: Specifies if it is a register (=1) or unregister operation (=0).  

 UInt32 IPadd: IP addresses of the registered/unregistered NCAP in the Weblab server. 

 UInt16 portNum: Port number of the registered/unregistered NCAP in the Weblab 

server. 

 _String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 UInt32 IPadd: IP addresses of the registered/unregistered NCAP in the weblab server 

(returns null if registration / unregistration was not correctly applied). 

 UInt16 portNum: Port number of the registered/nregistered NCAP in the weblab 

server (returns null if registration /unregistration was not correctly applied). 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 

in its section 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name="NCAPRegisterHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name="IPadd" type="stml:UInt32"/> 

<xs:element name="portNum" type="stml:UInt16"/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 
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Table G.2: NCAPDiscovery method. 

Name: NCAPDiscovery 

Path: http://<LabServer IP address>:<port>/NCAPDiscovery?responseFormat=<value> 

Parameters:  

Input  

 _String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 UInt32Array IPadd: IP addresses of all registered NCAP in the weblab server. 

 UInt16Array portNum: Port number of all registered NCAP in the weblab server. 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 

in its section 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name="NCAPDiscoveryHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name="IPadd" type="stml:UInt32Array"/> 

<xs:element name="portNum" type="stml:UInt16Array"/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 

 

Table G.3: ReadLabTEDS method. 

Name: ReadLabTEDS 

Path: http://<NCAP IPadd >:<NCAP portNum >/ ReadLabTeds? 

responseFormat=<value>&field=<value> 

Parameters:  

Input 

 

__String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

 Uint8 field (values: 0 to 255 or null). 

Specify the field to read (0 to 255) or the entire LabTEDS is no field is specified 
(null). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 UInt32 IPadd: IP address of the specified NCAP. 

 UInt16 portNum: Port number of the specified NCAP. 

 ArgumentArray teds: array containing data read from the specified LabTEDS. 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 

in its section 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name="ReadLabTedsHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name="IPadd"type="stml:UInt32Array"/> 

<xs:element name="portNum" type="stml:UInt16Array"/> 

<xs:element name="teds" type="stml:ArgumentArrayType"/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 
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Table G.4: WriteLabTEDS method. 

Name: WriteLabTEDS 

Path: http://<NCAP IPadd >:<NCAP portNum >/ WriteLabTeds? 

responseFormat=<value>&field=<value>&teds=<value> 

Parameters:  

Input 

 

__String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

 Uint8 field (values: 0 to 255 or null). 
Specify the field to write (0 to 255) or null to specify the entire LabTEDS. 

 ArgumentArray teds: array containing data to write into the LabTEDS 

(user must guarantee that all other LabTEDSs fields are coherent). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 UInt32 IPadd: IP address of the specified NCAP. 

 UInt16 portNum: Port number of the specified NCAP. 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 

in its section 12.1.2. 

 For XML format it shall use the following schema 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name="WriteLabTedsHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name="IPadd"type="stml:UInt32Array"/> 

<xs:element name="portNum" type="stml:UInt16Array"/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 

 

Table G.5: ReadTIM method. 

Name: ReadTIM 

Path: http://< NCAP IPadd >:< NCAP 

portNum>/ReadTIM?timid=<value>&timeout=<value>&responseFormat<value> 

Parameters:  

Input  

 UInt16 timId. 

 TimeDuration timeout. 

 _String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 UInt16 timId. 

 ArgumentArray TimData. 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 

in its section 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name=" ReadTIMHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name=" timId " type="stml: UInt16"/> 

<xs:element name="TimData " type="stml: ArgumentArray"/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 
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Table G.6: WriteTIM method. 

Name: WriteTIM 

Path: http://< NCAP IPadd >:< NCAP portNum >/WriteTIM? 

timId=<value>&timeout=<value>&TimData=<value>&responseFormat=<value> 

Parameters:  

Input  

 UInt16 timId. 

 TimeDuration timeout. 

 ArgumentArray TimData. 

 _String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 UInt16 timId. 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 
in its section 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name=" WriteTIMHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name=" timId " type="stml: UInt16 "/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 

 

Table G.7: ReadLog method. 

Name: ReadLog 

Path: http://< NCAP IPadd >:< NCAP portNum 

>/ReadLog?Timeout=<value>&responseFormat=<value> 

Parameters:  

Input  

 TimeDuration timeout. 

 _String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

 ArgumentArray logData. 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 

in section its 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name=" ReadLogHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

<xs:element name=" logData " type="stml: ArgumentArray "/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 
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Table G.8: WriteLog method. 

Name: WriteLog 

Path: http://< NCAP IPadd >:< NCAP portNum >/WriteLog? Timeout=<value>& 

logData=<value>&responseFormat=<value> 

Parameters:  

Input  

 TimeDuration timeout. 

 ArgumentArray logData 

 _String responseFormat (values: “text”, ”HTML” or “xml” ) 

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.). 

output  

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.). 

output formats 

 All response formats should be in accordance with the IEEE1451.0 Std. as described 
in its section 12.1.2. 

 For XML format it shall use the following schema: 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI 

<xs:complexType name="WriteLogHTTPResponse"> 

<xs:sequence> 

<xs:element name="errorCode" type="stml:UInt16"/> 

</xs:sequence> 

</xs:complexType> 

</xs:schema> 
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 Annex H   

Mapping IEEE1451.0 HTTP API 

methods and commands 
 

The following tables specify the mapping between the IEEE1451.0 HTTP API 

methods and the commands described in the IEEE1451.0 Std. For analysing these 

tables, readers should be familiar with the IEEE1451.0 Std. since not all information is 

detailed. New methods are not mapped because they do not interact with the commands. 

It is also important to stress that this is an alternative solution for implementing weblab 

infrastructures based on the IEEE1451.0 Std., in particular for solutions that use a single 

NCAP-TIM connection. 

 

Table H.1: Mapping the ReadData method to SamplingMode and ReadTCDSsegment 

commands. 

T
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n
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A
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s 

A
P
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Name: ReadData (section 12.3.1.1 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/ReadData 

Input parameters:  

UInt16 timId 
UInt16 channelId 

TimeDuration timeout 

UInt8 SamplingMode 

_String responseFormat 

Output parameters: 

UInt16 errorCode 
UInt16 timId 

UInt16 channelId 

ArgumentArray transducerData 

C
o

m
m
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d
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Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 SamplingMode 

Output parameters: 

No reply 

Name: ReadTCDSsegment (section 7.1.3.1 of the IEEE1451.0 Std.) 

Input parameters: 

UInt32 DataSetOffset 

Output parameters: 

UInt32 DataSetOffset 

2 N*UInt8 DataBlock 

Comments: Using the ReadData starts a blocking operation and requires the use of two commands: 

the SamplingMode to define the samplingMode, followed by the ReadTCDSsegment to read one or 

more data blocks depending on the available data. The DataSetOffset input parameter of the 

ReadTCDSsegment command should always start at 0 and should be applied until all data were 

returned. The ArgumentArray output parameter of the ReadData should be completed with all 

returned data blocks of the ReadTCDSsegment command. 
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Table H.2: Mapping the StartReadData and MeasurementUpdate methods to 

SamplingMode and ReadTCDSsegment commands. 
T
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Name: StartReadData (section 12.3.1.2 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/StartReadData 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeInstance triggerTime 

TimeDuration timeout 

UInt8 SamplingMode 
_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

Name: MeasurementUpdate (section 12.3.1.3 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/MeasurementUpdate 

Input parameters:  

UInt16 timId 

UInt16 channelId 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

ArgumentArray transducerData 

C
o

m
m
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Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 SamplingMode 

Output parameters: 

No reply 

Name: ReadTCDSsegment (section 7.1.3.1 of the IEEE1451.0 Std.) 

Input parameters: 

DataSetOffset data type UInt32 

Output parameters: 

UInt32 DataSetOffset 

2 N*UInt8 DataBlock 

Comments: Using the StartReadData implements a non-blocking operation that starts reading from 

the specified TC, after a triggerTime. To get the measured data, the MeasurementUpdate should be 

applied. The adoption of these two methods requires the use of the SamplingMode and 

ReadTCDSssegment commands. Both commands must be applied by the StartReadData, and the 

ReadTCDSssegment must be constantly applied by the specified TIM. The data should only be 

available after using the MeasurementUpdate method.  

 

Table H.3: Mapping the WriteData method to SamplingMode and WriteTCDSsegment 

commands. 

T
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Name: WriteData (section 12.3.2.1 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/WriteData 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeDuration timeout 

UInt8 SamplingMode 

ArgumentArray transducerData 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

C
o
m
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Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 SamplingMode 

Output parameters: 

No reply 

Name: WriteTCDSsegment (section 7.1.3.2 of the IEEE1451.0 Std.) 

Input parameters: 

UInt32 DataSetOffset 
DataSetOffset data type UInt32 

Output parameters: 

No reply 

Comments: Using the WriteData starts a blocking operation and requires the use of two commands. 

The SamplingMode to define the sampling mode of the associated TC, followed by the 

WriteTCDSsegment to write one or more data blocks depending on the available DSs. The 

DataSetOffset output parameter of the WriteTCDSsegment should always start at 0 and should be 

applied until all data have been written. 
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Table H.4: Mapping the StartWriteData method to SamplingMode and WriteTCDSs 

commands. 
T

ra
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Name: StartWriteData (section 12.3.2.2 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/StartWriteData 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeInstance triggerTime 

TimeDuration timeout 

UInt8 SamplingMode 
ArgumentArray transducerData 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

C
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Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.) 

Input parameters: 
UInt8 SamplingMode 

Output parameters: 
No reply 

Name: WriteTCDSsegment (section 7.1.3.2 of the IEEE1451.0 Std.) 

Input parameters: 

UInt32 DataSetOffset  

DataSetOffset data type UInt32 

Output parameters: 

No reply 

Comments: Using the StartWriteData implements a non-blocking operation that starts writing in the 

specified TC, after a triggerTime. Requires the use of the SamplingMode and WriteTCDSsegment 

commands. As described in the standard, the user is responsible for determining when the command 

completes its action by sending the SendCommand method (section 12.5.1 of the IEEE1451.0 Std.) 

with the ReadStatusEventRegister command (section 7.1.1.8 of the IEEE1451.0 Std.), and checking 

for the DataProcessed bit (section 5.13.10 of the IEEE1451.0 Std.) to be asserted in the event register 

of the specified TIM ID and TC ID. 

 

Table H.5: Mapping the ReadTEDS and ReadRawTEDS methods to the 

ReadTEDSsegment command. 
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Name: ReadTEDS (section 12.4.1 of the IEEE1451.0 Std.) and ReadRawTEDS (section 

12.4.2 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/ReadTeds 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/ReadRawTeds 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeDuration timeout 

UInt8 TedsType 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

UInt8 TedsType 

ArgumentArray Teds 

C
o
m

m
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d
s Name: ReadTEDSsegment (section 7.1.1.2 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 TEDSAccessCode 

UInt32 TEDSOffset 

Output parameters: 

UInt32 TEDSOffset 

OctetArray RawTEDSBlock 

Comments: Both methods read TEDSs and the ReadTEDSsegment command should be used if the 

TEDSs are located in the TIM. If the ReadTEDS method is applied and the accessed TEDSs are 

cached in NCAP, the ReadTEDSsegment command is not used. Otherwise, if the ReadRawTEDS 

method is applied or if the ReadTEDS method is applied to a TEDS only located in the TIM, the 

ReadTEDSsegment command should be always used. The NCAP is the responsible for specifying the 

TEDSOffset parameter until all data have been read. 
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Table H.6: Mapping the UpdateTEDSCache to the ReadTEDSsegment command. 

T
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I Name: UpdateTEDSCache (section 12.4.5 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/UpdateTedsCache 

Input parameters:  

UInt16 timId 

UInt16 channelId 
TimeDuration timeout 

UInt8 TedsType  

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 
UInt16 channelId 

UInt8 tedsType 

C
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s Name: ReadTEDSsegment (section 7.1.1.2 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 TEDSAccessCode  

UInt32 TEDSOffset 

OctetArray RawTEDSBlock 

Output parameters: 

No reply 

Comments: The use of the UpdateTEDSCache method can only be applied if there is a cached TEDS 

in NCAP, otherwise it does not make sense its adoption. If there is a cached TEDS, the 

ReadTEDSsegment command is applied to retrieve all data from a specific TEDS and the checksum 

will be compared to the checksum of the cached TEDS. If both checksums differ, the cached TEDS 

should be updated with the values read from the TEDS retrieved from the TIM. 

 

Table H.7: Mapping the WriteTEDS and WriteRawTEDS methods to the 

WriteTEDSsegment command. 

T
E

D
S

 M
an

ag
er

 A
P

I 

Name: WriteTEDS (section 12.4.3 of the IEEE1451.0 Std.) and WriteRawTEDS (section 

12.4.4 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/WriteTeds 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/WriteRawTeds 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeDuration timeout 

UInt8 TedsType 

ArgumentArray Teds 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

UInt8 tedsType 

C
o
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s Name: WriteTEDSsegment (section 7.1.1.3 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 TEDSAccessCode  

UInt32 TEDSOffset 

OctetArray RawTEDSBlock 

Output parameters: 

No reply 

Comments: Both methods allow writing data into a TEDS and should use the WriteTEDSsegment 

command if a TEDS is located in the TIM. If the WriteTEDS method is applied, and the accessed 
TEDS is only available in the NCAP, the WriteTEDSsegment command is not used. Otherwise, if the 

WriteTEDS is applied to the TEDS only located in the TIM, or if it is applied the WriteRawTEDS 

method, which obliges bypassing any available cached TEDSs, the WriteTEDSsegment command 

should be always used. If the TEDS is not cached in the NCAP, the use of the WriteTEDS will create 

one. The NCAP processor should be the responsible for specifying the TEDSOffset parameter until all 

data have been written. 
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Table H.8: Mapping the SendCommand method. 
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I Name: SendCommand (section 12.5.1 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/SendCommand 

Input parameters:  

UInt16 timId 

UInt16 channelId 
TimeDuration timeout 

UInt8 cmdClassId 

UInt8 cmdFunctionId 

ArgumentArray inArgs 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 
UInt16 channelId  

ArgumentArray outArgs 

Comments: This method performs a blocking operation and should be directly mapped to any 

IEEE1451.0 Std. command.  

 

 

Table H.9: Mapping the StartCommand and CommandComplete methods. 
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Name: StartCommand (section 12.5.2 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/StartCommand 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeInstance triggerTime 

TimeDuration timeout 

UInt8 cmdClassId 

UInt8 cmdFunctionId 

ArgumentArray inArgs 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 

 

Name: CommandComplete (section 12.5.3 of the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/CommandComplete 

Input parameters:  

UInt16 timId 
UInt16 channelId 

_String responseFormat 

Output parameters: 

UInt16 errorCode 
UInt16 timId 

UInt16 channelId 

ArgumentArray outArgs 

Comments: These methods perform a non-blocking operation and should be directly mapped to any 

IEEE1451.0 Std. command. The CommandComplete completes a non-blocking operation initiated by 

the StartCommand, retrieving the results obtained by this last method. This management should be 

made by the NCAP. 

 

 

Table H.10: Mapping the Trigger and the StartTrigger methods to commands 

ReadTEDSsegment, SamplingMode and TriggerCommand. 
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Name: Trigger (section 12.5.4 of the IEEE1451.0 Std.) and StartTrigger (section 12.5.5 of 

the IEEE1451.0 Std.) 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/Trigger 

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/StartTrigger 

Input parameters:  

UInt16 timId 

UInt16 channelId 

TimeInstance triggerTime 

TimeDuration timeout 

Uint16 SamplingMode 

_String responseFormat 

Output parameters: 

UInt16 errorCode 

UInt16 timId 

UInt16 channelId 
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Name: ReadTEDSsegment (section 7.1.1.2 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 TEDSAccessCode 
UInt32 TEDSOffset 

OctetArray RawTEDSBlock 

Output parameters: 

No reply 

Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.) 

Input parameters: 

UInt8 SamplingMode 

Output parameters: 

No reply 

Name: TriggerCommand (section 7.1.3.3 of the IEEE1451.0 Std.) 

Input parameters: 

No arguments 

Output parameters: 

No reply 

Comments: The Trigger method performs a blocking trigger and is directly mapped to the Trigger 

command. However, the input parameter named SamplingMode should indicate the TC operation 

mode. Before sending this Trigger command to the TIM, the available sampling modes should be read 

from field 31 of TC-TEDS using the ReadTEDSsegment command and compared with the 

SamplingMode parameter to evaluate if it is a valid mode for the specified TC. If valid, the 

SamplingMode command with the Trigger command should be applied. Otherwise, an error should 

be provided through the errorCode parameter. The StartTrigger method is similar to the Trigger 

method but it performs a non-blocking trigger. The user is responsible for determining if the Trigger 

command was completed by sending the ReadStatusEventRegister command through the 
SendCommand method, to evaluate the DataProcessed bit (section 5.13.1.10 of the IEEE1451.0 Std.). 
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 Annex I   

Error codes retrieved from the NCAP  
 

The error codes retrieved from the NCAP are defined according to the code structure 

defined in the IEEE1451.0 Std. that uses a word with 16 bits wide, mapped according to 

the event registers within the TIM. Most of the codes are not implemented since the 

current infrastructure was designed according to a thin implementation of the 

IEEE1451.0 Std., which does not use the middle layers of the NCAP-TIM reference 

model, namely the Transducer services interface and the Module communication APIs.  

The implemented codes are defined in two parts: i) error source, defined in the most 

significative 3 bits (table I.1) and; ii) an error enumeration, encoded in the least 

significative 13 bits (table I.2). 

 

Table I.1: Error source codes. 

