

Ricardo Jorge Guedes da Silva Nunes da Costa

An IEEE1451.0-compliant

FPGA-based

reconfigurable weblab

PhD Thesis

Information Sciences and Technologies

Supervisors

Gustavo Ribeiro Alves (IPP/ISEP/DEE)

Mário Zenha Rela (FCTUC/DEI)

Department of Informatics Engineering

Faculty of Science and Technology

University of Coimbra

January/2014

iii

Abstract
Technology evolution is contributing for a sustainable change in

engineering education. New resources and tools are continuously

improving the teaching and learning processes, providing more pathways

to both students and teachers for accessing better educational contents. In

engineering courses, the experimental work, typically supported by

traditional laboratories, is also encompassing technology evolution as

denoted by the appearance of the so-called weblabs or remote

laboratories. This type of laboratories allows both students and teachers

to remotely access physical experiments enabling the control of

laboratory equipment through a simple device connected to the Internet

(e.g. a PC). Besides the provided flexibility (e.g. access to a real

laboratory on a 24x7 basis) other advantages may be enumerated, such as

the increase on students’ motivation and the cost reductions for all the

involved actors in the teaching and learning process (e.g. students,

teachers, institutions, etc.). However, current weblabs’ architectures and

their underlying infrastructures follow specific and distinct technical

implementations, i.e. there is no standard solution. Moreover, they are

not able to be reconfigured with different instruments and modules,

known as weblab modules. Whenever required in a traditional

laboratory, these modules can be attached to the target experiments,

provided that they are available in the laboratory facilities. Some

weblabs’ implementations allow setting up connections between the

target experiments and the weblab modules provided in the

infrastructure, but these modules cannot be changed or replicated, i.e. the

flexibility for changing the layout and the modules used in a particular

weblab infrastructure is very reduced. Therefore, the lack of a standard

access and design of weblabs, and the reduced flexibility for changing

the required modules for conducting the target experiments, are two

issues that are preventing their wide-spread adoption in engineering

education.

This thesis describes a research work conducted to design standard-

based reconfigurable weblabs. It analyses the possibility of using the

IEEE1451.0 Std. to design the weblabs and the modules adopted by the

underlying infrastructures to control/monitor the target experiments.

Additionally, to provide reconfiguration capability to the weblab

infrastructure, it considers the use of Field Programmable Gate Arrays

(FPGAs) for accommodating the weblab modules, thus allowing: i) the

use of standard Hardware Description Languages (HDLs) to describe the

weblab modules, making them easily sharable and replicable and; ii) the

iv

weblab infrastructures to inherit the reconfigurable nature of FPGAs,

making them flexible in order to accommodate different embedded

modules with the inherent reduction of costs that may arise from

replacing traditional with embedded instrumentation.

Besides contextualizing the role of weblabs in engineering education,

presenting some examples and commenting the use of traditional

instrumentation standards for their design, the thesis describes the

IEEE1451.0 Std., suggesting extensions for its adoption in the design of

weblabs. Supported on those suggestions and on FPGA technologies, it

specifies the development of an IEEE1451.0-compliant reconfigurable

weblab prototype and presents and analyses researchers’ opinions about

its use and the benefits for engineering education.

Keywords
Remote experimentation, Weblabs, Remote laboratories, IEEE1451.0

Std., FPGAs, Hardware reconfiguration.

v

Resumo
A evolução da tecnologia tem contribuído para uma mudança

sustentada na educação em engenharia. Novos recursos e ferramentas

têm melhorado os processos de ensino e aprendizagem facilitando a

alunos e professores o acesso a melhores conteúdos educativos. No caso

particular dos cursos de engenharia, o trabalho experimental, tipicamente

realizado em laboratórios tradicionais, tem sofrido alterações com base

na evolução tecnológica, de que é exemplo o aparecimento dos

denominados laboratórios remotos. Este tipo de laboratórios permite que

alunos e professores possam aceder a experiências reais controlando

remotamente o equipamento laboratorial através de um simples

dispositivo ligado à Internet (e.g. PC). Para além da flexibilidade

fornecida (acesso a um laboratório real 24 horas por dia, 7 dias por

semana) outras vantagens podem ser enumeradas, tais como a crescente

motivação dos alunos para a realização de trabalhos experimentais e a

inerente redução de custos que estes laboratórios podem trazer para todos

os actores envolvidos no processo de ensino e aprendizagem (alunos,

professores, instituições, etc.). Contudo, as atuais arquiteturas de

laboratórios remotos, bem como as infraestruturas subjacentes, seguem

implementações técnicas distintas e específicas, i.e. não existe uma

solução normalizada que suporte a reconfiguração com diferentes

instrumentos e módulos, ambos genericamente denominados por

módulos de laboratório. Quando necessário, esses módulos podem ser

interligados às experiências em teste, desde que disponíveis nas

instalações onde se encontra o laboratório. Algumas implementações de

laboratórios remotos permitem a interligação das experiências com os

módulos de laboratório disponíveis na infraestrutura subjacente.

Contudo, esses módulos não podem ser substituídos ou replicados, i.e. a

flexibilidade para modificar o layout e os módulos utilizados numa dada

infraestrutura é ainda reduzida. Neste contexto, a inexistência de um

acesso e desenvolvimento normalizados para laboratórios remotos, e a

reduzida flexibilidade para substituir/replicar os módulos necessários

para a realização de uma dada experiência, são dois aspetos que têm

dificultado a disseminação e a utilização deste tipo de laboratórios na

educação em engenharia.

Esta tese descreve o trabalho de investigação realizado com vista ao

desenvolvimento de laboratórios remotos normalizados e

reconfiguráveis. Analisa-se a possibilidade de utilizar a norma

IEEE1451.0 para o desenvolvimento de laboratórios remotos e de

módulos usados pela infraestrutura subjacente para controlar/monitorar

vi

as experiências. Adicionalmente, para fornecer capacidade de

reconfiguração à infraestrutura laboratorial, sugere-se a utilização de

dispositivos lógicos reconfiguráveis (Field Programmable Gate Arrays,

FPGAs) para suportar os módulos de laboratório, permitindo desta

forma: i) a utilização de linguagens normalizadas de descrição de

hardware (Hardware Description Languages, HDLs) para a

especificação dos módulos do laboratório, tornando-os facilmente

partilháveis e replicáveis e; ii) que a infraestrutura herde a capacidade de

reconfiguração das FPGAs, tornando-a flexível para suportar diferentes

módulos de laboratório com a inerente redução de custos que uma

solução semelhante pode trazer quando se substitui instrumentação

tradicional por embutida.

Para além de contextualizar o papel dos laboratórios remotos na

educação em engenharia, da apresentação de alguns exemplos e

comentários sobre a utilização de normas de instrumentação para a sua

especificação, a tese descreve a norma IEEE1451.0. Sugerem-se

extensões a esta norma para a sua adoção na especificação e

implementação de laboratórios remotos. Tendo por base essas sugestões

e a utilização de FPGAs, esta tese especifica o desenvolvimento de um

laboratório remoto reconfigurável e compatível com a norma

IEEE1451.0, e apresenta opiniões de investigadores sobre a sua

utilização e benefício para a educação em engenharia.

Palavras chave
Experimentação remota, Laboratórios remotos, norma IEEE1451.0,

FPGAs, Reconfiguração de hardware.

vii

Acknowledgments
Completing a PhD is a truly marathon that represents a conclusion stage of several

years of dedication and enthusiasm that I would not have been able to complete without

the contribution of several people and institutions.

I must first express my gratitude to my advisors; Professors Mário Rela from

UC/FCTUC and Gustavo Alves from IPP/ISEP. Their leadership, support and attention

were fundamental to achieve the proposed objectives of my work. It must be

emphasized the important contribution of Professor Gustavo Alves, since he gave me a

constant incentive to conclude the different phases of the work, and the guidance to face

the difficulties encountered during this long journey. Without disregarding other

contributions, I must truly express my gratitude to his availability for helping me and

advising me.

Over these years I have enjoyed the aid of several fellows that I would like to thanks.

In particular to the people of the LABORIS research group, that was my host place

during the PhD, in particular to André Fidalgo, Carlos Felgueiras, Manuel Gericota and

Paulo Ferreira, and to my PhD colleagues that someway helped me during my visits to

Coimbra.

At this moment I could not forget the reasons that led me to attend this PhD, in

particular my previous involvement in the area of remote laboratories during my

participation in an European project at FEUP. In this institution, I had some people that

also contributed to achieve this final result, that I would like to express my gratitude, in

particular to António Cardoso, Inês Cambeiro, Telmo Amaral, Miguel Silva and to

Professor José Martins Ferreira.

Despite all the difficulties faced during the PhD, most of them related with the

economical restrictions imposed to science in Portugal, the help of IPP/ISEP was

fundamental. Through a PROTEC program promoted by the Portuguese government,

and latter by an IPP/ISEP autonomous support, some of the expenses with academic

fees, travels and papers publications, were financed. Moreover, it was possible to reduce

the number of teaching hours at the DEE/ISEP during the first years, which gave me

more time for the PhD research activities and to conclude the courses of the first year.

During the validation & verification process, some researchers had a fundamental

contribution. I would like to express my thanks to them, namely to Unai Hernández,

Danilo Zutin, Willian Rochadel and Johan Zackrisson.

Last but not least; I would like to express my gratitude to my family and friends for

their important support, which gave me the required emotional stability to conclude this

important phase of my academic life.

viii

ix

Notes to the reader
While writing an extensive document, it is usual to take decisions that aim to

facilitate the reading and understanding of its contents.

Therefore, it was decided to create a list of acronyms and abbreviations, and a

glossary with the most relevant terms and expressions found in the text. All acronyms,

and most of the abbreviations, are presented in capital letters. They are typically

specified only once, but the most relevant ones can be specified in more than one

chapter or annex. The most common in science (e.g. CD) and the majority of those

specifying names of conferences and institutions, are only defined in the acronyms and

abbreviations list.

To emphasize some terms and expressions during the thesis, the italic style was

applied. Terms written in a different font from the remaining text refer to commands or

software code.

It was also decided to put some of the information and technical descriptions into

annex. The criterion for the decisions was supported by their relevance, without hinder

the access to specific details readers may want to consult, such as implementation

details that are provided in some annexes.

Most of the references to webpages describing software applications, tools, and

specific technical information, were placed in footnotes, rather then listing them in the

reference’s section.

The DVD attached to this thesis provides some of the material referred during the

text, namely:

 an introductory webpage with the list of published papers;

 software packages;

 the supporting webpage used during the validation & verification process

described in chapter 7;

 videos exemplifying the validation & verification process;

 photographs of the developed weblab;

 this same thesis in a Portable Document Format (PDF).

x

xi

Contents
 CHAPTER 1 INTRODUCTION .. 1

1.1. BACKGROUND AND MOTIVATION .. 3
1.2. INNOVATIVE ASPECTS ... 5
1.3. STRUCTURE AND ORGANIZATION .. 6

 CHAPTER 2 WEBLABS IN ENGINEERING EDUCATION .. 9

2.1. THE ROLE OF EXPERIMENTAL WORK IN ENGINEERING EDUCATION ... 11
2.2. LABORATORY TYPES FOR CONDUCTING EXPERIMENTAL WORK ... 14
2.3. CONTEXTUAL ANALYSIS OF WEBLABS ... 17

2.3.1 Fundamentals of the Actor-Network Theory.. 18
2.3.2 Influencing contexts ... 20
2.3.3 Involved actors and associations ... 21

2.4. PEDAGOGICAL AND TECHNICAL CONSIDERATIONS ON WEBLABS ... 26

2.4.1 Meeting experimental learning goals with weblabs .. 27
2.4.2 Mapping pedagogical goals against weblabs’ capabilities .. 29
2.4.3 Traditional weblab architecture ... 31
2.4.4 Involved technologies for implementing weblabs .. 32

2.5. WEBLAB ARCHITECTURES: A BRIEF OVERVIEW .. 33

2.5.1 MIT iLab project .. 34
2.5.2 NetLab ... 35
2.5.3 The VISIR project .. 37
2.5.4 Other weblabs and projects ... 39

2.6. CURRENT LIMITATIONS AND PROBLEMS OF WEBLABS ... 40
2.7. SUMMARY ... 41

 CHAPTER 3 CONSIDERATIONS FOR DESIGNING STANDARD AND

RECONFIGURABLE WEBLABS ... 43

3.1. WEBLAB ARCHITECTURES BASED ON INSTRUMENTATION STANDARDS .. 45

3.1.1 Stand-alone and modular instrumentation .. 45
3.1.2 Instrumentation standards ... 46
3.1.3 Hybrid architectures ... 49
3.1.4 Embedded instrumentation.. 51

3.2. ON-GOING INITIATIVES FOR WEBLABS STANDARDIZATION: GOLC AND IEEEP1876 STD. 53
3.3. USING AND EXTENDING THE IEEE1451.0 STD. FOR DESIGNING WEBLABS 56

3.3.1 Overview of the IEEE1451.0 Std. ... 57
3.3.2 Overview of current projects and research ... 59
3.3.3 Adopting the IEEE1451.0 Std. for weblabs ... 60

3.4. PROVIDING RECONFIGURABILITY TO WEBLABS THROUGH FPGAS .. 62

3.4.1 Infrastructure .. 62
3.4.2 Remote access .. 65

3.5. SUMMARY ... 70

 CHAPTER 4 THE IEEE1451.0 STD. AS A SMART FRAMEWORK FOR WEBLABS .. 73

4.1. REFERENCE MODEL: NCAP AND TIM SMART MODULES... 75
4.2. TRANSDUCER ELECTRONIC DATA SHEETS ... 76
4.3. SMART MODULES: ACCESS AND OPERATION ... 80

4.3.1 Addressing mechanism ... 81
4.3.2 Operating states and modes ... 82
4.3.3 Status registers and the status-event protocol ... 84
4.3.4 Message structures at the PHY channel ... 85
4.3.5 Commands ... 86

4.4. THE APIS: MODULE COMMUNICATION, TRANSDUCER SERVICES AND HTTP 87

xii

4.5. SUGGESTED WEBLAB INFRASTRUCTURES COMPLIANT WITH THE IEEE1451.0 STD. 90
4.6. EXTENDING THE IEEE1451.0 STD. TO ENHANCE WEBLAB ARCHITECTURES................................... 92

4.6.1 Suggested architecture .. 93
4.6.2 LabTEDS ... 94
4.6.3 Operational sequence .. 97

4.7. A THIN IMPLEMENTATION OF THE IEEE1451.0 STD. APPLIED TO WEBLABS 101
4.8. SUMMARY ... 103

 CHAPTER 5 A WEBLAB IMPLEMENTATION SUPPORTED BY FPGA-BASED

BOARDS ... 105

5.1. OVERALL ARCHITECTURE: WEBLAB SERVER AND UNDERLYING INFRASTRUCTURE......................... 107
5.2. THE WEBLAB INFRASTRUCTURE: NCAP AND FPGA-BASED TIM ... 109

5.2.1 The NCAP-TIM interface ... 109
5.2.2 The NCAP.. 110
5.2.3 The TIM ... 112

5.3. AN IEEE1451.0-COMPLIANT MODULE FOR BINDING WEBLAB MODULES 113
5.4. WEBLAB ACCESSING MECHANISMS ... 115
5.5. THE WEBLAB RECONFIGURATION TOOL ... 118
5.6. SUMMARY ... 121

 CHAPTER 6 THE WEBLAB RECONFIGURABLE FRAMEWORK 123

6.1. INVOLVED RESOURCES AND TOOLS ... 125
6.2. STRUCTURE AND FUNCTIONALITY OF THE IEEE1451.0-COMPLIANT MODULE 126

6.2.1 Decoder/Controller Module (DCM) .. 128
6.2.2 TEDS-Module (TEDS-M) .. 132
6.2.3 Status/State Module (SSM) ... 135
6.2.4 UART Module (UART-M) ... 138

6.3. THE WEBLAB CONNECTING MODULES: LAYOUT AND INTERFACE ... 139

6.3.1 Internal architecture .. 139
6.3.2 Required Transducer Channels.. 140
6.3.3 TC-tasks ... 143
6.3.4 Development methodology ... 146

6.4. THE RECONFIGURATION PROCESS .. 147

6.4.1 The reconfiguration sequence ... 148
6.4.2 The role of the configuration file ... 151
6.4.3 Implementation issues of the RecTool ... 152

6.5. SUMMARY ... 155

 CHAPTER 7 VALIDATION & VERIFICATION .. 157

7.1. ADOPTED STRATEGY: SCENARIO AND OBJECTIVES ... 159
7.2. ACTORS INVOLVED: RESEARCHERS, EXPERIMENTS AND TOOLS ... 160
7.3. APPLIED METHODOLOGY .. 165
7.4. REPORTED RESULTS AND CORRESPONDING ANALYSIS .. 168

7.4.1 Current weblabs’ problems ... 169
7.4.2 Operation of the implemented weblab ... 170
7.4.3 Relevance of the proposed solution ... 174

7.5. SUMMARY ... 176

 CHAPTER 8 CONCLUSIONS AND FUTURE WORK ... 179

8.1. ADOPTED ARCHITECTURE: IMPLICATIONS FOR THE EXPERIMENTAL WORK IN ENGINEERING

EDUCATION ... 181
8.2. FUTURE WORK PERSPECTIVES ... 185
8.3. CONCLUDING REMARKS.. 187

 REFERENCES ... 189

 ANNEXES ... 203

 ANNEX A FPGA INTERNAL ARCHITECTURE OVERVIEW 205

xiii

 ANNEX B EXAMPLE OF AN FPGA-BASED BOARD ... 207

 ANNEX C FPGA RECONFIGURATION: OPTIONS FOR WEBLABS 209

 ANNEX D TEDS: EXAMPLES, ATTRIBUTES AND STATUS .. 211

 ANNEX E SENSORS AND ACTUATORS TRIGGER STATES 215

 ANNEX F IEEE1451.0 STATUS BITS .. 217

 ANNEX G NEW IEEE1451.0 HTTP API METHODS AND INTERFACES 219

 ANNEX H MAPPING IEEE1451.0 HTTP API METHODS AND COMMANDS 225

 ANNEX I ERROR CODES RETRIEVED FROM THE NCAP ... 231

 ANNEX J THE IEEE1451.0-COMPLIANT MODULE .. 233

J.1 - DCM INTERNAL REGISTERS ... 233
J.2 - DCM INTERNAL AND COMMAND TASKS .. 235

J.2.1 - Internal tasks ... 235
J.2.2 - Command-tasks .. 236

J.3 - DCM SCHEMATICS .. 240
J.4 - THE DCM-MB INTERFACE .. 240
J.5 - THE DCM-MT INTERFACE ... 242
J.6 - DCM REGISTERS AND BUSES FOR IMPLEMENTING THE ERROR DETECTION MECHANISM 242
J.7 - ERROR CODES SPECIFIED IN THE IEEE1451.0-MODULE ... 243
J.8 - TEDS-M: SCHEMATICS AND INTERFACE ... 244

J.8.1 - Internal variables... 244
J.8.2 - Schematics and signals .. 245
J.8.3 - Handshake protocol... 246
J.8.4 - Hardware API ... 246

J.9 - SSM: SCHEMATICS AND INTERFACE ... 248

J.9.1 - Internal variables... 248
J.9.2 - Schematics and signals .. 249
J.9.3 - Handshake protocol... 250
J.9.4 - Hardware API ... 250

J.10 - UART-M: SCHEMATICS AND INTERFACE .. 251

J.10.1 - Schematics and signals .. 251
J.10.2 - Handshake protocol ... 253

 ANNEX K WEBLAB MODULES: SPECIFICATION AND DESIGN 255

K.1 - DEFINITION OF TC-TASKS ... 255
K.2 - DESIGN OF TEDSS AND MTS .. 255
K.3 - EXAMPLES OF WEBLAB MODULES ... 256

K.3.1 - Digital I/O modules ... 256
K.3.2 - Step-Motor Controller Module (SMCM) .. 260
K.3.3 - Event sensor .. 265

 ANNEX L RECONFIGURATION .. 267

L.1 - EXAMPLES OF REPORT FILES CREATED DURING THE RECONFIGURATION PROCESS 267
L.2 - EXAMPLE OF A CONFIGURATION FILE ... 270
L.3 - THE RECONFIGURATION SCHEMATICS .. 274
L.4 - SOME EXAMPLES OF HDL FILES CREATED BY THE RECONFIGURATION PROCESS............................. 274
L.5 - EXAMPLES OF FPGA RESOURCES UTILIZATION .. 277
L.6 - EXAMPLE OF TCL FILE CREATED DURING RECONFIGURATION... 280

 ANNEX M VALIDATION & VERIFICATION ... 283

M.1 - SUPPORTING WEBPAGE: THE MAIN PAGE ... 283
M.2 - SCREENSHOTS OF VIDEOS EXEMPLIFYING THE INTERACTION WITH THE WEBLAB 284
M.3 - QUESTIONNAIRES PROVIDED FOR THE RESEARCHERS ... 285
M.4 - EXAMPLES OF WEBPAGES WITH THE PROVIDED METHODOLOGY ... 289

xiv

xv

Figures
Figure 1.1: Conceptual diagram with the thesis structure. .. 6

Figure 2.1: Educational landscape since the 80’s. .. 11

Figure 2.2: Theoretical and practical components of an engineering course. ... 13

Figure 2.3: Preferred learning styles in engineering courses. .. 13

Figure 2.4: Laboratory types available for conducting experimental activities. 15

Figure 2.5: Conceptual model of the Actor-Network Theory.. 19

Figure 2.6: Situating RE as an actor-network... 20

Figure 2.7: Weblabs in the RE actor-network. ... 21

Figure 2.8: Pedagogical/technical issues for adopting weblabs in engineering education. 27

Figure 2.9: Division of a set of papers according to discussed weblabs pedagogical goals. 30

Figure 2.10: A coarse model of a typical weblab architecture... 31

Figure 2.11: Topologies of the iLab Shared Architecture (ISA). .. 35

Figure 2.12: NetLab architecture overview. ... 36

Figure 2.13: NetLab web interfaces. .. 37

Figure 2.14: Overview of a VISIR architecture based on the PXI bus. ... 38

Figure 2.15: Interfaces used in the VISIR project. ... 39

Figure 3.1: Stand-alone and modular instrumentation. ... 45

Figure 3.2: A layered architecture for an instrumentation system. .. 46

Figure 3.3: Example of an hybrid system applicable to weblab infrastructures. 50

Figure 3.4: Architectures for embedded instruments in weblab infrastructures. 52

Figure 3.5: Overview of the Global Online Laboratory Consortium. .. 54

Figure 3.6: Current terminology and ontology defined by the GOLC. .. 55

Figure 3.7: Reference model of the IEEE1451.0 Std. ... 57

Figure 3.8: FPGA-based reconfigurable weblab infrastructure. .. 64

Figure 3.9: Architectures for embedding weblab modules in FPGA-based boards. 64

Figure 3.10: Proposed weblab architecture using FPGA-based weblabs. .. 65

Figure 3.11: Hybrid solution for remote accessing weblab infrastructures. ... 66

Figure 3.12: SoC solution for remote accessing weblab infrastructures. ... 67

Figure 4.1: Reference model of the IEEE1451.0 Std. ... 75

Figure 4.2: Mandatory TEDSs in an IEEE1451.0 compatible device. ... 77

Figure 4.3: Diagram illustrating the group of TEDSs defined in the IEEE1451.0 Std. 79

Figure 4.4: Structure and identification header defined for all TEDSs. ... 79

Figure 4.5: Addressing mechanism used by the IEEE1451.0 Std. ... 81

xvi

Figure 4.6: TIM and TC operating states. .. 82

Figure 4.7: Conceptual diagram of the TIM operation modes. .. 83

Figure 4.8: Status message generation logic and TIM SR generation.. 85

Figure 4.9: Message structures. ... 85

Figure 4.10: IEEE1451.0 Std. API layered structure and the HTTP schematic access. 88

Figure 4.11: Adopting the IEEE1451.0 Std. for designing a weblab infrastructure. 90

Figure 4.12: Possible weblab infrastructures based on the IEEE1451.0 Std. ... 91

Figure 4.13: Suggested weblab architecture based on the IEEE1451.0 Std. .. 94

Figure 4.14: Lab2go Metadata - Reference Model Specification. ... 95

Figure 4.15: Operational sequence for accessing weblab infrastructures. .. 97

Figure 4.16: Process for registering/unregistering weblab infrastructures. .. 98

Figure 4.17: Using the NCAPDiscovery and ReadLabTEDS methods to access registered weblab

infrastructures. ... 99

Figure 4.18: Using the WriteTIM and ReadTIM for reconfiguring weblab infrastructures and the

suggested XML schema for the log file. .. 101

Figure 4.19: A thin implementation of the IEEE1451.0 Std. layered structure. 102

Figure 5.1: Bock diagrams of the implemented weblab architecture. .. 108

Figure 5.2: Picture of the implemented weblab architecture. .. 108

Figure 5.3: Designed weblab infrastructure based on the IEEE1451.0 NCAP-TIM reference model. .. 109

Figure 5.4: Photograph of the NCAP implemented using a thin-client computer. 111

Figure 5.5: NCAP-package folder organization. .. 111

Figure 5.6: Picture of the FPGA-based board where the TIM is implemented..................................... 113

Figure 5.7: Overview of the IEEE1451.0-compliant module (IEEE1451.0-Module). 114

Figure 5.8: NCAP-TIM accessing mechanism. .. 115

Figure 5.9: Example of commands sent to the TIM reconfigured with an I/O weblab module using the

Comm Operator Pal serial port tool. .. 116

Figure 5.10: Example of a ReadTEDS command and the associated reply in XML format issued using

the IEEE1451.0-HTTP API. ... 117

Figure 5.11: Web interface of the weblab reconfiguration tool. .. 119

Figure 6.1: Conceptual diagram with tools, resources and the human actors involved in the

reconfiguration process. ... 125

Figure 6.2: Internal modules of the IEEE1451.0-Module. .. 127

Figure 6.3: MT structure and an example with 3 TCs. ... 130

Figure 6.4: Implemented logic for the status-event protocol. .. 131

Figure 6.5: Adopted architecture to handle events generated by weblab modules. 132

Figure 6.6: The TEDS-M architecture and the data structure of a TEDS. ... 133

xvii

Figure 6.7: Layered structure supported by the Access_ModTEDS hardware API to access the TEDSs

memories reconfigured in the TEDS-M. ... 134

Figure 6.8: The SSM architecture and the status/state memories structures... 135

Figure 6.9: Implemented logic for the condition registers and for the SR signal. 137

Figure 6.10: Layered structure supported by the Access_ModStatusState hardware API to access the

SSM status and the state memories. .. 137

Figure 6.11: The architecture of the UART-M and the interface with the remaining modules of the

IEEE1451.0-Module. ... 138

Figure 6.12: Parts required for defining a weblab module compatible with the IEEE1451.0-Module. . 139

Figure 6.13: Data flow between the DCM and the weblab modules.. 140

Figure 6.14: Possibilities for controlling weblab modules parameters using TCs. 141

Figure 6.15: Control of a daisy chain bus with the modules connected to the IEEE1451.0-Module. 142

Figure 6.16: Association between IEEE1451.0 commands and TC-tasks.. 143

Figure 6.17: Operational sequences performed by the TC-tasks. .. 145

Figure 6.18: Methodology for designing weblab modules compatible with the IEEE1451.0-Module. . 146

Figure 6.19: The RecTool interface panels and files used for reconfiguring the weblab infrastructure. 147

Figure 6.20: The complete reconfiguration sequence using the RecTool. ... 149

Figure 6.21: Role of the software modules running in the RecTool and connections established within

the TIM. ... 151

Figure 6.22: Weblab server internal modules and the actions used for creating the weblab project that

reconfigures the TIM. ... 153

Figure 7.1: Scenario adopted to validate and verify the implemented weblab. 160

Figure 7.2: Involved researchers in the validation & verification process. .. 161

Figure 7.3: Configurations defined to the weblab infrastructure. .. 162

Figure 7.4: Adopted TEDSs in each configuration. .. 163

Figure 7.5: Screenshots of the supporting webpage and videos provided to guide researchers during the

validation & verification process. ... 163

Figure 7.6: Typical interface adopted for issuing IEEE1451.0 commands using the IEEE1451.0-HTTP

API. ... 165

Figure 7.7: Phases adopted for the researchers’ interaction with the weblab. 165

Figure 7.8: Picture of the adopted step-motor and video frame of its axis provided by the supporting

webpage. .. 166

Figure 7.9: Command sequence applied to control the step-motor rotation in the 1st configuration. 167

Figure 7.10: Graph results with the accordance with six problems currently faced by weblabs. 169

Figure 7.11: Graph results with the accordance with the configuration phases. 171

Figure 7.12: Graph results with the accordance with the verify configuration phases. 172

Figure 7.13: Graph results with the accordance with the weblab modules’ control.............................. 174

Figure 7.14: Graph results with the accordance with the proposed weblab.. 175

xviii

Figure 8.1: Suggested sequence for the engineering practical work in distance learning. 181

Figure 8.2: Screenshots of a tool being developed to facilitate the design of TEDSs, map and

configuration files adopted during the reconfiguration process. 186

Figure A.1: Structural elements of an FPGA. .. 205

Figure B.1: Example of an FPGA-based board from Xilinx (Spartan 3E). .. 207

Figure C.1: Possibilities for reconfiguring an FPGA with different weblab modules........................... 209

Figure E.1: Sensor trigger states. ... 215

Figure E.2: Actuator trigger states. .. 215

Figure E.3: Information notes for the trigger state diagrams. .. 216

Figure J.1: DCM schematics with all adopted buses for interfacing the other modules........................ 240

Figure J.2: Illustration of the adopted registers to handle errors.. 243

Figure J.3: TEDS-M internal schematics. .. 245

Figure J.4: Handshake protocol adopted for the DCM-TEDS-M interface. ... 246

Figure J.5: SSM internal schematics. ... 249

Figure J.6: Handshake protocol for the DCM-SSM interface. .. 250

Figure J.7: Modules of the UART-M and its buses and lines. ... 252

Figure J.8: Handshake protocol used to read data from the Rx module. .. 253

Figure J.9: Handshake protocol used to fill-in the buffer_out_tx and to transmit data to the NCAP. 254

Figure K.1: Freeware hexadecimal editor XVI32 used to define TEDSs and MTs. 256

Figure K.2: Digital I/Os weblab modules connected to the IEEE1451.0-Module. 257

Figure K.3: Buses, lines and the handshake protocol of the I/O weblab modules. 257

Figure K.4: Sequence of commands issued to the I/O digital weblab modules. 259

Figure K.5: Commands issued to validate the I/O digital weblab modules. ... 259

Figure K.6: SMCM connected to the IEEE1451.0-Module. ... 260

Figure K.7: Handshake protocol used to access the SMCM through the TC-tasks. 262

Figure K.8: The SCMC HDL modules and buses. ... 263

Figure K.9: Sequence of commands adopted for validating the SMCM. ... 264

Figure K.10: IEEE1451.0 commands issued to validate the SMCM. .. 265

Figure K.11: Event Sensor connected to the IEEE1451.0-Module. ... 265

Figure K.12: TIM-initiated message retrieved from the ES after detecting an event. 266

Figure L.1: Reconfiguration schematics. ... 274

Figure M.1: Screenshots of the supporting webpage front panels. .. 283

Figure M.2: Videos exemplifying the interaction with the weblab. ... 284

Figure M.3: Table grid provided in the supporting webpage with the different stages of the adopted

methodology in the validation and reconfiguration process.. 289

Figure M.4: Examples of webpages used during the validation and verification process. 290

xix

Tables
Table 2.1: Some concepts associated to E-learning. ... 12

Table 2.2: A personal comparison among laboratory types. ... 17

Table 2.3: Human actors in Remote Experimentation. ... 22

Table 2.4: Non-human actors in Remote Experimentation. .. 22

Table 2.5: Associations among human actors in the RE actor-network. .. 23

Table 2.6: Associations among technical actors in the RE actor-network. .. 24

Table 2.7: Associations between technical and human actors in the RE actor-network. 25

Table 2.8: Experimental learning goals with weblabs. ... 27

Table 2.9: Weblabs’ repositories, projects and consortiums. .. 40

Table 3.1: Overview of some well known instrumentation bus standards. .. 47

Table 3.2: The IEEE1451.x Std. family. .. 58

Table 3.3: A selection of commercial MWS. ... 67

Table 3.4: A selection of TCP/IP cores. ... 68

Table 3.5: Considerations about the number of FPGAs versus the weblab modules required for

implementing a reconfigurable infrastructure based on an hybrid architecture.................... 69

Table 4.1: IEEE1451.0 main TC sampling modes and complemented modes. 83

Table 4.2: IEEE1451.0 TIM to NCAP transmission modes. ... 84

Table 4.3: Classes of standard commands.. 87

Table 4.4: IEEE1451.0 Std. HTTP API (paths and methods). .. 89

Table 4.5: LabTEDS fields. .. 96

Table 4.6: Mapping of HTTP APIs’ methods to TIM commands. .. 102

Table 6.1: Implemented commands to access the TEDS-M. ... 133

Table 6.2: Memory selection in the TEDS-M. ... 133

Table 6.3: Instructions provided by the Access_ModTEDS hardware API. ... 134

Table 6.4: Implemented commands to access the SSM. ... 136

Table 6.5: Instructions provided by the Access_ModStatusState hardware API................................... 137

Table 7.1: Accordance with six problems currently faced by weblabs. ... 169

Table 7.2: Accordance with the configuration phases. ... 171

Table 7.3: Accordance with the verify configuration phases. ... 172

Table 7.4: Accordance with the weblab modules’ control. ... 173

Table 7.5: Accordance with the proposed weblab. ... 175

Table C.1: Options for reconfiguring FPGAs. ... 210

Table D.1: Meta-TEDS structure... 211

xx

Table D.2: TC-TEDS structure.. 212

Table D.3: TEDS’ attributes implemented in an octet. ... 213

Table D.4: TEDS’ status implemented in an octet.. 213

Table F.1: Status bits defined by the IEEE1451.0 Std. ... 217

Table G.1: NCAPRegister method. ... 219

Table G.2: NCAPDiscovery method. .. 220

Table G.3: ReadLabTEDS method. ... 220

Table G.4: WriteLabTEDS method. .. 221

Table G.5: ReadTIM method. ... 221

Table G.6: WriteTIM method. .. 222

Table G.7: ReadLog method. .. 222

Table G.8: WriteLog method. ... 223

Table H.1: Mapping the ReadData method to SamplingMode and ReadTCDSsegment commands. 225

Table H.2: Mapping the StartReadData and MeasurementUpdate methods to SamplingMode and

ReadTCDSsegment commands. .. 226

Table H.3: Mapping the WriteData method to SamplingMode and WriteTCDSsegment commands. .. 226

Table H.4: Mapping the StartWriteData method to SamplingMode and WriteTCDSs commands. 227

Table H.5: Mapping the ReadTEDS and ReadRawTEDS methods to the ReadTEDSsegment

command. .. 227

Table H.6: Mapping the UpdateTEDSCache to the ReadTEDSsegment command. 228

Table H.7: Mapping the WriteTEDS and WriteRawTEDS methods to the WriteTEDSsegment

command. .. 228

Table H.8: Mapping the SendCommand method. .. 229

Table H.9: Mapping the StartCommand and CommandComplete methods... 229

Table H.10: Mapping the Trigger and the StartTrigger methods to commands ReadTEDSsegment,

SamplingMode and TriggerCommand. ... 229

Table I.1: Error source codes. ... 231

Table I.2: Error enumeration codes. .. 231

Table J.1: List with the DCM internal registers.. 233

Table J.2: DCM internal-tasks... 235

Table J.3: Commands common to the TIM and to each TC (ClassID=1). ... 236

Table J.4: Transducer operating state commands (ClassID=3). .. 238

Table J.5: Transducer either idle or operating state commands (ClassID=4). 239

Table J.6: TIM any state commands (ClassID=7). ... 239

Table J.7: MB definition (pieces of code in *.conf and definitions_GENERIC.vh files). 241

Table J.8: Buses and lines adopted for the DCM-MB interface. ... 241

xxi

Table J.9: Sequence for accessing to the MB (Verilog code examples)... 241

Table J.10: Buses and lines adopted for the DCM-MT interface... 242

Table J.11: Sequence for reading the MT (Verilog code example). .. 242

Table J.12: Error codes mapped from the condition register to the error_reg. 243

Table J.13: Example of a definitions_TEDS.vh file automatically created during the reconfiguration

process. .. 244

Table J.14: Buses and lines adopted for the DCM-TEDS-M interface. ... 245

Table J.15: TEDS-M hardware API instructions (available in file: Access_ModTEDS.vh). 247

Table J.16: Sequences for accessing the TEDS-M hardware API instructions..................................... 248

Table J.17: Example of a definitions_GENERIC.vh file automatically created during the

reconfiguration process. ... 248

Table J.18: Buses and lines adopted for the DCM-SSM interface... 249

Table J.19: SSM hardware API instructions (available in the file: ModStatusState.vh). 250

Table J.20: Sequences for accessing the SSM hardware API instructions. .. 251

Table J.21: Signals used by the Rx module (data reception from the NCAP). 252

Table J.22: Signals used by the Tx module (data transmission to the NCAP). 252

Table K.1: Example of Verilog HDL code for implementing TC-tasks using the mandatory

end_tc_task and attending_event variables. ... 255

Table K.2: TC-TEDS relevant fields defined to control the 8-Bit Input Module. 257

Table K.3: TC-TEDS relevant fields defined to control the 6-Bit Output Module. 258

Table K.4: TC-TEDS relevant fields defined to control the SMCM. .. 261

Table K.5: MD-TEDS defined fields to control the SMCM. .. 261

Table K.6: Internal SMCM access codes. .. 262

Table K.7: Internal modules of the SMCM and their features. ... 263

Table K.8: Defined TC-TEDS relevant fields to control the event sensor. .. 266

Table L.1: Report generated by the Bind software module. .. 267

Table L.2: Report generated by the Config software module. ... 268

Table L.3: Report generated by the ISE Webpack in the synthesis operation. 268

Table L.4: Report generated in the reconfiguration operation using the iMPACT tool. 269

Table L.5: Report generated by the UrJTAG tool after sending the weblab project to the FPGA-based

board.. 270

Table L.6: Example of a configuration file used in the reconfiguration process. 270

Table L.7: Example of Verilog HDL files with generic definitions... 275

Table L.8: Example of Verilog HDL files defining the DCM-weblab modules interfaces. 275

Table L.9: Example of files used to define the TEDSs memories. .. 276

Table L.10: Example of files used to define the MT. ... 277

xxii

Table L.11: Some definitions made in the ISE Webpack for creating the weblab project. 278

Table L.12: FPGA resources used by the IEEE1451.0-Module in two configurations. 278

Table L.13: Number of FPGA resources used by the weblab modules.. 279

Table L.14: Overview of FPGA resources percent usage in both configurations. 279

Table L.15: Example of a TCL file created by the RecTool with instructions for synthesizing the

weblab project.. 280

xxiii

Acronyms and abbreviations
2D Two Dimensional

3D Three Dimensional

A/D Analog-to-Digital

ABET Accreditation Board for Engineering and Technology

ACM Association for Computing Machinery

AMS Analog and Mixed Signal

ANT Actor-Network Theory

API Application Program Interface

ASCII American Standard Code for Information Interchange

ASEE American Society for Engineering Education

ASP Active Server Pages

BTH Blekinge Tekniska Högskola (Blekinge Institute of Technology)

CAN Controller Area Network

CBA Computer-Based Assessment

CBL Computer-Based Learning

CBT Computer-Based Testing or Computer-Based Training

CD Compact Disk

CGI Common Gateway Interface

CMS Content Management System

CPU Central Processing Unit

CSCL Computer-Supported Collaborative Learning

CSCW Computer Supported Cooperative Work

D/A Digital-to-Analog

DC Direct Current

DCM Decoder/Controller Module

DEE
Departamento de Engenharia Electrotécnica

(Department of Electrical Engineering)

DEEC
Departamento de Engenharia Electrotécnica e de Computadores

(Department of Electrical and Computer Engineering)

xxiv

DEI
Departamento de Engenharia Informática

(Department of Informatics Engineering)

DS Data Set

DVD Digital Versatile Disk

EDUCON IEEE Global Engineering Education Conference

EIA Electronic Industries Alliance

ELVIS Educational Laboratory Virtual Instrumentation Suite

ES Event Sensor

FCTUC
Faculdade de Ciências e Tecnologia da Universidade de Coimbra

(Faculty of Sciences and Technology of the University of Coimbra)

FEUP
Faculdade de Engenharia da Universidade do Porto

(Faculty of Engineering of the University of Porto)

FG Function Generator

FIE Frontiers in Education

FIFO First-In First-Out

FPAA Field Programmable Analog Array

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

GOLC Global Online Laboratory Consortium

GPIB General Purpose Interface Bus

GUI Graphical User Interface

HDL Hardware Description Language

HTML HyperText Mark-up Language

HTTP HyperText Transfer Protocol

HWU Heriot-Watt University

I/O Input/Output

ID Identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IFAC International Federation of Automatic Control

IGI Idea Group Inc.

xxv

iJOE International Journal of Online Engineering

IJTAG Internal JTAG

IMCL Interactive Mobile and Computer Aided Learning

IP Internet Protocol

IPP Instituto Politécnico do Porto (Polytechnic Institute of Porto)

ISA iLab Shared Architecture

ISEP
Instituto Superior de Engenharia do Porto

(Polytechnic Institute of Porto - School of Engineering)

iSES internet School Experimental System

IST Information Society Technologies

IT Information Technology

ITS Intelligent Transportation Systems

IVI Interchangeable Virtual Instrument

JEE Journal of Engineering Education

JISE Journal of Information Systems Education

JSCI Journal on Systemics, Cybernetics and Informatics

JSP JavaServer Pages

JTAG Joint Test Action Group

LABORIS
Laboratório de Investigação em Sistemas de Teste

(Research group on systems and test)

LAN Local Area Network

LCD Liquid Crystal Display

LCMS Learning Content Management System

LiLa Library of Labs

LMS Learning Management System

LUT Look Up Table

LXI LAN eXtensions for Instrumentation

MAC Media Access Control

MB Memory Buffer

MCU Microcontroller Unit

MECS Modern Education and Computer Science

xxvi

MICAI Mexican International Conference on Artificial Intelligence

MIT Massachusetts Institute of Technology

MLE Managed Learning Environment

MOOC Massive Open Online Course

MSc Master of Science

MT Map Table

MWS Micro Web Server

MXI Multisystem eXtension Interface

NCAP Network Capable Application Processor

NI National Instruments

NIST National Institute of Standards and Technology

NSLOL Networked Smart Learning Objects for Online Laboratories

NUS National University of Singapore

OCW Open Course Ware

OU Open University

OUW Open University Worldwide

PBL Problem Based Learning

PC Personal Computer

PCI Peripheral Component Interconnect

PDA Personal Digital Assistant

PEARL Practical Experimentation by Accessible Remote Learning

PhD Philosophy Doctor

PHP Personal Home Page

PHY Ethernet Physical interface

PLE Personal Learning Environments

PROTEC

Programa de apoio à formação avançada de docentes do Ensino Superior

Politécnico (Programme for supporting the training of teachers from the

Polytechnic Institutes)

PXI PCI eXtensions for Instrumentation

PXISA PXI Systems Alliance

RAM Random-access memory

xxvii

RE Remote Experimentation

RecTool Reconfiguration Tool

REV Remote Engineering & Virtual Instrumentation

REXNET Remote Experimentation Network

RF Radio Frequency

RFID Radio Frequency Identification

ROM Read-only memory

SA Standard Association

SCPI Standard Commands for Programmable Instruments

SCORM Sharable Content Object Reference Model

SMCM Step Motor Controller Module

SoC System-on-Chip

SPI Serial Peripheral Interface

SR Service Request

SSH Secure Shell

SSM Status State Module

Std. Standard

STEM Science, Technology, Engineering and Math

STIM Smart/Serial Transducer Interface Module

SVF Serial Vector Format

TC Transducer Channel

TCD Trinity College Dublin

TCL Tool Command Language

TCP Transmission Control Protocol

TEDS Transducer Electronic Data Sheet

Telnet TELecommunications NETwork

TIA Telecommunications Industry Association

TIM Transducer Interface Module

TLV Type Length Value

UART Universal Asynchronous Receiver/Transmitter

UC Universidade de Coimbra (University of Coimbra)

xxviii

UD University of Dundee / Universidad de Deusto (University of Deusto)

UFSC
Universidade Federal de Santa Catarina

(Federal University of Santa Catarina)

UK United Kingdom

UNED
Universidad Nacional de Educación a Distancia

(The National University of Distance Education)

UniSA University of South Australia

URL Unified Resource Location

USB Universal Serial Bus

USBTMC USB Test and Measurement Class

VB Visual Basic

VHDL Very High Speed Integrated Circuit Hardware Description Language

VI Virtual Instruments

VINNOVA Swedish Governmental Agency for Innovation Systems

VISA Virtual Instrument Software Architecture

VISIR Virtual Instrument Systems in Reality

VLE Virtual Learning Environment

VME Versa Modular Eurocard

VXI VME eXtensions for Instrumentation

WG Working Group

WIETE World Institute for Engineering and Technology Education

WSC Weblab Server Controller

WSFS Weblab Server File System

WTIM Wireless TIM

XML eXtensible Markup Language

μC Microcontroller

μP Microprocessor

xxix

Glossary
E-learning: Concept comprising all forms of electronically supported teaching and

learning processes. It gathers other common definitions of services and tools, e.g. CBT,

LMS, VLE, among others.

FPGA: Is an hardware reconfigurable integrated circuit able to be (re)configured by the

customer or after manufacturing. Its (re)configuration is commonly specified using

Hardware Description Languages (HDLs).

FPGA-based board: Is a print circuit board with several electronic devices connected

and controlled by an FPGA. Typically it comprises LCDs, interface ports, buttons,

memories, D/A and A/D converters, among other devices.

Hardware Description Language (HDL): Is a specialized computer language used to

describe the structure, design and operation of electronic circuits, and most commonly,

digital logic circuits. In contrast to most software programming languages (such as C or

Java), HDLs also include an explicit notion of time, which is a primary attribute of

hardware. The most common languages are the Verilog and VHDL (currently standard

languages), which are typically adopted by all manufacturers to describe digital circuits

embedded in FPGAs.

IEEE1451.0 Std.: Is a standard for interfacing transducers (sensors and actuators) that

defines a set of operating modes based on specifications provided by Transducer

Electronic Data Sheets (TEDSs). Defined in 2007, this standard is the basis for all

future and previous defined members of the IEEE1451.x Stds. so they can operate

together. The operating modes defined by the standard are controlled using commands

that can be applied using a set of APIs. It defines an architecture based in two modules

that should be interconnected using an interface protocol: the TIM (Transducer Interface

Module) and the NCAP (Network Capable Application Processor).

Instrumentation server: Is the device adopted in the weblab infrastructure for controlling

other equipment, such as: weblab modules, webcams and the target experiments.

Typically it is implemented through PCs that interfaces those equipments using

dedicated buses with high data rates and trusty data transmissions.

xxx

Network Capable Application Processor (NCAP): Defined by the IEEE1451.0 Std., is

the hardware and software that provides the gateway function between the TIMs and the

user network or host processor.

Reconfigurability: Denotes the reconfigurable capability of a system, so its behaviour

can be changed by reconfiguration, i. e. by loading different code describing a particular

module.

Reconfiguration Tool (RecTool): Is the tool that runs on the weblab server to build and

define the weblab project used to reconfigure the weblab infrastructure. It provides a

web interface so remote users may select the weblab modules to reconfigure the

infrastructure.

Remote Experimentation (RE): Is a sub-domain of the traditional E-learning extending

the common features of virtual learning environments, providing resources, tools and

methodologies for the conduction of real experiments through the Internet using remote

laboratories / weblabs.

Remote laboratory / Weblab: Usually defined in literature using both terms (remote

laboratory or weblab), imply the remote access to real experiments, using an Internet

connection. Different users (students, teachers, technicians, or others) interact with real

equipment like in traditional laboratories, however they are not required to be in the

laboratory, since they can access it through a simple network-capable accessing device

(mobile or not).

Target experiment: Comprises the experiment provided in a weblab able to be remotely

accessed during a laboratorial activity. Typically it is interfaced to weblab modules to

control/monitor physical phenomena.

Transducer Channel (TC): Is the channel that establishes the interface to the weblab

modules embedded in the TIM or externally located.

Transducer Electronic Data Sheet (TEDS): Data block defined by the IEEE1451.0 Std.

containing all transducers’ features. The standard defines mandatory and optional

TEDSs that are usually implemented in 8 bit (octet) memories inside the TIM, or can be

remotely located (named Virtual TEDSs).

xxxi

Transducer Interface Module (TIM): Is a module defined by the IEEE1451.0 Std. with

the interface, signal conditioning, A/D and D/A conversion and, in many cases, the

transducers itself.

Weblab infrastructure: Represents the infrastructure comprising the NCAP-TIM model

adopted in the reconfigurable weblab. It is accessed by the weblab server to reconfigure

different weblab modules, and by the users to control/monitor those modules, and

therefore, the target experiments.

Weblab modules: Devices (instruments and modules) adopted in every laboratory to

control/monitor the target experiments. In the electrical domain these can be equipments

like: Oscilloscopes, Multimeters, Function Generators; Digital and Analog I/O devices,

dedicated Controllers, etc.

Weblab project: Is the project created by the RecTool to define the layout of the weblab

infrastructure. It is defined by different files, including the final bitstream file used to

reconfigure the FPGA adopted in the weblab infrastructure. It comprises an

IEEE1451.0-compatible module and all the selected weblab modules to be reconfigured

in the weblab infrastructure.

Weblab server: Is a computer acting as an HTTP server that supports all the pedagogical

contents required for a specific course (documents, animations, simulations, assessment

tools, etc.) and administrates users’ accesses to the laboratory, such as authentications.

In current solution it also includes the use of the RecTool to reconfigure the weblab

infrastructure with different weblab modules.

xxxii

Chapter 1: Introduction 1

 Chapter 1

Introduction

This chapter presents the candidate’s past experience in the area of remote

experimentation and his motivations for the research & development work described in

this thesis. The innovative aspects are emphasized, and the structure and organization of

the whole thesis are presented.

2 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 1: Introduction 3

1.1. Background and motivation

The work presented in this thesis derives from the past experience acquired by the

candidate in the remote experimentation domain, and from the new technological trends

faced by the teaching and learning process in engineering education.

During the last 12 years, the candidate has been gaining particular skills in

instructional laboratories applied to engineering education through the supervision of

final degree projects as a teacher at the DEE/ISEP
1
, and by the development of some

laboratories for the conduction of real experiments through the Internet

[1][2][3][4][5][6][7]. In this domain, it must be emphasized the participation in the

European project PEARL
2
 in the period 2000-2003, whose key objective was to create

platforms for remotely accessing experiments. Working as a researcher of the

DEEC/FEUP
3
 (one of the participating institutions in the project) the candidate

designed and developed an Internet accessible workbench infrastructure supporting

experiments in three areas: microcontroller-based circuits, FPGA-based introductory

logic design, and test of IEEE1149.1/.4-compliant circuits. Additionally, as a

complement to the acquired knowledge in a Degree in Electrical Engineering concluded

at FEUP (1999), the candidate also concluded an MSc. degree. This was attended at that

same institution, in Electrical and Computer Engineering in the area of Industrial

Informatics (2003), whose thesis described the work developed during his participation

in the PEARL [8][9][10][11].

Therefore, by joining the candidate’s background and the current significant changes

in the teaching and learning processes, a motivation to the work presented in this thesis

emerged. This motivation must be understood in an education context that is facing

significant changes, namely by the use of new technological-enhanced tools and

resources that have been creating enormous challenges in schools, universities and in

the society in general. The amount of available information has been imposing

additional pressure on people, since they are now obliged to be constantly updated to

avoid cultural and social isolation from the surrounding society. Education has a big

influence over this trend and must encompass current technological changes, so it

should provide means to satisfy people requirements by creating new educational

resources and tools. This has been happening since the 80’s with the emergence of PCs

1 Department of Electrical Engineering at the School of Engineering of the Polytechnic Institute of

Porto (DEE/ISEP) (http://www.isep.ipp.pt/).
2 The project named Practical Experimentation by Accessible Remote Learning (PEARL) led by the

Institute of Educational Technology of the Open University (OU-UK) (http://www.open.ac.uk/iet)

was financed by the Information Society Technologies (IST) - FP5 - from 2000 to 2003. It included

a consortium with the industrial automation company named Zenon SA (Zenon-Greece)

(http://www.zenon.gr) and other universities, such as the University of Dundee (UD-Scotland)

(http://www.computing.dundee.ac.uk), the Trinity College Dublin (TCD-Ireland) (https://www.

tcd.ie), the Open University Worldwide (OUW-UK) (http://www.ouw.co.uk) and the University of

Porto (DEEC/FEUP-Portugal) (http://www.fe.up.pt).
3 Department of Electrical and Computer Engineering at the Faculty of Engineering of the University

of Porto (DEEC/FEUP) (http://www.fe.up.pt).

http://www.isep.ipp.pt/
http://www.open.ac.uk/iet/
http://www.zenon.gr-/
http://www.computing.dundee.ac.uk/
https://www.tcd.ie/
https://www.tcd.ie/
http://www.ouw.co.uk/
http://www.fe.up.pt/
http://www.fe.up.pt/

4 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

and interactive digital storage media (e.g. CDs) with multimedia contents. Since the

dawn of the digital era (mid 90’s), information circulates freely through the Internet and

everyone has access to it, by using accessing devices, such as PCs, smart phones, PDAs

and, more recently, tablets. This has been improving both the teaching and learning

processes with several developed educational tools. The use of technology as a

complement to traditional classrooms is now viewed as fundamental. While at the

beginning, educational tools only satisfied the requirements of traditional lectures by

providing access to static resources through the Internet, today its huge advances (more

availability, larger bandwidth, improved communication tools, etc.) have being

promoting the adoption of teaching and learning technologies in engineering courses,

namely to fulfill the requirements posed by laboratorial work, through the use of

instructional laboratories known as remote laboratories or weblabs.

Nowadays, weblabs are becoming a widely used resource for supporting the

laboratorial work in engineering courses, allowing students and teachers to interact with

real equipment from everywhere and at anytime without physically being present in a

traditional laboratory. This new type of instructional laboratories is an added value to

education, enabling to include more laboratorial work in engineering courses and giving

students the ability of performing and/or repeating experiments previously only

conducted in traditional laboratories. Two key aspects have been contributing to

increase the number of weblabs implemented at universities and schools, namely: i) the

widely adoption of the Internet in the society, and the technological evolution that

incentivized instruments used in laboratories to be factory-equipped with network-

access capabilities and; ii) the increasing number of students in some engineering

courses, requiring more laboratories for their practical training, which may pose

economical constraints for institutions. The use of weblabs contributes for cost savings

in engineering courses. Instead of using several workbenches, a single one is able to be

remotely shared by different students, promoting a flexible access to different types of

experiments. Expensive equipment and specific experiments may be easily shared by

different institutions, promoting an institutional collaboration and, therefore, a sharing

of knowledge in different areas. Cost savings, flexible access to real experiments and an

increasing collaboration among institutions, are just some of the advantages pointed to

weblabs that have been contributing to their variety and number, the large majority

found in engineering courses.

Nevertheless, the implementation of weblab infrastructures may also become

expensive depending on the costs of the adopted equipment. Typically, each weblab

infrastructure is developed following specific and distinct technical implementations,

with several hardware and software architectures that use different programming

languages to remotely access the instruments and modules (the weblab modules)

required to conduct the remote experiments. These aspects are impairing their

widespread adoption, while the difficulties of reusing and interfacing different weblab

modules, used in their infrastructures required for conducting the experiments, are

Chapter 1: Introduction 5

constraining the collaboration among institutions. To overcome these problems, some

authors have been proposing generic software and hardware architectures, but more

efforts and contributions are needed to promote a reduction of the development and

maintenance costs. Therefore, the presented work contributes to this endeavour by

proposing a reconfigurable and standard-based weblab infrastructure, which allows

creating, sharing and reusing instruments and other experiment-related modules (the

weblab modules) within the large engineering education community.

1.2. Innovative aspects

The innovations proposed and described in this thesis contribute for fulfilling the

current lack of reconfigurable and standard weblab infrastructures. For that purpose, a

weblab architecture based on the IEEE1451.0 Std. is proposed. Also, the adoption of a

low-cost infrastructure based on FPGA-based boards is considered for accommodating

the weblab modules required for conducting the target experiments.

The IEEE1451.0 Std., which generically describes the structure and the

functionalities of smart transducers and the way they can be network-interfaced, is

carefully analysed. A special attention is given to its reference model, which follows a

client-server architecture traditionally adopted by weblabs, and to the smart transducers

that comprise a set of features controllable through IEEE1451.0 commands. Taking into

consideration the described characteristics of the IEEE1451.0 Std. and the requirements

posed by weblabs, adaptations and extensions to its definitions are proposed. The

concept of smart transducer defined in the standard as a Transducer Channel (TC), is

extended. Transducers are thus seen as the weblab modules typically adopted by the

infrastructures for the conduction of the remote experiments. The main characteristics

and functionalities of the infrastructures and of the modules are now able to be specified

by data structures defined in the IEEE1451.0 Std. as TEDSs (Transducer Electronic

Data Sheets).

Taking into consideration the importance of spreading and sharing weblabs through

the educational community, new extensions are proposed to the IEEE1451.0 Std. These

focus on a new architecture supported by weblab infrastructures designed according to

the reference model of the IEEE1451.0 Std. To validate the relevance and the feasibility

of adopting the IEEE1451.0 Std. to develop reconfigurable weblabs, a prototype is

developed supported by a new suggested thin implementation. Innovative issues are

proposed, validated and verified during the development of the weblab, namely its

capability of being reconfigured with different weblab modules. This is a relevant

innovation, since current weblabs do not allow replacing and replicating the weblab

modules required to conduct a particular remote experiment. Traditionally, the remote

users can only select weblab modules available in the laboratory. The proposed solution

innovates by suggesting the use of a reconfigurable weblab infrastructure supported by

FPGA-based boards able to accommodate the weblab modules. These modules can be

shared and replicated, and they are manufacturer independent, since they are described

6 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

through standard Verilog HDL files. Moreover, aiming the standard access to the

weblab modules using the IEEE1451.0 Std., they are specified according to a particular

architecture that enables their interface to a generic IEEE1451.0-complaint module.

This module is entirely described in Verilog HDL, enabling its accommodation into any

type of FPGA. Through this innovative reconfiguration process, users will be able to

select different weblab modules to reconfigure and define the layout of the

infrastructure to conduct remote experiments.

1.3. Structure and organization

This thesis is structured according to the time-line sequence followed during the

research and development activities carried out in the work. Besides an introduction and

a conclusion, it is divided into six chapters with inter-related topics, as conceptualized

in figure 1.1.

Engineering education

Experimental work

Weblabs
standard & reconfigurable infrastructures

Chapter 2

Chapter 3

IEEE1451.0 Std.
Sugested architectures and extensions to the standard.

Chapter 4

standard

Weblab prototype
IEEE1451.0 Std. and FPGA-based architecture

Reconfigurable framework

Chapter 5

Chapter 6

Resources, tools, reconfiguration process

reconfigurable

simplified implementation with extensions

Validation & verification Chapter 7

requirements

Implemented
solution

(FPGAs)

Figure 1.1: Conceptual diagram with the thesis structure.

After this introduction, chapter 2 provides a generic overview of the role of weblabs

in engineering education. This type of instructional laboratory, used for the conduction

of experimental work activities, is contextualized in the broad field of remote

experimentation practice. Several actors and their relations are identified and described,

and some considerations about pedagogical and technical issues are discussed. After

presenting the most relevant and disseminated weblabs, problems and limitations

currently faced by their architectures and infrastructures are emphasized, namely the

lack of standardization in the access and design, and in the impossibility of performing

reconfiguration of different weblab modules.

Chapter 3 presents the rationale for designing standard and reconfigurable weblabs.

It describes some instrumentation standards typically adopted for developing their

architectures and presents some on-going initiatives for weblabs’ standardization. Based

on the limitations presented in chapter 2, the use of the IEEE1451.0 Std. and the

adoption of FPGAs for providing reconfiguration capabilities to the underlying weblab

infrastructures are proposed.

Considered as an interesting and promising solution for developing standard

weblabs, chapter 4 then describes the main features of IEEE1451.0 Std. Joining its

Chapter 1: Introduction 7

features to the requirements posed by weblabs, some extensions are suggested to the

standard to create IEEE1451.0-compliant weblab architectures.

Supported by a simplified implementation and extensions suggested for the

IEEE1451.0 Std., plus the use of FPGAs for developing reconfigurable weblab

infrastructures, chapter 5 describes an implemented prototype of an IEEE1451.0-

compliant FPGA-based reconfigurable weblab. It describes the overall architecture and

the underlying infrastructure that enables binding and remotely accessing the weblab

modules required for conducting remote experiments. Since binding these modules

requires the use of a predefined IEEE1451.0-compliant module, this is presented, as

well as the mechanisms for accessing the reconfigured modules. Functional aspects of a

software bundle developed to reconfigure the weblab infrastructure with the modules,

are also presented.

Chapter 6 describes all the involved resources and tools required to implement the

reconfigurable weblab. It details the structure and functionality of the IEEE1451.0-

compliant module, highlighting the underlying aspects that enable binding the weblab

modules. These modules are carefully described, in particular their layout, the required

interfaces and the way they must be designed so they can be compatible with the

IEEE1451.0-compliant module. This compatibility supports the access using

IEEE1451.0 commands. To close this chapter, the reconfiguration process and

implementation issues of the software bundle are detailed.

Supported by the requirements posed for the experimental work using weblabs,

chapter 7 describes the validation & verification process carried out by a set of

researchers on the proposed and implemented solution. It presents the adopted strategy,

the involved actors and the methodology applied during the process. The interaction

conducted by the researchers with the implemented weblab is described, and their

comments about it are presented and analysed.

Chapter 8 concludes this thesis, providing some comments about the implemented

weblab and its implications to experimental work in engineering education. It also

presents future work perspectives, finally ending with some concluding remarks.

8 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 2: Weblabs in engineering education 9

 Chapter 2

Weblabs in engineering education

This chapter starts by describing the impact that technology brought to engineering

education, namely to instructional laboratories that are typically adopted for the

conduction of experimental work activities in engineering courses. It then compares

different laboratory types, namely traditional, hybrid and remote laboratories, the latter

also named weblabs. Classified as the main resource of the Remote Experimentation

concept, weblabs are contextualized and detailed using the Actor-Network Theory. To

understand their relevance in engineering courses, pedagogical and technical issues are

then discussed, and some important and disseminated architectures are presented. This

chapter ends by highlighting some problems and constrains currently faced by weblabs’

architectures, which are still preventing their widespread adoption in engineering

education.

10 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 2: Weblabs in engineering education 11

2.1. The role of experimental work in engineering

education

Since the 80’s that the education landscape has been changing due to the technology

evolution. New tools and resources are now available to facilitate the students’ access to

knowledge, lowering barriers once difficult to overcome due to social and economical

restrictions. The advent of computers and in particular the Internet, are encouraging

students to have a proactive attitude for searching information, and forcing teachers to

adapt their courses to the new technological landscape. As illustrated in figure 2.1, the

traditional face-to-face instruction and the computer-mediated learning are being

complemented with internet-mediated learning that is enriching the teaching and

learning processes, namely by facilitating the remote access and the management of

educational resources and tools. This type of learning, known as E-learning, is

traditionally associated to the use of different concepts, some of them briefly described

in table 2.1. More recently, the widespread of mobile devices in education, promoted

the appearance of a concept known as Mobile learning (M-learning).

Face-to-face instruction
 - classroom teaching, laboratory experiments.

tim
e lin

e

Internet-mediated learning
- E-learning - remote access to multimedia resources, Learning

Management Systems (LMS) and Virtual Learning

Environments (VLE), Personal Learning Environments (PLE),

virtual tutors, collaborative tools for group work: synchronous

(chats, videoconference,...) and asynchronous (e-mail,

discussion forums, blogs, wikis, ...), etc.

- M-learning - e-learning supported by mobile acessing devices such as

mobile phones, smart phones, tablets, PDAs, etc.

Computer-mediated learning
- simulations, multimedia, interactive courseware, etc.

in
stru

ctio
n

learn
in

g

80's

Figure 2.1: Educational landscape since the 80’s.

Due to the diversity of resources and tools available in the internet, the traditional

educational contexts are becoming more personalized, supporting the students’ design

of their own educational environments so they can control and manage their learning

process. It is precisely this autonomy that is recommended for the engineering education

through the Problem Based Learning (PBL) theory [12]. According to this theory,

students should focus on solving specific problems proposed by teachers, by

researching and making decisions by their own, rather than having a passive attitude

towards receiving instruction. Past and current trends show that this theory should be

applied in engineering education [13][14][15], which requires understanding the

structure of an engineering course and how the technological resources can be adopted

to fulfill its learning objectives.

12 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table 2.1: Some concepts associated to E-learning.

Computer-Based

Learning (CBL),

Computer/Web-

Based Training

(CBT/WBT)

Refers to the use of computers and/or web services and tools as key

components for training and learning.

Computer-Based

Assessment (CBA) or

Computer-Based

Testing (CBT)

Refers to the use of computers for assessment purposes.

Virtual Learning

Environment (VLE)

Software systems designed to support online teaching and learning processes.

Other definitions are also available, some with the same meaning and others

focusing on a specific part of the learning environment (e.g. MLE, LMS,

LCMS, etc.).

Managed Learning

Environment (MLE)
Focus on the management of VLE systems.

Learning

Management System

(LMS)

A software application for the administration, documentation, tracking, and

reporting of training programs, classroom and online events, E-learning

programs, and training content.

Learning Content

Management System

(LCMS) or Content

Management System

(CMS)

A related technology to the LMS focused on the development, management

and publishing the content that will typically be delivered via an LMS.

Open Course Ware

(OCW)

An expression applied to course materials in a VLE created by universities

and shared freely with the world via the Internet.

Computer Supported

Cooperative Work

(CSCW)

A generic expression, which combines the understanding of the way people

work in groups with the enabling technologies of computer networking, and

associated hardware, software, services and techniques. The work is divided

in individual tasks.

Computer-

Supported

Collaborative

Learning (CSCL)

Refers to the adoption of innovative solutions to improve teaching and

learning processes with the help of modern information and communication

technologies, such as PCs and the Internet. People work together in the same

tasks.

Personal Learning

Environments (PLE)

Systems that help learners to take control of and to manage their own

learning.

Massive Open Online

Course (MOOC)

Is an online large-scale internet-mediated course. In addition to traditional
course materials, such as videos, readings, and problem sets, MOOCs provide

interactive user forums that help build a community for students/teachers.

As presented in figure 2.2, the structure of an engineering course comprehends two

important components: i) theoretical and ii) practical. The theoretical component

concerns the transmission of knowledge using the traditional pedagogical contents

supported by documents, images and animations, describing specific theories. The

practical component requires students to be actively involved in the manipulation of

variables and objects by doing experimental (or laboratory) work, researching, and

participating in group activities, so they can understand, build, and verify theoretical

concepts which, as reported by Feisel and Rosa in [16], are just some of the skills

students should acquire in an engineering course.

Both theoretical and practical components are fundamental in engineering courses,

since almost every theory concerns practical issues, and vice-versa. These practical

activities contribute for an autonomous learning, since students are able to compare the

Chapter 2: Weblabs in engineering education 13

results obtained, to the ones expected and described by the underlying theories. If those

results do not correspond to the expectations provided by theory, students are invited to

reformulate them. The relation between theoretical and practical components can be

viewed as a cycle that, if applied, will promote more consistence, autonomy and

responsibility in the learning process. Moreover, motivation increases, since students

have the possibility to interact with the described phenomena in a learning-by-doing

scenario.

Documents

Practical

Images

Animations

Theoretical

etc...
Exercises

Experimental
(laboratory) work

Research
Group

activities

etc...

Figure 2.2: Theoretical and practical components of an engineering course.

In engineering education each practical activity has differences that must be analyzed

in terms of their importance. While pen & paper exercise solving and/or simulations

provide simulated results returned from theoretical models, the experimental work gives

students the possibility to interact with real equipment to obtain real results

demonstrating particular phenomena in nature [17]. Besides the importance of working

with real results rather than simulated, since these are returned from mathematical

models’ representations of nature and not from the nature itself, research studies show

that students’ motivation increases when they interact with real equipment [18].

Reporting to the educational theorist Kolb [19], students have four different styles for

perceiving and processing new information: feeling and thinking (perception), and

watching and doing (processing). As indicated in figure 2.3, the analysis made in [20],

based on the preferred learning styles of 49 engineering students, indicates that doing

and thinking (typical of experimental work) are preferred to feeling and watching.

Moreover, the results obtained from a questionnaire made to those same students

indicated that the experimental work has the component that allows them to learn better,

rather than lectures, homework exercises or reading.

IV I

III II

Feeling

Thinking

D
o
in

g

W
at

ch
in

g

preferred learning styles for
enginnering students

51%

L
ec

tu
re

s

H
o
m

ew
o
rk

L
ab

 /
E

x
p

w
o
rk

R
ea

d
in

g

32%

15%

2%

survey results of how to learn
better

Figure 2.3: Preferred learning styles in engineering courses.

14 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Therefore, supported by this analysis and by the research described by Ma and

Nickerson in [21], experimental work in engineering education is classified as one of

the most important component, since students are able to acquire experimental skills

that are fundamental in a practice oriented field such as engineering. This has motivated

the analysis of how can experimental work be enhanced through technology, namely by

the use of different laboratory types.

2.2. Laboratory types for conducting experimental work

The proliferation of technical tools and services supported by the Internet allows

creating several laboratory types so students may conduct the experimental work

activities required in any engineering course. As illustrated in figure 2.4, it is possible to

classify laboratories according to the access (remote or local) and resource (real or

virtual) types:

 Traditional laboratories - represent the traditional hands-on laboratories, where

students are able to locally access real equipment binding it to an experiment

under test (the target experiment). Students must be physically in the laboratory

to conduct the experiment, and the data results may (or may not) be collected

through a computer.

 Remote laboratories or Weblabs - usually defined in literature using both terms,

these laboratory types imply the remote access to real experiments, using an

Internet connection. Students remotely interact with real equipment, like in

traditional laboratories, through a simple network-capable accessing device

(mobile or not). All actions should be carried out using an accessing device.

 Hybrid laboratories - these laboratories comprehend both kind of accesses and

resources. Considering a remote access, students may use a simple device to

access an experiment through the Internet where, during the interaction with the

equipment bound to the experiment, some parts can be real and others can be

simulated. If the access is local, the laboratory includes some real equipment

able to be locally controlled like in traditional laboratories, and some simulated

using a computer. These laboratories are still uncommon but they are important

to take into consideration in occasions when the equipment are expensive and/or

unavailable, and in situations where the experimental variables are impossible to

visualize (e.g. visualization of magnetic field lines [22][23]). By using these

hybrid laboratories, students may collect data using either their accessing

devices or the computer used to simulate specific equipment.

 Virtual laboratories - all the equipment are simulated using a computer.

Although this solution comprehends the simulation of an experimental work, the

interface provided to students must give them the sense that they are controlling

real equipment. The access type can be either local or remote, as students can

control a simulated laboratory by installing specific software on their devices or

Chapter 2: Weblabs in engineering education 15

they can access a virtual laboratory through the Internet. All data can be

collected using their accessing devices.

Virtual

labs

Traditional labs

Remote labs

(Weblabs)A
cc

es
s

ty
p

e

Resource type

Hybrid

labs

real
virtual

re
m

o
te

lo
ca

l

Figure 2.4: Laboratory types available for conducting experimental activities.

The choice for a specific laboratory depends on educational contexts, depending on

the institutions’ budget, courses’ requirements, and essentially the type of

students/teachers that will use it. The choice for the most adequate solution requires a

detailed analysis based in a set of parameters comprising intrinsic characteristics and

involved costs.

The intrinsic characteristics to consider in an engineering laboratory are:

 Availability - is the guarantee of readiness for correct laboratory services, i.e. the

experiments. A specific laboratory should be available when needed, if possible

24 hours per day, 7 days per week. Since typically there is a lack of

infrastructures and equipment to satisfy all students enrolled in a specific course,

it is usual to schedule accesses, so experiments can be shared through time slots.

 Reliability - the laboratory should perform and maintain its correct functions in

all circumstances (e.g. hostile or unexpected), so reliable and real data can be

retrieved from a specific experience to prove or reformulate theoretical concepts.

 Flexibility - the laboratory should be able to accommodate every kind of

experiments without changing the platform (software and/or hardware), and it

must be able to rewire connections in the experiments.

 Reusability/Interoperability - a specific laboratory (or experiment) should be

able to be used more than once, and the adopted equipment should be able to be

shared, eventually replicated, with other experiments, i.e. they must be capable

of being reused and interoperate without significant software/hardware changes.

 Motivation - the provided experiments must be well designed to motivate

students’ adoption. Setup and reconfigurability must be intuitive and easily

defined, while interactivity and realism should be high, so students can have real

time access to the equipment and to the data retrieved during the experimental

activity.

16 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

 Group activities - the ability of sharing experiences and ideas during

experimental work is fundamental to achieve the learning outcomes. Hence, it is

important to enable the conduction of experiments in groups, by allowing

student-student and student-teacher communications. At an institutional level,

sharing resources and equipment will improve the quality of the experimental

work, since each institution has its specific skills in different areas, which

guarantees well-designed experimental activities. The sense of isolation and

solitude, pointed as a major drawback in distance learning, must be overcome by

this interaction.

The costs associated to engineering laboratories can be divided in two groups:

infrastructural, and those involving students, teachers, developers, technicians and the

administrators (human actors):

 Infrastructural - if a local access is adopted, a laboratory experiment requires a

physical space to accommodate both human actors and the infrastructure. If the

remote access is adopted, an experiment does not require a large place for

accommodation, since human actors do not need to be in the laboratory place.

Moreover, an analysis of the available equipment versus the costs of each unit

together with the courses’ requirements, in terms of how many laboratory

experiments must be created, should be analyzed. If the equipment is expensive

and several experiments are required, probably the best solution is to create only

one experiment able to be shared by several students.

 Human actors - while the costs associated to developers are limited to the

development of the laboratory, the setup and the maintenance require at least

one technician and administrator staff paid by the institution to manage the

laboratory access and to provide additional tools required for the conduction of a

specific experiment. Although not directly related with the institution, if the

local access type is adopted rather than a remote access, students and teachers

may have associated dislocation costs.

Reporting to all these parameters, table 2.2 provides a comparison among the

laboratory types. Each parameter was classified with a mark from 0 (less favourable) to

5 (more favourable) according to self-experience of the author acquired during the last

years as a teacher, as a coordinator of several final degree projects, and as a researcher

with an active participation in two international projects (PEARL [9] and RexNet [24]).

The parameters were analyzed focusing on the use of software/hardware and on network

requirements to access a specific experiment. The particular case of motivation was

classified based on the adoption of technology and on the use of real or virtual

equipment, i.e. higher motivation if students are using technology and real equipment.

Adding up all lines, we may observe that virtual (remote) and weblabs have the highest

Chapter 2: Weblabs in engineering education 17

mark (32), and probably should be the preferred choices to conduct the experimental

work. However, to fulfill good learning outcomes, real results must be considered as the

most important parameter of analysis. Only with real data it will be possible to establish

truly comparisons with the expected theoretical results, and with the obtained by pen &

paper exercises and simulations that may have been conducted. Hence, supported by an

empiric evidence, it was decided to emphasize the importance of the reliability factor

multiplying it by 3, which brought weblabs and traditional laboratories to the top, with

40 and 36 points, respectively [25]. This conclusion is inline with several theories that

defend that experimental work should be provided by both solutions, placing weblabs as

a complement to traditional laboratories [26].

Table 2.2: A personal comparison among laboratory types.

Intrinsic characteristics Costs

S
u

m

W
e
ig

h
te

d
 S

u
m

A
v

ai
la

b
il

it
y

R
el

ia
b
il

it
y

F
le

x
ib

il
it

y

R
eu

sa
b
il

it
y
/

In
te

ro
p

er
ab

il
it

y

M
o

ti
v
at

io
n

G
ro

u
p

 a
ct

iv
it

ie
s

In
fr

as
tr

u
ct

u
re

s

/e
q

u
ip

m
en

t

H
u

m
an

 a
ct

o
rs

Traditional 2 5 3 3 4 5 2 2 26 36

Remote/Weblab 3 4 3 4 5 4 4 5 32 40

Hybrid (remote) 3 2 4 4 3 4 3 5 28 32

Hybrid (local) 4 3 4 4 3 4 3 2 27 33

Virtual (remote) 4 1 5 5 2 5 5 5 32 34

Virtual (local) 5 2 4 4 2 5 5 2 29 33

At this phase it is notorious that getting good learning outcomes in engineering

education requires well-designed courses, and the instructional design must be

supported by the use of technologies for providing the required theoretical and

experimental work activities. These experimental activities are essential, and they can

be provided by several laboratory types, namely by weblabs. Supported on these

considerations, it becomes important to understand the best conditions to apply weblabs

for the conduction of experimental work. The next section makes a contextual analysis

of weblabs in engineering education. This analysis is supported by a theory named

Actor-Network Theory (ANT), since it allows representing humans’ interactions with

inanimate objects, which is useful to understand the relevance and the relations of

weblabs with other actors within a wide concept known as Remote Experimentation

(RE).

2.3. Contextual analysis of weblabs

Weblabs can be seen as a resource of the RE concept that is classified as a sub-

domain of the traditional E-learning, since it extends the common features of Virtual

Learning Environments (VLEs) providing resources, tools and methodologies that allow

18 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

the conduction of real experiments through the Internet. Basically, by applying weblabs

in engineering education, a traditional (local) experiment becomes remotely accessible

comprising real equipment that, connected to the Internet, allow both students and

teachers to interact with it, like they do in a traditional laboratory.

Historically, weblabs followed two motivational lines: i) the technical, supported on

the control/monitor of weblab modules (instruments or dedicated modules), and/or

physical phenomena using computers connected to the Internet [27][28] and; ii) to

complement/replace experimental activities in traditional distance courses in

engineering areas [29][30]. By combining both aspects, weblabs brought many

potentialities (access to real experiments on a 24x7 basis; more flexibility, etc.) and

educational advantages [31][32], proved by their proliferation, namely in prestigious

schools like the Massachusetts Institute of Technology (MIT) with the iLab project
4
. It

also contributed for the appearance of many projects
5
, electronic repositories

6
, and

publications describing the state-of-the-art in this domain, namely [21], which includes

171 references comparing traditional laboratories with virtual and weblabs, [33], which

includes 50 references on reviewing the new paradigm of weblabs, and [34] that

describes the trends of weblabs in engineering education, providing 95 references.

There is extensive literature on this topic, namely books [35][36][37], special editions

of scientific journals with recognized value in the pedagogical and technical domains
7

[38], and some publications about infrastructural, pedagogical and institutional aspects

that are still open [39][40].

Therefore, it is fundamental to highlight the factors that influence weblabs’ adoption

in educational contexts. In [24] authors used a conceptual map to describe relationships

among some elements in RE, but they don’t use any specific theory sustaining the

presented relations. This description can be done using the ANT, which is commonly

applied for general socio-technical relations. Therefore, after an analysis of the ANT

principles, it became clear that the ideas presented are suitable for contextualizing and,

therefore, mapping the RE domain, since the model proposed could be of added value

for decision making on how to create, maintain and disseminate weblabs [41].

2.3.1 Fundamentals of the Actor-Network Theory

Mainly supported on Callon and Latour contributions [42][43][44], ANT stresses the

idea that human and non-human actors influence and are influenced by the specific

context where they dwell. It is a semiotic method, since it maps relations that are

simultaneously between things and between concepts. Elements usually belong to

several contexts that shape their attitudes and/or characteristics during their life-time.

These elements are named actors, becoming actants when they take an active role in the

whole context by influencing all other actors with beliefs and attitudes. As illustrated in

4 http://icampus.mit.edu/projects/ilabs/
5 http://elabs.fe.up.pt/, http://www.rexlab.net/
6 http://www.lila-project.org/ , http://www.lab2go.net/
7 http://www.ijee.ie/ , http://www.computer.org/portal/web/tlt/ , http://www.online-journals.org/i-joe/

http://icampus.mit.edu/projects/ilabs/
http://elabs.fe.up.pt/
http://www.rexlab.net/
http://www.lila-project.org/
http://www.lab2go.net/
http://www.ijee.ie/
http://www.computer.org/portal/web/tlt/
http://www.online-journals.org/i-joe/

Chapter 2: Weblabs in engineering education 19

figure 2.5, the heterogeneity of actors with established associations creates networks

that may belong to more than one context. A network is easily changed due to several

influences of external contexts with their own networks. If a network includes several

actors connected through extensive paths with a set of aligned interests, those

associations become facts. The stronger and more extensive associations are, the more

solid facts become. In ANT, those associations are known as black boxes and represent

situations with undoubted and solid dependences among actors usually difficult to

change (e.g. the dependency between theoretical and practical components in

engineering courses is strong and required, and there is no doubt about its relevance for

the learning outcomes). A network may integrate several facts that joined together lead

to successful networks since there is an alignment of interests, motivations, and desires

of each involved actor. Furthermore, an hierarchical approach can also be followed,

since a specific actor may integrate several other actors interconnected, depending on

the level of detail of the conducted analysis.

Actor-Network

Actor/Actant

Sub

Actor-Network

Fact

(black box)

Context

context

context

context

Actor-Network

Figure 2.5: Conceptual model of the Actor-Network Theory.

It is unusual that a specific network, composed of many actors influenced by several

contexts, keeps stable during long periods of time. Usually, networks are dynamic

structures facing frequent changes of interests and/or attitudes, as exemplified in RE by

the relation between users and technology. This is a general example, but it is evident

that there is a strong and unstable association between both, since recent trends show

that weblabs are constantly changing their architectures and infrastructures based on

technology evolutions essentially to: i) get users’ interest and motivation for its

adoption in a specific course and; ii) improve the technical and pedagogical reliability

of the provided experiments. Technology changes so rapidly that the development of a

weblab must provide specific tools and procedures to enable its easy reconfiguration

(e.g. changing a specific equipment should not affect the network of associations among

actors). Analyzing RE using ANT requires a classification of each involved actor. It is

fundamental to understand different interests, motivations and values for enrolling an

actor into a network, requiring an alignment of interests, even if they are only

20 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

temporary. Additionally, it is important to contextualize weblabs by mapping the RE as

a domain facing influences of different contexts.

2.3.2 Influencing contexts

RE must provide all mechanisms for remotely conducting experimental work

activities. Applying ANT to RE is a challenge that requires analyzing the involved

contexts that may influence its actors. As illustrated in figure 2.6, RE may be

represented as an actor-network mapped into the interception of two contexts (technical

and educational) surrounded by the social context.

The social context is wide and corresponds to the expectations of many involved

actors divided into several networks associated to one or more contexts. At least three

sub contexts have direct impact in the social context, namely: i) cultural: people in

different countries have different ways of thinking, acting and ruling their lives with

distinct values; ii) political: governmental decisions have priorities that align and

influence people acting and; iii) economical: ruling the production, distribution, and

consumption of goods and services, are related with budget availability and influence

cultural and political decisions. Hence, it is reasonable to say that every context must

take into consideration a society integrating people with distinct interests, motivations,

believes, past experiences, expectations, attitudes, etc. Understanding how they interact

within other contexts, namely the technical and the educational, is therefore

fundamental.

Social
(cultural/economical/political)

Technical Educational

Current trends

Actor-Network

(Remote Experimentation / Weblabs)

Figure 2.6: Situating RE as an actor-network.

The socio-technical relation has being debated in the last years and currently is

fundamental in several domains, since people’s lives depend on technology. This is

evident in health, work and leisure, and in almost all countries technology plays an

active role also in economics. At the same time, technology is constantly changing,

which impacts the whole behaviour of society. This is clear with the social networks

provided over the Internet (e.g. Facebook, Twitter, LinkedIn, etc.) which are changing

the way people communicate. In fact, several examples can be presented that feed the

association between these two contexts (social and technical), but the educational

context is paramount, since it is seen as the platform for social development and

evolution.

Chapter 2: Weblabs in engineering education 21

The whole society is ruled by what people learn and the learning outcomes tend to be

defined according to society requirements. The socio-educational relation is strong and,

in recent years, is being supported by technologies. The way teaching and learning

methodologies are applied in engineering education is changing from a face-to-face era,

where teachers lecturing, discussions and the conduction of practical work activities

were made inside a classroom and/or laboratory, to a digitally mediated era, where new

technologies are being applied to complement and, in some cases, replace the traditional

teaching and learning methodologies. While the face-to-face era corresponds to the

traditional socio-educational relation, the digitally mediated era corresponds to the

intersection among the three analyzed contexts, i.e. the social-educational-technical

relation. So, considering the current trends on technology evolution and the growing

adoption from society, namely by younger people, becomes reasonable to say that there

is a shifting in the educational context from the traditional in-classroom learning to an

emergent distance learning computer-mediated trend. This intersection of contexts

requires an analysis of each actor and their associations to understand RE and the

importance of weblabs as an educational resource for every engineering course.

2.3.3 Involved actors and associations

In the last subsection, RE was analysed according to the ANT principles, mapping

RE in the intersection of three main contexts: social, educational and technical. In this

subsection, the involved actors and their associations, represented in figure 2.7, are

specified and commented, so readers may understand the inherent complexity that

involves the adoption of weblabs as the main resource for engineering education.

1

students

2

teachers

3
developers

tools
adoption

ex
p
er

im
en

t
re

q
u
ir

em
en

ts

4technitians

experimentsetup
learning

 outcomes

5

institutions

(schools, faculties, etc.)

institutional administration

/ personal interests

(human actors)

4

lab./experim
ent

access

1

networks

2

GUIs

3

infrastructure
devices

Weblab infrastructure

remote
control/
monitor

I

6

7 pedagogical
contents

(technical actors)

8

team
work collaboration

theoretical
support

adoption / take advantage
remote
control/
monitor

II

accessing
devices

interaction

experiments

5

administrators

technical
 requirementsaccess

conditions

1

2

3

1

2

4

5
6

2

1

3
4

5

6

Figure 2.7: Weblabs in the RE actor-network.

Actors

As defined by ANT, an actor may be a human or a non-human element that influence

and are influenced while participating in a specific social context. Several actors may be

identified, from human that directly interact with a weblab, to non-human that involve

technologies used by a specific weblab architecture, and also concepts representing

22 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

activities that must be assured by a remote experiment. In table 2.3 five human actors

are identified, while table 2.4 identifies eight non-human actors, the first three

belonging to the weblab infrastructure.

Table 2.3: Human actors in Remote Experimentation.

1. Students

Conduct experiments remotely using a device connected to the Internet. The access to control/monitor a

weblab, including the equipments and the experiment(s), is made through a web interface. Real data is

retrieved from the weblab so students can analyze it as they would do in a traditional laboratory.

2. Teachers

Provide the theoretical and practical framework needed by students to conduct a remote experiment. They
can take the role of assistants/tutors providing pedagogical support during an experimental activity, as

they would do in a traditional laboratory.

3. Developers

Have the task of developing the entire weblab architecture so students, teachers and administrators may

control/monitor the experiment(s) and, in some cases, the entire weblab infrastructure (namely when it is

remotely reconfigurable). Although developers may be teachers, it depends on the domain of the

experiment, because developing a weblab requires programming and electrical skills teachers may not

have.

4. Technicians

Must ensure that the weblab infrastructure and the experiments are always ready to be accessed. The main

requirements these actors should be aware of are: i) the correct operation of the equipment, by

guaranteeing that they are always up and running (with network communications up) and; ii) the local

setup of experiments when required to conduct a specific experimental activity.

5. Administrators

They are the institutional managers that should be concerned with the supporting tools required to provide

remote experiments. They should be aware of issues like: i) ensure that collaborative tools are available;

ii) the institutional network infrastructure is always up and running; iii) guarantee the correct access
scheduling to the weblab, etc.

Table 2.4: Non-human actors in Remote Experimentation.

1. Networks

Represent the communication channels used in every remote experiment. Without this actor it will be

impossible to provide a remote access to a weblab infrastructure. Today there are several networks, but

the most common one is the Internet that may be wired or wireless, since it provides high data rates

and reliable connections.

2. GUIs - Graphical User Interfaces -

Are interfaces with graphical elements to control/monitor weblabs. They are strongly dependent on

technology, since they depend on software development tools like LabVIEW, Java, HTML, etc. [45].

3. Infrastructure devices

Represent the set of devices used by the weblab infrastructure. In the electrical domain they usually

include several weblab modules (e.g. Oscilloscopes, Multimeters, and other dedicated modules) that
allow to control/monitor experiments. Typically they are inter-connected by instrumentation buses

controlled through a PC, acting as an instrumentation server, or independently, using integrated

Ethernet interfaces, presently common in several instruments. In this last case, the instruments already

have GUIs that enable their control/monitor8.

4. Accessing devices

The most common accessing device is the PC, although others may be adopted for accessing the

remote weblab infrastructure. The PCs processing capabilities, which enable the use of several useful

services and tools for remotely support experimental activities, makes them the most common choice.

As indicated a few years ago [46][47], current trends show that mobile devices, such as smart phones,

tablets and PDAs, are now being used as complementary choices to the traditional PCs, justified by

some recent developments [48][49].

8 Technical issues of weblab infrastructures are presented in sections 2.4.3 and 2.4.4.

Chapter 2: Weblabs in engineering education 23

5. Institutions

Institutions can be schools, faculties or others that provide all technical, human and physical resources

to develop, maintain and accommodate weblabs.

6. Experiments

Represent the remotely accessible target experiments used in engineering courses for the execution of

experimental activities.

7. Pedagogical contents

Represent the theoretical support required by every experimental activity. They usually comprise

multimedia resources (simulations, animations, etc.) and/or simple documents.

8. Teamwork

Represents the collaborative and cooperative activities that must be guaranteed in any educational

context [50]. It is the result of interactions between student-student and student-teacher that allow

exchanging experiences and knowledge for improving the teaching and learning processes.

Associations

Every actor is associated with one or more actors in the actor-network. Those

associations are constantly reshaped based on interests and needs of each involved

actor, which may be strong or weak, and hopefully should never break. Together, they

represent complex structures that require detailed analysis to understand what are the

needs and interests of each actor, and to predict future directions (or associations)

among them, which may expand or shrink the RE actor-network. This reshaping process

must be carefully managed since it creates destabilization. However, in some situations

it means innovation, but this is difficult to predict since it is usually associated with

previously unforeseen issues.

In spite of the involved complexity, the associations among actors provide a

suggestion for a RE actor-network, and therefore, for contextualizing weblabs. Some

actors were joined as sub actor-networks (technical and human) and some associations

were established between those sub-networks and simple actors (e.g. pedagogical

contents were associated with both sub actor-networks and with the experiment actor

using the association named theoretical support). A special attention should be paid to

the weblab infrastructure, which involves associations among some actors within the

RE actor-network, as already referred.

Each association will now be commented according to three tables. Table 2.5

describes the associations among human actors, table 2.6 the associations among

technical actors, and table 2.7 the associations between technical and human actors.

Table 2.5: Associations among human actors in the RE actor-network.

1. Students - Teachers: Learning outcomes

Teachers define the learning outcomes of a specific experiment, shaping students’ interests and

motivation. At the same time, the definition of the learning outcomes are not limited to subjects but

also based on previous students’ backgrounds. The dependence of this association can be more or less

strong depending on the teachers’ ability to capture students’ interests on conducting a specific remote

experiment.

24 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

2. Students - Developers: Tools adoption

When a specific experiment is provided, students are the target. The developer must take into

consideration those targets, providing the best tools, so students feel comfortable interacting with the

experiments. Adopting technological resources already known, is an approach that captures students’

interests. A developer may also innovate, although a previous analysis should be made for evaluating if

new solutions will be well accepted by students.

3. Teachers - Developers: Experiment requirements

This association is essentially made during the weblab development phases. Developers should align

their interests based on teachers’ requests, since the requirements for an experiment are defined by

teachers. However, not all the requirements posed by teachers may be satisfied, because developing a

weblab is strongly mediated by technology, which may pose constraints.

4. Teachers - Technicians: Experiment setup

Connecting a specific module into the weblab may be defined by technicians. In a specific experiment,

the teacher may want to connect different modules or setup different experiments. If the weblab does

not allow remotely control those aspects through a GUI, the technician should do it directly in the

weblab infrastructure to satisfy teachers’ requirements.

5. Technicians - Administrators - Developers: Technical requirements

Developers define how to implement (or not) some features in a weblab infrastructure, e.g. some

weblabs may be remotely reconfigurable which pose, as already referred, distinct technical
requirements. In this situation, developers must define the appropriated GUI. Technicians will use

developers’ definitions for setting up locally and/or remotely the weblab infrastructure and/or

experiments. Aspects concerning the adoption of collaborative tools and scheduling techniques must

also be defined by developers, based on the administrators’ indications.

6. Students - Administrators: Access conditions

If the weblab does not implement scheduling techniques, concurrent accesses to the same experiment

will create problems, especially in experiments controlled/monitored in a real-time mode, i.e. remote

actions retrieve real-time results. In this situation, and supposing that different students may want to

access an experiment at the same time, the administrator should control the accesses without teacher’s

guidance. For batch mode experiments, i.e. the remote actions go into a queue before retrieving results,

some administrative support may also be required, but only if the number of accesses overloads the

servers capacity of the weblab.

Table 2.6: Associations among technical actors in the RE actor-network.

1. Infrastructure devices - GUIs - Networks: Remote control/monitor I

To allow the remote control/monitor of a specific device two issues are required: i) they must be

connected to the Internet/Intranet and; ii) some GUIs must be available. While specific and old

equipment require technical developments to provide their remote access, recent equipment already

bring network connections with GUIs, facilitating, therefore, the remote access to the target

experiment. At the beginning, the equipment (instruments) were attached to an instrumentation server

using dedicated instrumentation buses (e.g. the General Purpose Interface Bus (GPIB)9, Peripheral
Component Interconnect (PCI)10, PCI eXtensions for Instrumentation (PXI)11, etc.) requiring the

development of specific GUIs. Currently, other options are available, namely the adoption of a

standard solution named LAN eXtensions for Instrumentation (LXI)12 [51]. This solution is already

integrated in many instruments, bringing Ethernet interfaces and GUIs that allow

controlling/monitoring the weblab through the Internet, without technical developments. This way, this

association is becoming simpler and may tend to become a fact in ANT terminology.

9 http://standards.ieee.org/findstds/standard/488.2-1992.html
10 http://www.pcisig.com/specifications/
11 http://www.pxisa.org/
12 http://www.lxistandard.org/

http://standards.ieee.org/findstds/standard/488.2-1992.html
http://www.pcisig.com/specifications/
http://www.pxisa.org/
http://www.lxistandard.org/

Chapter 2: Weblabs in engineering education 25

2. Accessing devices - GUIs - Networks: Remote control/monitor II

This association emphasizes the importance of the adopted devices for accessing a weblab. PCs are

already common choices, since they have high processing capabilities, which allow the inclusion of

several and recent network interfaces together with large and advanced GUIs for conducting remote

experiments. However, recent developments are placing new and powerful portable accessing devices

in the market (e.g. smart-phones, tablets and PDAs with tactile displays and Wi-Fi network

associations) that also satisfy weblabs accessing requirements.

Table 2.7: Associations between technical and human actors in the RE actor-network.

1. Institutions - Human actors: Institutional administration / personal interests

Human actors are strongly connected with the institution where they belong to. Political and

economical decisions made by a specific institution affect the interests of those actors, while

requirements posed by them will also influence some of the decisions made by an institution. Several

examples may be pointed out, but the most evident one is the influence that institutions have towards

teachers and vice-versa. Providing an experimental work activity using a remote experiment is strongly

related with teachers’ decisions but should also be supported by the institution where they belong to.

Adopting a remote experiment is usually a more cost-effective solution and is an opportunity for

collaborating with other institutions by sharing experiments and, thus, knowledge.

2. Institutions - Technical actors: Adoption / take advantage

Technical actors satisfy institutional needs by providing weblabs. Gathering the infrastructure devices

available in the institution and connecting them to a network, allow the development of a weblab

providing their remote access through GUIs. In this association it is also important to emphasize the
possibility of reusing deprecated equipment for developing a weblab infrastructure, which may reduce

institutional costs.

3. Experiment - Technical/Human actors: Interaction

The development of a specific experiment depends on technological resources and users’ requirements.

Currently, technology is facing many improvements allowing the development of remote experiments

with almost the same features provided by traditional laboratories, such as control/monitor equipments,

interaction among students and students-teachers using communication tools, etc. Technology has a

strong impact over the weblab infrastructure, but RE may dictate and contribute for some changes in

technology, as exemplified by new instruments equipped with Ethernet interfaces (e.g. LXI).

Therefore, this association is fundamental to be constantly analysed so better experiments can be

delivered using new and more recent instruments.

4. Pedagogical contents - Experiments - Technical /Human actors: Theoretical support

Remote experiments require theoretical support provided by pedagogical contents. Disseminating those

contents may benefit from current technologies, namely by using VLEs, since these allow students to

access multimedia resources through their accessing devices. This way, the quality of the experimental

work will improve, since students will have access to better contents (animations, simulations, images,
etc.) and teachers will have their tasks simplified, since they can deliver and update more easily those

contents, publishing them on the web.

5. Teamwork - Students / Teachers - Technical actors: Collaboration

This association emphasizes the importance of communication and collaboration among teachers and

students during the conduction of an experimental activity using technological resources. The intention

is to provide the same conditions available in a traditional laboratory when different students and

teachers share ideas and opinions to solve a specific experimental activity. Adopting communication

tools, enable students and teachers to communicate like they do in a traditional laboratory, even if they

are geographically dispersed

26 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

6. Accessing devices - Human actors: Lab/experiment access

This association is strong in the meaning that without it, RE does not make sense, but simultaneously it

is very unstable since devices’ features are changing constantly. At the beginning, accessing a weblab

was made using PCs. However, technology evolution is promoting the adoption of mobile devices (e.g.

smart-phones, tablets and PDAs) that may complement or replace the common PC in experiments that

do not need many software tools to support their conduction. This is a tendency, since those devices

are improving their processing capabilities with good GUIs bringing several interface connections to

the Internet. Gathering all these aspects, with the mobility they offer, make them an interesting solution

for accessing weblabs. The relation between each human actor and the accessing devices has different

implications, always depending on the experiment and the adopted tools, namely the communication

tools. Every human actor interacts differently with the weblab. Students control/monitor the

experiments gathering values for latter analysis, while teachers, technicians and administrators usually

make some definitions in a specific experiment and in the weblab. Developers usually don’t use a
device to access the weblab infrastructure since their task ends after the development phase. Besides

the typical access to the weblab, the adoption of a particular device should also concern users with

visual and audio impairments. In this situation, the adoption of a specific device must be well analysed

since those users need large visual displays and specific software tools.

By identifying the actors and their associations, it is possible to contextualize

weblabs for the conduction of experimental activities in every engineering course. The

next section discusses the pedagogical and technical issues of weblabs, and presents

some relevant architectures adopted for their development.

2.4. Pedagogical and technical considerations on weblabs

Remote experiments are accessible through simple 2D interfaces, and more recently,

through 3D interfaces [52], since they provide an immersive environment where

students can interact with the entire laboratory, approaching remote to traditional

laboratory environments and increasing students’ interest and motivation for the

experimental work. This is proved by the increasing number of weblabs implemented at

universities and schools [33][35][36] that give an added value to courses that usually

only provide traditional laboratories, and to others courses that, due to a lack of

resources (economical and/or technical), do not provide any experimental work. This

will facilitate changing the curriculum courses, giving students, in spite of their social

and economical conditions, access to real experiments and equipment, some expensive

and others unavailable. By using weblabs there are no time constraints, since students

become more autonomous for conducting and repeating experiments at their own pace.

Additionally, they promote collaboration and enable more “learn-by-doing”, increasing

students’ motivation [18].

This way, it is important to consider both pedagogical and technical issues when

adopting weblabs in a specific course. While pedagogical issues are related with the

requirements that a weblab should meet to provide all the facilities to attain good

teaching and learning processes, technical issues concern the way those requirements

should be implemented. As illustrated by figure 2.8, next subsections analyse: i) the

pedagogical issues, relating experimental learning goals and the main pedagogical goals

with weblabs and; ii) the technical issues, presenting the typical weblab architecture and

the technologies involved in its development.

Chapter 2: Weblabs in engineering education 27

technicalpedagogical

Experimental

learning goals
ArchitectureMain goals Technologies

Figure 2.8: Pedagogical/technical issues for adopting weblabs in engineering education.

2.4.1 Meeting experimental learning goals with weblabs

The development of a laboratory requires a previous analysis of its learning

objectives, i.e. what are the goals of a laboratory experience. In this domain, the

Accreditation Board for Engineering and Technology (ABET)
13

 with the support of the

Alfred P. Sloan Foundation
14

 organized in January 2002 a colloquium that gathered

some of the best experts in engineering education, particularly in regard to the

experimental work. In this colloquy, a set of 13 objectives was established addressing

the role of the laboratory in engineering education using new technologies (like PCs,

Internet, etc.) [16]. In table 2.8 those objectives are presented and some comments are

added, concerning its application using weblabs.

Table 2.8: Experimental learning goals with weblabs.

1. Instrumentation: Apply appropriate sensors, instrumentation, and/or software tools to make

measurements of physical quantities

For acquiring specific skills in a particular domain, students must understand how to solve problems

following the “learning-by-doing” approach. Besides understanding how to collect data from a specific
experiment, they should also choose the appropriated instruments and transducers. In a remote

experimental context this is achieved through an interface providing the access to the several

equipments required for conducting the experimental activities. Moreover, data acquired from the

experiment is usually analyzed by software tools. In some situations, the laboratory should provide

only the data, and leave students free to choose the most appropriated software tool for data analysis.

2. Models: Identify the strengths and limitations of theoretical models as predictors of real world

behaviours. This may include evaluating whether a theory adequately describes a physical event and

establishing or validating a relationship between measured data and underlying physical principles.

Students must relate theoretical models learnt, either in traditional classroom or by their own research,

and compare them with real experimental results. If results obtained in the experiment are the same as

indicated by the theoretical models, it means that the models are in accordance with the reality. This is

accomplished by all remote experiments since the returned results are real as in traditional laboratories.

Traditionally, in engineering education students simulate their models through software tools, but latter
they should compare their simulated results with real results for validation purposes. Weblabs have an

important mission in this aspect, since they facilitate the accomplishment of this process giving more

flexibility and motivation for students to access a real laboratory without the need of using a traditional

one.

3. Experiment: Devise an experimental approach, specify appropriate equipment and procedures,

implement these procedures, and interpret the resulting data to characterize an engineering

material, component, or system.

Setup and select the instruments and the procedures for a specific experiment are crucial for students’

learning. There are some weblabs that already allow students to create the connections between the

instruments and the target experiment as they do in a traditional laboratory (e.g. [53]). This is much in

accordance with the Instrumentation objective, but focus on the instruments and procedures.

13 http://www.abet.org/
14 http://www.sloan.org/

http://www.abet.org/
http://www.sloan.org/

28 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

4. Data Analysis: Demonstrate the ability to collect, analyze, and interpret data, and to form and

support conclusions. Make order of magnitude judgments, and know measurement unit systems and

conversions.

Reporting results acquired from experimental work is fundamental. VLEs provide many tools to

accomplish this objective and currently there are some remote experiments already integrated into

these environments, like the presented in [54] that uses the Moodle platform. Moreover, since weblabs

are supported by technology (e.g. weblab servers and PCs) they are able to easily collect and provide

data for students’ analysis, so they can support and report conclusions.

5. Design: Design, build, or assemble a part, product, or system, including using specific

methodologies, equipment, or materials; meeting client requirements; developing system

specifications from requirements; and testing and debugging a prototype, system, or process using

appropriate tools to satisfy requirements.

Instrumentation and experimental objectives fall into this design objective. Setup a remote experiment,

by selecting the most appropriate equipment and interconnecting it into the experiment itself, fulfils

this objective.

6. Learn from Failure: Recognize unsuccessful outcomes due to faulty equipment, parts, code,

construction, process, or design, and then re-engineer effective solutions.

The weblab should not automatically correct mistakes made by students. It must provide some

feedback of the mistake and, eventually, provide some clue on how to solve it. Two situations are

possible: i) in the setup procedure students may define wrong connections and/or select inappropriate

equipment for conducting a specific experiment, or; ii) the results obtained can include errors. Both

situations should not be automatically corrected by the weblab but only detected to avoid damaging the

infrastructure. If students make a mistake, they must feel that something is wrong and they must

research on how to correct the mistake. This is inline with the PBL theory [12] where students must

research to solve a specific problem with autonomy, so that they can acquire skills and knowledge to

handle future unforeseen situations. In some cases, depending on the course’s objectives, the weblab

interface may report a mistake by presenting a pop-up window. For instance, the weblab created by the

University of South Australia (NetLab) implements a circuit builder interface that pops-up a window
when mistakes made by students are detected [53].

7. Creativity: Demonstrate appropriate levels of independent thought, creativity, and capability in

real-world problem solving.

Decide on how to prove a specific theoretical subject by specifying an experiment (selecting the

equipment and the connections) already demonstrate creativity. Supposing students want to measure an

analog signal, they can select an Oscilloscope or a Multimeter. Although each instrument has different

characteristics, the student must select which is the most appropriated one to solve that specific

problem. Besides applying to their creativity and independence for solving the problem, students also

meet instrumentation, experiment and design objectives.

8. Psychomotor: Demonstrate competence in selection, modification, and operation of appropriate

engineering tools and resources.

Deals with hands-on skills and can be achieved through manual manipulation. This is impossible using

weblabs since students control real experiments using a device (e.g. PC). However, weblabs can

provide the remote control of a manipulator to operate an experiment, like in a traditional laboratory. A

well succeeded example is the VISIR project created by the Blekinge Institute of Technology presented

in next subsection 2.5.3. Implemented in some universities like the University of Deusto, this weblab

provides students the ability of connecting electronic components in a virtual breadboard [55], which,

in part, fulfils psychomotor requirements.

9. Safety: Recognize health, safety, and environmental issues related to technological processes and

activities, and deal with them responsibly

A weblab provides safety, since students are not physically near the infrastructure. This is especially

relevant when dangerous experiments are available (e.g. experiments with radioactive elements). That

same security should be guaranteed for the infrastructure, by avoiding specific erroneous procedures in

the laboratory. Supposing a student established wrong connections between the equipment and the

experiment, the laboratory should not make those connections in the infrastructure because it can be
damaged. As described in the Learning from Failure objective, it should only provide some feedback,

indicating to students that they made an error.

Chapter 2: Weblabs in engineering education 29

10. Communication: Communicate effectively about laboratory work with a specific audience, both

orally and in writing, at levels ranging from executive summaries to comprehensive technical

reports.

Communication is fundamental, not only to solve specific experimental activities but also to share

knowledge among users. The use of synchronous and asynchronous communication tools are good

solutions to integrate into a weblab interface. Currently, some weblabs integrate those tools in the same

interface used to control/monitor the remote experiment [53], and others adopt an independent

solution, giving students the option to select the preferred communication tool [56].

11. Teamwork: Work effectively in teams, including structure individual and joint accountability;

assign roles, responsibilities, and tasks; monitor progress; meet deadlines; and integrate individual

contributions into a final deliverable.

The use of technology to satisfy teamwork requirements is achieved through the communication tools

referred in the previous Communication objective. Using those communication tools, students may

divide work in individual sub-tasks (named cooperative work and related to the CSCW definition), or

work together in the same task (named collaborative work and related with CSCL definition) [57],
even if they are geographically dispersed. Moreover, the use of PCs connected to the Internet facilitates

monitoring the progress and scheduling tasks more easily than in traditional laboratories, since a

remote experiment is traditionally supported by VLEs that already integrate administrative and

learning management tools.

12. Ethics in the Lab: Behave with highest ethical standards, including reporting information

objectively and interacting with integrity.

This is an objective that does not depend on the experiment, but essentially depends on the students’

and teachers’ behaviour. However, since weblabs traditionally use weblab servers to manage the

accesses to the experiments, they can also use log files to control all students’ actions. Therefore,

students can not hide that they really interacted with the laboratory, the assessments can be controlled,

and the teamwork can also be managed. This tight control may contribute to promote ethics during the

conduction of a remote experiment.

13. Sensory Awareness: Use the human senses to gather information and to make sound

engineering judgments in formulating conclusions about real-world problems.

Sensory awareness is partially achieved, since weblabs provide resources and tools to interact with real
equipment, but students are not able to touch in the experiment and to feel possible results obtained

from an experimental activity (e.g. the smell of a burned resistor or transistor is not detected like in a

traditional laboratory). However, students are still able to judge the results and to formulate

conclusions like in a traditional laboratory, but always mediated by technology.

2.4.2 Mapping pedagogical goals against weblabs’ capabilities

Supported on the objectives described in the previous subsection and in taxonomies

of laboratory work [58], in 2006 Ma and Nickerson reviewed 37 papers from the

literature on remote laboratories [21]. They concentrated their analysis on four

principles said to be required to address the pedagogical goals of a laboratory, namely:

 Conceptual understanding - activities should help the students’ understanding,

the problems solving and the illustration of concepts and principles;

 Design skills - students should learn how to design, construct and research;

 Social skills - students must run experimental activities not only individually but

also in groups;

 Professional skills - technical skills and practical knowledge should be provided.

30 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

As illustrated in figure 2.9, the analysis showed that most of the papers discuss the

conceptual understanding (19) and professional skills (13), rather than social skills (4)

and design skills (1).

0 5 10 15 20

Design skills

Social skills

Conceptual understanding

Professional skills

1

4

19

13

Figure 2.9: Division of a set of papers according to discussed weblabs pedagogical goals.

These results show some problems still faced by weblabs that are not contributing to

their wide spreading in education, despite they are usually considered as a good

complement for traditional laboratories [59]. Thus, supported on this analysis and on the

details provided for the 13 learning objectives for the experimental work, three main

requirements should be addressed by a weblab to promote good teaching and learning

experiences:

 Requirement 1: enable the control and monitor of all the equipment in the same

way as in a traditional laboratory (controlling all types of modules, enabling the

setup of experiments, providing feedback errors if any mistake is made, etc.);

 Requirement 2: provide the sense of realism so students can be motivated for

conducting experiments (e.g. providing interfaces very similar to those available

in a traditional laboratory, using feedback images of the laboratory, etc.);

 Requirement 3: integrate collaborative tools so students can conduct

experiments in groups, and enable student-teacher communications to clarify

doubts that may appear during a specific experiment.

To achieve the enumerated requirements it is necessary to develop the weblab

infrastructure and its architecture so that human actors, in particular the students, may

remotely conduct real experiments. While requirement 1 can be easily implemented

using the Internet technologies that allow remotely accessing any type of equipment,

and therefore control and monitor the target experiments typically provided by

traditional laboratories, requirements 2 and 3 require some attention to the pedagogical

aspects of engineering courses, which are related to the conditions students are used to

face in an experimental activity. The ability of remotely accessing the equipment and

the experiments should be complemented by an educational environment providing, if

possible and depending on the pedagogical goals of a specific course, the same

Chapter 2: Weblabs in engineering education 31

conditions encountered in a traditional laboratory. Students should easily realize that

they are interacting with real equipment rather then simulated, and they should be able

to conduct the experimental activities in groups. Therefore, to fulfill all these

requirements, technical considerations should be evaluated, namely by defining a

weblab architecture and selecting the most appropriated technologies for its

implementation.

2.4.3 Traditional weblab architecture

Traditionally a weblab follows a client-server architecture in order to provide remote

access to real equipments using a simple web browser or a dedicated application. A

coarse model of a weblab architecture with the infrastructure plus the involved actors in

a typical remote experiment is illustrated in figure 2.10. This architecture is divided in

three parts: i) users, that are able to access the remote experiments namely, the students,

the teachers and the administrators; ii) a weblab server and; iii) the entire weblab

infrastructure, commonly integrating an instrumentation server bound to a set of weblab

modules (e.g. instruments) or mechanical devices, both connected to the target

experiment.

Users are able to remotely access the experiments using software applications

running in their accessing devices. The interfaces can be either installed in those devices

(thick-client approach) or accessed using a web browser without previous installation

(thin-client approach). This last approach is becoming more common, due to the recent

advances on the Internet (e.g. high bandwidth), improved GUIs, more powerful

browsers, and because it is more flexible than the first approach, since an upgrade to the

interface does not require a new installation in the client side.

Internet

Weblab server

Instrumentation bus

Instruments &

Modules

(I&M)

Instruments &

Modules

(I&M)

Weblab

Modules
(e.g. Instruments)

Robots/
mechanical

devices

Target experiment

(experiment under test)

Instrumentation
 server

Students

Instrumentation server

connects weblab modules,

webcams, target experiments

Work

groups

Weblab server

pedagogical contents and administrative services

(e.g. booking and security access systems, etc.)

webcam

Accessing devices

PC, smart phone, tablet,

mobile phone, etc.

Database

Weblab infrastructure

LAN
WAN

Administrators/

/Teachers

Figure 2.10: A coarse model of a typical weblab architecture.

By using one or both types of clients’ approaches, typically users use an Internet

connection to directly access the weblab server, and this accesses the instrumentation

32 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

server through a LAN/WAN. Despite in some implementations these two logical

servers can be implemented physically by a single machine, traditionally each of them

has their own specific role in the weblab solution, namely:

 Weblab server - supports all the pedagogical contents required for a specific

course (documents, animations, simulations, assessment tools, etc.) and

administrates users’ accesses to the laboratory, like authentication. Typically this

is implemented using VLEs that use a database with all material and users’

registrations.

 Instrumentation server - controls a set of devices: weblab modules, webcams

and the experiments. Typically those devices are bound to the instrumentation

server using dedicated buses with high data rates and trusty data transmissions.

Although pedagogical aspects suggest that remote experiments should be controlled

in the same way as in the traditional laboratories, i.e. with a real-time control mode, if

reliable results are the main concern, batch control mode could also be applied. This last

solution means that the interaction between users and the experiments is made

according to queued requests, typically using a First-In First-Out (FIFO) approach for

identical resources required. These two solutions have different technical implications.

If synchronous control (real-time mode) is adopted, a booking system is required, so

users can reserve time-slots to get full control over the remote experiment.

Alternatively, if asynchronous control (batch mode) is applied, the weblab server must

implement a queuing system. These types of control are traditionally managed in the

instrumentation server running dedicated software applications to schedule the access to

the shared environment.

To address all these issues in a weblab architecture, there are many technologies that

can be adopted. Those include hardware devices, that usually require computers binding

the equipment through dedicated buses, and software applications used to control each

of those devices, and therefore the target experiments.

2.4.4 Involved technologies for implementing weblabs

Implementing a weblab architecture requires the selection of hardware and software

technologies. Typically the adopted hardware involves the use of computers acting as

weblab or instrumentation servers, this last binding the equipment through

instrumentation buses. The control of that equipment requires the use of server-side

scripting languages (e.g. PHP
15

, ASP
16

, JSP
17

, etc.) supported by HTTP web servers

(e.g. Apache
18

), and the GUIs are commonly developed using software

15 http://php.net/
16 http://www.asp.net/
17 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
18 http://httpd.apache.org/

http://php.net/
http://www.asp.net/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://httpd.apache.org/

Chapter 2: Weblabs in engineering education 33

technologies/frameworks (e.g. applets in Java
19

, Adobe Flash
20

, AJAX
21

, HTML
22

,

ActiveX
23

, or others). Nevertheless, it is very common the adoption of the LabVIEW

software from National Instruments (NI)
24

, both in the client and server sides, since it

facilitates the developments and provides attractive and user friendly GUIs. Moreover,

NI has many instruments able of being controlled using the LabVIEW Application

Program Interfaces (APIs), which simplifies all the development process and

incentivizes teachers without specific technical skills to adopt weblabs.

Traditionally the equipment adopted can be connected to the instrumentation server

using different types of buses such as GPIB
25

, PCI
26

, VXI
27

 and PXI
28

. More recently,

the LXI (LAN eXtensions for Instrumentation)
29

 is considered one of the best solutions,

since it allows Ethernet-based instruments to communicate, operate and function,

without requiring the use of the instrumentation server. Those instruments, or other type

of equipment, are bound to the target experiment, traditionally monitored using a

webcam connected to the instrumentation server using the Universal Serial Bus (USB)
30

or an Ethernet connection. This last solution is more common today, due to the

appearance of webcams with built-in HTTP web servers.

For teamwork activities, defined as a requirement for weblabs’ adoption in any

engineering course, collaborative tools are adopted, such as chats and videoconference

applications. Some of them able to integrate in GUIs (e.g. using Adobe Media Server

products
31

), and others used as standalone applications (e.g. Skype
32

).

There are many software technologies that can be adopted to implement a weblab

architecture. An extensive comparison about those technologies is presented in [45],[60]

and [61]. The following section presents some of the most disseminated weblab

architectures traditionally adopted in electrical engineering courses, all of them adopting

some of those technologies.

2.5. Weblab architectures: a brief overview

This section presents three of the most representative and disseminated weblabs’

projects, namely the MIT iLabs - USA, the NetLab - Australia, and the VISIR project -

Sweden. The choice of these projects was justified by their distinct technical

19 http://www.java.com/en/
20 http://labs.adobe.com/technologies/flash/
21 http://www.w3schools.com/ajax/
22 http://www.w3.org/html/
23 http://support.microsoft.com/kb/154544/
24 http://www.ni.com/labview/
25 http://standards.ieee.org/findstds/standard/488.2-1992.html/
26 http://www.pcisig.com/specifications/
27 http://www.ivifoundation.org/VXIPlug_Play/
28 http://www.pxisa.org/
29 http://www.lxistandard.org/
30 http://www.usb.org/
31 http://www.adobe.com/products/adobe-media-server-family.html
32 http://www.skype.com/en/

http://www.java.com/en/
http://labs.adobe.com/technologies/flash/
http://www.w3schools.com/ajax/
http://www.w3.org/html/
http://support.microsoft.com/kb/154544/
http://www.ni.com/labview/
http://standards.ieee.org/findstds/standard/488.2-1992.html/
http://www.pcisig.com/specifications/
http://www.ivifoundation.org/VXIPlug_Play/
http://www.pxisa.org/
http://www.lxistandard.org/
http://www.usb.org/
http://www.adobe.com/products/adobe-media-server-family.html
http://www.skype.com/en/

34 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

architectures and characteristics, plus their acceptance by the community as successful

implementations of weblabs. While MIT iLabs describes a top level software

framework architecture providing management resources and APIs that enables

interconnecting distributed weblabs, the Netlab and the VISIR projects focus on the

architecture and on their underlying infrastructures. These two last projects currently

provide well designed and tested experiments in the electrical domain that have been

used to evaluate the interest of weblabs for the engineering education. Since it is

impossible to describe all projects currently available and the wide diversity of weblabs

accessible across the world, at end of this section other initiatives are listed, including

current and past projects, repositories of weblabs, consortiums, etc..

2.5.1 MIT iLab project

Started on 2000 at the MIT in USA, the iLab project
33

 [62] comprehends a software

framework designed for easily sharing different weblabs across the world. It provides

all management resources and APIs, so that different experiments can be easily shared

and integrated, such as microelectronics, chemical engineering, polymer crystallization,

structural engineering, and signal processing. Since 2005 several weblabs from different

countries were integrated. Currently, the iLab project has already established strong

international partnerships working to develop and expand its architecture, namely the

iLab-Africa, iLab-Australia, iLab-China, iLab-Europe, etc.

Early versions of the iLab architecture (before 2002) were built as individual

standalone systems, where a client, using a Java Applet, had the possibility of

connecting directly to a server attached to the hardware. However, the increasing

number of laboratory experiments led, in 2002, to the creation of the standard

architecture named iLab Shared Architecture (ISA) [62] illustrated in figure 2.11. The

aim of this architecture is to facilitate deployments of weblabs making them easy to

share across institutions. It comprehends three major components: i) Lab Client; ii)

Service Broker and; iii) the Lab Server. The Lab Client is the interface that allows users

to control the weblab specifying parameters and monitor results. The Service Broker

provides the generic administration services for managing communications between

multiple lab servers and multiple lab clients. It allows grouping students by class, year

or institution, for example, by specifying which weblabs are available to each group of

students. Furthermore, it stores the data that completely describes a laboratory session

whenever a student runs an experiment. It can also manage real-time and batched

control modes. In real-time mode (figure 2.11a) a complete and exclusive control over

the experiment setup is provided for a certain period of time. In batched mode (figure

2.11b) students’ actions and results retrieved from the weblab infrastructure are

managed like a FIFO queue. The Lab Server interacts directly with the weblab,

managing all the equipment setup. Each Lab Server can interact with several Service

Brokers to share several laboratories between institutions. Note however that each Lab

33 http://ilab.mit.edu/ , http://ilabcentral.org/

http://ilab.mit.edu/
http://ilabcentral.org/

Chapter 2: Weblabs in engineering education 35

Server is equipment specific, so different Lab Servers must be used for each set of

laboratory instrumentation. All data flows between Lab Clients, Service Broker and Lab

Servers using eXtensible Markup Language (XML) encoded messages.

a) Architecture for interactive experiments.

Synchronous control (real-time mode)

b) Architecture for batched experiments.

Asynchronous control (batch mode)

Figure 2.11: Topologies of the iLab Shared Architecture (ISA).

Since 2006 that the NI-ELVIS (NI Educational Laboratory Virtual Instrumentation

Suite)
34

 platform was considered as a cost effective solution for implementing the iLab

Server [63] in weblabs for conducting experiments in the electrical domain. Currently

the iLab architecture is still the focus of several publications such as: i) a solution based

on JAVA interfaces [64]; ii) a proposal for new switching mechanisms to the NI-ELVIS

[65]; iii) an experiment based on the fundamentals of optical fiber communications

[66]; among others. This proves that iLabs is one of the most solid projects in this

domain.

2.5.2 NetLab

The NetLab
35

 is a weblab specialized in experiments for the electrical domain

created in 2001 by the University of South Australia (UniSA) currently integrated in the

LabShare consortium
36

. To fulfill educational needs, NetLab developers have been

always improving its resources based on feedback responses acquired from students’

inquiries, taking a special attention to the requirements posed by the collaborative work

[67][53]. NetLab is considered a very successful project, which justified the large funds

received from the Australian Learning and Teaching Council [2009-2010], and by the

Australian Government’s Diversity and Structural Adjustment Fund [2009-2011].

Despite current literature does not indicate further technical developments, this weblab

is considered as a case-study due to its wide acceptance by the international community

and by several students in engineering education.

34 http://www.ni.com/nielvis/
35 http://netlab.unisa.edu.au/
36 http://www.labshare.edu.au/

http://www.ni.com/nielvis/
http://netlab.unisa.edu.au/
http://www.labshare.edu.au/

36 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The NetLab architecture, illustrated in figure 2.12, allows conducting experiments in

groups and comprises a server that binds all weblab modules through a GPIB bus. A

switching matrix module connected to the server using the VXI bus, allows students

creating and selecting a specific circuit. A webcam, using the HTTP protocol, provides

feedback images of the laboratory.

Weblab server at

the UniSA

Agilent

Instruments

Webcam

Switching Matrix

and VXI system

Remote users

(teachers & students)

GUI

GPIB

VXI

LAN
(HTTP)

Internet

WAN

(HTTP)

Weblab infrastructure

Figure 2.12: NetLab architecture overview.

Although the first version of NetLab used LabVIEW software for the web interface,

in 2006 an interface using the Java language was adopted. All the interfaces were

developed using the API provided by the Virtual Instrument Software Architecture

(VISA) [68], which guarantees that the same interfaces can be adapted to similar

instruments without many changes. Besides controlling the weblab modules, the GPIB

bus also retrieves relevant data from them. This way, data can be gathered and exported

to a file to be analysed by another software tool. A typical example pointed by NetLab

developers concerns the use of an Oscilloscope where all data points can be acquired

and latter displayed and analyzed using the Matlab software.

Users have also the ability of creating their own circuit connections using an

application named Circuit Builder. It aims to provide almost the same features available

in a traditional laboratory allowing students to choose and wire instruments and

components. The Circuit Builder is implemented by the switch matrix connected

through a VXI bus.

Collaborative tools are provided using an integrated chat window that allows

students to conduct experiments in groups. For students’ motivation and engagement in

the experimental work, an image of the laboratory is provided by a webcam, so they can

perceive that they are controlling real instruments. Furthermore, the adoption of real

images of the instruments provides students with a sense of physically being at the

laboratory. This way, the weblab and the traditional laboratory are closely related.

Figure 2.13a) presents the NetLab GUI, with all the referred interfaces, namely the

instruments with photographic images, an image of the laboratory, the Circuit Builder

and the collaborative tool (chat window), all integrated in the same GUI accessible

Chapter 2: Weblabs in engineering education 37

through a web browser. In addition, the NetLab allows the collaboration in teams of 2-3

students interacting together in a real-time mode with the same experiment. For this

purpose, a booking system is available so students can book time slots, as illustrated in

figure 2.13b).

a) Main Graphical User Interface.

b) Booking system interface.

Figure 2.13: NetLab web interfaces.

When NetLab was introduced in 2001 the majority of students conducted

experiments in computer rooms at UniSA campus. In 2006 the courses of Electrical

Circuit Theory (second year course) and Signals and System (third year course) adopted

the NetLab. Based on reported studies [69][53], the adoption of this weblab showed

superior benefits for students learning. They start spending more time checking their

calculations and repeating experiments, leading them to acquire better technical and

collaborative skills than when they were using a traditional laboratory.

2.5.3 The VISIR project

The Virtual Instrument Systems In Reality (VISIR)
37

 [17][70], originated from a

weblab created in 1999 at the Blekinge Institute of Technology (BTH), and started in

2006 with the cooperation of the NI and the Axion Edutech, plus the financial support

from the Swedish Governmental Agency for Innovation Systems (VINNOVA). Today,

several universities integrate the VISIR consortium: FH Campus Wien and Carinthia

University of Applied Sciences - Austria, University of Deusto and the National

University of Distance Education (UNED) - Spain, University of Genoa - Italy,

Gunadarma University in Indonesia, Uninova Institute for the development of new

technologies, and the Polytechnic of Porto School of Engineering (ISEP) - Portugal.

The project refers to an open laboratory platform offering software distributing releases

and documentation that can be used to implement online workbenches with standard

instruments. It uses a common unique interface with an instrument shelf able to be

37 http://openlabs.bth.se/index.php?page=ElectroLab#

http://openlabs.bth.se/index.php?page=ElectroLab

38 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

adopted by several workbenches. Using the VISIR platform, students are able to create

and configure their own experiments by selecting instruments from a virtual shelf and

by defining the connections established with the instruments, like in a traditional

laboratory.

The VISIR project uses a platform supported by a client-server architecture, whose

instruments are connected to an instrumentation server. The architecture is very similar

to the one adopted for the NetLab, since it includes the Weblab server connected to the

instrumentation server using the LabVIEW software to manage weblab modules (the

instruments). Typically, the platform uses a switching matrix to control the terminal

connections of a set of electronic components and of the adopted modules in a

breadboard, which are able to be controlled through a virtual interface. Figure 2.14

exemplifies a VISIR architecture based on modules compatible with the PXI bus,

despite other buses can be adopted, such as the GPIB or LXI.

In order to promote the reuse of the modules, the software developments are ruled by

the Interchangeable Virtual Instrument (IVI) foundation
38

, which is a group of end-user

companies system integrators and instrument vendors that defined standard instrument

programming interfaces. Currently the IVI standard comprehends an open architecture

with a set of instrument classes and software components that allow VISIR platform to

integrate eight types of instruments: i) DC power supplies; ii) Digital Multimeters; iii)

Function Generators; iv) Oscilloscopes; v) Power meters; vi) RF signal generators; vii)

Spectrum analyzers and; viii) Switches. For sharing and adopting a particular

instrument compatible with the VISIR platform, these should be developed according to

the standard in order to increase the collaboration during the development of different

weblabs.

Internet

Users

Weblab server

Instrumentation
 server

(e.g. PXI system)
Switching matrix

LAN/

WAN
USB

Virtual

breadboard

Figure 2.14: Overview of a VISIR architecture based on the PXI bus.

As indicated, by using the VISIR platform students are able to define instruments-

experiments connections, and to setup component connections within the experiment,

such as replacing a resistor in an electronic circuit using a virtual breadboard similar to

the one illustrated in figure 2.15a). Internally, after defining the connections using the

virtual breadboard, the system creates a netlist file that is analyzed before proceeding

with the real connections on the laboratory. If an error is found, a message will be

38 http://www.ivifoundation.org/

http://www.ivifoundation.org/

Chapter 2: Weblabs in engineering education 39

displayed indicating that a dangerous connection was made, which avoids damaging the

weblab infrastructure. To fulfil educational purposes, it is the student that should solve

the problem, because the system only indicates that there was an error. Furthermore, so

students may feel they are interacting with real equipment, besides a visual feedback of

the remote experiment provided by a webcam, the use of real images of all instruments

in the virtual shelf is also adopted, as represented in figure 2.15b).

a) Virtual breadboard.

b) Virtual instrument shelf.

Figure 2.15: Interfaces used in the VISIR project.

The VISIR platform is now installed by several institutions and used as a platform

for evaluating the interest on using weblabs in engineering education [71][72].

Moreover, a recent work integrated the VISIR-based labs with the iLab architecture

[73], which proves the quality, the reliability and the interest of the research community

in the VISIR and iLabs architectures.

2.5.4 Other weblabs and projects

Beyond the presented projects, there are other remotely accessible weblabs across the

world with experiments in different engineering domains. The diversity of available

weblabs, which is seen as an advantage for the educational community since it has a

wide offer of remote experiments, at the same time creates difficulties for searching the

most adequate to apply in a specific engineering course. Aware of this difficulty,

educational communities created several repositories of weblabs, in particular for the

electrical domain. To consult more information about the current trends on weblabs’

adoption for engineering education, table 2.9 lists repositories, projects and consortiums

involved on the research and dissemination of remote experiments.

Traditionally, weblabs follow client-server architectures with a diversity of solutions

and technologies. There is no standard solution for developing weblabs, which is an

issue that is getting a special attention from the research community. Organized

consortiums have been joining efforts from different institutions to define a solution to

unify weblabs in a common platform. However, and despite those efforts, a set of

40 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

problems and limitations in current weblabs still remain that, if solved, will incentivize

their widespread adoption in engineering courses.

Table 2.9: Weblabs’ repositories, projects and consortiums.

LiLa - “Library of Labs”- Consortium headed by the Stuttgart University that provides an

organizational framework for the exchange of experiments between institutions. Further information

available on http://www.lila-project.org/

Labshare - Consortium, since 2011 an Institute, composed by several Australian universities. It aims

to provide a set of services for the integration and development of remote experiments in Australia.

Further information available on http://www.labshare.edu.au/

Lab2Go - A repository to locate educational online laboratories created by the Carinthia University of

Applied Sciences Villach, Austria. It is an online web portal where developers can describe their own

weblabs using a predefined Online Laboratory Metadata - Reference Model Specification. Further

information available on http://www.lab2go.net/

iSES - internet School Experimental System - is a complex tool for real time acquisition and remote

data acquisition, data processing and control of experiments and other processes. It is an open system
consisting of a basic iSES hardware with the controlling software ISESWIN and software ISES WEB

Control kit for remote laboratory. Further information available on http://www.ises.info

UNEDLabs - Is a network of collaborative virtual and weblabs supported by a web portal designed

and maintained by the Informatics department of the National University of Distance Education,

known in Spanish as Universidad Nacional de Educación a Distancia (UNED). Further information

available on: http://unedlabs.dia.uned.es/

RexLab - Brazilian consortium, headed by the Federal University Santa Catarina (UFSC) that manages

and provides several remote experiments. Currently it integrates some partners from south American

and European universities. Further information available on http://www.rexlab.ufsc.br/

NUS Internet Remote Experimentation - Remote experiments available in the National University of

Singapore (NUS). Further information available on http://vlab.ee.nus.edu.sg/~vlab/index.html

eLabs-FEUP - Repository of projects and experiments headed by the Faculty of Engineering of the

University of Porto. Further information available on http://elabs.fe.up.pt/

WebLab-Deusto - Research group of the University of Deusto/Spain, aims to provide different

solutions to different scenarios related to Remote Experimentation. Further information available on

https://www.weblab.deusto.es/web/

GOLC - Global Online Laboratory Consortium - Consortium that aims to define standard solutions for
creation of sharable, online experimental environments. Further information available on

http://www.online-lab.org/

2.6. Current limitations and problems of weblabs

Despite technological evolution has contributed for the development of well

designed weblabs, there are still several unsolved issues. As described in the previous

section, each weblab is typically developed following specific and distinct technical

implementations supported by a client-server approach, with several hardware and

software architectures and technologies using different programming languages. It is

precisely this diversity of solutions that is still hampering the use of weblabs in some

institutions, since their architectures and underlying infrastructures still face a number

of problems and limitations, namely:

 lack of standard architectures and infrastructures;

 lack of standard access to the weblab modules (e.g. instruments);

http://www.lila-project.org/
http://www.labshare.edu.au/
http://www.lab2go.net/
http://www.ises.info/
http://unedlabs.dia.uned.es/
http://www.rexlab.ufsc.br/
http://vlab.ee.nus.edu.sg/~vlab/index.html
http://elabs.fe.up.pt/
https://www.weblab.deusto.es/web/
http://www.online-lab.org/

Chapter 2: Weblabs in engineering education 41

 low reusability and interoperability, since there are still difficulties for sharing

and replicating the weblab modules through different infrastructures, which is

not promoting a larger collaboration among institutions;

 difficulty of joining efforts during the weblabs’ development, since developers

do not use any common standard;

 low flexibility, because it is difficult redesigning every type of experiments

using the same infrastructure (VISIR and NetLab are limited to the provided

weblab modules available in the infrastructure);

 potential high costs, since creating weblabs requires a PC and associated

software, together with several and independent modules, eventually with

features not required for running a specific experiment;

 updating and stability problems, since the many software layers usually adopted

create incompatibility issues between versions, requiring high laboratory

maintenance, and;

 some institutions do not develop weblabs for supporting their courses, because

they lack the required technical skills.

All these limitations and problems motivated researching a standard solution for

developing weblabs. Moreover, to facilitate the development, reuse and share of

different weblab modules, and to increase the flexibility for redesigning different

experiments using the same weblab infrastructure, reconfiguration was also an issue

under analysis. The next chapter provides some considerations for designing standard

and reconfigurable weblabs, by proposing solutions based on the IEEE1451.0 Std. and

on the FPGA technology to support the reconfiguration capability of future weblab

infrastructures.

2.7. Summary

This chapter briefly described the impact technology brought in the last 30 years to

the experimental work in engineering education, in particular by enhancing the

traditional laboratory environment. The experimental (or laboratory) work was

emphasized by presenting the different laboratory types currently available for the

conduction of experimental work activities considered fundamental in every

engineering course. After analysing the different laboratory types supported by a set of

intrinsic parameters and the involved costs for their development and access, weblabs

were considered as a valuable resource, since they provide a flexible and a cost effective

solution for remotely conducting real experiments through the Internet. To understand

the relevance of weblabs and their contextualization, the RE concept was then

described, presenting all the involved actors and contexts that influence weblabs’

adoption in engineering education. Pedagogical and technical considerations for

42 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

applying and developing weblabs were then detailed, and some of the most

disseminated weblab architectures for the electrical domain were presented. This

chapter ended by referring current limitations and problems faced by weblabs that are

still preventing their widespread adoption in engineering education.

Chapter 3: Considerations for designing standard and reconfigurable weblabs 43

 Chapter 3

Considerations for designing standard and

reconfigurable weblabs

The previous chapter contextualized weblabs in engineering education,

demonstrating why they are important resources for supporting experimental work

activities. The presented weblabs’ architectures revealed the lack of standardization in

their design and access, and the impossibility for being remotely reconfigured with

different modules required to conduct experiments.

This chapter provides some considerations for designing standard and reconfigurable

weblabs. It resumes current instrumentation standards, focusing on hardware and

software architectures that enable interfacing and remotely accessing different types of

instruments typically used in electrical and electronic experiments. On-going initiatives

for standardizing weblabs are also presented, followed by an overview of the

IEEE1451.0 Std. and its other family members, perceived as a valid complementary

solution for designing standard weblab architectures. The use of FPGAs is discussed at

the end of this chapter as the technology for enabling the reconfiguration with different

modules, described and accessed according to the IEEE1451.0 Std.

44 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 3: Considerations for designing standard and reconfigurable weblabs 45

3.1. Weblab architectures based on instrumentation standards

Traditionally, weblab architectures adopt commercial test & measurement

instruments with physical interfaces based on instrumentation standards. The

instruments may be interfaced to an host system acting as an instrumentation server, or

they may provide network connections enabling remote access with minor (or none)

software developments. Currently, the large majority of instruments is accessed through

command-based protocols using instrument-specific ASCII
39

 strings, and provides

software drivers and APIs that facilitate the development of software applications.

Therefore, it is important to distinguish the available instruments for designing weblabs,

namely the adopted standards at hardware and software levels, and to consider emerging

technological solutions, such as embedded instruments.

3.1.1 Stand-alone and modular instrumentation

The field literature normally divides instruments in two types: i) Stand-alone and ii)

Modular [74]. Stand-alone, also referred as traditional instruments, integrate all

necessary hardware and software components within the device to acquire or generate

specific raw data without support of an external system. Modular instruments always

require the use of an external system, because each instrument only has the minimum

resources to perform the intended function. They are traditionally cards that can be

plugged or unplugged according to the requirements of a specific experiment, and it is

the host system that gathers all the data acquired or to be generated.

As illustrated in figure 3.1, both types of instruments establish connections among

them using instrumentation buses and, if required, with an external host system to

manage their features, including synchronization, data storage, or others.

P
o

w
er

 s
u

p
p

ly CPU
(firmware)

Interface

User interface

Measurement
and control
subsystems

internal bus

P
o

w
er

 s
u

p
p

ly CPU
(firmware)

Interface

User interface

Measurement
and control
subsystems

internal bus

(.
..

)

(...)

Instrumentation buses (GPIB, LXI, USB, etc.)

Software & GUI

CPU &
power supply

Memory
(data storage)

Interface

internal bus

Software & GUI

CPU &
power supply

internal bus
Measurement

system

In
te

rf
ac

e
&

 p
o

w
er

(...)
Instrumentation buses

(PXI, VXI, PCI, etc.)

Modular instruments Host systemStand-alone instruments Host system

Interface&
power

Memory
(data storage)

Measurement
system

In
te

rf
ac

e
&

 p
o

w
er

Figure 3.1: Stand-alone and modular instrumentation.

Adopting stand-alone instruments without a LAN interface in a weblab infrastructure

requires the use of an external system similar to the one adopted for modular

instrumentation. This system should act as an instrumentation server, so the connected

39 American Standard Code for Information Interchange (ASCII) is a numerical representation of

characters (http://www.asciitable.com/).

http://www.asciitable.com/

46 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

modules may be remotely accessed using software applications running in the users’

accessing devices. These applications are commonly known as Virtual Instruments (VI),

defined as customizable applications to create user-defined measurement systems able

to control real instruments [74]. The hardware control, data analysis and presentation

are handled entirely by those VIs, which can be developed in different programming

languages using traditional client-server architectures. The way each instrument can be

remotely accessed is dependent on the instrumentation bus and on the selected software

framework.

3.1.2 Instrumentation standards

Choosing instruments to adopt in a weblab infrastructure depends on the target

experiments and on their characteristics, such as the measurement functionality, the

bandwidth, the latency, the performance, and in particular the connectivity they provide.

This is partially defined by the selected instrumentation buses that implement I/O lines,

with shared triggers and timing synchronization signals, so they can be integrated and

inter-communicate within the same infrastructure. The remote access to the instruments

should be controlled by an host system through VIs, so different instruments, even using

distinct buses, may be easily replaced or integrated. This is accomplished by the use of

software frameworks that can be accessed through different programming languages to

develop the software applications. The access to the instruments is made through an

abstracted interface using ASCII commands, APIs or drivers.

As represented in figure 3.2, an instrumentation system can be structured into 4

layers: i) the buses that represent the hardware and the I/O libraries to access each type

of instrument; ii) the software framework with ASCII commands, APIs and drivers; iii)

the programming languages integrated into software frameworks to develop

applications and; iv) those applications, which can be user defined or predefined by the

manufacturers to remotely access the instruments.

Stand-alone instruments Modular instruments

RS-232, GPIB, USB, LAN/LXI VXI, PCI, PXI, PCI/PXI Express

Development software (LabVIEW, C, C++, VB, etc.)

User defined
applications

Pre-defined applications for management,
measurement and services control

Virtual Instrument Software Architecture (VISA)

Instrumentation buses

Software commands, APIs
and drivers

Programming languages

Applications

I/O library

IVI drivers (VXI plug&play) ASCII
commands

S
o

ft
w

a
re

fr

a
m

ew
o

rk
s

Figure 3.2: A layered architecture for an instrumentation system.

Chapter 3: Considerations for designing standard and reconfigurable weblabs 47

The first layer represents the instrumentation buses and all the involved hardware

that allows inter-connecting or binding instruments to an instrumentation server. The

instrumentation buses are traditionally associated to the type of equipment, i.e. stand-

alone instruments traditionally bring one or more interfaces compatible with the RS-

232, GPIB, USB or LAN/LXI standards, while modular instruments traditionally bring

one or more interfaces compatible with the VXI, PCI, PXI and PXI/PCI Express

standards. These are the most known instrumentation buses, and each one has different

characteristics that should be analyzed before adopting them in a weblab infrastructure,

as briefly described in table 3.1.

Table 3.1: Overview of some well known instrumentation bus standards.

RS-232

The first standard used for interfacing data communication equipment (1962)

revised by the EIA40 and by the TIA41 concerning timing and voltage issues,

which justifies other denominations (RS-232-C, EIA RS-232, EIA 232, TIA
232, etc.). It has a serial interface with low throughput (up to 115,200 bits

per second) when compared to new instrumentation standards. Most of the

new instruments do not bring anymore this type of bus, but there are several

bridges in the market that allow its interface to other buses.

GPIB

(General Purpose

Interface Bus)
42

The oldest robust and most reliable bus ruled by the IEEE488.1 (1987) for

mechanical, electrical, and basic protocol parameters, and by the IEEE488.2

(1992) for standard codes, formats, protocols, and common commands. It

adopts SCPI commands43 to control programmable instrumentation. It uses

an 8 bit parallel bus where each instrument has its own address. Due to the

large number of GPIB compatible instruments, there are many interfaces

available in the market so they can be connected to PCs or modular systems

using interface bridges, such as PCI-GPIB, USB-GPIB or PXI-GPIB.

USB

(Universal Serial

Bus)
44

It is a popular industry-standard (mid-1990s) and a common choice for
stand-alone instruments. It has an high bandwidth (USB 3.0 up to 4 Gbit/s)

and provides a plug&play facility to connect computers systems that

traditionally bring USB interfaces. It includes the USBTMC (USB Test and

Measurement Class) that is a protocol built on the top of the USB for GPIB-

like communications with USB devices using messages based on the GPIB

standard.

LAN (Local Area

Network) / LXI (LAN

eXtensions for

Instrumentation)
45

The LXI was created (2005) based on the LAN features that allow to

interconnect computers in a limited area using network media. Besides this

feature, LXI integrates the VXI-11 specification, now extended by the

HiSLIP standard created by the IVI Foundation46, which provides a set of

protocols for communication with message-based instruments over TCP/IP,

with trigger and synchronization signals, service request mechanisms, among
others.

40 Electronic Industries Alliance (EIA) - (http://www.eciaonline.org/eiastandards/).
41 Telecommunications Industry Association (TIA) - (http://www.tiaonline.org/).
42 http://standards.ieee.org/findstds/standard/488.2-1992.html
43 Std. Commands for Programmable Instrumentation (SCPI) - (http://www.ivifoundation.org/scpi/).
44 http://www.usb.org/
45 http://www.lxistandard.org/
46 http://www.ivifoundation.org/

http://www.eciaonline.org/eiastandards/
http://www.tiaonline.org/
http://standards.ieee.org/findstds/standard/488.2-1992.html
http://www.ivifoundation.org/scpi/
http://www.usb.org/
http://www.lxistandard.org/
http://www.ivifoundation.org/

48 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

VXI

(VME eXtensions for

Instrumentation)
47

:

Based on an older bus standard named VMEbus (Versa Modular Eurocard

bus) created in the 80’s, VXI defines additional bus lines for timing and

triggering control, as well as mechanical requirements and standard protocols

for configuration, message-based communication, multi-chassis extension,

and other features. This bus is maintained by the VXIplug&play Systems

Alliance, now integrated in the IVI foundation.

PCI (Peripheral

Component

Interconnect)

/

PXI (PCI eXtended

to Instrumentation)
48

Introduced in 1997, PXI combines PCI electrical-bus features extending

them to instrumentation. It provides low latency, high throughput with

timing and trigger signals using rugged and modular euro cards similar to the

VXI. PXI is promoted and maintained by the PXI Systems Alliance

(PXISA)49.

PCI/PXI Express

These standards were created in 2004 (PCI Express) and 2005 (PXI

Express). They include the characteristics of the PCI/PXI buses with the

compactPCI Express specification, improving them with higher throughputs,
lower I/O pin count and smaller physical footprint, among others.

The second layer includes commands, APIs and drivers that bridge the hardware and

the software to simplify configurations and the development of software applications.

This layer comprehends several possibilities for accessing the instruments. The most

common one uses ASCII commands, typically provided by stand-alone instruments

supporting message-based command protocols such as the SCPI. This protocol was

originally created for the IEEE488 Std. (GPIB), but can also be used with RS-232,

USB, VXI, and others compatible instrumentation buses. Since those commands

traditionally differ according to the adopted instrument, currently this layer includes

instrument drivers that implement an abstract software interface using predefined and

standard commands. An example is the VXIplug&play drivers, also known as VXIpnp,

plug&play or as Universal Instrument Drivers. These were considered the industry

standard for many years, but have been largely replaced by the denominated

Interchangeable Virtual Instrument (IVI) drivers that are supported by newer

instruments, such as instruments bringing LXI interfaces. Despite those drivers can be

adopted to directly interface some compatible instruments, due to the diversity of I/O

libraries used to access the hardware, the Virtual Instrument Software Architecture

(VISA) is now a solution to take into consideration. The VISA is a software framework

that provides APIs to communicate with the hardware using low-level I/O libraries. It

ensures a successful integration of various instruments in a single infrastructure,

enabling instruments’ connectivity using distinct buses. It can be used independently of

the IVI drivers, since it delivers a standard set of function calls to communicate with

instruments based on PXI, VXI, GPIB, LAN/LXI and others [75]. Nevertheless, for

facilitating the software integration, the IVI drivers can be used with the VISA, since

they simplify the replacement of the instruments without the need of changing the

software. Due to the time-line evolution that brought a diversity of solutions for

accessing programmable instruments, the SCPI, VXIplug&play, VISA and IVI

specifications are now maintained by the IVI Foundation. This foundation is the

47 http://www.vxibus.org
48 http://www.pxisa.org/
49 http://www.pcisig.com/

http://www.vxibus.org/
http://www.pxisa.org/
http://www.pcisig.com/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 49

responsible for the older VXIplug&play Systems Alliance and SCPI Consortium. It

concentrates its efforts in improving those specifications and the compatibility of the

VISA and IVI drivers with different instruments, in order to simplify interchangeability,

improve performance, facilitate software developments and reduce maintenance costs.

The third and fourth layers represent the programming software languages and the

applications used to access the instruments. The applications can directly send ASCII

commands, using the APIs provided by the VISA or they can access the IVI drivers.

Despite VISA is well accepted by the industry, proved by the NI-VISA (an

implementation made by the National Instruments) [76], IVI drivers provide an higher

software abstraction level subdividing instruments into classes and implementing many

other extended features [77], which justifies the existence of many predefined

applications (e.g. TestStand
50

). Besides the instrument-specific functionalities provided

by the IVI classes, they can be used in several software architectures through different

drivers, namely the IVI-C, IVI-COM or IVI.NET, accessed by structured languages

such as C, objected-oriented languages such as C++ or VB.NET, and by graphical

languages such as G, provided by the LabVIEW (Laboratory Virtual Instrument

Engineering Workbench)
51

 platform. This G language is generically known as

LabVIEW, and integrates a set of graphical blocks that facilitate the development of VIs

for local and remote control of the instruments. Currently, many instruments already

provide LabVIEW drivers used as wrappers on top of IVI drivers or VISA APIs, which

proves the wide acceptance of LabVIEW for designing weblabs infrastructures

[63][78][79][80].

3.1.3 Hybrid architectures

Many weblabs adopt commercial instrumentation equipped with standard interfaces,

namely GPIB, PXI and, more recently, LXI. To guarantee the required flexibility for

swapping the instrumentation in a weblab infrastructure, developers traditionally prefer

the use of modular instrumentation rather than stand-alone instrumentation, since it is

typically a most cost-effective solution. An example is the PXI bus, now being widely

used for implementing weblabs (e.g. [10][70][81]), since it provides a robust solution

with the high performance and the throughput of the PCI bus available in traditional

PCs, adding a rugged design, dedicated trigger lines for synchronization, among other

features. Moreover, companies like the NI and Agilent have many PXI compatible

instruments (e.g. Oscilloscopes, Function Generators, etc.), which incentivize their

adoption for designing weblab infrastructures.

Although using modular instruments presents many advantages, stand-alone

instruments should also be considered, as many institutions have them in their

laboratories and some may have particular features that require their adoption for

50 Software application developed by National Instruments for monitoring components integrated in a

measurement system (http://www.ni.com/teststand).
51 http://www.ni.com/labview/

http://www.ni.com/teststand
http://www.ni.com/labview/

50 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

running a particular experiment. Therefore, it is important to guarantee the connectivity

among distinct instruments in the same infrastructure, while still using different

interface standards. Sharing data buses with a specific bandwidth and latency, and the

trigger and synchronization signals, are some aspects to take into consideration. This

compatibility among different instrumentation buses is guaranteed by the many

interfaces available in the market that allow adopting different instruments in the same

infrastructure creating the so-called hybrid systems [82]. Figure 3.3 represents an hybrid

system that can be adopted for implementing a weblab infrastructure. Despite the

involved costs may increase due to the use of additional interfaces, such as MXI
52

compatible cards, these are very popular and are being largely used for expanding and

interfacing VXI and PXI buses to the PCI bus. A PC may control the modular

instrumentation, which can be very useful in situations where the host system is not

embedded in the modular system. The software compatibility among all instruments is

guaranteed by the IVI and VISA, enabling the replacement of the instruments according

to the weblab requirements.

PXI

VXI

GPIB

PC
LXI

LAN

MXI

GPIB-PCI

MXI

PXI

router
LAN

LAN

Figure 3.3: Example of an hybrid system applicable to weblab infrastructures.