Error source [bits 15-13] 

0 000 NCAP error (Error from the local IEEE1451.0 layer) 

1 001 - not used - (Error from the local IEEE1451.X layer) 

2 010 - not used - (Error from the remote IEEE1451.X layer) 

3 011 TIM error (Error from the remote IEEE1451.0 layer) 

4 100 - not used - (Error from the remote application layer) 

5 101 - not used - (Reserved) 

6 110 - not used - (Reserved) 

7 111 - not used - (Reserved) 

 

Table I.2: Error enumeration codes. 

Error enumeration [bits 12-0] 

0 0.0000.0000.0000 No error (NO_ERROR - No error, operation successful) 

1 0.0000.0000.0001 Invalid command ID (INVALID_COMMID - Invalid command ID) 

2 0.0000.0000.0010 
Unknown destination TC/TIM ID (UNKNOWN_DESTID - unknown 

destination ID) 

3 0.0000.0000.0011 Time out (TIMEOUT - Operation time-out ) 

4 0.0000.0000.0100 - not used - (NETWORK_FAILURE - Destination unreachable) 

5 0.0000.0000.0101 - not used - (NETWORK_CORRUPTION - Corrupt communication) 

6 0.0000.0000.0110 Memory error (MEMORY - Local out-of-memory error) 

7 0.0000.0000.0111 - not used - (QOS_FAILURE - Network QoS violation) 

8 0.0000.0000.1000 
- not used - (MCAST_NOT_SUPPORTED - Multicast not supported or 

operation invalid for multicast) 

9 0.0000.0000.1001 - not used - (UNKNOWN_GROUPID - Unknown group ID) 

10 0.0000.0000.1010 - not used - (UNKNOWN_MODULEID - Unknown module ID) 

11 0.0000.0000.1011 - not used - (UNKNOWN_MSGID - Unknown msg ID) 

12 0.0000.0000.1100 - not used - (NOT_GROUP_MEMBER - Dest. ID not in the group) 

13 0.0000.0000.1101 - not used - (ILLEGAL_MODE - The mode parameter is not valid) 

14 0.0000.0000.1110 - not used - (LOCKED_RESOURCE - Resource accessed is locked) 

15 0.0000.0000.1111 
Fatal TEDS error (FATAL_TEDS_ERROR - An error in the TEDS 

makes the device unusable) 

16 0.0000.0001.0000 
Non fatal TEDS error (NON-FATAL_TEDS_ERROR - The value in a 

field in the TEDS is unusable, but the device will still work) 
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17 0.0000.0001.0001 
- not used - (CLOSE_ON_LOCKED_RESOURCE - A warning error code 

returned to signal that a close on a locked resource was performed) 

18 0.0000.0001.0010 

- not used - (LOCK_BROKEN - If a non-blocking read or write, or 

measurement stream is in progress, the callback will be invoked with this 

error code) 

19 0.0000.0001.0011 
- not used - (NETWORK_RESOURCE_EXCEEDED - IEEE1451.X has 

reached network resource limits) 

20 0.0000.0001.0100 
- not used - (MEMORY_RESOURCE_EXCEEDED - IEEE1451.X has 

reached memory resource limits) 

21 0.0000.0001.0101 NCAP-TIM communication error (error in serial port) 

22 0.0000.0001.0110 Reply failed (usually error caused by the TIM) 

23 0.0000.0001.0111 

TIM error reply (error caused by the TIM) 

Data received: [000] or  

[000+StatusEventRegister (if status-event protocol is enabled)] 

24 0.0000.0001.1000 
Error creating the urjtag.svf file. 

This file is used to reconfigure the TIM (error caused by the NCAP) 

25 0.0000.0001.1001 NCAP error reconfiguring TIM (error caused by the NCAP) 

26 0.0000.0001.1010 
NCAP error retrieving a response from the reconfiguration  

(error caused by the NCAP). 

27-4095 Reserved 

4096-8191 Open to manufacturers 
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 Annex J   

The IEEE1451.0-compliant module 
 

J.1 - DCM Internal registers 

Table J.1 lists the DCM internal registers, their length and meaning. 

 

Table J.1: List with the DCM internal registers. 

reg [`TC_number:0] service_request  

Indicates which TC/TIM is generating a service request. 

reg aux_flag_service_request 

Indicates that a service request is being attended by the serviceRequestHandler () internal-task. 

reg [`TC_number:0] status_event_protocol 

Indicates if a specific TC/TIM has the status-event protocol enabled. 

reg error_source 

Indicates if the error source is a TC (=1), or the TIM or an error (=0). 

reg [`error_num_im+1+`error_num_internal+`error_num_external-1:0] error_reg 

Keeps all errors. 

reg [`error_num_internal +`error_num_external-1:0] error_reg 

Errors generated internally or externally. 

aux_flag_error 

Indicates that an error is being attended by the errorHandler() internal-task. 

reg [`error_num_im+1+`error_num_internal+`error_num_external-

1:`error_num_internal+`error_num_external] error_reg_im_old; 

Errors generated by external weblab modules. 

reg [`bits_pointer_TC_number_tiny:0] event_signals_old 

Keeps the last events generated by the weblab modules. 

reg [`TC_number:0] attending_event 

Keeps the attended event. 

reg event_att 

Indicates that an event is being attended. 

reg [7:0] TC_number_msb + reg [7:0] TC_number_lsb 

Command ID. 

reg [7:0] cmdClassID + reg [7:0] cmdFunctionId; 

Specifies the command by its class ID and function ID. 

reg [7:0] length_msb + reg [7:0] length_lsb 

Length of a received command. 

reg [7:0] TIMstate + reg [7:0] TCstate 

Current TIM and TC state. 

reg [`TC_number:0] status_event_protocol 

Indicates if a specific TC/TIM has the status-event protocol enable (=1) or disable (=0). 

reg[2:0] address_type 

Address type specified by a command: 0-Global (0xffff); 1-AddressGroup 

(0x8000<=Address<=0xfffe); 2-TC (1<=Address<=0x7fff); 3-TIM (0); 4-Proxy (read from the Meta-

TEDS); 5- reserved; 6- reserved. (Note: currently the IEEE1451.0-Module only decodes TC and TIM 

addresses, i.e. address type=2). 
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reg aux_flag; aux_flag2 

reg [7:0] aux_octet_1; aux_octet_2; aux_octet_3 

reg [31:0] aux_dw; aux_dw_2; aux_dw_3; aux_dw_4 

Auxiliar registers. Note: aux_dw_2 can not be used in command-tasks since it is used by the 

serviceRequestHandler() and errorHandler() internal-tasks that may run in parallel. If other tasks use 
these registers it will be generated an error during the synthesis of the weblab project. 

reg [15:0] aux_checksum 

Keeps the checksum calculation (used by the calculatesChecksum() internal-task). 

reg [7:0] buffer_controller [`max_memlength+20:0] 

Auxiliary register (keeps data read before send it to the UART-M). 

reg [4:0] samplingMode 

Specifies current sampling mode of the selected TC (field 31 of TC-TEDS / table 54 Std. of the 

IEEE1451.0 Std.): 
- Trigger initiated mode (section 5.10.1.1 of the IEEE1451.0 Std.) = 1;  

- Free-running without pre-trigger mode (section 5.10.1.2 of the IEEE1451.0 Std.) = 2;  

- Free-running with pre-trigger mode(section 5.10.1.3 of the IEEE1451.0 Std.) = 4 (only valid for 

sensors);  

- Continuous Sampling mode (section 5.10.1.6 of the IEEE1451.0 Std.) = 8;  

- Immediate operation sampling mode (section 5.10.1.7 of the IEEE1451.0 Std.) = 16. 

reg [4:0] transmissionMode 

Specifies current transmission mode of the selected TC (field 32 of TC-TEDS / table 58 Std. of the 

IEEE1451.0 Std.): 

- reserved = 1; 

- commanded mode = 2 (Write/ReadTCDSSegment commands can be applied in this mode); 
- streaming when buffer (data set) if full = 4; 

- streaming at a fixed interval = 8; 

- all modes available = 16. 

reg [7:0] state; state_2; state_3 

Registers used for sequence control: state (controller), state_2 (subtasks states); state_3 (commands). 

reg[7:0] state_rst 

Used for sequence control the reset_task() internal-task. 

reg [7:0] state_command_module 

Used for sequence control of tasks in the TEDS-M and in the SSM internal controllers. 

reg [3:0] error_state 

Used for sequence control the errorHandler() internal-task. 

reg [4:0] service_req_state 

Used for sequence control the serviceRequestHandler() internal-task. 

reg [31:0] teds_size 

Auxiliary register used to keep the current TEDS size or the maximum TEDS size. 

reg rst 

After attending a command this signal is set to reset all relevant registers. 

reg power_up 

Indicates a power-up in the IEEE1451.0-Module. 

reg flag_rst 

Used to handle the reset/power-on. 

reg flag_resetcommand 

Handles the reset command IEEE1451.0 command. 

reg end_task 

Indicates if a specific task has ended. 

reg end_tc_task 

Indicates the end of a TC-task (e.g. init(), rd(), etc.). 

reg end_access_TEDS, end_step_access_TEDS 

Registers used to control the access to commands provided by the TEDS-M. 

reg end_access_SS 

Controls the access to commands provided by the SSM. 
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J.2 - DCM internal and command tasks  

J.2.1 - Internal tasks 

Table J.2 lists all the DCM internal-tasks used to manage its features. Command 

tasks may communicate with these internal-tasks.  

 

Table J.2: DCM internal-tasks. 

test_length (input type; input [15:0] value) 

Evaluates if the length of a received command, defined in the DCM internal registers {length_msb, 

length_msb} have a length more or equal (type=1) or only equal (type=0) to the value defined in the 

value register of this task. This task returns an error (error_reg [5]=1) if, according to the value defined 

in the type register, the condition is not valid. The objective of this task is to evaluate if a received 

command has the number of fields in accordance with the IEEE1451.0 Std. 

createTIMMsg (input [15:0] id; input[7:0] class; input[7:0] function_; input [15:0] length; 

input[7:0] wr_octet;) 

Creates a generic TIM message structure according to the IEEE1451.0 Std. in the buffer_out_tx of the 

UART-M. The use of this task requires the definition of the following parameters: id - TC/TIM ID; 

class - command class ID; function_ - command function ID; length - message data structure length 

(number of octets to send); wr_octet - octet to send. The end_task internal DCM register is set after 

building the message structure. 

createReplyMsg ( input flag, input [7:0]wr_octet, input[15:0] length) 

Creates a reply message structure according to the IEEE1451.0 Std. in the buffer_out_tx of the UART-

M. The use of this task requires the definition of the following parameters: flag - indicates the value of 

the flag used in a reply message structure (1-success, 0-fail); length - message data structure length 

(number of octets to send); wr_octet - octet to send. The end_task internal DCM register is set after 
building the message structure. 

errorHandler ( ) 

Establishes a map between all internal and external errors into the TIM/TC condition bit registers 

defined within the status memory used in the SSM. At the end a reply message indicating an error will 

be sent to the NCAP. 

serviceRequestHandler ( ) 

If the status-event protocol is active, it sends a reply message with the event register of the TIM/TC. 

Accessed when there is a SR generated by the SSM. 

findMAP ( input type, input [7:0] tedsCode ) 

Consults the MT according to the value defined in the input parameters. The type register specifies the 

way this task runs, and the tedsCode register indicates the TEDS ID code to find. Therefore, depending 

on the type value, two operations may be defined for this internal-task: 

1- type=’0’: verifies if the TC/TIM ID exists in the MT for the TC number specified by registers 

TC_number_msb and TC_number_lsb. The tedsCode is not used (place at 0). If the TEDS ID code exists 

in the MT, there is no error (error_reg [bit 0] gets 0), the octet_out_map gets the less significant octet of 

the memory number associated to the specified TEDS ID code, and the address_map gets the address of 

the MT pointing to that value. If the ID does not exist, the address_map gets 0 and the error_reg [bit 0] 
gets 1. 

2- type=’1’: gets the memory number in the MT associated to the specified TEDS ID code defined in 

the tedsCode. To specify how to get the memory number, the tedsCode can be specified in two different 

ways: i) placed at 0, meaning that the TEDS ID code is automatically read from the received command 
message, or; ii) directly set with the TEDS ID code to find. If the TEDS ID code is found in the MT, 

the address_map register gets the MT register address that specifies the associated memory number, the 

octet_out_map indicates that memory number, and the error_reg [bit 3] gets 0, which means the 

memory number associated to the specified TEDS ID code was found. If the TEDS ID code does not 

exist in the MT, the address_map gets 0 and the error_reg [bit 3] gets 1. 

calculatesChecksum (input [7:0] memNum, input [31:0] length) 

Calculates the checksum of a TEDS, whose size is specified in the length register, and the 

implementation is available in the memory number specified in the memNum register. The result of this 
task, which is the calculated checksum of the specified TEDS ID code, is placed in the first 2 octets of 

the aux_dw_2 register. 
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evaluatesDataSetLength () 

Evaluates if the WriteTCDSsegment and ReadTCDSsegment commands can be applied to a specific DS. 

This command is used by these commands to evaluate if the offset defined in both fits in the length 

defined to the DS, otherwise it generates errors that will be handled by the DCM. 

It uses as inputs the: data_octet_out_map that has the number of the TEDS memory returned by the 

findMap() task, the length_msb and length_lsb that have the length returned from the received message, 

and the aux_dw that has the offset returned from the received command message. The output of this 

task returns fields from the TC-TEDSs, namely the samplingLength (field 18) in the aux_octet_2 

register, and the MaximumDataRepetitions (field 43) in the aux_dw_3 register. 

resetTask (input caller_71reset) 

Initializes all modules and each weblab module according the init() TC-tasks associated to the adopted 

TC. This task is accessed in two cases: i) after the end of a command or ii) by issuing the reset 

command. Within the task this two accesses are controlled by the register name caller_71reset. If the 

access is made by the reset command, all SR are aborted (event registers are cleared). Note that the 

TEDSs are not initialized with the default values.  

initializeController 

Initializes all DCM registers and it is accessed during a TIM power-up. 

 

J.2.2 - Command-tasks 

This annex presents in table J.3, table J.4, table J.5 and table J.6 all tasks with the 

commands implemented by the IEEE1451.0-Module, divided according to their class 

ID, identifying the HDL files where they were implemented.  

 

Table J.3: Commands common to the TIM and to each TC (ClassID=1). 

QueryTEDS (FunctionID=1) [file: 1_1_QueryTEDS.vh] 

Used by the NCAP to solicit information required to read or write the TEDS. This command returns 

the TEDS information fields defined in the TEDS structure (last 12 octets). 

Arguments: TEDS ID code (8 bits). 

Returns: TEDS’s fields information (e.g.:TEDS attributes, TEDS status, Current size of the TEDS, 
etc.). There are 4 possible replies defined according to the defined TEDS attributes (tables 18 and 19 of 

the IEEE1451.0 Std.): 

i)NotAvail=0 & Invalid=0 & Virtual=1: >>1,0,12,TEDS information;  

ii) NotAvail=1 or Invalid=1: >>1,0,12, TEDS information (TEDSsize=MaxTEDSSize=0); 

iii) NotAvail=0 or Invalid=0 & Virtual=1: >>1,0,12, TEDS information  

(TEDSsize = MaxTEDSSize = TEDSCkSum=0); 

iv) TEDS not located. An error is generated meaning that the TEDS access code or the ID does not 

match/exist in the MT. 

ReadTEDSsegment (FunctionID=2) [file: 1_2_ReadTEDSsegment.vh] 

Reads a TEDS starting for a position defined according to an offset value. 

Arguments: TEDS ID code (8 bits) and TEDS offset (32 bits).  

Returns: The first field contains the offset at which the block of data in the TEDS was taken and will, 

in most cases, match the TEDS segment offset in the ReadTEDSsegment command. The remaining 
octets contain the data read from the TEDS. If the TEDS offset is greater than the length of the TEDS, 

the TEDS offset in the reply is equal to the TEDS length and the reply will contain 0 octets. 

Notes:  

1- The IEEE1451.0 Std. indicates “... TEDS are allowed to be larger than the maximum size of an octet 

array. The transmission of these large TEDSs requires the segmentation of the TEDS for transmission 

“. Therefore, if the TEDS segment has a length greater than the value defined in the parameter named 

MAXIMUM_MSG_LENGTH (available in the 1_2_ReadTEDSsegment.vh file) it will be sent several reply 

messages, since each one has a maximum length defined by the MAXIMUM_MSG_LENGTH. 

2- Despite indicated by the IEEE1451.0 Std., the following issue was not implemented: “The reply 

shall contain all ones in the TEDS segment offset and 0 data octets if the TEDS is “virtual,” is not 

supported, or is invalid.”. 
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WriteTEDSsegment (FunctionID=3) [file: 1_3_WriteTEDSsegment.vh] 

Used to write part of a TEDS.  

Arguments: TEDS ID code (8 bits), TEDS offset (32 bits) and Raw TEDS block (N x 8 bits). 

Returns:No reply, i.e. 100 (command correctly issued) or 000 (error issuing the command). 

Notes:  

1- Since the maximum size for an octet array is less than the maximum size for a TEDS, the TEDS 

segment offset is used to identify where in the TEDS the Raw TEDS block should be written. 

2- The IEEE1451.0 Std. indicates the following when data exceeds the TEDS size: “If the maximum 

TEDS size is exceeded, the additional data shall not be written into the memory and the current size of 

the TEDS shall be set to zero. If the TEDS offset is greater than the maximum length of the TEDS, the 

data shall be discarded and the command rejected bit in the status word (section 5.13.4 of the 

IEEE1451.0 Std.) shall be set.”. In current implementation this issue was simplified gathering both 

conditions, i.e. in both situations the command rejected bit of the status word is set if no data is written 
into the TEDS and the length is not changed. An error message will be generated (000). 