Reporting to the weblab architectures presented in the previous chapter, NetLab
53

uses an hybrid architecture. It adopts stand-alone instruments with the GPIB interface

and modular instrumentation using the VXI bus for implementing a switching matrix

module, which is interfaced to a PC and controlled using the VISA. This architecture

represents a typical reutilization of resources available in the laboratory, since the

involved technologies require using MXI cards and GPIB-PCI interfaces, which would

imply higher costs when compared to solutions that use a single instrumentation bus.

An example is the VISIR implementation at the BTH
54

, which uses an architecture

supported by a PXI bus and adopts IVI drivers. A more recent research based on this

same VISIR project indicated LXI instruments and IVI drivers as the most valuable

technologies for implementing weblabs [83][84]. LXI has the same advantages of PXI

but provides larger bandwidth, higher data rate, and brings the advantage of stand-alone

52 Multisystem eXtension Interface (MXI), also named MXIbus, is an open standard developed by

National Instruments currently named as MXI-2 (http://www.ni.com/pdf/manuals/340007b.pdf).
53 http://netlab.unisa.edu.au/
54 http://openlabs.bth.se/index.php?page=ElectroLab#

http://www.ni.com/pdf/manuals/340007b.pdf
http://netlab.unisa.edu.au/
http://openlabs.bth.se/index.php?page=ElectroLab

Chapter 3: Considerations for designing standard and reconfigurable weblabs 51

instrumentation, since compatible instruments are connected to a LAN, which, as

reported by the authors, makes it a flexible and an affordable solution for weblab

infrastructures. Additionally, these instruments are also accessible through VISA, which

guarantees the software flexibility required for developing weblabs.

More recently, a new technological trend for instrumentation is emerging. This trend

suggests that instruments may be implemented within chips for performing specific

validation, test and debug functions of other electronic circuits. These are called

embedded instruments, and they should be considered as a possible solution for

implementing weblab infrastructures.

3.1.4 Embedded instrumentation

According to the Moore’s law, in the last decades the number of transistors within

chips has been doubling every two years. Despite this law is becoming deprecated

because miniaturization is now facing its physical limits, the processing capability of a

single chip has been increasing, incentivizing the design of more complex and

processing demand capable devices such as the so-called embedded instruments. These

types of instruments may be an alternative to stand-alone or modular instrumentation

referred in subsection 3.1.1. Embedded instruments are mainly circuits implemented

within chips that perform specific validation, test and debug functions of other

electronic circuits in the same chip or circuit boards [85]. They are classified as a most

cost-effective and flexible solution, since they are essentially supported by hardware

descriptions able to be adaptable according to the requirements of the circuit under test.

Additionally, these types of instruments have been receiving a large interest of the

research community, focusing their attention on standards to enable non-intrusive

access and control, namely by using the JTAG interface
55

, recently improved with the

Internal JTAG (IJTAG)
56

, specifically created for embedded instrumentation.

Additionally, some researchers are also suggesting architectures for remote and real-

time access of embedded instrumentation and sensor management [87].

Therefore, adopting embedded instruments in weblabs should also be taken into

consideration. As illustrated in figure 3.4, embedded instrumentation may access

circuits (experiments) according to three architectures: i) System-on-Chip (SoC),

integrating the instruments and the experiments within the same chip; ii) board,

integrating the instruments within chips bound to the experiments located in the same

board or; iii) external, using a board with chips accommodating the embedded

instruments, bound to external experiments. The access to the chips is traditionally

made using the JTAG (in the future the IJTAG), but when the experiments are in the

55 Joint Test Action Group (JTAG) is a common name for what later became the IEEE1149.1 Std. that

stands for Standard Test Access Port and Boundary-Scan Architecture [86].
56 Internal Joint Test Action Group (IJTAG) is an interface standard to instruments embedded in chips

that defines a methodology for their access, automating their operations and analyzing their outputs.

It is currently defined by the IEEEp1687 Std. (http://standards.ieee.org/develop/wg/IJTAG.html).

http://standards.ieee.org/develop/wg/IJTAG.html

52 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

board or externally located, the more common buses should be considered, such as the

RS-232, USB, LAN, or others.

Embedded
instrument

Circuit
(experiment)

under test

chip

JTAG

IJTAG

etc.

chip

JTAG

RS232

USB

LAN

etc.

Embedded
instrument
Embedded
instrument
Embedded
instrument

Board

chip

Embedded
instrument
Embedded
instrument
Embedded
instrument

Board
JTAG

RS232

USB

LAN

etc.

Embedded
instrument
Embedded
instrument

Circuit
(experiment)

under test

Interface drivers

a) System-on-Chip (SoC) b) Board c) External

Circuit
(experiment)

under test

Figure 3.4: Architectures for embedded instruments in weblab infrastructures.

Although only architectures i) and ii) are traditionally adopted for embedded

instrumentation, architecture iii) may also be used, in particular for implementing

weblab infrastructures where traditional instruments (stand-alone or modular) can be

replaced by embedded instruments. Typical experiments able to be implemented using

architectures i) and ii) are those described through software, such as digital/analog

circuits implemented using reconfigurable devices, such as FPGAs or Field

Programmable Analog Arrays (FPAAs). However, these two architectures do not allow

the conduction of any type of experiment, since the interfaces are limited to the internal

circuits provided within the chips or boards. To promote the adoption of embedded

instrumentation for weblabs, architecture iii) should be considered, since it allows

interfacing any type of experiment using the I/O analog or digital interface drivers

provided by the board.

This diversity of technological solutions, both at hardware and software levels, for

implementing weblabs, are creating some difficulties for institutional collaboration and

resource sharing. Most weblabs use commercial devices adopting instrumentation

standards, but new technological solutions, such as embedded instrumentation, may be

considered for implementing the infrastructures. Additionally, current user-defined

applications use different APIs and architectures, which are difficulting the use of a

common platform for accessing weblabs and the provided experiments. This is

particularly true on interoperability issues, since weblabs traditionally use different

terminology and distinct metadata for their classification. These problems are impairing

the dissemination, integration and the interoperability of weblabs, which led to weblab

standardization initiatives.

Chapter 3: Considerations for designing standard and reconfigurable weblabs 53

3.2. On-going initiatives for weblabs standardization: GOLC

and IEEEp1876 Std.

The adoption of instrumentation standards gives an added-value for weblabs since

they can integrate in the same infrastructure several instruments accessible through

standard commands, APIs and drivers. Software developments and interoperability

among different types of instruments can be therefore facilitated, since they can

communicate using standard buses, and the software applications for the remote access

can then be reused. Besides the remote access to the adopted instrumentation, weblabs

should implement a set of requirements so they can be used in an educational context,

as already described in the previous chapter. They should provide most of the features

available in traditional laboratories, such as enabling the access to the equipment for

controlling and setting-up the experiments, facilitate the collaboration among students

when conducting experiments, among others. Additionally, the widespread of weblabs,

some providing experiments dedicated to specific engineering areas, alerted the

educational community for the interest on spreading them as much as possible, so that

they can be accessed all around the world and included in engineering courses to

improve their curricula and/or to overcome the lack of facilities and equipments. Aware

of this situation, the research community, including teachers, has been involved in

projects focused on the development of software frameworks using ontologies for

organizing information about weblabs and their features, APIs for accessing the adopted

instrumentation, and architectures that facilitate their development and widespread

adoption. The most important projects that gave significative contributions in this

domain are: i) the iLabs
57

 that defines an architecture for designing distributed weblabs

independently of the adopted technology (already detailed in chapter 2); ii) the

Lab2Go
58

 project that describes a vocabulary model for weblabs, enabling them to be

searched according to their characteristics and provided experiments; iii) the Labshare
59

that is a consortium in Australia that includes, among other projects, the NetLab

(already detailed in chapter 2) and a generic framework defined by the SAHARA Labs
60

for setting up heterogeneous laboratories and; iv) the LiLa
61

 project that defines another

software framework for building a repository of weblabs using reusable educational

modules defined through the denominated LiLa Learning Objects, which are compatible

with SCORM
62

 objects, and therefore able to run in VLEs such as the Moodle
63

. These

projects are well disseminated within the research and educational communities,

providing common and distinct features, all considered important for designing a

standard framework for weblabs. All are focused on the use of software frameworks for

57 http://ilab.mit.edu/, http://ilabcentral.org/
58 http://www.lab2go.net/
59 http://www.labshare.edu.au/
60 http://sourceforge.net/projects/labshare-sahara/
61 http://www.lila-project.org/
62 Sharable Content Object Reference Model (SCORM) is a collection of standards and specifications

for web-based e-learning (http://scorm.com/).
63 https://moodle.org/

http://ilab.mit.edu/
http://ilabcentral.org/
http://www.lab2go.net/
http://www.labshare.edu.au/
http://sourceforge.net/projects/labshare-sahara/
http://www.lila-project.org/
http://scorm.com/
https://moodle.org/

54 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

implementing remote access to experiments, access management systems and the way

pedagogical contents are provided and integrated in a course. However, each project

uses its own architecture, which difficults their interface in a common, scalable and

sharable framework. This diversity of solutions alerted the research community for the

benefits of designing a unique and standard solution for developing and disseminating

educational laboratories, in particular the weblabs.

As a result of a series of discussions commenced in early 2009, on June 25
th

 2010 the

Global Online Laboratory Consortium (GOLC)
64

 formally came into existence as an

independent organization. GOLC is an initiative of the iLabs founders that aims to

promote the development, share and research of online laboratories for educational use,

focusing on a software framework that supports their integration in education,

independently of the adopted technology. GOLC is mainly supported by the know-how

acquired from the referred projects, from contributions of the VISIR project created at

BTH
65

, and from the Weblab-Deusto research group
66

. It integrates several members

(individuals and organizations) organized into committees, as represented in figure 3.5.

Main contributers

·LiLa (Library of Labs)

· iLabs

·Lab2Go

·LabShare (SAHARA Labs)

·VISIR (BTH)

·Weblab-Deusto

- development, share and research on online labs

- framework to support the integration of different laboratories (e.g. weblabs) in education

Members
(Voting or Non-voting Members that can be

individuals or organizations)

Committees & Working Groups
(Executive Committe and Membership forum,

Committees and Interest groups established by the

GOLC Executive Committee)(Global Online Laboratory Consortium)

Figure 3.5: Overview of the Global Online Laboratory Consortium.

Members are divided into groups, according to the type of institution, the voting and

the advisory rights within the consortium. All provide an annual contribution to support

activities of the consortium including annual meetings that have been commonly

organized in parallel with the REV
67

 and FIE
68

 international conferences. The

committees include: i) the Executive Committee, who is the responsible for the overall

governance and oversight; ii) the Membership and Communications Committee, who

manage members and is the responsible for communications and; iii) the Technical and

Education Committees who are responsible for handling the entire research aiming for a

common technical and educational framework for online laboratories. Currently, GOLC

64 http://www.online-lab.org/
65 http://openlabs.bth.se/
66 https://www.weblab.deusto.es
67 Remote Engineering & Virtual Instrumentation (REV) (http://www.rev-conference.org/) is a series

of annual events in the area of remote engineering and virtual instrumentation. The REV

conferences are the annual conferences under the umbrella of the International Association of

Online Engineering (IAOE) (www.online-engineering.org).
68The annual Frontiers in Education (FIE) conference is a major international conference about

educational innovations and research in engineering and computing (http://fie-conference.org/).

http://www.online-lab.org/
http://openlabs.bth.se/
https://www.weblab.deusto.es/
http://www.rev-conference.org/
http://www.online-engineering.org/
http://fie-conference.org/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 55

committees are being redefined according to a different structure, but with the same

objectives. The Executive Committee is maintained, but the other committees will be

replaced by a membership forum, and a set of committees and special interest working

groups established by the GOLC Executive Committee. Applications such as booking

systems, descriptions of the offered experiments, terminology and interoperability

issues are some of the technical issues under discussion. Defining narratives for good

practice in the use of online laboratories (e.g. library of videos showing their effective

use), a standardized vocabulary for tagging research papers, metadata for describing

educational aspects, and guidelines for assisting users with the selection of an online

experiment, are some educational objectives currently under GOLC research and

development.

Based on previous projects, GOLC is currently working on technical documents to

be applied for online laboratories: i) the adopted terminology; ii) an ontology able to be

described using a set of metadata profiles and; iii) an interoperability standard for

accessing the laboratories. The terminology currently proposed uses a set of core

concepts illustrated in figure 3.6a). These are adopted by the ontology represented in

figure 3.6b) that is described through metadata profiles divided according to sets of

packages. These define features and components belonging to a laboratory, such as the

applied booking system, the rig attributes (in the scope of this thesis is an instance of the

weblab infrastructure), interaction issues, such as the required plug-ins to install in the

clients’ accessing devices, media packages for supporting pedagogical contents, and

others. The interoperability standard mainly defines the APIs and interaction models for

accessing the online laboratories.

Interaction package

Media package

Media data
Media

Metadata

Rig

Physical Rig or
Simulation Server

Rig configuration
and options

Rig
Metadata

communicates to

Learning activity

task

(experiment)
task

Rig Set

Rig

interface equipment apparatus

Rig

a) Terminology relations b) GOLC ontology (packages and interaction with a rig
defined according to metadata)

Metadata defined for each
package and for the rigs

using classes and elements
for describing the laboratory

Rig driver
Rig selection and

configuration
Interaction
Metadata

selects configures

Figure 3.6: Current terminology and ontology defined by the GOLC.

A more recent initiative supported by the IEEE standards association is also

emerging for the standardization of online labs. The members of this initiative that

belongs to the IEEE Networked Smart Learning Objects for Online Laboratories

Working Group (NSLOL WG), have agreed that laboratory work is a requirement for

any engineering course and currently online labs, which include weblabs, are seen as a

fundamental resource. Since the smart learning environments (traditionally adopted by

56 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

weblabs) are built using different approaches, the NSLOL WG is involved in

developing the IEEEp1876 - Standard for Networked Smart Learning Objects for

Online Laboratories
69

. The main goal of this standard is to establish the relationship

between all the involved components in a remote experimentation scenario (software,

hardware and learning systems) in order to facilitate the design and implementation of

pedagogically driven remote experiments. The first meeting was held in 2012 and more

recently another meeting was held at the IEEE EDUCON’2013
70

 conference. In this

conference, some papers were presented with different solutions for developing online

laboratories, focusing on a new ontology [88], a proposal for designing interoperable

bridges among different laboratories [89], and new development paradigms [90][91].

Currently, no other developments are known about the IEEEp1876 Std., but the NSLOL

WG is open to receive new members and contributions, such as from the on-going

European research project named Go-Lab [92]. This project intends to create a large

federation of online laboratories involving the use of a technical framework designed to

support the construction and the exploitation of learning spaces.

Both the GOLC and the NSLOL WG (IEEEp1876 Std.) initiatives intend to gather

several researchers, so their developments and solutions may contribute for the

standardization of online labs. They are mainly focused on defining the software

frameworks for describing and accessing the laboratories, which, according to the

layered structure defined in the previous section (figure 3.2), position them as user

defined applications. Despite fundamental, the hardware is underestimated in both

initiatives, in particular for the possibility of using a standard for designing and

accessing instrumentation and for enabling their reconfiguration in a weblab

infrastructure. These aspects, together with the several solutions still running in parallel,

incentivized researching the use of a standard that specifies software and hardware

layers for designing weblabs, namely the IEEE1451.0 Std.

3.3. Using and extending the IEEE1451.0 Std. for designing

weblabs

The IEEE1451.0 Std. was specified to network-interface transducers in a plug&play

basis. This section introduces the IEEE1451.0 Std. and presents other family members.

The most disseminated projects and research work, which involve the use of this and

other members of the IEEE1451.x Std. family, are also presented, and some

considerations for applying the IEEE1451.0 Std. in the design of weblabs are discussed.

69 http://ieee-sa.centraldesktop.com/1876public/
70 The IEEE Global Engineering Education Conference is a series of conferences that rotate among

central locations in IEEE Region 8 (Europe, Middle East and North Africa). The IEEE EDUCON

2013 was held at the Technische Universität Berlin, Berlin, Germany from March 13-15, 2013

(http://www.educon-conference.org/educon2013/).

http://ieee-sa.centraldesktop.com/1876public/
http://www.educon-conference.org/educon2013/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 57

3.3.1 Overview of the IEEE1451.0 Std.

The IEEE1451.0 Std. [93][94] aims to network-interface transducers (sensors and

actuators) and defines a set of operating modes, based on specifications provided by

Transducer Electronic Data Sheets (TEDSs). Defined in 2007 as an initiative of the

National Institute of Standards and Technology (NIST)
71

, this standard is the basis for

forthcoming and previous members of the IEEE1451.x family [95][96], so they can

operate together to provide a unified interface. The operating modes defined by the

standard are controlled using commands that can be applied using a set of APIs. All

transducers are referred as smart since they support different modes of operation and

interfacing controlled by a set of TEDSs, i.e. data structures with information that

enable to define, control and monitor the smart transducers functional specifications

using software applications. Through TEDSs, the transducers are classified as sensors or

actuators, it is indicated the data they acquire/generate, are specified timing and

synchronization issues, among others. This standard does not define a communication

protocol for interfacing transducers. It establishes standardized interfaces, defined

according to other IEEE1451.x Stds., for using wired or wireless protocols (e.g. USB or

Bluetooth), in an architecture based on the reference model illustrated in figure 3.7.

TIM
TIM

1451.1

application

(optional)

single URL

application

(HTTP-

1451.0

API)

other

applications

1
4
5
1
.0

 S
er

v
ic

es

T
ra

n
sd

u
ce

r
se

rv
ic

es
 A

P
I

1
4
5
1

.x
 c

o
m

m
u
n
ic

at
io

n
 m

o
d
u
le

M
o
d
u
le

 c
o
m

m
u
n
ca

ti
o
n
s

A
P

I

NCAP

1
4
5
1

.x
 c

o
m

m
u
n
ic

at
io

n
 m

o
d
u
le

M
o
d
u
le

 c
o
m

m
u
n
ca

ti
o
n
s

A
P

I

1
4
5
1
.0

 S
er

v
ic

es

S
ig

n
al

 c
o
n
d
it

io
n
er

 /
 A

D
C

 /
 D

A
C

1
4
5
1

.4
 T

E
D

S
 r

ea
d
er

 (
o
p
ti

o
n
al

)

T
ra

n
sd

u
ce

r
m

ea
su

re
m

en
t

in
te

rf
ac

e

T
E
D
S

T
E
D
S

TIM

T
ra

n
sd

u
ce

r
an

al
o
g
 i

n
te

rf
ac

e

T
ra

n
sd

u
ce

r(
es

)

PHY

1451.2

1451.3

1451.5

1451.6

u
se

rs
 n

et
w

o
rk

p
h
y
si

ca
l

w
o
rl

d

lo
w

-l
ev

el
 c

o
m

m
a
n
d
s

Transducer Interface ModuleNetwork Capable Application Processor

Figure 3.7: Reference model of the IEEE1451.0 Std.

The IEEE1451.0 Std. architecture includes one or more Transducer Interface

Modules (TIMs) connected to a Network Capable Application Processor (NCAP) using

communication modules defined according to other IEEE1451.x Stds. and accessed

using a Module communication API. The aim of these intermediate standards is to

provide a plug&play capability for all transducers, so the Transducer services API may

access every TIM through the Module communication API and independently of the

adopted physical layer. The TIM implements a set of services accessed using

commands, issued by the Module communication API, for controlling and monitoring

the transducers according to TEDS specifications, and it may use the IEEE1451.4 Std.

71 http://www.nist.gov/el/isd/ieee/ieee1451.cfm

http://www.nist.gov/el/isd/ieee/ieee1451.cfm

58 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[97] for adding plug&play capabilities to analog transducers. The NCAP may include

TEDSs, implements a set of services accessed through the Transducer services API, and

is able to be remotely accessed using: i) the object model and interface specification

defined by the IEEE1451.1 Std. [98]; ii) the standard IEEE1451.0-HTTP API to send

commands, or; iii) other proposals, such as the Smart Transducer Web Services

[99][100]. The IEEE1451.0 Std. must operate with other IEEE1451.x Stds. so it can

bind transducers according to the adopted physical interface, such as point-to-point,

distributed multi-drop, wireless or others. Most current IEEE1451.x Stds. were defined

before the appearance of the IEEE1451.0 Std., and some are intended to be redefined or

created in the future. Table 3.2 resumes current IEEE1451.x standards according to

information retrieved from the IEEE Standards Association (IEEE-SA) and provided in

[94].

Table 3.2: The IEEE1451.x Std. family.

IEEE1451.0 - 2007
Defines a set of common operations and TEDSs for the IEEE1451.x family.

The functionality is independent of the TIM-NCAP physical interface [93].

IEEE1451.1 - 1999

Defines a common object model and programming paradigm for smart
transducers. Runs on the NCAP and describes communications between

groups of NCAPs and higher-level systems supported by a network-neutral

interface [98]. It is an active standard compatible with the IEEE1451.0 Std.

and is being revised by the IEEEp1451.1 Std. working group.

IEEE1451.2 - 1997

Defines a TIM-NCAP interface and TEDS for point-to-point configurations.

Transducers are part of a Serial TIM (STIM). The original standard describes

an interface layer based on the serial SPI interface with additional lines for

flow and timing control. It is an active standard being revised to support

other popular serial interfaces such as UART and USB, and to become

compatible with the IEEE1451.0 Std. [101].

IEEE1451.3 - 2003

Defines a TIM-NCAP interface and TEDS for multi-drop transducers. It

allows transducers to be arrayed as nodes, on a multi-drop network, sharing a

common pair of wires [102]. It is an obsolete standard, no longer maintained.

IEEE1451.4 - 2004

Defines the protocol and the interface so analog transducers may

communicate digital information with an IEEE1451 object [97]. It is
currently active and compatible with the IEEE1451.0 Std. The

IEEE/ISO/IEC 21451-4 standard [103] published in 2010 adopts this

IEEE1451.4 Std. and the IEEE1451.2 Std.

IEEE1451.5 - 2007

Defines an interface for sensors specifying radio-specific protocols, such as

Wi-Fi (IEEE802.11 Std.), Bluetooth (IEEE802.15.1 Std.) or ZigBee

(IEEE802.15.4). It defines communication modules that connect a Wireless

TIM (WTIM) and the NCAP [104]. It is currently active and compatible with

the IEEE1451.0 Std.

IEEEp1451.6 - 2007

Defines a TIM-NCAP interface and TEDS using the high-speed CANopen

network interface (Controller Area Network)72. Maps TEDSs to the

CANopen dictionary entries as well as communication messages, process

data, configuration parameters, and diagnosis information. Adopts the

CANopen device profile for measuring devices and closed-loop controllers.
It has not yet been published as an IEEE standard.

IEEE1451.7 - 2010

Defines data formats, designed to facilitate communications between Radio

Frequency Identification (RFID) systems, TEDSs and commands for smart

RFID tags [105]. It is currently active and compatible with the IEEE1451.0

Std., but it has been superseded by the ISO/IEC/IEEE21451-7-2011 [106].

72 Control Area Network (CAN) - is a message-based protocol, designed specifically for automotive

applications but also used in other areas such as aerospace, industrial automation and medical

equipment (http://www.can-cia.de/).

http://www.can-cia.de/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 59

3.3.2 Overview of current projects and research

Despite the inherent complexity of the IEEE1451.x Stds. [107], they have been

applied for interfacing transducers in several domains. Many research works have been

published in the last years, demonstrating the interest received from research groups and

companies. One of the first implementations was a framework developed at the NIST

using the IEEE1451.1/.2 Std. describing an Internet-based distributed measurement and

control system [108]. So different types of TIMs may interface the NCAP, this last was

suggested to be implemented by a μC able to be dynamically reprogrammable

[109][110]. Other publications suggest architectures for remote accessing IEEE1451.2-

based transducers for controlling a robot wrist using the CAN bus [111], and for

temperature control using a quartz transducer implemented in a μC [112]. The

advantages of using the IEEE1451.1/.2 Std. were discussed for implementing flexible

and distributed time-services, so they can meet real-time demands with synchronized

clocks [113], and there are implementations using FPGA devices [114][115][116], some

based on embedded processors [117], and a proposal for using FPGAs and FPAAs for

implementing IEEE1451.4-compliant sensors [118]. After the publication of the

IEEE1451.0 Std., research has been focused on its adoption for network-interface

transducers. Some examples can be pointed, such as: i) a system for monitoring and

diagnosing power transmissions lines [119]; ii) a proposal for an home healthcare

monitoring system [120]; iii) an integration analysis of electronic equipments into

intelligent road-traffic management systems [121]; iv) a server with the IEEE1451.0-

HTTP API implemented using LabVIEW web services for accessing real-time data

from a marine sensor network [122], among others.

In order to interface several NCAP through the network layer, some suggestions to

improve their architectures have been suggested. Two examples can be mention, namely

an implementation using the Microsoft .NET framework that provides communications

based on XML
73

 messages through the enhancement of the IEEE1451.1 Std.

[123][124], and an unified web service based on SOAP
74

 messages that uses the

IEEE1451.0 and the IEEE1451.5 Stds. to interface Wi-Fi networks [99][100].

Additionally, a recent work alerted for security on web services communications. It

proposes a cross-layer mechanism that deals with the requirements of authentication,

integrity, confidentiality, and availability across the communication process in smart

transducers [125].

Recent projects can be found in the Open1451 Project website
75

, which provides a

repository with implementations, examples, and free applications of the IEEE1451.x

Std. Currently, it integrates 3 free projects: i) an IEEE1451.0 implementation in Java

73 eXtensible Markup Language (XML) is a markup language that defines rules for encoding

documents in human/machine-readable format (http://www.w3.org/XML/).
74 Simple Object Access Protocol (SOAP) is a protocol for exchanging structured information in the

implementation of Web Services in computer networks (http://www.w3.org/TR/soap12-part1/).
75 http://sourceforge.net/projects/open1451/

http://www.w3.org/XML/
http://www.w3.org/TR/soap12-part1/
http://sourceforge.net/projects/open1451/

60 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

using SunSPOTs
76

; ii) a multiplatform library to debug TEDSs and; iii) a

communication protocol plug-in for WireShark (formerly known as Ethereal)
77

 for

parsing basic IEEE1451.1 packets and argument arrays. Although most of the solutions

are essentially supported by research groups, there are also companies that have been

developing compatible IEEE1451.x modules, for instance: Microchip, which has a

Serial TIM (STIM) implemented according to the IEEE1451.2 Std. [126]; the NI, which

provides LabVIEW applications for adapting sensors to the IEEE1451.4 Std.
78

; and

some other companies, which have IEEE1451 compatible products, such as the

Esensors
79

, Telemonitor
80

 or Senit
81

.

3.3.3 Adopting the IEEE1451.0 Std. for weblabs

Adopting the IEEE1451.0 Std. for designing weblabs is an interesting and promising

approach since it defines an architecture supported by software and hardware layers for

developing smart transducers and for enabling their remote and standard access [25].

These smart transducers can be designed as instruments [127] or dedicated modules

commonly adopted in weblabs (i.e. the weblab modules). Per example, a sensor can be

an Oscilloscope and an actuator can be a Function Generator, both typically used in

electronic workbenches. These, or other weblab modules, can then be embedded within

one or more TIM bound to the experiments, and able to be remotely accessed using

standard commands provided by NCAP APIs.

Despite the IEEE1451.0 Std. requires the use of an interface described by another

IEEE1415.x Std., some of these are currently not yet compatible. Per example, the

IEEE1451.2 Std., adopted for NCAP-TIM serial communications, is not yet compatible,

despite some suggestions [128] and implementations [129]. Furthermore, the adoption

of these intermediate standards may increase the complexity of the developments,

requiring more technological resources for implementing a weblab infrastructure.

Removing the intermediate layers, namely the Module communication API,

implemented by an IEEE1451.x Std., and the Transducers services API, is therefore a

solution to take into consideration, since the standardized remote access is guaranteed

by the use of IEEE1451.0-HTTP API to issue IEEE1451.0-commands. Establishing a

map between the methods provided by the API (or the object model defined by the

IEEE1451.1 Std.), provided by the NCAP, and the commands, provided by the TIM,

should be taken into account when adopting this simplified architecture. This is an

option that simplifies developments but, at the same time, reduces part of the plug&play

flexibility provided by the intermediate layers implemented by the IEEE1451.x Std., in

particular when different NCAP-TIM physical connections are adopted (e.g. when the

NCAP is connected to different TIMs using distinct physical connections such as Wi-Fi

76 http://www.sunspotworld.com/
77 Ethereal is a network analyzer now denominated as WireShark (http://www.wireshark.org/).
78 http://www.ni.com/sensors/
79 www.eesensors.com/ieee-1451.html
80 http://www.telemonitor.com/ieee1451.html
81 http://www.senit.biz/

http://www.sunspotworld.com/
http://www.wireshark.org/
http://www.ni.com/sensors/
http://www.eesensors.com/ieee-1451.html
http://www.telemonitor.com/ieee1451.html
http://www.senit.biz/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 61

or Serial). Nevertheless, using the proposed simplified architecture for adopting the

IEEE1451.0 Std. in the design of weblabs, still guarantees the plug&play capability

between the TIM and NCAP modules, in particular when the mapping between the

commands provided by the NCAP APIs and the commands provided by the TIM is well

defined.

The TEDSs are the core of the IEEE1451.0 Std., and they can provide an added-

value for designing weblab architectures. Besides describing each weblab module and

the TIM, they can also be used for describing weblabs, indicating their location, the

pedagogical and technical resources they provide, among others. The information

traditionally defined as metadata elements for describing weblabs can be defined within

TEDSs since, according to the IEEE1451.0 Std., it is possible to define the so-called

Manufacturer-Defined TEDS. The information can then be accessed (for read or write)

using the same commands issued by standard APIs, namely by the IEEE1451.0-HTTP

API, which is one solution for accessing the weblab modules and the entire weblab.

The standardized access, using the APIs, may also facilitate the implementation of

automatic monitoring tools. The adoption of intelligent tutoring systems [130] is

facilitated, since all commands issued to the weblab (for accessing weblab modules and

TEDSs) can be logged for automatic analysis. Currently, this solution can be greatly

facilitated by the adoption of the communication protocol dissector plug-in for

WireShark, available in the Open1451 Project website
82

. The assessment results can be

automatically provided for students’ and/or teachers’ analysis, and a feedback of all

actions made during an experimental activity can be automatically monitored and

retrieved, fulfilling some of the learning goals pointed out in chapter 2 (e.g. the Learn

from failure goal that suggests students must get feedbacks of their actions during an

experimental activity).

The last aspect that incentivized considering the use of the IEEE1451.0 Std. as a

complementary solution for designing weblabs resulted from the detailed functionalit ies

defined for designing the smart transducers, and therefore the weblab modules. The

provided description allows defining each weblab module independently of the adopted

technology, which facilitates selecting the most appropriate one for providing the

reconfiguration capability for a particular infrastructure. The different modules may

then be defined according to the standard and the adopted technology and, since

reconfiguration is not considered in the IEEE1451.0 Std., extending the APIs for this

purpose is a possibility to take into consideration. Additionally, the different described

layers also allow splitting tasks during developments, facilitating and promoting

collaboration between institutions during the design of weblabs.

Therefore, using the IEEE1451.0 Std. for designing weblabs is interesting and very

promising, since it defines a standard architecture for accessing smart transducers (the

weblab modules), and describes development issues supported on TEDSs’ contents.

82 http://sourceforge.net/projects/open1451/

http://sourceforge.net/projects/open1451/

62 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Furthermore, the IEEE1451.0-HTTP API allows a standardized access to the weblab

modules. The API provides methods for issuing commands to read and control the

weblab modules’ states and to access the associated TEDSs. The independence of the

adopted technology for implementing the architecture and the modules is also

important. Reconfiguration can be implemented by extending some aspects of the

standard, namely the available commands and the TEDSs, which can be used for

describing the weblabs including the provided experiments, technical resources for

reconfiguring the underlying infrastructure, and others.

Therefore, in order to design IEEE1451.0-compliant and remotely reconfigurable

weblabs able to accommodate different modules running in parallel, lead to consider the

use of reconfigurable technology.

3.4. Providing reconfigurability to weblabs through FPGAs

Changing the weblab modules according to the requirements of an ongoing

experiment requires using reconfigurable technology [131]. For this purpose two issues

must be analysed: i) the infrastructural one, namely the hardware required for its

implementation and; ii) the architecture, which enables its remote configuration with

different modules and the access to the experiments following a standard, such as the

IEEE1451.0 Std.

3.4.1 Infrastructure

Traditional weblab architectures include PCs acting as instrumentation servers with

individual instruments connected through instrumentation buses and accessed according

to different software architectures. Although these solutions guarantee high performance

by using dedicated instruments (stand-alone or modular), they can be expensive

including features eventually not necessary for conducting some experiments. To reduce

costs and to target a general architecture for implementing weblabs with reconfiguration

capabilities, there are technologies that can be adopted to accommodate different

modules. These can be implemented within chips as embedded instruments, and

selected according to the requirements posed by a specific experiment.

The use of FPAAs is a potential solution for implementing a weblab infrastructure,

since they allow embedding Analog and Mixed Signal (AMS) circuits, which could be

the weblab modules required for conducting an experiment. However, current FPAAs

still integrate few configurable analog blocks, and there is only a reduced number of

products in the market (e.g. Anadigm
83

) with the reconfiguration processes too much

manufacturer dependent. Despite the available languages for describing AMS circuits

(VHDL-AMS [132], Verilog-AMS
84

, and SystemC-AMS
85

), they are not being used by

current FPAA development tools. Describing weblab modules as embedded instruments

83 http://www.anadigm.com/fpaa.asp
84 http://www.designers-guide.org/VerilogAMS/
85 http://www.systemc-ams.org/

http://www.anadigm.com/fpaa.asp
http://www.designers-guide.org/VerilogAMS/
http://www.systemc-ams.org/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 63

using HDL-AMS does not guarantee compatibility among the available FPAAs’

architectures and, due to the reduced number of analog blocks they provide, only a

limited number of modules could be described. Additionally, the reconfiguration of

these devices does not allow selecting every type of voltage and current levels, which

would still require the use of external drivers for interfacing the weblab infrastructure to

the target experiments. Adding all these considerations to the manufacturing difficulties

for integrating many analog circuits into a single chip, suggests disregarding FPAAs as

a good solution for designing reconfigurable weblabs.

Although not bringing the same analog reconfiguration capability provided by

FPAAs, there are currently two well tested technological solutions facing continuous

improvements that may be considered for designing reconfigurable weblab

infrastructures, namely: μCs/μPs and FPGAs. Both allow implementing digital circuits

that, due to the current digital signal processing techniques, allow implementing almost

every type of circuits available in the analog domain (e.g. filters, comparators, and

others) able to use in weblab infrastructures. Although μCs/μPs have well defined

hardware architectures with high processing rates and functionalities changing

according to software code, they do not have the same flexibility guarantied by FPGAs

that may be reconfigured with several cores specifying μCs/μPs, dedicated controllers,

and the required weblab modules (annex A provides an overview of an FPGA internal

architecture). Rather than using specific manufacturer dependent languages, those cores

may be described through standard HDLs (VHDL [133], Verilog [134], or SystemC

[135]), and the multitasking is facilitated, since developers have low-level control over

the hardware, regardless of the manufacturer, which enables running multiple weblab

modules in parallel like instruments in a traditional laboratory. Typically, FPGAs have

several I/O pins and, currently, their processing rates are approaching those of μCs/μPs.

Although the reconfiguration capability provided by FPGAs may be seen as an

interesting advantage when compared to other solutions, they can only work with digital

I/O signals, which is not sufficient for implementing weblab infrastructures. FPGAs

need to acquire/supply analogue signals from/to the experiments; and the analogue

signals may have different voltages and currents levels, which require external drivers

to interface to the experiments. To overcome these issues, there are nowadays many

FPGA-based boards bringing associated components such as: A/D and D/A converters,

memories, LCD displays, interface ports, etc. (annex B shows an example of an FPGA-

based board). Since these boards provide the required analog interfaces to access the

target experiments, and the reconfiguration capability of FPGAs, they are seen as the

most indicated hardware platforms for implementing a reconfigurable weblab. As

illustrated in figure 3.8, they may accommodate the weblab modules as embedded

instruments and replace the instrumentation server, plus specific instrumentation buses

traditionally adopted for their interface.

64 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Internet

Weblab server

Instruments

& Modules

(I&M)

Instruments

& Modules

(I&M)

Weblab

module
External devices,

modules
(e.g. robots)

Target experiments

Instrumentation
 server

Replaceable by

FPGA-based boards
Weblab infrastructure

Instrumentation bus

Webcam

Figure 3.8: FPGA-based reconfigurable weblab infrastructure.

At this moment, one should consider possible limitations due to insufficient FPGA

resources for accommodating all the required weblab modules, at the same time. To

overcome this limitation, figure 3.9 illustrates two possible architectures: i) using one

FPGA with several weblab modules or; ii) using one FPGA for each weblab module.

Although the second architecture is technically easier, since each defined module is

embedded in different FPGAs, not requiring specific routing tasks inside them, costs

may increase. Additionally, the required physical space will also be higher to

accommodate the infrastructure, when compared to the first architecture that uses a

single FPGA to accommodate all the modules.

FPGA
Dedicated

Controller

O
sc

il
lo

sc
o

p
e

Multimeter

FPGA

Function

Generator

Multimeter

F
u

n
ct

io
n

G
en

er
at

o
r

FPGA

Target

experiment

a) one FPGA for several weblab modules b) one FPGA for each weblab module

Target

experiment

Figure 3.9: Architectures for embedding weblab modules in FPGA-based boards.

Although both architectures may be applied together or independently, typically the

first architecture may impose more technical challenges than the second one, since it

implies a more regular swap of modules within the FPGA. This situation occurs when a

single FPGA does not have enough space for accommodating several instruments at the

same time. This is illustrated in the first architecture of figure 3.9, that represents a

situation that a single FPGA encapsulates several instruments (a Multimeter, a Function

Generator and a dedicated Controller) and a new one (an Oscilloscope) is required for

conducting a particular experiment. Since the FPGA does not have enough space to

accommodate all the instruments at the same time, an instrument swapping mechanism

is required to be implemented. This can be made using two reconfiguration options

provided by FPGA technology, namely: i) total reconfiguration or ii) partial

Chapter 3: Considerations for designing standard and reconfigurable weblabs 65

reconfiguration (using static or dynamic approaches). Total reconfiguration requires

reconfiguring the entire core of the FPGA for swapping a particular instrument, which

implies stopping the weblab operation. By using partial reconfiguration only part of the

FPGA is reconfigured, i.e. the space occupied by a particular instrument. This may

require stopping the weblab when adopting a static approach or it may keep running

when using a dynamic approach (these aspects are further discussed in annex C).

In addition to all these considerations and advantages of using FPGAs for

implementing reconfigurable weblabs, it is also fundamental to understand and analyse

how to remotely access them to conduct an experiment and to reconfigure the

infrastructure with different weblab modules.

3.4.2 Remote access

Typically, weblabs use several modules that require a web interface for their remote

access. All modules and their interfaces should be shared, so the entire community may

reuse them to reconfigure the infrastructure, and new remote experiments may be

created. For this purpose, it is suggested an architecture similar to the one illustrated in

figure 3.10, where at least one main weblab interface must be available from the

infrastructure or from the weblab servers.

Internet

HDL files describing
the weblab modules

Weblab
infrastructure

web server
Weblab
server

main weblab interface

Interfaces
for each weblab module

mobile phones, PDAs,
smart phones, tablets or PCs E

th
er

n
et

P
H

Y

Figure 3.10: Proposed weblab architecture using FPGA-based weblabs.

The main weblab interface provides a bridge to the other resources available in

weblab servers, i.e. the HDL files describing the weblab modules and their interfaces. It

should provide a mechanism to transfer the HDL files into the FPGAs, and the weblab

interfaces, used for remotely access each module, into the users’ accessing devices.

Since all resources may be distributed among different servers, the amount of available

memory in the FPGA-based board is not relevant. At the same time, this architecture

facilitates collaboration among institutions, allowing them to share and reuse the weblab

modules and their interfaces.

66 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Additionally, the weblab infrastructure must allow remote users to access the

embedded weblab modules. Two solutions may be considered for this purpose, namely:

 Hybrid, by using an independent Micro Web Server (MWS) connected to the

FPGA-based board;

 System-on-Chip (SoC), by using a TCP/IP core inside the FPGA.

Hybrid solution

The hybrid solution uses a MWS connected to an FPGA-based board, as illustrated

in figure 3.11. Inside this MWS an interface implemented through any web software

language (e.g. HTML, JAVA or other) is available, so users may access the

infrastructure. Connecting the MWS to the Internet, through the Ethernet physical

interface, allows accessing the experiments using a set of I/O signals or a JTAG

interface, typically provided by all FPGA-based boards.

Internet

Micro

Weblab

Server

(MWS)

Digital
I/O

JTAG

Target

experiment

Analog

DigitalWeblab
moduleE

th
er

n
et

P
H

Y

I/
O

I/
O

FPGA-based
board

D
/A

A

/D

Weblab infrastructure

I/
O

Figure 3.11: Hybrid solution for remote accessing weblab infrastructures.

Users typically download the interface from the MWS to their accessing devices for

accessing the MWS pins. Some run as switching I/O signals, while others control the

JTAG infrastructure. Commonly, this test infrastructure is used to reconfigure an FPGA

and should also be adopted if the number of pins required to monitor the FPGA is

higher than those available in the MWS. By using the weblab interfaces, users may

control the modules inside the FPGA, which send or receive data from/to the target

experiment using A/D and D/A converters, or digital I/O signals. The advantage of this

solution is related to the simplicity of the implementation, since there are already

several MWS available in the market whose offer is expected to grow in the near future.

Noteworthy, some MWS are implemented into FPGAs, which illustrates the power and

wide acceptance of these devices for building microelectronic circuits [136] and the

capability they offer for implementing a weblab infrastructure. Based on a web search,

table 3.3 presents a selection of commercial MWS able to support and provide a remote

access to the weblab modules.

Chapter 3: Considerations for designing standard and reconfigurable weblabs 67

Table 3.3: A selection of commercial MWS.

Company Product Website

Lantronix XPort AR; Micro100 http://www.lantronix.com/

Olimex CS8900A-H http://www.olimex.com/

Microchip PICDEM.net™ 2 http://www.microchip.com/

Cyan USB/Ethernet Module http://www.cyantechnology.com/

NetBurner SB70LC Serial.-Eth. http://www.netburner.com/

Modtronix SBC65EC http://www.modtronix.com

Typically, each MWS allows users to establish a web connection to access its I/O

pins, and some provide several Internet services such as FTP, HTTP, SSH and Telnet,

among others. However, this solution requires at least two devices (FPGA + MWS), and

each MWS has specific characteristics hampering its adaptation to different weblab

infrastructures. Therefore, depending on the chosen MWS, prices may be higher and

flexibility may be lower when compared to a SoC solution.

SoC solution

In the SoC solution, the FPGA has an embedded TCP/IP core. As illustrated in figure

3.12, the TCP/IP core will send/receive commands through the Internet to access all

weblab modules accommodated inside the FPGA.

Internet Weblab
moduleT

C
P

/I
P

co
re

E
th

er
n
et

P
H

Y

FPGA-based
board

Target

experiment

Analog

Digital

I/
O

D
/A

A

/D

Weblab infrastructure

Figure 3.12: SoC solution for remote accessing weblab infrastructures.

All commands are sent using a specific weblab interface available from a weblab

server or from a memory located in the FPGA-based board. Once downloaded to the

remote accessing device, the interface allows a user to control/monitor the experiment

through a set of I/O pins (digital or analog), in the same way as in the hybrid solution.

Two options are available for implementing the SoC solution: a) using an

independent TCP/IP core, or b) using a TCP/IP core dependent of a commercial μC/μP

core. Usually, in both solutions TCP/IP cores are sold by companies. However, using a

solution dependent of a μC/μP core will not guarantee the platform independence

required for a weblab infrastructure, since they only work with a specific μC/μP

embedded as a soft/hard core inside the FPGA. A solution based on an independent

TCP/IP core is therefore preferred, because it is usually described through HDL files

http://www.lantronix.com/
http://www.olimex.com/
http://www.microchip.com/
http://www.cyantechnology.com/
http://www.netburner.com/
http://www.modtronix.com/

68 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

accepted by any Integrated Development Environment (IDE)
86

. After some research on

the web, table 3.4 presents several TCP/IP cores, where only Xilinx provides a μC/μP

dependent core. Nevertheless, since low prices and high flexibility are the main goals

for building a reconfigurable weblab infrastructure, the use of stand-alone TCP/IP cores

is considered the most appropriated solution. These can be found in the OpenCores

website that is being constantly fed with different modules described through HDL files.

Table 3.4: A selection of TCP/IP cores.

Company Product Website

IP Cores WPA2 802.11i for Wi-Fi http://www.ipcores.com/

System Level IPRETHTMFP001-Eth. MAC http://www.slscorp.com/

Sarance High Speed Ethernet IP http://www.sarance.com/

OpenCores Eth. MAC 10/100/1000 Mbps http://www.opencores.org/

Xilinx Ethernet Lite MAC http://www.xilinx.com/

HiTech Global 40G/100G Eth. MAC & PC http://www.hitechglobal.com/

CAST MAC-10/100 Eth. Lite http://www.cast-inc.com/

Aurora VLSI SSN8006:Eth. 10/100 MAC http://www.auroravlsi.com/

Although the SoC solution does not require the use of MWSs, it is considered less

indicated for designing reconfigurable weblabs than the hybrid solution, because: i)

TCP/IP cores may use too many resources of the FPGA, which limits the weblab

modules able to adopt, at the same instant, in the infrastructure; ii) the reconfiguration

process is hard to implement, since it requires routing techniques to connect the weblab

modules (partial reconfiguration); iii) the use of some TCP/IP cores depends on the

FPGA manufacturer (less flexibility), and requires the use of FPGAs with partial

reconfiguration capabilities (higher costs) and; iv) when adopting the infrastructure for

providing the weblab interfaces or for managing the access to the modules, traditionally

the memory space provided in FPGA-based boards is reduced, since this is mainly

adopted to accommodate HDL files used to reconfigure the FPGA core.

Thus, table 3.5 resumes the 4 options for designing a weblab infrastructure based on

hybrid architectures and supported by FPGA technology, taking into account the

number of FPGA versus the number of weblab modules required for conducting a

remote experiment.

Whatever the adopted solution, using FPGA-based boards is an opportunity for

simplifying the design of weblab infrastructures, since they can be reconfigured with

several weblab modules described through HDL files. Developing all weblab modules

and accommodating them inside an FPGA as embedded instruments, can be made using

the reconfiguration capabilities provided by current FPGA technology. However, to

promote collaboration among institutions and to facilitate the development of weblab

infrastructures by sharing those modules, requires following rules, so different

institutions and developers may easily split tasks for creating a specific weblab module.

Therefore, it is important to follow a standard for their development, specifying the

86 Usually manufacturers support the required changes to adapt TCP/IP cores for a specific FPGA.

http://www.ipcores.com/
http://www.slscorp.com/
http://www.sarance.com/
http://www.opencores.org/
http://www.xilinx.com/
http://www.hitechglobal.com/
http://www.cast-inc.com/
http://www.auroravlsi.com/

Chapter 3: Considerations for designing standard and reconfigurable weblabs 69

HDL files and the weblab interfaces that enable their remote access. Two solutions

allow fulfilling these main requirements: i) specify a specific standard or; ii) adopt an

already existing standard, such as the IEEE1451.0 Std. Technical aspects of the first

solution were discussed and presented in [131], which describes the implementation of a

Function Generator (FG) in a single FPGA-based board.

During the development phase there was an institutional collaboration between ISEP

and the Heriot-Watt Univesity (HWU). ISEP developed the HDL files describing the

FG, while the weblab interface for its remote control was developed by HWU. Since no

standard was adopted for controlling the FG, a specific one was defined at ISEP, which

posed many problems, since HWU developers had to familiarize themselves with all

protocol details. This fact delayed developments and alerted for problems arising from

failing to adopt standards for creating and sharing the weblab modules. To overcome

the limitations already detected and other potential ones, solution ii) is viewed as the

best choice, in particular using the IEEE1451.0 Std.

Table 3.5: Considerations about the number of FPGAs versus the weblab modules

required for implementing a reconfigurable infrastructure based on an hybrid

architecture.

 Number of FPGAs

 1 N

N
u

m
b

e
r
 o

f
w

e
b

la
b

 m
o

d
u

le
s

1

- Costs may increase, since traditionally a

weblab requires using more than one weblab

module, which implies more than one FPGA;

- Some of the space in the FPGA can be
unused, when a particular module only

occupies a small part of it;

- Total reconfiguration is the preferable

choice, since there is a unique module to

reconfigure.

- Only adopted if an FPGA does not offer

enough space to accommodate the entire

weblab module;

- Total reconfiguration is the preferable
choice, since each FPGA is occupied by

only a part of a single weblab module.

N

- Most cost effective solution;

- Total or partial reconfiguration are

suggested according to the requirements of

the weblab operation, i.e. if swapping a

module should not stop the weblab operation

then partial dynamic reconfiguration is

preferable, otherwise total or partial static
reconfigurations should be adopted.

- Merges all the other solutions, bringing

more reconfiguration complexity;

- Weblab modules may be distributed by

one or more FPGAs and they can

accommodate part of or an entire module;

- Total or partial reconfiguration may be

applied, but the complexity can explode.

As already referred in subsection 3.3.3, the IEEE1451.0 Std. provides all details for

developing and interfacing transducers (sensors/actuators), which can be the weblab

modules. This standard is an added-value for designing the weblab infrastructures since

it specifies a layered architecture providing software and hardware guidelines,

supported by TEDSs, which can be used to control and describe weblabs. Additionally,

by describing the weblab modules using standard HDL, such as Verilog, VHDL or

SystemC, the independence from FPGA manufacturers is addressed. Depending on the

70 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

available FPGA resources (logic blocks, internal memories, I/O blocks, and others),

every module can be embedded into any FPGA, since the associated IDE traditionally

allows describing the modules using the referred standard HDL.

Therefore, associating the characteristics of the IEEE1451.0 Std. to the

reconfiguration capability of FPGAs addresses the problems of current weblabs listed in

chapter 2 (section 2.6), namely:

 weblab architectures and underlying infrastructures can be standardized using

the IEEE1451.0 Std. reference model;

 all weblab modules are accessed (controlled and monitored) through standard

APIs;

 institutional collaboration may be improved, since the weblab modules are

embedded into an FPGA and described through HDL files according to the

IEEE1451.0 Std., enabling their reuse, sharing and replication through different

infrastructures;

 the redesign of the infrastructure is ensured, since the weblab modules can be

swapped and redefined according to the requirements of a particular experiment;

 since a common standard is followed, the development of weblabs (architecture,

infrastructure and modules) is facilitated, incentivizing joint collaboration efforts

from different institutions;

 costs can be reduced, since the infrastructures adopt embedded instruments

rather than traditional ones, all able to be redefined and replicated through HDL

files. Additionally, the instrumentation server may be suppressed, since all

weblab modules are interfaced inside the FPGA, without using instrumentation

buses controlled by specific software applications;

 the infrastructure becomes more stable requiring less maintenance, since by

removing the instrumentation server, the traditional software problems caused

by their upgrade are vanished, and;

 the possibility of easily sharing weblab modules and integrating them in

standardized infrastructures incentivize the adoption of weblabs in different

courses, overcoming possible technical limitations faced by institutional staff

(the human actors involved in the educational context).

3.5. Summary

The adoption of weblabs for conducting experimental work activities is considered

an added-value for engineering education. Several and distinct architectures have been

created using instruments interfaced by different standards. Those instruments were

classified in two types (stand-alone or modular), and considerations about their adoption

for designing weblab architectures were discussed, presenting the most relevant

Chapter 3: Considerations for designing standard and reconfigurable weblabs 71

instrumentation standards, namely the buses and the software frameworks, drivers and

APIs that allow developing software applications for their interface and remote access.

The use of hybrid architectures was also referred as an actual and future trend to design

weblabs, justified by the many interfaces, based on instrumentation standards, provided

by commercial instruments. A particular attention was paid to embedded

instrumentation as a possible solution to consider when designing new weblab

infrastructures.

The diversity of technological solutions and weblab architectures led to a lack of

standardization in their design, which promoted the appearance of two competing

standardization initiatives (GOLC and IEEEp1876 Std.), both presented in this chapter.

Since these initiatives essentially focus on the software frameworks for accessing and

managing the weblab resources, using traditional instrumentation, a possible

complementary solution based on the IEEE1451.0 Std. was suggested and presented.

After an overview of this standard, its family members and current research and

projects, the added-value that the IEEE1451.0 Std. can bring to the design of weblabs

was discussed, together with some considerations about the use of FPGA technology for

enabling the remote reconfiguration of a weblab infrastructure.

Finally, the use of FPGAs as an alternative to other technologies, and the way they

can be reconfigured using embedded weblab modules required for conducting a

particular experiment was justified and presented. A possible architecture and two

solutions for designing the underlying infrastructure were suggested. This chapter ended

referring the importance of using standards for design and accessing the weblab

modules indicating in which way the IEEE1451.0 Std. and FPGA technology may

address the problems faced by weblabs referred in the previous chapter. The following

chapter details the IEEE1451.0 Std., the architectures and extensions applicable to this

standard, so that it can be used for designing reconfigurable weblabs.

72 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 73

 Chapter 4

The IEEE1451.0 Std. as a

smart framework for weblabs

The IEEE1451.0 Std. was considered an interesting and promising solution for

designing weblabs. This chapter details the most important issues covered by this

standard. It describes the reference model and the technical and functional aspects of the

associated modules named NCAP and TIM. A special attention is given to data

structures named TEDSs, since their contents define the entire operation of smart

transducers that, in the scope of this thesis, are the weblab modules required to control

and monitor the target experiments. Different types of TEDSs are presented, as well as

their structural and functional characteristics. A number of solutions for designing

weblab infrastructures, as a part of the proposed IEEE1451.0 Std. enhanced architecture

and supported by the NCAP and TIM smart operations and associated models, are then

described. At the end, the use of weblab infrastructures supported by a simplified

approach for the NCAP-TIM reference model is suggested.

74 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 75

4.1. Reference model: NCAP and TIM smart modules

The IEEE1451.0 Std. was specified in 2007 as a common basis for the whole Std.

family [93]. It aims to network-interface sensors and actuators (transducers) in a

plug&play basis, and to remotely access them through the web, using standard

commands. As illustrated in figure 4.1, it follows a reference module based on a NCAP

connected to one or more TIMs using different physical (PHY) protocols ruled by

interfaces defined by other IEEE1451.x Stds.

Internet
NCAP

(Network Capable

Application Processor)

External

transducers
TEDSTEDSTEDS

H
T

T
P

-1
4

5
1
.0

 A
P

I

TEDSTEDSTEDS

M
o

d
u

le

co
m

m
u

n
ic

at
io

n
 A

P
I

C
o

m
m

an
d

s

M
o

d
u

le

co
m

m
u

n
ic

at
io

n
 A

P
I

TC
(Transducer Channel)

Virtual

PHY

1451.2

1451.3

1451.5

1451.6

.........

T
ra

n
sd

u
ce

r
se

rv
ic

es

A
P

I ...
TIM

(Transducer

Interface Module)

Figure 4.1: Reference model of the IEEE1451.0 Std.

Both the NCAP and the TIM are smart, since they combine processing units with

communication interfaces, and implement a set of services and APIs that enable

remotely accessing the transducers according to specifications defined in TEDSs. These

TEDSs can be implemented in the TIM, in the NCAP, or remotely located (the last two

named virtual TEDSs). There are mandatory and optional TEDSs, and each one is

divided into several groups of fields able to be read/written using a set of commands for

controlling and monitoring Transducer Channels (TCs). TCs run as transducers and

implement all associated signal conditioning and conversion components. They can be

completely contained within a TIM (named as embedded TCs) or connected to the

physical world to acquire or generate physical quantities into/from internal buffers

named Data Sets (DSs). Additionally, they can be bound to other transducers making

them smart, since they become remotely accessible and controllable according to the

IEEE1451.0 Std.

The generic characteristics of all TIMs are defined through single and mandatory

Meta-TEDSs. The TCs are defined by mandatory TC-TEDSs that specify associated

features such as: the units and ranges of the monitored/controlled physical phenomena,

data sampling and time control issues, and in particular their types, namely:

 actuators - accept data samples and convert them into an action within or outside

the TIM;

 sensors - convert physical, biological, or chemical values into electrical signals

that will be handled by the TIM, or;

 event-sensors - detect changes in the physical world to trigger specific actions

within the TIM.

76 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Both TIMs and TCs are recognized by addresses, operate on specific states, and have

associated status registers to monitor their events and errors. To control the TCs, the

IEEE1451.0 Std. provides a set of mandatory and optional commands divided into

classes and functions. They can be issued to the TIM, to a specific or group of TCs, or

to both, depending on the selected addresses and on their operating states. This means

that a command can only be accepted if a TC or a TIM is in a compatible operating

state, otherwise an error message is reported, and an internal status register bit is set.

When a particular event occurs (e.g. an internal or external event is detected), the TIM

can send an automatic message to the NCAP using a TIM-initiated message.

To interface TIMs to the NCAP, the standard defines the Module communication

API. This is a symmetric point-to-point and network interface implemented on NCAP

and TIM sides, and contains methods to register and access the IEEE1451.x layer. It

works as a wrapper on top of commands, providing interfaces to manage NCAP-TIM

communications independently of the selected physical protocol and associated

IEEE1451.x Std. The NCAP uses the Transducer services API for accessing internal

services, and to access/manage TCs and TEDSs. This API can be remotely accessed

using the HTTP-1451.0 API that contains methods to read and write TCs and TEDSs,

and to send configuration, control, and operation commands to TIMs.

Error and event detection mechanisms are also implemented both in the NCAP and

in the TIM. The NCAP provides a set of codes indicating error sources, while the TIM

uses the status registers to indicate other specific errors and information about the

operation of the TIM and of each TC. In both situations, this information can be

accessed using the referred APIs or it can be automatically transmitted through TIM-

initiated messages when an internal status-event protocol is enable. This protocol is

activated using particular commands and is ruled by internal logic controlled by a set of

registers able to be read/written, so users may easily debug all errors and control the

TIM and the TCs.

Beyond these mandatory smart features, the IEEE1451.0 compatible infrastructure is

essentially managed by TEDSs, which are the most important components of the

standard. Therefore, it is important to analyse their structure and the way they are

accessed and managed.

4.2. Transducer Electronic Data Sheets

The smart operations described in the IEEE1451.0 Std. are defined by TEDSs, whose

contents can be binary, text-based or user-defined, all identified by a specific ID code.

They are defined as data structures divided into group of fields describing all

characteristics and features of the TIM and of each TC. As referred in the previous

section, there are mandatory and optional TEDSs, each one grouping related

information. As conceptualized by figure 4.2, there are 4 mandatory TEDSs required for

designing compatible IEEE1451.0 devices, namely:

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 77

 Meta-TEDS [binary content] - defines generic features such as: timing

parameters for NCAP-TIM communications, and the number and groups of TCs

within a TIM;

 User’s Transducer Name TEDS [user-defined content] - required for the TIM

and recommended for all TCs, provides a place to store their names;

 PHY-TEDS [binary content] - provides read-only information for accessing each

TC and the TIM, according to the adopted IEEE1451.x Std. for the NCAP-TIM

interface, and;

 TransducerChannel TEDS (TC-TEDS) [binary content] - specifies

characteristics and operational issues of a TC.

Meta-TEDS TC-TEDS

........................

External

transducers

TC
(Transducer Channel)

User’s Transducer
Name TEDS

User’s
Transducer
Name TEDS

TC-TEDS
User’s

Transducer
Name TEDS

PHY-TEDS

TIM (Transducer Interface Module)

NCAP

(Network Capable

Application

Processor) PHY

Figure 4.2: Mandatory TEDSs in an IEEE1451.0 compatible device.

There is one Meta-TEDS for the entire device. It has binary content and, besides

defining timing parameters of the NCAP-TIM communications, it specifies the number

of available TCs, all identified by sequential addresses. In order to control/monitor

physical phenomena, TCs can be grouped as a:

 control group, to control a phenomenon that uses related TCs (e.g. one can run

as an event-sensor that when detecting a particular event, triggers other grouped

actuators);

 vector group, essentially used to group actuators for defining particular

mathematical relationships (e.g. defining a 3-dimensional axis);

 proxy group, for combining proxy TCs
87

 and;

 specialized vector group, for providing information about their geographic

location.

87 A proxy TC is an artificial construct used to combine I/Os of multiple TCs into a single structure. It

is assigned to an address and may be read or written, but it does not have the other characteristics of

a TC such as the TC-TEDS and other associated TEDSs. It represents either a sensor or an actuator

but never represents both. It may use two methods for combining DSs, namely: block method that

allows DSs with different lengths, or the interleaved method that uses DSs with the same length.

78 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

There is also one PHY-TEDS for the entire device. It has binary content and depends

on the adopted IEEE1451.x Std. since it provides static information about the PHY

protocol adopted for the NCAP-TIM interface. This TEDS is important for

implementing the plug&play capability, enabling commands sent to the NCAP to

transparently access a particular TC according to the adopted PHY protocol. Both the

NCAP and the TIM should decode the information provided by the PHY-TEDS, so they

can be easily interfaced.

The User’s Transducer Name TEDS is adopted for associating a name to the TIM

and to the TCs. It can have binary, text-based or any other user-defined contents. The

TIM must have an associated name, while the TCs’ names are optional, despite

recommended by the standard. This means that at least one of these TEDSs must be

defined.

Although the relevance of both User’s Transducer Name and PHY TEDSs, TC-

TEDSs provide all detailed and relevant information about each TC. Each TC-TEDS is

associated to a particular TC and is divided into distinct groups defining operational

aspects such as: the calibration capability, its type (actuator, sensor or event-sensor), the

data able to acquire/generate specific physical units and ranges of values over which it

operates, timing and sampling information, operation modes, among others. The TIM

must read the TC-TEDSs before starting the operation of a particular TC, since they

define all device characteristics.

Besides mandatory TEDSs, there are optional ones for specifying particular

characteristics of IEEE1451.0 compatible devices. They are not required to be

implemented, but they provide additional information about the TIM and about each

TC, such as additional commands, geographic location, extensions to the units defined

by mandatory TC-TEDSs, calibration and mathematical operations required to manage

acquired/generated data, and other user-defined aspects. The optional TEDSs can be

divided according to their data contents, as documented in the diagram of figure 4.3 that

also depicts the group of mandatory TEDSs previously described.

Text-based TEDSs belong to an optional class. They provide data structures

encapsulating one or more blocks of textual information presented in specific languages

and encoded in XML. In order to promote the compatibility of the IEEE1451.0 Std.

with the other family members, this same class integrates a subclass of identification

TEDSs. Binary TEDSs focus on operations for handling data, while user-defined

TEDSs may be implemented for adding other additional information, such as the

Manufacturer-Defined TEDSs (MD-TEDSs) that can provide additional fields for

characterizing the operation of a particular TC.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 79

Meta-TEDS

TC-TEDS

PHY-TEDS

User's
Transducer
Name TEDS

binary

Mandatory TEDSs

user-defined

Commands-TEDS
Specifies
additional
commands.

Geographic
location-TEDS

Units extension-
TEDS

Indicates the
TIM location
installation.

Includes text for extending SI units.

Represents
TEDSs
defined by
other
standards.

text-based

Constants necessary to
convert sensor and actuator
data into engineering units.

Characterize the frequency
and phase response of a TC.

Series of constants used to
describe TCs’ transfer
functions (e.g. Z transform).

Location and Title-
TEDS

Location for TCs (e.g. URL) and any other user-
defined information.

Meta id-TEDS

TC id-TEDS

Calibration id-
TEDS

identification TEDS

Transfer
Function-TEDS

Frequency
Response-TEDS

Calibration-
TEDS

binary

Optional TEDSs

Storage for application-
dependent data user wants
to keep with the TIM or
TC (much like the User's
Transducer Name TEDS).

Enables users to
define any type of
information.

End User
Application

Specific-TEDS

Manufacturer-
defined-TEDS

user-defined

Figure 4.3: Diagram illustrating the group of TEDSs defined in the IEEE1451.0 Std.

Every TEDS (mandatory or optional) is defined by 8-bit data structures divided into

3 blocks of fields, namely:

 the length, to indicate the current size;

 a data block, to gather the main information and;

 the checksum, to verify the data integrity.

Figure 4.4a) illustrates all these blocks, and the number of octets used by each one.

The length block uses 4 octets for defining the size of the remaining data blocks. Since

the size defined through these octets includes the 2 octets used by the checksum block,

it means that the data block may have up to 2^32 - 2 (4.294.967.293) fields. The last 2

octets, used by the checksum, keep the result of a one’s complement of the sum of all

octets, included in the length and the data block. A TEDS is validated by comparing this

checksum with another similar calculation using the current data block, reducing the

changes of erroneous operations that may occur in IEEE1451.0 devices.

Length

Data

Checksum

4 octets

variable

2 octets

Type Length Value
1 octet Δ octets Δ octets

TEDS data

TLV IDentification header

Type (3)

Length (4)

Family

Class

Version

Length

V
a
lu

e

TLV structure

a) TEDS structure
b) TLV IDentification header sub-block
in the data block (common to all TEDS)

Δ-variable

Figure 4.4: Structure and identification header defined for all TEDSs.

80 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

While the length and the checksum blocks have a limited and fixed size, the data

block has a variable size and its fields differ according to the adopted TEDS. Since the

information available in the data block defines the device operation characteristics, each

field must be able to be read/written by the TIM itself, and by the remote users through

standard commands. For this purpose, all fields within the data block are organized

according to Type-Length-Value (TLV) structures, as represented in the same figure

4.4a). In these structures, each field has a specific size and implements a particular task.

The Type occupies 1 octet and identifies the TLV structure defined for a particular

TEDS. The Length has a size defined in a TLV IDentification header represented in

figure 4.4b). It is adopted for specifying the number of octets of the value field that has

the main data. Although every TEDS has its own TLV structures, the IDentification

header is a sub-block common to all TEDSs that indicates the number of octets used for

defining the Length field in a TLV structure (length), the IEEE1451.x Std. family

(family), the TEDS access ID code (class) and its version (version).

TEDSs have a set of particular and associated characteristics that rules their access

and update. Although not mapped in their structures, they must be specified according

to a set of attributes, indicating if they are: read-only, virtual, text-based, or unsupported

for a particular TC, among others. It is also up to the manufacturer (or developer) to

specify some other associated characteristics, such as the status during a particular

access and its maximum size. Annex D provides examples of TEDSs’ structures,

namely the Meta-TEDS and the TC-TEDS, and required attributes and status.

The access to the TEDSs’ fields is made using four of the commands that will be

described in subsection 4.3.5, namely QueryTEDS, ReadTEDSsegment,

WriteTEDSsegment and UpdateTEDS, whose arguments must indicate the target TC(s)

or the TIM, and the TEDS access ID code. All provide replies indicating if they were

successfully executed, and only WriteTEDSsegment command does not retrieve

additional information about the accessed TEDS. These commands can be issued

through the APIs defined by the IEEE1451.0 Std., thus reducing their inherent

complexity that requires using a particular command message format, as described in

subsection 4.3.4.

4.3. Smart modules: access and operation

The IEEE1451.0 Std. does not suggest any particular technology for designing

compatible devices. While the NCAP focus on network issues, mainly on the APIs and

some network services, the TIM focus on most of the smart features provided by the

TCs, namely: an addressing mechanism to identify TCs, their operating states and

modes, and a set of status registers for monitoring the operation of a device using a

service request generation logic and a status-event protocol. Additionally, it also defines

type of messages (command, reply and TIM-initiated), and a set of standard commands

to control IEEE1451.0 compatible devices.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 81

4.3.1 Addressing mechanism

Both TIMs and TCs are recognized through two addressing levels. The first

addresses are the destination ID used by the NCAP to identify a particular TIM. The

second addresses specify to the TIM how should a message be issued to a particular or

group of TCs or to the TIM itself, and to tell to the NCAP where a specific reply

message or TIM-initiated message came from.

As represented in figure 4.5, the NCAP can access several TIMs, identified by their

IDs, and these can have four types of addresses defined through a 16-bit word, namely:

 a global address, adopted when a particular message is associated to all TCs;

 group addresses, which identify a group of TCs;

 TC addresses, which identify a particular TC and;

 a TIM address, which indicates that a particular message is associated to the

TIM and not to any particular or group of TCs.

NCAP

TIM
ID

(...)

G
ro

u
p
 a

d
d
re

ss

TC address

TC address

TC address

TC address

TC address

TC address

G
ro

u
p
 a

d
d
re

ss

TC address

G
lo

b
al

 a
d
d
re

ss

T
IM

 a
d
d
re

ss

TIM
ID

TIM
ID

ID
Global address = 0xFFFF

0x8000 <= Group address <= 0xFFFE

0x0001 <= TC address <= 0x7FFF

TIM address = 0x0000

P
ro

ce
ss

in
g

u
n

it
s

1 0 0 0 1...

1 1 0 1 1...

OR logic

Bit mapped [0x8000 – 0xBFFF]

Group 1

Binary [0xC000 – 0xFFFE]

 Group
Address
(max.
 2^14-1
=16383)

 G
ro

u
p

 a
d

d
re

ss

Figure 4.5: Addressing mechanism used by the IEEE1451.0 Std.

All addresses are associated to a specific or to a range of addresses indicated in

hexadecimal format in figure 4.5. The TIM and the global addresses have a fixed value

of 0x0000 and 0xFFFF respectively. The TCs’ addresses have a value between 0x0001

and 0x7FFF, which means that one TIM may have up to 32767 TCs. The group

addresses have a value between 0x8000 and 0xFFFE. In order to send/receive messages

to/from multiple groups, these addresses can be defined according to two possible

solutions: i) bit mapped or ii) binary.

The bit mapped solution is used when few group addresses are needed and it is

desired to send a command to multiple groups at the same time. The address value must

be between 0x8000 and 0xBFFF, which means that the most two significative bits have

the binary value 10, and the remaining ones indicate the group address. This way, it is

possible to use an OR logic approach for referring more than one group.

82 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The binary solution is used when a large number of group addresses are required.

The address value must be between 0xC000 and 0xFFFE, which means that the two

most significative bits are always set, and the remaining ones define the group address

number. This means that a TIM may have up to 16383 groups using the binary solution,

while when using the bit mapped solution only 14 groups are available, despite able of

being addressed simultaneously using an OR logic.

4.3.2 Operating states and modes

During the operation of a smart device, the TIM and each TC operate in pre-defined

states running processes according to the state diagrams illustrated in figure 4.6. The

TIM has a unique state diagram, while each TC has its own state diagram enabling their

independent operation. The state transitions are automatically handled during the device

operation or when users send some particular commands. Both TIM and TCs start by an

initialization process that, when completed, place the TIM in the active state and each

TC in the idle state. The TIM must remain active so each TC may go to the operating

state or latter repositioned in the idle state using the Reset or TCIdle commands. The

dependence between the TIM and each TC is also evident when the TIM goes to the

sleep state caused by a Sleep command. When this occurs, all TCs go to the idle state

becoming inactive and requiring to be enabled to start running, and therefore, to be

(re)positioned in the operating state.

operating

idle

active

TCidle
command

TIM
sleep
state

Reset command

Enable
TCoperate
command

initialization

Initialization complete

Reset or
Power On or

TIM
Initialization

state

initialization

sleep

b) TC operating states

Reset or
Power On

Sleep command

Timeout

Custom

Wake-Up command

a) TIM operating states

Initialization
complete

Trigger

Figure 4.6: TIM and TC operating states.

When in the operating state, the TCs may run in different data sampling and data

transmission modes according to what is defined in their associated TC-TEDSs. Most of

these modes are ruled by trigger signals that can be applied by particular commands or

internally generated. They depend on the selected sampling modes and on the way a TC

runs (sensor, event-sensor or actuator). Due to the very specific information provided by

the trigger states diagrams, it was decided to present them in annex E of this thesis.

As represented in figure 4.7, a sampling mode defines the way a TC acquires/outputs

data into/from its DSs, and the data transmission mode represents the way those same

samples are transmitted/received to/from the NCAP.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 83

Data-Set (DS)

DS

Sampling mode

TIMNCAP

Transmission mode

Transducer
Channel (TC)

DSDS

Figure 4.7: Conceptual diagram of the TIM operation modes.

A TC may run as a sensor, an event-sensor or an actuator in up to 5 sampling modes,

and operate with other complemented modes specified in the associated TC-TEDS,

generically described in table 4.1. The data available within DSs are sent to the NCAP

according to 3 transmission modes, detailed in table 4.2, that are also specified in the

associated TC-TEDSs.

Table 4.1: IEEE1451.0 main TC sampling modes and complemented modes.

Main sampling modes

Trigger initiated

Available for TCs operating as sensors and actuators. After a trigger signal

they start storing data into DSs (sensors) or outputting data from the DSs

(actuators) until all are processed.

Free-running without

pre-trigger

Available for TCs operating as sensors and actuators. TCs operating as a

sensors start receiving data after entering in the operating state. All data are

discarded until the reception of a trigger. Once received, the data are stored in

DSs until they become full. TCs operating as actuators start outputting data

after entering in the operating state according to the End-of-DS operation
mode defined in its TC-TEDS.

Both types of transducers stop their operation if they leave the operating

state. If triggers are received during data reception or outputting, the DSs are

placed in their first position used to store/output a sample.

Free-running with

pre-trigger

Available for TCs operating as sensors with or without buffers enabled. They

start acquiring data into DS(s) after entering in the operating state and stop if

a DS is completed (number of samples in a DS = DS size - pre-trigger count

value defined in the associated TC-TEDS). If a trigger is received, they start

storing samples into another DS if operating with buffers enabled, or start

storing data samples again into the same DS if operating without buffers

enabled.

Continuous

Available for sensors, event-sensors and actuators. When operating as

sensors it is much similar to the Free-running without pre-trigger mode using

multiple buffers, but it does not require trigger signals to switch from DSs.
When operating as event-sensors, they are able to detect changes in the

inputs and, once detected, store the samples into multiple DSs. When

operating as actuators, they start outputting samples from a DS when

receiving a trigger. When all samples were outputted from a DS they

automatically switch to others. It uses the End-of-DS operation mode when

the last DS outputs its last sample.

Immediate

Available for TCs operating as sensors or actuators, they are able to store

(sensor) or output (actuator) data in/from DSs only after the reception of

Read/WriteTCDSsegment commands.

Complemented modes

Buffer

Non-buffered

Defines the behaviour of the DSs for sensors and actuators, i.e. the way

samples available in the DSs are stored or sampled.

End-of-DS operation
Method used by TCs operating as actuators for transmitting data when a DS

reaches its last sample (hold or recirculation).

84 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Streaming

operation

Applicable for TCs running in the continuous sampling operation mode, with

either the Streaming when Buffer full or Streaming at a fixed interval modes

(described in the next table). The TCs do not require any trigger signals or

commands for start storing or outputting samples into/from DSs.

Edge-to-report

operation

Used by event-sensors for defining transition signals detections modes

(falling transitions, rising transactions or all-transitions mode).

Actuator halt mode
Defines what should do an actuator when it is in an idle state (halt

immediate, halt at the end of the DS or ramp to a predefined state).

Table 4.2: IEEE1451.0 TIM to NCAP transmission modes.

Commanded
A TIM transmits data from a DS only in response to a ReadTCDSsegment

command.