3- The IEEE1451.0 Std. indicates the following “A WriteTEDSsegment command shall create a new 

TEDS if one does not already exist with that access code”. In current implementation the TIM does not 

allow creating a new TEDS neither changing the length. To change the size of a TEDS it must be 

issued a new command named WriteTEDSsize, since the standard is not clear on how to change the size 
of a new TEDS. Current implementation do not allow increasing the size of a TEDS, it only allows 

reducing its size. 

4- If the TIM is not designed to allow creating a new TEDS, the WriteTEDSSegment command shall not 

write any data into a TEDS memory because the TEDS is unsupported. 

5- When the TIM begins to overwrite an existing TEDS, this will be marked as Invalid. It shall remains 

marked as Invalid (the TEDS attributes bit 2 (table 19 in the Std.) is set) until the UpdateTEDS 
command is received. 

UpdateTEDS (FunctionID=4) [file: 1_4_UpdateTEDS.vh] 

Validates a TEDS currently marked as invalid (WriteTEDS command updates a TEDS but it becomes 

invalid, and it only becomes valid after issuing this UpdateTEDS command). 

Arguments: TEDS ID code (8 bits). 

Returns: returns the 4 possibilities similar to the reply of a QueryTEDS command. 

Notes: 

1- This command is used to validate a TEDS that was previously written into MB connected to the 
DCM. If it is valid, it is marked as valid in the state octet of the TEDS structure and it is copied into a 

TEDS memory of the TEDS-M. Otherwise, the TEDS shall remain invalid and there is no copy. 

2- In current implementation the TEDS validation consists on evaluating the checksum, by calculating 

it according to the current data available in the TEDS and compares that calculation with the checksum 

available within the TEDS. If they are equal, the TEDS is marked as valid, otherwise it remains 

invalid. 

3- This command automatically calls update_TC() TC-tasks, since a change in a specific TEDS may 

change the operation of a weblab module connected to the TC. 

WriteServiceRequestMask (FunctionID=6) [file: 1_6_WriteServiceRequestMask.vh] 

Writes the SR mask register (32 bit word) for the addressed TC/TIM. 

Arguments: SR Mask (32 bits). 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

ReadServiceRequestMask (FunctionID=7) [file: 1_7_1_8_1_9_ReadMaskEventCondition.vh] 

Reads the SR mask register from the addressed TC/TIM. 
Arguments: none. Returns: SR mask register. 

ReadStatusEventRegister (FunctionID=8) [file: 1_7_1_8_1_9_ReadMaskEventCondition.vh] 

Reads the event from the addressed TC/TIM. 

Arguments: none; Returns: event register. 

ReadStatusConditionRegister (FunctionID=9) [file: 1_7_1_8_1_9_ReadMaskEventCondition.vh] 

Reads the condition register from the addressed TC/TIM. 

Arguments: none Returns: condition register. 

ClearStatusEventRegister (FunctionID=10) [file: 1_10_ClearStatusEventRegister.vh] 

Clears the event register for the addressed TC/TIM. 

Arguments: none. 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

Note: If the address target is the TIM, the command clears all the event registers, i.e. from the TIM 

itself and from all TCs. It does not clear the mask and condition registers. 
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WriteStatusEventProtocolState (FunctionID=11) [file: 1_11_WriteStatusEventProtocolState.vh] 

Enables or disables the status-event protocol. When this protocol is enabled, a TIM-initiated message 

will send the 32 bit event register any time the SR bit is asserted, according to the status message 

generation logic. Note that if it is a TC requesting a service, the event register will be sent. If it is the 

TIM, it will be sent the TIM event register. 

Arguments: Service enable bit (1- enable or 0-disable). 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

WriteTEDSSize (FunctionID=128) ) [file: 1_128_WriteTEDSSize.vh] 

This is a new command not defined in the IEEE1451.0 Std. that allows changing the TEDS size. 

Arguments: TEDS access code (8 bits) and the new TEDS size (32 bits). 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

Note: This new command was implemented because none of the IEEE1451.0 commands allow 

changing the TEDS size and therefore the length of a TEDS can not be changed. This command was 

especially created specially to change the size of a specific TEDS (the first 4 octets) and the TEDS 

information (the last 12 octets of a TEDS structure). The TEDS remains invalid (bit 2 of TEDS 

Attributes at '1') until the UpdateTEDS command is issued. If the new size exceeds the maximum TEDS 

size, the command rejected bit in the condition register is set and an error reply is generated. Note that 

the WriteTEDSsegment command only writes the data block and the checksum, but it does not allow 

changing the length.  

 

Table J.4: Transducer operating state commands (ClassID=3). 

ReadTCDSsegment (FunctionID=1) [file: 3_1_ReadTCDataSetSegment.vh] 

Reads segments from a DS belonging to a particular TC. 

Arguments: Offset (32 bits). 

Reply: The first field contains the offset at which the data segment was taken. The remaining octets 

contain the data segment read from the DS. [1(1 octet), length (2 octets), offset (4 octets), data (n 

octets)]. 
Notes: 

1- The maximum size for an octet array that may be handled by a given physical transport layer is less 

than the maximum size for a DS. 

2- The reply contains all ones in the DS segment offset and 0 data octets if the DS is empty. 

3- If the offset is greater than the number of octets in the DS, the offset field in the reply will be equal 

to the maximum number of octets in the DS and the reply will contain 0 octets. 

4- When this command is received and a TC is being operating in a streaming data transmission modes 

(section 5.10.2 of Std.), the command rejected bit in the condition register (section 5.13.4 of the 

IEEE1451.0 Std.) will be set and the command will be ignored. 

5- If the destination TC number in the octet array is zero, the command rejected bit in the TIM 

condition register (section 5.13.4 of the IEEE1451.0 Std.) will be set and the command ignored. 

6- At the end, the global register named aux_dw will get the offset value of the read data segment. 

7- This command automatically calls the rd() and update() TC-tasks. 

WriteTCDSsegment (FunctionID=2) [file: 3_2_WriteTCDataSetSegment.vh] 

Writes segments into a DS belonging to a particular TC. 

Arguments: Offset (32 bits) and a set of data (N x 8 bits). 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

Notes: 

1- The maximum size for an octet array that may be handled by a given physical transport layer is less 
than the maximum size for a data set. 

2- If the defined offset is greater than the maximum length of the DS (defined in the TC-TEDS Max. 

data repetition field (section 8.5.2.28 of the IEEE1451.0 Std.)) the data will be discarded and the 

command rejected bit in the status word (section 5.13.4 of the IEEE1451.0 Std.) will be set. 

3- When this command is received and a TC is operating in a streaming data transmission mode 

(section 5.10.2 of the IEEE1451.0 Std.), the command rejected bit (section 5.13 of the IEEE1451.0 

Std.) in the condition register will be set and the command will be ignored. 

4- If the destination TC number in the octet array is zero, the command rejected bit (5.13 of the 

IEEE1451.0 Std.) in the TIM condition register will be set and the command will be ignored. 

5- The command rejected bit (section 5.13 of the IEEE1451.0 Std.) is also set if this command is sent 

to a TC defined as a sensor or to an event sensor. 

6- At the end the global register named aux_dw will get the offset and the aux_dw_3 will get the 

Maximum Repetition Field (defined in the TEDS-TC fields 19 and 43). 
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7- This command automatically calls the wr() and the update() TC-tasks. 

TriggerCommand (FunctionID=3) [file: 3_3_4_TriggerCommand_AbortTrigger.vh] 

Sends a trigger signal to start the operation controlled by a TC. This command will be ignored for TCs 

in immediate sampling mode or in situations where the trigger is disabled. 

Arguments: none. 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

AbortTrigger (FunctionID=4) [file: 3_3_4_TriggerCommand_AbortTrigger.vh] 

Sends a trigger signal to stop the operation controlled by a TC. This command will be ignored for TCs 

in immediate sampling mode or in situations where the trigger is disabled. 

Arguments: none. 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

 

Table J.5: Transducer either idle or operating state commands (ClassID=4). 

TCOperate (FunctionID=1) [file: 4_1_a_4_2_TC_Operate_and_Idle.vh] 

Sets a TC from Idle to Operating state. If it is already in the Operating state the command will be 

ignored. 

Arguments: none. 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

TCIdle (FunctionID=2) [file: 4_1_a_4_2_TC_Operate_and_Idle.vh] 

Sets a TC to an Idle state. If it is already in the Idle state the command will be ignored. 

Arguments: none. 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

WriteTCTriggerState (FunctionID=3) [file: 4_3_ WriteTCTriggerState.vh] 

Enables/Disables the triggering of a specific TC. 
Arguments: trigger state (bit). 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error). 

Notes: 

1- If the TC does not support sampling modes without triggers, i.e. the immediate operation sampling 

mode (section 5.10.1.7 of the IEEE1451.0 Std.), the command rejected bit in the condition register 

(section 5.13.4 of the IEEE1451.0 Std.) will be set and the command will be ignored. 

2- The indication that a specific TC is enabled/disabled is provided by the associated octet in the state 

memory trigger octet provided by the SSM. 

3- The argument should be 0 or 1, otherwise the command rejected bit in the status register (section 

5.13.4 of the IEEE1451.0 Std.) will be set. 

ReadTCTriggerState (FunctionID=4) [file: 4_4_ ReadTCTriggerState.vh] 

Reads the trigger state of the current TC. 

Arguments: none. 
Returns: Current trigger state (trigger octet less significant bit indicating if it is enabled (1) or disabled 

(0)). 

Notes: 

1- If the current TC does not support triggering, i.e. the sampling mode is immediate, the reply will be 

false (disabled = 0). 

2- The indication that a specific trigger state is enabled/disabled is provided by the associated octet on 

the state memory trigger octet provided by the SSM. 

 

Table J.6: TIM any state commands (ClassID=7). 

Reset (FunctionID=1) [file: 7_1_Reset.vh] 

Resets the TIM and all TCs. 

Arguments: none. 

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error issuing the command). 

Notes: 

1- Initializes all TCs resetting all SRs and accesses the init() and the reset() TC-tasks. 

2- The TEDS-M and the SSM memories can only by reinitialized by the entire FPGA reinitialization. 
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J.3 - DCM schematics 

Figure J.1 presents the connections and associated buses and lines adopted by the 

DCM. Some of these buses have a variable width redefined during the reconfiguration 

process, since they depend on the number of adopted TEDSs and TCs for connecting 

the weblab modules. The role of each bus and line is described in the remaining annexes 

that detail the other modules’ functionalities. 
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Figure J.1: DCM schematics with all adopted buses for interfacing the other modules. 

J.4 - The DCM-MB interface 

The DCM-MB interface depends on the size of the MB. This is specified in the 

configuration file (*.conf) selected during the reconfiguration process that defines 

internal parameters in the definitions_GENERIC.vh file automatically created by the 

RecTool, namely: the max_mem_buffer (defines the length of the MB) and the 
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bits_max_mem_buffer (specifies the width of an address_buffer bus used to access the 

MB). Table J.7 presents code examples defined in both files (*.conf and 

definitions_GENERIC.vh) used to define the MB. 

 

Table J.7: MB definition (pieces of code in *.conf and definitions_GENERIC.vh files). 

*.conf 

<mem_buffer> 

100 

</mem_buffer> 
definitions_GENERIC.vh 

`define max_mem_buffer  100 

`define bits_max_mem_buffer  7 //>=(log[2]) 

 

The MB is internally accessed by the DCM using a point-to-point connection 

established by the buses ending with the prefix _buffer, described in table J.8. 

 

Table J.8: Buses and lines adopted for the DCM-MB interface. 

line operation 

en_buffer Enables the access to the memory buffer (1 line - output). 

address_buffer Specifies the MB address to read/write (variable length - output). 

wr_buffer Indicates if the MB will be read (1) or written (0) (1 line - output). 

octet_in_buffer Specifies the data to write into the MB (8 lines - output). 

octet_out_buffer Gets the data read from the MB (8 lines - input). 

 

The DCM accesses the MB using: i) IEEE1451.0 commands or; ii) the TC-tasks 

associated to a weblab module. Since these TC-tasks will be described by the 

developers of the weblab modules, they must know how to access the contents of the 

MB. For this purpose, table J.9 presents the Verilog HDL code that enables controlling 

the referred buses according to a particular state sequence. 

 

Table J.9: Sequence for accessing to the MB (Verilog code examples). 

Read operation 
(…) 

2:begin address_buffer<=address to read; state<=3; end 

3:state<=4; // required delay 

4:begin  octet_out_buffer has the data available in the address_buffer position … 

(…) handle data read and then update the address_buffer position to read new data… 

(…) state<=2; 

(note: before enabling the MB (en_buffer<=1) the MB must be in a read state (wr_buffer=0). 

Write operation 
(…) 

2:begin en_buffer<=1; address_buffer<= new address to writestate<=3; end 

3:begin (…) octet_in_buffer<= new datastate<=4; end 

4:begin wr_buffer<=1;state<=5; end 

5:begin wr_buffer<=0;state<=2; end 

(note: the address_buffer register must be defined before rising the wr_buffer signal) 
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J.5 - The DCM-MT interface 

The MT is automatically created by the RecTool according to the *.map file defined 

by the users. Its contents can be accessed by managing a set of buses and lines with the 

prefix _map, each with its specific role specified in table J.10. 

 

Table J.10: Buses and lines adopted for the DCM-MT interface. 

line operation 

en_map Enables the access to the MT (1 line - output). 

address_map Specifies the MT address field to read (variable length - output). 

octet_out_map Data read from the MT (8 lines - input). 

 

The MT is accessed using the DCM internal-task named findMAP() that consults its 

contents according to the current TC ID and TEDS ID code, and returns the memory 

number associated to that particular TEDS. The access to its contents is exclusively 

made by this internal-task. Table J.11 presents the Verilog HDL state sequence required 

to read the MT. 

 

Table J.11: Sequence for reading the MT (Verilog code example). 

Read operation 
(…) 

2:begin en_map<=1; address_map<=address to read; state<=3; end 

3:state<=4; // required delay 

4:begin  octet_out_map has the data available in the address_map position 

(…) state<=2; 
Write operation 

Not implemented. The MT can not be changed (it is synthesized to a ROM). 

 

J.6 - DCM registers and buses for implementing the error 

detection mechanism 

As illustrated in figure J.2, the error sources handled by the DCM are included into 

the internal register named error_reg, divided in three parts, whose lengths are defined 

during the reconfiguration process in different variables: 

 part_1 (error_internal) - internal errors generated by the DCM (the length is 

defined by the variable error_num_internal); 

 part_2 (error_external) - external errors generated by the external modules (the 

length is defined by the variable error_num_external); 

 part_3 (error_im) - errors generated by the weblab modules (the length is 

defined by the variable error_num_im); 

 part_1 + part_2 + part_3 - have all errors (the length is the sum of the variables 

error_num_internal, error_num_external and error_num_im). 
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Figure J.2: Illustration of the adopted registers to handle errors. 

 

When new weblab modules are bound to the IEEE1451.0-Module, the width of the 

error_reg register should be increased by incrementing the variable `error_num_im 

according to the number of new errors those modules may generate. Each weblab 

module may have several dedicated error lines connected to the DCM using a bus 

named error_im[]. All these definitions are made in the configuration file (*.conf) by 

the tag named <im_errors>. 

J.7 - Error codes specified in the IEEE1451.0-Module 

Table J.12 provides the mapping established between the error codes specified 

internally for the IEEE1451.0-Module, namely the error_reg register, and the 

IEEE1451.0 errors specified in the condition register of the TC/TIM. 

 

Table J.12: Error codes mapped from the condition register to the error_reg. 

error_

reg 

(bit) 

so
u

r
c
e 

Cause for the generated error 

IEEE1451.0 error 

code description 

0 

D
C

M
 

ID does not exist. 3* Command rejected 

1 Command class does not exist. 
2 Invalid command 

2 Command function does not exist. 

3 

- TEDS access code or ID does not match/exist in the 

MT. 

- TEDS is read only and it cannot be written. 

- TEDS miss a required field or TEDS is invalid. 

- Data does not fit into the TEDS memory. 

- New TEDS size exceeds the Maximum TEDS size. 

3 Command rejected 

4 
Command cannot be applied for the current TC/TIM 
states or the length in the command message structure is 

invalid. 

8 Protocol error 

5 Length specified for a specific command is invalid. 3 Command rejected 

6 
Modules desynchronized or a specific task is missing for 

the target TC. 
6,7 

Hardware & Not 

operational errors 

7 - not implemented - reserved. 

8 

Command not implemented for the selected TC or there 

are some inconsistency issuing the command (e.g. data 

does not fit into the MB). 

3 Command rejected 

9 Invalid sampling mode for TC. 6 Hardware error 
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N=`error_num_internal 

N+0 R
x

 

Invalid data structure. 8*  

N+1 T
x
 

- not implemented - reserved. 

N+2 

T
E

D
S

-M
 TEDS filed not found. 

6 Hardware error 

N+3 Error reading TEDS values. 

N+4 Error writing TEDS values. 

N+5 Error accessing a TEDS. 

N+6 

S
S

M
 Not implemented or other internal errors. 

N+7 Status or state not valid. 

M=`error_num_internal + `error_num_external 

M+0 

W
.m

o
d
u
le

s Error cause by a weblab module. 

6 Hardware error 

M+1 Error cause by a weblab module. 

M+3 Error cause by a weblab module. 

M+4 Error cause by a weblab module. 

... … 

`error_num_im + `error_num_internal + `error_num_external 

Note: * Error source caused by the TIM. 

 

J.8 - TEDS-M: schematics and interface 

J.8.1 - Internal variables 

The number of TEDSs memories and the length of their data structures are defined 

by a set of variables in the definitions_TEDS.vh file, automatically created during the 

reconfiguration process according to the rules defined in the configuration file (*.conf), 

as illustrated in table J.13. 

 

Table J.13: Example of a definitions_TEDS.vh file automatically created during the 

reconfiguration process. 

definitions_TEDS.vh  
////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:24 2013 

////////////////////////////////////////////////////////////////////////// 

//---- Memory 0 

(…) 

//---- Memory 7 

`define max_length_7 41 

`define bits_pointer_7 6 

//---- Generic parameters 

`define number_memories 8 

`define bits_number_memories 3 

`define max_memlength 109 

`define bits_max_memlength 7 
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J.8.2 - Schematics and signals 

Internally, the TEDS-M comprises a set of modules and multiplexers represented in 

figure J.3. The DCM-TEDS-M interface is made through a set of commands according 

to a particular handshake protocol using a set of buses and lines specified in table J.14. 
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Figure J.3: TEDS-M internal schematics. 

 

Table J.14: Buses and lines adopted for the DCM-TEDS-M interface. 

line operation 

exec, done,  

run, end 
Control the module according to a specific handshake protocol (1 line each - I/O). 

access Specifies command codes (3 lines - input). 

select 
Specifies the memory number (length dependent on the maximum TEDS’s length 

or the maximum data to transmit between the DCM and a weblab module - input). 

octet_in / _out Transfer data between each TEDS and the DCM (8 lines - I/O). 

error 

Provides the TEDS-M error codes (4 lines - output) to handle unexpected 

situations, such as reading an undefined field. All error are identified in the TEDS-

M according to 4 error codes defined in the DCM error_reg register as external 

errors mapped into IEEE1451.0 errors representing the following: error [0] - 

TEDS’s field not available; error [1] - reading TEDSs values; error [2] - writing 

TEDS’s values; error [3] - command not implemented. 

rst Issues a command (1 line - input). 

reset Resets the controller, but the TEDSs contents are not recovered (1 line - input). 

en_mod Turns-on the entire TEDS-M (1 line - input). 

clk Clock signal (1 line - input). 
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J.8.3 - Handshake protocol 

The handshake protocol used to access the TEDS-M is illustrated in figure J.4. This 

is synchronized by the internal clk line and managed by the DCM using the exec, done, 

run and end lines. These lines enable issuing commands to the TEDS-M, by executing 

operations (execute operation), which may be applied in steps sequences (step 

operations) when the associated data sent/retrieved with the command uses more than 

one octet. This data is placed in the octet in/out buses that have a limited length of 8 

lines. In this situation, after triggering an operation using a command (run signal is 

high), the octet_in/out buses are read/write more than once, according to the execution 

of step sequences controlled by the exec and the done lines until the end line goes up, 

i.e. the last octet was read/wrote. 

The controller accesses (reads/writes) a particular TEDS according to a multiplexing 

schema controlled by the en bus, when a specific command is issued. Based on the 

value defined in this bus, which is managed by an internal register whose length 

depends on the number of adopted TEDSs, a specific line in this bus is set, connecting 

the data buses data_mem_in/out and the address bus to a particular TEDS. Since the 

IEEE1451.0-Module is able to be reconfigured according to the adopted number of 

TCs, which requires a variable number of TEDS, the lines en and address may have 

different lengths. This process is transparent for the applied command, since both the 

DCM and the TEDS-M manage all this process. 
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Figure J.4: Handshake protocol adopted for the DCM-TEDS-M interface. 

 

J.8.4 - Hardware API 

The hardware API provided for facilitating the access to the TEDS-M is 

implemented in the Access_ModTEDS.vh file. It provides a set of instructions listed in 

table J.15. Each instruction has a set of input parameters defined between parentheses, 

which are basically DCM internal registers. Most of the instructions provide changes in 
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the DCM register named double_word_in_mod associated to their output. The void word 

means that the associated instruction does not provide changes in any relevant DCM 

register able to use as an output. 

 

Table J.15: TEDS-M hardware API instructions (available in file: 

Access_ModTEDS.vh). 

double_word_out_mod ModTEDS_ReadField (select, octet_in) 

select - memory number (3 bits - input). 

octet_in - field number to read (8 bits - input). 

double_word_out_mod - keeps fields read after the TEDSs’ length (32 bits - output). 

double_word_out_mod ModTEDS_ReadWithOffset (select, double_word_offset) 

select - memory number (3 bits - input). 

double_word_offset - offset value that means the first octet to be read (32 bits - input). 

double_word_out_mod - value read from the location specified by the offset (32 bits - output). 

double_word_out_mod ModTEDS_QueryStatus (select) 

select - memory number (3 bits - input). 

double_word_out_mod - keeps the read status register (32 bits - output). 

double_word_out_mod ModTEDS_FindField (select, octet_in) 

select - memory number (3 bits - input). 
octet_in - field type number to find (8 bits - input). 

double_word_out_mod - indicates if the field type was found (=1) or not found (=0) (32 bits but only 

the less significant bit is relevant - output). 

void ModTEDS_WriteField (select, octet_in, octet_in_data) 

select - memory number (3 bits - input). 

octet_in - field type number to write (8 bits - input). 

octet_in_data - value to write in the specified field type number (8 bits - input). 

void ModTEDS_WriteWithOffset (select, double_word_offset, octet_in_data) 

select - memory number (3 bits - input). 

double_word_offset - offset value means the first octet to be written (32 bits - input). 

octet_in_data - value to write in the location specified by the offset (8 bits - input). 

void ModTEDS_WriteStatus (select, octet_in_data) 

select - memory number (3 bits - input). 

octet_in_data - value to write in the status register (8 bits - input). 

 

To use the hardware API instructions, specific state sequences defined in Verilog 

HDL must be implemented. Table J.16 provides those sequences, which are controlled 

by the state register and managed by the state_command_module, the end_access_TEDS, 

and the end_step_access_TEDS registers. 
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Table J.16: Sequences for accessing the TEDS-M hardware API instructions. 

ReadField / QueryStatus / ReadWithOffset 
0:begin state_command_module<=0; end_access_TEDS<=0; end_step_access_TEDS<=0; state<=1; end 

1:begin if (end_access_TEDS==1)  state<=leaves the sequence; //command ended 

            else begin ModTEDS_Read ()/ QueryStatus () /*double_word_out_mod updated*/ state<=2; end 

end 

2:begin if(end_step_access_TEDS==1) state<=3; //step ended (command NOT ended) 

           else state<=1; 

end 

3:begin /* data available in the double_word_out_mod can be handled here */ 

           state<=1; //repeats a step sequence to read another field (QueryStatus only gets one field) 

end (....) 

FindField  
0: begin state_command_module<=0; end_access_TEDS<=0; end_step_access_TEDS<=0; state<=1; end 

1: begin ModTEDS_FindField(); /* double_word_out_mod goes to 1 if found or 0 if not found */ 

            if (end_access_TEDS==1)  state<= leaves the sequence; //command ended 

end (....) 

WriteField / WriteStatus / WriteWithOffset  
0: begin state_command_module<=0; end_access_TEDS<=0; end_step_access_TEDS<=0; 

            value2Write<= ...first value to write....; state<=1; 

end 

1:begin if (end_access_TEDS==1)  state<= leaves the sequence; /*command ended*/ 

           else begin ModTEDS_Write./ WriteStatus (...value2Write...); state<=2; end 

end 

2:begin if(end_step_access_TEDS==1) state<=3; else state<=1;/*step ended (command NOT ended)*/ end 

3:begin value2Write<= ...updates value to write... state<=1; end (...) 

Note: value2Write is an 8 bit length register used to keep the new value to be written into a TEDS’s structure.  

 

J.9 - SSM: schematics and interface 

J.9.1 - Internal variables 

The length of the status and state memories are defined during the reconfiguration 

process according to the rules defined in the configuration file (*.conf). Their lengths 

and address buses are specified in the definitions_GENERIC.vh file by the variables 

bits_pointer_TC_number and bits_pointer_TC_number_small, whose values depend on 

the number of adopted TCs defined in a variable named TC_number. While the 

TC_number is defined according to a value specified in the configuration file, the others 

are the result of a log base 2 mathematic calculation made during the reconfiguration 

process, as exemplified in definitions_GENERIC.vh presented in table J.17. 

 

Table J.17: Example of a definitions_GENERIC.vh file automatically created during the 

reconfiguration process. 

definitions_Generic.vh  
////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:34 2013 

////////////////////////////////////////////////////////////////////////// 

`define TC_number  3 

`define bits_pointer_TC_number  4 //>=(log[2](TC_number+1)*3) 

`define bits_pointer_TC_number_small  3 //>=(log[2](TC_number+1)*2) 

 (…) 
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J.9.2 - Schematics and signals 

Internally, the SSM comprises a set of modules and multiplexers represented in 

figure J.5. The DCM-SSM interface is made according to a particular handshake 

protocol using a set of buses and lines specified in table J.18. 
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Figure J.5: SSM internal schematics. 

 

Table J.18: Buses and lines adopted for the DCM-SSM interface. 

line operation 

exec, done, 

run, end 
Control the module according to a specific handshake protocol (1 line each - I/O). 

access Specifies command codes (2 lines - input). 

address_in 
Specifies the address of the selected memory (length dependent on the number of 
TCs -input). 

double_word_in 

ouble_word_out  
Buses used to transfer data between each memory and the DCM (32 lines - I/O). 

service request Indicates that a SR was generated by a TC/TIM (1 line - output). 

error 

Provides SSM error codes (2 lines - output). The SSM may generate 2 errors 

defined in the DCM error_reg as external errors, which will be mapped to 

IEEE1451.0 errors representing the following: error [0] - command not 

implemented, or any other types of internal errors; error [1] - transition between 

states are not valid or invalid access to a status register. 

rst Issues a command (1 line - input). 

reset 
Resets the SSM controller, but the memories contents are not recovered (1 line - 

input). 

en_mod Turns-on the SSM (1 line - input). 

clk Clock signal (1 line - input). 
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J.9.3 - Handshake protocol 

As illustrated in figure J.6, issuing a command to the SSM requires controlling a set 

of lines already described (exec, done, run and end) according to an handshake protocol 

similar to the one described for the TEDS-M. The difference focus on selecting the 

address to read, which, in this module, requires defining the address in the address bus, 

instead of the memory. In this case, it is the internal controller of the SSM that decodes 

which memory will be accessed, according to the command defined by the access bus. 

Typically, a single step operation is executed in each command. However, both the exec 

and done lines are also available, so future implementations, which may require 

accessing more data within the status or state memories, may implement a step mode 

similar to the one used by the TEDS-M. 
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Figure J.6: Handshake protocol for the DCM-SSM interface. 

J.9.4 - Hardware API 

The hardware API provided for facilitating the access to the SSM is implemented in 

the Access_ModStatusState.vh file. It provides a set of instructions illustrated in table 

J.19, each with a set of input parameters, defined between parenthesis, and output 

parameters only for the instructions that read the memories, since the others do not 

retrieve any data. All instructions require the address to be accessed as an input 

parameter. The read instructions require the specification of the memory type to read 

(status or state) and return the read value in the double_word_out_mod bus. The write 

instructions require defining the data to write and they do not return any value, as 

specified by the void word.  

 

Table J.19: SSM hardware API instructions (available in the file: ModStatusState.vh). 

double_word_out_mod ModStateStatus_Read (addr_in, reg_type) 

addr_in - address to read that can be a TC's state or trigger, or a TIM's state (input - variable number of 

bits since it depends on the number of adopted TCs). 

reg_type - specifies if the memory to read is a state (=0) or a status (=1) memory (input - 1 bit). 

double_word_out_mod - data read from the specified address and memory (output - 32 bits - when 
reading from the state memory only the less significant 8 bits are relevant). 
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void ModState_Write (addr_in, octet_in_data) 

addr_in - address to write that can be a TC's state or trigger, or a TIM's state (input - variable number 

of bits since it depends on the number of adopted TCs). 

octet_in_data - data to write into the specified address of the state register (input - 8 bits). 

void ModStatus_Write (addr_in , doubleWord_in_data) 

addr_in - address to write the condition, event or mask registers (input - variable number of bits since it 

depends on the number of adopted TCs). 

double_word_in_data - data to write to the specified address of the status register (input - 32 bits). 

 

To use the instructions of the hardware API, specific state sequences defined in 

Verilog HDL must be implemented. Table J.20 provides those sequences, which use the 

end_access register to manage a sequence controlled by the state register. 

 

Table J.20: Sequences for accessing the SSM hardware API instructions. 

Read Status / Read State  
0: begin state_command_module<=0; end_access_SS<=0; state<=1; end 

1: begin ModStateStatus_Read(addr_in, reg_type); // double_word_out_mod is updated 

            if(end_access_SS==1) //command ended 

begin /*...do something with data and leaves */ state<=leaves the sequence; end 

end (...) 

Write State  
0: begin state_command_module<=0; end_access_SS<=0; state<=1; end 

1: begin ModState_Write(address position , octet data to write); 

            if(end_access_SS==1) state<=leaves the sequence; 

end (...) 

Write Status  
0: begin state_command_module<=0; end_access_SS<=0; state<=1; end 

1: begin ModStatus_Write(address position, doubleWord_in_data to write); 

            if(end_access_SS==1) state<=leaves the sequence; 

end (...) 

 

J.10 - UART-M: schematics and interface 

J.10.1 - Schematics and signals 

The UART-M sends/receives message structures to/from the NCAP. While 

command messages are always sent from the NCAP, the TIM may send reply or TIM-

initiated messages to the NCAP. Each of those messages has its own data structure. The 

distinction between them is made by the line named replyTIM_msg controlled by the 

DCM. The frequency is defined during the reconfiguration process, using the variables 

bps_divisor and bps_length_counter, whose values are specified according to the internal 

oscillator implemented in the FPGA-based board.  

Figure J.7 illustrates the internal modules of the UART-M, which comprises the Rx, 

Tx and the BR_Generator modules, and the adopted buses and lines are detailed in table 

J.21 and table J.22.  
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Figure J.7: Modules of the UART-M and its buses and lines. 

 

Table J.21: Signals used by the Rx module (data reception from the NCAP). 

line operation 

Handshake signals 

available_rd 
Goes high when there is data in the buffer_in_rx. When the NCAP starts sending 

that data, this signal goes low until all data were transmitted (1 line - ouput). 

rd (pulse) Reads an octet from the buffer_in_rx (1 line - input). 

rst_rd 
Used with the rd signal, resets the address position of the buffer_in_rx (1 line - 
input). 

rd_active 
Goes high when data is being sent through the octet_out bus or goes low when all 

octets were read (1 line - output). 

Remaining signals 

octet_out Bus used to read data available in the buffer_in_rx (8 lines - output). 

error 

Goes up when data received through Rx is not in accordance to the IEEE1451.0 

Std. data structure. Internally the Rx module evaluates if the length specified in the 

length field of the data structure is coherent with the remaining data, and if the 

number of start and stop bits are correct (1 line output). 

rx Receives data from the NCAP (1 line - input). 

rst_rx Resets the Rx module (1 line - input). 

clk Clock signal (1 line - input). 

enable Enables the Rx module (1 line - input). 

 

Table J.22: Signals used by the Tx module (data transmission to the NCAP). 

line operation 

Handshake signals 

available_wr 
Goes high when data available in the buffer_out_tx is in accordance with the 
IEEE1451.0 Std. data structure and, therefore, able to be transmitted to the NCAP 

(1 line - output). 

wr (pulse) Writes an octet into the buffer_out_tx (1 line - input). 

rst_wr Used with the wr signal, resets the address of the buffer_out_tx (1 line - input). 

wr_active 
Goes high when data is being transmitted by the Tx module and it goes low when 

the last octet is transmitted (1 line - output). 

replyTIM_msg 
Indicates which type of message will be transmitted: TIM-initiated message (=0) or 

a command reply message (=1) (1 line - input). 

tx_send Initiates data transmission through the tx line (1 line - input). 

Remaining signals 

octet_in Bus used to write data into the buffer_out_tx (8 lines - input). 

error Not implemented - reserved (1 line - output). 

tx Transmits data to the NCAP (1 line - output). 

rst_tx Resets the Tx module (1 line - input). 

clk Clock line (1 line - input). 

enable Enables the Tx module (1 line - input). 
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J.10.2 - Handshake protocol 

To send or receive messages, the DCM controls the Tx and Rx modules according to 

a specific sequence. There is no API to access the UART-M
125

, but developers may 

directly access its modules using some DCM signals used by the handshake protocol. 

As represented in figure J.8, when a command message structure sent by the NCAP is 

completely transmitted to the UART-M, the Rx module automatically raises the 

available_rd line indicating to the DCM there is a valid data structure in the 

buffer_in_rx. This will begin a reception process in the DCM that starts by resetting the 

address position of the buffer_in_rx using lines rd and rst_rd. By pulsing the rd signal, 

all octets will be read and placed in the octet_out bus. The DCM may detect when a 

specific data structure was completely read from the buffer_in_rx by monitoring the 

rd_active signal that stays high during the entire process, and goes low when the last 

octet is read. 
 

(...)

rd

rst_rd

available_rd Data available in 
the buffer_in_rx 

rd_active All data read from the buffer_in_rx 

Data read from the buffer_in_rx 

(...)

data data data data data
octet_out

Resets the 

buffer_in_rx 

address position

 

Figure J.8: Handshake protocol used to read data from the Rx module. 