Streaming when

Buffer full

Data are transmitted as soon as a DS is full without waiting for the NCAP to

issue a ReadTCDSsegment command.

Streaming at a fixed

interval

The DSs are transmitted at a fixed interval. The TIM can be designed to stop

using the current DS when it reaches a specified number of data samples.
When this happens, the TIM can start transmitting data to the NCAP (without

waiting for a ReadTCDSsegment command) while using other DSs for storing

other data.

4.3.3 Status registers and the status-event protocol

In order to monitor the entire operation of a device, including internal events (e.g. an

internal trigger) and errors that may appear, the standard provides a set of 3 status

registers with 32 bits for each TC and for the TIM, namely:

 condition registers, containing the current state of reported events and errors;

 event registers, which gather the previous state of the condition registers after

the generation of a new event or error and;

 masks registers, used to activate a Service Request (SR) generation when a

particular event or error occurs.

Each of the 32 bits indicates a particular event or error, some are optional, and they

are able to be read or written using specific commands. Annex F presents the status bits

defined for each TC and TIM.

To enable an automatic request of a particular TC or TIM, the status registers are

organized according to the status message generation logic illustrated in figure 4.8a). It

enables a SR signal (similar to an interruption) to be generated when a particular event

or error occurs in a TC or in the TIM itself. There is a single SR for each TC/TIM, but

traditionally these can be joined using an OR logic, which means that the entire device

can have a single SR, as illustrated in figure 4.8b). When this SR is generated and a so-

called status-event protocol is enabled, the device sends a TIM-initiated message to the

NCAP with a status message including the contents of the event register associated to

the TC and/or to the TIM that caused the SR.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 85

bit
31

bit
30

bit
29

bit
28

bit
1

condition
register

bit
31

bit
30

bit
29

bit
28

bit
1

event
register

bit
31

bit
30

bit
29

bit
28

bit
1

mask
register

bit
0

bit
0

read/clear
status-event

Service
Request

(SR)

SR TC 1

SR TC 2

SR TC n-1

SR TC n

SR TIM

...

a) status message generation logic for the

TIM and for each TC

b) TIM SR
generation (optional solution)

OR

Figure 4.8: Status message generation logic and TIM SR generation.

4.3.4 Message structures at the PHY channel

There are 3 types of messages for accessing an IEEE1451.0 compatible device,

namely:

 command messages, to send commands;

 reply messages, for commands’ replies and;

 TIM-initiated messages, for streaming data and for receiving status messages

(e.g. when the status-event protocol is enable).

As illustrated in figure 4.9, all these messages are divided into structures of octets,

each one representing particular information.

Destination address (most significant octet)
Destination address (least significant octet)

Command class
Command function

Lenght (most significant octet)
Lenght (least significant octet)

Command dependent octets

Success/Fail Flag
Lenght (most significant octet)
Lenght (least significant octet)

Reply-dependent octets

01234567
Octet bit order

01234567
Octet bit order

S
ig

n
if

ic
an

ce
o

rd
er

most

least

most

least

a) Command and TIM-initiated messages structures b) Command reply messages structures

S
ig

n
if

ic
an

ce
o

rd
er

Figure 4.9: Message structures.

86 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Both command and TIM-initiate messages have the same structure. They use the first

two octets to indicate the destination address for a particular command or from where a

specific TIM-initiated message comes from (e.g. the TIM, a TC or a group of TCs). The

second two octets indicate the class and command identification (specified by the

command function) or, for TIM-initiated messages, the associated command that could

have generated the dependent octets indicated in the last octets. Before these dependent

octets (required for some commands), the structure provides the message length, which

is also used by the reply messages after indicating, through one bit, the success (1) or

the failure (0) when applying a command
88

.

4.3.5 Commands

The IEEE1451.0 Std. provides two categories of commands: standard and

manufacturer-defined. All are issued using command message structures, and the replies

are provided by reply message structures. Regardless of the category, the commands are

divided into 2 octets. The most significant octet defines the class of the commands. The

least significant octet, called the function, identifies a specific command within the

class. There are mandatory and optional commands, and they can only be issued if the

TIM or a specific TC is in a compatible state, otherwise some are ignored and others

generate errors by setting bits in the status registers. Table 4.3 presents the different

classes of standard commands, exemplifying some of them.

Smart operations for an IEEE1451.0 compatible device are essentially implemented

by the TIM, according to TEDSs’ definitions. The devices may be designed using

different technological solutions, but they should implement all the described smart

operations able to be accessed through standard commands. These commands are

provided by the TIM and follow message structures whose fields are divided according

to different octets specifying distinct aspects, such as the addressed TC(s) or the TIM.

In order to let users remotely access these devices through standard commands, the

standard provides a set of APIs with methods to simplify and manage the access to the

referred commands, and therefore, to the smart transducers.

88 Messages may contain up to 65.535 octets plus the octets in the headers. If a message contains more

octets than can be sent with a single message, it is broken into multiple messages, named packets. It

is the responsibility of the data link layer, in the protocol stack, to break messages down into

multiple packets for transmission.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 87

Table 4.3: Classes of standard commands.

0 reserved

1 Common commands

Required commands addressed to the TIM in the active state or to TCs in any state*. Reads, writes or

updates TEDSs (QueryTEDS, ReadTEDSsegment, WriteTEDSsegment, and UpdateTEDS); accesses the

status registers (e.g. ReadStatusEventRegister), and controls the status-event protocol operation (Read /

WriteStatusEventProtocolState).
* the WriteStatusEventProtocolState requires the TCs in the idle state.

2 TC idle state commands

Addressed to all TCs in the idle state and to the TIM in the active state. Specifies the TCs’ operation

modes (e.g. BufferedState, SetTCdataRepetitionCount).

3 TC operating state

Addressed to a single TC. Requires all TCs in the operating state and the TIM in the active state.

Includes commands to read/write DSs’ segments (readTCDSsegment, writeTCDSsegment) and to control

triggers (TriggerCommand, AbortTrigger).

4 TC either idle or operating states

Addressed to a single TC in the operating or idle states, and the TIM in the active state.

Includes commands to change the TC operation states (TCoperate, TCidle) and to read or write some

TCs’ operating states (e.g.: WriteTCtriggerState).

5 TIM sleep state commands

Addressed to the TIM (address 0) in the sleep state. Implements a single optional command for forcing

the TIM to go to an active state (Wake-Up).

6 TIM active state commands

Addressed to the TIM (address 0) in the active state. Includes commands to read the TIM and the

IEEE1451.0 version (ReadTIMversion/IEEE1451.0Version), to store and recall operational setup

information (Store/RecallOperationalSetup), and to put the TIM into a low-power state (TIMsleep).

7 TIM any state commands

Addressed to the TIM (address 0) in any state. Implements a single and optional command to reset the

entire device, i.e. the TIM and all TCs (Reset).

8-127 Reserved

128-255 Open for manufacturers

4.4. The APIs: module communication, transducer services

and HTTP

The standard defines 3 APIs for the NCAP-TIM interface and for enabling the access

to the commands provided by the TIM. The APIs are organized according to a layered

structure represented in figure 4.10a), each one performing a particular role:

 Transducer services interface - is a NCAP-only API used by measurement and

control applications to access the IEEE1451.0 layer. It provides methods for

reading and writing TCs and TEDSs, send configuration, control and operation

commands to the TIM. It defines an optional interface for supporting non-

blocking read/write operations and to receive data from measurement streams.

 Module communication interface - is a symmetric interface implemented on the

NCAP and TIM sides containing methods implemented by an IEEE1451.x layer.

It specifies point-to-point and network interfaces.

 HTTP API - is a NCAP-only API used for remotely accessing TIMs, TCs and

TEDSs using the HTTP 1.1 protocol.

88 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Module communcations API

Commands

Module communcations API

Transducer services interface API

HTTP API
Applications

Users

HTTP server (HTTP API)N
C

A
P

T
IM

Util
package

Args
package

IEEE1451.0

IEEE1451.x

IEEE1451.x

......

IEEE1451.x

.....

......

HTTP
request

HTTP
response

N
C

A
P

T
IM

T
IM

......................
TCs

a) layered structure b) HTTP access

Figure 4.10: IEEE1451.0 Std. API layered structure and the HTTP schematic access.

The methods available in the APIs are supported by the Args and Util packages. The

Args package extends basic data types defined in the standard (e.g. Integers) to

structured types (e.g. IntegerArray). Additionally, it defines codes for specifying errors

originated from the physical NCAP-TIM interface or from the TIM itself, methods for

measurement the Quality of Service (QoS) on the communications, and others to

facilitate data manipulation. Data conversion methods are provided by the Util package

for encoding and decoding structured data types to/from octet arrays.

The logical communication between the NCAP and TIMs or between TIMs is

handled by the Module communication API. It is divided in two groups providing

methods for point-to-point or network communications. Each group defines three

interfaces: i) communication, implemented by the IEEE1451.x layer to control the

NCAP-TIM communications; ii) registration, to register the selected IEEE1451.x into

the system and; iii) receive, to notify the IEEE1451.0 layer that a message has been

received, or for aborting a communication.

The access to the TIMs is managed by the Transducer services API according to a

set of methods sequentially applied. It is entirely implemented in the NCAP side and

provides discovery methods for specifying the target TIM ID and TCs’ addresses.

Through the returned IDs the TCs are accessed using the transducer access methods.

These enable two types of TCs’ operations: i) blocking, where the TCs stop their

execution waiting for a read/write operation (stay blocked) and ii) non-blocking, where

the TCs wait (block) during a specific period of time (specified in a TEDS) for a

read/write operation before becoming unblocked. Other methods are provided in this

API for enabling a more precise control over the TIM, and in particular to handle

TEDSs’ data, namely by the possibility they provide to read, write or update TEDSs,

and to manage NCAP-side TEDSs’ cached information.

For enabling a remote access to the TIM, TCs and associated TEDSs, the

IEEE1451.0 Std. provides the HTTP API. As illustrated in figure 4.10b), the HTTP API

runs on an HTTP web server interfacing the other APIs. It is an optional solution, since

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 89

the standard permits the use of other applications designed according to the object

model defined by the IEEE1451.1 Std. [98], or the use of other proposals, such as the

Smart Transducer Web Services [99][100] that may facilitate network interfacing

NCAPs. Besides other available solutions, the HTTP API is the only described by the

IEEE1451.0 Std. for implementing simple client-server architectures (traditionally

implemented by weblabs). It provides the set of methods described in table 4.4 that

indicates the target NCAP (identified through its IP and port numbers), followed by the

path with the command and its parameters (arguments), using the following HTTP

message format:

 http://<host>:<port>/<path>?<parameters>

Although the arguments are defined according to each command using the data types

specified in the Args package, all have in common the target TIM and TC. Additionally,

all specify the reply message format in an argument, which can be in XML, HTML or

text format.

This way, by using the HTTP API, it is possible to design thin or thick web

applications to run in the users’ accessing devices for remote accessing weblab modules

designed as smart transducers. The weblab infrastructures can be designed according to

the IEEE1451.0 Std., taking the advantage of its smart and standardized architecture

supported on TEDSs that define the operation of all TCs.

Table 4.4: IEEE1451.0 Std. HTTP API (paths and methods).

Discovery

1451/Discovery/TIMDiscovery Discovers IEEE1451.x communications modules,

TIMs and TCs. 1451/Discovery/TCDiscovery

Transducer Access

1451/TransducerAccess/ReadData

Reads and writes TCs.

1451/TransducerAccess/StartReadData

1451/TransducerAccess/MeasurementUpdate

1451/TransducerAccess/WriteData

1451/TransducerAccess/StartWriteData

TEDS Manager

1451/TEDSManager/ReadTeds

Reads and writes TEDSs and manages NCAP-

side TEDSs’ cached information.

1451/TEDSManager/ReadRawTeds

1451/TEDSManager/WriteTeds

1451/TEDSManager/WriteRawTeds

1451/TEDSManager/UpdateTedsCache

Transducer Manager

1451/TransducerManager/SendCommand

Provides control functions over TIM accesses,

e.g. to lock the TIM for exclusive use and to send

arbitrary commands to it.

1451/TransducerManager/StartCommand

1451/TransducerManager/CommandComplete

1451/TransducerManager/Trigger

1451/TransducerManager/StartTrigger

90 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

4.5. Suggested weblab infrastructures compliant with the

IEEE1451.0 Std.

Besides providing several APIs for accessing transducers, the IEEE1451.0 Std.

defines their functional structure without specifying any particular technology for their

implementation. Taking into consideration the wide range of applicability provided by

the standard specifications, it is seen as an interesting solution to standardize the access

and the design of weblabs. The defined smart transducers implemented or accessed by

TCs, can be weblab modules, such as Oscilloscopes, Multimeters, dedicated

Controllers, among others, since they provide processing units and I/O interfaces to

access the target experiments. The access to these modules embedded (or not) in the

TIM, can be implemented through an architecture supported by an infrastructure similar

to the one illustrated in figure 4.11 that uses the NCAP-TIM reference model.

Internet

Weblab server

NCAP TIM

Weblab
infrastructure

Target

experiment

Users

TC

 weblab
module

Embedded weblab module

TIM
TC

Figure 4.11: Adopting the IEEE1451.0 Std. for designing a weblab infrastructure.

The weblab modules can be implemented inside or outside the TIM and designed or

accessed as smart transducers to interact with the target experiments. Embedded weblab

modules must be always designed according to the IEEE1451.0 Std. and bind to the

TIM using the same technological solution, such as FPGAs. Weblab modules outside

the TIM can be IEEE1451.0-compliant modules or stand-alone and modular

instrumentation originally not compliant with the standard. These instruments can

preserve their inherent characteristics (e.g. their particular accessing commands,

accessing buses and architectures) since it will be the TCs the responsible for

guarantying the compatibility with the standard. The weblab server integrates all

pedagogical contents and administrative tools for supporting a particular course and to

manage the accesses to the infrastructure (as already detailed in chapter 2).

Both NCAP and TIM can be implemented using any type of technology, and these

can either be separately defined, as an hybrid solution, or integrated in a unique device.

It is up to the developer to adopt one of these solutions, even though hybrid

architectures may provide a more versatile option since the NCAP and the TIM can be

more easily replaced. Whatever the adopted solution, the standard also permits the use

of several TIMs connected to a single NCAP, these also able to be interfaced through

the Internet. The option to use one or more TIMs and NCAPs depends essentially on the

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 91

available technology for their implementation, and on the required weblab modules for

conducting a particular experiment.

As illustrated in figure 4.12, four conceptual solutions can be identified for

implementing weblab infrastructures. The first uses a single NCAP-TIM connection to

access one target experiment. This is the simplest solution, and involves the adoption of

a simple point-to-point interface. The second solution also uses a single NCAP-TIM

connection, but the TIM interfaces different target experiments accommodating or

interfacing different weblab modules. Each module is adopted for a different experiment

placed in the same physical location. This solution intends to exploit all TIM resources

to access more than one experiment. The third solution uses more than one TIM

connected to the NCAP. It can be adopted for traditional experiments or for experiments

divided into several parts geographically dispersed, each requiring the use of dedicated

modules. It is also suggested when the device adopted for implementing the TIM cannot

accommodate or interface all required weblab modules. Through different physical

interfaces, in both cases the TIMs can be interfaced to a single NCAP providing the

remote access and all the services (eventually using virtual TEDSs) required for

managing the accesses to each weblab module and therefore to the target experiment.

The fourth solution can use any of the previously referred solutions since it focus on

interfacing NCAPs. It can be applied for situations when a particular weblab requires

more than one infrastructure to provide remote experiments. This is much like the third

solution where a particular experiment is divided into different parts geographically

dispersed. Nevertheless, in this solution the access management must be firstly handled

by an external weblab server that selects the appropriated infrastructure. Only after this

selection, the NCAP of the selected infrastructure may handle the access to the TIM(s)

to control/monitor the target experiment using the associated weblab modules.

Internet

TIM
.........

TIM

Part

Target experiment(s)
(parts geographically dispersed)

Part n Part n

TIM TIM

Weblab
server

NCAP NCAP

NCAP

TIM

Target

experiment

NCAP

TIM TIM

Part I Part n

Target experiment(s)
(parts geographically dispersed)

.........

TIM

.........

Target

experiment 1

NCAP

Target

experiment n

.........

.........

TIM

Target
exp.

...

Figure 4.12: Possible weblab infrastructures based on the IEEE1451.0 Std.

Whatever the adopted solution for implementing the weblab infrastructure, some of

the characteristics provided by the IEEE1451.0 Std. can be extended to improve

92 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

weblabs standardization and dissemination levels, in particular by designing enhanced

architectures for facilitating the dissemination of experiments and resources through the

educational community, implementing a reconfiguration capability and an assessment

mechanism during the conduction of a specific experiment. This way, weblabs can be

more easily adopted and selected as a tool for the conduction of the required laboratory

work in engineering education.

4.6. Extending the IEEE1451.0 Std. to enhance weblab

architectures

Despite the well defined architecture of the IEEE1451.0 Std. that led to the suggested

solutions, the access management to different weblabs and target experiments is an

important issue that can be implemented by other weblab architectures already

available. In chapter 2 some projects with well defined architectures were described,

namely the iLabs, NetLab and VISIR. Although the NetLab and the VISIR projects

have successful architectures, enabling a standard access to stand-alone and modular

instruments using the ISA and the VISA, each one has its own management system and

adopts commercial instruments for accessing the target experiments. Furthermore, they

are seen as complementary solutions since they were not designed to be integrated with

other architectures. The iLabs and other briefly referred projects, such as the LiLa and

the Lab2Go, follow a different approach. They have the objective of supporting

different architectures with software models and frameworks. Their acceptance by the

educational community is proved by their large influence in some of the most important

decisions in GOLC, which incentivize understanding how can the proposed

IEEE1451.0-compliant weblab infrastructures be adopted together with those

architectures.

Through the brief conducted analyses to iLabs, it was seen that its software

framework architecture is more focused on the access management to different types of

weblabs, implementing scheduling mechanisms. Therefore, adopting the iLabs

architecture
89

 [62] for managing the accesses to IEEE1451.0-compliant weblab

infrastructures may be considered. Mapping the iLabs APIs with the APIs defined in the

IEEE1451.0 Std. can be a solution for implementing this complementarity. The Lab

server suggested in iLabs can be implemented by one of the suggested weblab

infrastructures defined in the previous section, integrating this way the iLabs access

management system. The LiLa project
90

, that also implements scheduling systems,

stands out for having a collection of SCORM compliant learning objects that can be

included into VLEs, such as Moodle. This can be adopted for integrating pedagogical

contents for the conduction of experimental activities in engineering courses. The last

relevant project is the Lab2Go that can be the basis for describing the features of the

suggested weblab infrastructures, since it provides a Metadata - Reference Model

89 http://ilab.mit.edu/, http://ilabcentral.org/
90 http://www.lila-project.org/

http://ilab.mit.edu/
http://ilabcentral.org/
http://www.lila-project.org/

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 93

Specification adopted for describing some of the features provided by online labs
91

[137].

Despite the relevance of all these architectures, and their possible complementarity

with the suggested IEEE1451.0-compliant weblab, none of them considers the design

and the reconfiguration of weblab modules in the infrastructures. Moreover, the

diversity of available solutions and the software/hardware layers covered by the

IEEE1451.0 Std. incentivize its adoption for designing weblabs, providing standard

access to the weblab modules, reconfiguration capability and a mechanism for

supporting assessments during the conduction of an experimental activity. Nevertheless,

the spread and share of weblab infrastructures and experiments through the educational

community, can be implemented using some of the provided features of the iLabs

architecture for users’ access management, the LiLa portal to accommodate pedagogical

contents and, in particular, the Lab2go Metadata - Reference Model Specification to

organize the features of a particular weblab and associated experiments. Thus, the

definition of an extended IEEE1451.0 architecture able to autonomously implement a

weblab but also able to adopt some of the referred features of the described projects, can

be an important contribution for the widespread adoption of weblabs in engineering

education.

4.6.1 Suggested architecture

The suggested architecture gathers information into the weblab server regarding the

infrastructures and the target experiments [138]. This server may be located anywhere

and it operates as a central provider for all infrastructures. As illustrated in figure 4.13,

the architecture allows remote accessing target experiments through weblab

infrastructures based on the referred NCAP-TIM reference model. Through the NCAPs,

these infrastructures are connected to the Internet to one or more weblab servers that

provide their URL (Unified Resource Location). These same infrastructures also

provide other relevant information, such as the experiments they may handle and

technical characteristics of the weblab infrastructure (e.g. processing power, interface

ports, etc.). This way, for reconfigurable infrastructures (e.g. the ones developed using

FPGA technology), teachers or students may decide if they can accommodate the

weblab modules required for conducting a specific experiment.

As presented in the previous sections, the IEEE1451.0 Std. specifies a set of TEDSs

able to define the behaviour of a weblab infrastructure and its modules. An additional

TEDS can also be specified to enhance weblabs, namely to facilitate users to find the

infrastructures and the experiments, and the institutions to create a network with several

weblabs. These suggested TEDSs, named LabTEDSs, are available in each NCAP.

They provide information about each infrastructure, namely the URL, a description of

the available experiments, and technical features, among other information. During a

registration process, each URL defined in a LabTEDS is sent to the weblab server.

91 http://www.lab2go.net/

http://www.lab2go.net/

94 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Through an internal application, it reads all LabTEDSs to provide information about the

infrastructure and associated experiments. After this process, users may select one

infrastructure, and all data transferred during the conduction of a specific experiment,

can be automatically monitored for assessment purposes.

Internet

NCAP TIM

NCAP

TIM

LabTEDS

Weblab server

TEDS

TIMTIM

LabTEDS
accessURL

HDL
files

Interfaces

users Weblab
infrastructures

Target

experiment

Target

experiment

...............

...............

TEDS

TEDSTEDS

TEDSTEDS

Figure 4.13: Suggested weblab architecture based on the IEEE1451.0 Std.

Next subsections present the LabTEDS and the operational sequence for registering,

discovering and accessing a specific infrastructure and the associated experiments,

using a set of new IEEE1451.0 HTTP API methods detailed in annex G, namely:

 NCAPRegister [table G.1], to register or unregister the NCAPs of the

infrastructures into the weblab server (new Register API);

 NCAPDiscovery [table G.2], to discover those NCAPs (Discovery API);

 ReadLabTEDS [table G.3] and WriteLabTEDS [table G.4], to read and write

LabTEDSs (TEDS manager API);

 ReadTIM [table G.5] and WriteTIM [table G.6], to reconfigure the weblab

infrastructures (new Reconfiguration API), and;

 ReadLog [table G.7] and WriteLog [table G.8], to read and write a log file for

assessment purposes (new Log access API).

4.6.2 LabTEDS

Following the same structure defined for all TEDSs, the LabTEDS establishes a

standardized way to disseminate and share weblabs, and to specify infrastructural

resources. It provides information about the number and TIMs associated to the

infrastructures, their locations, if they provide log files, the type of implementation (thin

or standard), among others. To describe the available resources in the infrastructures

(e.g. power processing capabilities, memory space, etc.) and the associated experiments,

some fields are defined as a text-based TEDS according to the Lab2go Metadata -

Reference Model Specification illustrated in figure 4.14.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 95

Online laboratory

accessURL

title

description

language

experiment

releaseDate

architecture

labStatus

Remote laboratory

Virtual laboratory

Hybrid laboratory

Experiment

title

description

language

scientificField

educationalLevel

difficultyLevel

typicalLearningTime

onlineLab

typeOfExperiment

duration

creator

Observation

Experiment

Controlled

Experiment

Adaptive

Experiment

accessInformation

costs

technicalData

documentation

tutorial

owner

administrator

creator

Figure 4.14: Lab2go Metadata - Reference Model Specification.

Table 4.5 presents the LabTEDS’s structure including the proposed fields, namely:

 Field 3 (TEDSID) [required] - TEDS IDentification Header: uses the same

format specified for all other TEDSs specifying the access ID code with the

number 16.

 Field 10 (numLabs) [optional] - Number of weblab infrastructures: this field is

required when a weblab architecture is supported by several infrastructures. In

this situation, it indicates the number of required infrastructures (number of

NCAPs), the URL and technical resources of each one. The group of fields with

related information should specify information about the TIMs and the

experiments (or parts) they may handle. In other words, if an experiment needs

more than one weblab infrastructure, eventually located in different places, this

field should indicate the number of required infrastructures. In this case, the

remaining fields should specify both infrastructures and the experiment(s) they

handle, and should also be located in all NCAPs. If this field is omitted, users

must consider that there is a single weblab infrastructure containing all required

resources to run the experiment(s) detailed in the remaining fields.

 Field 11 (accessURL) [required] - Location of the weblab infrastructure:

represents the IP address and port number of a specific weblab infrastructure. If

the accessURL element of the Lab2go Metadata - Reference Model

Specification is defined in the XML-based text block, this field should have the

same value.

 Field 12 (logURL) [optional] - Location of the log file: represents the IP address

and port number of the log file used to gather all data transferred between users

and the weblab infrastructure. If this field does not exist, it means the current

weblab does not implement the logging process (this aspect is further discussed

in the next subsection).

 Field 13 (implType) [required] - Implementation type: specifies if the weblab

infrastructure follows a thin (≠ 0 (true)) or standard (= 0 (false)) implementation

(this aspect is further discussed in the next subsection).

96 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

 Field 14 (NumTIMs) [required] - Number of TIMs connected to the NCAP:

Indicates the number of TIMs adopted by the weblab infrastructure. This is a

required field since some weblab infrastructures may use more than one TIM

(e.g. more than one FPGA or more than one PC). Technical data of each TIM

should be provided in text-based format through the remaining fields using the

Lab2go Metadata - Reference Model Specification. It is up to the developer to

describe the technical data according to each TIM specification.

 Fields 15, 16 and 17 [optional]: gather data information using the Lab2go

Metadata - Reference Model Specification according to text-based format TEDS

described in the IEEE1451.0 Std. Information already indicated in previous

fields of this LabTEDS should be repeated if defined in the metadata model (e.g.

the accessURL).

Table 4.5: LabTEDS fields.

Field

num.
Field name Description

Data

type

Num.

Octets

- Length UInt32 4

0-2 - reserved - -

3 TEDSID TEDS IDentification Header UInt8 4

4-9 reserved - -

10 numLabs Number of weblab infrastructures (NCAPs) UInt8 1

Weblab infrastructure related information (repeated for each weblab infrastructure / NCAP)

Web Location - URL

11
Access

URL

Weblab URL

[IP addr. (first 4 octets) + port number (last octet)]
UInt8 5

12
Log

URL

Log file URL

[IP addr. (first 4 octets) + port number (last octet)]
UInt8 5

Technical resources

13 implType
Implementation type (thin≠0 (true), standard=0

(false))
Boolean 1

14 numTIMs Number of TIMs connected to the NCAP UInt8 1

Related information (should be repeated for each TIM and for each supported language)

15 numLang The number of language blocks in this TEDS = N UInt8 1

16 dirBlock Language block description (repeated N times) - -

20 langCode Language code from ISO639 UInt8 2

21 offset Language offset UInt32 4

22 length Language length = LL UInt32 4

23 compression Enumeration identifying the compression technique UInt8 1

17 subSum Non-displayable data checksum UInt16 2

- XMLText XML-based text block (Lab2go semantics) text LL-2

- XMLSum Text block checksum UInt16 2

18-19/

24-127
- Reserved - -

128-
255

- Open to manufacturers - -

- Checksum UInt16 2

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 97

This way, all weblab infrastructures and/or experiments can be described using

LabTEDSs. However, its adoption implies following a particular operational sequence

to enable their standard and distributed access.

4.6.3 Operational sequence

As illustrated in figure 4.15, the operational sequence includes three processes:

 Registration: registers weblab infrastructures created according to the

IEEE1451.0 Std. The IP addresses and port numbers included in the accessURL

field of each LabTEDS are copied into the weblab server, registering the

infrastructures into the network.

 Discovery: implements a discovery process, so users may find the appropriate

weblab they want to use, requesting a list of infrastructures and available

experiments already registered in the weblab server. This list may be

dynamically created using the NCAPDiscovery method. As described in the

following subsections, this method gets the URL of all registered weblab

infrastructures. Through their URL, each LabTEDS may be accessed using the

readLabTEDS method to create, for example, a webpage describing the

infrastructures and associated experiments.

 Access: enables the access to weblab infrastructures to: i) control experiments;

ii) reconfigure weblab infrastructures with weblab modules (when they provide

this feature) and; iii) monitor all data transferred between students/teachers and

the infrastructures. This last sub-process is relevant for assessment purposes,

since all data transferred use methods for issuing standardized commands that

can be logged into a file for future analysis using, per example, intelligent

tutoring systems [130][139][140].

LabTEDS 1

Weblab infrastructuresWeblab server

registration

accessURL 2

LabTEDS 2

registration

accessURL 1

users

discovery

access
...........

.......

Internet

Figure 4.15: Operational sequence for accessing weblab infrastructures.

All these processes are now described below using illustrative diagrams with the set

of new IEEE1451.0 HTTP methods.

98 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Registration

The registration process is automatically executed after connecting a weblab

infrastructure to the Internet. It uses the NCAPRegistration method to send the URL to

the weblab server, so it can create a map table with all registered weblabs. It is up to the

weblab server to periodically query if all infrastructures are still running, for example,

using a ping command to check if the destination IP address is available. If the response

to this command indicates the inexistence of the target IP, it means that the registered

infrastructure is not available anymore, and its URL should be deleted from the map

table, unregistering it. A weblab infrastructure may also unregister itself without being

disconnected from the Internet, using the same NCAPRegistration method. Figure 4.16

illustrates the proposed register/unregister process.

Weblab
server

Weblab
infrastructure

NCAPRegister

ping

response to ping
NCAPRegister

Register the
infrastructure

Query the infrastructures is
made periodicaly

The infrastructure may be unregistered depending on the ping command reply

T
im

e lin
e

Infrastructure
connected in
the Internet

Figure 4.16: Process for registering/unregistering weblab infrastructures.

Discovery

The discovery process uses the NCAPDiscovery and ReadLabTEDS methods. The

NCAPDiscovery follows a similar approach provided by the TIMDiscovery and

TransducerDiscovery methods. It discovers the location of all registered infrastructures

(the NCAPs) by retrieving their IP addresses and port numbers provided by each

accessURL field of the associated LabTEDS. The ReadLabTEDS is much similar to the

methods included into the TEDS Manager API, namely to the ReadRawTEDS and

ReadTEDS
92

. Using the URL retrieved by the NCAPDiscovery, the ReadLabTEDS reads

all information within each LabTEDS to create, for example, a webpage listing all

available infrastructures and associated experiments. Caching LabTEDSs is not

considered for the proposed architecture, since they should be always implemented in

the NCAP or remotely located. No redundant information is required, despite

developers may implement a mechanism to replicate LabTEDSs in more than one

location.

92 The IEEE1451.0 Std. adopted these two methods because it suggests caching the same TEDS

available in a TIM inside the NCAP, to improve speed and security by implementing redundant

information. The same ReadRawTEDS reads TEDSs available in TIMs, and the ReadTEDS may read

these same TEDSs only if they are not available in the NCAP, otherwise it reads the cached TEDSs.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 99

The new NCAPDiscovery and ReadLabTEDS methods can be used by user-side or

weblab server-side applications. As illustrated in figure 4.17, in both situations the

NCAPDiscovery method retrieves the URL of a specific weblab infrastructure.

NCAP
Discovery

ReadLabTEDS

Weblab
server

Weblab
infrastructure

T
im

e lin
e

NCAPDiscovery
IP address

port number

ReadLabTEDS
responseData

weblab access

users Weblab
server

Weblab
infrastructure

users

responseData

getWebpage
webpage

weblab access

a) User-side b) Weblab server-side

Figure 4.17: Using the NCAPDiscovery and ReadLabTEDS methods to access registered

weblab infrastructures.

In the first solution (user-side), users start sending the NCAPDiscovery to get an array

with the URLs of all registered infrastructures. Based on this information, users read all

features of each weblab infrastructure and/or experiments using the ReadLabTEDS.

Supported on the retrieved information from the LabTEDS, users create a list of all

available infrastructures and/or experiments.

In the second solution (weblab server-side), the NCAPDiscovery and ReadLabTEDS

are applied by the weblab server itself. An application constantly uses the

NCADiscovery method to get the URL of all registered infrastructures. Using the URLs

retrieved from that method, the weblab server consults each LabTEDS using the

ReadLabTEDS method, in the same way as described for the first solution. Unlike the

first solution, where all processing is made in the user-side, this second solution requires

a specific application inside the weblab server to handle the information retrieved from

each infrastructure.

Access (reconfiguration and logging)

The access process is divided in three sub-processes: i) control; ii) reconfiguration

and; iii) logging. The control sub-process is already covered by current methods

provided by the IEEE1451.0 HTTP API. It allows users to interact with the experiments

provided by the infrastructures. The other two (reconfiguration and logging) require

using new methods, as detailed in the following items.

100 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

a) Reconfiguration

To remotely reconfigure weblabs, such as the ones using FPGA-based boards for

implementing the infrastructures, two new IEEE1451.0-HTTP API methods are

suggested, namely the ReadTIM and the WriteTIM. These methods are handled by the

NCAP and their adoption depends on the technological architecture of each TIM. While

the ReadTIM may be used without the previous methods, the WriteTIM should only be

applied after reading the technical characteristics of the target TIM. It is necessary to

use the ReadLabTEDS to get the technical data from the metadata defined in the XML

text-fields to evaluate if the TIM is capable of accommodating or accessing a specific

weblab module. Figure 4.18 illustrates the reconfiguration sub-process sequence using

the WriteTIM and ReadTIM methods.

b) Logging

The logging sub-process monitors users’ actions during their interaction with a

specific infrastructure. The objective is to provide a mechanism for assessment purposes

so teachers, eventually supported by automatic intelligent tutoring systems, may consult

a specific log file to evaluate students’ behaviour during the conduction of an

experiment. Field 12 of the LabTEDS (LogURL) indicates if a specific weblab

infrastructure has the logging activated by the URL of the log file. When active (i.e. the

LogURL is defined), all data used to access the infrastructure are logged into that file

located in the NCAP or remotely in the weblab server. The file, e.g. a database table,

should keep track of all data exchanged between the weblab infrastructure and the

users’ accessing devices according to the XML schema format presented in figure 4.18,

namely: the title of the experiment (expTitle), user’s identification (userID), a date

indicating when a specific action was applied (date), and the standardize methods

(method) with associated parameters (data).

The WriteLabTEDS activates the logging session writing the URL of the log file into

field 12 of the LabTEDS. Teachers may then read all students’ actions described in the

log file, using the ReadLogFile method. To clean or update that same log file (i.e. to

change its contents) teachers may use the WriteLogFile method. It is up to the developer

to establish some constrains on using both methods, since in most situations they should

only be accessible for teachers (e.g. for assessment purposes).

Despite the proposed architecture may contribute for the dissemination and wide

adoption of weblabs in education, the complexity of the IEEE1451.0 Std. may difficult

the development of their infrastructures. To overcome this situation, when less

demanding infrastructures are required to implement weblabs (e.g. weblab modules

implemented/accessed with a single TIM and/or implemented by technological devices

with limited resources), a single NCAP-TIM connection may be adopted using a thin

implementation of the IEEE1451.0 Std., following the first two solutions proposed in

section 4.5.

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 101

Weblab
server

Weblab
infrastructure

users

ReadLabTeds
responseData

(fields 20,21/tech. architecture)

get
weblab module

WriteTIM

ReadTIM
weblab module response

T
im

e lin
e

Suggested log file XML schema

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:element name="LogFile">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="expTitle" type=" stml: _String"/>

 <xs:element name="userID" type=" stml: _String"/>

 <xs:element name="date" type=" stml: timeInstance"/>

 <xs:element name="method" type=" stml: _String"/>

 <xs:element name="data" type=" stml: StringArray"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Figure 4.18: Using the WriteTIM and ReadTIM for reconfiguring weblab infrastructures

and the suggested XML schema for the log file.

4.7. A thin implementation of the IEEE1451.0 Std. applied to

weblabs

According to the IEEE1451.0 Std., the NCAP and the TIM should be connected

through physical protocols (e.g. Bluetooth) following another IEEE1451.x Std. Despite

the standard intends to form the basis for future and previous IEEE1451.x Stds., some

of those are not yet compatible. Furthermore, the NCAP-TIM connection requires using

two additional APIs (Transducer services and Module communication) that imply

overloading developments and do not bring any added value for weblab infrastructures

that use single NCAP-TIM connections. These require a point-to-point interface that,

according to the IEEE1451.0 Std., requires using the IEEE1451.2 Std. However, this

standard is not yet compatible with the IEEE1451.0 Std. despite some suggestions [128]

and implementations [129], and it can overload the selected devices for implementing

the infrastructures. In these situations, removing both APIs from the reference model

does not limit the standardization advantages provided by the standard. The design of

all weblab modules still follows the same defined specifications, which includes their

design and access using standard commands and the HTTP API. The differences focus

on the way NCAP-TIM interface is internally managed. Although the plug&play

facility of the NCAP-TIM interface becomes dependent on development options, there

is the advantage of using an infrastructure more easily implemented with less

demanding technological devices, and not dependent on actualizations of other

IEEE1451.x Stds.

Therefore, a thin implementation can be implemented for infrastructures using point-

to-point NCAP-TIM connections using any type of physical protocol. This implies

removing the Transducer and Communication APIs of the layered structure, simplifying

the access to the commands by directly mapping them to the HTTP methods, as

102 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

represented in figure 4.19. It is up to the NCAP to implement this mapping and to

handle the HTTP methods and their arguments, so they can be structured according to

the message structures defined in the IEEE1451.0 Std. and already presented in section

4.5. Table 4.6 presents the proposed mapping between the HTTP methods and the

commands, with all information detailed in annex H. It is important to notice that not all

methods are mapped, which means some are considered irrelevant for controlling the

TIM or they are exclusively handled in the NCAP side. However, this thin

implementation is just an alternative solution that, according to the proposed and

enhanced IEEE1451.0 architecture, must be indicated in field 13 (implType) of each

LabTEDS.

Module communcations API

Commands

Module communcations API

Transducer Services Interface API

HTTP API
Applications

N
C

A
P

T
IM

......................

TCs

The interface depends
exclusively on the
adopted physical

connectionHTTP methods
are mapped to

commands

Figure 4.19: A thin implementation of the IEEE1451.0 Std. layered structure.

Table 4.6: Mapping of HTTP APIs’ methods to TIM commands.

HTTP APIs and methods Commands Observation

Registration API
No map -

NCAPRegistration (new)

Discovery API

No map -
NCAPDiscovery (new),

TIMDiscovery and

TransducerDiscovery

Transducer Access API

ReadData, StartReadData,

MeasurementUpdate

SamplingMode and

ReadTCDSsegment
Tables H.1, H.2

WriteData
SamplingMode and

WriteTCDSsegment
Table H.3

StartWriteData
SamplingMode and

WriteTCDSsegment
Table H.4

TEDS Manager API

ReadTEDS, ReadRawTEDS,

UpdateTEDSCache
ReadTEDSsegment Tables H.5, H.6

WriteTEDS, WriteRawTEDS WriteTEDSsegment Table H.7

Read/WriteLabTEDS (new) No map -

Transducer Manager API

SendCommand, StartCommand

and CommandComplete
Any command Tables H.8, H.9

Chapter 4: The IEEE1451.0 Std. as a smart framework for weblabs 103

Trigger or StartTrigger

ReadTEDSsegment and

SamplingMode and

TriggerCommand

Table H.10

Reconfiguration API
No map -

WriteTIM or ReadTIM (new)

Log access API
No map -

WriteLog or ReadLog (new)

4.8. Summary

This chapter described the main aspects of the IEEE1451.0 Std., which is

characterized by a well-defined layered architecture including specifications for

designing and interfacing weblab modules required for controlling and monitoring the

target experiments. Its reference model was presented, which includes one or more

TIMs remotely accessed through a NCAP for controlling the TCs implementing or

binding weblab modules. Associated characteristics were also detailed, such as the

operation modes, accessing mechanisms and commands to control the TIM and each

TC, the available APIs for the NCAP-TIM interface and for their remote access, and in

particular the set of defined TEDSs, as well as their internal structures. Supported on

features defined by the IEEE1451.0 Std., this chapter suggested some compliant

infrastructures, which can be part of a generic and enhanced architecture to facilitate the

widespread sharing of weblabs through the educational community. The proposed

enhancements involve the use of a new TEDS, named LabTEDS, for providing generic

information about the infrastructures and associated experiments, and the use of new

HTTP-based interfaces and methods for managing weblab resources. Finally, this

chapter emphasized the possibility of simplifying the layered architecture of the

standard, through a thin implementation, for facilitating the design of weblab

infrastructures compatible with the proposed enhanced architecture.

Next chapter presents a prototype of this thin implementation developed using FPGA

technology to enable its remote access and reconfiguration.

104 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 5: A weblab implementation supported by FPGA-based boards 105

 Chapter 5

A weblab implementation supported by

FPGA-based boards

The features of the IEEE1451.0 Std., suggested extensions and proposed

architectures establish the framework that supports the IEEE1451.0-compliant and

FPGA-based weblab prototype described in this chapter. The overall weblab

architecture and the underlying infrastructure able to be reconfigured with different

weblab modules controlled/monitored according to the IEEE1451.0 Std., are described

in the following sections. A special attention is given to the infrastructure designed

according to the thin implementation of the IEEE1451.0 Std. reference model.

Characteristics and functionalities provided by an IEEE1451.0-compliant module are

also described, since it enables the interface and the standard access to different and

compatible weblab modules embedded in an FPGA-based infrastructure. This access is

further explored, by presenting the provided accessing mechanisms to the weblab. The

chapter ends by describing a tool that enables reconfiguring the weblab infrastructure

with the modules required for conducting remote experiments, using IEEE1451.0

commands.

106 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 5: A weblab implementation supported by FPGA-based boards 107

5.1. Overall architecture: weblab server and underlying

infrastructure

The overall architecture proposed follows the same generic approach of a traditional

weblab, comprising an infrastructure supported by a weblab server. These are connected

to the Internet, and each one is able to provide the services required for conducting

remote experiments, as part of an engineering course. The weblab server is capable of

using solutions already developed, such as the iLabs architecture
93

 for users’ access

management, and the LiLa portal
94

 to accommodate pedagogical contents. However, the

developed prototype does not integrate any of them. Additionally, the different

scenarios suggested in the previous chapter for developing weblab architectures based

on extensions proposed for the IEEE1451.0 Std., can be also easily applied in future

designs. With few changes, the operational sequence described in section 4.6.2, namely

the processes of registering, discovering and accessing the infrastructures, can be latter

implemented to disseminate the weblabs and share the associated experiments through

the educational community. The WriteTIM method of the suggested reconfiguration API

was adopted for reconfiguring the infrastructure. It is precisely the way this

infrastructure can be reconfigured and accessed the focus of the developed weblab

prototype, to illustrate the usage of the IEEE1451.0 Std. supported by FPGA technology

for designing reconfigurable weblabs.

The prototype follows an architecture that provides an IEEE1451.0 standard access

to the underlying infrastructure and to the adopted weblab modules. It enables

reconfiguring those modules without changing the hardware platform that forms the

infrastructure. Instead of using traditional instrumentation to interact with the target

experiments, the architecture adopts embedded modules. These are described through

HDL files according to the IEEE1451.0 Std., able to be synthesized to FPGAs, which

form the core of the infrastructure.

As illustrated in figure 5.1 and figure 5.2, the architecture is supported by a weblab

server and by an underlying infrastructure designed according to the NCAP-TIM

reference model. Among all the possible solutions described in section 4.5, the

prototype adopts a single NCAP-TIM connection and uses the proposed thin

implementation that establishes the direct mapping between the methods of the

IEEE1451.0-HTTP API and the commands implemented in the TIM. The weblab server

runs in a standard PC acting as an HTTP web server. It integrates a Reconfiguration

Tool (RecTool) to create a bitstream file that defines the so-called weblab project. This

weblab project comprises the weblab modules required to control/monitor the target

experiments that will be reconfigured in the infrastructure. This infrastructure adopts an

NCAP-TIM connection using an hybrid solution. A thin computer acting as a light

93 http://ilab.mit.edu/, http://ilabcentral.org/
94 http://www.lila-project.org/

http://ilab.mit.edu/
http://ilabcentral.org/
http://www.lila-project.org/

108 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

HTTP web server implements the NCAP. The TIM, where all modules are embedded

and accessed using TCs, is implemented in an FPGA-based board.

NCAP

Web
server

WWW

Users

Target

experiment
IE

E
E

1
4
5
1
.0

H

T
T

P
 A

P
I

Reconfiguration

Tool (RecTool)

Weblab
server

Weblab infrastructure

IEEE1451.0

-Module

Weblab
module

.........

TC

TC

TC

TIM FPGA-based board

TEDSTEDS

Weblab
module

Weblab
module

IE
E

E
1
4
5
1
.0

C

o
m

m
a
n
d
s

weblab project

Section 5.2

Section 5.2.3

Section 5.3

Section 5.2.2

Section 5.4

Section
5.2.1

Section 5.5

Section 5.1

Figure 5.1: Bock diagrams of the implemented weblab architecture.

Weblab server

NCAP
(thin computer)

TIM
(FPGA-based board)

Target
experiment
(example)

Figure 5.2: Picture of the implemented weblab architecture.

To create the weblab project, users directly interact with the weblab server for

accessing the RecTool. They may select a set of files describing each weblab module

(provided by the weblab server) and synthesize them with a predefined IEEE1451.0-

compliant module described through HDL files, which is already available in the

weblab server as a part of the RecTool. Through a reconfiguration process, that will be

described in chapter 6, its HDL files are automatically redefined (connections,

associated TEDSs, etc.) to bind the selected weblab modules, and latter synthesized to

create a bitstream file describing the weblab project used to reconfigure the FPGA-

based board. This way, all weblab modules selected for conducting a particular

experiment are accessed and controlled according to the IEEE1451.0 Std. using

methods from the IEEE1451.0-HTTP API, since all features provided by the weblab

modules are compliant with the standard.

Chapter 5: A weblab implementation supported by FPGA-based boards 109

5.2. The weblab infrastructure: NCAP and FPGA-based TIM

The weblab infrastructure is the main element of the proposed architecture, since it

provides the platform for embedding the weblab modules used to control/monitor the

target experiments. It follows a thin implementation of the NCAP-TIM reference model

according to an hybrid solution, with each module being implemented through a

different device, namely: i) the NCAP using a thin-client computer and; ii) the TIM

using an FPGA-based board [141]. Both are interfaced using a point-to-point

connection so the infrastructure can be designed, accessed and reconfigured according

to the IEEE1451.0 Std.

5.2.1 The NCAP-TIM interface

As represented in figure 5.3, the NCAP-TIM interface is established using two types

of connections: i) a reconfiguration connection, implemented through a JTAG bus to

reconfigure the FPGA and; ii) a control/monitor connection implemented through a RS-

232 interface to access each embedded weblab module. This way, users are able to

reconfigure the infrastructure with different weblab modules and, once reconfigured,

they can be remotely controlled/monitored using standard commands issued by the

methods provided by the IEEE1451.0-HTTP API.

 NCAP

IEEE1451.0-

Module

Weblab
module

.........

TCs

TIM FPGA-based board

TEDSTEDS

IEEE1451.0
HTTP API

Weblab
module

Weblab
moduleIEEE1451.0

commands

reconfiguration
module

reconfiguration connection

(JTAG)

control/monitor
connection

(RS-232)

JTAG
interface

USB
interface

mapping

TEDSTEDS
cached
TEDS

Target

experiment

TCs

TCs

I/O

Figure 5.3: Designed weblab infrastructure based on the IEEE1451.0 NCAP-TIM

reference model.

According to the IEEE1451.0 Std., the control/monitor connection should be

implemented through specific protocols following other IEEE1451.x Stds. However,

most of them are not yet compatible with the IEEE1451.0 Std. and using the Transducer

services and Module communication APIs will overload developments and will add

additional computational tasks without added value for weblab infrastructures that use

single NCAP-TIM connections. To overcome these issues, the infrastructure follows the

thin implementation already detailed in the previous chapter, interfacing the NCAP and

the TIM through a simple RS-232 interface. A mapping between commands provided

by the TIM, and the HTTP methods implemented by the NCAP, was established,

removing, this way, the referred APIs.

110 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Since the IEEE1451.0 Std. does not consider the reconfiguration issue proposed and

implemented in the current architecture, no mapping was required for using the

suggested WriteTIM method. For its adoption, the reconfiguration connection uses a

single JTAG bus, but if more than one TIM were connected to the NCAP, several

reconfiguration connections should be implemented (one for each TIM). This particular

implementation uses an USB–JTAG cable
95

 controlled by a reconfiguration module

implemented by the UrJTAG software
96

 running in the NCAP.

5.2.2 The NCAP

The NCAP was implemented in a thin-client computer from Epatec
97

 illustrated in

figure 5.4. It provides the remote access to the TIM through the IEEE1451.0-HTTP API

supported by a software package that implements the services of each method, the

mapping mechanism between methods and commands, a cached TEDS for facilitating

the management and the access to the infrastructure and to the embedded modules, and

the physical connections. The software package is portable and able to be recompiled

for different Linux distributions according to instructions defined in a makefile. It is

denominated as NCAP-package and comprises a C-CGI (C Common Gateway

Interface) application. Integrated in the Apache HTTP web server
98

 installed in the

Ubuntu operational system
99

, it allows remote users to use IEEE1451.0-HTTP methods

to control the TIM and, therefore, every reconfigured weblab module. As represented in

figure 5.5, the package is organized in a set of directories each with its specific

relevance, namely the 1451 directory and the cgi-bin directory. The 1451 directory

comprises a set of symbolic links to access a server.cgi file (created after every

compilation) to handle IEEE1451.0-HTTP methods applied according to the message

format http://.../1451/command. The cgi-bin directory contains all files and directories

used by the NCAP-package. It comprises a set of source (*.c), header (*.h) and object

(*.o) files, integrating all the interfaces defined in the IEEE1451.0-HTTP API (e.g.

IEEE1451TransducerManagerAPI.c), whose accesses are made by the server.cgi file

used to manage all users’ requests. The NCAP-package also integrates the utils.c file

that provides some useful conversion functions, and a file named serial.c to control the

NCAP RS-232 interface. Besides all these files, the package has two other important

directories: the teds directory to keep cached-TEDSs, which according to the

IEEE1451.0 Std. may represent copies or updates of TEDSs defined within the TIM,

and the urjtag directory containing the files and applications required for reconfiguring

the TIM. This last aspect is not considered by the IEEE1451.0 Std. but, as already

suggested, current NCAP-package implements the WriteTIM method integrated in the

new Reconfiguration API.

95 Mini Altera FPGA CPLD USB Blaster programmer JTAG.
96 http://urjtag.org/
97 http://www.epatec.de/en/home/
98 http://httpd.apache.org/
99 http://www.ubuntu.com/server

http://urjtag.org/
http://www.epatec.de/en/home/
http://httpd.apache.org/
http://www.ubuntu.com/server

Chapter 5: A weblab implementation supported by FPGA-based boards 111

Mini Altera FPGA CPLD USB
Blaster programmer JTAG

Reconfiguration
connection (USB)

Back
panel

Control/monitoring
connection (RS-232)

Ethernet
connection

control/monitor
connection (RS-232)

Figure 5.4: Photograph of the NCAP implemented using a thin-client computer.

Symbolic links to the implemented
methods in the *.c files of the cgi-bin
folder using the paths of the HTTP
message format specified by the
standard (http://.../1451/command)

cgi-bin

1451

Cached TEDSs generated by the
writeTEDS and updateTEDScache
commands and read by readTEDS
command. All TEDSs are in the binary
format and use the following format:
t_tc_c_.teds, [t- TIM number; tc- TC
number; c- TEDS codeID].

teds

UrJTAG

Installation of the UrJTAG software
and other files used for sending to the
FPGA the binary file of the weblab
project using the JTAG interface of the
reconfiguration connection.

Files that implement the different
APIs of the IEEE1451.0-HTTP API
[C source code files (*.c), header
files (*.h), and the object files
generated after the compilation of
the NCAP-package (*.o)].

Makefile used to compile
the entire NCAP-
package.

Files for supporting the
serial communication
(serial.c) the access to the
server (server.c) and
extra services (util.c).

HTML forms with methods of the IEEE1451.0-HTTP API (used to verify the correct
operation of the weblab), and a supporting page with mapped error codes
(errorCODES.html).

Figure 5.5: NCAP-package folder organization.

Through a simple web browser users can access the services provided by the NCAP-

package to control/monitor the embedded weblab modules through the associated TCs.

They are able to issue IEEE1451.0 commands through the methods of the IEEE1451.0-

HTTP API using a thin-client approach, i.e. without requiring the installation of any

additional software in their accessing devices. A simple web browser with the HTTP

112 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

protocol active is the only requirement for accessing the infrastructure, which may

facilitate the development of weblab interfaces using any type of software language. For

validation purposes, the package also provides a set of HTML forms that enables users

to issue IEEE1451.0 commands through the HTTP API, and a supporting webpage with

the implemented error codes mapped from the errors generated by the TIM.

Annex I presents the error codes that may be retrieved from current NCAP

implementation.

Since the infrastructure follows a thin implementation, the Args and Util packages

defined by the IEEE1451.0 Std. were not implemented. Some of their services, namely

data conversion and manipulation, and the encoding and decoding of the message

structures, were implemented in the C source files of the implemented APIs using some

functions of the utils.c file.

5.2.3 The TIM

The TIM was implemented in an FPGA-based board from Xilinx with a XC3S1600E

Spartan 3E FPGA
 100

 illustrated in figure 5.6. It accommodates the weblab project with

all the weblab modules required for accessing the target experiments. The decision for a

solution based on an FPGA-based board was essentially supported on four main

reasons: i) it integrates several digital and analog I/O interfaces to access the target

experiments; ii) it can use weblab modules described through HDL files, which make

them easily shared by different infrastructures; iii) it can run those modules in parallel

like in a laboratory that uses traditional instrumentation and; iv) it is able to be

reconfigured, enabling to change the entire functionality of the weblab infrastructure

without replacing the hardware platform required to access an experiment. Additionally,

supported by the considerations presented in section 3.4, the implemented weblab

architecture adopts a solution based on a total reconfiguration of the FPGA. This means

that every change in the infrastructure (e.g. swapping a weblab module) requires

creating an entirely new bitstream file of the weblab project using the RecTool. This

option led to adopt FPGAs with total reconfiguration capability, rather than partial

reconfiguration that would increase the associated costs of the infrastructure (FPGAs

with partial reconfiguration are usually more expensive) and would limit the freedom of

choice of an FPGA, since not all provide the partial reconfiguration capability.

Internally, the TIM integrates a generic IEEE1451.0-compliant module with different

weblab modules able to be accessed and controlled according to the IEEE1451.0 Std.

This approach is versatile since it allows binding several weblab modules able to control

using standard commands, and it is reusable because the IEEE1451.0-compliant module

and the weblab modules are described using standard HDL files able to embed into

different types of FPGAs.

100 http://www.xilinx.com/products/boards-and-kits/

http://www.xilinx.com/products/boards-and-kits/

Chapter 5: A weblab implementation supported by FPGA-based boards 113

FPGA
I/O to the target
experiment(s)

reconfiguration
connection (JTAG)

control/monitor
connection (RS-232)

Figure 5.6: Picture of the FPGA-based board where the TIM is implemented.

5.3. An IEEE1451.0-compliant module for binding weblab

modules

The IEEE1451.0-compliant module, named as IEEE1451.0-Module, is embedded in

the FPGA that implements the TIM. This module implements IEEE1451.0 Std. features

to control/monitor the weblab modules bound through a reconfiguration process. To

simplify and reduce the FPGA resources required to implement the IEEE1451.0-

Module, without hampering its operation, current solution does not implement group

addresses and most of the optional commands. It enables the use of a single sampling

mode, and only commanded transmission mode is available, which requires the use of

the Read/WriteTCDSsegment IEEE1451.0 commands to transfer data between the TIM

and the NCAP, and therefore to the remote users.

The TCs operate as interfaces to establish the communication between the

IEEE1451.0-Module and the parameters able to control in the weblab modules. The

way these TCs are accessed is exactly the same as described by the standard, operating

according to the definition of TEDSs. The DSs are not exclusively associated to a single

TC, but rather they should be seen as internal buffers within the weblab modules able to

be accessed by one or more TCs. All these implementations are in accordance with the

IEEE1451.0 Std. and allow defining a versatile architecture to develop and bind the

modules to the IEEE1451.0-Module.

The weblab modules, which are described using the Verilog HDL, can be of any type

depending on the requirements posed by the target experiment, such as: Function

Generators, Oscilloscopes, Step-motor controllers, and others able to be embedded into

114 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

an FPGA-based board, like embedded instruments. They must be compatible with the

IEEE1451.0-Module, so they can be controlled by the TCs using IEEE1451.0

commands to interact with the parameters and associated DSs, according to

specifications defined in TEDSs.

The IEEE1451.0-Module comprises a specific architecture described through Verilog

HDL files. It is able of being redefined for binding compatible weblab modules,

enabling their standard access. The modules are bind according to a specific

reconfiguration process handled by the RecTool, and synthesised to any type of FPGA.

As represented in figure 5.7, the architecture of the IEEE1451.0-Module comprises four

submodules. The core is the Decoder/Controller Module (DCM) that manages the

behaviour of the whole module, decodes and generates commands from/to an UART

Module (UART-M). This interfaces the NCAP using an RS-232 interface, and

implements mechanisms to guarantee that the transferred data is in accordance with

command and reply messages structures defined in the IEEE1451.0 Std. To

control/monitor the behaviour of each weblab module, the DCM accesses two other

modules: i) a TEDS Module (TEDS-M), that internally implements all required TEDSs,

and; ii) the Status/States Module (SSM), that integrates internal memories to keep the

state and status of all TCs and of the TIM. Both modules are supported by internal

controllers that enable the DCM to read, write or update the TEDSs and the status and

state memories. Errors generated by these internal modules or by a particular weblab

module are handled by the DCM.

TIM - FPGA

access
(RS-232)

UART-

M

TEDS-M

SSM

......

Decoder
Controller Module

(DCM)

IEEE1451.0-Module

TC

Target

experimentNCAP

Weblab module Weblab module

FPGA-based board interfaces

(re)configuration
(JTAG)

I/O

Figure 5.7: Overview of the IEEE1451.0-compliant module (IEEE1451.0-Module).

As already referred, besides the access and the control of the weblab modules, the

IEEE1451.0-Module is capable of being redefined and reconfigured in the

infrastructure. This was one of the main challenges for implementing the reconfigurable

infrastructure, namely the definition of an internal architecture capable of connecting

the weblab modules to the DCM. The reconfiguration of this weblab requires redefining

all internal modules of the IEEE1451.0-Module, in particular the DCM by adding or

removing TCs, the TEDS-M that should gather the required TEDSs, and the SSM to

keep the states and the status of the TIM and of each TC. The UART-M is the only

module that is not changed during the reconfiguration process since its main task focus

Chapter 5: A weblab implementation supported by FPGA-based boards 115

on receiving and sending IEEE1451.0 commands. This process is entirely handled by

the RecTool that is responsible of redesigning the entire weblab project and sending it

to the TIM to reconfigure the FPGA using a JTAG interface.

5.4. Weblab accessing mechanisms

The use of the IEEE1451.0 Std. for designing weblab infrastructures aims to

standardize the design and the access to the weblab modules. The standard defines a

layered architecture divided into several APIs that facilitates the access to TCs and to

TIMs using standard commands. These commands are implemented in the TIM and

they are issued according to message structures. Current implementation of the

IEEE1451.0-Module recognizes most of the commands that enable

controlling/monitoring the TCs/TIMs and, therefore, the attached weblab modules. Each

command is issued to the TIM through the RS-232 interface. The UART-M is

responsible for receiving and verifying if the received command messages structures are

in accordance with the IEEE1451.0 Std. The decoding is made by the DCM that,

according to the selected command, will manage the entire IEEE1451.0-Module for

controlling each weblab module. It also generates the associated replies, defining reply

messages structures to be transmitted to the NCAP using the same RS-232 interface.

According to the IEEE1451.0 Std., the construction of message structures should be

made in the Communication API that is the responsible for managing the NCAP-TIM

connections. Since current architecture follows a thin implementation, when the NCAP

receives remote commands through the HTTP methods, they are decoded and directly

mapped to command messages structures recognized and sent to the TIM using the RS-

232 interface, as depicted in figure 5.8. The same process is followed when replies are

generated by the TIM. In this situation, the NCAP receives reply messages structures

through the same RS-232 interface, decodes them, and defines the reply messages,

whose formats (XML, text or HTML) are previously indicated in a parameter of the

HTTP methods that originated those replies. Despite the TIM may also generate TIM-

initiated messages, currently the NCAP does not handle this type of messages, i.e. it is

not able to decode and generate HTTP messages caused by TIM-initiated messages.

TIM - FPGA

UART-M
command structure validation

&
reply structure definition

......

DCM
(decode & control)

IEEE1451.0
-Module

HTTP
method

command
message

reply
message
structure

decoding
HTTP
reply

generation

mapping
Command(s)

structure
definition

command
message
structure

W
W
W

Users

HTTP
reply

NCAP

Figure 5.8: NCAP-TIM accessing mechanism.

116 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The well-defined and standard division between the message structures of the TIM

and the message formats of the NCAP guarantees a clear separation between these two

modules. The adopted thin implementation of the IEEE1451.0 Std. does not adopt the

APIs used for interfacing the NCAP and TIM, but it stills guarantees a plug&play

facility between both, since they follow the message formats defined by the IEEE1451.0

Std. This means that NCAPs and TIMs that follow this same implementation may also

be easily interfaced without further developments. The collaboration during the

developments can be therefore guaranteed. Developers that follow the proposed thin

implementation, in particular the described accessing mechanisms, may split their work

by developing independently the NCAP, the TIM and the different weblab modules that

should be compatible with the IEEE1451.0-compliant module.

During developments, the verification of the TIM operation independently of the

NCAP was facilitated, since they can be independently accessed. Previously

reconfigured with a simple I/O weblab module (described in chapter 6) compatible with

the IEEE1451.0-Module, the TIM was controlled using IEEE1451.0 commands and

monitored through the associated replies
101

. As represented in figure 5.9, several

commands were issued and the replies observed, proving that the TIM and the

associated weblab module operation are in accordance with the IEEE1451.0 Std.

TC number

Command (class + function) - ReadTEDSsegment

length

TEDS access ID code

offset

Reply error

message

Reply

message

success

length

TEDS contents

Figure 5.9: Example of commands sent to the TIM reconfigured with an I/O weblab

module using the Comm Operator Pal serial port tool.

101 This was achieved by using a simple PC running a serial communication tool named Comm

Operator Pal attached to the FPGA-based board through the RS-232 interface

(http://www.serialporttool.com/CommPalInfo.htm).

http://www.serialporttool.com/CommPalInfo.htm

Chapter 5: A weblab implementation supported by FPGA-based boards 117

Therefore, the TIM can be attached to any type of device able to understand

IEEE1451.0 commands. Enriched software applications can then be developed for

controlling the weblab, extending its application to different solutions and domains that

require a local or a remote control through the web. This was precisely the objective of

using the NCAP. Despite the thin implementation of the NCAP-TIM reference model,

the software package developed for the NCAP permits accessing the IEEE1451.0

commands using the HTTP-IEEE1451.0 API. Moreover, as already referred, it provides

a set of HTML pages to facilitate issuing those commands using the different methods

provided by the API allowing, this way, to verify the correct operation of the

infrastructure when remotely controlled. Figure 5.10 exemplifies the use of the

ReadTEDS command, which accesses the MD-TEDS of a weblab module connected to

the IEEE1451.0-Module using the TC number 3, and presents the associated reply in

XML format.

Another possibility for accessing the TIM is provided by the Reconfiguration API

also implemented in the NCAP. In the current implementation, was adopted the

WriteTIM method to send the bitstream file (describing the weblab project) to the

reconfiguration module installed in the NCAP. This module, supported by the UrJTAG

software, sends the file to the FPGA-based board reconfiguring the infrastructure. In

this situation, users do not have a direct interaction with the WriteTIM method since this

is issued by the RecTool. The advantage of using the WriteTIM and the ReadTIM

methods is the possibility they offer for providing a standard access to the NCAP for

reconfiguring the infrastructure. This means that if a different RecTool were created,

developers should take into consideration that reconfiguring the infrastructure would

require using the methods provided by the Reconfiguration API, which will incentivize

the collaboration during developments.

b) XML format reply a) command

Figure 5.10: Example of a ReadTEDS command and the associated reply in XML format

issued using the IEEE1451.0-HTTP API.

118 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

5.5. The weblab reconfiguration tool

The RecTool enables to reconfigure the weblab infrastructure with different weblab

modules, changing it according to the requirements posed by the target experiments.

This tool is accessed through an interface using a web browser able to parse HTML

tags, without any specific plug-ins or software tools installed in the users’ accessing

device. The reconfiguration of the infrastructure is much dependent on the redefinition

of the internal architecture of the IEEE1451.0-Module that is pre-defined and available

in the weblab server. The files describing these modules are included in the weblab

Server File System (WSFS) of the RecTool software, providing all the applications

required to redefine the IEEE1451.0-Module to bind the weblab modules. Although a

reconfiguration process is automatically implemented by the RecTool, users should

follow a specific sequence that includes: i) selecting the weblab modules; ii) defining

their connections within the infrastructure; iii) building and synthesizing the weblab

project and; iv) reconfiguring the infrastructure.

The interaction with the RecTool is performed using the web interface illustrated in

figure 5.11. It is divided in three main sections, enabling users to control all the

reconfiguration process:

 upload - Allows uploading configuration and project files to create the weblab

project, and/or files, already synthesized by this same RecTool, to reconfigure

the infrastructure;

 information - All feedback actions made by the users are displayed in this

section, which also presents the current weblab server state, namely its current

time and if it is busy synthesizing a weblab project;

 panels - This section is divided in three panels: i) build panel, which presents all

files required to build the weblab project and enables users to start the building

process; ii) reconfiguration panel, which enables users to start the synthesis and

the reconfiguration processes and has all synthesized files used to reconfigure

the FPGA and; iii) reports panel, which provides reports generated during the

users’ interaction with the RecTool.

The WSFS provides a space shared by different users for generic files and for the

applications used in the RecTool, and another space reserved for each user, so they can

store their own files. Those files may be divided into two groups: i) files used for

building a weblab project (available in the build panel) and; ii) files generated by the

RecTool, available in the reconfiguration and reports panels, that have in their names

the date and time of their creation so users may understand the action(s) that originated

them.

Chapter 5: A weblab implementation supported by FPGA-based boards 119

p
a

n
e

ls
in

fo
rm

a
ti

o
n

u
p

lo
a

d

Figure 5.11: Web interface of the weblab reconfiguration tool.

The build panel has two subgroups of files for building the weblab project:

 configuration files (*.conf) - Text files containing all rules for redefining the

weblab project, namely to check consistency, generate and interface the project

files into the IEEE1451.0-Module and to specify all configurations required for

binding the weblab modules to that same infrastructure;

120 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

 project files (*.v/vh/map/teds/ucf) - Comprise five types of files required for

building the weblab project: i) Verilog HDL files with the design of each weblab

module (*.v); ii) Verilog HDL files with the interface for binding those modules

to the IEEE1451.0-Module (*.vh); iii) binary files describing the TEDSs used by

the IEEE1451.0-Module to control and monitor the weblab modules (*.teds); iv)

a binary file to map those same TEDSs into the IEEE1451.0-Module (*.map)

and; v) one file to describe the pinout used by the FPGA-based board (*.ucf).

The reconfiguration panel provides two types of files generated by the weblab server

for reconfiguring the FPGA, namely:

 bitstream files (*.bit) - Contain the binary code used to reconfigure the FPGA,

and/or;

 Simple Vector Format (SVF) files (*.svf) - Contain boundary scan vectors to

send the same binary code available in the bitstream files to an FPGA using a

JTAG interface.

The reports panel may provide five types of report files (*.rep) generated during the

interaction with the RecTool:

 Bbind_date.rep - Describes the interface established by the weblab modules with

the IEEE1451.0-Module;

 Bteds_date.rep - Provides information about the TEDSs’ consistency check,

generation of HDL files with TEDSs’ contents and their interface with the

IEEE1451.0-Module;

 Syn_date.rep - Reports the results of the weblab project synthesis;

 Svf_date.rep - Indicates if the *.svf file was successfully created;

 Reconf_date.rep - Reports the final result of the reconfiguration process,

indicating if it was successful.

The inherent complexity of the reconfiguration process and of the modules that form

the weblab infrastructure will be detailed in the following chapter. It will focus on the

structure and functionalities of the IEEE1451.0-compliant module, layout and interfaces

for binding and designing the weblab modules, and on the implementation and

utilization of the RecTool.

Chapter 5: A weblab implementation supported by FPGA-based boards 121

5.6. Summary

Supported by the features described in the IEEE1451.0 Std. that involves the use of a

well-defined reference model, the previous chapter suggested a thin implementation for

designing standard based weblabs. Since the suggested implementation does not hamper

the standard access to weblabs, it was considered an interesting solution for verifying

the advantages of using the IEEE1451.0 Std. for designing reconfigurable weblabs. This

chapter presented an implementation of a reconfigurable weblab based on that thin

implementation using FPGA-based boards for designing the underlying infrastructure.

For its reconfiguration, one of the extensions proposed for the IEEE1451.0 Std., namely

the use of the WriteTIM method, was adopted. The overall weblab architecture and

functionalities were presented, namely the possibility of reconfiguring the infrastructure

with different weblab modules able to be controlled/monitored according to the

IEEE1451.0 Std. The NCAP-TIM reference model and their connections were detailed,

explaining the functionalities provided by each. It was provided an overview of the

IEEE1451.0-complaint module and of its internal structure, since this is the main

element that enables the reconfiguration of the weblab by the ability it has of being

automatically redefined for binding the weblab modules selected for the conduction of a

given remote experiment. Before presenting the functionalities of the RecTool and its

interface, mechanisms for accessing the weblab were presented, emphasizing the way

IEEE1451.0 commands can be applied to the weblab for controlling/monitoring the

weblab modules and the entire infrastructure. Since the redefinition of the weblab is

automatically processed using the RecTool installed in the weblab server, a generic

overview of its functionalities was presented, leaving the other details to the following

chapter.

122 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 6: The weblab reconfigurable framework 123

 Chapter 6

The weblab reconfigurable framework

The two previous chapters described the IEEE1451.0 Std. and presented a compliant-

weblab prototype, whose infrastructure is supported by an FPGA-based board able to

accommodate weblab modules required to conduct remote experiments.

This chapter details the reconfigurable framework provided by the designed weblab

prototype, describing all the involved resources and tools required for reconfiguring the

infrastructure with the weblab modules. The different interactions among those

resources and tools, and the role of students, teachers, technicians and developers in the

reconfiguration process, is also referred. Since the reconfiguration capability is mainly

provided by the IEEE1451.0-compliant module configured in the FPGA, a particular

attention is given to its structure and functionality, and to the layout and interface of

compatible weblab modules. The IEEE1451.0-compliant module is detailed, namely its

internal structure that includes a set of modules, whose capabilities of being

automatically redefined for binding the weblab modules during a reconfiguration

process are highlighted. The weblab modules are also detailed, in particular their layout

and interfaces. The chapter ends by presenting the reconfiguration process, namely the

functional and technical details of the Reconfiguration Tool (RecTool).

124 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 6: The weblab reconfigurable framework 125

6.1. Involved resources and tools

Besides the adoption of the IEEE1451.0 Std. for the standard access and design of

weblabs, the 2
nd

 innovation proposed in this work focus on the capability for

reconfiguring the weblab infrastructures [142]. The weblab modules are able to be

reconfigured in the infrastructure, overcoming the usual limitations of today’s weblabs

that only allow setting up connections among traditional instruments and the target

experiments. By using a reconfigurable framework, students, teachers and technicians

can select weblab modules required to conduct a particular experiment and include them

into the weblab infrastructure, as done in a traditional laboratory by selecting the

instruments and connecting them to the target experiments. Additionally, the adoption

of weblab modules described through HDL files according to the IEEE1451.0 Std.

provides an added-value to common weblabs, since those modules can be easily

replicated and shared, as previously referred in this thesis.

As illustrated in the conceptual diagram of figure 6.1, the reconfigurable framework

comprises different resources and tools implying the interaction of two main groups of

human actors: i) students, teachers and technicians, to reconfigure the weblab with

different weblab modules and; ii) developers, whose tasks focus on designing

compatible weblab modules able to be shared by the educational community when

adopting similar weblab architectures.

Weblab server

Weblab
modules

Students,

teachers,

technicians

interact

Weblab
modulesWeblab

modules

select

creates the
weblab project

uploaded

provided by

web
interface

RecTool

Weblab

infrastructure

reconfigures

Developers
design

IEEE1451.0-compliant module
(redefined by internal Bind and Config software
modules according to a set of rules specified to

bind the selected weblab modules)

sends the weblab
project

NCAP + TIM

manage the
reconfiguration process

FPGA-based board

configuration
file

uploadeddefine rules

Figure 6.1: Conceptual diagram with tools, resources and the human actors involved in

the reconfiguration process.

The RecTool provided by the weblab server is responsible for creating the so-called

weblab project, which is the bitstream file used to reconfigure the TIM of the

infrastructure implemented by the FPGA-based board. The weblab project is the result

of a reconfiguration process that involves the selection of the weblab modules required

126 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

to reconfigure the infrastructure. This process is essentially made by students, teachers

or technicians to design a workbench to conduct the remote experiments. They select a

set of files (HDL files and binary files with the TEDSs) describing the weblab modules,

and bind them to a generic IEEE1451.0-compliant module predefined and available in

the RecTool. This process implies an interaction with a web interface provided by the

RecTool that requires the definition of a configuration file with a set of rules for

reconfiguring the weblab infrastructure. According to those rules, two software modules

named Bind and Config (part of the RecTool) redefines the IEEE1451.0-compliant

module, entirely described through Verilog HDL files, and bind the selected weblab

modules. This process is entirely transparent to students, teachers and technicians, since

they just need to interact with the RecTool interface without describing any module

used to create the weblab project that is sent to the FPGA-based board for reconfiguring

the infrastructure.

Since the idealized and implemented architecture for reconfiguring weblabs seeks to

improve collaboration among the educational community by sharing different weblab

modules, these should be designed to be compatible with the IEEE1451.0-compliant

module available in the RecTool. These are precisely the tasks for the involved

developers. They should focus their efforts on designing the weblab modules according

to a set of specifications, so they can be easily shared and bound to weblab

infrastructures similar to the one described in this thesis. Therefore, it is important to

understand the structure and functionalities provided by the IEEE1451.0-compliant

module, so it may be redefined to connect compatible weblab modules. Additionally,

the design of those modules should follow a particular layout and interface, which is

mainly implemented by the IEEE1451.0-compliant module redefined according to the

reconfiguration process.

6.2. Structure and functionality of the IEEE1451.0-compliant

module

The IEEE1451.0-compliant module, named as IEEE1451.0-Module, implements the

main IEEE1451.0 specifications for accessing and binding the weblab modules adopted

for interfacing the target experiments. It is entirely described through Verilog HDL

files, which makes it portable for being embedded into any type of FPGA implementing

the TIM of the weblab infrastructure. To provide the reconfiguration capability to the

weblab, the IEEE1451.0-Module is able to be redefined to bind the selected weblab

modules using TCs controlled according to the IEEE1451.0 Std.

The TIM is structured according to a modular approach separating the main

controller (the IEEE1451.0-Module) from the weblab modules. This way, it is possible

to reconfigure different modules in the infrastructure, by automatically redefining the

internal structure of the IEEE1451.0-Module, namely the number of TCs, the adopted

TEDSs, internal connections, status and state memories adopted for managing the way

Chapter 6: The weblab reconfigurable framework 127

the TCs operate, among other particular issues. Although the IEEE1451.0 Std. defines a

TC as a transducer and all the signal conditioning and conversion components, for

implementing the reconfiguration capability of the infrastructure, the range covered by

TCs is extended. TCs are not seen as simple transducers but as the channels that enable

accessing the weblab modules making them smart, since they are controlled and defined

according to the requirements posed by the IEEE1451.0 Std. They control internal

parameters and access the DSs of the weblab modules according to TEDSs’ definitions.

For this purpose, the internal structure of the IEEE1451.0-Module comprises four other

internal modules illustrated in figure 6.2 and further described in the next subsections:

 Decoder/Controller Module (DCM) - Is the Central Processing Unit (CPU) that

controls all the other modules, by decoding commands received from an

Universal Asynchronous Receiver/Transmitter Module (UART-M) or by the

reception of an event signal generated by a weblab module. It uses two

memories described in the following sections, namely the Memory Buffer (MB)

and the Map Table (MT);

 TEDS Module (TEDS-M) - Accommodates TEDSs in memories accessible

through a set of commands provided by an internal controller. The commands

are issued by the DCM through a specific hardware API entirely described in

Verilog HDL that provides a set of instructions to read/write the TEDSs;

 Status/State Module (SSM) - Manages the operating states and the status

registers of each TC and TIM defined in two internal memories. It also

comprises an internal controller that enables the access to those internal

memories through a set of commands issued by the DCM using a specific

hardware API described in Verilog HDL;

 UART Module (UART-M) - Interfaces the NCAP and the TIM through the

control/monitor connection established using an RS-232 interface. This module

extends the common features of a typical UART, since it also implements a

verification mechanism to guarantee that the transferred data is in accordance

with the message structures defined by the IEEE1451.0 Std.

TIM - FPGA

Rx

Tx

TEDS

Module

(TEDS-M)

Status/State

Module (SSM)UART-M

Decoder Controller

Module (DCM)

IEEE1451.0-Module

N

C

A

P

MB MT

1

3

4

Hardware
API

2

TEDSTEDS

...

TC ta
rg

et
 e

x
p

er
im

en
t

Weblab module
DS

Weblab module
DS

...

FPGA-based board interfaces

co
n
tr

o
l/

m
o
n
it

o
r

co
n
n
ec

ti
o
n
 (

R
S

-2
3
2

)

Hardware API

DS DS I/O

Figure 6.2: Internal modules of the IEEE1451.0-Module.

128 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

6.2.1 Decoder/Controller Module (DCM)

This is the CPU that controls the entire IEEE1451.0-Module. It contains several

internal registers detailed in annex J.1, and provides the following features: i) manages

IEEE1451.0 commands; ii) provides error detection mechanisms; iii) controls both the

TEDS-M and the SSM by reading, writing or updating their internal memories; iv)

controls the UART-M and; v) controls the TCs connected to the weblab modules.

Internally the DCM follows a structured architecture including three groups of

embedded tasks, namely:

 Internal-tasks (detailed in annex J.2.1) - Manage internal functions like errors,

message structures, etc.;

 Command-tasks (detailed in annex J.2.2) - Implements the IEEE1451.0

commands;

 TC-tasks - These tasks interact with the weblab modules for controlling each TC

using a specific handshake protocol. They are described by the developers of the

weblab modules according to particular rules, to guarantee the compatibility of

those modules with the IEEE1451.0-Module. Further details about theses tasks

are presented in subsection 6.3.3.

The DCM uses a set of buses and lines to interface the other internal modules of the

IEEE1451.0-Module, namely the TEDS-M, SSM, UART-M, the MB and MT

memories, and the weblab modules reconfigured in the infrastructure. Most of the buses

are predefined, but some differ in the number of lines. This is the case for the required

buses to interface each TC, since they depend on the weblab modules specified to be

bound during the reconfiguration process. Annex J.3 depicts the DCM schematics,

detailing all adopted buses and lines.

Internally, the DCM implements several features to control the IEEE1451.0-Module.

It interfaces the other modules according to the received IEEE1451.0 commands, whose

operations are supported by the MB and MT memories. Additionally, it manages

internal and external errors caused by the weblab modules, enables the use of the status-

event protocol, implements triggers and event detections mechanisms on TCs running

as event-sensors.

External modules

The DCM interfaces the UART-M using a set of buses and lines for data

transmission/reception to/from the NCAP. It sends/receives commands to/from the

NCAP to control the entire infrastructure, and therefore the weblab modules. When the

UART-M receives commands, it triggers the DCM to decode those commands by an

internal procedure that verifies if data within the command message structure is in

accordance with the IEEE1451.0 Std. (e.g. verifies if the destination TC may receive the

Chapter 6: The weblab reconfigurable framework 129

command defined by the class and function fields, verifies if the specified length is in

accordance with the selected field, etc.). When the DCM detects an invalid command, it

generates an internal error that will be mapped into an IEEE1451.0 error by activating

one or more bits in the registers of the status memory available in the SSM.

To manage both the TEDS-M and the SSM, the DCM uses hardware APIs to access

a set of commands provided by those modules, to read or write their internal memories,

namely the TEDSs and the status/state memories that gather information about each

TC/TIM. The access is established through bus lines controlled by a specific handshake

protocol that manages multiplexing mechanisms internally provided by both the TEDS-

M and the SSM. The interface to the TCs is defined during the reconfiguration process,

since it depends on the implementation of each weblab module, namely on the adopted

TC-tasks.

Memory Buffer (MB)

To manage the NCAP-TIM data-flow and to support the implementation of

commands to write or update TEDSs, the DCM accesses the MB. The length of this

memory is defined according to the TEDS with maximum data length. It gathers

temporary data fields before they can be written into a TEDS memory provided by the

TEDS-M, and also acts as a bridge between DSs and the data within the IEEE1451.0

commands used to read/write data from/to the weblab modules. During the

reconfiguration, the MB is synthesized to a RAM, enabling to read and write its internal

data locations by managing a set of buses and lines. Annex J.4 presents the DCM-MB

interface, describing internal parameters to create the MB, buses, lines and the internal

HDL code sequences adopted by the DCM to access the MB.

Map Table (MT)

The MT is a memory that associates each TEDS, defined in the TEDS-M, to a

particular TC or TIM, according to a specific ID code. It is defined in a *.map file by

students, teachers or technicians before starting a reconfiguration process of the weblab

infrastructure, since the number of TEDSs differs according to the implemented

functionalities and the selected weblab modules. Based on the association established in

the MT, the DCM selects which TEDS’s memory should be accessed.

As exemplified in figure 6.3, the MT is implemented according to a structure very

similar to the one available for TEDSs. It includes a data block, and the same length and

checksum blocks of a common TEDS for specifying the length and for guaranteeing the

data integrity. The data block is organized into structures, whose fields specify the TCs

or TIM IDs (defined by 2 octets) followed by a length field (1 octet) that indicates the

number of associated fields. This length field must have an even value since the

remaining fields are always defined in pairs of 2 octets; the first indicating the TEDS ID

code, and the second the associated TEDS memory number identified by the DCM.

130 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Length

Checksum

TIM/TC num.
Length

TEDS code

(...)

4
octets

data
block

number of octets in the data block
+ 2 octets of the checksum

used to verify the integrity
of the MT

Memory number

TEDS code
Memory number

(...)

2
octets

length

00

TIM ID

length

00
00
1a
00
00
04
01
00
0c
01

TEDS code
mem. numb
TEDS code
mem. numb

TC 1 ID

length

00
01
02
03
02

ff

TEDS code
mem. numb

2e
checksumTC 2 ID

length

00
02
02
03
03

TEDS code
mem. numb

TC 3 ID
00
03

03
04
80
05

TEDS code
mem. numb
TEDS code
mem. numb

04length

example of a
MT with 3 TCs

values in
hexadecimal format

Figure 6.3: MT structure and an example with 3 TCs.

The contents of the MT cannot be changed during the operation of the DCM, since it

is automatically synthesized to a ROM during the reconfiguration process. Annex J.5

presents the DCM-MT interface, describing the buses, lines and the internal HDL code

sequences adopted by the DCM to access the MT.

Errors

The DCM handles errors according to their sources. There are errors generated

internally by the DCM, by the external modules (TEDS-M, SSM and UART-M), and by

the weblab modules. Generated errors are mapped into IEEE1451.0 errors by setting up

specific status bits in the condition register of each TC/TIM provided by the status

memory available in the SSM. This process is handled by a DCM internal-task named

errorHandler() that, after mapping errors, sends a reply message to the NCAP indicating

the existence of an error that can be latter monitored by reading the condition or event

registers
102

. In the current DCM version, there is no distinction between TC or TIM

errors. When an error is detected, it is mapped to both the TC and the TIM condition

registers using an OR logic approach. For example, if an invalid command is detected,

the 2
nd

 bits of the condition registers, which indicate invalid commands, are set in the

TC and in the associated TIM, unless the command has only been sent to the TIM. In

this situation, only the 2
nd

 bit of the condition register associated to the TIM is set.

When new weblab modules are connected to the IEEE1451.0-Module, the internal error

lines of the DCM are automatically redefined during the reconfiguration process to

detect and handle possible generated errors. When an error caused by a weblab module

is detected after receiving a command message, a reply message is sent to the NCAP

indicating the existence of an error. Currently, the DCM implements a simplified

version to handle external errors, by mapping all of them to an hardware error specified

by the IEEE1451.0 Std. In future versions of the IEEE1451.0-Module this aspect may

be easily improved by modifying the errorHandler() internal-task.

102 The NCAP can read the condition or event registers using an IEEE1451.0 HTTP method named

sendCommand to send the ReadStatusEventRegister or the ReadStatusConditionRegister commands to

the TIM. It can also automatically evaluate an error when the status-event protocol is active, since

the reply message sends the event register of the associated TC/TIM that caused the error.

Chapter 6: The weblab reconfigurable framework 131

Finally, annex J.6 provides a detailed description about the adopted registers and

buses in the DCM for implementing the error detection mechanism, and annex J.7

describes the error codes internally specified in the IEEE1451.0-Module, namely in the

condition registers, and their mapping to an internal register, named error_reg, adopted

by the error detection mechanism.

Status-event protocol

For facilitating the detection of errors or events internally generated in the TIM, the

status-event protocol can be activated in the IEEE1451.0-Module, namely for each

TC/TIM, using the WriteStatusEventProtocolState command. As illustrated in figure

6.4, when the TIM, or a specific TC, has the status-event protocol active, and a Service

Request (SR) signal is generated by the associated TC/TIM, the DCM sends a TIM-

initiated message if all commands issued were completed
103

 and no error is being

attended by the internal-task errorHandler()104. This message has the contents of the

TC/TIM event register defined in the status memory provided by the SSM, as described

in the IEEE1451.0 Std.

Service Request TC/TIM

No errors being attended

Status-event protocol enabled
for the TC/TIM that generated
the service request

Sends a TIM-initiated message

whose contents have the event

register of the TC/TIM that

generated the SR

&

Commands issued to
TC/TIM completed

SR

Figure 6.4: Implemented logic for the status-event protocol.

Triggers

If a specific TC operates in a trigger-dependent sampling mode, namely: i) Trigger

initiated; ii) Free-running without pre-trigger; iii) Free-running with pre-trigger or; iv)

Continuous; it means it depends on a trigger signal to control its operation. The trigger

capability of a specific TC is defined within the associated state memory of the SSM

that defines its state indicating if it is enabled or disabled. The trigger state definition

can be read using the ReadTCtriggerState command and changed by the

WriteTCtriggerState command. Once in a trigger dependent sampling mode, and if the

trigger capability is enabled, by using the adopted TC, students/teachers may issue the

TriggerCommand command to send a trigger signal to start an operation on the

associated weblab module, and the AbortTrigger to abort that same operation.

103 A command completed means that a command message was received, decoded and the associated

reply message was sent to the NCAP.
104 Current NCAP version does not handle TIM-initiated messages, but these were implemented in the

TIM so it may be adopted in other architectures with improved NCAPs.

132 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Events generated by the weblab modules

TCs running as event sensors use dedicated TC-event lines to inform the DCM that a

specific event occurred. A TC can only have one event line with no handshake protocol

required. A multiplexing mechanism is defined during the reconfiguration process

according to the number of TCs that may handle events. Internally, when a specific

event is detected by the DCM, it accesses an associated TC-task named event() for

performing the actions defined in its description (e.g. send a TIM-initiated message).

Figure 6.5 provides an illustrative diagram about the reconfigurable multiplexing

mechanism adopted for attending external events
105

.

multiplexer

(reconfigurable)

event signal TC1
event signal TC2

event signal TCn

...

Δ

event()

tasks
event()

tasks

Weblab module

event
lines

TC-event lines

DCM event
inputs

event bus
IEEE1451.0-Module

Δ - reconfigurable width

Figure 6.5: Adopted architecture to handle events generated by weblab modules.

6.2.2 TEDS-Module (TEDS-M)

TEDSs provide generic information about the whole infrastructure, i.e. the TIM, each

TC, and the associated weblab module. As part of its functionality, a TEDS contains

data fields with descriptive and control parameters for controlling the weblab modules’

operation. Current solution implements all TEDSs within the TEDS-M, which

integrates an internal controller that provides particular commands to write, read or

update each TEDS. The TEDSs’ contents are accessed by the DCM using command-

tasks and TC-tasks, through an hardware API. All TEDSs follow a particular structure

and are interfaced with an internal controller using a multiplexing mechanism.

Internally, the TEDS-M comprises a controller, a multiplexer and the TEDSs

memories, as illustrated in figure 6.6a). The DCM-TEDS-M access is made through a

set of commands according to a particular handshake protocol using a set of buses and

lines. As represented in figure 6.6b), each TEDS is divided in a memory comprising two

main blocks: i) a number of fields with the structure of TEDSs and; ii) 12 fields that

gather extra information about the TEDSs, namely current and maximum lengths,

status, etc. (similar to the reply of a QueryStatus command).

105 The TC-event lines are automatically connected to the multiplexer through an internal bus named

event_im. The bus width is specified in the configuration file defined during the reconfiguration

process and depends on the number of adopted TCs running as event-sensors, i.e. TCs with event

signals.

Chapter 6: The weblab reconfigurable framework 133

DCM

controller

multiplexer
(reconfigurable)

TEDS
TEDSTEDS

memory
access

select

reconfigurable

TEDS-M
Hardware API

b) data structure of a TEDS memorya) TEDS-Module internal architecture

length (size)

checksum

(...)

4 octets

data

fields

2 octets

0

n

 n+1

n+12

attributes
status

checksum
max. size

12
octets

T
E

D
S

In
fo

. length (size)

other
buses
and
lines

Figure 6.6: The TEDS-M architecture and the data structure of a TEDS.

The TEDSs are constantly accessed with read and write operations. For this purpose,

the TEDS-M implements eight commands accessed according to a code defined in the

access bus, as represented in table 6.1. These commands will be issued to a particular

TEDS, whose number is identified in the select bus. While the access bus has a fixed

width of three lines to specify each command, the length of the select bus is

automatically defined during the reconfiguration process. This definition is made

according to the number of adopted TEDSs, so the controller may select the associated

memory when a specific command is issued. Table 6.2 exemplifies the use of the select

bus to access six TEDSs reconfigured in the TEDS-M.

Table 6.1: Implemented commands to access the TEDS-M.

access Commands

000 Read Field - Reads a value from a specific field.

001
Read With Offset - Starting in a specific field, returns all values from the TEDS. The

offset must be previously defined using the Define Offset command.

010 Query Status - Returns the 12 fields with the extra information of the TEDS.

011
Find Field - Returns ‘1’ if a specific field exists, or ‘0’ if it does not exist or there was

an error.

100
Write Field - Writes a value to a specific field.
Note 1: The length should be the same of the old field; otherwise extra data will be missed.

Note 2: To change the length, the Write With Offset command must be issued.

101
Write With Offset - Starting in a specific field, writes all values in the TEDS. The
offset must be previously defined using the Define Offset command.

110 Write Status - Writes the 12 fields with the extra information of the TEDS.

111
Define Offset - Defines the offset used by the Read/Write With Offset commands.
Note: The offset starts from the most significant octet representing the length of a TEDS.

Table 6.2: Memory selection in the TEDS-M.

select TEDS memory number select TEDS memory number

000 0 011 3

001 1 100 4

010 2 101 5
Note: The width of the select bus depends on the number of

TEDSs reconfigured in the TEDS-M.
111 not used

134 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The TEDS-M responds to: i) DCM internal-tasks, used when the IEEE1451.0-

Module receives commands and; ii) TC-tasks, belonging to a particular implementation

of a weblab module, which are automatically embedded into the DCM during

reconfiguration. Therefore, since the main objective is to provide a reconfigurable

infrastructure able to control different weblab modules agnostic to implementation

details of the TEDS-M, an abstraction layer implemented by an hardware API was

created to simplify the access to the TEDSs’ contents. As illustrated in figure 6.7, the

API accesses the commands of the TEDS-M using an handshake protocol. It is

implemented by different tasks within the Access_ModTEDS.vh file, providing the

instructions described in table 6.3, which have a set of I/O parameters to interact with

DCM internal registers.

...
Hardware

API

(Access_Mod
TEDS.vh)

tasks
tasks

tasks

Controller
(commands)

Memories
(TEDSs)

DCM

weblab
module

The DCM-TEDS-M interface is

established according to a particular

handshake protocol that uses a set of

bus lines.

Instructions provided in the hardware

API manage all signals on the bus

lines to access the TEDSs memories.

TEDS-M

B
u

s
li

n
es

Figure 6.7: Layered structure supported by the Access_ModTEDS hardware API to

access the TEDSs memories reconfigured in the TEDS-M.

Table 6.3: Instructions provided by the Access_ModTEDS hardware API.

ModTEDS_ReadField

Reads all fields associated to a TLV structure defined in a TEDS memory.

ModTEDS_WriteField

Writes all fields associated to a TLV structure defined in a TEDS memory.

ModTEDS_ReadWithOffset

Reads all fields of a TEDS memory after a selected offset.

ModTEDS_WriteWithOffset

Writes all fields of a TEDS memory after a selected offset.

ModTEDS_QueryStatus

Returns the status register of a TEDS memory.

ModTEDS_WriteStatus

Writes the status register of a TEDS memory.

ModTEDS_FindField

Finds a field in a TEDS memory.

Annex J.8 presents details about the TEDS-M, namely the definition of internal

variables, the internal schematics, the handshake protocol adopted for interfacing the

DCM, and details about the instructions provided by the hardware API.

Chapter 6: The weblab reconfigurable framework 135

6.2.3 Status/State Module (SSM)

This module provides access to two independent memories, whose contents specify

the status and operating states of the TCs/TIM. During DCM operations those memories

will be accessed by different tasks to update their status and states. The access to those

memories is made through a set of commands provided by an internal controller, whose

access can be made by another hardware API.

Internally, the SSM comprises a controller, a multiplexer and the status and the state

memories, as illustrated in figure 6.8a). The length of these memories depends on the

number of adopted TCs, and their structures are divided into several segments, as figure

6.8b) represents. The status memory has segments with 3 registers of 32 bits wide, each

associated to a particular TC/TIM, namely the condition, event and mask registers.

These are changed according to the status message generation logic defined by the

IEEE1451.0 Std., implemented by the internal status/state controller. The state memory

has segments with 2 registers of 8 bits wide, each also associated to a particular

TC/TIM. The segments gather the: i) operating states of each TC/TIM, namely if they

are in the initialization, active, sleep, operation or idle states and; ii) the trigger state,

that indicates if a specific TC has its trigger enabled or disabled (the TIM does not have

trigger states). The length of both memories is defined through internal parameters

changed during the reconfiguration process.

DCM

controller

multiplexer
(reconfigurable)

status

memory

state

memory

access

address

reconfigurable

SSM
Hardware API

b) status/state memory structuresa) SSM internal architecture

condition
event
mask

condition
event
mask

condition
event
mask

....

TIM

TC1

TC2

(TCn+1)*3

state
not used

state
trigger
state

trigger
state

trigger
....

TIM

TC1

TC2

(TCn+1)*2st
a
tu

s
m

em
o
ry

 (
3
2
 b

it
s)

st
a
te

 m
em

o
ry

 (
8
 b

it
s)

TC3

other
buses
and
lines

Figure 6.8: The SSM architecture and the status/state memories structures.

To simplify the access to both the status and the state memories, the SSM provides a

set of four commands decoded by its internal controller, as indicated in table 6.4.

Issuing a command to this module does not require selecting the memory to access,

since it is the command itself that handles this issue, indicated by the access bus. The

memory addresses must be defined by the address bus, whose width is automatically

defined during reconfiguration, according to the number of implemented TCs. When the

controller detects one command, it is decoded to trigger a specific procedure according

to the accessed memory and the executed operation (read or write).

136 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table 6.4: Implemented commands to access the SSM.

access Commands

00
writesStatus - Writes into a status register.

The type of register is automatically detected (condition, event or mask).

01
readsStatus - Reads a status register.
The type of register is automatically detected (condition, event or mask).

10
writesState - Writes into a state register.

The type of register is automatically detected (state or trigger).

11
readsState - Reads a state register.

The type of register is automatically detected (state or trigger).

Reading the state memory using the readState command does not require any

specific procedure within the controller. Forcing a transaction between states, i.e.

issuing the writesState command to change the operating state of a specific TC/TIM,

requires evaluating if that transaction is valid. This is internally made by consulting an

internal Look Up Table (LUT) that contains all valid transactions. Since the current

version does not distinguish the trigger states of any TC/TIM, changing a trigger state

only sets or resets bit 0 of each register, and no further processing is made, except when

trying to change the TIM trigger state. In this situation, an error will be generated, since

the TIM does not have any associated trigger.

The complexity increases when using the writesStatus and the readsStatus

commands. When these commands are issued, the SSM automatically detects what type

of register will be accessed (condition, event or mask). By issuing a writesStatus to a

condition or mask registers, the controller activates the status message generation logic

defined by the IEEE1451.0 Std. Since there is no IEEE1451.0 command able to change

the event register, the SSM does not enable writing event registers, generating an error

if there is a request to do such operation. By issuing the readsStatus, the controller reads

a register of any type and, if it is an event register, it will also clear its contents.

As represented in figure 6.9a), all bits of the TIM condition register represent an OR

logic of all bits in each TC condition register. In other words, when a bit is set in a TC,

the correspondent bit in the TIM will be also set. In situations where an error is caused

only by the TIM, i.e. not associated to a particular TC, only the bits in the TIM are set.

The same OR logic is applied when a SR is generated according to the status message

generation logic, as represented in the same figure 6.9b). Every SR generated by TCs or

by the TIM, sets a specific bit in an internal register named servReq, whose length

depends on the adopted TC defined during reconfiguration. Since an OR logic is

adopted for generating a SR to the whole infrastructure, every SR generated by a

specific TC or by the TIM, triggers a generic signal, which may originate a TIM-

initiated message if the status-event protocol is active for that TC/TIM, as previously

described.

Chapter 6: The weblab reconfigurable framework 137

TIM bit_n

SR

TC1

SR

TIM

SR

TC2

SR

TCn (...)

servReq internal register

Service_Request

(SR)

bit_n

TC2

bit_n

TC1

bit_n

TC3

bit_n

TC n (...)

Status bits of each TC/TIM condition register

Bits in the
TIM condition
register are
asserted based
on an OR logic.

The SR signal
remains set if a SR
of any TC/TIM is
also set.
The servReg
gathers all values
of the SRs
associated to each
TC/TIM.

The bits of the servReg
are cleared after:
i) reading an event
register;
ii) sending a TIM-
initiated message caused
by a SR when the status-
event protocol is active;
iii) clearing the event
register.

OROR

a) TIM bits logic of the condition register b) Service request generation logic

Figure 6.9: Implemented logic for the condition registers and for the SR signal.

Both the status and state memories are accessed by: i) DCM internal-tasks, used

when this last module receives commands and; ii) TC-tasks belonging to particular

implementation of a weblab module, which will be automatically embedded into the

DCM during the reconfiguration process. With a schema similar to the one adopted for

the TEDS-M, an hardware API facilitates the access to those status and state memories

using the commands of the SSM, as illustrated in figure 6.10. This API is implemented

by different tasks within the Access_ModStatusState.vh file, providing the instructions

described in table 6.5, which have a set of I/O parameters to interact with DCM internal

registers.

...
Hardware

API

(Access_Mod
StatusState.vh)

tasks
tasks

tasks

Controller
(commands)

Memories
(state/status)

DCM

weblab
module

The DCM-SSM interface is established

according to a particular handshake

protocol that uses a set of bus lines.

Instructions provided in the hardware

API manage all signals on the bus

lines to access the status and the state

memories.

SSM

B
u

s
li

n
es

Figure 6.10: Layered structure supported by the Access_ModStatusState hardware API

to access the SSM status and the state memories.

Table 6.5: Instructions provided by the Access_ModStatusState hardware API.

ModStateStatus_Read

Reads the status or the states of a particular TC or TIM.

ModState_Write

Defines the state for both TCs and TIM, and defines if the trigger is active for a particular TC.

ModStatus_Write

Changes the condition, event or mask registers of a particular TC or TIM.

138 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex J.9 presents several details about the SSM, namely the definition of internal

variables, the schematics with the adopted buses and lines, the handshake protocol

adopted for interfacing the DCM, and the instructions provided by the hardware API.

6.2.4 UART Module (UART-M)

The UART-M establishes the interface between the IEEE1451.0-Module and the

NCAP using the control/monitor connection implemented by an RS-232 interface. It is

controlled by the DCM using an handshake protocol that manages a set of signals to

access two internal buffers and to control all data-flow during transmissions. The

UART-M also implements a mechanism for validating and creating command, reply

and TIM-initiated messages structures defined by the IEEE1451.0 Std.

As represented in figure 6.11, the UART-M comprises three independent modules:

the Tx, Rx and the BR_generator. The Tx and Rx modules manage all data

transmissions, and the BR_Generator module defines the data rate according to a clk

signal that is also used to synchronize all the other modules within the IEEE1451.0-

Module. Data transmissions are made through the tx and the rx lines.

Rx bufferrx

data handshake
lines

verify command
messages structures

Tx buffer
tx

create reply and TIM-
initiated messages structures

DCM

data TEDS-M

clk
BR_Generator

[defines the baud rate for RS-232 transmissions and for the operation of other modules]

clk_out clk_out

SSM

weblab

module
clk_out

tx

UART-M

Rx Tx

error

Figure 6.11: The architecture of the UART-M and the interface with the remaining

modules of the IEEE1451.0-Module.

Besides providing the interface to the whole TIM, it also implements specific

features in the Tx and Rx modules. The Rx module has an internal mechanism that

evaluates if the received command message structures are in accordance with the

IEEE1451.0 Std. It verifies if the format and length of the received structures are valid,

and if the synchronization bits follow the implemented solution that uses one start bit

and two stop bits without parity check. If valid, the Rx module fills-in its internal

buffer. Otherwise, if an inconsistency is detected, i.e. the length does not correspond to

the remaining data sent in a specific structure, or if it does not have the delimiters start

and stop bits, the UART-M generates an error, sending it to the DCM by turning high

the logic signal of the error line. The Tx module gathers all data sent by the DCM in its

Chapter 6: The weblab reconfigurable framework 139

internal buffer, so it may transmit TIM-initiated messages or command reply messages.

The baud rate is controlled by the BR_generator module that receives a clock signal in

the clk line and generates a new clock with a lower frequency through the clk_out line.

This line is used for synchronizing all modules of the IEEE1451.0-Module and some

weblab modules, except the ones that run at different frequencies, which may use other

clock signals generated by other modules designed by weblab modules’ developers.

Annex J.10 illustrates the UART-M schematics, and the buses, lines and handshake

protocols used by the Rx and Tx modules to receive/transmit data from/to the NCAP.

6.3. The weblab connecting modules: layout and interface

To bind weblab modules to the IEEE1451.0-Module, developers should follow a

specific process and define all parts, which include one or more modules connected

through TCs using a set of TC-tasks described in Verilog HDL and embedded in the

DCM [143][144]. As previously referred, these TC-tasks establish the interface between

the IEEE1451.0-Module and each weblab module, enabling their control according to

TEDSs, also defined by the developer. The number of TCs depends on the architecture

and parameters to control on each weblab module. In the next subsections all parts

required to define the weblab modules are detailed, namely their architecture, the

number of TCs and their operating modes, the TC-tasks embedded in the DCM and, the

methodology for developing those modules.

6.3.1 Internal architecture

A weblab module compatible with the IEEE1451.0-Module comprises an

architecture divided in 3 distinct parts: i) HDL files describing the module itself; ii) TC-

tasks to control and interface the module with the DCM and; iii) TEDSs to define the

behaviour of the entire IEEE1451.0-Module and of each TC adopted to interface the

weblab module and the DCM. As illustrated by figure 6.12, each weblab module is

accessed by one or more TCs controlled by TC-tasks managed according to the data

available within the TEDS and status/state memories.

Weblab module design

TC lines

IEEE1451.0-Module

weblab module

TEDS-M DCM

HDL module

SSM

Status State
Memory

Buffer (MB)

TC lines

taskTC-task

......

Represents the TC-
tasks accessing the

modules / MB

Target

experiment

UART-M

TC-taskTC-task

TC-taskTC-task

HDL moduleHDL module

I/O

TEDSTEDSTEDS

Figure 6.12: Parts required for defining a weblab module compatible with the

IEEE1451.0-Module.

140 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The TC-tasks are responsible for accessing the TEDS-M, the SSM, the UART, and

the MB, which gathers temporary data used by some IEEE1451.0 commands and by the

weblab module itself during read/write operations in their DSs. To simplify the design,

each TC-task accesses the weblab modules using the hardware APIs referred in previous

subsections 6.2.2 and 6.2.3, facilitating this way their description and independence

towards the specificities of the DCM implementation.

There are required and optional TC-tasks that should be defined according to the

adopted TC, so the DCM may automatically use them to handle received commands

from the NCAP or events generated by the weblab modules. The number of adopted

TCs depends on developers’ options and should take into consideration the parameters

to control in a particular weblab module, the TEDSs’ definitions, and the resources

available in the FPGA.

6.3.2 Required Transducer Channels

In a traditional weblab module, several commands are required to start a

measurement or to read/write a specific signal from/into an external device connected to

a target experiment. For example, to generate a waveform signal using a Function

Generator (a type of a weblab module), developers should define, at least, three

parameters: the waveform type, the amplitude and the frequency. These or other

parameters should also be controlled in similar weblab modules connected to the

IEEE1451.0-Module. The control of the weblab modules is managed by TCs, whose

behaviour is defined according to TEDSs, in particular by the contents of the associated

TC-TEDSs able to be changed using IEEE1451.0 commands (e.g. WriteTEDSsegment).

Depending on the defined sampling mode, different commands may be issued to a

particular TC. Per example, if specific data is required to read/write from/to a weblab

module, the associated TC should provide access to its internal DSs, whose contents

will be transferred to/from the MB, according to the data flow illustrated in figure 6.13.

Memory

Buffer

(MB)

TC-tasks
DS

DS
DS

TC
lines

IEEE1451.0-Module

1
1

1

2

2
2

Weblab module design

Target

experiment
NCAP

Embedded
weblab module

(write)

(read)

(read)

(write)

Figure 6.13: Data flow between the DCM and the weblab modules.

Dashed lines 1 represent data writing operations and dashed lines 2 data reading

operations. Using the MB to gather all data during both operations is fundamental in

order to guarantee an abstraction layer between the IEEE1451.0-Module, in particular

Chapter 6: The weblab reconfigurable framework 141

the DCM, and the TC-tasks described for each weblab module. This way, during their

description, developers only need to know how to access the MB and the external DCM

modules (TEDS-M and SSM), which is simplified using the interfaces provided by the

hardware APIs described in subsections 6.2.2 and 6.2.3.

As illustrated in figure 6.14, there are two solutions for controlling the parameters of

the weblab modules: i) using several TCs for individually controlling each parameter or;

ii) using one TC controlling more than one parameter through encoding/decoding

processes.

TC 1

TC-TEDS

User’s Transducer
Name TEDS

Meta TEDS

IE
E

E
1

4
5

1
.0

-M
o

d
u

le

MD-TEDS

TC

lines

a) One TC for individually controlling one
parameter

parameter
to control

I/O

Memory

Buffer

(MB)

DS

tasks

DS

TC 2

TC-TEDS

MD-TEDS

TC

lines

DS

tasks

DS

TC n

TC-TEDS

MD-TEDS

TC

lines

DS

tasks

DS

....

TC

lines
I/O

DSDS
TC

TC-TEDS

MD-TEDS

TC encoder/
decoder

TC

encoder/

decoder

DS

tasks

Memory

Buffer

(MB)

E
m

b
ed

d
ed

w
eb

la
b

m
o

d
u

le

User’s Transducer
Name TEDS

Meta TEDS

parameters
to control

b) One TC may control several
parameters

E
m

b
ed

d
ed

w
eb

la
b

m
o

d
u

le

IE
E

E
1

4
5

1
.0

-M
o

d
u

le

Figure 6.14: Possibilities for controlling weblab modules parameters using TCs.

In the first solution (figure 6.14a), users control individually each weblab module

through several TCs. This means that a weblab module requiring the control of several

parameters also requires several TCs and associated TC-tasks, several buses attached to

the IEEE1451.0-Module and, at least, one TC-TEDS for each TC. Despite the

possibility of a well defined control over the parameters of a weblab module, this

solution is more resource-consuming, which may become impracticable when using a

single FPGA to accommodate the IEEE1451.0-Module and all the weblab modules.

The second solution (figure 6.14b), is less resource-consuming (less TEDSs and a

single bus attached to the weblab module), but it requires extra-processing units to

encode/decode the data transferred using the TC, both in the TC-tasks and in the

modules indicated in the figure as the Embedded weblab module. By

encoding/decoding the data transferred through the TC, the IEEE1451.0-Module can

define the required parameters to control the weblab module.

The flexibility provided by both solutions may be applied to situations that use a

chain of several weblab modules connected through a daisy chain bus, as represented in

figure 6.15. In this situation, developers should define the handshake protocol between

142 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

each TC-task and the TC encoder/decoder that should also provide a multipoint protocol

to access each parameter. An example of a multipoint protocol that can be adopted is the

Wishbone Bus
106

, which is an open source hardware computer bus typically used to

interface different modules within an FPGA. The entire protocol can be implemented by

the TC encoder/decoder (defined outside of the TC-tasks) to manage the daisy chain

bus, providing an access to each weblab module and, in particular, to its parameters.

User’s Transducer
Name TEDS

Meta TEDS

TC

lines

represents parameters able to control in a weblab module

I/O

Memory

Buffer

(MB)

TC

TC-TEDS

MD-TEDS

TC enc/dec

Encoder
Decoder

TC-tasks

Embedded weblab
modules

TC encoder/decoder
implements a multipoint protocol responsible for redirecting all

DCM accesses to/from a particular parameter

DS

...

TC

TC-TEDS

MD-TEDS

TC enc/dec

TC-tasks

I/O

DS

I/O

DS

(...)

D
es

ig
n

ed
 d

a
is

y
 c

h
a

in
 b

u
s

Encoder
Decoder

Encoder
Decoder

IE
E

E
1

4
5

1
.0

-M
o

d
u

le

Figure 6.15: Control of a daisy chain bus with the modules connected to the

IEEE1451.0-Module.

Developers may adopt one or both solutions that require TEDSs to characterize the

behaviour of a weblab module. This is the case for TCs, which must be associated with

a single TC-TEDS that may not provide all fields required to characterize their

behaviour. When this situation occurs, developers may define extra fields in the TC-

TEDS, or they may adopt other TEDSs, such as MD-TEDSs. Both options are in

accordance with the IEEE1451.0 Std., and satisfy the requirements posed by every

weblab module, since they allow users to monitor or define the behaviour of the TCs

through specific TEDSs’ fields. Then, developers should evaluate their options upon the

control level required for each weblab module, and the coherence of the TC-TEDS and

other associated fields of the adopted TEDSs, with the characteristics of the I/O signals

(e.g. associated units, ranges, etc.). In other words, a solution based on a single TC able

to control several parameters of a specific weblab module should be only adopted if the

TEDSs’ contents describe all relevant features of the associated I/O.

Whatever the adopted solution, its implementation should be made either in each

weblab module or in the daisy chain bus structure, and in the IEEE1451.0-Module by

defining a set of TC-tasks for each adopted TC. These TC-tasks are embedded into the

DCM through an automatic reconfiguration, and may implement any type of handshake

protocol to interface the weblab modules.

106 The Wishbone Bus is SoC architecture describing a flexible design methodology for interfacing

portable IP cores (http://opencores.org/opencores,wishbone).

http://opencores.org/opencores,wishbone

Chapter 6: The weblab reconfigurable framework 143

6.3.3 TC-tasks

Depending on the operation mode defined for a particular TC and the applied

command, a specific procedure should be used to access the TEDSs, configure the

parameters of a weblab module, and to transfer data between the MB and the DSs

available within each weblab module. The TCs lines and the associated handshake

protocol, used to access a weblab module, are defined by the developers. There are no

restrictions, since the definition of a weblab module includes the definition of the

associated HDL modules and the TC-tasks to be embedded into the DCM, as illustrated

in the previous figure 6.12. This means that developers may define their own protocol

or select a specific one, like the Wishbone Bus. The only requirement posed to

developers is to follow a set of operational rules defined for the TC-tasks, since most of

these tasks are accessed when a specific command is received by the DCM.

There are mandatory and optional TC-tasks that, according to the association

illustrated in figure 6.16, are embedded into the DCM and accessed when a specific

command, numbered by its class and function, is issued, or when an event is generated

by a TC running as an event sensor. The DCM automatically decodes received

commands and accesses associated TC-task. It automatically accesses the event() TC-

task when is the weblab module that generates an event. The internal tasks descriptions

include instructions to access the TEDS-M and the SSM to read, write or update their

internal memories according to the operation of a weblab module, and the UART-M to

enable the data transmission to/from the NCAP. TC-tasks have their specific functions,

since most of them are associated to a particular command. The exception is the init()

that is always accessed during power-up, and the event() that is not associated to any

particular command. This last particular TC-task is accessed when an event is

generated, and it may interact with all the other modules connected with the DCM.

stop()

start()

rd()

wr()

TC-tasks

3.2-WriteTCDSsegment

3.1- ReadTCDSsegment

3.4- AbortTrigger

3.3- TriggerCommand
Weblab
module

Weblab module design

1.4- updateTEDS

7.1-Reset
init()

update()
Bus
lines

parameters
to control

buffer
DS

- Commands are numbered according to classes and functions defined in the IEEE1451.0 Std.
- Depending on the sampling mode, commands may use one or more tasks.

processing

modules

processing

module

DCM

event()
May access different features in the DCM

(TEDS and status/state memories, MB, or

transmit a TIM-initiated message)
event

Figure 6.16: Association between IEEE1451.0 commands and TC-tasks.

144 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Thus, seven TC-tasks (some optional), may be specified for each TC, according to

the adopted sampling mode defined in the TC-TEDS, and each one should implement

specific features, namely:

 start() and stop() - [optional] - Used by TCs that adopt sampling modes with

triggers. These tasks start/stop the operation of the weblab modules indicating

they can begin/end acquiring or sampling data to/from their internal DSs.

Accessed by the commands AbortTrigger (3.4) and TriggerCommand (3.3);

 rd() - [optional] - Performs a read operation. DSs are copied into the MB so they

may be automatically accessed by the DCM. Accessed by the command

ReadTCDSsegment (3.1);

 wr() - [optional] - Applied to TCs running as actuators. It performs a write

operation by copying the contents of the MB into the DSs. These contents can be

immediately outputted if the TC runs in an immediate mode, otherwise it can

only output data on the reception of a trigger command using the start() TC-task.

Accessed by the command WriteTCDSsegment (3.2);

 init() - [required] - Initializes TCs by accessing the contents of the associated

TEDSs and defining their current operation (e.g. sampling time). The TCs go to

an idle state. Accessed by the command Reset (7.1) and during a power-up;

 update() - [required] - Updates the operation of TCs based on the contents of

TEDSs. Accessed by commands Read/WriteTCDSsegment (3.1/3.2),

TriggerCommand (3.3) and updateTEDS (1.4);

 event() - [optional] - Only used by TCs running as event sensors, which generate

event signals. This task may access different features of the IEEE1451.0-

Module, such as TEDSs and status/state memories, the MB, or simple transmit a

TIM-initiated message to the NCAP. It is not associated to any command.

Annex K.1 exemplifies the HDL code required for all TC-tasks specified by the

developers of each weblab module.

The init() TC-task is accessed after a power-up or after the reception of a reset

command. It should initialize the weblab modules associated to a particular TC, which

typically includes an access to the TEDS-M and SSM memories. The other TC-tasks

impose some other operational sequences when accessed, as illustrated in figure 6.17.

For TCs operating in trigger-dependent modes, issuing the TriggerCommand and the

AbortTrigger commands, enables the DCM to access the update() TC-task, as

represented in figure 6.17a). This should configure the parameters of a weblab module

associated to the TC, by accessing the TEDS-M and the SSM. Latter, the DCM may

access the start() TC-task to start a specific operation in the weblab module associated

to that TC, such as I/O data to/from its internal DSs. The reception of the AbortTrigger

Chapter 6: The weblab reconfigurable framework 145

command accesses the stop() TC-task, whose internal implementation should stop that

same operation.

DS

TriggerCommand

AbortTrigger

DS

d
at

a
p
ro

ce
ss

in
g

TEDSTEDS access

clk_ext.

TEDS

- For free-running sampling modes (with/without pre-trigger)
- TC running as actuator or sensor

IEEE1451.0-Module

u
p
d
at

e
()

st
ar

t
()

st
o
p
 (

)

DCM

TC

lines

config.

start

stop

TEDS-M

SSM

Weblab module

a) Trigger commands b) Generated event

c) WriteTCDSsegment command d) ReadTCDSsegment command

In
Out

DSDS

d
at

a
p
ro

ce
ss

in
g

TEDSTEDS

access

clk_ext.

TEDS

IEEE1451.0-Module

ev
en

t
()

DCM

TC

lines

TEDS-M

SSM access

Weblab module

UART access

other
resources

MB

access

data

data

In
Out

ac
ce

ss

NCAP

event

- Only for transducers that may generate events
- TC running as actuator or sensor

DSDS

d
at

a
p
ro

ce
ss

in
g

TEDSTEDS

clk_ext.

TEDS

IEEE1451.0-Module

DCM

TC

lines

TEDS-M
SSM

Weblab module

WriteTCDS
segment

MB

access

data
data

Out

u
p
d
at

e
()

w
r

()

ac
ce

ss

NCAP

config.

DSDS

d
at

a
p
ro

ce
ss

in
g

TEDSTEDS

clk_ext.

TEDS

IEEE1451.0-Module

DCM

TC

lines

TEDS-M
SSM

Weblab module

ReadTCDS
segment

MB

access

data
data In

u
p
d
at

e
()

rd
 (

)

ac
ce

ss

NCAP

config.

- TC running as actuator or sensor - TC running as actuator or sensor

Figure 6.17: Operational sequences performed by the TC-tasks.

When a weblab module generates events, the associated TC should implement a

trigger event mechanism. This is defined by the handshake protocol that should

implement an event signal connected to the DCM so, as represented in figure 6.17b), the

event() TC-task may be automatically accessed. Internally, this TC-task can access

every module within the DCM, and in most situations it is expected to generate a TIM-

initiated message to the NCAP, eventually containing data read from the associated

DSs.

The remaining Write/ReadTCDSsegment commands allow writing or reading the

DSs. As illustrated in figure 6.17c) and figure 6.17d), when issued, both commands

automatically access the update() TC-task configuring the weblab module to enable the

access to the TEDS-M and to the SSM. Once configured, they access the wr() or the rd()

TC-tasks to transfer data between the DSs and the MB. Issuing the WriteTCDSsegment

command allows to fill-in the MB with all transferred data, which is latter copied into

the DSs of the weblab module using the wr() TC-task. Issuing the ReadTCDSsegment

command will transfer the data into the DSs to the MB, which is latter accessed and

transferred to the NCAP using the rd() TC-task. In both situations, the MB acts as data-

bridge to facilitate the implementation of the weblab modules by standardizing the

access to their contents using in the wr()/rd() TC-tasks.

146 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

6.3.4 Development methodology

Following the presented guidelines, the development of weblab modules compatible

with the IEEE1451.0-Module must follow the sequence presented in the diagram of

figure 6.18.

Evaluate

requirements and

features for the

weblab module

Select the required I/Os

of the weblab module to

interface the target

experiment

Select the

weblab module

control

parameters

Select the number and type

of TCs required to access

the weblab module control

parameters

Select and describe the

TC-tasks

Define the TEDSs for the

TIM and for the selected

TCs

Bind the weblab module to

the IEEE1451.0-Module

using the RecTool

Figure 6.18: Methodology for designing weblab modules compatible with the

IEEE1451.0-Module.

Developers should start by evaluating the requirements and features of the weblab

module they want to design. It is fundamental to evaluate its complexity to understand

what modules should be defined in the FPGA. For this purpose, the I/Os should be

selected, namely the associated signals, and if they act as actuators, sensors or event

sensors. In the current architecture, those I/Os are managed by one or more parameters

that should be controlled using one or more TCs. Therefore, after selecting the I/Os and

the parameters to control, developers should define the number of TCs. That definition

should be made according to the type of parameters they want to control and the

requirements posed to the FPGA, since the use of several TCs may require many

associated TEDSs, which may require many FPGA resources. Once the number of TCs

is selected, developers should define the TEDSs to describe the TIM architecture and

the weblab module behaviour. Current solution suggests that at least the TC-TEDS

should be defined for each selected TC. Nevertheless, developers may define other

TEDSs described by the IEEE1451.0 Std., like a MD-TEDS that allows defining extra

fields to specify the behaviour of a particular TC, and therefore, of the weblab module.

The way TCs are controlled is made by the TC-tasks selected according to the

adopted sampling mode using any type of signals connected to the weblab modules. So,

it is up to developer to decide which will be the TC-tasks used to control each TC and

the way they are implemented, so they can provide the interface to the other modules

within the IEEE1451.0-Module. In order to simplify the developments, during the

description of each TC-task, developers may use the hardware APIs provided to access

the TEDS-M and the SSM and, for the event() TC-task, the protocol adopted in the TC

to control the data transmission/reception of the UART-M. After all these definitions, a

specific weblab module is available to connect to the IEEE1451.0-Module using the

reconfiguration process supported by the RecTool.

Therefore, developing the weblab modules requires defining their TEDSs and their

internal layouts and interfaces. To avoid going into many details in this chapter, it was

Chapter 6: The weblab reconfigurable framework 147

decided to provide some annexes with an example of a TEDS and a MT design,
107

 and

with examples of compatible weblab modules, some of them adopted in the validation

& verification process described in the next chapter 7.

Annex K.2 exemplifies the design of TEDSs (and MTs).

Annex K.3 presents some weblab modules, namely: i) two digital I/O modules

(annex K.3.1); ii) one step-motor controller module (annex K.3.2) and; iii) a simple

event sensor (annex K.3.3) designed just to validate the operation of the IEEE1451.0-

Module with TCs running as event-sensors.

6.4. The reconfiguration process

To reconfigure the weblab infrastructure, namely the TIM, it is necessary to select

weblab modules and specify the way they are connected to the IEEE1451.0-Module.

Students, teachers or technicians must specify a set of rules in a configuration file, and

select other project files describing the weblab modules and other internal connections.

They must follow a specific methodology supported by the RecTool already presented

in the previous chapter, whose panels and files are illustrated in figure 6.19.

Weblab

modules

(*.teds, *.v,

*.vh) - Files

describing the

weblab modules.

MT file (*.map) -

Mapping file required to

associate the TEDSs’

memories to the TCs and

to the TIM.

UCF file (*.ucf) - Specifies

the I/O pinout of the FPGA-

based board used by the

weblab modules.

Weblab

projects

(*.bit or

*.svf) -

Binary files

of the

generated

weblab

projects.

Reports

(*.rep) -

Reports

generated

during the

reconf.

process.

2013-04-17_14:34:12.svf

Upload section

- Enables

uploading files

to the weblab

server.Information section - Presents all information

during users’ interaction with the RecTool.

Panels section - Has all files required for reconfiguring the weblab

infrastructure. It is divided in three other panels: i) build panel, has the

files required to created the weblab project; ii) reconfiguration panel,

has all synthesized files for reconfiguring the infrastructure and; iii)

reports panel, provides the reports generated during the reconfiguration.

Configuration

files (*.conf) -

Contain the rules

for redefining

the weblab

project (e.g.

generate and

interface project

files, specify the

configurations

for interfacing

the weblab

modules, etc.).

Figure 6.19: The RecTool interface panels and files used for reconfiguring the weblab

infrastructure.

107 MTs are used in the reconfiguration process and they are designed in the same way as TEDSs.

148 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

This tool generates the weblab project bitstream file that includes the selected weblab

modules, and reconfigures the TIM according to a particular reconfiguration sequence.

6.4.1 The reconfiguration sequence

The RecTool was developed to allow users (students/teachers/technicians) keep

tracking of all operations made during the reconfiguration process. The most common

sequence involves three main operations: i) build the weblab project binding the weblab

modules to the IEEE1451.0-Module; ii) synthesize the project to create a *.bit or a *.svf

file and; iii) sending that file to the weblab infrastructure, namely to the NCAP that will

reconfigure the TIM. During this sequence, users interact with the RecTool interface

from different access stages, according to the sequence illustrated in figure 6.20.

The access stage depends on users requirements, i.e. if they want to create a new

weblab project or to use an already synthesized one, available in the RecTool. Five

access stages are considered:

 Access stage 1 - After uploading the project/configuration files, users either

follow the entire sequence or go to access stages 4 or 5 to reconfigure the TIM;

 Access stage 2 - Users have already all project files in the RecTool to create a

new weblab project. No uploading is required, but they should follow the

remaining sequence;

 Access stage 3 - The weblab project is already built and available to be

synthesized;

 Access stage 4 - The binary files (*.bit) for reconfiguring the FPGA are already

available in the RecTool. Users should select one *.bit file that will be converted

to an *.svf file to reconfigure the TIM;

 Access stage 5 - An *.svf file is available to reconfigure the TIM. This access

stage is the simplest one because the weblab server only needs to send the file

and monitor the reconfiguration process. No file conversion (*.bit to *.svf) is

required, only a report will be generated.

During upload, only relevant file types are allowed (*.conf/ucf/vh/v/teds/map). Once

selected and uploaded, they will be placed in the users’ Weblab Server File System

(WSFS) space appearing in the RecTool interface panel (e.g. if users select a

configuration file, it will be automatically placed in the build configuration panel).

Next, users should select the files to build the weblab project. In this operation, the

RecTool activates a validation mechanism to guarantee that only allowed files are

selected with the correct cardinality (e.g. only one *.map and *.ucf files can be

selected).

Chapter 6: The weblab reconfigurable framework 149

F
ig

u
re

 6
.2

0
:

T
h

e
co

m
p

le
te

 r
ec

o
n

fi
g
u

ra
ti

o
n

 s
eq

u
en

ce
 u

si
n

g
 t

h
e

R
ec

T
o

o
l.

150 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

At the end, users should initiate the build operation, which is concluded almost

instantaneously because the processing power required from the weblab server machine

is reduced, and therefore, the time consumed is short (a few seconds), which does not

happen during the synthesis operation. If there are no reported errors after the build

operation, users should start the synthesis. This may be much time consuming, from a

few minutes to hours, depending on the complexity of the weblab project that is related

with the selected weblab modules, the weblab server processing power, and the reported

errors, i.e. if during the synthesis operation an early error is detected, it stops the

synthesis in a short period of time, otherwise it may take hours before stopping and

retrieving that error. Although users may stop the synthesis by pressing the StopSyn

button, it was decided to run the synthesis operation in background, so they can keep

interacting with the RecTool, but with some restrictions, namely: i) they cannot start

another synthesis, since the involved consuming processing power may stuck the

weblab server machine or increase much more the time required to finish the operation

and; ii) the build operation becomes inactive, because users cannot change the weblab

project files while a synthesis operation is running. Nevertheless, users can still access

the RecTool at access stages 4 and 5, i.e. they can reconfigure the weblab infrastructure

with solutions already available in their WSFS space. To alert users that a synthesis

operation has finished, the RecTool automatically sends an e-mail indicating users

should consult the RecTool interface, namely the Syn report to evaluate if the synthesis

was successful. If there are no reported errors, a *.bit file becomes available so users

may select it to start the reconfiguration operation.

The reconfiguration operation is not so time consuming as a synthesis operation. It

involves sending an *.svf file to the weblab infrastructure through the NCAP. Users start

the reconfiguration process by selecting a *.bit or *.svf files in accesses stages 4 or 5. In

access stage 4, the selection of a *.bit file requires using the RecTool to create the *.svf

file that will be automatically transferred to the NCAP, becoming available in the

reconfiguration panel for future reconfigurations. In access stage 5, the *.svf file is

already available to be transferred, and no file conversion is required. Both accesses

require some processing in the RecTool but, since they are concluded in a few seconds,

they do not run in background. The generated reports give possible errors occurred

during the reconfiguration (Reconf_date.rep) and during the creation of the *.svf file

(svf_date.rep). When errors occur, information will be displayed in the information

panel and in the generated reports. In the situation of an unsuccessful reconfiguration

not detailed in reports, users may consider that the NCAP is offline or the network,

which interfaces the NCAP with the weblab server, is down. If no errors are reported,

this means the weblab infrastructure (the TIM) was correctly reconfigured, and users

should evaluate it using IEEE1451.0-HTTP methods.

Annex L.1 presents some examples of report files generated during the

reconfiguration process.

Chapter 6: The weblab reconfigurable framework 151

6.4.2 The role of the configuration file

To reconfigure the weblab infrastructure, it is fundamental to understand the process

of connecting the weblab modules to the IEEE1451.0-Module, which is made according

to a set of rules defined in a configuration file (*.conf). This is a text file divided in set

of blocks delimitated by tags, whose rules are automatically decoded by the Bind and

Config software modules running in the RecTool, which redefine the entire weblab

project, as conceptualized in figure 6.21a). During this redefinition, several HDL files

describing the weblab project, in particular the IEEE1451.0-Module and its connections

are changed and others created, specifying the architecture required for implementing

the infrastructure, as represented in figure 6.21b). By decoding the configuration file,

the software modules configure the following aspects: i) module, internal and external

bus connections, whose widths are automatically redefined according to the number of

TCs and TEDSs adopted for binding the weblab modules; ii) internal parameters and

processes, such as multiplexing schemas; iii) other HDL files, namely the MT and the

TEDSs associated to each weblab module; iv) the TC-tasks used to attend commands

received from the NCAP and the events generated by TCs and; v) event, error and clock

lines.

IEEE1451.0-
Module

I&M

D
C

M

TEDS
M

SSM

clk

MB

CLK
gene.

clk

internal clk

event

weblab
module

errors(s)

internal

connections

external
connections

module

connections

TIM

event(s)

*
T

C

*Each weblab
module may have

several TCs

software modules

(Bind & Config)

configuration file
(*.conf)

Weblab project

 HDL files
(IEEE1451.0-Module)

reads

redefines

Target
experiment

a) Role of the sofware modules b) Connections established within the TIM

Figure 6.21: Role of the software modules running in the RecTool and connections

established within the TIM.

A particular attention should be paid to the event, error and clock lines. A weblab

module using a TC operating as an event sensor, should have a dedicated event line to

trigger an event in the IEEE1451.0-Module using the associated event() TC-task, as

already described in previous subsection 6.3.3. Since weblab modules run

independently, they may also generate their own error signals. To handle these errors,

the TIM enables the definition of several error lines connecting each weblab module to

the IEEE1451.0-Module. The associated errors are automatically mapped into hardware

errors, according to the IEEE1451.0 Std. Concerning the clock lines, the TIM provides

152 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

two types of lines: i) a clock line (clk), which represents the maximum clock frequency

provided by the oscillator available in the FPGA-based board and; ii) an internal clock

line (internal clk), which has a lower frequency than the previous clock, and is adopted

for synchronizing all modules available in the TIM, and for defining the baud rate used

for the NCAP-TIM data transmissions. Since all weblab modules are synchronized with

the IEEE1451.0-Module and, in some situations, they may need to run at higher

frequencies, each weblab module may use these two clock lines simultaneously, by

defining the appropriate rules in the configuration file.

Defining the reconfiguration file involves specifying several issues, namely: i) the

adopted TEDS, i.e. their files and locations; ii) the MT file, originally created as a

binary file, so the software modules may generate the correspondent HDL file; iii) the

default value of the mask registers that will define the behaviour of each TC; iv) all

connections defined through pieces of HDL code; v) the number of adopted TCs; vi) the

adopted HDL files describing the TC-tasks and the internal modules of each weblab

module; vii) the length of the MB; viii) the baud rate for NCAP-TIM messages and for

the internal synchronization of all modules within the TIM and; ix) the number of errors

and events caused by the weblab modules able to handle by the IEEE1451.0-Module.

To avoid going into many details in this chapter but, at the same time, to give an idea

of the complexity involded in the reconfiguration process, five annexes are provided.

Annex L.2 exemplifies some parts of a configuration file used for creating a weblab

project.

Annex L.3 provides the internal reconfiguration schematics with the associated buses

and lines defined in the configuration file, used to bind each weblab module to the

IEEE1451.0-Module.

Annex L.4 presents some examples of HDL files created by the software modules

Bind and Config according to the rules defined in a configuration file.

Annex L.5 lists the FPGA resources used by each HDL module using the two

configurations adopted in the validation & verification process, which will be described

in the next chapter 7. Although the resources used by the FPGA depend on the weblab

modules bound to the IEEE1451.0-Module, the objective of this annex is to give an idea

of the FPGA resources required for designing the weblab infrastructure.

6.4.3 Implementation issues of the RecTool

All actions made by the RecTool are supported by the WSFS. It gathers files and

applications required to manage and reconfigure the TIM using a specific software

application in the NCAP to send the bitstream code, available in a *.svf file, to the

FPGA. The weblab server was implemented in a computer with an Ubuntu Linux

distribution
108

 running the Apache HTTP server
109

 and the PHP Hypertext

108 http://www.ubuntu.com/server

http://www.ubuntu.com/server

Chapter 6: The weblab reconfigurable framework 153

Preprocessor
110

 to provide remote access to the RecTool using a web interface. To

reconfigure the TIM, the RecTool uses several software modules and applications

controlled and monitored by a Weblab Server Controller (WSC) developed using the

PHP server-side scripting language. As illustrated in figure 6.22, the build, reconfigure

and synthesize actions made in the RecTool interface are managed by the WSC that,

supported by the WSFS, uses a set of software modules and applications to create the

weblab project that reconfigures the TIM.

TIM

W
eb

la
b

 S
er

v
er

F
il

e
S

y
st

em

(W
S

F
S

)

Bind module Config. module

ISE Design

(xtclsh)

ISE iMPACT

se
n
d
 t

h
e

*
.s

v
f

fi
le

 t
o
 t

h
e

N
C

A
P

(W
ri

te
T

IM
)

re
co

n
fi

g
u

re

Weblab server

configuration progs

IEEE1451-infrastructure
(user config., project folders)

users

ise_project

list files (build/config/reports)

/
ISE WebPack tools, etc.

build

sy
n

th
es

iz
e

ISE
Webpack

Weblab Server Controller (WSC)

Figure 6.22: Weblab server internal modules and the actions used for creating the

weblab project that reconfigures the TIM.

Despite the current RecTool interface version does not manage users’ accesses (only

a simple login access schema is implemented), the organization of the WSFS guarantees

that future developments may easily handle this issue. For this purpose, besides the

installation of several proprietary software applications in the weblab server, the WSFS

was divided in two folder groups: i) the TIM folder, which provides all HDL files and

configuration programs to create the weblab project according to the selected weblab

modules and; ii) the users folder, which contains all files belonging to a specific user,

namely the build, configuration and report files, and the project files created in the

ise_project folder during the synthesis operation.

The files of the weblab modules selected by each user in the build panel, and the

HDL files describing the IEEE1451.0-Module, which are already available within

project folders inside the TIM/IEEE1451.0-infrastructure folder, are automatically

redefined by the Bind and Config software modules available in the TIM folder, as

already referred in previous subsection 6.4.2. These modules, developed specifically for

the RecTool, change some of the HDL files of the IEEE1451.0-Module based on the

configuration and project files selected in the build panel of the RecTool interface. This

way, it is possible to connect different weblab modules to the same IEEE1451.0-

Module, since all changes are automatic and transparent to the user.

109 http://httpd.apache.org/
110 http://www.php.net/

http://httpd.apache.org/
http://www.php.net/

154 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Internally, after pressing the build button, the weblab server manages the files of the

WSFS so the Bind and Config software modules may create the weblab project

according to the rules specified in the selected configuration file. Those rules are

defined through a set of predefined tags that should be in accordance with the files

selected in the project panel, otherwise the Bind and Config software modules retrieve

errors. While the build operation is independent of the adopted technology for

implementing the TIM, the synthesis operation, initiated after building the weblab

project, requires the use of technological dependent applications. Therefore, since the

TIM was implemented in an FPGA-based board with a Xilinx FPGA Spartan3E-1600

device, the ISE Webpack design software from Xilinx, currently named Vivado Design

Suite,
111

 was selected. Based on the weblab project created during the build operation,

in the synthesis operation, the WSC creates an ISE project inside the user/ise_project

folder. Since the synthesis is usually time and computational resource consuming, the

RecTool only runs a single synthesis operation. In this operation, the WSC starts

evaluating the weblab server availability by checking if a synthesis is already running. If

no synthesis is running, the WSC starts the synthesis operation by setting an internal

variable (shared by all users) indicating the weblab server became busy, and creating a

Tool Command Language (TCL) script file
112

 that is interpreted by the ISE Webpack

design software. This script contains all the instructions to control the execution of the

ISE Webpack during the synthesis operation, namely: i) the name of the project that will

be created in the user/ise_project folder; ii) the adopted FPGA device; iii) synthesis

directives; iv) indication of all files used in the project and; v) writes specific

instructions to send an automatic email to the user when the synthesis operation has

finished. Considering the long time time required to finish the synthesis, the TCL script

is executed in background using the xtclsh tool that belongs to the ISE Webpack.

Annex L.6 exemplifies a TCL script file created by the RecTool.

The last operation is the reconfiguration, which involves sending an *.svf file to the

weblab infrastructure using the HTTP WriteTIM command. During this operation, the

management made in the weblab server depends on the selected file in the

reconfiguration panel. Since the NCAP can only handle *.svf files to reconfigure the

TIM, if users select an *.bit file it will be converted to an *.svf file. Internally, the WSC

starts by evaluating the selected file type, and if it is a *.bit file it runs a tool named

iMPACT to convert the *.bit into an *.svf file. As with the xtclsh tool used for the

synthesis operation, the iMPACT also belongs to the ISE Webpack, since the target is an

FPGA from Xilinx. Hence, if an FPGA from a different manufacturer was selected,

other applications would need to be adapted to the RecTool, since both the xtclsh and

the iMPACT are accessed using Linux commands defined through bash files.

111 http://www.xilinx.com/products/design-tools/vivado/
112 http://www.tcl.tk/

http://www.xilinx.com/products/design-tools/vivado/
http://www.tcl.tk/

Chapter 6: The weblab reconfigurable framework 155

To upload the *.svf file from the weblab server to the NCAP, the WSC uses the

libcurl API that is a multiprotocol file transfer library
113

 that enables using the HTTP

WriteTIM method. Once uploaded to the NCAP, the reconfiguration module named

UrJTAG
114

, already referred in this thesis, reads the *.svf file and, using the

reconfiguration connection established through a JTAG interface, sends the file to the

FPGA-based board, thus reconfiguring the FPGA. The success of this operation can be

monitored using the information panel and the output of the UrJTAG module, which is

outputted in the Reconf_date.rep report file (see annex L.1, table L.5).

6.5. Summary

This chapter described in detail the functional and technical aspects about the

reconfiguration framework provided by the implemented weblab. It started by providing

a generic overview of the involved resources and tools in the reconfiguration process,

conceptualizing their tasks and interactions. Besides highlighting the role of the

RecTool, it was also described its interaction with the involved human actors during a

weblab reconfiguration. Those are students, teachers and technicians, whose tasks focus

on preparing the infrastructure to conduct experiments by reconfiguring it with different

weblab modules and the developers, which are mainly focused on creating those weblab

modules compatible with the implemented weblab, namely with the IEEE1451.0-

Module. Since binding the weblab modules with the IEEE1451.0-Module requires its

redefinition according to a set of rules, a special attention was given to this module. Its

structure and functionality were detailed, in particular its internal modules and the way

they are redefined to bind the weblab modules selected during the reconfiguration

process. Although the compatibility of the weblab modules with the IEEE1451.0 Std. is

guaranteed by the functionalities provided by the IEEE1451.0-Module, the specificity

of the reconfiguration process required a particular specification of their design. Their

layout and interface were then detailed, focusing on the internal architecture that

comprises the use of interfaces supported by TCs. Some considerations were referred to

the use of these TCs, and a methodology for developing the weblab modules was

presented. At the end, the reconfiguration process was detailed, by specifying the

reconfiguration sequence and stressing the importance of the configuration file adopted

by the RecTool to create the weblab project used to reconfigure the weblab

infrastructure. The chapter ended by presenting implementation issues of the RecTool,

indicating the involved software modules and tools, their operation and role during the

reconfiguration process.

The next chapter describes the validations and verifications aspects of the

implemented weblab, conducted by some experts in weblabs design.

113 http://curl.haxx.se/
114 http://urjtag.org

http://curl.haxx.se/
http://urjtag.org/

156 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 7: Validation & verification 157

 Chapter 7

Validation & verification

The previous chapters contextualized weblabs in engineering education alerting to a

current lack of standard access and design, and to limitations from the need to use

different weblab modules to conduct distinct remote experiments. To overcome these

issues, a reconfigurable weblab architecture based on the IEEE1451.0 Std. and

supported by FPGA technologies was described and implemented.

This chapter presents the validation & verification process of the implemented

architecture, conducted by a set of experts in the development of weblabs. Their

interaction with the weblab prototype is described, which includes the reconfiguration

of the underlying infrastructure with a set of pre-defined weblab modules adopted for

the conduction of two different target experiments. Initially guided by a supporting

webpage and by a set of videos detailing the entire validation & verification sequence,

the researchers were asked to answer some questions about the implemented

architecture and the added-value it may bring to experimental work in engineering

education. The presentation and analysis of the obtained responses concludes the

chapter.

158 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 7: Validation & verification 159

7.1. Adopted strategy: scenario and objectives

The current weblab implementation is a prototype solution intended to prove the

possibility of using and/or adopting the IEEE1451.0 Std. to design standard-based and

reconfigurable weblab architectures. Although the implemented solution proves the

viability of adopting similar architectures for the development of weblabs, it was

important to get opinions about it, from specialists. For this purpose, a set of

experienced experts in the development of weblab architectures was invited to interact

with the implemented weblab [145]. The selection was made in view of expected

opinions being more focused on technical rather than pedagogical aspects. Moreover,

the implemented solution is a prototype without attractive GUIs that would be required

if other type of human actors were invited. Therefore, the adopted scenario envisages

contributions from people able to understand current implementation not just as a

typical weblab, but essentially as a set of ideas and suggestions that, may lead to the

design of several reconfigurable and standard-based weblabs’ architectures comprising

low-cost infrastructures able to accommodate sharable and replicable weblab modules.

The implemented weblab supported by the IEEE1451.0 Std. and FPGA technology

involves many innovative technical aspects impossible to be all validated and verified

by the invited researchers. While the reconfiguration and standard control of the

infrastructure is the focus of the present validation & verification process, the proposed

methodology for designing compatible weblab modules was not considered. This is

justified by the lack of weblab designers with specific knowledge on the IEEE1451.0

Std. Additionally, the proposed methodology for designing compatible weblab modules

is rather time consuming and requires FPGA design skills, which hampers the

involvement of several weblab designers known by the author.

Therefore, the adopted scenario focused on validating and verifying the

reconfiguration capability of the weblab infrastructure with predefined and compatible

weblab modules, and on the possibility of their standard access using the IEEE1451.0-

HTTP API. Several human and non-human actors were involved during the interaction

with the weblab, as conceptualized in the diagram of figure 7.1.

Since the weblab architecture involves distinct technologies and a particular model

defined according to the IEEE1451.0 Std., this and other specific issues associated to

the current infrastructure were presented to the researchers using a supporting webpage.

They had access to an introduction about the weblab and involved technologies for its

development, the methodology followed to reconfigure and control/monitor the weblab

during the validation & verification process and, to a questionnaire. The questionnaire

was answered at the end, resulting in a set of reports describing the importance and the

added-value of the proposed architecture. The adopted methodology guided researchers

during the interaction with the weblab, involving its reconfiguration with three weblab

modules and the control/monitor of two distinct experiments. This methodology had

three main objectives: i) validate the importance of the weblab for designing and

160 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

conducting remote experiments; ii) verify if the associated infrastructure runs correctly

and; iii) get further suggestions to improve the weblab and, new ideas for possible

users’ scenarios.

supporting
webpage

infrastructureweblabvideos

experiments

researchers

introduction /
methodology /
questionnaires

reported results

reconfiguration & control

answer
questionnaires

2 reconfigurations

3 weblab modules
2 target

experiments

Figure 7.1: Scenario adopted to validate and verify the implemented weblab.

Next sections detail the validation & verification process, namely by describing: i)

the actors; ii) the different stages adopted on the defined methodology to verify the

weblab and; iii) the results obtained from the questionnaires answered by the invited

weblab designers.

7.2. Actors involved: researchers, experiments and tools

The validation & verification process involved the use of the RecTool and other tools

designed to support the researchers’ interaction with the weblab.

The invited researchers

The researchers remotely interacted with the weblab server and the underlying

infrastructure. By using the RecTool, they reconfigured the infrastructure with different

modules, controlling them issuing IEEE1451.0 commands through the methods

provided by the HTTP API. A relevant factor for their selection was their past and

current research activity concerning the development and maintenance of weblabs, and

also their skills as lecturers in engineering courses. As represented in figure 7.2, the

selection was: i) Unai Hernández, from the WebLab-Deusto Research Group
115

, Spain

[51][146][147]; ii) Danilo Z. Zutin, from Carinthia University of Applied Sciences
116

,

Austria [148][137][149]; iii) Willian Rochadel, from the RexLab
117

 at the Federal

University of Santa Catarina, Brazil [150][151][152] and; iv) Johan Zackrisson, from

115 https://www.weblab.deusto.es/web/
116 http://www.fh-kaernten.at/en.html
117 http://www.rexlab.ufsc.br/

https://www.weblab.deusto.es/web/
http://www.fh-kaernten.at/en.html
http://www.rexlab.ufsc.br/

Chapter 7: Validation & verification 161

the Blekinge Institute of Technology, Karlskrona
118

, Sweden [70][55][153]. All of them

participated in the entire process, excluding Unai that focused his contribution in more

generic aspects about the relevance of the implemented weblab in engineering

education
119

.

PT - Weblab (Portugal)

BR - Willian Rochadel (Brazil)

AT - Danilo Z. Zutin (Austria)

SE - Johan Zackrisson (Sweden)

ES - Unai Hernández (Spain)

BR

ES

SE

AT

PT

Figure 7.2: Involved researchers in the validation & verification process.

The target experiments, adopted modules and layouts

Since the two issues under analysis focused on the reconfiguration and control, two

different configurations to the infrastructure using three weblab modules compatible

with the IEEE1451.0-compliant module were prepared. In each configuration,

researchers were able to run two experiments, namely the control of an hardware loop

and of a bipolar step-motor. In both, the weblab modules were reconfigured in the

infrastructure using two layouts. The objective was to prove the reconfiguration

capability of the weblab that enables remotely changing and replicating the modules

without modifying the physical infrastructure, and the associated pinout of the FPGA-

based board. Three weblab modules, all presented in annex K.3, were accessed using

single TCs, namely the:

 8-Bit Input Module - monitors 8 input digital lines [annex K.3.1];

 6-Bit Output Module - controls 6 output digital lines [annex K.3.1];

 Step Motor Controller Module (SMCM) - a more complex module that controls

a bipolar step-motor (speed, number of steps, the rotation direction, etc.),

according to parameters defined in a MD-TEDS [annex K.3.2].

118 http://www.bth.se/eng
119 Unai Hernández did not interact with the weblab, but he provided opinions about generic aspects

faced by current weblab architectures and the added value current solution may bring to engineering

education.

http://www.bth.se/eng

162 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The 1
st
 configuration, illustrated in figure 7.3a), adopted all the three weblab

modules. The hardware loop was controlled using the two digital I/O modules accessed

using TC 1 and 2, while the step-motor was controlled using the SMCM accessed by

TC 3.

The 2
nd

 configuration, illustrated in figure 7.3b), adopted the same experiments, i.e.

the hardware loop and the step-motor control. In this configuration, the SMCM was not

reconfigured in the infrastructure, being replaced by a replication of the 6-Bit Output

Module. The I/O pinout adopted in the FPGA-based board was not modified, but the

weblab modules were rearranged in the TIM according to two different layouts

changing the adopted TCs for their control. In this configuration, the I/O modules

adopted for the hardware loop were controlled by TC 2 and 3. The step-motor was

controlled using the 6-Bit Output Module accessed by TC 1, which required remote

users to send digital sequences for controlling its rotation.

8-Bit Input
Module

TIM (FPGA-based board)

IE
E

E
1
4
5
1

.0
-c

o
m

p
li

a
n

t
m

o
d

u
le 8-Bit Input

Module

TC1
2

TIM (FPGA-based board)

6-Bit
Output
Module

Step-
Motor

Controller
Module

loopTC2

TC3

6

6

TC1

TC2

TC3

a) configuration 1 b) configuration 2

motor IE
E

E
1
4
5
1

.0
-c

o
m

p
li

a
n

t
m

o
d

u
le 6-Bit

Output
Module

6-Bit
Output
Module

2

loop

6

6

motor

not usednot used

N

C

A

P

N

C

A

P

I/O pinout I/O pinout

R
S

-2
3
2

R
S

-2
3
2

Figure 7.3: Configurations defined to the weblab infrastructure.

To emphasize the possibility of changing the infrastructure, changes to the adopted

TEDSs were made for each configuration. As illustrated in figure 7.4, the infrastructure

uses the mandatory Meta-TEDS and the User’s Transducer Name TEDS (XdrcName-

TEDS) with its associated name, and all TCs use the mandatory TC-TEDSs. In

configuration 1, the TCs connecting the I/O weblab modules only use the TC-TEDSs,

and the SMCM uses the TC-TEDS and the MD-TEDS. In configuration 2, all the I/O

weblab modules also use the associated XdrcName-TEDSs with their names. The

adoption of some of these TEDSs was an option for the current implementation and had

implications during the researchers’ interaction with the weblab, since they read the

TEDSs contents, as it will be described in the next subsection 7.4.2.

Chapter 7: Validation & verification 163

8-Bit Input
Module

TC 1

TIM

SMCM

Meta-

TEDS

XdrcName-

TEDS

TC-TEDS

8-Bit Output
Module

TC 2
TC-TEDS

TC-TEDS
MD-TEDS

TC 3

IEEE1451.0-

compliant module

TIM

Meta-

TEDS

XdrcName-

TEDS

8-Bit Input
Module

TC 2

TC 3

IEEE1451.0-

compliant module

8-Bit Output
Module

TC-TEDS
XdrcName-TEDS

TC-TEDS
XdrcName-TEDS

TC 1 8-Bit Output
Module

TC-TEDS
XdrcName-TEDS

a) configuration 1 b) configuration 2

Figure 7.4: Adopted TEDSs in each configuration.