For data transmission using the Tx module, developers must fill-in the buffer_out_tx 

with the data to be sent to the NCAP. To facilitate the creation of IEEE1451.0 message 

structures, the DCM provides two internal-tasks, namely the createTIMMsg(), to create 

TIM-initiated messages, and a createReplyMsg(), to create reply messages. Both 

messages can be created after resetting the Tx module using the wr and the rst_wr 

signals, as illustrated in figure J.9. Once reseted, the replyTIM_msg signal must be 

defined to indicate which type of message will be created, and the data must be placed 

in the octet_in bus to fill-in the buffer_out_tx using the wr signal. When the available_wr 

signal goes high, indicating that a valid data structure is able to be transmitted, the Tx 

module can start sending the messages by setting up the tx_send signal. This signal 

should remain high if the wr active signal is high, since it indicates data is being 

transmitted. At the end, the tx_send should be placed low. 

 

                                                
125 In future versions, an API can be developed to adapt different NCAP-TIM interfaces. 
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Figure J.9: Handshake protocol used to fill-in the buffer_out_tx and to transmit data to 

the NCAP. 
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 Annex K   

Weblab modules: specification and design 
 

K.1 - Definition of TC-tasks 

The implementation of each TC-task requires the use of two variables to indicate to 

the DCM that they finished their sequential operation, namely the end_tc_task and the 

attending_event. The end_tc_task variable must be set to ‘1’ in all TC-tasks except in 

the event() that should set the attending_event variable to ‘1’, as exemplified in the code 

listed in table K.1. 

 

Table K.1: Example of Verilog HDL code for implementing TC-tasks using the 

mandatory end_tc_task and attending_event variables. 

To all TC-tasks except for event() TC-tasks  To event() TC-tasks  
task tc3_start; 

begin 

case(state_tc3) 

0:begin rst_tc3<=0; en_tc3<=1;  

           access_tc3<=0; state_tc3<=1; 

end 

1:begin run_tc3<=1; state_tc3<=2; end 

2:if(end_tc3) begin 

           run_tc3<=0; state_tc3<=0; 

           end_tc_task<=1; 

           end 

end 

endcase end 

endtask 

task es_event; 

begin 

case (state_evt) 

(…) 

8:begin if (wr_active_tx==0) begin  

           tx_send_tx<=0; state_evt<=0; 

           attending_event<=0; 

           end  

end 

endcase end 

endtask 

 

K.2 - Design of TEDSs and MTs 

The data of each TEDS and MT is defined in an hexadecimal format. The TEDSs are 

defined according to the structure specified in the IEEE1451.0 Std., and the MT must be 

defined according to the description made in section 6.2.1. Both can be defined using an 

hexadecimal editor, such as the XVI32
126

 for windows platforms illustrated in figure 

K.1. The created file is a binary one able to be decoded by the Bind and Config software 

modules adopted by the RecTool. 

 

                                                
126 http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm  

 

http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
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Figure K.1: Freeware hexadecimal editor XVI32 used to define TEDSs and MTs. 

 

K.3 - Examples of weblab modules 

This annex presents four weblab modules compatible with the IEEE1451.0-Module 

designed according to the description made in the section 6.3, namely: two digital I/O 

modules, one controller for step-motors, and an event sensor. Their design followed the 

sequence presented in section 6.3.4, which includes the specification of the required 

inputs/outputs, associated TCs and sampling modes, the TEDSs and the TC-tasks to 

interface them to the DCM. After binding these weblab modules to the IEEE1451.0-

Module, using the reconfiguration process described in section 6.4, they were validated 

by issuing IEEE1451.0 commands using a PC connected to the TIM through the serial 

communication tool named Comm Operator Pal
127

. 

K.3.1 - Digital I/O modules 

Overview 

Two simple weblab modules controlled by the IEEE1451.0-Module were developed 

to control digital lines, namely an 8-Bit Input Module and a 6-Bit Output Module. Both 

modules do not require the control of any specific parameter, since they just read and 

write digital I/O signals. Due to their simplicity, each of them adopts a single TC for 

controlling their I/Os. The behaviour of each TC was defined by the associated TC-

TEDSs, and implemented through TC-tasks, as conceptualized in figure K.2. 

 

                                                
127 http://www.serialporttool.com/CommPalInfo.htm 

 

http://www.serialporttool.com/CommPalInfo.htm
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Figure K.2: Digital I/Os weblab modules connected to the IEEE1451.0-Module. 

 

Internal modules 

Both weblab modules are implemented through single HDL modules integrating DSs 

with 1 register length each. They are accessed by independent TCs controlled according 

to the definition made in TC-TEDSs and using an handshake protocol implemented by 

the TC-tasks and by the HDL modules. This protocol is synchronized by the same clk 

signal adopted for the IEEE1451.0-Module, and includes the management of two lines, 

namely the run and end lines, to access data available in the in and out buses, as 

represented in figure K.3. The rst and en lines reset and enable each weblab module. 
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Figure K.3: Buses, lines and the handshake protocol of the I/O weblab modules. 

 

The DCM controls the TCs according to definitions made in the fields of the TC-

TEDSs, both read-only, as defined in their attributes. Although more fields have been 

defined, table K.2 and table K.3 present the most relevant defined in each TC-TEDS. 

 

Table K.2: TC-TEDS relevant fields defined to control the 8-Bit Input Module. 

Field num. Description Data Type octets Value (hex) 

- TEDS length UInt32 4 00.00.00.5D 

0-2 Reserved - - - 

3 TEDS identification:  
(Family=00h, Class =03h, Version =01h, T. Length=01h) 

UInt8 4 
03.04. 

00.03.01.01 

11 Channel Type set to sensor (=0) UInt8 1 0B.01.00 

12 Physical units set to digital (=4) UInt8 3 
0C.03. 

32.01.04 
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18 

Sample information (data model, length and 

significant bits).  
DataModel (field=28h, UInt8, Bit Sequence=04h); Length 

(field=29h, UInt8, ModLenth=01h); Model significant bits 

(field=2Ah; UInt16, SigBits=00.08h) 

UInt8+ 

UInt8 + 

UInt16 

10 

12.0A. 

28.01.04. 

29.01.01. 

2A.02.00.08 

19 

DS definition (only the maximum data 

repetition field is specified, which represents 

the DS length). (field=2Bh, UInt16, Max. data 

rep.=00.01h) 

UInt16 4 
13.04. 
2B.02.00.01 

31 
Sampling mode capability: 
(field=30h, UInt8, immediate sampling capability=10h) 

UInt8 3 
1F.03. 
30.01.10 

 …  

- Checksum UInt16 2 F6.24 

 

Table K.3: TC-TEDS relevant fields defined to control the 6-Bit Output Module. 

Field num. Description Data Type octets Value (hex) 

- TEDS length UInt32 4 00.00.00.5D 

0-2 Reserved - - - 

3 
TEDS identification:  
(Family=00h, Class =03h, Version =01h, T. Length=01h) 

UInt8 4 
03.04. 

00.03.01.01 

11 Channel Type set to actuator (=1) UInt8 1 0B.01.01 

12 Physical units set to digital (=4) UInt8 3 
0C.03. 
32.01.04 

18 

Sample information (data model, length and 

significant bits). 
DataModel (field=28h, UInt8, Bit Sequence=04h); Length 

(field=29h, UInt8, ModLenth=01h); Model significant bits  

(field=2Ah; UInt16, SigBits=00.06h) 

UInt8+ 

UInt8 + 

UInt16 

10 

12.0A. 

28.01.04. 

29.01.01. 

2A.02.00.06 

19 

DS definition (only the maximum data 

repetition field is specified, which represents 

the DS length) (field=2Bh, UInt16, Max. data 

rep.=01h) 

UInt16 4 
13.04. 
2B.02.00.01 

31 
Sampling mode capability: 
(field=30h, UInt8, immediate sampling capability=10h) 

UInt8 3 
1F.03. 
30.01.10 

 … 

- Checksum UInt16 2 F6.25 

 

For the 8-Bit Input Module, the adopted TC was defined as a sensor able to read 8 

digital signals. For the 6-Bit Output Module the adopted TC was defined as an actuator 

able to write 6 digital signals. Both are accessed using an immediate sampling mode, 

which means that Read/WriteTCDSsegment commands automatically access the rd() and 

wr() TC-tasks. Furthermore, for each TC was defined the required TC-tasks init() and 

update(). 

Validation 

For validating the weblab modules, physical connections between their I/O lines 

were established, and IEEE1451.0 commands were issued. As exemplified by the 

diagram of figure K.4, only the ReadTEDSsegment command was issued to get 

information about the TIM and about the current states of the TCs. Latter, both weblab 

modules were placed on the operating state using the TCOperation command, preceding 

the read/write operations. To the 8-Bit Input Module, only the ReadTCDSsegment 

command was issued to get the current state of its inputs, since TCs defined as sensors 
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cannot receive WriteTCDSsegment commands, unlike the 6-Bit Output Module where 

both commands were issued. These commands were issued several times to evaluate if 

the weblab modules were running correctly, as exemplified in figure K.5. 
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Figure K.4: Sequence of commands issued to the I/O digital weblab modules. 
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8-Bit Input Module
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Set 8-Bit Input Module to operate
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Figure K.5: Commands issued to validate the I/O digital weblab modules. 
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K.3.2 - Step-Motor Controller Module (SMCM) 

Overview 

Although the Step-Motor Controller Module (SMCM) provides several control 

parameters, such as the number of steps, direction, etc., the main output is a sequence of 

6 digital output signals for energizing the inductors of any bipolar step-motor interfaced 

by a power bridge to adapt the outputs of the FPGA-based board to the inputs of the 

step motor. To simplify the implementation and reduce the required FPGA’s resources, 

and taking into consideration that the outputs are a digital sequence of signals whose 

units are not relevant, a single TC was adopted. The SMCM is controlled by the 

reception of a trigger signal to start and stop the generation of a digital output sequence, 

whose samplings are provided by an internal DS controlled according to definitions of 

TEDSs’ fields. Those fields are provided by a TC-TEDS, and by a MD-TEDS. The TC-

TEDS specifies the TC as an actuator with 6 outputs running in a continuous sampling 

mode with the DS operating in the recirculation mode. The MD-TEDS specifies all 

parameters to control, namely the direction, step modes, speed, and if the control is 

remotely or locally made using a push button available in the FPGA-based board. All 

these fields are writable and readable by the standard IEEE1451.0 commands 

Read/WriteTEDSsegment and by the internal DCM, so it can control the TC using 

specific TC-tasks to start/stop the step-motor. Figure K.6 provides a generic overview 

of the SMCM blocks. 

DS

SMCM

TC-tasks

TC-TEDS

MD-TEDS

IEEE1451.0-Module

trigger

push-button
power
driver

bipolar
step 

motor
recirculation 

mode control type 

(remotly/local)

TC 6

 

Figure K.6: SMCM connected to the IEEE1451.0-Module. 

 

Internal modules 

The SMCM comprises a set of HDL modules and TC-tasks for controlling the 

adopted TC according to three TEDS: i) Meta-TEDS; ii) TC-TEDS and; iii) a MD-

TEDS. The Meta-TEDS defines the whole TIM structure, while the behaviour and the 

features of the SMCM are defined by a MD-TEDS, and by a read-only TC-TEDS. 

Table K.4 lists the most relevant fields of the TC-TEDS. Additional parameters were 

defined in the MD-TEDS presented in table K.5, such as the direction, number and step 

modes, a time divider to control the speed of a step-motor, plus the type of control that 

can be made using IEEE1451.0 commands or using a push button in the FPGA-based-

board. All the MD-TEDS fields can be updated through the WriteTEDSsegment 

command and read by the ReadTEDSsegment command to control/monitor the 

behaviour of the entire SMCM. 
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Table K.4: TC-TEDS relevant fields defined to control the SMCM. 

Field num. Description Data Type octets Value (hex) 

- TEDS length UInt32 4 00.00.00.60 

0-2 Reserved - - - 

3 
TEDS identification (Family=00h, Class =03h, 

Version =01h, T. Length=01h) 
UInt8 4 

03.04 

00.03.01.01 

11 Channel type set to actuator (=1) UInt8 1 0B.01.01 

12 Physical units set to digital (=4). UInt8 3 
0C.03. 
32.01.04 

18 

Sample information: data model, length and 

significant bits.  
DataModel (field=28h, UInt8, Bit Sequence=04h); Length 

(field=29h, UInt8, ModLength=01h); Model significant 

bits (field=2Ah; UInt16, SigBits=00.06h) 

UInt8+ 

UInt8 + 

UInt16 

10 

12.0A. 

28.01.04 

29.01.01 

2A.02.00.06 

19 

DS definition (only the maximum data 

repetition field is specified, which represents 

the DS length) (field=2Bh, UInt16, Max. data 

rep.=08h) 

UInt16 4 
13.04. 

2B.02.00.08 

31 Sampling mode capability: 
(field=30h, UInt8, continuous mode capability=08h) 

UInt8 3 
1F.03 
30.01.08 

33 
End-of-data-set operation attribute: 
(field=21h, UInt8, recirculation mode=04h) 

UInt8 3 21.01.04 

 … 

- Checksum UInt16 2 F5.FD 

 

Table K.5: MD-TEDS defined fields to control the SMCM. 

Field num. Description Data Type octets Value (hex) 

- TEDS length UInt32 4 00.00.00.1A 

0-2 Reserved - - - 

3 TEDS identification: (Family=00h, Class =80h, 

Version =01h, T. Length=01h) 
UInt8 4 

03.04 

00.80.01.01 

4 
Direction. Indicates the direction of the step-

motor rotation: left (=0) or write(=1) 
UInt8 1 04.01.01 

5 

Number of steps. Indicates the number of steps 

the motor will do after receiving a trigger 

signal. If the value is set to its maximum 

(FF.FF hex) this field becomes irrelevant and 
the step sequences are generated continuously. 

UInt8 2 05.02.FF.FF 

6 
Step mode. Defined according to three modes: 
half step (=0); normal drive(=1) or wave drive(=2) 

UInt8 1 06.01.00 

7 

Step speed (steps/s). Defines the internal clock 

rate of the module, and therefore the speed of 

the generated step-motor sequences according 

to the equation: 

speedReg =(clk_external/2) / (Step speed) 

Currently: clk_external =19200 bps 

UInt8 3 
07.03. 

00.09.60 

8 

Control type. Specifies the type of control: 
remotely using IEEE1451.0 commands (=0) or locally 

using a push button at a transition level (=1) or at a state 

level (=2). 

UInt8 1 08.01.00 

- Checksum UInt16 2 FC.CF 

 

Although several protocols could be used to control the TC, the adopted is similar to 

the one used for accessing the TEDS-M and the SSM described in the previous annex J. 

As represented in figure K.7, it uses the lines run and end to issue a particular code and, 
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for some of them, the data to specify the behaviour of the SMCM by changing its 

internal parameters. The code is defined using the access bus, and the data is defined by 

the out bus, as detailed in table K.6. Each code changes the behaviour of the SMCM 

according to a value read from the MD-TEDS placed in the in bus to define the number 

of steps and the speed parameters, both representing the use of more than one octet and, 

therefore, more than one code. For these parameters, the code also specifies both the 

parameter and the octet number, starting from the most to the less significant octet. 

run

end

out_tc

code/data issued

issue a code/data

clk
DCM / 

TC-tasks SMCM

run

end

out_tc

access_tcaccess_tc

out_tc

access_tc

 

Figure K.7: Handshake protocol used to access the SMCM through the TC-tasks.  

 

Table K.6: Internal SMCM access codes. 

code 

(access bus) 
Meaning 

0 Starts generating the step sequences (trigger command). 

1 Stops generating the step sequences (trigger command). 

2 Defines the direction: write (=1) or left (=0). 

3 Defines the number of steps to generate (access=3 means the most significant octet 

and access=4 means the less significant octet). 4 

5 Defines the step mode: half step (=0); normal drive (=1) or; wave drive (=2). 

6 These 3 octets correspond to the speedReg that defines the speed of each step in the 

motor. The clk_external is an input signal on the SMCM.  

speedReg =(clk_external/2) / (Step speed) 

7 

8 

9 
Defines the way the SMCM starts generating the step sequence: commands (=0); 

external button at transition (=1) or; external button at state (=2). 

 

The SMCM adopted a trigger dependent sampling mode, i.e. the continuous 

sampling mode. The start() and stop() TC-tasks start and stop the generation of the step 

sequences, and the init() and update() TC-tasks update the way the SMCM is initialized 

and runs. The access to those TC-tasks is made internally by the DCM when the 

TriggerCommand, the AbortTrigger and the Reset commands are issued, according to 

the definitions made in subsection 6.3.3. 

The SMCM is controlled by instructions received from the IEEE1451.0-Module. It 

comprises four internal modules interfaced through a set of buses and lines, as 

illustrated in figure K.8. They are all described in Verilog HDL and each one has 

specific features described in table K.7. 
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Figure K.8: The SCMC HDL modules and buses. 

 

Table K.7: Internal modules of the SMCM and their features. 

Internal module Operation 

mpp2.v 

Is the decoder and controller of the SMCM and it is connected to the IEEE1451.0-

Module. It decodes the code defined in the access bus and updates the other 

modules. 

mpp1.v 

According to the values defined in the buses provided by the mpp2.v module, if 

the run signal, provided by the mpp_button_controller.v module, is set, it starts by 

generating the digital sequence for controlling a step-motor. This sequence is 

generated at a rate defined in the clk signal provided by the mpp_clk_generator.v 

module. 

mpp_button_ 

controller.v 

This module implements the control type for the SMCM i.e., if the step sequence 

generated by the mpp1.v module starts when a trigger is generated by an 

IEEE145.0 command or when the FPGA button is pressed (either using transition 

or state operation levels). 

mpp_clk_ 

generator.v 

Specifies the rate at which the step sequences are generated, according to the 

value defined for the time_divider bus. 