Tools (supporting webpage and videos)

Due to the specificity of the implemented weblab prototype, researchers were guided

during the validation & verification process using a supporting webpage. This webpage,

whose layout is illustrated in figure 7.5 through some screenshots, was divided in three

main sections: i) introduction; ii) validation & verification sequence and; iii)

questionnaire.

videos

Figure 7.5: Screenshots of the supporting webpage and videos provided to guide

researchers during the validation & verification process.

In the introduction, the weblab architecture, the underlying infrastructure and the

involved technologies selected for its implementation, were presented. Introductory

texts about the research work and the contribution it intends to give to the experimental

work, namely to the development of weblabs were also provided. Web links to previous

publications and a detailed description about the implemented infrastructure were also

presented and explained. To allow researchers understanding their expected contribution

164 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

in this process, the three main objectives defined in the previous section, and the two

main issues to explore, were clearly defined right from the start. These objectives focus

on: i) reconfiguring the infrastructure with different modules using the RecTool and; ii)

controlling those same modules using a set of IEEE1451.0 commands issued through

the IEEE1451.0-HTTP API. Since all invited researchers were more familiar with

software than hardware architectures, a set of texts about the IEEE1451.0 Std. and

FPGAs were suggested for consultation before proceeding with the validation &

verification process. Additionally, researchers were explained how they could issue

commands through a set of buttons, monitor the messages through internal status

registers, and restart the infrastructure in case it enters in a dead-lock state. In all these

interactions they were able to issue IEEE1451.0 commands using the message format

headers defined in the IEEE1451.0-HTTP API.

In the validation & verification section, the two different configurations applied to

the weblab infrastructure were presented and detailed through illustrative diagrams. A

table was provided with a methodology involving the phases followed by the

researchers to validate and verify the weblab, which includes reconfiguring, verifying,

and controlling the weblab modules adopted to interact with the target experiments.

While the reconfiguration was made using the RecTool, the verification and the control

were made through IEEE1451.0 commands. Since the current weblab prototype does

not provide GUIs for controlling the weblab modules reconfigured in the weblab

infrastructure, and it was not expected researchers to understand all the details of the

IEEE1451.0 Std., the commands used to control the reconfigured weblab modules were

previously selected and pre-defined. These commands were issued using interfaces

similar to the one illustrated in figure 7.6 that provides: i) a window with a set of

buttons that when pressed issue a particular command; ii) a command window that

presents the HTTP message format header adopted to send the command; iii) a reply

window that presents all replies in a XML format, whose schema is in accordance with

the IEEE1451.0 Std. and; iv) a button to clear the reply window. Additionally, to

complement this section, the execution of the involved stages was demonstrated through

a set of videos
120

. They were uploaded to the YouTube platform so the researchers may

observe the different stages they should follow to interact with the weblab.

For getting the researchers’ opinions, a questionnaire was provided in the third

section of the supporting webpage divided in three parts, namely: i) current weblab

problems; ii) operation of the implemented weblab and; iii) relevance of the proposed

weblab architecture. Parts one and three of the questionnaire mainly focus on validating

the innovative solution, while part two focus on verifying if the current implementation

runs correctly. All these parts provided grid questions, where researchers may select

their accordance with specific statements, and open questions where they can express

their opinions.

120 The videos were created using the CamStudio software (http://camstudio.org/) and can be

consulted in the DVD annex to this thesis.

http://camstudio.org/

Chapter 7: Validation & verification 165

Predefined

IEEE1451.0 HTTP

commands

Reply

window Command

window

Clears windows contents

Figure 7.6: Typical interface adopted for issuing IEEE1451.0 commands using the

IEEE1451.0-HTTP API.

Therefore, researchers were guided during the interaction with the weblab, without

the need for understanding all the details of the IEEE1451.0 Std., which could make the

process too complex. The specificity of the implemented weblab infrastructure, which

involves several technologies and a particular architecture, required researchers to

follow the methodology presented in section two of the supporting webpage, which

comprises a set of sequential phases each with its particular objective.

Annex M.1 presents the main page of the supporting webpage, annex M.2 some

screenshots with videos exemplifying the interaction with the weblab, and annex M.3

the questionnaire provided to the researchers during the validation & verification

process.

7.3. Applied methodology

The adopted methodology to validate & verify the implemented weblab comprises

three phases, which include the sequence illustrated in figure 7.7 in order to: i)

(re)configure the weblab infrastructure according to the described layouts; ii) verify

those (re)configurations and; iii) control the weblab modules.

1st configuration Verify 1st configuration
Modules’ control

(1st configuration)

2nd configuration

(reconfiguration)

 Verify

2nd configuration

Modules’ control

(2nd configuration)

phase 1 phase 3phase 2

Figure 7.7: Phases adopted for the researchers’ interaction with the weblab.

During the 1
st
 phase, researchers used the RecTool. They selected a set of predefined

files that define each weblab module, plus the files required to configure the

166 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

infrastructure. Using the RecTool, those files were uploaded to the weblab server

defining a new layout for the infrastructure. To verify if the configuration process was

running correctly during this phase, researchers were able to consult the reports

automatically generated by the RecTool.

In the 2
nd

 phase, researchers issued a set of IEEE1451.0 commands to the weblab, in

order to verify if the configuration made in the previous phase was really successfully

applied to the infrastructure. For this purpose, researchers issued ReadRawTEDS

commands to read a set of TEDSs from each configuration. The associated replies

retrieved all data of the selected TEDSs, so researchers could understand that a specific

configuration was available in the weblab. All commands’ headers were predefined with

a set of parameters that specify the target TC, the TEDSs, the XML format reply, and

others; this way reducing the inherent complexity involved in this process.

The 3
rd

 phase comprehended the access/control of the weblab modules, and

consequently of the target experiments. This phase was divided in two sections. The

first to the hardware loop control and the second to the step-motor control. The

hardware loop control used write and read commands, namely the IEEE1451.0

Write/ReadTCDSsegment commands, since both configurations adopted the same I/O

weblab modules. The difference was the interface with the IEEE1451.0-compliant

module, since those modules were bound through different TCs to verify the

reconfiguration capability of the infrastructure. The step-motor control was made in a

distinct way for each configuration and, due to the specificity of this type of experiment,

users were able to visualize its axis through captured webcam video frames
121

 available

in the supporting webpage, as represented in figure 7.8.

Figure 7.8: Picture of the adopted step-motor and video frame of its axis provided by

the supporting webpage.

In configuration one, the step-motor was controlled using the SMCM, whose

operation is defined through a MD-TEDS. Researchers were able to read and write

121 The webcam was connected to an USB port of the weblab server and streamed the video frames

using the MJPG-streamer software (http://sourceforge.net/projects/mjpg-streamer/).

http://sourceforge.net/projects/mjpg-streamer/

Chapter 7: Validation & verification 167

specific fields of this TEDS, before starting the step-motor rotation. As represented on

the sequence of figure 7.9, a set of commands were issued using the methods of the

IEEE1451.0-HTTP API to verify the possibility of using the IEEE1451.0 Std. to control

the step-motor. Researchers were invited to use the ReadRawTEDS method whenever they

wanted to read the current MD-TEDS configuration. Initially, the SMCM had a

particular configuration that forces the step-motor to rotate continuously in a specific

direction at a speed of 4 steps/s. Researchers started the rotation of the step-motor by

sending a trigger signal to the SMCM using the StartTrigger method and stopped its

rotation using the StopTrigger method. These methods were able to be issued any time

researchers wanted to. After testing the continuous rotation of the step-motor,

researchers updated the MD-TEDS’s fields using the WriteTEDS and UpdateTEDS

commands issued by the SendCommand method of the IEEE1451.0-HTTP API. The new

MD-TEDS configuration forced the step-motor to rotate one turn (400 steps) at a speed

of 400 steps/s after each received trigger using the StartTrigger method. All commands

were issued and the replies monitored using methods of the IEEE1451.0-HTTP API,

similar to the one presented in previous figure 7.6.

Start continous step-
motor rotation

(triggerCommand)

Stop rotation
(stopTrigger)

Update MD-TEDS
(WriteTEDS &
UpdateTEDS)

Start one step-motor
rotation

(triggerCommand)

SMCM operation changed.

MD-TEDS: 400 steps, speed=400 steps/s

Stop rotation
(stopTrigger)

MD-TEDS was suggested to read

whenever researchers want to

(ReadRawTEDS)

Default SMCM operation.

MD-TEDS: infinite steps & speed=4 steps/s

end

init

Figure 7.9: Command sequence applied to control the step-motor rotation in the 1
st

configuration.

In configuration two, the step-motor was controlled through the 6-Bit Output

Module. This required introducing the basis of step-motor control through a small text

and through an illustration in the supporting webpage. By consulting these resources,

researchers (at least the ones not familiar with this type of control) were able to

understand the reason for sending a set of code sequences to energize the coils of the

step-motor, so it could rotate through half-steps. These sequences were sent, using the

WriteDataSetSegment command sequentially, to rotate the motor in the same direction.

Once concluded the interaction with the weblab, the involved researchers filled-in

the questionnaire, providing their opinions about the implemented weblab prototype and

its added value to the experimental work in engineering education.

Examples of webpages with the methodology provided in 2
nd

 section of the

supporting webpage are presented in annex M.4.

168 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

7.4. Reported results and corresponding analysis

This section presents the reported questionnaire’s results and analyses the comments

provided by the researchers. As previously referred, the questionnaire was provided in

section three of the supporting webpage, divided in three parts including grid and open

questions, namely: i) about the current weblabs’ problems; ii) regarding the operation of

the implemented weblab and; iii) for evaluating the relevance of the proposed weblab

architecture for the experimental work in engineering education. Parts one and three

focus on validating the innovative solution and had the participation of all researchers.

Part two, which required researchers to follow the different phases of the validation and

verification methodology, had the participation of three researchers. It is more focused

on verifying the correct implementation of the weblab, and gave the researchers the

possibility to feel the inherent advantages and disadvantages of using similar weblab

implementations. Although one researcher did not participated in this interaction with

the weblab, his answers to parts one and three of the questionnaire were considered

valid. He had the opportunity to understand the required interaction students and

teachers may have with similar weblab architectures by consulting the different texts

provided through the supporting webpage, and the videos exemplifying the interaction

with the weblab.

Therefore, using an empiric method based on a Likert-type scale, all results

illustrated in tables and graphs of this section indicate the answers of each researcher

(R) and their agreement level with particular statements (St) scaled from 1-(low) to 5-

(high). The average value (μ) and the standard deviation (σ) of their answers are

provided, calculated using equations 1 and 2. The deviation indicated in all graphs is

centered on the calculated average value.

N - Number of answers xi - Provided result (1 to 5)

i - integer value indicating the number of the researcher

μ - Average σ - Standard Deviation

equation 1 equation 2

The results presented in the tables and graphs, and the relevant answers provided in

the open questions of each part of the questionnaire are commented. To guarantee the

privacy of the researchers’ participations, their answers are presented as a whole, which

means their contributions are not personalized.

Chapter 7: Validation & verification 169

7.4.1 Current weblabs’ problems

Table 7.1 and graph of figure 7.10 indicate the researchers’ accordance with six pre-

selected problems faced by weblabs, specified through 6 statements.

Table 7.1: Accordance with six problems currently faced by weblabs.

 R1 R2 R3 R4 μ σ

1
There is a lack of standards for developing weblab

architectures.
3 4 2 3 3 0,71

2 There is a lack of standards to access weblab modules. 4 5 5 4 4,5 0,50

3
It is impossible to share/replicate weblab modules

through different infrastructures.
4 4 5 4 4,25 0,43

4

There is a low flexibility in current weblabs, which

difficults redesigning experiments using the same
infrastructure.

4 4 5 4 4,25 0,43

5
Typically, the costs can be high for developing weblabs

and designing experiments.
4 5 4 4 4,25 0,43

6
There is a reduced collaboration among institutions in

the development of weblabs.
4 5 2 3 3,5 1,12

4,5

3

4,25 4,25 4,25

3,5

0,0

1,0

2,0

3,0

4,0

5,0

St1 St2 St3 St4 St5 St6

researcher 1 researcher 2 researcher 3 researcher 4 average [Std. deviation]

Figure 7.10: Graph results with the accordance with six problems currently faced by

weblabs.

Observing the results, it is evident that there is a general agreement that most of the

selected problems must be solved. However, most of the researchers do not consider the

lack of a standard architecture important, and the reduced collaboration among

institutions in the development of weblabs important, despite the divergence of their

answers. Rather, supported on further responses, the lack of standard interfaces is a

more relevant problem that should be solved briefly. One of the researchers even

defended that it is perfectly normal the existence of a diversity of architectures, since

different laboratories have different requirements and, therefore, distinct equipments.

The common idea to all is that weblabs in the future should follow a plugged&shared

170 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

approach using friendly interfaces supported by standard APIs, despite they may use

different architectures.

Reusability, flexibility and scalability in the integration of weblabs are seen as

fundamental issues to improve. This can be done using standard APIs to access, share

and maintain weblab sessions independently of the implemented architecture. In this

domain, a researcher indicated the current efforts made on GOLC for defining a

standard description language to allow different systems (weblab management systems,

architectural repositories and other systems) to exchange information about their

installations. Providing a more reliable interaction with the experiments, giving to the

students/teachers the capability of managing connections like in traditional laboratories,

was also pointed as an issue to investigate, since it has implications in the pedagogical

aspect that still requires a special attention. The difficulty of sharing experiments among

institutions was also pointed out as an inherent problem caused by the lack of a standard

access to those weblabs, which has incentivized a recent research for creating a

federation model for remote laboratories [154].

7.4.2 Operation of the implemented weblab

With the contribution of three researchers, part two of the questionnaire focused on

verifying the implemented weblab, namely the control and the configuration of the

infrastructure with the weblab modules adopted for each experiment. This part was

divided in three sections, according to the methodology described in subsection 7.3 of

this thesis, namely: i) configurations; ii) verification of those configurations and; iii)

weblab modules’ control. The following tables and graphs provide the level of

accordance each researcher had with a set of statements, following the same

classification made for the previous table and graph.

In table 7.2 and graph of figure 7.11 five statements about the configuration phases

were classified. Observing the results, it can be seen that there was considerable

deviations in the answers, with one of the researchers giving low classifications to most

of the statements. It can be said that the RecTool interface was easily understood by two

of the researchers, while the other had some difficulties to understand all its details. One

of them indicated the simplicity of the design that may promote the users’ adoption and

experience, since all files and reports, generated during the reconfiguration process, are

located in a single and well organized interface. Another indicated that the layout can be

improved concerning usability issues, despite the added value it may bring for sharing

resources, namely the weblab modules. Nevertheless, some issues were suggested to

improve and some facilities did not run as expected. To overcome this difficulty, during

the configuration process some files were previously uploaded using the same RecTool

interface by accessing it through the same network where the weblab server was

running.

Chapter 7: Validation & verification 171

Table 7.2: Accordance with the configuration phases.

 R1 R2 R3 μ σ

1 It was easy to configure the weblab infrastructure. 2 4 4 3,3 0,94

2
The layout of the RecTool interface was easy to use and

understand.
2 3 5 3,3 1,25

3
The reports provided were fundamental to verify the success

of each step.
3 5 5 4,3 0,94

4
It was ease to change the configuration of the weblab
infrastructure.

2 4 4 3,3 0,94

5

The approach applied in the configuration steps is satisfactory

for designing remote experiments without changing the

infrastructure

3 4 4 3,7 0,47

Uploading several files one by one to the weblab server, was also a suggestion to

improve in future versions of the RecTool. Two of the researchers suggested that it will

be more user-friendly to send several files at once, per example, by concatenating them

into a single archive. This meant that uploading files to the weblab server was

considered the most difficult task during the reconfiguration process.

Some researchers also pointed the process of building the weblab project as a

difficult task. They reported some lack of information during this process, and the long

time spent, which took about 20 minutes to be concluded.

3,7

3,3

4,3

3,3 3,3

0,0

1,0

2,0

3,0

4,0

5,0

St1 St2 St3 St4 St5

researcher 1 researcher 2 researcher 3 average [Std. deviation]

Figure 7.11: Graph results with the accordance with the configuration phases.

It can be seen through statement three that, although some faced difficulties using the

RecTool for reconfiguring the weblab infrastructure, the reports provided during this

stage were useful. It was also evident that one of the researchers experienced more

difficulties than the others, but all of them concluded this stage successfully,

reconfiguring the infrastructure with the selected weblab modules.

Next step involved the verification of the configuration. Researchers sent several

IEEE1451.0 commands to the weblab and observed the replies in an XML format.

172 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Divided according to generic and particular issues of each configuration, table 7.3 and

the graph of figure 7.12 present their agreement with nine statements.

Table 7.3: Accordance with the verify configuration phases.

 R1 R2 R3 μ σ

1

After configuring the weblab I sent several IEEE1451.0

commands and the replies were useful to verify the correct

configuration of the weblab infrastructure.

3 4 5 4,0 0,82

2

I feel that if I understand all details of the IEEE1451.0 Std.
the replies returned from the issued commands will be better

understood.

2 5 5 4,0 1,41

3

In configuration 1 I easily got the expected result after issuing

the ReadRawTEDS [XdrcName-TC1], i.e, an error

code=24599 indicating that the weblab module controlled by

TC1 does not had any associated XdrcName TEDS.

4 4 5 4,3 0,47

4
In configuration 1 I easily got the expected result after issuing

the ReadRawTEDS [Meta-TEDS].
4 4 4 4,0 0,00

5
In configuration 1 I easily got the expected result after issuing

the ReadRawTEDS [MD-TEDS].
4 4 5 4,3 0,47

6

In configuration 2 I easily got the names of all weblab

modules after issuing the ReadRawTEDS [XdrcName-TCx]

commands.

3 4 5 4,0 0,82

7
In configuration 2 I easily got the expected result after issuing

the ReadRawTEDS [Meta-TEDS].
4 4 4 4,0 0,00

8

In configuration 2 I easily got the expected result after issuing

the ReadRawTEDS [MD-TEDS], i.e, an error code=24599

indicating that the weblab module controlled by TC3 does not

had any associated MD-TEDS.

4 5 5 4,7 0,47

9

In configuration 2 the results retrieved after issuing

IEEE1451.0 commands indicated me clearly that the weblab

has a new configuration.

2 5 5 4,0 1,41

4,0

4,7

4,04,04,0

4,3

4,0

4,3

4,0

0,0

1,0

2,0

3,0

4,0

5,0

St1 St2 St3 St4 St5 St6 St7 St8 St9

researcher 1 researcher 2 researcher 3 average [Std. deviation]

generic configuration 1 configuration 2

Figure 7.12: Graph results with the accordance with the verify configuration phases.

Chapter 7: Validation & verification 173

Despite the deviations on statements two and nine, caused by the answers of one

researcher, it can be said that the results were satisfactory, which means all researchers

were able to verify that the weblab infrastructure was reconfigured as expected,

according to the replies retrieved from the TEDSs read after each configuration. To

more easily interpret the information that was retrieved as a raw of data, it was

suggested the development of an interface to provide the information in a more human

readable fashion. Improvements to the communication between the NCAP and TIM

were also suggested, since the infrastructure reported some errors in the reply messages

after sending some commands, which justifies the average classification of 4 in both

configurations. As in the previous phase, it was also evident that, during this process,

one of the researchers experienced more difficulties than the others.

Table 7.4 and figure 7.13 report the researchers’ opinions about the interaction with

the weblab modules using IEEE1451.0 commands for each configuration and target

experiment. Eight statements were provided.

Despite the satisfactory answers regarding the control of each experiment in both

configurations, some difficulties were reported, in particular by one of the researchers,

which justify some of the deviations on the results. The control of the step-motor in

configuration one was considered easier than in configuration two, since a single trigger

started the rotation of the motor. Some errors were pointed when sending

WriteTCDSsegment commands to the weblab, namely to the I/O modules, which

justifies the lowest classification of statements one and three in the graph. This was

evident regarding the step-motor control rotation in the second configuration, since it

required sending several step-codes to the output module to rotate the motor through

half-steps. Moreover, some difficulties were referred when observing the rotation of the

motor using the axis image available in the supporting webpage, since each half-step

corresponds to a very small rotation of 0.9º.

Table 7.4: Accordance with the weblab modules’ control.

 R1 R2 R3 μ σ

1 In configuration 1 it was easy to control the I/O modules. 3 4 4 3,7 0,47

2
In configuration 1 the retrieved replies during the control of

the I/O modules were satisfactory.
4 5 5 4,7 0,47

3 In configuration 2 it was easy to control the I/O Modules. 3 4 4 3,7 0,47

4
In configuration 2 the retrieved replies during the control of

the I/O modules were satisfactory.
4 4 5 4,3 0,47

5
In configuration 1 the control of the step-motor was easy to

do using the SMCM.
4 5 5 4,7 0,47

6

In configuration 1 the ability of redefining the MD-TEDS of

the SMCM to control the step-motor is an interesting solution

for controlling every type of weblab module.

4 5 5 4,7 0,47

7

In configuration 1 the use of the ReadRawTEDS [MD-TEDS]

command gave me a concrete understanding that I was

changing the contents of the MD-TEDS.

3 5 5 4,3 0,94

8
In configuration 2 it was easy to control the step-motor using
the output module.

3 5 4 4,0 0,82

174 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

4,74,7

4,3

3,73,7

4,7

4,3
4,0

0,0

1,0

2,0

3,0

4,0

5,0

St1 St2 St3 St4 St5 St6 St7 St8

researcher 1 researcher 2 researcher 3 average [Std. deviation]

configuration 1 configuration 1configuration 2 conf. 2

feedback connection step-motor

Figure 7.13: Graph results with the accordance with the weblab modules’ control.

By observing the graph and analysing the replies of some researchers, it can be said

that the weblab modules were able to be controlled using the IEEE1451.0 commands,

despite some sporadic errors retrieved when several commands are sent to the NCAP.

This is an alert for future improvements that should be made to the NCAP-TIM

interface, which is probably the cause of those sporadic errors.

7.4.3 Relevance of the proposed solution

The four researchers participated in the last section of the questionnaire, which asks

about the contribution the implemented architecture may bring for developing weblabs.

Researchers were invited to classify their accordance level with 10 statements described

in table 7.5.

By observing this table and the graph of figure 7.14, it is obvious the possible

contribution the implemented weblab may provide for the standardization of weblabs.

However, it indicates that researchers are not much interested in contributing for the

development of new weblab modules and in adopting this type of infrastructures in their

classes. This was justified in remaining comments by the inherent complexity of the

architecture and of the IEEE1451.0 Std. These observations are stressed when they

classify the solution as interesting but essentially as a proof of concept. The

development and replication of weblab modules and the reconfiguration capability were

seen as an added value for future implementations of extensible and scalable weblabs,

since these are standard-based. No other scenarios were suggested, but the selected one

(two configurations for two experiments) was considered appropriated to validate and

verify the capability provided by this type of weblabs.

Chapter 7: Validation & verification 175

Table 7.5: Accordance with the proposed weblab.

 R1 R2 R3 R4 μ σ

1
The IEEE1451.0 Std. is interesting for implementing

weblabs architectures.
3 5 4 4 4 0,71

2
The IEEE1451.0-HTTP API provides a useful standard

to access the weblab modules.
3 5 5 4 4,25 0,83

3

The proposed weblab architecture (reconfigurable and
standard-based) enables sharing/replicating weblab

modules by different infrastructures.

4 4 4 4 4 0,00

4

The proposed weblab architecture (reconfigurable and

standard-based) increases the flexibility for designing

experiments using the same the infrastructure.

4 4 4 4 4 0,00

5

The proposed weblab architecture (reconfigurable and

standard-based) contributes for reducing the costs

involved in the development of weblab infrastructures

and in the design of experiments.

3 5 3 4 3,75 0,83

6

The proposed weblab architecture (reconfigurable and

standard-based) increases the collaboration among

institutions in the design of experiments and in the

development of weblabs infrastructures.

3 5 5 3 4 1,00

7

The proposed weblab architecture (reconfigurable and

standard-based) is interesting, since it enables defining
different configurations and weblab modules to access

target experiments without changing the physical

platform that implements the underlying infrastructure

(e.g. the feedback connection lines and the step-motor).

4 5 5 4 4,5 0,50

8
In the future I consider the use of an infrastructure

similar to this one in my institution/classes.
3 5 3 2 3,25 1,09

9

In the future I consider developing more weblab

modules compatible with infrastructures similar to this

one (eventually as a supervisor of a student).

2 3 4 2 2,75 0,83

10
Creating a worldwide repository of weblab modules

will be an interesting solution to use similar weblabs.
4 5 5 4 4,5 0,50

4

3,75
444

4,25
4,5

3,25 2,75

4,5

0,0

1,0

2,0

3,0

4,0

5,0

St1 St2 St3 St4 St5 St6 St7 St8 St9 St10

researcher 1 researcher 2 researcher 3 researcher 4 average [Std. deviation]

Figure 7.14: Graph results with the accordance with the proposed weblab.

176 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

At the end of this questionnaire, researchers were invited to give their opinions about

the advantages and disadvantages this weblab may bring to the human actors described

in chapter 2. The weblab was classified as interesting for students, since it provides

standard and transparent access to the weblab modules, approaching its characteristics

to hands-on laboratories (traditional laboratories) that allow redefining experiments

using different instrumentation. However, since students should only focus on the

experiment itself, the reconfiguration process was considered as a possible difficulty.

One of the researchers even reported that reconfiguration could be interesting if the

target experiments involved learning how to program FPGAs, otherwise it should be

skipped, due to the inherent complexity. This consideration highlights the importance of

simplifying the reconfiguration process for future weblab architectures supported on

FPGA technology.

The capabilities of designing, sharing and interacting with the weblab modules

adopted in particular experiments, were considered issues able to be fulfilled by this

type of weblabs and an inherent advantage for teachers. These are the responsible for

designing new experiments, and the current capabilities of the weblab give them the

possibility to prepare new students’ experimental activities involving new layouts. A

researcher also stressed that this weblab could be useful as a support for theoretical

lessons that involves the study of FPGAs as a topic.

Developers were described as the most profit actors, since they can replicate

experiments and reuse the modules. Nevertheless, the difficulty of developing new

modules was considered as a probable hard task, since they should have very particular

skills and knowledge about the implemented infrastructure. Questions related to the

scalability and to the integration of this weblab with others already implemented, were

again stressed by one of the researchers, as an issue that should be solved and

investigated.

The correct weblab operation, traditionally ensured by technicians, was classified as

a possible drawback due to the specificity of the weblab modules (that comprises

several files and involves a specific reconfiguration process). This justifies that in this

type of laboratory one of the researchers defended that technicians should take the role

of the administrators, due to the inherent complexity of the infrastructure, which

requires some skills that go behind the IT specialization of a traditional administrator.

7.5. Summary

This chapter described a validation & verification process of the implemented

weblab architecture and underlying infrastructure described in previous chapters 5 and

6. It had the contribution of four researchers with large experience and expertise in the

development of weblabs, contributing with valuable opinions about the overall

functionalities of the implemented architecture and, in particular, the use of the

Chapter 7: Validation & verification 177

IEEE1451.0 Std. and FPGA technology for designing standard-based and

reconfigurable weblabs.

Researchers were able to reconfigure the weblab infrastructure with a set of weblab

modules using the RecTool. They define two distinct configurations to the weblab

infrastructure using three pre-defined weblab modules to control two experiments. In

these configurations the weblab modules were embedded into the infrastructure using

different layouts, being one of the modules replicated without further developments.

By using IEEE1451.0 commands issued through the IEEE1451.0-HTTP API, both

configurations were verified and the weblab modules accessed to conduct the two

adopted experiments. Due to the specificity of the implemented weblab, a set of tools

were provided to guide researchers through the entire validation & verification process.

The most important one was the supporting webpage that detailed the implemented

weblab, presented the methodology with the different stages followed by the

researchers, and provided the questionnaire that was filled-in at the end of the validation

& verification process. A particular relevance to the methodology described in the

supporting webpage, complemented with some illustrative videos, was made, since it

describes the different stages followed by the researchers during the interaction with the

weblab. At the end, this chapter presented the results obtained from the questionnaire,

and provided some comments that indicate the valuable and promising contribution this

type of low-cost, standard-based and reconfigurable weblabs may bring to the

experimental work in engineering education.

178 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 8: Conclusions and future work 179

 Chapter 8

Conclusions and future work

This chapter provides the conclusions about the work described in this thesis,

emphasizing its innovative aspects and the implications for engineering education.

Future work perspectives and some concluding remarks close the chapter.

180 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Chapter 8: Conclusions and future work 181

8.1. Adopted architecture: implications for the experimental

work in engineering education

Engineering education must include theoretical and practical-oriented components to

fulfill the students’ learning outcomes. It is fundamental to provide all the facilities to

enable students validating & verifying learning theories, otherwise they fail to acquire

the required competences associated to an engineering course. This is fulfilled by the

practical work, which includes three main components: i) solving pen & paper

exercises; ii) doing simulations and; iii) conducting experimentations. A well-structured

engineering course should comprise these components that are inter-related, i.e. they

should be applied sequentially and the results obtained in each one should be

concordant, otherwise reformulations are required, as conceptualized in figure 8.1.

Pen & paper

exercises

Simulations

(virtual laboratories)

Real experimentations

(remote laboratories / weblabs)

Experimental activities
Practical work

Experimentations differ largely from simulationsSimulations differ from exercises

reformulation reformulation

Figure 8.1: Suggested sequence for the engineering practical work in distance learning.

After gaining the required theoretical knowledge, students should practice it by

solving exercises. In electrical engineering, for instance, these are typically associated to

electrical circuits’ analysis. Latter, they should conduct experimental activities through

simulated and real experiments. In many subjects, simulations are adopted using virtual

laboratories to confirm the results obtained from pen & paper exercises. Since these

virtual laboratories are always based on mathematical models, which do not exactly

represent a true dialogue with nature [17], the use of real laboratories for successfully

concluding the indicated practical work sequence, is therefore fundamental. However,

its application to every course and to all covered subjects has been difficult. Institutions

do not have all the required resources to provide real experiments for all students at any

time, and the duration of engineering courses is being reduced. This is being even more

relevant since the Bologna agreement
122

 that reduced the duration of the courses and

incentivized the application of new teaching and learning methods focused on students’

autonomy. These are just two issues that, with the evolution of the Internet and

associated technologies and equipments, incentivized the emergence of weblabs.

Weblabs are being adopted in engineering education, but two main problems were

identified during the research work: i) the lack of standard access/design to/of their

infrastructures and; ii) the lack of flexibility, which hampers reconfiguration, replication

122 http://www.ond.vlaanderen.be/hogeronderwijs/bologna/

http://www.ond.vlaanderen.be/hogeronderwijs/bologna/

182 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

and sharing of different weblab modules for conducting a particular experiment. The

lack of standardization is mainly a problem associated to the design of weblabs, that

influence their (non-)adoption in a particular course. The lack of flexibility for using the

weblab modules, besides reducing collaboration during the design of weblabs and of the

associated experiments, also difficults attaining design and psychomotor objectives

indicated as fundamental by ABET for every engineering course
123

. To contribute for

solving these problems, seeking always for a cost-effective solution, the research work

done was supported by two main issues:

 the evaluation of the IEEE1451.0 Std. for designing standard weblab

architectures and underlying infrastructures, and;

 the adoption of reconfigurable technology, namely FPGAs, for enabling the

reconfiguration of the infrastructure with weblab modules, described and

accessed according to the IEEE1451.0 Std.

The IEEE1451.0 Std. features were considered appropriated to implement weblabs,

since this standard specifies different layers for network-interfacing, accessing and

designing the so-called smart transducers. Due to their internal structure and the ability

for implementing smart operations, these transducers were seen as the weblab modules

required to conduct remote experiments. By joining the IEEE1451.0 Std. features and

the reconfiguration capabilities provided by FPGAs, a weblab architecture was

conceived and implemented, enabling the reconfiguration of weblab modules in its

underlying infrastructure.

The implemented weblab was a consequence of the conducted research in the

domain of weblabs that led to new suggestions and implementations based on the

IEEE1451.0 Std. and FPGA technology. Besides contextualizing the role of weblabs in

engineering education (chapter 2), the research work focused on technical issues about

their architectures and underlying infrastructures. Some considerations were provided

about the traditional solutions and on-going initiatives for standardizing the

implementation of weblabs (chapter 3). After a brief overview of the possibility and

relevance for using the IEEE1451.0 Std. and FPGAs in the design of weblabs (chapter

3), new and innovative aspects were described and implemented during the remaining

work, namely:

 new weblab infrastructures based on the NCAP-TIM reference model of the

IEEE1451.0 Std. (chapter 4);

 new extensions to the IEEE1451.0 Std. (chapter 4);

123 The 13 learning objectives established for addressing the role of laboratories in engineering

education are detailed and commented in section 2.4.1 of this document.

Chapter 8: Conclusions and future work 183

 a reconfigurable weblab supported on the reconfiguration capabilities of FPGAs

and on the proposed extensions for the IEEE1451.0 Std., which includes a thin-

implementation for its reference model (chapter 5);

 an IEEE1451.0-compliant module developed in Verilog HDL to implement part

of the TIM, and an NCAP to enable its remote access (chapter 5 and 6);

 a layout and an interface for designing and binding the weblab modules to the

IEEE1451.0-compliant module (four weblab modules were described according

to a conceived layout and interface) (chapter 6);

 a reconfiguration tool and a methodology to facilitate the reconfiguration of

those weblab modules into the infrastructure (chapter 5 and 6), and;

 a validation & verification methodology applied to the implemented weblab,

involving a number of worldwide recognized experts in weblabs design (chapter

7).

The previous suggestions and implementations, and the researchers’ opinions

described and commented in chapter 7, support the claim that this type of standard-

based and reconfigurable weblabs may contribute for the widespread of weblabs in

engineering education. The possibility of having a unique weblab infrastructure able to

accommodate different weblab modules facilitates the design of experiments without

further developments. In many weblabs, when a new experiment is provided, the

required weblab modules are locally changed in the infrastructure. A technician must go

to the infrastructure and replace them to conduct a particular experiment. Currently,

some weblabs facilitate this task by providing several weblab modules in the

infrastructure so users (teachers, students and technicians) may remotely setup the

infrastructure by establishing the required connections between the target experiments

and the required weblab modules [70][53][155]. The proposed weblab solution

improves this feature by enabling the total replacement of the weblab modules in the

underlying infrastructure. Since these modules are essentially described through

standard Verilog HDL files, they can be easily shared and replicated, which facilitates

setting-up the infrastructure for conducting the target experiments and contributes for a

drastic reduction in weblabs development costs.

Currently, the use of FPGAs for implementing the reconfigurable weblab

infrastructure is seen as the most appropriated technology to accommodate the weblab

modules. However, technology is always changing, and other types of devices can be

considered in the future. It is important to highlight that the description of the weblab

modules through files using the standard Verilog HDL guarantees their reutilization in

different types of FPGAs and, eventually, in other reconfigurable devices that may be

adopted. This reconfiguration and the facility of sharing the weblab modules is only

efficient because the proposed and developed weblab architecture, the underlying

184 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

infrastructure and the weblab modules are accessed and developed according to the

IEEE1451.0 Std.

The access is made through standard commands, using the IEEE1451.0-HTTP API.

The importance of having standard commands issued by a standard API is especially

important for the adoption of weblabs in engineering education, since this is another

main problem reported by the research community. Traditionally, weblabs use their own

APIs, which hampers collaboration among institutions since different weblabs require

different types of access to the underlying infrastructure and to the weblab modules,

thus difficulting the share of experiments, tools and resources. The use of the

IEEE1451.0 Std. overcomes this problem. By using the IEEE1451.0-HTTP API, the

widespread of weblabs in engineering education and the collaboration among

institutions in the development and share of their own experiments is incentivized. More

standard tools and resources can be developed, per example, for assessment purposes to

evaluate the conduction of a particular experiment by monitoring the command and

reply messages exchanged between the users and the experiments.

The developments were made according to the specifications defined in the standard.

Besides using a NCAP-TIM thin implementation, the use of TEDSs is an advantage for

adopting the IEEE1451.0 Std. for designing these types of weblabs. TEDSs specify the

operation and characteristics of each weblab, providing information about the

infrastructure and the reconfigured weblab modules. Remote users may then understand

the characteristics of a particular infrastructure and of each weblab module by issuing

standard commands. The conducted research also suggested an architecture supported

by the new LabTEDS, which evidences the relevance of this type of data structures for

designing standard weblab architectures. By using the architecture supported by the

LabTEDS, the dissemination of weblabs through the educational community can be

improved, since it provides information about a particular weblab, what kind of

experiments they provide, the resources adopted by the underlying infrastructures,

among others.

The weblab modules were developed according to the IEEE1451.0 Std., which

incentivize their share through distinct compatible infrastructures and the collaboration

among the developers. By using the developed IEEE1451.0-compliant module the

weblab modules can be accessed and accommodated into distinct weblab infrastructures

without further developments. Traditional infrastructures, which can be expensive with

specific and unnecessary features for running some experiments, can now be

reconfigured with dedicated, pre-defined and cost-effective modules.

Therefore, the proposed solution based on the IEEE1451.0 Std. and FPGA

technology, can be seen as an important contribution for using weblabs in engineering

education. The costs can be largely reduced and the collaboration among institutions in

sharing experiments and modules, and during the developments, can be increased.

Chapter 8: Conclusions and future work 185

8.2. Future work perspectives

During the research and the developments described in this thesis, it became evident

the involved complexity for creating a standard-based and reconfigurable weblab.

Despite the broad range covered by the IEEE1451.0 Std., it involves too many

possibilities and layers that require extensive developments to adopt all of them in the

design of weblab infrastructures. It was precisely this complexity that incentivized the

description and the adoption of a thin implementation of the IEEE1451.0 Std. reference

model for the design of a reconfigurable weblab infrastructure.

The adopted solution for reconfiguring the weblab infrastructure separates, as much

as possible, the features described by the IEEE1451.0 Std. from the features associated

to each weblab module. During the reconfiguration process, the IEEE1451.0-compliant

module is redefined according to a specific methodology using a reconfiguration tool, as

described in sections 5.5 and 6.4. This tool automatically reconfigures the weblab

infrastructure binding the modules according to a set of complex files difficult to be

defined by teachers and students, namely the TEDSs, the map and the configuration

files. Since their definition requires particular knowledge about the standard and the

implemented infrastructure, namely about the IEEE1451.0-compliant module, a tool to

facilitate their specification is currently being developed by an MSc. student, as

illustrated in figure 8.2. However, more efforts are required to simplify this process,

since the interfaces still require detailed knowledge about the implemented weblab and

about the IEEE1451.0 Std. The development of a graphical tool, where users

transparently bind the weblab modules to the infrastructure, is certainly a topic of future

development and research.

A complementary solution would be the improvement and the simplification of the

entire reconfiguration process. According to the validation & verification process

described in chapter 7, this step was considered complex and too much time consuming.

Since the reconfigurable infrastructure was implemented on FPGA technology, this

issue is currently difficult to simplify, essentially because of the inherent complexity for

synthesizing HDL files, such as the ones that describe the weblab project. With the

evolution of FPGA technology or using other types of reconfigurable devices, this issue

should be further analysed. The current solution adopts FPGAs with total

reconfiguration rather then partial reconfiguration. This option was made since binding

the weblab modules to the IEEE1451.0-compliant module requires its internal

redefinition (number of TCs, adopted buses, etc.), and therefore a new synthesis,

whenever a different weblab module is bound. The use of automatic routing

mechanisms to bind the weblab modules to a pre-defined IEEE1451.0-compliant

module, previously synthesized and embedded in the FPGA, can be an issue to explore

in future implementations. For now, current FPGA tools for routing HDL modules

inside their cores are too manufacturer dependent and require a manual control, which

makes it impracticable for an automatic reconfiguration.

186 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Figure 8.2: Screenshots of a tool being developed to facilitate the design of TEDSs, map

and configuration files adopted during the reconfiguration process.

Alternatively, the IEEE1451.0-compliant module structure can be redesigned. This is

the most complex module that is embedded in the TIM and currently the different tasks

described in section 6.2.1 (command, internal and TC) are embedded into the DCM

during its redefinition, making it extremely complex, which delays the synthesis

operation during the reconfiguration process.

As a consequence of the inherent complexity for designing new weblab modules,

only four weblab modules were developed, according to the methodology described in

section 6.3. In the future, other weblab modules can be developed and verified in similar

infrastructures. Only with more weblab modules will it be possible to validate and

verify similar weblabs in real educational scenarios, by getting opinions from students

and teachers during the conduction of remote experiments.

Additionally, and in that same section 6.3, different solutions for binding the weblab

modules to the IEEE1451.0-compliant module were proposed. The use of one or more

TCs and the possibility of accessing the weblab modules according to a daisy chain bus

were suggested and described. Nevertheless, the implemented weblab modules only

adopted a single TC using a point-to-point connection to control their internal

parameters. For validation purposes, future weblab modules’ designs may adopt the

other suggestions.

Chapter 8: Conclusions and future work 187

Although the implemented weblab adopts a thin implementation of the IEEE1451.0

reference model, it will be interesting to validate the use of all NCAP-TIM layers for the

design of weblabs. Other types of weblab infrastructures based on the NCAP-TIM

reference model suggested in section 4.5 can also be implemented in order to analyse

their viability in the design of weblabs.

Moreover, due to time constrains, it was impossible to validate many of the

extensions proposed in section 4.6 for the IEEE1451.0 Std., namely the use of the

LabTEDS and the suggested operational sequence for registering, discovering and

accessing distributed weblab infrastructures. This is another issue that should be

explored in the future, since it is a promising contribution for the dissemination of

weblab infrastructures and associated experiments through the educational community.

8.3. Concluding remarks

Standard-based and reconfigurable weblabs can be the ultimate solution to approach

the facilities provided by this type of laboratories to those offered by traditional

laboratories. The costs and the collaboration among different institutions can be

improved by using a solution similar to the one proposed in this thesis. The standardized

approach, at design and access levels, may contribute for the creation of a world wide

weblab federation, where different weblab modules, described according to distinct

standard HDL files, can be freely exchanged and replicated by different and compatible

infrastructures.

Currently, there are still some aspects that must be overcome, namely the limitations

imposed by FPGA technologies and tools. FPGAs still have space and resources

limitations, and the drivers to interface the target experiments available in FPGA-based

boards hinder part of the required flexibility for reconfiguring weblab infrastructures.

Nevertheless, this is associated with the technological solution selected for

implementing the reconfigurable weblab that will surely be improved by using other

solutions, such as FPAAs, referred in chapter 3, which can be analysed in the future for

designing reconfigurable weblabs supported by the IEEE1451.0 Std.

The conducted research proposed several solutions for designing weblabs compatible

with the IEEE1451.0 Std. However, only some were verified and implemented, and the

validation focused essentially in the whole implementation and its relevance for

designing weblabs. Ideally, all of the suggested solutions should be implemented,

verified and validated. However, due to time constrains and to the extreme difficulty in

getting contributions from more researchers with FPGA design skills, that task remains

open. Nevertheless, the researchers’ opinions and the acquired expertise during the last

years in the domain of weblabs, allow to say that similar solutions compatible with the

IEEE1451.0 Std., able to be developed, accessed and reconfigured with sharable weblab

modules described through a set of standard files, may contribute for the dissemination

of weblabs in engineering education.

188 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

References 189

 References
[1] Ricardo J. Costa, Gustavo R. Alves and Domingos S. Santos, ‘A smart layer for

remote laboratories’, International Journal of Online Engineering (iJOE), vol. 3,

no. 3, p. 7, Jul. 2007.

[2] Ricardo J. Costa and Gustavo R. Alves, ‘Experimenting through the Web a Linear

Variable Differential Transformer’, International Journal of Online Engineering

(iJOE), vol. 2, no. 2, p. 7, May 2006.

[3] Ricardo J. Costa and Gustavo R. Alves, ‘Remote and Mobile Experimentation:

Pushing the Boundaries of an Ubiquitous Learning Place’, in 9th IFAC

Symposium on Automated Systems Based on Human Skill And Knowledge

(ASBoHS’06), França-Nancy, 2006, p. 7.

[4] Ricardo J. Costa, Gustavo R. Alves and Domingos S. Santos, ‘Adopting Building

Automation In Weblabs - Analysis Of Requirements And Solutions’, in

International Conference on Web Information Systems and Technologies

(WEBIST’08), Funchal/Madeira, Portugal, 4-7 May, 2008, p. 5.

[5] Ricardo Costa and Gustavo Alves, ‘Mobile Experimentation: Closing an

Educational Gap for New Student Generations?’, in European Conference on the

Use of Modern Information and Communication Technologies

(ECUMICT’06),Belgium-Gent, March 30th to 31th, 2006, p. 7.

[6] Gustavo R. Alves et al., ‘Infra-estrutura Laboratorial para teste digital remoto em

ambientes de ensino distribuído’, in Scientific Meeting at ISEP, Porto, 9 May,

2001.

[7] Ricardo Costa, ‘Tele-Experimentação Móvel (Mobile Remote Experimentation) -

Considerações sobre uma área emergente no ensino à distância’, Journal of

scientific activity at ISEP, p. 15, 2005.

[8] Gustavo R. Alves et al., ‘Experimenting the 1149.1 and 1149.4 test infrastructures

in a Web-accessible remote Lab (without Plug-ins!)’, in Proceedings of the

Design of Circuits and Integrated Systems conference (DCIS’01), Porto

(Portugal), 22-23 November, 2001, pp. 440–444.

[9] J. M. Martins Ferreira et al., ‘Collaborative Learning in a Web-accessible

Workbench’, in Proceedings of the 8th International Workshop on Groupware

(CRIWG’02), La Serena, Chile, 1-4 September, 2002, pp. 25–34.

[10] J M Martins Ferreira et al., ‘The PEARL digital electronics lab: full access to the

workbench via the web’, in Proceedings of the 13th Annual Conference on

Innovations in Education - European Association for Education in Electrical and

Information Engineering (EAEEIE’02), York, England, 8-10 April, 2002, p. 6.

190 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[11] Ricardo J. Costa, ‘MSc. Thesis - Laboratorial Infrastructure for Remote

Experimentations’, Faculty of Engineering of the University of Porto (FEUP), p.

239, Jun. 2003.

[12] C. E. Hmelo-Silver, ‘Problem-Based Learning: What and How Do Students

Learn?’, Educational Psychology Review, vol. 16, no. 3, pp. 235–266, Sep. 2004.

[13] Khairiyah Mohd Yusof et al., ‘Problem Based Learning in Engineering

Education’, in Conference on Engineering Education (CEE 2004), Kuala Lumpur,

Malaysia, 14-15 December, 2004, p. 7.

[14] J. C. Perrenet, P. A. J. Bouhuijs, and J. G. M. M. Smits, ‘The Suitability of

Problem-based Learning for Engineering Education: Theory and practice’,

Teaching in Higher Education, vol. 5, no. 3, pp. 345–358, 2000.

[15] Chunfang Zhou, ‘Teaching engineering students’ creativity: a review of applied

strategies’, Journal on Efficiency and Responsibility in Education and Science,

vol. 5, no. 2, pp. 99–114, Jun. 2012.

[16] L. D. Feisel and A. J. Rosa, ‘The role of the laboratory in undergraduate

engineering education’, Journal of Engineering Education (JEE), vol. 94, pp.

121–130, 2005.

[17] I. Gustavsson et al., ‘The VISIR project – an Open Source Software Initiative for

Distributed Online Laboratories’, in International Conference on Remote

Engineering and Virtual Instrumentation (REV), Porto, Portugal, June 25 – 27,

2007, p. 6.

[18] ‘Evaluation of Evidence-Based Practices in Online Learning A Meta-Analysis and

Review of Online Learning Studies’, U.S. Department of Education Office of

Planning, Evaluation, and Policy Development Policy and Program Studies

Service, p. 93, Jun. 2009.

[19] D. A. Kolb, Experiential Learning: Experience as the Source of Learning and

Development, 1st ed. Prentice Hall, 1983.

[20] Oguz A. Soysal, ‘Computer Integrated Experimentation in Electrical Engineering

Education over Distance’, in ASEE 2000 Annual Conference, St. Louis, MO, USA,

18 - 21 June, 2000, p. 10.

[21] Jing Ma and Jeffrey V. Nickerson, ‘Hands-On, Simulated, and Remote

Laboratories A Comparative Literature Review’, ACM Computing Surveys, vol.

38, no. 3, p. 24, 2006.

[22] Tina Scheucher et al., ‘Collaborative Virtual 3D Environment for Internet

Accessible Physics Experiments’, International Journal of Online Engineering

(iJOE), vol. 5, no. Special Issue 1: REV 2009, pp. 65–71, Aug. 2009.

References 191

[23] Dieter Müller et al., ‘Mixed Reality Learning Spaces for Collaborative

Experimentation: A Challenge for Engineering Education and Training’,

International Journal of Online Engineering (iJOE), vol. 3, no. 4, pp. 15–19,

2007.

[24] N.A. Hine et al., ‘Institutional Factors Governing the Deployment of Remote

Experiments Lessons from the REXNET Project’, in 4th International Conference

on Remote Engineering and Virtual Instrumentation (REV’07), Porto, Portugal,

June 25–27, 2007, p. 8.

[25] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela, ‘Reconfigurable

weblabs based on the IEEE1451 Std.’, International Journal of Online

Engineering (iJOE), vol. 6, no. 3, p. 8, Aug. 2010.

[26] Euan David Lindsay, ‘PhD. Thesis - The Impact of Remote and Virtual Access to

Hardware upon the Learning Outcomes of Undergraduate Engineering Laboratory

Classes’, Department of Mechanical & Manufacturing Engineering The

University of Melbourne, Australia, p. 326, Jul. 2005.

[27] K. Goldberg et al., ‘Desktop teleoperation via the World Wide Web’, in IEEE

International Conference on Robotics and Automation, 1995. Proceedings,

Nagoya, Aichi, Japan, 21 -27 May, 1995, vol. 1, pp. 654–659.

[28] M. W. Gertz, D. B. Stewart, and P. K. Khosla, ‘A human machine interface for

distributed virtual laboratories’, IEEE Robotics Automation Magazine, vol. 1, no.

4, pp. 5–13, 1994.

[29] B. Aktan et al., ‘Distance learning applied to control engineering laboratories’,

IEEE Transactions on Education, vol. 39, no. 3, pp. 320–326, 1996.

[30] M. Cobby et al., ‘Teaching electronic engineering via the World Wide Web’, IEE

- Institution of Electrical Engineers - Colloquium on Computer Based Learning

in Electronic Education, p. 11, 1995.

[31] Doru Popescu and Barry Odbert, ‘The Advantages Of Remote Labs In

Engineering Education’, Educator’s Corner - Agilent Technologies - application

note, p. 11, Apr. 2011.

[32] C. Colwell, E. Scanlon, and M. Cooper, ‘Using remote laboratories to extend

access to science and engineering’, Computers & Education, vol. 38, no. 1–3, pp.

65–76, Jan. 2002.

[33] C. Gravier, J. Fayolle, B. Bayard, M. Ates, and J. Lardon, ‘State of the Art About

Remote Laboratories Paradigms - Foundations of Ongoing Mutations’,

International Journal of Online Engineering (iJOE), vol. 4, no. 1, Feb. 2008.

[34] Luís Gomes, ‘Current Trends in Remote Laboratories’, IEEE Transactions on

industrial electronics, vol. 56, no. 12, p. 4744, Dec. 2009.

192 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[35] Javier García Zubía and Gustavo R. Alves, Ed., Using Remote Labs in Education:

Two Little Ducks in Remote Experimentation. University of Deusto - Bilbau

Spain, 2012.

[36] M. P. Kazmierkowski and M. Liserre, ‘Advances on Remote Laboratories and e-

Learning Experiences (Gomes, L. and Garcia-Zubia, J., Eds.) [Book News]’,

IEEE Industrial Electronics Magazine, vol. 2, no. 2, pp. 45–46, 2008.

[37] A. K. M. Azad, M. E. Auer, and V. J. Harward, Eds., Internet Accessible Remote

Laboratories. IGI Global, 2011.

[38] ‘Special section on e-learning and remote laboratories within engineering

education’, IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1390–

1390, 2006.

[39] E. Lindsay, P. Long, and P. K. Imbrie, ‘Workshop - remote laboratories:

Approaches for the future’, in Frontiers In Education Conference - Global

Engineering: Knowledge Without Borders, Opportunities Without Passports,

2007. FIE ’07. 37th Annual, 2007, pp. W1C–1–W1C–2.

[40] Javier García Zubia et al., ‘An Approach for WebLabs Analysis’, International

Journal of Online Engineering (iJOE), vol. 3, no. 2, May 2007.

[41] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela, ‘Contextual Analysis

of Remote Experimentation Using the Actor-Network Theory’, in 9th European

Conference on e-Learning, Instituto Superior de Engenharia do Porto, Porto -

Portugal, 4-5 November, 2010, p. 14.

[42] J. Law and J. Hassard, Actor Network Theory and After. Wiley, 1999.

[43] John Law, ‘Actor Network Theory and Material Semiotics’, in The New Blackwell

Companion to Social Theory, Wiley-Blackwell, 2009, pp. 141–158.

[44] Bruno Latour, Reassembling the Social: An Introduction to Actor-Network-

Theory. Oxford University Press, USA, 2007.

[45] C. Mergl, ‘Comparison of Remote Labs in Different Technologies’, International

Journal of Online Engineering (iJOE), vol. 2, no. 4, Nov. 2006.

[46] Javier Garcia-Zubia, Diego López-de-Ipiña and Pablo Orduña, ‘Mobile Devices

and Remote Labs in Engineering Education’, in Eighth IEEE International

Conference on Advanced Learning Technologies (ICALT ’08), 1-5 July, 2008, pp.

620–622.

[47] D. Lopez-de-Ipina, J. Garcia-Zubia and Pablo Orduna, ‘Remote Control of Web

2.0-Enabled Laboratories from Mobile Devices’, in Second IEEE International

Conference on e-Science and Grid Computing, 2006. e-Science’06, 4-6 Dec.,

2006, pp. 123–127.

References 193

[48] Ananda Maiti, ‘Different Platforms for Remote Laboratories in Mobile Devices’,

in I.J.Modern Education and Computer Science, Published Online in MECS

(http://www.mecs-press.org/), 2012, pp. 38–45.

[49] Pablo Orduña, Javier García-Zubia and Diego López-de-Ipiña, Open Source

Mobile Learning - chapter 16 - Accessing Remote Laboratories from Mobile

Devices, 1st ed. pp. 233-246: IGI Global, 2011.

[50] T. S. Roberts, ‘Online Colloborative Learning: Theory and Practice’, Idea Group

Inc (IGI), p. 321, 2004.

[51] J. García-Zubía et al., ‘LXI Technologies for Remote Labs an Extension of the

VISIR Project’, International Journal of Online Engineering (iJOE), vol. 6, no.

Special Issue 1: REV2010, pp. 25–35, Sep. 2010.

[52] J. García-Zubia et al., ‘SecondLab: A remote laboratory under Second Life’, in

2010 IEEE Education Engineering (EDUCON), Madrid/Spain, 14-16 April, 2010,

pp. 351–356.

[53] Jan Machotka, Zorica Nedic and Özdemir Göl, ‘Collaborative Learning in the

Remote Laboratory NetLab’, Journal on Systemics, Cybernetics and Informatics

(JSCI), vol. 6, no. 3, pp. 22–27, 2008.

[54] N. Sousa, G. R. Alves, and M. G. Gericota, ‘An Integrated Reusable Remote

Laboratory to Complement Electronics Teaching’, IEEE Transactions on

Learning Technologies, vol. 3, no. 3, pp. 265–271, 2010.

[55] I. Gustavsson et al., ‘On Objectives of Instructional Laboratories, Individual

Assessment, and Use of Collaborative Remote Laboratories’, IEEE Transactions

on Learning Technologies, vol. 2, no. 4, pp. 263–274, 2009.

[56] Chi Chung Ko et al., ‘A Web-Based Virtual Laboratory on a Frequency

Modulation Experiment’, IEEE Transactions on Systems, Man,and Cybernetics,

vol. 31, pp. 295–303, 2001.

[57] Dillenbourg P., ‘What do you mean by collaborative learning’, In P. Dillenbourg

(Ed) Collaborative-learning: Cognitive and Computational Approaches. Oxford:

Elsevier, pp. 1–19, 1999.

[58] Michael Newby, ‘An Empirical Study Comparing the Learning Environments of

Open and Closed Computer Laboratories’, The Journal of Information Systems

Education (JISE), vol. 13, no. 4, pp. 303–314, 2002.

[59] D.Z. Deniz, A. Bulancak and G. Ozcan, ‘A novel approach to remote

laboratories’, in Frontiers in Education (FiE), 33rd Annual Conference,

University of Colorado, USA, 5-8 November, 2003, vol. 1, pp. T3E–8–T3E–12

Vol.1.

194 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[60] J. Garcia-Zubia, ‘Addressing Software Impact in the Design of Remote

Laboratories’, IEEE Transactions on Industrial Electronics, vol. 56, no. 12, pp.

4757–4767, 2009.

[61] Javier García Zubía, Diego López de Ipiña and Pablo Orduña, ‘Towards a

Canonical Software Architecture for Multi-Device WebLabs’, in 31st Annual

Conference of the IEEE Industrial Electronics Society, Sheraton Capital Center,

Raleigh, North Carolina, USA, 6-10 November, 2005, pp. 2146–2151.

[62] V.J. Harward et al., ‘The iLab Shared Architecture: A Web Services Infrastructure

to Build Communities of Internet Accessible Laboratories’, Proceedings of the

IEEE, vol. 96, no. 6, pp. 931–950, 2008.

[63] National Instruments - White Paper by Dr. Jud Harward, Philip Bailey and

Andrew Watchorn, ‘NI LabVIEW and NI ELVIS Help Support MIT’s iLabs

Architecture to Remotely Connect Future Engineers’. http://www.ni.com/white-

paper/8803/en, 15-Jun-2009.

[64] L.J. Payne and M.F. Schulz, ‘JAVA implementation of the Batched iLab Shared

Architecture’, in 10th International Conference on Remote Engineering and

Virtual Instrumentation (REV), Australia, Sydney, 6-8 February, 2013, pp. 1–3.

[65] H. G. Msuya and A.J. Mwambela, ‘Integration of a low cost switching mechanism

into the NI ELVIS iLab Shared Architecture platform’, in 9th International

Conference on Remote Engineering and Virtual Instrumentation (REV), Bilbao,

Spain 4-6 July, 2012, pp. 1–5.

[66] E. Namuganga et al., ‘Integrating the Emona FOTEx interface into the batched

iLabs client’, in 2012 International Conference on Interactive Mobile and

Computer Aided Learning (IMCL), Princess Sumaya University for Technology

Amman, Jordan 6-8 November, 2012, pp. 86–91.

[67] J. Machotka, Z. Nedić, A. Nafalski and Ö. Göl, ‘Collaboration in the remote

laboratory NetLab’, in 1 st WIETE Annual Conference on Engineering and

Technology Education, Seri Place Hotel, Pattaya, Thailand, 22-25, 2010, pp. 34–

39.

[68] Jianxi Chen and Dan Feng, ‘VISA: a virtual interface storage architecture for

improved network performance’, in Second International Conference on

Embedded Software and Systems, Xi’an, China, December 16-18, 2005, p. 6.

[69] Z. Nedic, ‘Demonstration of Collaborative Features of Remote Laboratory

NetLab’, International Journal of Online Engineering (iJOE), vol. 9, no. S1, pp.

10–12, Jan. 2013.

[70] Mohamed Tawfik et al., ‘Virtual Instrument Systems in Reality (VISIR) for

Remote Wiring and Measurement of Electronic Circuits on Breadboard’, IEEE

Transactions on Learning Technologies, vol. PP, no. 99, p. 1, 2012.

References 195

[71] M. Tawfik et al., ‘VISIR deployment in undergraduate engineering practices’, in

First Global Online Laboratory Consortium Remote Laboratories Workshop

(GOLC), Holiday Inn - Rushmore Plaza Rapid City, SD, USA, 12 October, 2011,

pp. 1–7.

[72] G.R. Alves et al., ‘Using VISIR in a large undergraduate course: Preliminary

assessment results’, in 2011 IEEE Global Engineering Education Conference

(EDUCON), Princess Sumaya University for Technology Amman, Jordan, 4-6

April, 2011, pp. 1125 –1132.

[73] D. G. Zutin, M. E. Auer, and I. Gustavsson, ‘A VISIR lab server for the iLab

Shared Architecture’, in 2011 IEEE Global Engineering Education Conference

(EDUCON), Princess Sumaya University for Technology Amman, Jordan, 4-6

April, 2011, pp. 30–33.

[74] National Instruments - White Paper, ‘Understanding Modular Instrumentation and

Traditional Instrumentation Architectures for Automated Test Systems’.

http://www.ni.com/white-paper/4444/en/, Apr-2013.

[75] National Instruments - White Paper, ‘Serial, GPIB, and VXI Instrument Control

with Measurement Studio VISA’. http://www.ni.com/white-paper/4058/en/, 16-

Jan-2013.

[76] National Instruments - Technical document, ‘NI-VISA Programmer Reference

Manual’. http://www.ni.com/pdf/manuals/370132c.pdf, Mar-2003.

[77] IVI Foundation - White paper by Kirk G. Fertitta and Pacific Mindworks,

‘Understanding the Benefits of IVI’.

http://www.ivifoundation.org/resources/default.aspx, Jul-2013.

[78] National Instruments - White Paper, ‘Distance-Learning Remote Laboratories

using LabVIEW’. http://www.ni.com/white-paper/3301/en/, 06-Sep-2006.

[79] Pablo Orduña et al., ‘Using LabVIEW remote panel in remote laboratories:

Advantages and disadvantages’, in 2012 IEEE Global Engineering Education

Conference (EDUCON’2012), Marrakesh, Morocco, 17-20 April, 2012, pp. 1–7.

[80] A. Gontean, R. Szabo and I. Lie, ‘LabVIEW powered remote lab’, in 15th

International Symposium for Design and Technology of Electronics Packages

(SIITME’2009), Gyula, Hungary, 17-20 September, 2009, pp. 335–340.

[81] A.V. Fidalgo et al., ‘Using remote labs to serve different teacher’s needs A case

study with VISIR and RemotElectLab’, in 9th International Conference on

Remote Engineering and Virtual Instrumentation (REV’2012), Bilbao, Spain 4-6

July, 2012, pp. 1–6.

[82] National Instruments - White Paper, ‘Integrating GPIB, Ethernet/LXI, USB, PXI

Express, VXI, and Other Standards into a Hybrid Test System’.

http://www.ni.com/white-paper/3518/en/, Apr-2012.

196 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[83] U. Hernández-Jayo and J. Garcia-Zubía, ‘A remote and reconfigurable analog

electronics laboratory based on IVI an LXI technologies’, in 8th International

Conference on Remote Engineering and Virtual Instrumentation (REV’2011),

Brasov, Romania, 28 June - 1 July, 2011, pp. 71–77.

[84] Unai Hernandez, ‘PhD Thesis - Metodologia de control independiente de

instrumentos y experimentos para su despliegue en laboratorios remotos’,

Universidad de Deusto - Bilbao, p. 347, May 2012.

[85] Frost & Sullivan - White Paper, ‘Embedded Instrumentation Its Importance and

Adoption in the Test & Measurement Marketplace’. http://www.frost.com, 12-

May-2012.

[86] IEEE1149.1-2013
TM

, ‘IEEE Standard for Test Access Port and Boundary-Scan

Architecture’, The Institute of Electrical and Electronics Engineers, Inc., p. 442,

May 2013.

[87] N. Visnevski, ‘Embedded Instrumentation Systems Architecture’, in IEEE

Instrumentation and Measurement Technology Conference Proceedings

(IMTC’2008), Victoria, Vancouver Island, Canada, 12-15 May, 2008, pp. 1134–

1139.

[88] Hamadou Saliah-Hassane, Raul Cordeiro Correia and José Manuel Fonseca, ‘A

network and repository for online laboratory, based on ontology’, in IEEE Global

Engineering Education Conference (EDUCON’2013), Berlin, Germany, 13-15

March, 2013, pp. 1177–1189.

[89] Pablo Orduna et al., ‘Exploring complex remote laboratory ecosystems through

interoperable federation chains’, in IEEE Global Engineering Education

Conference (EDUCON’2013), Berlin, Germany, 13-14 March, 2013, pp. 1200–

1208.

[90] Christophe Salzmann and Denis Gillet, ‘Smart device paradigm, Standardization

for online labs’, in IEEE Global Engineering Education Conference

(EDUCON’2013), Berlin, Germany, 13-15 March, 2013, pp. 1217–1221.

[91] Bogdan-Alexandru Deaky, ‘Contribution to online laboratory implementation and

standardization’, in IEEE Global Engineering Education Conference

(EDUCON’2013), Berlin, Germany, 13-15 March, 2013, pp. 1342–1346.

[92] Denis Gillet et al., ‘Personalised learning spaces and federated online labs for

STEM Education at School’, in 2013 IEEE Global Engineering Education

Conference (EDUCON’2013), Berlin, Germany, 13-15 March, 2013, pp. 769–

773.

[93] IEEE Std. 1451.0
TM

, ‘IEEE Standard for a Smart Transducer Interface for Sensors

and Actuators - Common Functions, Communication Protocols, and Transducer

Electronic Data Sheet (TEDS) Formats’, The Institute of Electrical and

Electronics Engineers, Inc., p. 335, Sep. 2007.

References 197

[94] Eugene Y. Song and Kang Lee, ‘Understanding IEEE 1451-Networked smart

transducer interface standard What is a smart transducer’, IEEE Instrumentation

& Measurement Magazine, pp. 11–17, Apr. 2008.

[95] K. Lee, ‘IEEE 1451: A standard in support of smart transducer networking’, in

Proceedings of the 17th IEEE Instrumentation and Measurement Technology

Conference (IMTC’2000), Baltimore, MD USA, 1-4 May, 2000, vol. 2, pp. 525–

528.

[96] Kang B. Lee and Mark E. Reichardt, ‘Open standards for homeland security

sensor networks’, IEEE Instrumentation Measurement Magazine, vol. 8, no. 5, pp.

14–21, Dec. 2005.

[97] IEEE Std. 1451.4
TM

, ‘IEEE Standard for A Smart Transducer Interface for

Sensors and Actuators--Mixed-Mode Communication Protocols and Transducer

Electronic Data Sheet (TEDS) Formats’, The Institute of Electrical and

Electronics Engineers, Inc., p. 454, Dec. 2004.

[98] IEEE Std. 1451.1
TM

, ‘IEEE Standard for a Smart Transducer Interface for Sensors

and Actuators - Network Capable Application Processor Information Model’, The

Institute of Electrical and Electronics Engineers, Inc., p. 480, Apr. 2000.

[99] Eugene Y. Song and Kang B. Lee, ‘STWS: A Unified Web Service for IEEE

1451 Smart Transducers’, IEEE Transactions on Instrumentation and

Measurement, vol. 57, no. 8, pp. 1749–1756, Aug. 2008.

[100] E. Song and K. Lee, ‘Smart Transducer Web Services Based on the IEEE 1451.0

Standard’, in IEEE Instrumentation and Measurement Technology Conference

Proceedings (IMTC’2007), Warsaw, Poland, May 1-3, 2007, pp. 1–6.

[101] IEEE Std. 1451.2
TM

, ‘IEEE Standard for a Smart Transducer Interface for Sensors

and Actuators - Transducer to Microprocessor Communication Protocols and

Transducer Electronic Data Sheet (TEDS) Formats’, The Institute of Electrical

and Electronics Engineers, Inc., p. 114, Sep. 1998.

[102] IEEE Std. 1451.3
TM

, ‘IEEE Standard for a Smart Transducer Interface for Sensors

and Actuators - Digital Communication and Transducer Electronic Data Sheet

(TEDS) Formats for Distributed Multidrop Systems’, The Institute of Electrical

and Electronics Engineers, Inc., p. 180, Mar. 2004.

[103] IEEE/ISO/IEC 21451-4-2010, ‘IEEE/ISO/IEC Standard for Information

technology -- Smart transducer interface for sensors and actuators -- Part 4:

Mixed-mode communication protocols and Transducer Electronic Data Sheet

(TEDS) formats’, The Institute of Electrical and Electronics Engineers, Inc., p.

448, May 2010.

198 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[104] IEEE Std. 1451.5
TM

, ‘IEEE Standard for a Smart Transducer Interface for Sensors

and Actuator - Wireless Communication Protocols and Transducer Electronic

Data Sheet (TEDS) Formats’, The Institute of Electrical and Electronics

Engineers, Inc., p. 225, Oct. 2007.

[105] IEEE Std. 1451.7
TM

, ‘IEEE Standard for Smart Transducer Interface for Sensors

and Actuators--Transducers to Radio Frequency Identification (RFID) Systems

Communication Protocols and Transducer Electronic Data Sheet Formats’, The

Institute of Electrical and Electronics Engineers, Inc., p. 99, Jun. 2010.

[106] IEEE/ISO/IEC 21451-7-2011, ‘ISO/IEC/IEEE Information technology--Smart

transducer interface for sensors and actuators--Part 7: Transducers to radio

frequency identification (RFID) systems communication protocols and transducer

electronic data sheet (TEDS) formats’, The Institute of Electrical and Electronics

Engineers, Inc., p. 92, Feb. 2012.

[107] Dr. Raymond B. SEPE, Jr., ‘IEEE TEDS 1451 Plug-and-Play or Plug-and-Pray’,

Sensors & Transducers Journal, vol. 71, no. 9, pp. 692–697, Sep. 2006.

[108] Kang B. Lee and Richard D. Schneeman, ‘Distributed measurement and control

based on the IEEE 1451 smart transducer interface standards’, IEEE Transactions

on Instrumentation and Measurement, vol. 49, no. 3, pp. 621–627, 2000.

[109] R. Kochan et al., ‘Development of a Dynamically Reprogrammable NCAP’, in

Instrumentation and Measurement Technology Conference (IMTC’2004), Coma,

Italy, 18-20 May, 2004, pp. 1188–1193.

[110] R. Kochan et al., ‘Interface and Reprogramming Controller for Dynamically

Reprogrammable Network Capable Application Processor (NCAP)’, in IEEE

Workshop on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications, Sofia, Bulgaria, 5-7 September, 2005, pp. 639–642.

[111] Guangming Song, Aiguo Song and Weiyi Huang, ‘Distributed measurement

system based on networked smart sensors with standardized interfaces’, Elsevier -

Sensors and Actuators, no. A 120, pp. 147–153, Dec. 2004.

[112] Jun Xu, Bo You and Quanli Li, ‘Implementation of an IEEE 1451 Smart Quartz

Tuning fork Temperature Transducer for Real-time Distributed Measurement and

Control System’, in Proceedings of the 6th World Congress on Intelligent Control

and Automation, Dalian, China, 21-23 June, 2006, pp. 5411–5416.

[113] J. Burch, J. Eidson and B. Hamilton, ‘The design of distributed measurement

systems based on IEEE1451 standards and distributed time services’, in

Proceedings of the 17th IEEE Instrumentation and Measurement Technology

Conference (IMTC’2000), Baltimore, USA, 1-4 May, 2000, vol. 2, pp. 529–534

vol.2.

References 199

[114] Antonio de la Piedra, An Braeken and Abdellah Touhafi, ‘Sensor systems based

on FPGAs and their applications: a survey’, Sensors, vol. 12, no. 9, pp. 12235–

12264, 2012.

[115] S.R. Rossi et al., ‘A VHDL-based protocol controller for NCAP processors’,

Elsevier - Computer Standards & Interfaces, vol. 31, no. 2, pp. 515–522, Feb.

2009.

[116] A. Depari et al., ‘A VHDL Model of a IEEE1451.2 Smart Sensor:

Characterization and Applications’, IEEE Sensors Journal, vol. 7, no. 5, pp. 619–

626, May 2007.

[117] Huiyao Cheng and Huabiao Qin, ‘A design of IEEE 1451.2 compliant smart

sensor based on the Nios soft-core processor’, in IEEE International Conference

on Vehicular Electronics and Safety, Xi’an, Shann’xi, China, 14-16 October,

2005, pp. 193–198.

[118] Diego P. Morales et al., ‘Merging FPGA and FPAA Reconfiguration Capabilities

for IEEE 1451.4 Compliant Smart Sensor Applications’, in 3rd Southern

Conference on Programmable Logic, SPL’07, Universidad CAECE Mar del

Plata, Argentina, 26-28 February, 2007, pp. 217–220.

[119] Jeong-Do Kim et al., ‘Sensor-Ball system based on IEEE 1451 for monitoring the

condition of power transmission lines’, Sensors and Actuators A: Physical, vol.

154, no. 1, pp. 157–168, Aug. 2009.

[120] Malrey Lee and Thomas M. Gatton, ‘Wireless Health Data Exchange for Home

Healthcare Monitoring Systems’, Sensors, vol. 10, no. 4, pp. 3243–3260, Apr.

2010.

[121] F. Barrero et al., ‘Networked Electronic Equipments Using the IEEE 1451

Standard - VisioWay: A Case Study in the ITS Area’, International Journal of

Distributed Sensor Networks, p. 12, Apr. 2012.

[122] Joaquín del Río et al., ‘IEEE 1451 HTTP Server Implementation for Marine

Data’, in Fourth International Workshop On Marine Technology, Martech -

Cádiz, Spain, 22-23 September, 2011, p. 3.

[123] Vítor Viegas, J.M. Dias Pereira and P. Silva Girão, ‘Using a Commercial

Framework to Implement and Enhance the IEEE 1451.1 Standard’, in

Proceedings of the IEEE Instrumentation and Measurement Technology

Conference (IMTC’2005), Ottawa, Ontario, Canada, 17-19 May, 2005, vol. 3, pp.

2136–2141.

[124] Vítor Viegas, J. M. Dias Pereira and P. M. B. Silva Girão, ‘.NET Framework and

Web Services: A Profit Combination to Implement and Enhance the IEEE 1451.1

Standard’, IEEE Transactions on Instrumentation and Measurement, vol. 56, no.

6, pp. 2739–2747, Dec. 2007.

200 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[125] Jun Wu et al., ‘A Cross-Layer Security Scheme of Web-Services-Based

Communications for IEEE 1451 Sensor and Actuator Networks’, International

Journal of Distributed Sensor Networks, p. 10, Mar. 2013.

[126] Microchip Technology Inc. - Technical Document by Richard L. Fischer and Jeff

Burch, ‘The PICmicro® MCU as an IEEE 1451.2 Compatible Smart Transducer

Interface Module (STIM)’.

http://ww1.microchip.com/downloads/en/appnotes/00214a.pdf, 2000.

[127] Luigino Benetazzo, Matteo Bertocco and Claudio Narduzzi, ‘Networking

Automatic Test Equipment’, IEEE Instrumentation & Measurement Magazine,

pp. 16–21, Mar. 2005.

[128] Helena Geirinhas Ramos, ‘A contribution to the IEEE STD. 1451.2-1997 revision

and update’, in AFRICON 2007, Windhoek, South Africa, 26-28 September, 2007,

pp. 1–7.

[129] Eugene Y. Song and Kang B. Lee, ‘Sensor Network based on IEEE 1451.0 and

IEEE p1451.2-RS232’, in IEEE Instrumentation and Measurement Technology

Conference (IMTC’2008), Victoria, Vancouver Island, Canada, May 12–15, 2008,

pp. 1728–1733.

[130] Albert T. Corbett, Kenneth R. Koedinger and John R. Anderson, ‘Intelligent

Tutoring Systems’, Elsevier Science B. V. - Handbook of Human-Computer

Interaction, chapter 37, pp. 849–874, 1997.

[131] Ricardo J. Costa et al., ‘FPGA-based Weblab Infrastructures - Guidelines and a

prototype implementation example’, in 3rd IEEE International Conference on e-

Learning in Industrial Electronics (ICELIE’2009), Porto, Portugal, 3-7

November, 2009, p. 7.

[132] IEEE 1076.1-2007
TM

, ‘IEEE Standard VHDL Analog and Mixed-Signal

Extensions’, The Institute of Electrical and Electronics Engineers, Inc., pp. c1–

328, Nov. 2007.

[133] IEEE/IEC 61691-1-1-2011
TM

, ‘Behavioural languages - Part 1-1: VHDL

Language Reference Manual’, The Institute of Electrical and Electronics

Engineers, Inc., p. 648, May 2011.

[134] IEEE 1364-2005
TM

, ‘IEEE Standard for Verilog Hardware Description

Language’, The Institute of Electrical and Electronics Engineers, Inc., p. 590,

Apr. 2006.

[135] IEEE 1666-2011
TM

, ‘IEEE Standard for Standard SystemC Language Reference

Manual’, The Institute of Electrical and Electronics Engineers, Inc., p. 638, Jan.

2012.

[136] S.Cuenca et al., ‘Performance Evaluation of FPGA-Embedded Web Servers’, in

14th IEEE International Conference on Electronics, Circuits and Systems

(ICECS’2007), Marrakech, Morocco, 11-14 December, 2007, pp. 1187–1190.

References 201

[137] D.G. Zutin, ‘Lab2go -A repository to locate educational online laboratories’, in

IEEE Engineering Education (EDUCON), Madrid/Spain, 14-16 April, 2010, pp.

1741–1746.

[138] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela, ‘Extending the

IEEE1451.0 Std. to serve distributed weblab architectures’, in 1st Experiment@

International Conference (exp.at’11), Calouste Gulbenkian Foundation, Lisboa-

Portugal, 17-18 November, 2011, p. 7.

[139] Julieta Noguez and L. Enrique Sucar, ‘A Semi-open Learning Environment for

Virtual Laboratories’, Springer - MICAI 2005: Advances in Artificial Intelligence,

vol. 3789, pp. 1185–1194, Jan. 2005.

[140] Alberto Cardoso, Miguel Vieira and Paulo Gil, ‘Integration of a Remote and

Virtual Control Lab in an Intelligent Tutoring System’, in Remote Engineering &

Virtual Instrumentation (REV), Brasov, Romania, 28 June - 1 July, 2011, p. 4.

[141] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela, ‘Work-in-progress on

a thin IEEE1451.0 architecture to implement reconfigurable weblab

infrastructures’, International Journal of Online Engineering (iJOE), vol. 7, no. 3,

p. 6, Nov. 2011.

[142] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela, ‘Reconfigurable

IEEE1451-FPGA based weblab infrastructure’, in 9th International Conference

on Remote Engineering and Virtual Instrumentation (REV), University of Deusto,

Bilbao, Spain, 4-6 July, 2012, pp. 1 –9.

[143] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela, ‘Embedding

Instruments & Modules into an IEEE1451-FPGA-Based Weblab Infrastructure’,

International Journal of Online Engineering (iJOE), vol. 8, no. 3, p. 8, Aug. 2012.

[144] Ricardo Costa , Gustavo Alves and Mário Zenha-Rela, ‘Using FPGAs to create a

reconfigurable IEEE1451.0-compliant weblab infrastructure’, in 9th Portuguese

Meeting on Reconfigurable Systems, Institute of Systems and Robotics

(REC’2013), University of Coimbra, Portugal, 7-8 February, 2013, p. 5.

[145] Ricardo J. Costa et al., ‘Peers’ evaluation of a reconfigurable IEEE1451.0-

compliant and FPGA-based weblab’, in 2nd Experiment@ International

Conference (exp.at’13), University of Coimbra, Coimbra-Portugal, September 18-

20, p. 6.

[146] U. Hernández-Jayo and J. García-Zubía, ‘Measuring Instruments Control

Methodology Performance for Analog Electronics Remote Labs’, International

Journal of Online Engineering (iJOE), vol. 8, no. Special Issue: REV2012, pp.

10–14, 2012.

202 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

[147] U. Hernández-Jayo and J. García-Zubía, ‘Validation of instrument control

methodology in remote labs of analog electronic’, in 9th International Conference

on Remote Engineering and Virtual Instrumentation (REV), University of Deusto,

Bilbao, Spain, 4-6 July, 2012, p. 5.

[148] Danilo Garbi Zutin, Michael E. Auer and A.Y. Al-Zoubi, ‘Design and

Verification of Application Specific Integrated Circuits in a Network of Online

Labs’, International Journal of Online Engineering (iJOE), vol. 5, no. 3, pp. 25–

29, Aug. 2009.

[149] Danilo Garbi Zutin, ‘Networking Online Labs Within the ISA Framework’,

International Journal of Online Engineering (iJOE), vol. 5, no. 4, pp. 20–23,

2009.

[150] Willian Rochadel et al., ‘Utilization of Remote Experimentation in Mobile

Devices for Education’, 2012 IEEE Global Engineering Education Conference

(EDUCON), pp. 1–6, Apr. 2012.

[151] Willian Rochadel et al., ‘Extending access to remote labs from mobile devices in

educational contexts’, International Journal of Online Engineering (iJOE), vol. 9,

no. 3, pp. 9–13, Mar. 2013.

[152] Willian Rochadel et al., ‘Educational application of remote experimentation for

mobile devices’, in 10th International Conference on Remote Engineering and

Virtual Instrumentation (REV), Sydney, Australia, 6 - 8 February, 2013, p. 6.

[153] J. Zackrisson and C. Svahnberg, ‘OpenLabs Security Laboratory - The Online

Security Experiment Platform’, International Journal of Online Engineering

(iJOE), vol. 4, no. 0, pp. 63–68, Jul. 2008.

[154] Pablo Orduña, ‘PhD Thesis - Transitive and Scalable Federation Model for

Remote Laboratories’, Universidad de Deusto - Bilbao, p. 242, Apr. 2013.

[155] Mohamed Tawfik, ‘PhD Thesis - Laboratory as a Service (LaaS): a Paradigm for

Developing and Implementing Modular Remote Laboratories’, Departamento de

Ingeniería Eléctrica, Electrónica y de Control (DIEEC) - Escuela Técnica

Superior de Ingenieros Industriales (ETSII) - Universidad Nacional de Educación

a Distancia (UNED), p. 310, Oct. 2013.

Annexes 203

 Annexes
 ANNEX A FPGA INTERNAL ARCHITECTURE OVERVIEW 205

 ANNEX B EXAMPLE OF AN FPGA-BASED BOARD ... 207

 ANNEX C FPGA RECONFIGURATION: OPTIONS FOR WEBLABS 209

 ANNEX D TEDS: EXAMPLES, ATTRIBUTES AND STATUS .. 211

 ANNEX E SENSORS AND ACTUATORS TRIGGER STATES 215

 ANNEX F IEEE1451.0 STATUS BITS .. 217

 ANNEX G NEW IEEE1451.0 HTTP API METHODS AND INTERFACES 219

 ANNEX H MAPPING IEEE1451.0 HTTP API METHODS AND COMMANDS 225

 ANNEX I ERROR CODES RETRIEVED FROM THE NCAP ... 231

 ANNEX J THE IEEE1451.0-COMPLIANT MODULE .. 233

J.1 - DCM INTERNAL REGISTERS ... 233
J.2 - DCM INTERNAL AND COMMAND TASKS .. 235

J.2.1 - Internal tasks ... 235
J.2.2 - Command-tasks .. 236

J.3 - DCM SCHEMATICS .. 240
J.4 - THE DCM-MB INTERFACE .. 240
J.5 - THE DCM-MT INTERFACE ... 242
J.6 - DCM REGISTERS AND BUSES FOR IMPLEMENTING THE ERROR DETECTION MECHANISM 242
J.7 - ERROR CODES SPECIFIED IN THE IEEE1451.0-MODULE ... 243
J.8 - TEDS-M: SCHEMATICS AND INTERFACE ... 244

J.8.1 - Internal variables... 244
J.8.2 - Schematics and signals .. 245
J.8.3 - Handshake protocol... 246
J.8.4 - Hardware API ... 246

J.9 - SSM: SCHEMATICS AND INTERFACE ... 248

J.9.1 - Internal variables... 248
J.9.2 - Schematics and signals .. 249
J.9.3 - Handshake protocol... 250
J.9.4 - Hardware API ... 250

J.10 - UART-M: SCHEMATICS AND INTERFACE .. 251

J.10.1 - Schematics and signals .. 251
J.10.2 - Handshake protocol ... 253

 ANNEX K WEBLAB MODULES: SPECIFICATION AND DESIGN 255

K.1 - DEFINITION OF TC-TASKS ... 255
K.2 - DESIGN OF TEDSS AND MTS .. 255
K.3 - EXAMPLES OF WEBLAB MODULES ... 256

K.3.1 - Digital I/O modules ... 256
K.3.2 - Step-Motor Controller Module (SMCM) .. 260
K.3.3 - Event sensor .. 265

 ANNEX L RECONFIGURATION .. 267

L.1 - EXAMPLES OF REPORT FILES CREATED DURING THE RECONFIGURATION PROCESS 267
L.2 - EXAMPLE OF A CONFIGURATION FILE ... 270
L.3 - THE RECONFIGURATION SCHEMATICS .. 274
L.4 - SOME EXAMPLES OF HDL FILES CREATED BY THE RECONFIGURATION PROCESS............................. 274
L.5 - EXAMPLES OF FPGA RESOURCES UTILIZATION .. 277
L.6 - EXAMPLE OF TCL FILE CREATED DURING RECONFIGURATION... 280

204 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

 ANNEX M VALIDATION & VERIFICATION ... 283

M.1 - SUPPORTING WEBPAGE: THE MAIN PAGE ... 283
M.2 - SCREENSHOTS OF VIDEOS EXEMPLIFYING THE INTERACTION WITH THE WEBLAB 284
M.3 - QUESTIONNAIRES PROVIDED FOR THE RESEARCHERS ... 285
M.4 - EXAMPLES OF WEBPAGES WITH THE PROVIDED METHODOLOGY ... 289

Annex A: FPGA internal architecture overview 205

 Annex A

FPGA internal architecture overview

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed to be

configured. The configuration is generally specified using Hardware Description

Languages (HDLs) such as Verilog, VHDL or SystemC. FPGAs can implement any

logical function that an Application Specific Integrated Circuits (ASICs) could perform,

with the advantage to update the functionality through total or partial reconfiguration

methods (annex B provides a brief overview about these types of reconfigurations).

FPGAs contain programmable logic components called logic blocks, and an

hierarchy of reconfigurable interconnections that allow the blocks to be wired together,

somewhat like many (changeable) logic gates that can be wired in (many) different

configurations. Logic blocks can be configured to perform complex combinational

functions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic

blocks also include memory elements, which may be simple flip-flops or more complete

blocks of memory. The access to the exterior is made using I/O blocks, which are also

reconfigurable. Figure A.1 presents the structural elements of an FPGA.

Figure A.1: Structural elements of an FPGA.

206 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex B: Example of an FPGA-based board 207

 Annex B

Example of an FPGA-based board

A
/D

 a
n

d
 D

/A

co
n

v
er

te
rs

E
th

er
n

et

in
te

rf
ac

e

b
u

tt
o

n
s

L
C

D
 d

is
p

la
y

JT
A

G

in
te

rf
ac

e

D
ig

it
al

 I
/0

p
in

s

P
H

Y

in
te

rf
ac

es
F

P
G

A

L
E

D
s

in
d

ic
at

o
rs

D
R

A
M

m
em

o
ry

E
2

P
R

O
M

m
em

o
ry

b
u

tt
o

n
s

F
ig

u
re

 B
.1

:
E

x
a
m

p
le

 o
f

a
n

 F
P

G
A

-b
a
se

d
 b

o
a
rd

 f
ro

m
 X

il
in

x
 (

S
p

a
rt

a
n

 3
E

).

208 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex C: FPGA reconfiguration: options for weblabs 209

 Annex C

FPGA reconfiguration: options for weblabs

As illustrated in figure C.1, FPGA technology provides two possible solutions for

reconfiguring weblab modules, namely for swapping or for adding new modules to the

infrastructure: i) total reconfiguration or; ii) partial reconfiguration, this able to be

implemented using static or dynamic approaches.

FPGA

reconfiguration with

weblab modules

total

reconfiguration

partial

reconfiguration

static

dynamic

FPGA

FPGA

Weblab
modules

New weblab
module

Partial reconfiguration: only part of the FPGA is changed. Static reconfiguration stops the other modules.

Dynamic reconfiguration allows that the others modules keep running during the adding/swapping process.

Possible weblab
module to swap

Possible weblab
module to swap

Total reconfiguration: the entire FPGA is changed, even if only a module is added/swapped.

The FPGA stops its operation.

New weblab
module

Completely
redefined

Only the
module is
redefined

Figure C.1: Possibilities for reconfiguring an FPGA with different weblab modules.

Total reconfiguration requires reconfiguring the entire FPGA, which implies

stopping its operation whenever a new weblab module is needed. Although being the

most appropriated option when using a single FPGA for a single module, it may also be

used when a single FPGA is adopted for accommodating, at the same instant, more than

one weblab module. This option is less interesting, since it requires stopping the weblab

operation for adding or swapping the modules. Moreover, depending on the complexity

of the new modules and on the current FPGA configuration, this option typically

requires more time for the reconfiguration process when compared to the partial

reconfiguration
124

. This second option should be considered when using a single FPGA

to encapsulate more than one module. It allows reconfiguring only part of the FPGA

124 M.G. Gericota et al., ‘Run-time management of logic resources on reconfigurable systems’, in

Design, Automation and Test in Europe Conference and Exhibition (DATE’2003), Munich,

Germany, 3-7 March, 2003, pp. 974–979.

210 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

with one or more weblab modules, without changing the others inside. Two alternatives

are available for partial reconfiguration: a) static or b) dynamic. Static reconfiguration

requires stopping the FPGA to add/swap a module. In contrast, if dynamic

reconfiguration is adopted, an experiment my keep running even if a module is

added/swapped. Besides the high complexity of partial reconfiguration, the costs

involved are also higher than total reconfiguration, because not all FPGAs support this

option. Furthermore, adopting partial reconfiguration requires knowing the present

configuration inside the FPGA to rearrange the logic resources and to free the space for

the new module, which may create additional difficulties for implementing this option,

since it is much dependent on the tools provided by a particular manufacturer. Then,

considering the involved complexity of partial reconfiguration when compared to total

reconfiguration, suggests this last option as a valid one for every type of architecture.

Table C.1 maps the main differences between these reconfiguration options and

indicates in which architecture they should be mostly applied.

Table C.1: Options for reconfiguring FPGAs.

Total reconfiguration
Partial reconfiguration

Static Dynamic

Implemented by all FPGAs Implemented in some FPGAs

The entire configuration logic

blocks are changed
Only some configuration logic blocks are changed

Requires stopping the operation

(e.g. Cyclone - Altera)

Requires stopping the operation

(e.g. Spartan3- Xilinx)

Does not require stopping the

operation

(e.g. Virtex4 - Xilinx)

low FPGA prices medium FPGA prices high FPGA prices

Applied to all architectures

with one or more FPGAs and

modules, but best suggested

when a single FPGA

accommodates a single

module. The weblab will be

stopped.

Preferable when using a single FPGA to accommodate several

weblab modules. Selecting one of these configurations depends

on the reconfiguration capability of the adopted FPGA and if

the weblab can be stopped (static configuration) or should run

continuously (dynamic configuration). Typically it is too much

manufacturer dependent and hard to implement.

Annex D: TEDS: examples, attributes and status 211

 Annex D

TEDS: examples, attributes and status

For exemplifying the TEDSs’ structures, table D.1 and table D.2 present two

mandatory TEDSs adopted in every compatible IEEE1451.0 device, namely the Meta-

TEDS and the TC-TEDS. Although not directly specified in these structures, every

TEDSs has associated attributes enumerated in table D.3, and particular status listed in

table D.4, both defined through two octets.

Table D.1: Meta-TEDS structure.

Field

num.

Field

name
Description

Data

type

Num.

Octets

- Length UInt32 4

0-2 - reserved - -

3 TEDSID TEDS Identification Header UInt8 4

4 UUID Globally Unique Identifier UUID 10

5-9 reserved - -

Timing-related information

10 OholdOff Operational time-out Float32 4

11 SHoldOff Slow-access time-out Float32 4

12 TestTime Self-Test Time Float32 4

Number of implemented TCs

13 MaxChan Number of implemented TCs UInt16 2

14 CGroup ControlGroup information sub-block - -

Types 20, and 21 define one ControlGroup.

20 GrpType ControlGroup type UInt8 1

21 MemList ControlGroup member list
UInt16

Array
variable

15 VGroup VectorGroup information sub-block - -

Types 20 and 21 define one VectorGroup.

20 GrpType VectorGroup type UInt8 1

21 MemList VectorGroup member list
UInt16

Array
variable

16 GeoLoc Specialized VectorGroup for geographic location - -

Types 24, 20, and 21 define one set of geographic location information.

24 LocEnum
Enumeration defining how location information is
provided

UInt8 1

20 GrpType VectorGroup type UInt8 1

21 MemList VectorGroup member list
UInt16

Array
variable

17 Proxies TC proxy definition sub-block - -

Types 22, 23, and 21 define one TC proxy.

22 ChanNum TC number of the TC proxy UInt16 1

23 Organiz TC proxy data-set organization UInt8 1

21 MemList TC proxy member list
UInt16

Array
variable

18-19 - Reserved - -

25-127 - Reserved - -

128-

255
- Open to manufacturers - -

- Checksum UInt16 2

212 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table D.2: TC-TEDS structure.

Field

num.

Field

name
Description

Data

type

Num.

Octets

- Length UInt32 4

0-2 - reserved - -

3 TEDSID TEDS Identification Header UInt8 4

4 UUID Globally Unique Identifier UUID 10

5-9 reserved - -

TC related information

10 CalKey Calibration key UInt8 1

11 ChanType TC type key UInt8 1

12 PhyUnits Physical Units UNITS 11

50 UnitType Physical Units interpretation enumeration UInt8 1

51 Radians The exponent for Radians UInt8 1

52 SterRad The exponent for Steradians UInt8 1

53 Meters The exponent for Meters UInt8 1

54 Kilogram The exponent for Kilograms UInt8 1

55 Seconds The exponent for Seconds UInt8 1

56 Amperes The exponent for Amperes UInt8 1

57 Kelvins The exponent for Kelvins UInt8 1

58 Moles The exponent for Moles UInt8 1

59 Candelas The exponent for Candelas UInt8 1

60 UnitsExt TEDS access code for units extension UInt8 1

13 LowLimit Design operational lower range limit Float32 4

14 HiLimit Design operational upper range limit Float32 4

15 OError Worst-case uncertainty Float32 4

16 SelfTest Self-test key UInt8 1

17 MRange Multi-range capability UInt8 1
Data converter-related information

18 Sample - -

40 DatModel Data model UInt8 1

41 ModLenth Data model length UInt8 1

42 SigBits Model significant bits UInt16 2

10 DataSet - -

43 Repeats Maximum data repetitions UInt16 2

44 SOrigin Series origin Float32 4

45 StepSize Series increment Float32 4

46 SUnits Series units UNITS 11

47 PreTrigg Maximum pre-trigger samples UInt16 2
Timing-related information

20 UpdateT TC update time (tu) Float32 4

21 WSetupT TC write setup time (tws) Float32 4

22 RSetupT TC read setup time (trs) Float32 4 Float32 4

23 SPeriod TC sampling period (tsp) Float32 4

24 WarmUpT TC warm-up time Float32 4

25 RDelayT TC read delay time (tch) Float32 4

26 TestTime TC self-test time requirement Float32 4
Time of the sample information

27 TimeSrc Source for the time of sample UInt8 1

28 InPropDl Incoming propagation delay through the data transport logic Float32 4

29 OutPropD Outgoing propagation delay through the data transport logic Float32 4

30 TSError Trigger-to-sample delay uncertainty Float32 4
Attributes

31 Sampling Sampling attribute - -

48 SampMode Sampling mode capability UInt8 1

49 SDefault Default sampling mode UInt8 1

32 DataXmit Data transmission attribute UInt8 1

33 Buffered Buffered attribute UInt8 1

Annex D: TEDS: examples, attributes and status 213

34 EndOfSet End-of-data-set operation attribute UInt8 1

35 EdgeRpt Edge-to-report attribute UInt8 1

36 ActHalt Actuator-halt attribute UInt8 1
Sensitivity

37 Directon Sensitivity direction Float32 4

38 DAngles Direction angles 2 Float32 8
Options

 ESOption Event sensor options UInt8 1

61–127 - Reserved - -
128–
255

- Open to manufacturers - -

- Checksum UInt16 2

Table D.3: TEDS’ attributes implemented in an octet.

Bit Data type Field name Definition

0 Boolean TEDSAttrib.ReadOnly
Read-only - Set to true if TEDS may be read but
notwritten.

1 Boolean TEDSAttrib.NotAvail
Unsupported - Set to true if TEDS is not supported by

a TC.

2 Boolean TEDSAttrib.Invalid
Invalid - Set to true if the current TEDS image is

invalid.

3 Boolean TEDSAttrib.Virtual
Virtual TEDS - This bit is set to true if this is a virtual

TEDS (not stored in the TIM).

4 Boolean TEDSAttrib.TextTEDS Text TEDS - Set to true if the TEDS is text based.

5 Boolean TEDSAttrib.Adaptive

Adaptive - Set to true if the contents of the TEDS can

be changed by the TIM or TC without the NCAP

issuing a WriteTEDSsegment command.

6 Boolean TEDSAttrib.MfgrDefine

MfgrDefine - Set to True if the contents of this TEDS

are defined by the manufacturer and will only conform

to the structures defined in the standard if the
TextTEDS attribute is also set.

7 Boolean TEDSAttrib.Reserved Reserved.

Table D.4: TEDS’ status implemented in an octet.

Bit Data type Field name Definition

0 Boolean TEDSStatus.TooLarge
Too Large - The last TEDS image received was too

large to fit in the memory allocated to this TEDS.

1-3 Boolean TEDSStatus.Reserved Reserved.

4-7 Boolean TEDSStatus.Open Open to manufacturers.

214 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex E: Sensors and actuators trigger states 215

 Annex E

Sensors and actuators trigger states

The transitions on the operating states follow two trigger state diagrams represented

in figure E.1, for sensors, and in figure E.2, for actuators. Each state represents the

transducer operating state that changes according to the defined operation mode.

Information concerning these diagrams is provided in figure E.3.

Trigger

initialize

Trigger

operating

Pré-

trigger
Wait for

trigger

Free

running

Wait for

read

Sampling

TC trigger

enabled

[sampling mode]

Free running

with pré-trigger

[sampling mode]

Wait for trigger

[sampling mode]

Free running with/

without pré-trigger

or continous

[sampling mode]

Immediate

Sampling and

discarding

*done

Sampling

into data-set

Sampling

into data-set

[read TC data set segment]

*trigger

*trigger

*trigger or

[read TC data

set segment]

POWER ON

*exit or

TC trigger disabled

Figure E.1: Sensor trigger states.

Trigger

initialize

Trigger

operating

Transverse

data set

Wait for

trigger
Free

running

Wait for

write

Halt

mode

TC trigger

enabled

[sampling mode]

Wait for trigger

[sampling mode]

Free running without

pré-trigger or

continous

[sampling mode]

Immediate

Old data set

output

[write TC data set segment]

*trigger

*trigger

POWER ON
Not in transverse data set state & not in

actuator halt mode state & *exit

*exit

*done

Figure E.2: Actuator trigger states.

216 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

*trigger if one of the following occur:

1. received the trigger command;

2. events within the TIM.

*exit if one of the following occur:

1. received [reset] or [device clear] or [abort trigger] or [write TC trigger state] = disabled;

2. TIM no longer in TIM active state;

3. transducer no longer in transducer operating state.

*done

[actuator] if the TC has transversed to the end of all DSs (all buffers) and the End of DS

operation is set to hold.

[sensor]if not in continous sampling mode and one of the bellow occur:

1. TC done with repetitive count (fills-in DSs and buffers if appropriate)

2. event sensor got the enabled event (rising, falling, both).

Notes:

[name] indicates a command.

name state indicates a state.

Figure E.3: Information notes for the trigger state diagrams.

Annex F: IEEE1451.0 status bits 217

 Annex F

IEEE1451.0 status bits

To monitor internal operations, namely if a specific command was correctly applied,

if there was a change in a TEDS, etc., the IEEE1451.0 implements status registers with

32 bits (condition, event and mask registers) for each TC and another for the TIM. As

represented in table F.1, most of the registers have the same bits for the TIM and for all

TCs (excluding the mask register that does not use bit 0). The TCs and the TIM can

associate the same registers according to an OR logic, which means that if a bit on a TC

status register is set, the correspondent bit on the TIM may also be set (if they are used

for the same purpose).

Table F.1: Status bits defined by the IEEE1451.0 Std.

Bit
Status bits

TIM TC

0 Service request Service request

1 TEDS changed TEDS changed

2 Invalid command Reserved (implemented as an invalid command)

3 Command rejected Command rejected

4 Missed data or event Missed data or event

5 Data/event Data/event

6 Hardware error Hardware error

7 Not operational Not operational

8 Protocol error Reserved

9 Data available / processed Data available / processed

10 Busy Busy

11 Failed calibration Failed calibration

12 Failed self-test Failed self-test

13 Data over/under range Data over/under range

14 Corrections disabled Corrections disabled

15 Consumables exhausted Consumables exhausted

16 Reserved Not-the-first-read-of-this-data-set

17-23 Reserved Reserved

24-31 Open to manufactures Open to manufactures

218 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex G: New IEEE1451.0 HTTP API methods and interfaces 219

 Annex G

New IEEE1451.0 HTTP API

methods and interfaces

This annex presents the extensions proposed to the IEEE1451.0-HTTP API for

implementing the architecture specified in section 4.6. The interfaces and methods are

much similar to the ones already specified in the IEEE1451.0 Std. The following tables

detail the arguments of each corresponding method.

Table G.1: NCAPRegister method.

Name: NCAPRegister

Path: http://<LabServer IP address>:<port>/NCAPRegister?register=<value>&

IPadd=<value>& portNum=<value>&responseFormat=<value>

Parameters:

Input

 _Boolean register: Specifies if it is a register (=1) or unregister operation (=0).

 UInt32 IPadd: IP addresses of the registered/unregistered NCAP in the Weblab server.

 UInt16 portNum: Port number of the registered/unregistered NCAP in the Weblab

server.

 _String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 UInt32 IPadd: IP addresses of the registered/unregistered NCAP in the weblab server

(returns null if registration / unregistration was not correctly applied).

 UInt16 portNum: Port number of the registered/nregistered NCAP in the weblab

server (returns null if registration /unregistration was not correctly applied).

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described

in its section 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name="NCAPRegisterHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name="IPadd" type="stml:UInt32"/>

<xs:element name="portNum" type="stml:UInt16"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

220 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table G.2: NCAPDiscovery method.

Name: NCAPDiscovery

Path: http://<LabServer IP address>:<port>/NCAPDiscovery?responseFormat=<value>

Parameters:

Input

 _String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 UInt32Array IPadd: IP addresses of all registered NCAP in the weblab server.

 UInt16Array portNum: Port number of all registered NCAP in the weblab server.

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described

in its section 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name="NCAPDiscoveryHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name="IPadd" type="stml:UInt32Array"/>

<xs:element name="portNum" type="stml:UInt16Array"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Table G.3: ReadLabTEDS method.

Name: ReadLabTEDS

Path: http://<NCAP IPadd >:<NCAP portNum >/ ReadLabTeds?

responseFormat=<value>&field=<value>

Parameters:

Input

__String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

 Uint8 field (values: 0 to 255 or null).

Specify the field to read (0 to 255) or the entire LabTEDS is no field is specified
(null).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 UInt32 IPadd: IP address of the specified NCAP.

 UInt16 portNum: Port number of the specified NCAP.

 ArgumentArray teds: array containing data read from the specified LabTEDS.

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described

in its section 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name="ReadLabTedsHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name="IPadd"type="stml:UInt32Array"/>

<xs:element name="portNum" type="stml:UInt16Array"/>

<xs:element name="teds" type="stml:ArgumentArrayType"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Annex G: New IEEE1451.0 HTTP API methods and interfaces 221

Table G.4: WriteLabTEDS method.

Name: WriteLabTEDS

Path: http://<NCAP IPadd >:<NCAP portNum >/ WriteLabTeds?

responseFormat=<value>&field=<value>&teds=<value>

Parameters:

Input

__String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

 Uint8 field (values: 0 to 255 or null).
Specify the field to write (0 to 255) or null to specify the entire LabTEDS.

 ArgumentArray teds: array containing data to write into the LabTEDS

(user must guarantee that all other LabTEDSs fields are coherent).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 UInt32 IPadd: IP address of the specified NCAP.

 UInt16 portNum: Port number of the specified NCAP.

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described

in its section 12.1.2.

 For XML format it shall use the following schema
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name="WriteLabTedsHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name="IPadd"type="stml:UInt32Array"/>

<xs:element name="portNum" type="stml:UInt16Array"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Table G.5: ReadTIM method.

Name: ReadTIM

Path: http://< NCAP IPadd >:< NCAP

portNum>/ReadTIM?timid=<value>&timeout=<value>&responseFormat<value>

Parameters:

Input

 UInt16 timId.

 TimeDuration timeout.

 _String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 UInt16 timId.

 ArgumentArray TimData.

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described

in its section 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name=" ReadTIMHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name=" timId " type="stml: UInt16"/>

<xs:element name="TimData " type="stml: ArgumentArray"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

222 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table G.6: WriteTIM method.

Name: WriteTIM

Path: http://< NCAP IPadd >:< NCAP portNum >/WriteTIM?

timId=<value>&timeout=<value>&TimData=<value>&responseFormat=<value>

Parameters:

Input

 UInt16 timId.

 TimeDuration timeout.

 ArgumentArray TimData.

 _String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 UInt16 timId.

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described
in its section 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name=" WriteTIMHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name=" timId " type="stml: UInt16 "/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Table G.7: ReadLog method.

Name: ReadLog

Path: http://< NCAP IPadd >:< NCAP portNum

>/ReadLog?Timeout=<value>&responseFormat=<value>

Parameters:

Input

 TimeDuration timeout.

 _String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

 ArgumentArray logData.

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described

in section its 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name=" ReadLogHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

<xs:element name=" logData " type="stml: ArgumentArray "/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Annex G: New IEEE1451.0 HTTP API methods and interfaces 223

Table G.8: WriteLog method.

Name: WriteLog

Path: http://< NCAP IPadd >:< NCAP portNum >/WriteLog? Timeout=<value>&

logData=<value>&responseFormat=<value>

Parameters:

Input

 TimeDuration timeout.

 ArgumentArray logData

 _String responseFormat (values: “text”, ”HTML” or “xml”)

(response format retrieved as indicated in section 12.1.2 of the IEEE1451.0 Std.).

output

 UInt16 errorCode: error information (described in chapter 9 of the IEEE1451.0 Std.).

output formats

 All response formats should be in accordance with the IEEE1451.0 Std. as described
in its section 12.1.2.

 For XML format it shall use the following schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI

<xs:complexType name="WriteLogHTTPResponse">

<xs:sequence>

<xs:element name="errorCode" type="stml:UInt16"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

224 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex H: Mapping IEEE1451.0 HTTP API methods and commands 225

 Annex H

Mapping IEEE1451.0 HTTP API

methods and commands

The following tables specify the mapping between the IEEE1451.0 HTTP API

methods and the commands described in the IEEE1451.0 Std. For analysing these

tables, readers should be familiar with the IEEE1451.0 Std. since not all information is

detailed. New methods are not mapped because they do not interact with the commands.

It is also important to stress that this is an alternative solution for implementing weblab

infrastructures based on the IEEE1451.0 Std., in particular for solutions that use a single

NCAP-TIM connection.

Table H.1: Mapping the ReadData method to SamplingMode and ReadTCDSsegment

commands.

T
ra

n
sd

u
ce

r
A

cc
es

s

A
P

I

Name: ReadData (section 12.3.1.1 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/ReadData

Input parameters:

UInt16 timId
UInt16 channelId

TimeDuration timeout

UInt8 SamplingMode

_String responseFormat

Output parameters:

UInt16 errorCode
UInt16 timId

UInt16 channelId

ArgumentArray transducerData

C
o

m
m

an
d

s

Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.)

Input parameters:

UInt8 SamplingMode

Output parameters:

No reply

Name: ReadTCDSsegment (section 7.1.3.1 of the IEEE1451.0 Std.)

Input parameters:

UInt32 DataSetOffset

Output parameters:

UInt32 DataSetOffset

2 N*UInt8 DataBlock

Comments: Using the ReadData starts a blocking operation and requires the use of two commands:

the SamplingMode to define the samplingMode, followed by the ReadTCDSsegment to read one or

more data blocks depending on the available data. The DataSetOffset input parameter of the

ReadTCDSsegment command should always start at 0 and should be applied until all data were

returned. The ArgumentArray output parameter of the ReadData should be completed with all

returned data blocks of the ReadTCDSsegment command.

226 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table H.2: Mapping the StartReadData and MeasurementUpdate methods to

SamplingMode and ReadTCDSsegment commands.
T

ra
n
sd

u
ce

r
A

cc
es

s
A

P
I

Name: StartReadData (section 12.3.1.2 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/StartReadData

Input parameters:

UInt16 timId

UInt16 channelId

TimeInstance triggerTime

TimeDuration timeout

UInt8 SamplingMode
_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

Name: MeasurementUpdate (section 12.3.1.3 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/MeasurementUpdate

Input parameters:

UInt16 timId

UInt16 channelId

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

ArgumentArray transducerData

C
o

m
m

an
d
s

Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.)

Input parameters:

UInt8 SamplingMode

Output parameters:

No reply

Name: ReadTCDSsegment (section 7.1.3.1 of the IEEE1451.0 Std.)

Input parameters:

DataSetOffset data type UInt32

Output parameters:

UInt32 DataSetOffset

2 N*UInt8 DataBlock

Comments: Using the StartReadData implements a non-blocking operation that starts reading from

the specified TC, after a triggerTime. To get the measured data, the MeasurementUpdate should be

applied. The adoption of these two methods requires the use of the SamplingMode and

ReadTCDSssegment commands. Both commands must be applied by the StartReadData, and the

ReadTCDSssegment must be constantly applied by the specified TIM. The data should only be

available after using the MeasurementUpdate method.

Table H.3: Mapping the WriteData method to SamplingMode and WriteTCDSsegment

commands.

T
ra

n
sd

u
ce

r

A
cc

es
s

A
P

I

Name: WriteData (section 12.3.2.1 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/WriteData

Input parameters:

UInt16 timId

UInt16 channelId

TimeDuration timeout

UInt8 SamplingMode

ArgumentArray transducerData

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

C
o
m

m
an

d
s

Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.)

Input parameters:

UInt8 SamplingMode

Output parameters:

No reply

Name: WriteTCDSsegment (section 7.1.3.2 of the IEEE1451.0 Std.)

Input parameters:

UInt32 DataSetOffset
DataSetOffset data type UInt32

Output parameters:

No reply

Comments: Using the WriteData starts a blocking operation and requires the use of two commands.

The SamplingMode to define the sampling mode of the associated TC, followed by the

WriteTCDSsegment to write one or more data blocks depending on the available DSs. The

DataSetOffset output parameter of the WriteTCDSsegment should always start at 0 and should be

applied until all data have been written.

Annex H: Mapping IEEE1451.0 HTTP API methods and commands 227

Table H.4: Mapping the StartWriteData method to SamplingMode and WriteTCDSs

commands.
T

ra
n
sd

u
ce

r
A

cc
es

s
A

P
I

Name: StartWriteData (section 12.3.2.2 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerAccess/StartWriteData

Input parameters:

UInt16 timId

UInt16 channelId

TimeInstance triggerTime

TimeDuration timeout

UInt8 SamplingMode
ArgumentArray transducerData

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

C
o
m

m
an

d
s

Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.)

Input parameters:
UInt8 SamplingMode

Output parameters:
No reply

Name: WriteTCDSsegment (section 7.1.3.2 of the IEEE1451.0 Std.)

Input parameters:

UInt32 DataSetOffset

DataSetOffset data type UInt32

Output parameters:

No reply

Comments: Using the StartWriteData implements a non-blocking operation that starts writing in the

specified TC, after a triggerTime. Requires the use of the SamplingMode and WriteTCDSsegment

commands. As described in the standard, the user is responsible for determining when the command

completes its action by sending the SendCommand method (section 12.5.1 of the IEEE1451.0 Std.)

with the ReadStatusEventRegister command (section 7.1.1.8 of the IEEE1451.0 Std.), and checking

for the DataProcessed bit (section 5.13.10 of the IEEE1451.0 Std.) to be asserted in the event register

of the specified TIM ID and TC ID.

Table H.5: Mapping the ReadTEDS and ReadRawTEDS methods to the

ReadTEDSsegment command.

T
E

D
S

 M
an

ag
er

 A
P

I

Name: ReadTEDS (section 12.4.1 of the IEEE1451.0 Std.) and ReadRawTEDS (section

12.4.2 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/ReadTeds

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/ReadRawTeds

Input parameters:

UInt16 timId

UInt16 channelId

TimeDuration timeout

UInt8 TedsType

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

UInt8 TedsType

ArgumentArray Teds

C
o
m

m
an

d
s Name: ReadTEDSsegment (section 7.1.1.2 of the IEEE1451.0 Std.)

Input parameters:

UInt8 TEDSAccessCode

UInt32 TEDSOffset

Output parameters:

UInt32 TEDSOffset

OctetArray RawTEDSBlock

Comments: Both methods read TEDSs and the ReadTEDSsegment command should be used if the

TEDSs are located in the TIM. If the ReadTEDS method is applied and the accessed TEDSs are

cached in NCAP, the ReadTEDSsegment command is not used. Otherwise, if the ReadRawTEDS

method is applied or if the ReadTEDS method is applied to a TEDS only located in the TIM, the

ReadTEDSsegment command should be always used. The NCAP is the responsible for specifying the

TEDSOffset parameter until all data have been read.

228 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table H.6: Mapping the UpdateTEDSCache to the ReadTEDSsegment command.

T
E

D
S

 M
an

ag
er

 A
P

I Name: UpdateTEDSCache (section 12.4.5 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/UpdateTedsCache

Input parameters:

UInt16 timId

UInt16 channelId
TimeDuration timeout

UInt8 TedsType

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId
UInt16 channelId

UInt8 tedsType

C
o
m

m
an

d
s Name: ReadTEDSsegment (section 7.1.1.2 of the IEEE1451.0 Std.)

Input parameters:

UInt8 TEDSAccessCode

UInt32 TEDSOffset

OctetArray RawTEDSBlock

Output parameters:

No reply

Comments: The use of the UpdateTEDSCache method can only be applied if there is a cached TEDS

in NCAP, otherwise it does not make sense its adoption. If there is a cached TEDS, the

ReadTEDSsegment command is applied to retrieve all data from a specific TEDS and the checksum

will be compared to the checksum of the cached TEDS. If both checksums differ, the cached TEDS

should be updated with the values read from the TEDS retrieved from the TIM.

Table H.7: Mapping the WriteTEDS and WriteRawTEDS methods to the

WriteTEDSsegment command.

T
E

D
S

 M
an

ag
er

 A
P

I

Name: WriteTEDS (section 12.4.3 of the IEEE1451.0 Std.) and WriteRawTEDS (section

12.4.4 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/WriteTeds

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TedsManager/WriteRawTeds

Input parameters:

UInt16 timId

UInt16 channelId

TimeDuration timeout

UInt8 TedsType

ArgumentArray Teds

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

UInt8 tedsType

C
o

m
m

an
d

s Name: WriteTEDSsegment (section 7.1.1.3 of the IEEE1451.0 Std.)

Input parameters:

UInt8 TEDSAccessCode

UInt32 TEDSOffset

OctetArray RawTEDSBlock

Output parameters:

No reply

Comments: Both methods allow writing data into a TEDS and should use the WriteTEDSsegment

command if a TEDS is located in the TIM. If the WriteTEDS method is applied, and the accessed
TEDS is only available in the NCAP, the WriteTEDSsegment command is not used. Otherwise, if the

WriteTEDS is applied to the TEDS only located in the TIM, or if it is applied the WriteRawTEDS

method, which obliges bypassing any available cached TEDSs, the WriteTEDSsegment command

should be always used. If the TEDS is not cached in the NCAP, the use of the WriteTEDS will create

one. The NCAP processor should be the responsible for specifying the TEDSOffset parameter until all

data have been written.

Annex H: Mapping IEEE1451.0 HTTP API methods and commands 229

Table H.8: Mapping the SendCommand method.
T

ra
n
sd

u
ce

r
M

an
ag

er
 A

P
I Name: SendCommand (section 12.5.1 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/SendCommand

Input parameters:

UInt16 timId

UInt16 channelId
TimeDuration timeout

UInt8 cmdClassId

UInt8 cmdFunctionId

ArgumentArray inArgs

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId
UInt16 channelId

ArgumentArray outArgs

Comments: This method performs a blocking operation and should be directly mapped to any

IEEE1451.0 Std. command.

Table H.9: Mapping the StartCommand and CommandComplete methods.

T
ra

n
sd

u
ce

r
M

an
ag

er
 A

P
I

Name: StartCommand (section 12.5.2 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/StartCommand

Input parameters:

UInt16 timId

UInt16 channelId

TimeInstance triggerTime

TimeDuration timeout

UInt8 cmdClassId

UInt8 cmdFunctionId

ArgumentArray inArgs

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

Name: CommandComplete (section 12.5.3 of the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/CommandComplete

Input parameters:

UInt16 timId
UInt16 channelId

_String responseFormat

Output parameters:

UInt16 errorCode
UInt16 timId

UInt16 channelId

ArgumentArray outArgs

Comments: These methods perform a non-blocking operation and should be directly mapped to any

IEEE1451.0 Std. command. The CommandComplete completes a non-blocking operation initiated by

the StartCommand, retrieving the results obtained by this last method. This management should be

made by the NCAP.

Table H.10: Mapping the Trigger and the StartTrigger methods to commands

ReadTEDSsegment, SamplingMode and TriggerCommand.

T
ra

n
sd

u
ce

r
M

an
ag

er
 A

P
I

Name: Trigger (section 12.5.4 of the IEEE1451.0 Std.) and StartTrigger (section 12.5.5 of

the IEEE1451.0 Std.)

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/Trigger

Path: http://<NCAP IPadd >:<NCAP portNum>/1451/TransducerManager/StartTrigger

Input parameters:

UInt16 timId

UInt16 channelId

TimeInstance triggerTime

TimeDuration timeout

Uint16 SamplingMode

_String responseFormat

Output parameters:

UInt16 errorCode

UInt16 timId

UInt16 channelId

230 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

C
o
m

m
an

d
s

Name: ReadTEDSsegment (section 7.1.1.2 of the IEEE1451.0 Std.)

Input parameters:

UInt8 TEDSAccessCode
UInt32 TEDSOffset

OctetArray RawTEDSBlock

Output parameters:

No reply

Name: SamplingMode (section 7.1.2.4 of the IEEE1451.0 Std.)

Input parameters:

UInt8 SamplingMode

Output parameters:

No reply

Name: TriggerCommand (section 7.1.3.3 of the IEEE1451.0 Std.)

Input parameters:

No arguments

Output parameters:

No reply

Comments: The Trigger method performs a blocking trigger and is directly mapped to the Trigger

command. However, the input parameter named SamplingMode should indicate the TC operation

mode. Before sending this Trigger command to the TIM, the available sampling modes should be read

from field 31 of TC-TEDS using the ReadTEDSsegment command and compared with the

SamplingMode parameter to evaluate if it is a valid mode for the specified TC. If valid, the

SamplingMode command with the Trigger command should be applied. Otherwise, an error should

be provided through the errorCode parameter. The StartTrigger method is similar to the Trigger

method but it performs a non-blocking trigger. The user is responsible for determining if the Trigger

command was completed by sending the ReadStatusEventRegister command through the
SendCommand method, to evaluate the DataProcessed bit (section 5.13.1.10 of the IEEE1451.0 Std.).

Annex I: Error codes retrieved from the NCAP 231

 Annex I

Error codes retrieved from the NCAP

The error codes retrieved from the NCAP are defined according to the code structure

defined in the IEEE1451.0 Std. that uses a word with 16 bits wide, mapped according to

the event registers within the TIM. Most of the codes are not implemented since the

current infrastructure was designed according to a thin implementation of the

IEEE1451.0 Std., which does not use the middle layers of the NCAP-TIM reference

model, namely the Transducer services interface and the Module communication APIs.

The implemented codes are defined in two parts: i) error source, defined in the most

significative 3 bits (table I.1) and; ii) an error enumeration, encoded in the least

significative 13 bits (table I.2).

Table I.1: Error source codes.

Error source [bits 15-13]

0 000 NCAP error (Error from the local IEEE1451.0 layer)

1 001 - not used - (Error from the local IEEE1451.X layer)

2 010 - not used - (Error from the remote IEEE1451.X layer)

3 011 TIM error (Error from the remote IEEE1451.0 layer)

4 100 - not used - (Error from the remote application layer)

5 101 - not used - (Reserved)

6 110 - not used - (Reserved)

7 111 - not used - (Reserved)

Table I.2: Error enumeration codes.

Error enumeration [bits 12-0]

0 0.0000.0000.0000 No error (NO_ERROR - No error, operation successful)

1 0.0000.0000.0001 Invalid command ID (INVALID_COMMID - Invalid command ID)

2 0.0000.0000.0010
Unknown destination TC/TIM ID (UNKNOWN_DESTID - unknown

destination ID)

3 0.0000.0000.0011 Time out (TIMEOUT - Operation time-out)

4 0.0000.0000.0100 - not used - (NETWORK_FAILURE - Destination unreachable)

5 0.0000.0000.0101 - not used - (NETWORK_CORRUPTION - Corrupt communication)

6 0.0000.0000.0110 Memory error (MEMORY - Local out-of-memory error)

7 0.0000.0000.0111 - not used - (QOS_FAILURE - Network QoS violation)

8 0.0000.0000.1000
- not used - (MCAST_NOT_SUPPORTED - Multicast not supported or

operation invalid for multicast)

9 0.0000.0000.1001 - not used - (UNKNOWN_GROUPID - Unknown group ID)

10 0.0000.0000.1010 - not used - (UNKNOWN_MODULEID - Unknown module ID)

11 0.0000.0000.1011 - not used - (UNKNOWN_MSGID - Unknown msg ID)

12 0.0000.0000.1100 - not used - (NOT_GROUP_MEMBER - Dest. ID not in the group)

13 0.0000.0000.1101 - not used - (ILLEGAL_MODE - The mode parameter is not valid)

14 0.0000.0000.1110 - not used - (LOCKED_RESOURCE - Resource accessed is locked)

15 0.0000.0000.1111
Fatal TEDS error (FATAL_TEDS_ERROR - An error in the TEDS

makes the device unusable)

16 0.0000.0001.0000
Non fatal TEDS error (NON-FATAL_TEDS_ERROR - The value in a

field in the TEDS is unusable, but the device will still work)

232 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

17 0.0000.0001.0001
- not used - (CLOSE_ON_LOCKED_RESOURCE - A warning error code

returned to signal that a close on a locked resource was performed)

18 0.0000.0001.0010

- not used - (LOCK_BROKEN - If a non-blocking read or write, or

measurement stream is in progress, the callback will be invoked with this

error code)

19 0.0000.0001.0011
- not used - (NETWORK_RESOURCE_EXCEEDED - IEEE1451.X has

reached network resource limits)

20 0.0000.0001.0100
- not used - (MEMORY_RESOURCE_EXCEEDED - IEEE1451.X has

reached memory resource limits)

21 0.0000.0001.0101 NCAP-TIM communication error (error in serial port)

22 0.0000.0001.0110 Reply failed (usually error caused by the TIM)

23 0.0000.0001.0111

TIM error reply (error caused by the TIM)

Data received: [000] or

[000+StatusEventRegister (if status-event protocol is enabled)]

24 0.0000.0001.1000
Error creating the urjtag.svf file.

This file is used to reconfigure the TIM (error caused by the NCAP)

25 0.0000.0001.1001 NCAP error reconfiguring TIM (error caused by the NCAP)

26 0.0000.0001.1010
NCAP error retrieving a response from the reconfiguration

(error caused by the NCAP).

27-4095 Reserved

4096-8191 Open to manufacturers

Annex J: The IEEE1451.0-compliant module 233

 Annex J

The IEEE1451.0-compliant module

J.1 - DCM Internal registers

Table J.1 lists the DCM internal registers, their length and meaning.

Table J.1: List with the DCM internal registers.

reg [`TC_number:0] service_request

Indicates which TC/TIM is generating a service request.

reg aux_flag_service_request

Indicates that a service request is being attended by the serviceRequestHandler () internal-task.

reg [`TC_number:0] status_event_protocol

Indicates if a specific TC/TIM has the status-event protocol enabled.

reg error_source

Indicates if the error source is a TC (=1), or the TIM or an error (=0).

reg [`error_num_im+1+`error_num_internal+`error_num_external-1:0] error_reg

Keeps all errors.

reg [`error_num_internal +`error_num_external-1:0] error_reg

Errors generated internally or externally.

aux_flag_error

Indicates that an error is being attended by the errorHandler() internal-task.

reg [`error_num_im+1+`error_num_internal+`error_num_external-

1:`error_num_internal+`error_num_external] error_reg_im_old;

Errors generated by external weblab modules.

reg [`bits_pointer_TC_number_tiny:0] event_signals_old

Keeps the last events generated by the weblab modules.

reg [`TC_number:0] attending_event

Keeps the attended event.

reg event_att

Indicates that an event is being attended.

reg [7:0] TC_number_msb + reg [7:0] TC_number_lsb

Command ID.

reg [7:0] cmdClassID + reg [7:0] cmdFunctionId;

Specifies the command by its class ID and function ID.

reg [7:0] length_msb + reg [7:0] length_lsb

Length of a received command.

reg [7:0] TIMstate + reg [7:0] TCstate

Current TIM and TC state.

reg [`TC_number:0] status_event_protocol

Indicates if a specific TC/TIM has the status-event protocol enable (=1) or disable (=0).

reg[2:0] address_type

Address type specified by a command: 0-Global (0xffff); 1-AddressGroup

(0x8000<=Address<=0xfffe); 2-TC (1<=Address<=0x7fff); 3-TIM (0); 4-Proxy (read from the Meta-

TEDS); 5- reserved; 6- reserved. (Note: currently the IEEE1451.0-Module only decodes TC and TIM

addresses, i.e. address type=2).

234 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

reg aux_flag; aux_flag2

reg [7:0] aux_octet_1; aux_octet_2; aux_octet_3

reg [31:0] aux_dw; aux_dw_2; aux_dw_3; aux_dw_4

Auxiliar registers. Note: aux_dw_2 can not be used in command-tasks since it is used by the

serviceRequestHandler() and errorHandler() internal-tasks that may run in parallel. If other tasks use
these registers it will be generated an error during the synthesis of the weblab project.

reg [15:0] aux_checksum

Keeps the checksum calculation (used by the calculatesChecksum() internal-task).

reg [7:0] buffer_controller [`max_memlength+20:0]

Auxiliary register (keeps data read before send it to the UART-M).

reg [4:0] samplingMode

Specifies current sampling mode of the selected TC (field 31 of TC-TEDS / table 54 Std. of the

IEEE1451.0 Std.):
- Trigger initiated mode (section 5.10.1.1 of the IEEE1451.0 Std.) = 1;

- Free-running without pre-trigger mode (section 5.10.1.2 of the IEEE1451.0 Std.) = 2;

- Free-running with pre-trigger mode(section 5.10.1.3 of the IEEE1451.0 Std.) = 4 (only valid for

sensors);

- Continuous Sampling mode (section 5.10.1.6 of the IEEE1451.0 Std.) = 8;

- Immediate operation sampling mode (section 5.10.1.7 of the IEEE1451.0 Std.) = 16.

reg [4:0] transmissionMode

Specifies current transmission mode of the selected TC (field 32 of TC-TEDS / table 58 Std. of the

IEEE1451.0 Std.):

- reserved = 1;

- commanded mode = 2 (Write/ReadTCDSSegment commands can be applied in this mode);
- streaming when buffer (data set) if full = 4;

- streaming at a fixed interval = 8;

- all modes available = 16.

reg [7:0] state; state_2; state_3

Registers used for sequence control: state (controller), state_2 (subtasks states); state_3 (commands).

reg[7:0] state_rst

Used for sequence control the reset_task() internal-task.

reg [7:0] state_command_module

Used for sequence control of tasks in the TEDS-M and in the SSM internal controllers.

reg [3:0] error_state

Used for sequence control the errorHandler() internal-task.

reg [4:0] service_req_state

Used for sequence control the serviceRequestHandler() internal-task.

reg [31:0] teds_size

Auxiliary register used to keep the current TEDS size or the maximum TEDS size.

reg rst

After attending a command this signal is set to reset all relevant registers.

reg power_up

Indicates a power-up in the IEEE1451.0-Module.

reg flag_rst

Used to handle the reset/power-on.

reg flag_resetcommand

Handles the reset command IEEE1451.0 command.

reg end_task

Indicates if a specific task has ended.

reg end_tc_task

Indicates the end of a TC-task (e.g. init(), rd(), etc.).

reg end_access_TEDS, end_step_access_TEDS

Registers used to control the access to commands provided by the TEDS-M.

reg end_access_SS

Controls the access to commands provided by the SSM.

Annex J: The IEEE1451.0-compliant module 235

J.2 - DCM internal and command tasks

J.2.1 - Internal tasks

Table J.2 lists all the DCM internal-tasks used to manage its features. Command

tasks may communicate with these internal-tasks.

Table J.2: DCM internal-tasks.

test_length (input type; input [15:0] value)

Evaluates if the length of a received command, defined in the DCM internal registers {length_msb,

length_msb} have a length more or equal (type=1) or only equal (type=0) to the value defined in the

value register of this task. This task returns an error (error_reg [5]=1) if, according to the value defined

in the type register, the condition is not valid. The objective of this task is to evaluate if a received

command has the number of fields in accordance with the IEEE1451.0 Std.

createTIMMsg (input [15:0] id; input[7:0] class; input[7:0] function_; input [15:0] length;

input[7:0] wr_octet;)

Creates a generic TIM message structure according to the IEEE1451.0 Std. in the buffer_out_tx of the

UART-M. The use of this task requires the definition of the following parameters: id - TC/TIM ID;

class - command class ID; function_ - command function ID; length - message data structure length

(number of octets to send); wr_octet - octet to send. The end_task internal DCM register is set after

building the message structure.

createReplyMsg (input flag, input [7:0]wr_octet, input[15:0] length)

Creates a reply message structure according to the IEEE1451.0 Std. in the buffer_out_tx of the UART-

M. The use of this task requires the definition of the following parameters: flag - indicates the value of

the flag used in a reply message structure (1-success, 0-fail); length - message data structure length

(number of octets to send); wr_octet - octet to send. The end_task internal DCM register is set after
building the message structure.

errorHandler ()

Establishes a map between all internal and external errors into the TIM/TC condition bit registers

defined within the status memory used in the SSM. At the end a reply message indicating an error will

be sent to the NCAP.

serviceRequestHandler ()

If the status-event protocol is active, it sends a reply message with the event register of the TIM/TC.

Accessed when there is a SR generated by the SSM.

findMAP (input type, input [7:0] tedsCode)

Consults the MT according to the value defined in the input parameters. The type register specifies the

way this task runs, and the tedsCode register indicates the TEDS ID code to find. Therefore, depending

on the type value, two operations may be defined for this internal-task:

1- type=’0’: verifies if the TC/TIM ID exists in the MT for the TC number specified by registers

TC_number_msb and TC_number_lsb. The tedsCode is not used (place at 0). If the TEDS ID code exists

in the MT, there is no error (error_reg [bit 0] gets 0), the octet_out_map gets the less significant octet of

the memory number associated to the specified TEDS ID code, and the address_map gets the address of

the MT pointing to that value. If the ID does not exist, the address_map gets 0 and the error_reg [bit 0]
gets 1.

2- type=’1’: gets the memory number in the MT associated to the specified TEDS ID code defined in

the tedsCode. To specify how to get the memory number, the tedsCode can be specified in two different

ways: i) placed at 0, meaning that the TEDS ID code is automatically read from the received command
message, or; ii) directly set with the TEDS ID code to find. If the TEDS ID code is found in the MT,

the address_map register gets the MT register address that specifies the associated memory number, the

octet_out_map indicates that memory number, and the error_reg [bit 3] gets 0, which means the

memory number associated to the specified TEDS ID code was found. If the TEDS ID code does not

exist in the MT, the address_map gets 0 and the error_reg [bit 3] gets 1.

calculatesChecksum (input [7:0] memNum, input [31:0] length)

Calculates the checksum of a TEDS, whose size is specified in the length register, and the

implementation is available in the memory number specified in the memNum register. The result of this
task, which is the calculated checksum of the specified TEDS ID code, is placed in the first 2 octets of

the aux_dw_2 register.

236 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

evaluatesDataSetLength ()

Evaluates if the WriteTCDSsegment and ReadTCDSsegment commands can be applied to a specific DS.

This command is used by these commands to evaluate if the offset defined in both fits in the length

defined to the DS, otherwise it generates errors that will be handled by the DCM.

It uses as inputs the: data_octet_out_map that has the number of the TEDS memory returned by the

findMap() task, the length_msb and length_lsb that have the length returned from the received message,

and the aux_dw that has the offset returned from the received command message. The output of this

task returns fields from the TC-TEDSs, namely the samplingLength (field 18) in the aux_octet_2

register, and the MaximumDataRepetitions (field 43) in the aux_dw_3 register.

resetTask (input caller_71reset)

Initializes all modules and each weblab module according the init() TC-tasks associated to the adopted

TC. This task is accessed in two cases: i) after the end of a command or ii) by issuing the reset

command. Within the task this two accesses are controlled by the register name caller_71reset. If the

access is made by the reset command, all SR are aborted (event registers are cleared). Note that the

TEDSs are not initialized with the default values.

initializeController

Initializes all DCM registers and it is accessed during a TIM power-up.

J.2.2 - Command-tasks

This annex presents in table J.3, table J.4, table J.5 and table J.6 all tasks with the

commands implemented by the IEEE1451.0-Module, divided according to their class

ID, identifying the HDL files where they were implemented.

Table J.3: Commands common to the TIM and to each TC (ClassID=1).

QueryTEDS (FunctionID=1) [file: 1_1_QueryTEDS.vh]

Used by the NCAP to solicit information required to read or write the TEDS. This command returns

the TEDS information fields defined in the TEDS structure (last 12 octets).

Arguments: TEDS ID code (8 bits).

Returns: TEDS’s fields information (e.g.:TEDS attributes, TEDS status, Current size of the TEDS,
etc.). There are 4 possible replies defined according to the defined TEDS attributes (tables 18 and 19 of

the IEEE1451.0 Std.):

i)NotAvail=0 & Invalid=0 & Virtual=1: >>1,0,12,TEDS information;

ii) NotAvail=1 or Invalid=1: >>1,0,12, TEDS information (TEDSsize=MaxTEDSSize=0);

iii) NotAvail=0 or Invalid=0 & Virtual=1: >>1,0,12, TEDS information

(TEDSsize = MaxTEDSSize = TEDSCkSum=0);

iv) TEDS not located. An error is generated meaning that the TEDS access code or the ID does not

match/exist in the MT.

ReadTEDSsegment (FunctionID=2) [file: 1_2_ReadTEDSsegment.vh]

Reads a TEDS starting for a position defined according to an offset value.

Arguments: TEDS ID code (8 bits) and TEDS offset (32 bits).

Returns: The first field contains the offset at which the block of data in the TEDS was taken and will,

in most cases, match the TEDS segment offset in the ReadTEDSsegment command. The remaining
octets contain the data read from the TEDS. If the TEDS offset is greater than the length of the TEDS,

the TEDS offset in the reply is equal to the TEDS length and the reply will contain 0 octets.

Notes:

1- The IEEE1451.0 Std. indicates “... TEDS are allowed to be larger than the maximum size of an octet

array. The transmission of these large TEDSs requires the segmentation of the TEDS for transmission

“. Therefore, if the TEDS segment has a length greater than the value defined in the parameter named

MAXIMUM_MSG_LENGTH (available in the 1_2_ReadTEDSsegment.vh file) it will be sent several reply

messages, since each one has a maximum length defined by the MAXIMUM_MSG_LENGTH.

2- Despite indicated by the IEEE1451.0 Std., the following issue was not implemented: “The reply

shall contain all ones in the TEDS segment offset and 0 data octets if the TEDS is “virtual,” is not

supported, or is invalid.”.

Annex J: The IEEE1451.0-compliant module 237

WriteTEDSsegment (FunctionID=3) [file: 1_3_WriteTEDSsegment.vh]

Used to write part of a TEDS.

Arguments: TEDS ID code (8 bits), TEDS offset (32 bits) and Raw TEDS block (N x 8 bits).

Returns:No reply, i.e. 100 (command correctly issued) or 000 (error issuing the command).

Notes:

1- Since the maximum size for an octet array is less than the maximum size for a TEDS, the TEDS

segment offset is used to identify where in the TEDS the Raw TEDS block should be written.

2- The IEEE1451.0 Std. indicates the following when data exceeds the TEDS size: “If the maximum

TEDS size is exceeded, the additional data shall not be written into the memory and the current size of

the TEDS shall be set to zero. If the TEDS offset is greater than the maximum length of the TEDS, the

data shall be discarded and the command rejected bit in the status word (section 5.13.4 of the

IEEE1451.0 Std.) shall be set.”. In current implementation this issue was simplified gathering both

conditions, i.e. in both situations the command rejected bit of the status word is set if no data is written
into the TEDS and the length is not changed. An error message will be generated (000).

3- The IEEE1451.0 Std. indicates the following “A WriteTEDSsegment command shall create a new

TEDS if one does not already exist with that access code”. In current implementation the TIM does not

allow creating a new TEDS neither changing the length. To change the size of a TEDS it must be

issued a new command named WriteTEDSsize, since the standard is not clear on how to change the size
of a new TEDS. Current implementation do not allow increasing the size of a TEDS, it only allows

reducing its size.

4- If the TIM is not designed to allow creating a new TEDS, the WriteTEDSSegment command shall not

write any data into a TEDS memory because the TEDS is unsupported.

5- When the TIM begins to overwrite an existing TEDS, this will be marked as Invalid. It shall remains

marked as Invalid (the TEDS attributes bit 2 (table 19 in the Std.) is set) until the UpdateTEDS
command is received.

UpdateTEDS (FunctionID=4) [file: 1_4_UpdateTEDS.vh]

Validates a TEDS currently marked as invalid (WriteTEDS command updates a TEDS but it becomes

invalid, and it only becomes valid after issuing this UpdateTEDS command).

Arguments: TEDS ID code (8 bits).

Returns: returns the 4 possibilities similar to the reply of a QueryTEDS command.

Notes:

1- This command is used to validate a TEDS that was previously written into MB connected to the
DCM. If it is valid, it is marked as valid in the state octet of the TEDS structure and it is copied into a

TEDS memory of the TEDS-M. Otherwise, the TEDS shall remain invalid and there is no copy.

2- In current implementation the TEDS validation consists on evaluating the checksum, by calculating

it according to the current data available in the TEDS and compares that calculation with the checksum

available within the TEDS. If they are equal, the TEDS is marked as valid, otherwise it remains

invalid.

3- This command automatically calls update_TC() TC-tasks, since a change in a specific TEDS may

change the operation of a weblab module connected to the TC.

WriteServiceRequestMask (FunctionID=6) [file: 1_6_WriteServiceRequestMask.vh]

Writes the SR mask register (32 bit word) for the addressed TC/TIM.

Arguments: SR Mask (32 bits).

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

ReadServiceRequestMask (FunctionID=7) [file: 1_7_1_8_1_9_ReadMaskEventCondition.vh]

Reads the SR mask register from the addressed TC/TIM.
Arguments: none. Returns: SR mask register.

ReadStatusEventRegister (FunctionID=8) [file: 1_7_1_8_1_9_ReadMaskEventCondition.vh]

Reads the event from the addressed TC/TIM.

Arguments: none; Returns: event register.

ReadStatusConditionRegister (FunctionID=9) [file: 1_7_1_8_1_9_ReadMaskEventCondition.vh]

Reads the condition register from the addressed TC/TIM.

Arguments: none Returns: condition register.

ClearStatusEventRegister (FunctionID=10) [file: 1_10_ClearStatusEventRegister.vh]

Clears the event register for the addressed TC/TIM.

Arguments: none.

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

Note: If the address target is the TIM, the command clears all the event registers, i.e. from the TIM

itself and from all TCs. It does not clear the mask and condition registers.

238 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

WriteStatusEventProtocolState (FunctionID=11) [file: 1_11_WriteStatusEventProtocolState.vh]

Enables or disables the status-event protocol. When this protocol is enabled, a TIM-initiated message

will send the 32 bit event register any time the SR bit is asserted, according to the status message

generation logic. Note that if it is a TC requesting a service, the event register will be sent. If it is the

TIM, it will be sent the TIM event register.

Arguments: Service enable bit (1- enable or 0-disable).

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

WriteTEDSSize (FunctionID=128)) [file: 1_128_WriteTEDSSize.vh]

This is a new command not defined in the IEEE1451.0 Std. that allows changing the TEDS size.

Arguments: TEDS access code (8 bits) and the new TEDS size (32 bits).

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

Note: This new command was implemented because none of the IEEE1451.0 commands allow

changing the TEDS size and therefore the length of a TEDS can not be changed. This command was

especially created specially to change the size of a specific TEDS (the first 4 octets) and the TEDS

information (the last 12 octets of a TEDS structure). The TEDS remains invalid (bit 2 of TEDS

Attributes at '1') until the UpdateTEDS command is issued. If the new size exceeds the maximum TEDS

size, the command rejected bit in the condition register is set and an error reply is generated. Note that

the WriteTEDSsegment command only writes the data block and the checksum, but it does not allow

changing the length.

Table J.4: Transducer operating state commands (ClassID=3).

ReadTCDSsegment (FunctionID=1) [file: 3_1_ReadTCDataSetSegment.vh]

Reads segments from a DS belonging to a particular TC.

Arguments: Offset (32 bits).

Reply: The first field contains the offset at which the data segment was taken. The remaining octets

contain the data segment read from the DS. [1(1 octet), length (2 octets), offset (4 octets), data (n

octets)].
Notes:

1- The maximum size for an octet array that may be handled by a given physical transport layer is less

than the maximum size for a DS.

2- The reply contains all ones in the DS segment offset and 0 data octets if the DS is empty.

3- If the offset is greater than the number of octets in the DS, the offset field in the reply will be equal

to the maximum number of octets in the DS and the reply will contain 0 octets.

4- When this command is received and a TC is being operating in a streaming data transmission modes

(section 5.10.2 of Std.), the command rejected bit in the condition register (section 5.13.4 of the

IEEE1451.0 Std.) will be set and the command will be ignored.

5- If the destination TC number in the octet array is zero, the command rejected bit in the TIM

condition register (section 5.13.4 of the IEEE1451.0 Std.) will be set and the command ignored.

6- At the end, the global register named aux_dw will get the offset value of the read data segment.

7- This command automatically calls the rd() and update() TC-tasks.

WriteTCDSsegment (FunctionID=2) [file: 3_2_WriteTCDataSetSegment.vh]

Writes segments into a DS belonging to a particular TC.

Arguments: Offset (32 bits) and a set of data (N x 8 bits).

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

Notes:

1- The maximum size for an octet array that may be handled by a given physical transport layer is less
than the maximum size for a data set.

2- If the defined offset is greater than the maximum length of the DS (defined in the TC-TEDS Max.

data repetition field (section 8.5.2.28 of the IEEE1451.0 Std.)) the data will be discarded and the

command rejected bit in the status word (section 5.13.4 of the IEEE1451.0 Std.) will be set.

3- When this command is received and a TC is operating in a streaming data transmission mode

(section 5.10.2 of the IEEE1451.0 Std.), the command rejected bit (section 5.13 of the IEEE1451.0

Std.) in the condition register will be set and the command will be ignored.

4- If the destination TC number in the octet array is zero, the command rejected bit (5.13 of the

IEEE1451.0 Std.) in the TIM condition register will be set and the command will be ignored.

5- The command rejected bit (section 5.13 of the IEEE1451.0 Std.) is also set if this command is sent

to a TC defined as a sensor or to an event sensor.

6- At the end the global register named aux_dw will get the offset and the aux_dw_3 will get the

Maximum Repetition Field (defined in the TEDS-TC fields 19 and 43).

Annex J: The IEEE1451.0-compliant module 239

7- This command automatically calls the wr() and the update() TC-tasks.

TriggerCommand (FunctionID=3) [file: 3_3_4_TriggerCommand_AbortTrigger.vh]

Sends a trigger signal to start the operation controlled by a TC. This command will be ignored for TCs

in immediate sampling mode or in situations where the trigger is disabled.

Arguments: none.

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

AbortTrigger (FunctionID=4) [file: 3_3_4_TriggerCommand_AbortTrigger.vh]

Sends a trigger signal to stop the operation controlled by a TC. This command will be ignored for TCs

in immediate sampling mode or in situations where the trigger is disabled.

Arguments: none.

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

Table J.5: Transducer either idle or operating state commands (ClassID=4).

TCOperate (FunctionID=1) [file: 4_1_a_4_2_TC_Operate_and_Idle.vh]

Sets a TC from Idle to Operating state. If it is already in the Operating state the command will be

ignored.

Arguments: none.

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

TCIdle (FunctionID=2) [file: 4_1_a_4_2_TC_Operate_and_Idle.vh]

Sets a TC to an Idle state. If it is already in the Idle state the command will be ignored.

Arguments: none.

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

WriteTCTriggerState (FunctionID=3) [file: 4_3_ WriteTCTriggerState.vh]

Enables/Disables the triggering of a specific TC.
Arguments: trigger state (bit).

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error).

Notes:

1- If the TC does not support sampling modes without triggers, i.e. the immediate operation sampling

mode (section 5.10.1.7 of the IEEE1451.0 Std.), the command rejected bit in the condition register

(section 5.13.4 of the IEEE1451.0 Std.) will be set and the command will be ignored.

2- The indication that a specific TC is enabled/disabled is provided by the associated octet in the state

memory trigger octet provided by the SSM.

3- The argument should be 0 or 1, otherwise the command rejected bit in the status register (section

5.13.4 of the IEEE1451.0 Std.) will be set.

ReadTCTriggerState (FunctionID=4) [file: 4_4_ ReadTCTriggerState.vh]

Reads the trigger state of the current TC.

Arguments: none.
Returns: Current trigger state (trigger octet less significant bit indicating if it is enabled (1) or disabled

(0)).

Notes:

1- If the current TC does not support triggering, i.e. the sampling mode is immediate, the reply will be

false (disabled = 0).

2- The indication that a specific trigger state is enabled/disabled is provided by the associated octet on

the state memory trigger octet provided by the SSM.

Table J.6: TIM any state commands (ClassID=7).

Reset (FunctionID=1) [file: 7_1_Reset.vh]

Resets the TIM and all TCs.

Arguments: none.

Returns: No reply, i.e. 100 (command correctly issued) or 000 (error issuing the command).

Notes:

1- Initializes all TCs resetting all SRs and accesses the init() and the reset() TC-tasks.

2- The TEDS-M and the SSM memories can only by reinitialized by the entire FPGA reinitialization.

240 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

J.3 - DCM schematics

Figure J.1 presents the connections and associated buses and lines adopted by the

DCM. Some of these buses have a variable width redefined during the reconfiguration

process, since they depend on the number of adopted TEDSs and TCs for connecting

the weblab modules. The role of each bus and line is described in the remaining annexes

that detail the other modules’ functionalities.

address_mod

en_map

address_map

octet_out_map [7:0]

clk

octet_out_rx

rd_rx

rst_rd_rx

rst_rx

available_rd_rx

octet_in_tx

wr_tx

rst_wr_tx

wr_active_tx

available_wr_tx

ReplyTIM_msg_tx

double_word_in_mod

double_word_out_mod

service_request_mod

en_ss_mod

end_mod

run_mod

exec_mod

done_mod

select_mod

access_mod

en error

tx_send_tx

rst_tx

rd_active_rx

[7:0]

[7:0]

external errors
(UART-M, TEDS-M and SSM)

[31:0]
[31:0]

Δ

[2:0]

error_reg

internal
errors

en_teds_mod

reset

en_buffer

address_buffer

octet_out_buffer

octet_in_buffer

wr_buffer

cl
k

octet_out
octet_in
address

wr

en

[7:0]
[7:0]

clk

Δ

en
address

octet_out

Map

Table (MT)

Δ

Memory
Buffer
(MB)

rst_mod

Tasks for

accessing TCs

(TC-tasks)

UART-M

TEDS
Module

(TEDS-M)
&

Status/
State

Module
(SSM)

I&M
I&MWeblab
module

TCs

Note: Δ means a

variable width

defined during the

reconfiguration

Δ

push-button

Δ

Δevent signals

Δ

BR_generator
CLK

FPGA

CLK
FPGA

cl
k

clk

internal-taskscommand-tasks

Decoder

Controller

Module

(DCM)

clk

Figure J.1: DCM schematics with all adopted buses for interfacing the other modules.

J.4 - The DCM-MB interface

The DCM-MB interface depends on the size of the MB. This is specified in the

configuration file (*.conf) selected during the reconfiguration process that defines

internal parameters in the definitions_GENERIC.vh file automatically created by the

RecTool, namely: the max_mem_buffer (defines the length of the MB) and the

Annex J: The IEEE1451.0-compliant module 241

bits_max_mem_buffer (specifies the width of an address_buffer bus used to access the

MB). Table J.7 presents code examples defined in both files (*.conf and

definitions_GENERIC.vh) used to define the MB.

Table J.7: MB definition (pieces of code in *.conf and definitions_GENERIC.vh files).

*.conf

<mem_buffer>

100

</mem_buffer>
definitions_GENERIC.vh

`define max_mem_buffer 100

`define bits_max_mem_buffer 7 //>=(log[2])

The MB is internally accessed by the DCM using a point-to-point connection

established by the buses ending with the prefix _buffer, described in table J.8.

Table J.8: Buses and lines adopted for the DCM-MB interface.

line operation

en_buffer Enables the access to the memory buffer (1 line - output).

address_buffer Specifies the MB address to read/write (variable length - output).

wr_buffer Indicates if the MB will be read (1) or written (0) (1 line - output).

octet_in_buffer Specifies the data to write into the MB (8 lines - output).

octet_out_buffer Gets the data read from the MB (8 lines - input).

The DCM accesses the MB using: i) IEEE1451.0 commands or; ii) the TC-tasks

associated to a weblab module. Since these TC-tasks will be described by the

developers of the weblab modules, they must know how to access the contents of the

MB. For this purpose, table J.9 presents the Verilog HDL code that enables controlling

the referred buses according to a particular state sequence.

Table J.9: Sequence for accessing to the MB (Verilog code examples).