 

Validation 

To validate the SMCM, a set of IEEE1451.0 commands were issued from a PC to the 

IEEE1451.0-Module using the Comm Operator Pal serial port tool. As represented in 

figure K.9, the commands change and monitor the fields defined in the MD-TEDS and 

trigger the SMCM to start and stop its operation. 
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motor using the button on 

the FPGA-based board  

Figure K.9: Sequence of commands adopted for validating the SMCM. 

 

At the beginning some or all MD-TEDS fields are read and the adopted TC is set to 

the operating state, so TriggerCommand and AbortTrigger commands may be issued to 

start or stop the SMCM operation. Based on the read fields, these are changed using the 

WriteTEDSsegment command, creating a temporary TEDS, to be latter validated using 

the UpdateTEDS command. If no error is generated, the command validates the 

temporary TEDS and all its fields are copied into the new MD-TEDS, otherwise there is 

no change, and users should verify which fields turned the MD-TEDS invalid. During 

this process the ReadTEDSsegment command can be issued just to verify the contents of 

the MD-TEDS. 

According to the described sequence and using the TC number 3, figure K.10 

exemplifies some commands issued and the replies generated by the IEEE1451.0-

Module during the validation. It starts by issuing the readTEDSsegment command 

retrieving the contents of the current MD-TEDS. To start/stop the rotation of the step-

motor the triggerCommand and stopTrigger commands were applied, both retrieving 

successful replies, meaning the correct operation of the step-motor. Latter, the contents 

of the MD-TEDS were changed defining the type of control from remote to local using 

the external button at transition level (field 8 of the MD-TEDS was changed from 0 to 

1). This operation was processed using the writeTEDSsegment and the updateTEDS 

commands to validate the new MD-TEDS. Since the reply from the updateTEDS 

indicated that the MD-TEDS was correctly defined, the readTEDSsegment was issued 

to read the new MD-TEDS. The step-motor control was then verified by using the 

associated button on the FPGA-based board. Latter, and just for verification purposes, a 

wrongly defined command message was issued to the infrastructure, and an error reply 

message was retrieved, which could have been evaluated by reading the event register 

of the associated TC. 
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Figure K.10: IEEE1451.0 commands issued to validate the SMCM. 

 

K.3.3 - Event sensor 

Overview 

For validating the event mechanism implemented by the IEEE1451.0-Module and 

described in section 6.2.1, a weblab module named Event Sensor (ES) was designed. 

This ES basically monitors a specific input line that, when raised, generates an event 

that triggers the IEEE1451.0-Module to send a dummy TIM-initiated message to the 

NCAP. Figure K.11 illustrates the connections of the ES to the IEEE1451.0-Module, 

presenting an event line, belonging to the adopted TC, to trigger the event() TC-task 

that sends the TIM-initiated message to the NCAP. 

ES
TC-TEDS

event() task

IEEE1451.0-Module event 
line

external 

event

TIM-initiated 
message

UART-M

TCNCAP

TIM

 

Figure K.11: Event Sensor connected to the IEEE1451.0-Module. 

 

Internal modules and validation 

A single HDL module implements the ES. When it detects an external event it raises 

the event line indicating to the IEEE1451.0-Module that an event was generated in the 

associated TC, whose relevant fields are listed in table K.8. 
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Table K.8: Defined TC-TEDS relevant fields to control the event sensor. 

Field num. Description Data Type octets Value (hex) 

- TEDS length UInt32 4 00.00.00.5D 

0-2 Reserved - - - 

3 
TEDS identification: (Family=00h, Class =03h, 

Version =01h, T. Length=01h) 
UInt8 4 

03.04 

00.03.01.01 

11 Channel type set to event sensor (=2) UInt8 1 0A.01.02 

12 Physical units set to digital (=4) UInt8 3 
0C.03. 
32.01.04 

18 

Sample information: data model, length and 

significant bits.  
DataModel (field=28h, UInt8, Bit Sequence=04h); Length 

(field=29h, UInt8, ModLength=01h); Model significant 

bits (field=2Ah; UInt16, SigBits=00.01h) 

UInt8+ 

UInt8 + 

UInt16 

10 

12.0A. 

28.01.04 

29.01.01 

2A.02.00.01 

19 

DS definition (only the maximum data 

repetition field is specified, which represents 

the DS length) (field=2Bh, UInt16, Max. data 

rep.=01h) 

UInt16 4 
13.04. 

2B.02.00.01 

31 
Sampling mode capability: 
(field=30h, UInt8, free-running without pre-

trigger=04h) 
UInt8 3 

1F.03 

30.01.04 

 … 

- Checksum UInt16 2 F6.35 

 

The adopted TC was defined as an event sensor that monitors one digital signal 

according to a free-running sampling mode that does not require any pre-trigger to start 

its operation. This means that the TC is constantly monitoring events and providing that 

information to the IEEE1451.0-Module, so it may generate a TIM-initiated message. 

Figure K.12 illustrates a simple validation using this ES when an event was detected 

and reported by the TC, creating a dummy TIM-initiated message. 

 

 

Figure K.12: TIM-initiated message retrieved from the ES after detecting an event. 
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 Annex L   

Reconfiguration 
 

L.1 - Examples of report files created during the 

reconfiguration process  

This annex presents examples of files created during the reconfiguration process, 

namely: 

 reports generated in the build operation using the Bind software module 

(Bbind_2013-03-05_15:07:30.rep in table L.1) and the Config software module 

(Bteds_2013-03-05_15:07:30.rep in table L.2); 

 the report generated after the synthesis operation (Syn_2013-03-

05_15:08:17.rep in table L.3) that is the output of the ISE Webpack synthesis 

indicating the successful creation of the bitstream file (*.bit); 

 the report generated in the configuration of the TIM that involves the creation of 

the SVF file from the bitstream file (svf_2013-03-05_15:27:06.rep in table L.4), 

which is made by the iMPACT tool, and;  

 the report generated by the UrJTAG module indicating the configuration of the 

FPGA (Reconf_2013-10-14_15:58:36.rep in table L.5). 

 

Table L.1: Report generated by the Bind software module. 

Bbind_2013-03-05_15:07:30.rep 

***************************************************************** 

Configuration file used to bind transducers/weblab instruments 

into the IEEE1451-infrastructure. 

Developed by Ricardo Costa @ November 2011. 

For further information or error report 

please use the email: rjc@isep.ipp.pt 

***************************************************************** 

**General interface files: 

> <declarations> created. 

> <directions> created. 

> <declarations_dcmim> created. 

> <directions_dcmim> created. 

> <interface_dcmim> created. 

> <initial> created. 

> <wires> created. 

> <tc_controller_interface> created. 

> <tc_declarations> created. 

> <tc_directions> created. 

> <tc_interface> created. 

> <tc_task_location> created. 

 

**Transducers tasks files: 

> <tc_start> created. 

> <tc_stop> created. 
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> <tc_rd> created. 

> <tc_wr> created. 

> <tc_init> created. 

> <tc_update> created. 

> *WARNING: No <tc_event> created. 

> *WARNING: No tc_event_connections created. 

 

**Generic Parameters: 

> <num_tcs> correctly created. 

> <mem_buffer> correctly created. 

> <bps_uart> correctly created. 

> <im_errors> correctly created. 

> <im_events> correctly created. 

 

Table L.2: Report generated by the Config software module. 

Bteds_2013-03-05_15:07:30.rep 

***************************************************************** 

This program checks and creates verilog files according to 

the IEEE1451.0 infrastructure. 

Developed by Ricardo Costa @ November 2011. 

For further information or error report 

please use the email: rjc@isep.ipp.pt 

***************************************************************** 

> TEDS files contents are correctly defined. 

> Memory Verilog TEDS files correctly defined. 

> TEDS controller was correctly defined. 

> MAP_Table verilog file correctly defined. 

> TEDS parameters correctly defined. 

> Map Table parameters correctly defined. 

> TEDS connections created. 

> TEDS instances correctly created. 

> Status memory correctly created. 

> State memory correctly created. 

 

Table L.3: Report generated by the ISE Webpack in the synthesis operation. 

Syn_2013-03-05_15:08:17.rep 

Changed current working directory to the project directory: 

"/home/labserver/www/labserver/programTIM/user_00/ise_project"  

Reloading the project. 

Finished reloading the project. 

Started : "Synthesize - XST". 

Running xst... 

Command Line: xst -intstyle ise -ifn 

"/home/labserver/www/labserver/programTIM/user_00/ise_project/TIM_main.xst" -ofn 

"/home/labserver/www/labserver/programTIM/user_00/ise_project/TIM_main.syr" 

Reading design: TIM_main.prj 

========================================================================= 

*                          HDL Compilation                                                                                   * 

========================================================================= 

Compiling verilog file "../../TIM/ieee1451_infrastructure/user_configurations/Output_6bits_main.v" in library 

work 

Compiling verilog file "../../TIM/ieee1451_infrastructure/user_configurations/Input_8bits_main.v" in library 

work 

Module <Output_6bits_main> compiled 

Compiling verilog file "../../TIM/ieee1451_infrastructure/TEDS_Controller/memory_7.v" in library work 

Compiling verilog include file "../../TIM/ieee1451_infrastructure/Controller/../definitions.vh" 

(…) 

Module <main_Controller> compiled 

Compiling verilog include file "../../TIM/ieee1451_infrastructure/Controller/../Transducers/declarations.vh" 

Compiling verilog include file "../../TIM/ieee1451_infrastructure/Controller/../Transducers/directions.vh" 

Compiling verilog include file 

"../../TIM/ieee1451_infrastructure/Controller/../Transducers/interface_dcmim.vh" 
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Module <TIM_main> compiled 

No errors in compilation 

Analysis of file <"TIM_main.prj"> succeeded. 

(…) 

========================================================================= 

*                     Design Hierarchy Analysis                                                                          * 

========================================================================= 

Analyzing hierarchy for module <TIM_main> in library <work>. 

(…) 

Analyzing module <memory_0> in library <work>. 

Module <memory_0> is correct for synthesis. 

(…) 

========================================================================= 

*                            HDL Analysis                                                                                     * 

========================================================================= 

Analyzing top module <TIM_main>. 

Module <TIM_main> is correct for synthesis. 

(…) 

========================================================================= 

*                           HDL Synthesis                                                                                     * 

========================================================================= 

Performing bidirectional port resolution... 

INFO:Xst:2679 - Register <TC_lut_states<0>> in unit <Status_state_controller> has a constant value of 011 

during circuit operation. The register is replaced by logic. 

(…) 

========================================================================= 

HDL Synthesis Report 

Macro Statistics 

# RAMs                                                          : 12 

 100x8-bit single-port RAM                             : 1 

 109x8-bit single-port RAM                             : 3 

(…) 

Analysis completed Tue Mar  5 15:22:22 2013 

-------------------------------------------------------------------------------- 

Generating Report ... 

Number of warnings: 0 

Total time: 8 secs  

Process "Generate Post-Place & Route Static Timing" completed successfully 

Started : "Generate Programming File". 

Running bitgen... 

Command Line: bitgen -intstyle ise -f TIM_main.ut TIM_main.ncd 

Process "Generate Programming File" completed successfully 

 

Table L.4: Report generated in the reconfiguration operation using the iMPACT tool. 

svf_2013-03-05_15:27:06.rep 

Release 13.3 - iMPACT O.76xd (lin) 

Copyright (c) 1995-2011 Xilinx, Inc.  All rights reserved. 

Preference Table 

Name                 Setting              

StartupClock         Auto_Correction      

AutoSignature        False                

(…) 

svfUseTime           false                

SpiByteSwap          Auto_Correction      

AutoInfer            false                

SvfPlayDisplayComments false                

'1': Loading file 

'/home/labserver/www/labserver/programTIM/user_00/list_reconf_files/2013-03-05_1 

5:08:17.bit' ... 

done. 

UserID read from the bitstream file = 0xFFFFFFFF. 

---------------------------------------------------------------------- 

---------------------------------------------------------------------- 

'1': Programming device... 

 LCK_cycle = NoWait. 
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LCK cycle: NoWait 

done. 

 LCK_cycle = NoWait. 

LCK cycle: NoWait 

'1': Programmed successfully. 

Elapsed time =      1 sec. 

 

Table L.5: Report generated by the UrJTAG tool after sending the weblab project to the 

FPGA-based board. 

Reconf_2013-10-14_15:58:36.rep 

Connected to libftdi driver. 

IR length: 30 

Chain length: 4 

Device Id: 00000110111001011110000010010011 (0x0000000006E5E093) 

  Manufacturer: Xilinx 

  Part(0):         XC2C64-VQ44 

  Stepping:     0 

  Filename:     /usr/local/share/urjtag/xilinx/xc2c64a-vq44/xc2c64a-vq44 

(…) 

Device Id: 00100001110000111010000010010011 (0x0000000021C3A093) 

  Manufacturer: Xilinx 

  Part(3):         xc3s1600e_fg320 

  Stepping:     2 

  Filename:     /usr/local/share/urjtag/xilinx/xc3s1600e_fg320/xc3s1600e_fg320 

Warning: USB-Blaster frequency is fixed to 12000000 Hz 

 

L.2 - Example of a configuration file 

This annex presents some parts of a configuration file (*.conf), listed in table L.6, for 

building the weblab project. For better comprehension, it is commented and should be 

analysed in conjunction with the schematics presented in figure L.1 of the annex L.3. 

Table L.6: Example of a configuration file used in the reconfiguration process. 

*.conf 

(…) 

######################################################################## 

# 1.1- Check TEDS configurations                                                                                      # 

######################################################################## 

<teds_check> 

# 

# IEEE1451TEDS 

     Meta_TEDS.teds 

     XdrcName_TEDS.teds 

# input8bits 

     #TC1  

     Input_8bits_TC_Channel.teds 

(…) 

</ teds_check> 

######################################################################## 

# 1.2- Generate verilog HDL TEDS files.                                                                            # 

######################################################################## 

(…) 

<teds_generate> 

# 

# IEEE1451 TEDS 

     Meta_TEDS.teds,memory_0.v,0,1,0,Meta_TEDS_for_validation_1 

     XdrcName_TEDS.teds,memory_1.v,1,1,0,XdrcNameTEDS_"TIM"_for_validation_1 

# input8bits 

     #TC1   
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     Input_8bits_TC_Channel.teds,memory_2.v,2,1,0,TC_TEDS_input8bits(TC1) 

(…) 

</teds_generate> 

(…) 

######################################################################## 

# 1.3- checks Map Table and creates a verilog file for TEDScode x memories association.     # 

######################################################################## 

<map_table> 

      map_table_val_1.map 

</map_table> 

######################################################################## 

# 1.4- Defines sequentially the mask registers for each TC (std. 1451 status registers)          # 

######################################################################## 

<status_generate> 

# TIM 

     'hffffffff,TIM 

# input8bits 

     #TC1 

     'hffffffff,input8bits(TC1) 

(…) 

</status_generate> 

############################################################################### 

# PART 2:                                                                                                                                     # 

# Configuration file to bind weblab modules to the IEEE1451.0-Module                                              # 

############################################################################### 

######################################################################## 

# 2.1- External connections (Target Experiment /External signals <-> IEEE1451.0-Module)  # 

######################################################################## 

<declarations> 

# input8bits  

     data_in_tc1, 

(…) 

</declarations> 

 

<directions> 

# input8bits 

     input [7:0] data_in_tc1; 

(…) 

</directions> 

######################################################################## 

# 2.2- Internal connections (IEEE1451.0-Module <-> DCM)                                                  # 

######################################################################## 

<declarations_dcmim> 

# input8bits  

     data_in_tc1, 

(…) 

</declarations_dcmim> 

 

<directions_dcmim> 

# input8bits 

     input [7:0] data_in_tc1; 

(…) 

</directions_dcmim> 

 

<interface_dcmim> 

# input8bits 

     .data_in_tc1(data_in_tc1), 

(…) 

</interface_dcmim> 

######################################################################## 

# 2.3- Tasks variables initializations.                                                                                  # 

######################################################################## 

<initial> 

     # TC1 - input8bits(TC1)  

     state_tc1<=0; 

(…) 

</initial> 
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######################################################################## 

# 2.4- DCM internal wires.                                                                                                 # 

######################################################################## 

<wires> 

# input8bits 

     #TC1 

     wire en_tc1; 

     wire rst_tc1; 

     wire [7:0] in_tc1;  

     wire run_tc1;  

     wire end_tc1; 

# 

     #External Wires 

     wire [7:0] data_in_tc1; 

# 

(…) 

</wires> 

######################################################################## 

# 2.5 - DCM internal wire connections (DCM controller <-> DCM internal wires)                   # 

######################################################################## 

<tc_controller_interface> 

# input8bits 

     #TC1 

     .en_tc1(en_tc1),  

     .rst_tc1(rst_tc1), 

     .in_tc1(in_tc1),  

      .run_tc1(run_tc1),  

     .end_tc1(end_tc1), 

(…) 

</tc_controller_interface> 

 

<tc_declarations> 

# input8bits 

     #TC1 

     en_tc1,  

     rst_tc1, 

     in_tc1,  

     run_tc1,  

     end_tc1, 

(…) 

</tc_declarations> 

 

<tc_directions> 

# input8bits 

      #TC1 

     output en_tc1; reg en_tc1; 

     output rst_tc1; reg rst_tc1; 

     input [7:0] in_tc1; 

     output run_tc1; reg run_tc1; 

     input end_tc1; 

(…) 

</tc_directions> 

######################################################################## 

# 2.6- Weblab modules internal wire connections.                                                               # 

######################################################################## 

<tc_interface> 

# input8bits 

Input_8bits_main IM_Input_8bits ( 

     #CLK 

     .clk(clk), 

     #TC1 

     .en(en_tc1),  

     .rst(rst_tc1), 

     .out(in_tc1),  

     .run(run_tc1),  

     .end_(end_tc1), 

# 

      #External Wires 
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     .data_in(data_in_tc1) 

     ); 

(…) 

</tc_interface> 

 

######################################################################## 

# 2.7- Defines all tasks associated to a particular TC.                                                          # 

######################################################################## 

# 2.7.1- File locations.# 

<tc_task_location> 

# input8bits 

     #TC1 

     `include "../user_configurations/Input_8bits_tasks.vh" 

(…) 

</tc_task_location> 

# 2.7.2- adopted tasks.# 

<tc_start> 

     3:tc3_start(); 

</tc_start> 

(…) 

######################################################################## 

# 2.8- weblab modules HDL files.                                                                                       # 

######################################################################## 

<tc_update_transducer_locations> 

# input8bits 

     Input_8bits_main.v  

# output6bits 

     Output_6bits_main.v  

# SMCM 

      mpp_controller.v  

      mpp_1.v  

     mpp_2.v 

      mpp_clk_generator.v 

     mpp_button_controller.v 

</tc_update_transducer_locations> 

######################################################################## 

# 2.9- Number of implemented TC                                                                                     # 

######################################################################## 

<num_tcs> 

     3 

</num_tcs> 

######################################################################## 

# 2.10- Memory Buffer length. (minimum=12) (maximum=2^16=65536)                                 # 

######################################################################## 

<mem_buffer> 

     1200 

</mem_buffer> 

######################################################################## 

# 2.11- Baud rate used by the SERIAL PORT and to synchronize all internal HDL modules     # 

#(it depends on the clk frequency provided by the FPGA based board - Oscilator)                 # 

#  e.g.: bps=19200 + 1 startBit + 2 stop bits                                                                      # 

#   bps:(Oscilator/2)/bps (1302,08-50MHz) -> 1302                                                            # 

######################################################################## 

<bps_uart> 

     1302 

</bps_uart> 

######################################################################## 

# 2.12- Number of ERRORS caused by all weblab modules                                                   # 

######################################################################## 

<im_errors> 

     0 

</im_errors> 

######################################################################## 

# 2.13- Number of EVENTS caused by all weblab modules                                                   # 

######################################################################## 

<im_events> 

    0 

</im_events> 
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L.3 - The reconfiguration schematics  
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Figure L.1: Reconfiguration schematics. 

 

L.4 - Some examples of HDL files created by the 

reconfiguration process  

To exemplify the redefinition of the DCM, TEDS-M, SSM and the internal 

connections within the IEEE1451.0-Module, this annex presents parts of some Verilog 

HDL files automatically generated by the RecTool during the build operation, divided 

in 4 groups: 

 Generic definitions (table L.7); 

 DCM-weblab modules interfaces (table L.8); 

 Files used to define the TEDSs’ memories (table L.9);  

 Files used to define the MT (table L.10). 
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Table L.7: Example of Verilog HDL files with generic definitions. 

directions.vh (defines directions of the I/O on the FPGA-based board) 
////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:34 2013 

////////////////////////////////////////////////////////////////////////// 

output [5:0] data_out_tc1;  

input [7:0] data_in_tc2;  

output [5:0] data_out_tc3;  (…) 

definitions_GENERIC.vh (generic parameters) 

////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:34 2013 

////////////////////////////////////////////////////////////////////////// 

`define TC_number  3 

`define bits_pointer_TC_number  4 //>=(log[2](TC_number+1)*3)  

`define bits_pointer_TC_number_small  3 //>=(log[2](TC_number+1)*2)  

`define bits_pointer_TC_number_tiny 2 //>=(log[2](TC_number)  

`define max_mem_buffer  100 

`define bits_max_mem_buffer  7 //>=(log[2]) 

`define bps_divisor  1302 

`define bps_length_counter  11 //>=(log[2]) 

`define error_num_im  0 

`define event_num_im  0 

 

Table L.8: Example of Verilog HDL files defining the DCM-weblab modules interfaces. 

tc_interface.vh (DCM-weblab modules interface) 

////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:34 2013 

////////////////////////////////////////////////////////////////////////// 

Output_6bits_main IM_Output_6bits( 

     .clk(clk), 

     .en(en_out6bits),  

     .rst(rst_out6bits), 

     .in(out_out6bits), 

     .out(in_out6bits), 

     .run(run_out6bits),  

     .end_(end_out6bits), 

     .data_out(data_out_tc2) 

); 

(…) 

Input_8bits_main IM_Input_8bits( 

     .clk(clk), 

      .en(en_tc1),  

(…) 

     .end_(end_tc1), 

      .data_in(data_in_tc2) 

); 

wires.vh (wires to interface the weblab modules to the DCM) 

////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:34 2013 

////////////////////////////////////////////////////////////////////////// 

wire en_out6bits; 

wire rst_out6bits; 

wire[7:0] in_out6bits; 

wire[7:0] out_out6bits; 

wire run_out6bits;  

(…) 

wire run_out6bits_changed;  

wire end_out6bits_changed; 

wire [5:0] data_out_tc3; 
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Table L.9: Example of files used to define the TEDSs memories. 

definitions_TEDS.vh (defines some parameters of the TEDSs memories) 

////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:24 2013 

////////////////////////////////////////////////////////////////////////// 

//--------------------------------------------------------------// 

//    Memories TEDS  

//--------------------------------------------------------------// 

//---- Memory 0 

`define max_length_0 52 

`define bits_pointer_0 6 

//---- Memory 1 

`define max_length_1 32 

`define bits_pointer_1 5 

(…) 

//---- Memory 7 

`define max_length_7 41 

`define bits_pointer_7 6 

//---- Generic parameters  

`define number_memories 8 

`define bits_number_memories 3 

`define max_memlength 109 

`define bits_max_memlength 7 

memory_3.v (example of a TEDS memory) 

////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:24 2013 

// Module Name: memory_3 ( XdrcName_output6bits(TC1) )  

////////////////////////////////////////////////////////////////////////// 

`include "../definitions.vh" 

 

module memory_3(clk, en, wr, address, octet_in, octet_out); 

     input clk; 

     input wr; 

     input en; 

     input [`bits_pointer_3-1:0] address; 

     input [7:0] octet_in;  

     output [7:0] octet_out; reg [7:0] octet_out; 

     reg [7:0] memory [`max_length_3-1:0]; 

 

     initial 

        begin 

        memory[0] = 8'h00; 

(…) 

        memory[47] = 8'h07; 

 

//QueryResponseData data......... 

     //TEDSAttrib 

        memory[48] = 8'h1; 

(…) 

     //MaxTEDSSize 

        memory[56] = ((`max_length_3-12-4)>>32); 

        memory[57] = ((`max_length_3-12-4)>>16); 

        memory[58] = ((`max_length_3-12-4)>>8); 

        memory[59] = (`max_length_3-12-4); 

     end 

 

always @(posedge clk) 

     begin 

        if (en) 

          begin 

               if (wr)  memory[address]<=octet_in; 

              octet_out <= memory[address]; 

          end 

     end 

endmodule 
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Table L.10: Example of files used to define the MT. 

definitions_MapTABLE.vh (defines some parameters of the MT memory) 

////////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:24 2013 

////////////////////////////////////////////////////////////////////////// 

//--------------------------------------------------------------// 

//    Map Table   

//--------------------------------------------------------------// 

`define map_table_length  28 

`define bits_pointer_map_table  5 

(…) 

map_table.v (created MT) 

///////////////////////////////////////////////////////////////////////// 

//File automatically created. 

//Created on: Mon Feb 04 18:54:24 2013 

(...) 

`include "../definitions.vh" 

 

module map_table(clk, en, address, octet_out); 

      input clk; 

      input en; 

      input [`bits_pointer_map_table-1:0] address; 

      output [7:0] octet_out; reg [7:0] octet_out; 

 

      initial begin 

          octet_out <= 8'hff; 

      end 

 

      always @(posedge clk) begin 

          if(en) begin 

                case(address) 

                0:octet_out <= 8'h00; 

               1:octet_out <= 8'h00; 

               2:octet_out <= 8'h04; 

               3:octet_out <= 8'h01; 

               4:octet_out <= 8'h00; 

(...) 

               25:octet_out <= 8'h06; 

               26:octet_out <= 8'h0c; 

               27:octet_out <= 8'h07; 

               endcase 

          end 

     end 

endmodule 

 

L.5 - Examples of FPGA resources utilization 

Based on the adopted FPGA for implementing the weblab infrastructure 

(XC3S1600E Spartan 3E from Xilinx), this annex presents some of its resources 

utilization. Using a PC with an Intel Pentium D CPU 3.40GHz / 1 MBytes of RAM
128

, 

the weblab project was created (synthesized and implemented) according to definitions 

made in the ISE Webpack, the most relevant listed in table L.11. 

Table L.12 lists the FPGA resources used by each HDL module of the IEEE1451.0-

Module using the two configurations adopted in the validation & verification process 

described in chapter 7. The first uses the two I/O digital modules, the SMCM and six 

                                                
128 Further details about the adopted PC can be found in the DVD annex to this document.  
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TEDSs. The second uses one 8-Bit Input Module, two 6-Bit Output Modules, and eight 

TEDSs. Since the number of adopted TEDSs differs for each configuration, only TEDS-

M uses different resources, as indicated through a shading effect.  

Table L.13 lists the FPGA resources used by each weblab module.  

Table L.14 lists the FPGA resources percent usage of the entire weblab project in 

both configurations.  

All values listed in tables were retrieved from the synthesis reports created by the 

ISE Webpack software used in the RecTool. If other weblab modules were selected, it 

would be expected different FPGA resources utilization. 

 

Table L.11: Some definitions made in the ISE Webpack for creating the weblab project. 

Synthesis options  

Optimization goal Speed 

Optimization effort Normal 

FSM encoding algorithm  One-Hot 

FSM style  LUT 

RAM and ROM style Auto 

Implementation design  

Optimization strategy  Area 

Place & route mode Normal 

Place & route effort level  High 

 

Table L.12: FPGA resources used by the IEEE1451.0-Module in two configurations. 

 Number of resources  

 Configuration 1: two I/O digital modules, one SMCM and 6 TEDSs. 

 Configuration 2: two 6-Bit Output Modules, one 8-Bit Input Module and 8 TEDSs. 

DCM Type Configuration 1 Configuration 2 

Controller 

Finite State Machines 10 10 

D-type flip-flops 578 557 

Adder/Subtractors 47 41 

Multipliers 4 4 

Comparators 27 27 

Multiplexers 2 2 

Priority encoders: 13 13 

MT D-type flip-flops 8 8 

MB 
D-type flip-flops 8 8 

RAMs 1 1 

TEDS-M Type Configuration 1 Configuration 2 

Controller 

Finite State Machines 2 2 

ROMs 0 1 

D-type flip-flops 66 67 

Adder/Subtractors 12 12 

Comparators 8 8 

Multiplexers 15 17 

Decoders 0 1 

Memories 
RAMs 1 x 6 = 6 1 x 8 = 8 

D-type flip-flops: 8 x 6 = 48 8 x 8 = 64 



 

Annex L: Reconfiguration 279 
 

SSM Type Configuration 1 Configuration 2 

Controller 

Finite State Machines 1 1 

D-type flip-flops 148 148 

Adder/Subtractors 3 3 

Comparators 6 6 

Multiplexers 113 113 

Combinational logic shifters 2 2 

State memory 
RAMs 1 1 

D-type flip-flops 8 8 

Status memory 
RAMs 1 1 

D-type flip-flops 32 32 

UART-M Type Configuration 1 Configuration 2 

Rx 

Finite State Machines 1 1 

Counters 2 2 

D-type flip-flops 1005 1005 

Adder/Subtractors 4 4 

Comparators 4 4 

Multiplexers 8 8 

Tx 

Finite State Machines 1 1 

RAMs 1 1 

Counters 1 1 

D-type flip-flops 51 51 

Adder/Subtractors 3 3 

Comparators 3 3 

BR_generator 
Counters 1 1 

D-type flip-flops 1 1 

 

Table L.13: Number of FPGA resources used by the weblab modules. 

Output_6bits_main  Type # resources 

 D-type flip-flops 17 

Input_8bits_main  Type # resources 

 
Finite State Machines 1 

D-type flip-flops 9 

SMCM Type # resources 

mpp_1 

Finite State Machines 1 

Counters 1 

D-type flip-flop 6 

mpp_2 D-type flip-flops 49 

mpp_clk_generator 
Counters 1 

D-type flip-flops 1 

mpp_button_ 

controller 

Finite State Machine 1 

Counters 1 

D-type flip-flops 1 

Multiplexers 1 

 

Table L.14: Overview of FPGA resources percent usage in both configurations. 

 Configuration 1 Configuration 2 

Number of Slice Flip Flops 2,340 / 29,504 = 7,9% 2,194/  29,504 = 7,4% 

Number of 4 input LUTs 9,358 / 29,504 = 31,7% 8,736 / 29,504 = 29,6% 

Slices (collection of internal logic blocks) 5,466 / 14,752 = 37,1% 5,124 / 14,752 = 34,7% 

Total Number of 4 input LUTs 9,630 / 29,504 = 32,6% 9,003 / 29,504 = 30,5% 

Number of External IOBs  27 / 250 = 10,8% 26 / 250 = 10,4% 

BUFGMUXs (multiplexed global clock buffer) 4 / 24 = 16,7% 3 / 24 = 12,5% 

MULT18X18SIOs (signed multipliers) 2 / 36 = 5,6% 2 / 36 = 5,6% 

RAMB16s 10 / 36 = 27,8% 12 / 36 = 33,3% 
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L.6 - Example of TCL file created during reconfiguration  

To control the ISE Webpack execution during the synthesis operation, the RecTool, 

in particular the WSC, automatically creates a TCL file. An example of a TCL file is 

presented in table L.15. 

 

Table L.15: Example of a TCL file created by the RecTool with instructions for 

synthesizing the weblab project. 

ISEproj.tcl (controls the execution of the ISE Webpack during the synthesis operation) 

# File automatically created to synthesize the project. Created on 2013-11-25 18:34:20 

 

project new /home/labserver/www/labserver/programTIM/user_00/ise_project/project.xise 

project clean 

project set family "Spartan3E" 

project set device "xc3s1600e" 

project set package "fg320" 

project set speed "-4" 

project set top_level_module_type "HDL" 

project set synthesis_tool "XST (VHDL/Verilog)" 

project set simulator "ISim (VHDL/Verilog)" 

project set "Preferred Language" "Verilog" 

project set "Enable Message Filtering" "false" 

 

project set "Multiplier Style" "Auto" -process "Synthesize - XST" 

project set "Configuration Rate" "Default (1)" -process "Generate Programming File" 

project set "Optimization Goal" "Speed" -process "Synthesize - XST" 

project set "Optimization Effort" "Normal" -process "Synthesize - XST" 

project set "FSM Encoding Algorithm" "One-Hot" -process "Synthesize - XST" 

project set "FSM Style" "LUT" -process "Synthesize - XST" 

project set "RAM Style" "Auto" -process "Synthesize - XST" 

project set "ROM Style" "Auto" -process "Synthesize - XST" 

project set "Optimization Goal" "Area" -process "Synthesize - XST" 

project set "Place And Route Mode" "Normal Place and Route" -process "Place & Route" 

project set "Place & Route Effort Level (Overall)" "High" -process "Place & Route" 

(…) 

xfile add /home/labserver/www/labserver/ 

   programTIM/TIM/ieee1451_infrastructure/definitions_TEDS_controller.vh" 

xfile add  "/home/labserver/www/labserver/ 

   programTIM/TIM/ieee1451_infrastructure/Controller/controller.v" 

xfile add "/home/labserver/www/labserver/programTIM/TIM/ieee1451_infrastructure/ 

   Controller/tasks/CommonCommands/1_1_QueryTEDS.vh" 

xfile add "/home/labserver/www/labserver/ 

   programTIM/TIM/ieee1451_infrastructure/StatusState_Controller/main.v" 

xfile add "/home/labserver/www/labserver/ 

   programTIM/TIM/ieee1451_infrastructure/TEDS_Controller/memory_3.v" 

xfile add "/home/labserver/www/labserver/ 

   programTIM/TIM/ieee1451_infrastructure/Transducers/tc_update.vh" 

xfile add "/home/labserver/www/labserver/ 

   programTIM/TIM/ieee1451_infrastructure/user_configurations/mpp_1.v" 

(…) 

project set top "TIM_main" 

process run "Generate Programming File" 

project close 

 

#--------------------------------------------------------------------------------- 

#Code used to manage server applications (after Generate Programming File): 

 

exec cp /home/labserver/www/labserver/programTIM/ 

   user_00/ise_project/ise_results.txt    /home/labserver/www/labserver/programTIM/user_00/ 

   list_reports_files/Syn_2013-11-25_18:34:20.rep 
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#---------creates the mail.txt to send after finishing this process----------------- 

 

set fid [open "/home/labserver/www/labserver/programTIM/user_00/mail.txt" w] 

set systemTime [clock seconds] 

puts $fid "Date: [clock format $systemTime -format {%a %d-%m-%Y %H:%M}]" 

puts $fid "To: johan.zackrisson@bth.se" 

puts $fid "Subject: Weblab reconfiguration operation has finished" 

puts $fid "From: ricardo.jgsn.costa@gmail.com" 

puts $fid "Dear user," 

puts $fid "" 

puts $fid "The synthesis operation initiated on 2013-11-25_18:34:20 has finished." 

puts $fid "Please consult  

   the portal address http://www.laboris.isep.ipp.pt:8082/labserver/programTIM/progTIM.php for results." 

puts $fid "Check the generated report file named 'Syn_2013-11-25_18:34:20.rep' on the portal." 

puts $fid "" 

puts $fid "Best regards," 

puts $fid " The weblab administrator" 

puts $fid " (ricardo.jgsn.costa@gmail.com)" 

close $fid 

#--------------------------------------------------------------------------------- 

cd /home/labserver/www/labserver/programTIM/TIM/.. 

exec ./sendMAIL.sh /home/labserver/www/labserver/programTIM/user_00/mail.txt 

#--------------------------------------------------------------------------------- 

 

file delete /home/labserver/www/labserver/programTIM/TIM/ieee1451_infrastructure/BUSY_1  

 

exec cp /home/labserver/www/labserver/programTIM/ 

   user_00/ise_project/TIM_main.bit /home/labserver/www/labserver/programTIM/ 

   user_00/list_reconf_files/2013-11-25_18:34:20.bit 
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 Annex M   

Validation & Verification 
 

M.1 - Supporting webpage: the main page 

Figure M.1 presents the main webpage used in the validation & verification process. 

1 2

3 4

5 6

 

Figure M.1: Screenshots of the supporting webpage front panels. 
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M.2 - Screenshots of videos exemplifying the interaction with 

the weblab 

Figure M.2 exemplifies the videos provided to the researchers during the validation 

& verification process. These videos were created using the CamStudio recorder 

software
129

 and then placed in the YouTube platform
130

. They are also available in the 

DVD annexed to this thesis. 

 

 

Figure M.2: Videos exemplifying the interaction with the weblab. 

                                                
129

 http://camstudio.org 
130 http://www.youtube.com/channel/UCHuj2wC3glXwa0Uls2FXzlA/videos 

 

http://camstudio.org/
http://www.youtube.com/channel/UCHuj2wC3glXwa0Uls2FXzlA/videos
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M.3 - Questionnaires provided for the researchers 

This annex provides the questionnaire provided for each researcher.  

 

This questionnaire is divided in 3 sections 

· section 1- current weblab problems; 

· section 2- implemented infrastructure (validation sequence); 

· section 3- relevance of the proposed solution. 

 

Open questions are very important to be completed as much as you can. 

You can answer in Portuguese or in Spanish ! 

Section 1 - Current weblabs’ problems  

Name (your name):___________ E-mail: ___________ 

 

The following sentences indicate some problems currently faced by weblab 

infrastructures. Please classify them according to their relevance. low relevance (1) to 

high relevance (5)  

 1 2 3 4 5 

There is a lack of standards for developing weblab architectures.      

There is a lack of standards to access weblab modules.      

It is impossible to share/replicate weblab modules through different infrastructures.      

There is a low flexibility in current weblabs, which difficults redesigning experiments 
using the same infrastructure. 

     

Typically, the costs can be high for developing weblabs and designing experiments.      

There is a reduced collaboration among institutions in the development of weblabs.      

 

Enumerate other problem/s you think relevant, and classify it/them according to 

its/their relevance, like you did in the previous list. low relevance (1) to high relevance (5)  

 

Comments you may want to provide about weblabs’ problems related to 

infrastructural issues and/or comments about your previous answers. 

 

 

Section 2 - Implemented infrastructure (validation 

sequence) 

This section is divided in three subsections with questions related to the: 

· configurations; 

· verify configurations; 

· weblab modules’ control. 
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Name (your name):___________ E-mail: ___________ 

Configurations:  

Please classify your agreement level with each sentence.(1- I don’t agree to 5- I totally 

agree) 

 1 2 3 4 5 

It was easy to configure the weblab infrastructure.      

The layout of the RecTool interface was easy to use and understand.      

The reports provided were fundamental to verify the success of each step.      

It was ease to change the configuration of the weblab infrastructure.      

The approach applied in the configuration steps is satisfactory for designing remote 

experiments without changing the infrastructure. 
     

 

During reconfigurations, the step(s) that I considered more difficult was/were: 

  upload files to the RecTool 

 build the weblab project

 synthesize the weblab project

 configuring the infrastructure

 none 

 

Please leave your comments about the configurations (difficulties, suggestions, 

comments about your previous answers, etc.). 

 

 

Verify configurations: 

Please classify your agreement level with the sentences. (1- I don’t agree to 5- I totally 

agree): 

 1 2 3 4 5 

After configuring the weblab I sent several IEEE1451.0 commands and the replies 
were useful to verify the correct configuration of the weblab infrastructure. 

     

I feel that if I understand all details of the IEEE1451.0 Std. the replies returned from 

the issued commands will be better understood. 
     

In configuration 1 I easily got the expected result after issuing the ReadRawTEDS 

[XdrcName-TC1], i.e, an error code=24599 indicating that the weblab module 

controlled by TC1 does not had any associated XdrcName TEDS. 

     

In configuration 1 I easily got the expected result after issuing the ReadRawTEDS 

[Meta-TEDS]. 
     

In configuration 1 I easily got the expected result after issuing the ReadRawTEDS 
[MD-TEDS] 

     

In configuration 2 I easily got the names of all weblab modules after issuing the 
ReadRawTEDS [XdrcName-TCx] commands. 

     

In configuration 2 I easily got the expected result after issuing the ReadRawTEDS 

[Meta-TEDS]. 
     

In configuration 2 I easily got the expected result after issuing the ReadRawTEDS 

[MD-TEDS], i.e, an error code=24599 indicating that the weblab module controlled 

by TC3 does not had any associated MD-TEDS. 

     

In configuration 2 the results retrieved after issuing IEEE1451.0 commands indicated 
me clearly that the weblab has a new configuration. 
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Please leave your comments about the verifying configurations (general aspects that 

you may want to share, comments about your previous answers, etc.). 

 

 

weblab modules’ control:  

Please classify your agreement level with each sentence. (1- I don’t agree to 5- I totally 

agree): 
 1 2 3 4 5 

I/O Modules used in the feedback connection: 

In configuration 1 it was easy to control the I/O modules.      

In configuration 1 the retrieved replies during the control of the I/O modules were 
satisfactory. 

     

In configuration 2 it was easy to control the I/O Modules.      

In configuration 2 the retrieved replies during the control of the I/O modules were 
satisfactory. 

     

Step-motor control: 

In configuration 1 the control of the step-motor was easy to do using the SMCM.      

In configuration 1 the ability of redefining the MD-TEDS of the SMCM to control 
the step-motor is an interesting solution for controlling every type of weblab module. 

     

In configuration 1 the use of the ReadRawTEDS[MD-TEDS] command gave me a 
concrete understanding that I was changing the contents of the MD-TEDS. 

     

In configuration 2 it was easy to control the step-motor using the output module.      

 

Please leave your comments about the weblab modules’ control and about your 

previous answers (what you think about the followed approach, the use of TEDS, 

etc…). 

 

 

Section 3 - Relevance of the proposed solution) 

Name (your name):___________ E-mail: ___________ 

 

Please classify your agreement level with the sentences. (1- I don’t agree to 5- I totally 

agree): 

 1 2 3 4 5 

The IEEE1451.0 Std. is interesting for implementing weblabs architectures.      

The IEEE1451.0-HTTP API provides a useful standard to access the weblab 
modules. 

     

The proposed weblab architecture (reconfigurable and standard-based) enables 
sharing/replicating weblab modules by different infrastructures. 

     

The proposed weblab architecture (reconfigurable and standard-based) increases the 
flexibility for designing experiments using the same the infrastructure. 

     

The proposed weblab architecture (reconfigurable and standard-based) contributes for 
reducing the costs involved in the development of weblab infrastructures and in the 
design of experiments. 

     

The proposed weblab architecture (reconfigurable and standard-based) increases the 

collaboration among institutions in the design of experiments and in the development 
of weblabs infrastructures. 
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The proposed weblab architecture (reconfigurable and standard-based) is interesting, 

since it enables defining different configurations and weblab modules to access target 
experiments without changing the physical platform that implements the underlying 
infrastructure (e.g. the feedback connection lines and the step-motor). 

     

In the future I consider the use of an infrastructure similar to this one in my 
institution/classes. 

     

In the future I consider developing more weblab modules compatible with 

infrastructures similar to this one (eventually as a supervisor of a student). 
     

Creating a worldwide repository of weblab modules will be an interesting solution to 
use similar weblabs. 

     

 

Please leave your comments about the infrastructure (current implementation, 

objectives and added value to remote experimentation, etc.). 

 

 

The validation process and the scenario of utilization (you can suggest other 

scenarios). 

 

 

Please give me your opinion about the advantages and disadvantages of using the 

proposed solution in the point of view of each actor (Students, Teachers, Developers, 

Technicians and Administrators). 

- Students:  

Conduct experiments remotely using a device connected to the Internet. The access to control/monitor 

a weblab, comprising several weblab modules and the experiment(s), is made using a web interface. 

Real data is retrieved from the weblab so students can analyze it as they would do in a traditional 

laboratory. 

 

- Teachers: 

Provide the theoretical and practical framework needed by students to conduct a remote experiment. 

They can take the role of assistants/tutors providing pedagogical support during a laboratorial 

activity, as they would do in a traditional laboratory. 

 

- Developers: 

Have the task of developing the entire weblab infrastructure so students, teachers and technical staff 

may control/monitor the experiment(s) and, in some cases, the entire infrastructure (namely when it 

may be remotely reconfigurable). Developers may be teachers. However, it depends on the domain of 

the experiment, because providing a weblab requires informatics and electrical skills teachers may not 

have. 
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- Technicians:  

Must ensure that the weblab infrastructure and the experiments are always ready to be accessed. 

Guaranteeing that the  weblab modules are always up and running (with network communications up) 

and the setup of specific experiments, are the main requirements that technicians should be aware of; 

 

- Administrators:  

They are the institutional managers that should be concerned with the supporting tools required to 

provide remote experiments. They should be aware of issues like: i) ensure that collaborative tools are 

available; ii) the institutional network infrastructure is always up and running; iii) guarantee the 

correct access scheduling to the weblab, etc. 

 

Other comments you fell interesting to give me (e.g. future work, ideas, etc.). 

 

 

Thanks for your cooperation! 

 

M.4 - Examples of webpages with the provided methodology 

This annex presents screenshots of the supporting webpage, namely the stages 

followed by the researchers (figure M.3) and some examples of the webpages used 

during the validation and verification process (figure M.4). 

 

 

Figure M.3: Table grid provided in the supporting webpage with the different stages of 

the adopted methodology in the validation and reconfiguration process. 
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11 2

3

4 5

 

Figure M.4: Examples of webpages used during the validation and verification process.  

(1- steps followed during a reconfiguration; 2- control of the step motor in the second configuration; 

3- image illustrating the second configuration of the infrastructure; 4- verification of the first 

configuration ; 5- control the step-motor rotation in the first configuration) 

 


	Cover
	Abstract
	Resumo
	Acknowledgments
	Notes to the reader
	Contents
	Figures
	Tables
	Acronyms and abbreviations
	Glossary
	Chapter 1   Introduction
	1.1. Background and motivation
	1.2. Innovative aspects
	1.3. Structure and organization

	Chapter 2   Weblabs in engineering education
	2.1. The role of experimental work in engineering  education
	2.2. Laboratory types for conducting experimental work
	2.3. Contextual analysis of weblabs
	2.3.1 Fundamentals of the Actor-Network Theory
	2.3.2 Influencing contexts
	2.3.3 Involved actors and associations

	2.4. Pedagogical and technical considerations on weblabs
	2.4.1 Meeting experimental learning goals with weblabs
	2.4.2 Mapping pedagogical goals against weblabs’ capabilities
	2.4.3 Traditional weblab architecture
	2.4.4 Involved technologies for implementing weblabs

	2.5. Weblab architectures: a brief overview
	2.5.1 MIT iLab project
	2.5.2 NetLab
	2.5.3 The VISIR project
	2.5.4 Other weblabs and projects

	2.6. Current limitations and problems of weblabs
	2.7. Summary

	Chapter 3   Considerations for designing standard and reconfigurable weblabs
	3.1. Weblab architectures based on instrumentation standards
	3.1.1 Stand-alone and modular instrumentation
	3.1.2 Instrumentation standards
	3.1.3 Hybrid architectures
	3.1.4 Embedded instrumentation

	3.2. On-going initiatives for weblabs standardization: GOLC and IEEEp1876 Std.
	3.3. Using and extending the IEEE1451.0 Std. for designing weblabs
	3.3.1 Overview of the IEEE1451.0 Std.
	3.3.2 Overview of current projects and research
	3.3.3 Adopting the IEEE1451.0 Std. for weblabs

	3.4. Providing reconfigurability to weblabs through FPGAs
	3.4.1 Infrastructure
	3.4.2 Remote access
	Hybrid solution
	SoC solution


	3.5. Summary

	Chapter 4   The IEEE1451.0 Std. as a smart framework for weblabs
	4.1. Reference model: NCAP and TIM smart modules
	4.2. Transducer Electronic Data Sheets
	4.3. Smart modules: access and operation
	4.3.1 Addressing mechanism
	4.3.2 Operating states and modes
	4.3.3 Status registers and the status-event protocol
	4.3.4 Message structures at the PHY channel
	4.3.5 Commands

	4.4. The APIs: module communication, transducer services and HTTP
	4.5. Suggested weblab infrastructures compliant with the IEEE1451.0 Std.
	4.6. Extending the IEEE1451.0 Std. to enhance weblab architectures
	4.6.1 Suggested architecture
	4.6.2 LabTEDS
	4.6.3 Operational sequence
	Registration
	Discovery
	Access (reconfiguration and logging)


	4.7. A thin implementation of the IEEE1451.0 Std. applied to weblabs
	4.8. Summary

	Chapter 5   A weblab implementation supported by FPGA-based boards
	5.1. Overall architecture: weblab server and underlying infrastructure
	5.2. The weblab infrastructure: NCAP and FPGA-based TIM
	5.2.1 The NCAP-TIM interface
	5.2.2 The NCAP
	5.2.3 The TIM

	5.3. An IEEE1451.0-compliant module for binding weblab modules
	5.4. Weblab accessing mechanisms
	5.5. The weblab reconfiguration tool
	5.6. Summary

	Chapter 6   The weblab reconfigurable framework
	6.1. Involved resources and tools
	6.2. Structure and functionality of the IEEE1451.0-compliant module
	6.2.1 Decoder/Controller Module (DCM)
	6.2.2 TEDS-Module (TEDS-M)
	6.2.3 Status/State Module (SSM)
	6.2.4 UART Module (UART-M)

	6.3. The weblab connecting modules: layout and interface
	6.3.1 Internal architecture
	6.3.2 Required Transducer Channels
	6.3.3 TC-tasks
	6.3.4 Development methodology

	6.4. The reconfiguration process
	6.4.1 The reconfiguration sequence
	6.4.2 The role of the configuration file
	6.4.3 Implementation issues of the RecTool

	6.5. Summary

	Chapter 7   Validation & verification
	7.1. Adopted strategy: scenario and objectives
	7.2. Actors involved: researchers, experiments and tools
	The invited researchers
	The target experiments, adopted modules and layouts
	Tools (supporting webpage and videos)

	7.3. Applied methodology
	7.4. Reported results and corresponding analysis
	7.4.1 Current weblabs’ problems
	7.4.2 Operation of the implemented weblab
	7.4.3 Relevance of the proposed solution

	7.5. Summary

	Chapter 8   Conclusions and future work
	8.1. Adopted architecture: implications for the experimental work in engineering education
	8.2. Future work perspectives
	8.3. Concluding remarks

	References
	Annexes
	Annex A   FPGA internal architecture overview
	Annex B   Example of an FPGA-based board
	Annex C   FPGA reconfiguration: options for weblabs
	Annex D   TEDS: examples, attributes and status
	Annex E   Sensors and actuators trigger states
	Annex F   IEEE1451.0 status bits
	Annex G   New IEEE1451.0 HTTP API  methods and interfaces
	Annex H   Mapping IEEE1451.0 HTTP API methods and commands
	Annex I   Error codes retrieved from the NCAP
	Annex J   The IEEE1451.0-compliant module
	J.1 - DCM Internal registers
	J.2 - DCM internal and command tasks
	J.2.1 - Internal tasks
	J.2.2 - Command-tasks

	J.3 - DCM schematics
	J.4 - The DCM-MB interface
	J.5 - The DCM-MT interface
	J.6 - DCM registers and buses for implementing the error detection mechanism
	J.7 - Error codes specified in the IEEE1451.0-Module
	J.8 - TEDS-M: schematics and interface
	J.8.1 - Internal variables
	J.8.2 - Schematics and signals
	J.8.3 - Handshake protocol
	J.8.4 - Hardware API

	J.9 - SSM: schematics and interface
	J.9.1 - Internal variables
	J.9.2 - Schematics and signals
	J.9.3 - Handshake protocol
	J.9.4 - Hardware API

	J.10 - UART-M: schematics and interface
	J.10.1 - Schematics and signals
	J.10.2 - Handshake protocol


	Annex K   Weblab modules: specification and design
	K.1 - Definition of TC-tasks
	K.2 - Design of TEDSs and MTs
	K.3 - Examples of weblab modules
	K.3.1 - Digital I/O modules
	K.3.2 - Step-Motor Controller Module (SMCM)
	K.3.3 - Event sensor


	Annex L   Reconfiguration
	L.1 - Examples of report files created during the reconfiguration process
	L.2 - Example of a configuration file
	L.3 - The reconfiguration schematics
	L.4 - Some examples of HDL files created by the reconfiguration process
	L.5 - Examples of FPGA resources utilization
	L.6 - Example of TCL file created during reconfiguration

	Annex M   Validation & Verification
	M.1 - Supporting webpage: the main page
	M.2 - Screenshots of videos exemplifying the interaction with the weblab
	M.3 - Questionnaires provided for the researchers
	M.4 - Examples of webpages with the provided methodology