Read operation
(…)

2:begin address_buffer<=address to read; state<=3; end

3:state<=4; // required delay

4:begin octet_out_buffer has the data available in the address_buffer position …

(…) handle data read and then update the address_buffer position to read new data…

(…) state<=2;

(note: before enabling the MB (en_buffer<=1) the MB must be in a read state (wr_buffer=0).

Write operation
(…)

2:begin en_buffer<=1; address_buffer<= new address to writestate<=3; end

3:begin (…) octet_in_buffer<= new datastate<=4; end

4:begin wr_buffer<=1;state<=5; end

5:begin wr_buffer<=0;state<=2; end

(note: the address_buffer register must be defined before rising the wr_buffer signal)

242 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

J.5 - The DCM-MT interface

The MT is automatically created by the RecTool according to the *.map file defined

by the users. Its contents can be accessed by managing a set of buses and lines with the

prefix _map, each with its specific role specified in table J.10.

Table J.10: Buses and lines adopted for the DCM-MT interface.

line operation

en_map Enables the access to the MT (1 line - output).

address_map Specifies the MT address field to read (variable length - output).

octet_out_map Data read from the MT (8 lines - input).

The MT is accessed using the DCM internal-task named findMAP() that consults its

contents according to the current TC ID and TEDS ID code, and returns the memory

number associated to that particular TEDS. The access to its contents is exclusively

made by this internal-task. Table J.11 presents the Verilog HDL state sequence required

to read the MT.

Table J.11: Sequence for reading the MT (Verilog code example).

Read operation
(…)

2:begin en_map<=1; address_map<=address to read; state<=3; end

3:state<=4; // required delay

4:begin octet_out_map has the data available in the address_map position

(…) state<=2;
Write operation

Not implemented. The MT can not be changed (it is synthesized to a ROM).

J.6 - DCM registers and buses for implementing the error

detection mechanism

As illustrated in figure J.2, the error sources handled by the DCM are included into

the internal register named error_reg, divided in three parts, whose lengths are defined

during the reconfiguration process in different variables:

 part_1 (error_internal) - internal errors generated by the DCM (the length is

defined by the variable error_num_internal);

 part_2 (error_external) - external errors generated by the external modules (the

length is defined by the variable error_num_external);

 part_3 (error_im) - errors generated by the weblab modules (the length is

defined by the variable error_num_im);

 part_1 + part_2 + part_3 - have all errors (the length is the sum of the variables

error_num_internal, error_num_external and error_num_im).

Annex J: The IEEE1451.0-compliant module 243

en
error

reset

clk

error_im

error

weblab

module

8*8*

error_im
error_external

error_internal

Internal errors
generated by

the DCM

Interface

DCM
UART-M

TEDS-M

Status/

State-M

0,1

6,7

2,3,4,5

external errors

error lines of the
weblab modules

error_im[]

* - for new versions of the IEEE1451.0-Module

these values can be changed in the

`error_num_external and `error_num_internal

variables defined in the defenitions.vh file

Δ

Δ+8*

10*

error_reg

Figure J.2: Illustration of the adopted registers to handle errors.

When new weblab modules are bound to the IEEE1451.0-Module, the width of the

error_reg register should be increased by incrementing the variable `error_num_im

according to the number of new errors those modules may generate. Each weblab

module may have several dedicated error lines connected to the DCM using a bus

named error_im[]. All these definitions are made in the configuration file (*.conf) by

the tag named <im_errors>.

J.7 - Error codes specified in the IEEE1451.0-Module

Table J.12 provides the mapping established between the error codes specified

internally for the IEEE1451.0-Module, namely the error_reg register, and the

IEEE1451.0 errors specified in the condition register of the TC/TIM.

Table J.12: Error codes mapped from the condition register to the error_reg.

error_

reg

(bit)

so
u

r
c
e

Cause for the generated error

IEEE1451.0 error

code description

0

D
C

M

ID does not exist. 3* Command rejected

1 Command class does not exist.
2 Invalid command

2 Command function does not exist.

3

- TEDS access code or ID does not match/exist in the

MT.

- TEDS is read only and it cannot be written.

- TEDS miss a required field or TEDS is invalid.

- Data does not fit into the TEDS memory.

- New TEDS size exceeds the Maximum TEDS size.

3 Command rejected

4
Command cannot be applied for the current TC/TIM
states or the length in the command message structure is

invalid.

8 Protocol error

5 Length specified for a specific command is invalid. 3 Command rejected

6
Modules desynchronized or a specific task is missing for

the target TC.
6,7

Hardware & Not

operational errors

7 - not implemented - reserved.

8

Command not implemented for the selected TC or there

are some inconsistency issuing the command (e.g. data

does not fit into the MB).

3 Command rejected

9 Invalid sampling mode for TC. 6 Hardware error

244 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

N=`error_num_internal

N+0 R
x

Invalid data structure. 8*

N+1 T
x

- not implemented - reserved.

N+2

T
E

D
S

-M
 TEDS filed not found.

6 Hardware error

N+3 Error reading TEDS values.

N+4 Error writing TEDS values.

N+5 Error accessing a TEDS.

N+6

S
S

M
 Not implemented or other internal errors.

N+7 Status or state not valid.

M=`error_num_internal + `error_num_external

M+0

W
.m

o
d
u
le

s Error cause by a weblab module.

6 Hardware error

M+1 Error cause by a weblab module.

M+3 Error cause by a weblab module.

M+4 Error cause by a weblab module.

... …

`error_num_im + `error_num_internal + `error_num_external

Note: * Error source caused by the TIM.

J.8 - TEDS-M: schematics and interface

J.8.1 - Internal variables

The number of TEDSs memories and the length of their data structures are defined

by a set of variables in the definitions_TEDS.vh file, automatically created during the

reconfiguration process according to the rules defined in the configuration file (*.conf),

as illustrated in table J.13.

Table J.13: Example of a definitions_TEDS.vh file automatically created during the

reconfiguration process.

definitions_TEDS.vh
//

//File automatically created.

//Created on: Mon Feb 04 18:54:24 2013

//

//---- Memory 0

(…)

//---- Memory 7

`define max_length_7 41

`define bits_pointer_7 6

//---- Generic parameters

`define number_memories 8

`define bits_number_memories 3

`define max_memlength 109

`define bits_max_memlength 7

Annex J: The IEEE1451.0-compliant module 245

J.8.2 - Schematics and signals

Internally, the TEDS-M comprises a set of modules and multiplexers represented in

figure J.3. The DCM-TEDS-M interface is made through a set of commands according

to a particular handshake protocol using a set of buses and lines specified in table J.14.

select

access[2-0]

octet_in[7-0]

run

exec

Controller Memories

(TEDSs)

octet_in

address

wr

en

octet_out

address

en en

address_0
address_1

address_n
(...)

data_
mem_in

data_mem_in_0

data_mem_in_1

(...)

data_mem_in_n en[0]

clk_mem

clk_
mem

data_
mem_out

error[3-0]

end_

done

octet_out

clk

wr

octet_out_0
octet_out_1

(...)
octet_out_n

en_mod

reset

rst

[7-0]

DCM

8

8

Δ

Δ

Δ*

Note: Δ: variable length , Δ*: [number_memories-0]

Multiplexer

Δ

8

8

TEDS-M

Figure J.3: TEDS-M internal schematics.

Table J.14: Buses and lines adopted for the DCM-TEDS-M interface.

line operation

exec, done,

run, end
Control the module according to a specific handshake protocol (1 line each - I/O).

access Specifies command codes (3 lines - input).

select
Specifies the memory number (length dependent on the maximum TEDS’s length

or the maximum data to transmit between the DCM and a weblab module - input).

octet_in / _out Transfer data between each TEDS and the DCM (8 lines - I/O).

error

Provides the TEDS-M error codes (4 lines - output) to handle unexpected

situations, such as reading an undefined field. All error are identified in the TEDS-

M according to 4 error codes defined in the DCM error_reg register as external

errors mapped into IEEE1451.0 errors representing the following: error [0] -

TEDS’s field not available; error [1] - reading TEDSs values; error [2] - writing

TEDS’s values; error [3] - command not implemented.

rst Issues a command (1 line - input).

reset Resets the controller, but the TEDSs contents are not recovered (1 line - input).

en_mod Turns-on the entire TEDS-M (1 line - input).

clk Clock signal (1 line - input).

246 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

J.8.3 - Handshake protocol

The handshake protocol used to access the TEDS-M is illustrated in figure J.4. This

is synchronized by the internal clk line and managed by the DCM using the exec, done,

run and end lines. These lines enable issuing commands to the TEDS-M, by executing

operations (execute operation), which may be applied in steps sequences (step

operations) when the associated data sent/retrieved with the command uses more than

one octet. This data is placed in the octet in/out buses that have a limited length of 8

lines. In this situation, after triggering an operation using a command (run signal is

high), the octet_in/out buses are read/write more than once, according to the execution

of step sequences controlled by the exec and the done lines until the end line goes up,

i.e. the last octet was read/wrote.

The controller accesses (reads/writes) a particular TEDS according to a multiplexing

schema controlled by the en bus, when a specific command is issued. Based on the

value defined in this bus, which is managed by an internal register whose length

depends on the number of adopted TEDSs, a specific line in this bus is set, connecting

the data buses data_mem_in/out and the address bus to a particular TEDS. Since the

IEEE1451.0-Module is able to be reconfigured according to the adopted number of

TCs, which requires a variable number of TEDS, the lines en and address may have

different lengths. This process is transparent for the applied command, since both the

DCM and the TEDS-M manage all this process.

run

end

octet_in/out

access / select

exec

done

octet_in/out

access / select

ru
n

o
p

er
a

ti
o

n
st

ep
o

p
er

a
ti

o
n

operation
ended

operation
started

execute step-
operation

step-operation
ended

operation

clk
DCM TEDS-M

run

end

exec

done

octet_in

access

octet_out
select

Figure J.4: Handshake protocol adopted for the DCM-TEDS-M interface.

J.8.4 - Hardware API

The hardware API provided for facilitating the access to the TEDS-M is

implemented in the Access_ModTEDS.vh file. It provides a set of instructions listed in

table J.15. Each instruction has a set of input parameters defined between parentheses,

which are basically DCM internal registers. Most of the instructions provide changes in

Annex J: The IEEE1451.0-compliant module 247

the DCM register named double_word_in_mod associated to their output. The void word

means that the associated instruction does not provide changes in any relevant DCM

register able to use as an output.

Table J.15: TEDS-M hardware API instructions (available in file:

Access_ModTEDS.vh).

double_word_out_mod ModTEDS_ReadField (select, octet_in)

select - memory number (3 bits - input).

octet_in - field number to read (8 bits - input).

double_word_out_mod - keeps fields read after the TEDSs’ length (32 bits - output).

double_word_out_mod ModTEDS_ReadWithOffset (select, double_word_offset)

select - memory number (3 bits - input).

double_word_offset - offset value that means the first octet to be read (32 bits - input).

double_word_out_mod - value read from the location specified by the offset (32 bits - output).

double_word_out_mod ModTEDS_QueryStatus (select)

select - memory number (3 bits - input).

double_word_out_mod - keeps the read status register (32 bits - output).

double_word_out_mod ModTEDS_FindField (select, octet_in)

select - memory number (3 bits - input).
octet_in - field type number to find (8 bits - input).

double_word_out_mod - indicates if the field type was found (=1) or not found (=0) (32 bits but only

the less significant bit is relevant - output).

void ModTEDS_WriteField (select, octet_in, octet_in_data)

select - memory number (3 bits - input).

octet_in - field type number to write (8 bits - input).

octet_in_data - value to write in the specified field type number (8 bits - input).

void ModTEDS_WriteWithOffset (select, double_word_offset, octet_in_data)

select - memory number (3 bits - input).

double_word_offset - offset value means the first octet to be written (32 bits - input).

octet_in_data - value to write in the location specified by the offset (8 bits - input).

void ModTEDS_WriteStatus (select, octet_in_data)

select - memory number (3 bits - input).

octet_in_data - value to write in the status register (8 bits - input).

To use the hardware API instructions, specific state sequences defined in Verilog

HDL must be implemented. Table J.16 provides those sequences, which are controlled

by the state register and managed by the state_command_module, the end_access_TEDS,

and the end_step_access_TEDS registers.

248 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table J.16: Sequences for accessing the TEDS-M hardware API instructions.

ReadField / QueryStatus / ReadWithOffset
0:begin state_command_module<=0; end_access_TEDS<=0; end_step_access_TEDS<=0; state<=1; end

1:begin if (end_access_TEDS==1) state<=leaves the sequence; //command ended

 else begin ModTEDS_Read ()/ QueryStatus () /*double_word_out_mod updated*/ state<=2; end

end

2:begin if(end_step_access_TEDS==1) state<=3; //step ended (command NOT ended)

 else state<=1;

end

3:begin /* data available in the double_word_out_mod can be handled here */

 state<=1; //repeats a step sequence to read another field (QueryStatus only gets one field)

end (....)

FindField
0: begin state_command_module<=0; end_access_TEDS<=0; end_step_access_TEDS<=0; state<=1; end

1: begin ModTEDS_FindField(); /* double_word_out_mod goes to 1 if found or 0 if not found */

 if (end_access_TEDS==1) state<= leaves the sequence; //command ended

end (....)

WriteField / WriteStatus / WriteWithOffset
0: begin state_command_module<=0; end_access_TEDS<=0; end_step_access_TEDS<=0;

 value2Write<= ...first value to write....; state<=1;

end

1:begin if (end_access_TEDS==1) state<= leaves the sequence; /*command ended*/

 else begin ModTEDS_Write./ WriteStatus (...value2Write...); state<=2; end

end

2:begin if(end_step_access_TEDS==1) state<=3; else state<=1;/*step ended (command NOT ended)*/ end

3:begin value2Write<= ...updates value to write... state<=1; end (...)

Note: value2Write is an 8 bit length register used to keep the new value to be written into a TEDS’s structure.

J.9 - SSM: schematics and interface

J.9.1 - Internal variables

The length of the status and state memories are defined during the reconfiguration

process according to the rules defined in the configuration file (*.conf). Their lengths

and address buses are specified in the definitions_GENERIC.vh file by the variables

bits_pointer_TC_number and bits_pointer_TC_number_small, whose values depend on

the number of adopted TCs defined in a variable named TC_number. While the

TC_number is defined according to a value specified in the configuration file, the others

are the result of a log base 2 mathematic calculation made during the reconfiguration

process, as exemplified in definitions_GENERIC.vh presented in table J.17.

Table J.17: Example of a definitions_GENERIC.vh file automatically created during the

reconfiguration process.

definitions_Generic.vh
//

//File automatically created.

//Created on: Mon Feb 04 18:54:34 2013

//

`define TC_number 3

`define bits_pointer_TC_number 4 //>=(log[2](TC_number+1)*3)

`define bits_pointer_TC_number_small 3 //>=(log[2](TC_number+1)*2)

 (…)

Annex J: The IEEE1451.0-compliant module 249

J.9.2 - Schematics and signals

Internally, the SSM comprises a set of modules and multiplexers represented in

figure J.5. The DCM-SSM interface is made according to a particular handshake

protocol using a set of buses and lines specified in table J.18.

access[1-0]

double_
word_in[31-0]

address

en_mem
en_mem

address_1

address_0

double_
word_

mem_in double_
word_
mem_
in_1

octet_
mem
_in_0

clk_mem

double_
word_
mem_

out

error[1-0]

clk

wr_mem

octet_
mem_
out_0

double_
word_
mem_
out_1

service_
request

TC
+TIM

status[1]

double_
word_in

address
wr

en

double_
word_out

clk_mem

octet_in
address

wr

en

octet_out

clk_mem

not

double_
word_

out

en_mod

reset
rst

run
end_

[31-0]

state[0]

exec
done

address
_in

8

32

32

Δ1
Δ1

Δ2
Δ1

32

DCM

Controller

Multiplexer
a

a

a

b

b

b

c

c
d

d

Notes: a: bus length=1; b: bus length=1; c: bus length=8; d: bus length=32.
Δ1: bus length=bits_pointer_TC_number [number_memories-0]
Δ2: bus length=bits_pointer_TC_small_number
status memory has 32-bits wide // state memory has 8-bits wide

SSM

Figure J.5: SSM internal schematics.

Table J.18: Buses and lines adopted for the DCM-SSM interface.

line operation

exec, done,

run, end
Control the module according to a specific handshake protocol (1 line each - I/O).

access Specifies command codes (2 lines - input).

address_in
Specifies the address of the selected memory (length dependent on the number of
TCs -input).

double_word_in

ouble_word_out
Buses used to transfer data between each memory and the DCM (32 lines - I/O).

service request Indicates that a SR was generated by a TC/TIM (1 line - output).

error

Provides SSM error codes (2 lines - output). The SSM may generate 2 errors

defined in the DCM error_reg as external errors, which will be mapped to

IEEE1451.0 errors representing the following: error [0] - command not

implemented, or any other types of internal errors; error [1] - transition between

states are not valid or invalid access to a status register.

rst Issues a command (1 line - input).

reset
Resets the SSM controller, but the memories contents are not recovered (1 line -

input).

en_mod Turns-on the SSM (1 line - input).

clk Clock signal (1 line - input).

250 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

J.9.3 - Handshake protocol

As illustrated in figure J.6, issuing a command to the SSM requires controlling a set

of lines already described (exec, done, run and end) according to an handshake protocol

similar to the one described for the TEDS-M. The difference focus on selecting the

address to read, which, in this module, requires defining the address in the address bus,

instead of the memory. In this case, it is the internal controller of the SSM that decodes

which memory will be accessed, according to the command defined by the access bus.

Typically, a single step operation is executed in each command. However, both the exec

and done lines are also available, so future implementations, which may require

accessing more data within the status or state memories, may implement a step mode

similar to the one used by the TEDS-M.

run

end

octet_in / out

access / address

exec

done

ru
n

o
p

er
a

ti
o

n
st

ep
o

p
er

a
ti

o
n

operation
ended

operation
started

execute step
operation

step operation
ended

operation

clk
DCM SSM

run

end

exec

done

octet_in

access

octet_out
address

Figure J.6: Handshake protocol for the DCM-SSM interface.

J.9.4 - Hardware API

The hardware API provided for facilitating the access to the SSM is implemented in

the Access_ModStatusState.vh file. It provides a set of instructions illustrated in table

J.19, each with a set of input parameters, defined between parenthesis, and output

parameters only for the instructions that read the memories, since the others do not

retrieve any data. All instructions require the address to be accessed as an input

parameter. The read instructions require the specification of the memory type to read

(status or state) and return the read value in the double_word_out_mod bus. The write

instructions require defining the data to write and they do not return any value, as

specified by the void word.

Table J.19: SSM hardware API instructions (available in the file: ModStatusState.vh).

double_word_out_mod ModStateStatus_Read (addr_in, reg_type)

addr_in - address to read that can be a TC's state or trigger, or a TIM's state (input - variable number of

bits since it depends on the number of adopted TCs).

reg_type - specifies if the memory to read is a state (=0) or a status (=1) memory (input - 1 bit).

double_word_out_mod - data read from the specified address and memory (output - 32 bits - when
reading from the state memory only the less significant 8 bits are relevant).

Annex J: The IEEE1451.0-compliant module 251

void ModState_Write (addr_in, octet_in_data)

addr_in - address to write that can be a TC's state or trigger, or a TIM's state (input - variable number

of bits since it depends on the number of adopted TCs).

octet_in_data - data to write into the specified address of the state register (input - 8 bits).

void ModStatus_Write (addr_in , doubleWord_in_data)

addr_in - address to write the condition, event or mask registers (input - variable number of bits since it

depends on the number of adopted TCs).

double_word_in_data - data to write to the specified address of the status register (input - 32 bits).

To use the instructions of the hardware API, specific state sequences defined in

Verilog HDL must be implemented. Table J.20 provides those sequences, which use the

end_access register to manage a sequence controlled by the state register.

Table J.20: Sequences for accessing the SSM hardware API instructions.

Read Status / Read State
0: begin state_command_module<=0; end_access_SS<=0; state<=1; end

1: begin ModStateStatus_Read(addr_in, reg_type); // double_word_out_mod is updated

 if(end_access_SS==1) //command ended

begin /*...do something with data and leaves */ state<=leaves the sequence; end

end (...)

Write State
0: begin state_command_module<=0; end_access_SS<=0; state<=1; end

1: begin ModState_Write(address position , octet data to write);

 if(end_access_SS==1) state<=leaves the sequence;

end (...)

Write Status
0: begin state_command_module<=0; end_access_SS<=0; state<=1; end

1: begin ModStatus_Write(address position, doubleWord_in_data to write);

 if(end_access_SS==1) state<=leaves the sequence;

end (...)

J.10 - UART-M: schematics and interface

J.10.1 - Schematics and signals

The UART-M sends/receives message structures to/from the NCAP. While

command messages are always sent from the NCAP, the TIM may send reply or TIM-

initiated messages to the NCAP. Each of those messages has its own data structure. The

distinction between them is made by the line named replyTIM_msg controlled by the

DCM. The frequency is defined during the reconfiguration process, using the variables

bps_divisor and bps_length_counter, whose values are specified according to the internal

oscillator implemented in the FPGA-based board.

Figure J.7 illustrates the internal modules of the UART-M, which comprises the Rx,

Tx and the BR_Generator modules, and the adopted buses and lines are detailed in table

J.21 and table J.22.

252 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

rx

octet_out

rd_active

error

clk
buffer

_in

_rx

available_rd

rd

rst_rd

Rx

enable

rst_rx

clk_in clk_out
f_clk/bps=`bps_divisor

BR_Generator

tx

octet_in

wr_active

error

clk
buffer

_out

_tx

available_wr

wr

rst_wr

Tx

enable

rst_tx

tx_send
8 8

replyTIM_msg

Figure J.7: Modules of the UART-M and its buses and lines.

Table J.21: Signals used by the Rx module (data reception from the NCAP).

line operation

Handshake signals

available_rd
Goes high when there is data in the buffer_in_rx. When the NCAP starts sending

that data, this signal goes low until all data were transmitted (1 line - ouput).

rd (pulse) Reads an octet from the buffer_in_rx (1 line - input).

rst_rd
Used with the rd signal, resets the address position of the buffer_in_rx (1 line -
input).

rd_active
Goes high when data is being sent through the octet_out bus or goes low when all

octets were read (1 line - output).

Remaining signals

octet_out Bus used to read data available in the buffer_in_rx (8 lines - output).

error

Goes up when data received through Rx is not in accordance to the IEEE1451.0

Std. data structure. Internally the Rx module evaluates if the length specified in the

length field of the data structure is coherent with the remaining data, and if the

number of start and stop bits are correct (1 line output).

rx Receives data from the NCAP (1 line - input).

rst_rx Resets the Rx module (1 line - input).

clk Clock signal (1 line - input).

enable Enables the Rx module (1 line - input).

Table J.22: Signals used by the Tx module (data transmission to the NCAP).

line operation

Handshake signals

available_wr
Goes high when data available in the buffer_out_tx is in accordance with the
IEEE1451.0 Std. data structure and, therefore, able to be transmitted to the NCAP

(1 line - output).

wr (pulse) Writes an octet into the buffer_out_tx (1 line - input).

rst_wr Used with the wr signal, resets the address of the buffer_out_tx (1 line - input).

wr_active
Goes high when data is being transmitted by the Tx module and it goes low when

the last octet is transmitted (1 line - output).

replyTIM_msg
Indicates which type of message will be transmitted: TIM-initiated message (=0) or

a command reply message (=1) (1 line - input).

tx_send Initiates data transmission through the tx line (1 line - input).

Remaining signals

octet_in Bus used to write data into the buffer_out_tx (8 lines - input).

error Not implemented - reserved (1 line - output).

tx Transmits data to the NCAP (1 line - output).

rst_tx Resets the Tx module (1 line - input).

clk Clock line (1 line - input).

enable Enables the Tx module (1 line - input).

Annex J: The IEEE1451.0-compliant module 253

J.10.2 - Handshake protocol

To send or receive messages, the DCM controls the Tx and Rx modules according to

a specific sequence. There is no API to access the UART-M
125

, but developers may

directly access its modules using some DCM signals used by the handshake protocol.

As represented in figure J.8, when a command message structure sent by the NCAP is

completely transmitted to the UART-M, the Rx module automatically raises the

available_rd line indicating to the DCM there is a valid data structure in the

buffer_in_rx. This will begin a reception process in the DCM that starts by resetting the

address position of the buffer_in_rx using lines rd and rst_rd. By pulsing the rd signal,

all octets will be read and placed in the octet_out bus. The DCM may detect when a

specific data structure was completely read from the buffer_in_rx by monitoring the

rd_active signal that stays high during the entire process, and goes low when the last

octet is read.

(...)

rd

rst_rd

available_rd Data available in
the buffer_in_rx

rd_active All data read from the buffer_in_rx

Data read from the buffer_in_rx

(...)

data data data data data
octet_out

Resets the

buffer_in_rx

address position

Figure J.8: Handshake protocol used to read data from the Rx module.

For data transmission using the Tx module, developers must fill-in the buffer_out_tx

with the data to be sent to the NCAP. To facilitate the creation of IEEE1451.0 message

structures, the DCM provides two internal-tasks, namely the createTIMMsg(), to create

TIM-initiated messages, and a createReplyMsg(), to create reply messages. Both

messages can be created after resetting the Tx module using the wr and the rst_wr

signals, as illustrated in figure J.9. Once reseted, the replyTIM_msg signal must be

defined to indicate which type of message will be created, and the data must be placed

in the octet_in bus to fill-in the buffer_out_tx using the wr signal. When the available_wr

signal goes high, indicating that a valid data structure is able to be transmitted, the Tx

module can start sending the messages by setting up the tx_send signal. This signal

should remain high if the wr active signal is high, since it indicates data is being

transmitted. At the end, the tx_send should be placed low.

125 In future versions, an API can be developed to adapt different NCAP-TIM interfaces.

254 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

(...)wr

rst_wr

Resets the buffer_out_tx address position

available_WR
Data in the buffer_out_tx
is ready to be transmitted

Reply or TIM-initiated
messages

replyTIM_msg

tx_send
Sends data
through Tx

(...)wr_active

Fill-in the buffer_out_tx

All data
transmitted

Data transmission

Uses the tasks:

createTIMMsg() or

createReplyMsg()

data data data (...)
octet_in

Figure J.9: Handshake protocol used to fill-in the buffer_out_tx and to transmit data to

the NCAP.

Annex K: Weblab modules: specification and design 255

 Annex K

Weblab modules: specification and design

K.1 - Definition of TC-tasks

The implementation of each TC-task requires the use of two variables to indicate to

the DCM that they finished their sequential operation, namely the end_tc_task and the

attending_event. The end_tc_task variable must be set to ‘1’ in all TC-tasks except in

the event() that should set the attending_event variable to ‘1’, as exemplified in the code

listed in table K.1.

Table K.1: Example of Verilog HDL code for implementing TC-tasks using the

mandatory end_tc_task and attending_event variables.

To all TC-tasks except for event() TC-tasks To event() TC-tasks
task tc3_start;

begin

case(state_tc3)

0:begin rst_tc3<=0; en_tc3<=1;

 access_tc3<=0; state_tc3<=1;

end

1:begin run_tc3<=1; state_tc3<=2; end

2:if(end_tc3) begin

 run_tc3<=0; state_tc3<=0;

 end_tc_task<=1;

 end

end

endcase end

endtask

task es_event;

begin

case (state_evt)

(…)

8:begin if (wr_active_tx==0) begin

 tx_send_tx<=0; state_evt<=0;

 attending_event<=0;

 end

end

endcase end

endtask

K.2 - Design of TEDSs and MTs

The data of each TEDS and MT is defined in an hexadecimal format. The TEDSs are

defined according to the structure specified in the IEEE1451.0 Std., and the MT must be

defined according to the description made in section 6.2.1. Both can be defined using an

hexadecimal editor, such as the XVI32
126

 for windows platforms illustrated in figure

K.1. The created file is a binary one able to be decoded by the Bind and Config software

modules adopted by the RecTool.

126 http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

256 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Figure K.1: Freeware hexadecimal editor XVI32 used to define TEDSs and MTs.

K.3 - Examples of weblab modules

This annex presents four weblab modules compatible with the IEEE1451.0-Module

designed according to the description made in the section 6.3, namely: two digital I/O

modules, one controller for step-motors, and an event sensor. Their design followed the

sequence presented in section 6.3.4, which includes the specification of the required

inputs/outputs, associated TCs and sampling modes, the TEDSs and the TC-tasks to

interface them to the DCM. After binding these weblab modules to the IEEE1451.0-

Module, using the reconfiguration process described in section 6.4, they were validated

by issuing IEEE1451.0 commands using a PC connected to the TIM through the serial

communication tool named Comm Operator Pal
127

.

K.3.1 - Digital I/O modules

Overview

Two simple weblab modules controlled by the IEEE1451.0-Module were developed

to control digital lines, namely an 8-Bit Input Module and a 6-Bit Output Module. Both

modules do not require the control of any specific parameter, since they just read and

write digital I/O signals. Due to their simplicity, each of them adopts a single TC for

controlling their I/Os. The behaviour of each TC was defined by the associated TC-

TEDSs, and implemented through TC-tasks, as conceptualized in figure K.2.

127 http://www.serialporttool.com/CommPalInfo.htm

http://www.serialporttool.com/CommPalInfo.htm

Annex K: Weblab modules: specification and design 257

DS

Output

TC-tasks

TC-TEDS

IEEE1451.0
-Module

TC
6

6-Bit Output
Module

Target

experiment

DS

Input

TC-tasks

TC-TEDS

IEEE1451.0
-Module

TC
8

8-Bit Input
Module

Target

experiment

Figure K.2: Digital I/Os weblab modules connected to the IEEE1451.0-Module.

Internal modules

Both weblab modules are implemented through single HDL modules integrating DSs

with 1 register length each. They are accessed by independent TCs controlled according

to the definition made in TC-TEDSs and using an handshake protocol implemented by

the TC-tasks and by the HDL modules. This protocol is synchronized by the same clk

signal adopted for the IEEE1451.0-Module, and includes the management of two lines,

namely the run and end lines, to access data available in the in and out buses, as

represented in figure K.3. The rst and en lines reset and enable each weblab module.

TC

data

run

end

out

data

run

end

in

Output

data is available
in the data_out bus

Input

data read is
available in the out bus

en
clk

rst
in

run
end

6-Bit Output Module
(output_6bits.v)

en_tc
rst_tc
out_tc
run_tc
end_tc

6

DCM

IEEE1451.0-Module

clk_tc data_out

DS

6

en
clk

rst
out
run
end

8

data_in

DS

8
en_tc
rst_tc
in_tc

run_tc
end_tc

clk_tc

DCM 8-Bit Input Module
(Input_8bits.v)TC

Figure K.3: Buses, lines and the handshake protocol of the I/O weblab modules.

The DCM controls the TCs according to definitions made in the fields of the TC-

TEDSs, both read-only, as defined in their attributes. Although more fields have been

defined, table K.2 and table K.3 present the most relevant defined in each TC-TEDS.

Table K.2: TC-TEDS relevant fields defined to control the 8-Bit Input Module.

Field num. Description Data Type octets Value (hex)

- TEDS length UInt32 4 00.00.00.5D

0-2 Reserved - - -

3 TEDS identification:
(Family=00h, Class =03h, Version =01h, T. Length=01h)

UInt8 4
03.04.

00.03.01.01

11 Channel Type set to sensor (=0) UInt8 1 0B.01.00

12 Physical units set to digital (=4) UInt8 3
0C.03.

32.01.04

258 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

18

Sample information (data model, length and

significant bits).
DataModel (field=28h, UInt8, Bit Sequence=04h); Length

(field=29h, UInt8, ModLenth=01h); Model significant bits

(field=2Ah; UInt16, SigBits=00.08h)

UInt8+

UInt8 +

UInt16

10

12.0A.

28.01.04.

29.01.01.

2A.02.00.08

19

DS definition (only the maximum data

repetition field is specified, which represents

the DS length). (field=2Bh, UInt16, Max. data

rep.=00.01h)

UInt16 4
13.04.
2B.02.00.01

31
Sampling mode capability:
(field=30h, UInt8, immediate sampling capability=10h)

UInt8 3
1F.03.
30.01.10

 …

- Checksum UInt16 2 F6.24

Table K.3: TC-TEDS relevant fields defined to control the 6-Bit Output Module.

Field num. Description Data Type octets Value (hex)

- TEDS length UInt32 4 00.00.00.5D

0-2 Reserved - - -

3
TEDS identification:
(Family=00h, Class =03h, Version =01h, T. Length=01h)

UInt8 4
03.04.

00.03.01.01

11 Channel Type set to actuator (=1) UInt8 1 0B.01.01

12 Physical units set to digital (=4) UInt8 3
0C.03.
32.01.04

18

Sample information (data model, length and

significant bits).
DataModel (field=28h, UInt8, Bit Sequence=04h); Length

(field=29h, UInt8, ModLenth=01h); Model significant bits

(field=2Ah; UInt16, SigBits=00.06h)

UInt8+

UInt8 +

UInt16

10

12.0A.

28.01.04.

29.01.01.

2A.02.00.06

19

DS definition (only the maximum data

repetition field is specified, which represents

the DS length) (field=2Bh, UInt16, Max. data

rep.=01h)

UInt16 4
13.04.
2B.02.00.01

31
Sampling mode capability:
(field=30h, UInt8, immediate sampling capability=10h)

UInt8 3
1F.03.
30.01.10

 …

- Checksum UInt16 2 F6.25

For the 8-Bit Input Module, the adopted TC was defined as a sensor able to read 8

digital signals. For the 6-Bit Output Module the adopted TC was defined as an actuator

able to write 6 digital signals. Both are accessed using an immediate sampling mode,

which means that Read/WriteTCDSsegment commands automatically access the rd() and

wr() TC-tasks. Furthermore, for each TC was defined the required TC-tasks init() and

update().

Validation

For validating the weblab modules, physical connections between their I/O lines

were established, and IEEE1451.0 commands were issued. As exemplified by the

diagram of figure K.4, only the ReadTEDSsegment command was issued to get

information about the TIM and about the current states of the TCs. Latter, both weblab

modules were placed on the operating state using the TCOperation command, preceding

the read/write operations. To the 8-Bit Input Module, only the ReadTCDSsegment

command was issued to get the current state of its inputs, since TCs defined as sensors

Annex K: Weblab modules: specification and design 259

cannot receive WriteTCDSsegment commands, unlike the 6-Bit Output Module where

both commands were issued. These commands were issued several times to evaluate if

the weblab modules were running correctly, as exemplified in figure K.5.

Reads the

META-TEDS

and both

TC-TEDSs

Write data to the

DS of the 6-Bit

Output Module

Reads DSs

from boths

modules

Set both TCs to

the operating

state

init end

Figure K.4: Sequence of commands issued to the I/O digital weblab modules.

reads TC-TEDS
8-Bit Input Module
(ReadTEDSsegment)

Set 8-Bit Input Module to operate
(TCoperate)

Writes the Input module
(ReadTCDSsegment)

reads TC-TEDS
6-Bit Output module
(ReadTEDSsegment)

reads META-TEDS
(ReadTEDSsegment)

Writes 5 to the Output module
(WriteTCDSsegment)Reads 5 from the

Output module
(ReadTCDSsegment)

Reads the Input module
(ReadTCDSsegment)

error reply

Figure K.5: Commands issued to validate the I/O digital weblab modules.

260 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

K.3.2 - Step-Motor Controller Module (SMCM)

Overview

Although the Step-Motor Controller Module (SMCM) provides several control

parameters, such as the number of steps, direction, etc., the main output is a sequence of

6 digital output signals for energizing the inductors of any bipolar step-motor interfaced

by a power bridge to adapt the outputs of the FPGA-based board to the inputs of the

step motor. To simplify the implementation and reduce the required FPGA’s resources,

and taking into consideration that the outputs are a digital sequence of signals whose

units are not relevant, a single TC was adopted. The SMCM is controlled by the

reception of a trigger signal to start and stop the generation of a digital output sequence,

whose samplings are provided by an internal DS controlled according to definitions of

TEDSs’ fields. Those fields are provided by a TC-TEDS, and by a MD-TEDS. The TC-

TEDS specifies the TC as an actuator with 6 outputs running in a continuous sampling

mode with the DS operating in the recirculation mode. The MD-TEDS specifies all

parameters to control, namely the direction, step modes, speed, and if the control is

remotely or locally made using a push button available in the FPGA-based board. All

these fields are writable and readable by the standard IEEE1451.0 commands

Read/WriteTEDSsegment and by the internal DCM, so it can control the TC using

specific TC-tasks to start/stop the step-motor. Figure K.6 provides a generic overview

of the SMCM blocks.

DS

SMCM

TC-tasks

TC-TEDS

MD-TEDS

IEEE1451.0-Module

trigger

push-button
power
driver

bipolar
step

motor
recirculation

mode control type

(remotly/local)

TC 6

Figure K.6: SMCM connected to the IEEE1451.0-Module.

Internal modules

The SMCM comprises a set of HDL modules and TC-tasks for controlling the

adopted TC according to three TEDS: i) Meta-TEDS; ii) TC-TEDS and; iii) a MD-

TEDS. The Meta-TEDS defines the whole TIM structure, while the behaviour and the

features of the SMCM are defined by a MD-TEDS, and by a read-only TC-TEDS.

Table K.4 lists the most relevant fields of the TC-TEDS. Additional parameters were

defined in the MD-TEDS presented in table K.5, such as the direction, number and step

modes, a time divider to control the speed of a step-motor, plus the type of control that

can be made using IEEE1451.0 commands or using a push button in the FPGA-based-

board. All the MD-TEDS fields can be updated through the WriteTEDSsegment

command and read by the ReadTEDSsegment command to control/monitor the

behaviour of the entire SMCM.

Annex K: Weblab modules: specification and design 261

Table K.4: TC-TEDS relevant fields defined to control the SMCM.

Field num. Description Data Type octets Value (hex)

- TEDS length UInt32 4 00.00.00.60

0-2 Reserved - - -

3
TEDS identification (Family=00h, Class =03h,

Version =01h, T. Length=01h)
UInt8 4

03.04

00.03.01.01

11 Channel type set to actuator (=1) UInt8 1 0B.01.01

12 Physical units set to digital (=4). UInt8 3
0C.03.
32.01.04

18

Sample information: data model, length and

significant bits.
DataModel (field=28h, UInt8, Bit Sequence=04h); Length

(field=29h, UInt8, ModLength=01h); Model significant

bits (field=2Ah; UInt16, SigBits=00.06h)

UInt8+

UInt8 +

UInt16

10

12.0A.

28.01.04

29.01.01

2A.02.00.06

19

DS definition (only the maximum data

repetition field is specified, which represents

the DS length) (field=2Bh, UInt16, Max. data

rep.=08h)

UInt16 4
13.04.

2B.02.00.08

31 Sampling mode capability:
(field=30h, UInt8, continuous mode capability=08h)

UInt8 3
1F.03
30.01.08

33
End-of-data-set operation attribute:
(field=21h, UInt8, recirculation mode=04h)

UInt8 3 21.01.04

 …

- Checksum UInt16 2 F5.FD

Table K.5: MD-TEDS defined fields to control the SMCM.

Field num. Description Data Type octets Value (hex)

- TEDS length UInt32 4 00.00.00.1A

0-2 Reserved - - -

3 TEDS identification: (Family=00h, Class =80h,

Version =01h, T. Length=01h)
UInt8 4

03.04

00.80.01.01

4
Direction. Indicates the direction of the step-

motor rotation: left (=0) or write(=1)
UInt8 1 04.01.01

5

Number of steps. Indicates the number of steps

the motor will do after receiving a trigger

signal. If the value is set to its maximum

(FF.FF hex) this field becomes irrelevant and
the step sequences are generated continuously.

UInt8 2 05.02.FF.FF

6
Step mode. Defined according to three modes:
half step (=0); normal drive(=1) or wave drive(=2)

UInt8 1 06.01.00

7

Step speed (steps/s). Defines the internal clock

rate of the module, and therefore the speed of

the generated step-motor sequences according

to the equation:

speedReg =(clk_external/2) / (Step speed)

Currently: clk_external =19200 bps

UInt8 3
07.03.

00.09.60

8

Control type. Specifies the type of control:
remotely using IEEE1451.0 commands (=0) or locally

using a push button at a transition level (=1) or at a state

level (=2).

UInt8 1 08.01.00

- Checksum UInt16 2 FC.CF

Although several protocols could be used to control the TC, the adopted is similar to

the one used for accessing the TEDS-M and the SSM described in the previous annex J.

As represented in figure K.7, it uses the lines run and end to issue a particular code and,

262 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

for some of them, the data to specify the behaviour of the SMCM by changing its

internal parameters. The code is defined using the access bus, and the data is defined by

the out bus, as detailed in table K.6. Each code changes the behaviour of the SMCM

according to a value read from the MD-TEDS placed in the in bus to define the number

of steps and the speed parameters, both representing the use of more than one octet and,

therefore, more than one code. For these parameters, the code also specifies both the

parameter and the octet number, starting from the most to the less significant octet.

run

end

out_tc

code/data issued

issue a code/data

clk
DCM /

TC-tasks SMCM

run

end

out_tc

access_tcaccess_tc

out_tc

access_tc

Figure K.7: Handshake protocol used to access the SMCM through the TC-tasks.

Table K.6: Internal SMCM access codes.

code

(access bus)
Meaning

0 Starts generating the step sequences (trigger command).

1 Stops generating the step sequences (trigger command).

2 Defines the direction: write (=1) or left (=0).

3 Defines the number of steps to generate (access=3 means the most significant octet

and access=4 means the less significant octet). 4

5 Defines the step mode: half step (=0); normal drive (=1) or; wave drive (=2).

6 These 3 octets correspond to the speedReg that defines the speed of each step in the

motor. The clk_external is an input signal on the SMCM.

speedReg =(clk_external/2) / (Step speed)

7

8

9
Defines the way the SMCM starts generating the step sequence: commands (=0);

external button at transition (=1) or; external button at state (=2).

The SMCM adopted a trigger dependent sampling mode, i.e. the continuous

sampling mode. The start() and stop() TC-tasks start and stop the generation of the step

sequences, and the init() and update() TC-tasks update the way the SMCM is initialized

and runs. The access to those TC-tasks is made internally by the DCM when the

TriggerCommand, the AbortTrigger and the Reset commands are issued, according to

the definitions made in subsection 6.3.3.

The SMCM is controlled by instructions received from the IEEE1451.0-Module. It

comprises four internal modules interfaced through a set of buses and lines, as

illustrated in figure K.8. They are all described in Verilog HDL and each one has

specific features described in table K.7.

Annex K: Weblab modules: specification and design 263

en

clk

rst

in

run

end

access

error

direction_mpp1

steps_mpp1

mode_mpp1

speed_mpp1

run_crt button_crt

direction

steps

mode

run_crt button_crt

2

clk

time_
devider

run

run_button

16

2

24

clk_in

clk_out

clk

en

data_

outDS

clk_external

6

mpp2.v mpp1.v

mpp_button_controller.v mpp_clk_generator.v

en_tc3

rst_tc3

out_tc3

run_tc3

end_tc3

access_tc3

error_tc3

8

4

DCM

button

push-button

IEEE1451.0-Module

power
driver

bipolar
step

motor

Step-Motor Controller Module (SMCM)

clk

rdy_mpp1

run_mpp1

a

a

Figure K.8: The SCMC HDL modules and buses.

Table K.7: Internal modules of the SMCM and their features.

Internal module Operation

mpp2.v

Is the decoder and controller of the SMCM and it is connected to the IEEE1451.0-

Module. It decodes the code defined in the access bus and updates the other

modules.

mpp1.v

According to the values defined in the buses provided by the mpp2.v module, if

the run signal, provided by the mpp_button_controller.v module, is set, it starts by

generating the digital sequence for controlling a step-motor. This sequence is

generated at a rate defined in the clk signal provided by the mpp_clk_generator.v

module.

mpp_button_

controller.v

This module implements the control type for the SMCM i.e., if the step sequence

generated by the mpp1.v module starts when a trigger is generated by an

IEEE145.0 command or when the FPGA button is pressed (either using transition

or state operation levels).

mpp_clk_

generator.v

Specifies the rate at which the step sequences are generated, according to the

value defined for the time_divider bus.

Validation

To validate the SMCM, a set of IEEE1451.0 commands were issued from a PC to the

IEEE1451.0-Module using the Comm Operator Pal serial port tool. As represented in

figure K.9, the commands change and monitor the fields defined in the MD-TEDS and

trigger the SMCM to start and stop its operation.

264 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Read

MD-TEDS

Write MD-TEDS
Update MD-

TEDS

Set TC to the

operating state
Trigger

Valid ?

no

yes

Stop trigger

Read MD-

TEDS

init

Read MD-TEDS

end

Test the rotation of the step-
motor using the button on

the FPGA-based board

Figure K.9: Sequence of commands adopted for validating the SMCM.

At the beginning some or all MD-TEDS fields are read and the adopted TC is set to

the operating state, so TriggerCommand and AbortTrigger commands may be issued to

start or stop the SMCM operation. Based on the read fields, these are changed using the

WriteTEDSsegment command, creating a temporary TEDS, to be latter validated using

the UpdateTEDS command. If no error is generated, the command validates the

temporary TEDS and all its fields are copied into the new MD-TEDS, otherwise there is

no change, and users should verify which fields turned the MD-TEDS invalid. During

this process the ReadTEDSsegment command can be issued just to verify the contents of

the MD-TEDS.

According to the described sequence and using the TC number 3, figure K.10

exemplifies some commands issued and the replies generated by the IEEE1451.0-

Module during the validation. It starts by issuing the readTEDSsegment command

retrieving the contents of the current MD-TEDS. To start/stop the rotation of the step-

motor the triggerCommand and stopTrigger commands were applied, both retrieving

successful replies, meaning the correct operation of the step-motor. Latter, the contents

of the MD-TEDS were changed defining the type of control from remote to local using

the external button at transition level (field 8 of the MD-TEDS was changed from 0 to

1). This operation was processed using the writeTEDSsegment and the updateTEDS

commands to validate the new MD-TEDS. Since the reply from the updateTEDS

indicated that the MD-TEDS was correctly defined, the readTEDSsegment was issued

to read the new MD-TEDS. The step-motor control was then verified by using the

associated button on the FPGA-based board. Latter, and just for verification purposes, a

wrongly defined command message was issued to the infrastructure, and an error reply

message was retrieved, which could have been evaluated by reading the event register

of the associated TC.

Annex K: Weblab modules: specification and design 265

Reads MD-TEDS
(ReadTEDSsegment)

Sets SMCM to operate
(TCoperate)

Sends a trigger to rotate the
step-motor (triggerCommand)

Sends a trigger to stop the rotation
of the step-motor (stopTrigger)

Writes a new MD-TEDS to change
the SMCM operation type to button

transition (WriteTEDSsegment)Validates the MD-TEDS
(updateTEDS)

Reads MD-TEDS
(ReadTEDSsegment)Example of an error

command

Figure K.10: IEEE1451.0 commands issued to validate the SMCM.

K.3.3 - Event sensor

Overview

For validating the event mechanism implemented by the IEEE1451.0-Module and

described in section 6.2.1, a weblab module named Event Sensor (ES) was designed.

This ES basically monitors a specific input line that, when raised, generates an event

that triggers the IEEE1451.0-Module to send a dummy TIM-initiated message to the

NCAP. Figure K.11 illustrates the connections of the ES to the IEEE1451.0-Module,

presenting an event line, belonging to the adopted TC, to trigger the event() TC-task

that sends the TIM-initiated message to the NCAP.

ES
TC-TEDS

event() task

IEEE1451.0-Module event
line

external

event

TIM-initiated
message

UART-M

TCNCAP

TIM

Figure K.11: Event Sensor connected to the IEEE1451.0-Module.

Internal modules and validation

A single HDL module implements the ES. When it detects an external event it raises

the event line indicating to the IEEE1451.0-Module that an event was generated in the

associated TC, whose relevant fields are listed in table K.8.

266 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table K.8: Defined TC-TEDS relevant fields to control the event sensor.

Field num. Description Data Type octets Value (hex)

- TEDS length UInt32 4 00.00.00.5D

0-2 Reserved - - -

3
TEDS identification: (Family=00h, Class =03h,

Version =01h, T. Length=01h)
UInt8 4

03.04

00.03.01.01

11 Channel type set to event sensor (=2) UInt8 1 0A.01.02

12 Physical units set to digital (=4) UInt8 3
0C.03.
32.01.04

18

Sample information: data model, length and

significant bits.
DataModel (field=28h, UInt8, Bit Sequence=04h); Length

(field=29h, UInt8, ModLength=01h); Model significant

bits (field=2Ah; UInt16, SigBits=00.01h)

UInt8+

UInt8 +

UInt16

10

12.0A.

28.01.04

29.01.01

2A.02.00.01

19

DS definition (only the maximum data

repetition field is specified, which represents

the DS length) (field=2Bh, UInt16, Max. data

rep.=01h)

UInt16 4
13.04.

2B.02.00.01

31
Sampling mode capability:
(field=30h, UInt8, free-running without pre-

trigger=04h)
UInt8 3

1F.03

30.01.04

 …

- Checksum UInt16 2 F6.35

The adopted TC was defined as an event sensor that monitors one digital signal

according to a free-running sampling mode that does not require any pre-trigger to start

its operation. This means that the TC is constantly monitoring events and providing that

information to the IEEE1451.0-Module, so it may generate a TIM-initiated message.

Figure K.12 illustrates a simple validation using this ES when an event was detected

and reported by the TC, creating a dummy TIM-initiated message.

Figure K.12: TIM-initiated message retrieved from the ES after detecting an event.

Annex L: Reconfiguration 267

 Annex L

Reconfiguration

L.1 - Examples of report files created during the

reconfiguration process

This annex presents examples of files created during the reconfiguration process,

namely:

 reports generated in the build operation using the Bind software module

(Bbind_2013-03-05_15:07:30.rep in table L.1) and the Config software module

(Bteds_2013-03-05_15:07:30.rep in table L.2);

 the report generated after the synthesis operation (Syn_2013-03-

05_15:08:17.rep in table L.3) that is the output of the ISE Webpack synthesis

indicating the successful creation of the bitstream file (*.bit);

 the report generated in the configuration of the TIM that involves the creation of

the SVF file from the bitstream file (svf_2013-03-05_15:27:06.rep in table L.4),

which is made by the iMPACT tool, and;

 the report generated by the UrJTAG module indicating the configuration of the

FPGA (Reconf_2013-10-14_15:58:36.rep in table L.5).

Table L.1: Report generated by the Bind software module.

Bbind_2013-03-05_15:07:30.rep

Configuration file used to bind transducers/weblab instruments

into the IEEE1451-infrastructure.

Developed by Ricardo Costa @ November 2011.

For further information or error report

please use the email: rjc@isep.ipp.pt

**General interface files:

> <declarations> created.

> <directions> created.

> <declarations_dcmim> created.

> <directions_dcmim> created.

> <interface_dcmim> created.

> <initial> created.

> <wires> created.

> <tc_controller_interface> created.

> <tc_declarations> created.

> <tc_directions> created.

> <tc_interface> created.

> <tc_task_location> created.

**Transducers tasks files:

> <tc_start> created.

> <tc_stop> created.

268 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

> <tc_rd> created.

> <tc_wr> created.

> <tc_init> created.

> <tc_update> created.

> *WARNING: No <tc_event> created.

> *WARNING: No tc_event_connections created.

**Generic Parameters:

> <num_tcs> correctly created.

> <mem_buffer> correctly created.

> <bps_uart> correctly created.

> <im_errors> correctly created.

> <im_events> correctly created.

Table L.2: Report generated by the Config software module.

Bteds_2013-03-05_15:07:30.rep

This program checks and creates verilog files according to

the IEEE1451.0 infrastructure.

Developed by Ricardo Costa @ November 2011.

For further information or error report

please use the email: rjc@isep.ipp.pt

> TEDS files contents are correctly defined.

> Memory Verilog TEDS files correctly defined.

> TEDS controller was correctly defined.

> MAP_Table verilog file correctly defined.

> TEDS parameters correctly defined.

> Map Table parameters correctly defined.

> TEDS connections created.

> TEDS instances correctly created.

> Status memory correctly created.

> State memory correctly created.

Table L.3: Report generated by the ISE Webpack in the synthesis operation.

Syn_2013-03-05_15:08:17.rep

Changed current working directory to the project directory:

"/home/labserver/www/labserver/programTIM/user_00/ise_project"

Reloading the project.

Finished reloading the project.

Started : "Synthesize - XST".

Running xst...

Command Line: xst -intstyle ise -ifn

"/home/labserver/www/labserver/programTIM/user_00/ise_project/TIM_main.xst" -ofn

"/home/labserver/www/labserver/programTIM/user_00/ise_project/TIM_main.syr"

Reading design: TIM_main.prj

===

* HDL Compilation *

===

Compiling verilog file "../../TIM/ieee1451_infrastructure/user_configurations/Output_6bits_main.v" in library

work

Compiling verilog file "../../TIM/ieee1451_infrastructure/user_configurations/Input_8bits_main.v" in library

work

Module <Output_6bits_main> compiled

Compiling verilog file "../../TIM/ieee1451_infrastructure/TEDS_Controller/memory_7.v" in library work

Compiling verilog include file "../../TIM/ieee1451_infrastructure/Controller/../definitions.vh"

(…)

Module <main_Controller> compiled

Compiling verilog include file "../../TIM/ieee1451_infrastructure/Controller/../Transducers/declarations.vh"

Compiling verilog include file "../../TIM/ieee1451_infrastructure/Controller/../Transducers/directions.vh"

Compiling verilog include file

"../../TIM/ieee1451_infrastructure/Controller/../Transducers/interface_dcmim.vh"

Annex L: Reconfiguration 269

Module <TIM_main> compiled

No errors in compilation

Analysis of file <"TIM_main.prj"> succeeded.

(…)

===

* Design Hierarchy Analysis *

===

Analyzing hierarchy for module <TIM_main> in library <work>.

(…)

Analyzing module <memory_0> in library <work>.

Module <memory_0> is correct for synthesis.

(…)

===

* HDL Analysis *

===

Analyzing top module <TIM_main>.

Module <TIM_main> is correct for synthesis.

(…)

===

* HDL Synthesis *

===

Performing bidirectional port resolution...

INFO:Xst:2679 - Register <TC_lut_states<0>> in unit <Status_state_controller> has a constant value of 011

during circuit operation. The register is replaced by logic.

(…)

===

HDL Synthesis Report

Macro Statistics

RAMs : 12

 100x8-bit single-port RAM : 1

 109x8-bit single-port RAM : 3

(…)

Analysis completed Tue Mar 5 15:22:22 2013

--

Generating Report ...

Number of warnings: 0

Total time: 8 secs

Process "Generate Post-Place & Route Static Timing" completed successfully

Started : "Generate Programming File".

Running bitgen...

Command Line: bitgen -intstyle ise -f TIM_main.ut TIM_main.ncd

Process "Generate Programming File" completed successfully

Table L.4: Report generated in the reconfiguration operation using the iMPACT tool.

svf_2013-03-05_15:27:06.rep

Release 13.3 - iMPACT O.76xd (lin)

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

Preference Table

Name Setting

StartupClock Auto_Correction

AutoSignature False

(…)

svfUseTime false

SpiByteSwap Auto_Correction

AutoInfer false

SvfPlayDisplayComments false

'1': Loading file

'/home/labserver/www/labserver/programTIM/user_00/list_reconf_files/2013-03-05_1

5:08:17.bit' ...

done.

UserID read from the bitstream file = 0xFFFFFFFF.

--

--

'1': Programming device...

 LCK_cycle = NoWait.

270 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

LCK cycle: NoWait

done.

 LCK_cycle = NoWait.

LCK cycle: NoWait

'1': Programmed successfully.

Elapsed time = 1 sec.

Table L.5: Report generated by the UrJTAG tool after sending the weblab project to the

FPGA-based board.

Reconf_2013-10-14_15:58:36.rep

Connected to libftdi driver.

IR length: 30

Chain length: 4

Device Id: 00000110111001011110000010010011 (0x0000000006E5E093)

 Manufacturer: Xilinx

 Part(0): XC2C64-VQ44

 Stepping: 0

 Filename: /usr/local/share/urjtag/xilinx/xc2c64a-vq44/xc2c64a-vq44

(…)

Device Id: 00100001110000111010000010010011 (0x0000000021C3A093)

 Manufacturer: Xilinx

 Part(3): xc3s1600e_fg320

 Stepping: 2

 Filename: /usr/local/share/urjtag/xilinx/xc3s1600e_fg320/xc3s1600e_fg320

Warning: USB-Blaster frequency is fixed to 12000000 Hz

L.2 - Example of a configuration file

This annex presents some parts of a configuration file (*.conf), listed in table L.6, for

building the weblab project. For better comprehension, it is commented and should be

analysed in conjunction with the schematics presented in figure L.1 of the annex L.3.

Table L.6: Example of a configuration file used in the reconfiguration process.

*.conf

(…)

1.1- Check TEDS configurations #

<teds_check>

IEEE1451TEDS

 Meta_TEDS.teds

 XdrcName_TEDS.teds

input8bits

 #TC1

 Input_8bits_TC_Channel.teds

(…)

</ teds_check>

1.2- Generate verilog HDL TEDS files. #

(…)

<teds_generate>

IEEE1451 TEDS

 Meta_TEDS.teds,memory_0.v,0,1,0,Meta_TEDS_for_validation_1

 XdrcName_TEDS.teds,memory_1.v,1,1,0,XdrcNameTEDS_"TIM"_for_validation_1

input8bits

 #TC1

Annex L: Reconfiguration 271

 Input_8bits_TC_Channel.teds,memory_2.v,2,1,0,TC_TEDS_input8bits(TC1)

(…)

</teds_generate>

(…)

1.3- checks Map Table and creates a verilog file for TEDScode x memories association. #

<map_table>

 map_table_val_1.map

</map_table>

1.4- Defines sequentially the mask registers for each TC (std. 1451 status registers) #

<status_generate>

TIM

 'hffffffff,TIM

input8bits

 #TC1

 'hffffffff,input8bits(TC1)

(…)

</status_generate>

PART 2: #

Configuration file to bind weblab modules to the IEEE1451.0-Module #

2.1- External connections (Target Experiment /External signals <-> IEEE1451.0-Module) #

<declarations>

input8bits

 data_in_tc1,

(…)

</declarations>

<directions>

input8bits

 input [7:0] data_in_tc1;

(…)

</directions>

2.2- Internal connections (IEEE1451.0-Module <-> DCM) #

<declarations_dcmim>

input8bits

 data_in_tc1,

(…)

</declarations_dcmim>

<directions_dcmim>

input8bits

 input [7:0] data_in_tc1;

(…)

</directions_dcmim>

<interface_dcmim>

input8bits

 .data_in_tc1(data_in_tc1),

(…)

</interface_dcmim>

2.3- Tasks variables initializations. #

<initial>

 # TC1 - input8bits(TC1)

 state_tc1<=0;

(…)

</initial>

272 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

2.4- DCM internal wires. #

<wires>

input8bits

 #TC1

 wire en_tc1;

 wire rst_tc1;

 wire [7:0] in_tc1;

 wire run_tc1;

 wire end_tc1;

 #External Wires

 wire [7:0] data_in_tc1;

(…)

</wires>

2.5 - DCM internal wire connections (DCM controller <-> DCM internal wires) #

<tc_controller_interface>

input8bits

 #TC1

 .en_tc1(en_tc1),

 .rst_tc1(rst_tc1),

 .in_tc1(in_tc1),

 .run_tc1(run_tc1),

 .end_tc1(end_tc1),

(…)

</tc_controller_interface>

<tc_declarations>

input8bits

 #TC1

 en_tc1,

 rst_tc1,

 in_tc1,

 run_tc1,

 end_tc1,

(…)

</tc_declarations>

<tc_directions>

input8bits

 #TC1

 output en_tc1; reg en_tc1;

 output rst_tc1; reg rst_tc1;

 input [7:0] in_tc1;

 output run_tc1; reg run_tc1;

 input end_tc1;

(…)

</tc_directions>

2.6- Weblab modules internal wire connections. #

<tc_interface>

input8bits

Input_8bits_main IM_Input_8bits (

 #CLK

 .clk(clk),

 #TC1

 .en(en_tc1),

 .rst(rst_tc1),

 .out(in_tc1),

 .run(run_tc1),

 .end_(end_tc1),

 #External Wires

Annex L: Reconfiguration 273

 .data_in(data_in_tc1)

);

(…)

</tc_interface>

2.7- Defines all tasks associated to a particular TC. #

2.7.1- File locations.#

<tc_task_location>

input8bits

 #TC1

 `include "../user_configurations/Input_8bits_tasks.vh"

(…)

</tc_task_location>

2.7.2- adopted tasks.#

<tc_start>

 3:tc3_start();

</tc_start>

(…)

2.8- weblab modules HDL files. #

<tc_update_transducer_locations>

input8bits

 Input_8bits_main.v

output6bits

 Output_6bits_main.v

SMCM

 mpp_controller.v

 mpp_1.v

 mpp_2.v

 mpp_clk_generator.v

 mpp_button_controller.v

</tc_update_transducer_locations>

2.9- Number of implemented TC #

<num_tcs>

 3

</num_tcs>

2.10- Memory Buffer length. (minimum=12) (maximum=2^16=65536) #

<mem_buffer>

 1200

</mem_buffer>

2.11- Baud rate used by the SERIAL PORT and to synchronize all internal HDL modules #

#(it depends on the clk frequency provided by the FPGA based board - Oscilator) #

e.g.: bps=19200 + 1 startBit + 2 stop bits #

bps:(Oscilator/2)/bps (1302,08-50MHz) -> 1302 #

<bps_uart>

 1302

</bps_uart>

2.12- Number of ERRORS caused by all weblab modules #

<im_errors>

 0

</im_errors>

2.13- Number of EVENTS caused by all weblab modules #

<im_events>

 0

</im_events>

274 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

L.3 - The reconfiguration schematics

IEEE1451.0-Module

Interface

DCM controller

Weblab module

(...)

D
C

M
 w

ir
es

 (
2

.4
)

CLK_ext.*

CLK max.

event signals

event_1*

event_2*

Module wire connections (2.6)

Module wire connections (2.6)

D
C

M
 w

ir
es

D
C

M

w
ir

es
co

n
n

ec
ti

o
n

s
(2

.5
)

error(s)

error(s)

internal
connections (2.2)

error_im[]
(2.12)

external
connections

(2.1)

I&M files

(2.8)

tasks variables

initializations (2.3)
tasks files (2.7)

Number of adopted TC (2.9)

Memory

Buffer

(2.10)

CLK

internal

generator

(2.11)

CLK

CLK

CLK

TEDS-M

&

SSM

UART

M

Rx / Tx

N

C

A

P

T
a
r
g
e
t

e
x
p
e
r
i
m
e
n
t

FPGA

CLK

CLK

TIM (FPGA)

DCM

controller

lines

DCM

controller

lines

DCM

controller

lines

DCM controller lines

event wires

event_im[]
(2.13)

Mux

events* events*

event_1*

event_2*

DCM wires (2.4)

I&M files

(2.8)

(2.6)

(2.6)

* - signals able to be defined with different names during the reconfiguration process.

() - the number indicated represents an association in a section of the configuration file.

Weblab module

Figure L.1: Reconfiguration schematics.

L.4 - Some examples of HDL files created by the

reconfiguration process

To exemplify the redefinition of the DCM, TEDS-M, SSM and the internal

connections within the IEEE1451.0-Module, this annex presents parts of some Verilog

HDL files automatically generated by the RecTool during the build operation, divided

in 4 groups:

 Generic definitions (table L.7);

 DCM-weblab modules interfaces (table L.8);

 Files used to define the TEDSs’ memories (table L.9);

 Files used to define the MT (table L.10).

Annex L: Reconfiguration 275

Table L.7: Example of Verilog HDL files with generic definitions.

directions.vh (defines directions of the I/O on the FPGA-based board)
//

//File automatically created.

//Created on: Mon Feb 04 18:54:34 2013

//

output [5:0] data_out_tc1;

input [7:0] data_in_tc2;

output [5:0] data_out_tc3; (…)

definitions_GENERIC.vh (generic parameters)

//

//File automatically created.

//Created on: Mon Feb 04 18:54:34 2013

//

`define TC_number 3

`define bits_pointer_TC_number 4 //>=(log[2](TC_number+1)*3)

`define bits_pointer_TC_number_small 3 //>=(log[2](TC_number+1)*2)

`define bits_pointer_TC_number_tiny 2 //>=(log[2](TC_number)

`define max_mem_buffer 100

`define bits_max_mem_buffer 7 //>=(log[2])

`define bps_divisor 1302

`define bps_length_counter 11 //>=(log[2])

`define error_num_im 0

`define event_num_im 0

Table L.8: Example of Verilog HDL files defining the DCM-weblab modules interfaces.

tc_interface.vh (DCM-weblab modules interface)

//

//File automatically created.

//Created on: Mon Feb 04 18:54:34 2013

//

Output_6bits_main IM_Output_6bits(

 .clk(clk),

 .en(en_out6bits),

 .rst(rst_out6bits),

 .in(out_out6bits),

 .out(in_out6bits),

 .run(run_out6bits),

 .end_(end_out6bits),

 .data_out(data_out_tc2)

);

(…)

Input_8bits_main IM_Input_8bits(

 .clk(clk),

 .en(en_tc1),

(…)

 .end_(end_tc1),

 .data_in(data_in_tc2)

);

wires.vh (wires to interface the weblab modules to the DCM)

//

//File automatically created.

//Created on: Mon Feb 04 18:54:34 2013

//

wire en_out6bits;

wire rst_out6bits;

wire[7:0] in_out6bits;

wire[7:0] out_out6bits;

wire run_out6bits;

(…)

wire run_out6bits_changed;

wire end_out6bits_changed;

wire [5:0] data_out_tc3;

276 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Table L.9: Example of files used to define the TEDSs memories.

definitions_TEDS.vh (defines some parameters of the TEDSs memories)

//

//File automatically created.

//Created on: Mon Feb 04 18:54:24 2013

//

//--//

// Memories TEDS

//--//

//---- Memory 0

`define max_length_0 52

`define bits_pointer_0 6

//---- Memory 1

`define max_length_1 32

`define bits_pointer_1 5

(…)

//---- Memory 7

`define max_length_7 41

`define bits_pointer_7 6

//---- Generic parameters

`define number_memories 8

`define bits_number_memories 3

`define max_memlength 109

`define bits_max_memlength 7

memory_3.v (example of a TEDS memory)

//

//File automatically created.

//Created on: Mon Feb 04 18:54:24 2013

// Module Name: memory_3 (XdrcName_output6bits(TC1))

//

`include "../definitions.vh"

module memory_3(clk, en, wr, address, octet_in, octet_out);

 input clk;

 input wr;

 input en;

 input [`bits_pointer_3-1:0] address;

 input [7:0] octet_in;

 output [7:0] octet_out; reg [7:0] octet_out;

 reg [7:0] memory [`max_length_3-1:0];

 initial

 begin

 memory[0] = 8'h00;

(…)

 memory[47] = 8'h07;

//QueryResponseData data.........

 //TEDSAttrib

 memory[48] = 8'h1;

(…)

 //MaxTEDSSize

 memory[56] = ((`max_length_3-12-4)>>32);

 memory[57] = ((`max_length_3-12-4)>>16);

 memory[58] = ((`max_length_3-12-4)>>8);

 memory[59] = (`max_length_3-12-4);

 end

always @(posedge clk)

 begin

 if (en)

 begin

 if (wr) memory[address]<=octet_in;

 octet_out <= memory[address];

 end

 end

endmodule

Annex L: Reconfiguration 277

Table L.10: Example of files used to define the MT.

definitions_MapTABLE.vh (defines some parameters of the MT memory)

//

//File automatically created.

//Created on: Mon Feb 04 18:54:24 2013

//

//--//

// Map Table

//--//

`define map_table_length 28

`define bits_pointer_map_table 5

(…)

map_table.v (created MT)

///

//File automatically created.

//Created on: Mon Feb 04 18:54:24 2013

(...)

`include "../definitions.vh"

module map_table(clk, en, address, octet_out);

 input clk;

 input en;

 input [`bits_pointer_map_table-1:0] address;

 output [7:0] octet_out; reg [7:0] octet_out;

 initial begin

 octet_out <= 8'hff;

 end

 always @(posedge clk) begin

 if(en) begin

 case(address)

 0:octet_out <= 8'h00;

 1:octet_out <= 8'h00;

 2:octet_out <= 8'h04;

 3:octet_out <= 8'h01;

 4:octet_out <= 8'h00;

(...)

 25:octet_out <= 8'h06;

 26:octet_out <= 8'h0c;

 27:octet_out <= 8'h07;

 endcase

 end

 end

endmodule

L.5 - Examples of FPGA resources utilization

Based on the adopted FPGA for implementing the weblab infrastructure

(XC3S1600E Spartan 3E from Xilinx), this annex presents some of its resources

utilization. Using a PC with an Intel Pentium D CPU 3.40GHz / 1 MBytes of RAM
128

,

the weblab project was created (synthesized and implemented) according to definitions

made in the ISE Webpack, the most relevant listed in table L.11.

Table L.12 lists the FPGA resources used by each HDL module of the IEEE1451.0-

Module using the two configurations adopted in the validation & verification process

described in chapter 7. The first uses the two I/O digital modules, the SMCM and six

128 Further details about the adopted PC can be found in the DVD annex to this document.

278 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

TEDSs. The second uses one 8-Bit Input Module, two 6-Bit Output Modules, and eight

TEDSs. Since the number of adopted TEDSs differs for each configuration, only TEDS-

M uses different resources, as indicated through a shading effect.

Table L.13 lists the FPGA resources used by each weblab module.

Table L.14 lists the FPGA resources percent usage of the entire weblab project in

both configurations.

All values listed in tables were retrieved from the synthesis reports created by the

ISE Webpack software used in the RecTool. If other weblab modules were selected, it

would be expected different FPGA resources utilization.

Table L.11: Some definitions made in the ISE Webpack for creating the weblab project.

Synthesis options

Optimization goal Speed

Optimization effort Normal

FSM encoding algorithm One-Hot

FSM style LUT

RAM and ROM style Auto

Implementation design

Optimization strategy Area

Place & route mode Normal

Place & route effort level High

Table L.12: FPGA resources used by the IEEE1451.0-Module in two configurations.

 Number of resources

 Configuration 1: two I/O digital modules, one SMCM and 6 TEDSs.

 Configuration 2: two 6-Bit Output Modules, one 8-Bit Input Module and 8 TEDSs.

DCM Type Configuration 1 Configuration 2

Controller

Finite State Machines 10 10

D-type flip-flops 578 557

Adder/Subtractors 47 41

Multipliers 4 4

Comparators 27 27

Multiplexers 2 2

Priority encoders: 13 13

MT D-type flip-flops 8 8

MB
D-type flip-flops 8 8

RAMs 1 1

TEDS-M Type Configuration 1 Configuration 2

Controller

Finite State Machines 2 2

ROMs 0 1

D-type flip-flops 66 67

Adder/Subtractors 12 12

Comparators 8 8

Multiplexers 15 17

Decoders 0 1

Memories
RAMs 1 x 6 = 6 1 x 8 = 8

D-type flip-flops: 8 x 6 = 48 8 x 8 = 64

Annex L: Reconfiguration 279

SSM Type Configuration 1 Configuration 2

Controller

Finite State Machines 1 1

D-type flip-flops 148 148

Adder/Subtractors 3 3

Comparators 6 6

Multiplexers 113 113

Combinational logic shifters 2 2

State memory
RAMs 1 1

D-type flip-flops 8 8

Status memory
RAMs 1 1

D-type flip-flops 32 32

UART-M Type Configuration 1 Configuration 2

Rx

Finite State Machines 1 1

Counters 2 2

D-type flip-flops 1005 1005

Adder/Subtractors 4 4

Comparators 4 4

Multiplexers 8 8

Tx

Finite State Machines 1 1

RAMs 1 1

Counters 1 1

D-type flip-flops 51 51

Adder/Subtractors 3 3

Comparators 3 3

BR_generator
Counters 1 1

D-type flip-flops 1 1

Table L.13: Number of FPGA resources used by the weblab modules.

Output_6bits_main Type # resources

 D-type flip-flops 17

Input_8bits_main Type # resources

Finite State Machines 1

D-type flip-flops 9

SMCM Type # resources

mpp_1

Finite State Machines 1

Counters 1

D-type flip-flop 6

mpp_2 D-type flip-flops 49

mpp_clk_generator
Counters 1

D-type flip-flops 1

mpp_button_

controller

Finite State Machine 1

Counters 1

D-type flip-flops 1

Multiplexers 1

Table L.14: Overview of FPGA resources percent usage in both configurations.

 Configuration 1 Configuration 2

Number of Slice Flip Flops 2,340 / 29,504 = 7,9% 2,194/ 29,504 = 7,4%

Number of 4 input LUTs 9,358 / 29,504 = 31,7% 8,736 / 29,504 = 29,6%

Slices (collection of internal logic blocks) 5,466 / 14,752 = 37,1% 5,124 / 14,752 = 34,7%

Total Number of 4 input LUTs 9,630 / 29,504 = 32,6% 9,003 / 29,504 = 30,5%

Number of External IOBs 27 / 250 = 10,8% 26 / 250 = 10,4%

BUFGMUXs (multiplexed global clock buffer) 4 / 24 = 16,7% 3 / 24 = 12,5%

MULT18X18SIOs (signed multipliers) 2 / 36 = 5,6% 2 / 36 = 5,6%

RAMB16s 10 / 36 = 27,8% 12 / 36 = 33,3%

280 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

L.6 - Example of TCL file created during reconfiguration

To control the ISE Webpack execution during the synthesis operation, the RecTool,

in particular the WSC, automatically creates a TCL file. An example of a TCL file is

presented in table L.15.

Table L.15: Example of a TCL file created by the RecTool with instructions for

synthesizing the weblab project.

ISEproj.tcl (controls the execution of the ISE Webpack during the synthesis operation)

File automatically created to synthesize the project. Created on 2013-11-25 18:34:20

project new /home/labserver/www/labserver/programTIM/user_00/ise_project/project.xise

project clean

project set family "Spartan3E"

project set device "xc3s1600e"

project set package "fg320"

project set speed "-4"

project set top_level_module_type "HDL"

project set synthesis_tool "XST (VHDL/Verilog)"

project set simulator "ISim (VHDL/Verilog)"

project set "Preferred Language" "Verilog"

project set "Enable Message Filtering" "false"

project set "Multiplier Style" "Auto" -process "Synthesize - XST"

project set "Configuration Rate" "Default (1)" -process "Generate Programming File"

project set "Optimization Goal" "Speed" -process "Synthesize - XST"

project set "Optimization Effort" "Normal" -process "Synthesize - XST"

project set "FSM Encoding Algorithm" "One-Hot" -process "Synthesize - XST"

project set "FSM Style" "LUT" -process "Synthesize - XST"

project set "RAM Style" "Auto" -process "Synthesize - XST"

project set "ROM Style" "Auto" -process "Synthesize - XST"

project set "Optimization Goal" "Area" -process "Synthesize - XST"

project set "Place And Route Mode" "Normal Place and Route" -process "Place & Route"

project set "Place & Route Effort Level (Overall)" "High" -process "Place & Route"

(…)

xfile add /home/labserver/www/labserver/

 programTIM/TIM/ieee1451_infrastructure/definitions_TEDS_controller.vh"

xfile add "/home/labserver/www/labserver/

 programTIM/TIM/ieee1451_infrastructure/Controller/controller.v"

xfile add "/home/labserver/www/labserver/programTIM/TIM/ieee1451_infrastructure/

 Controller/tasks/CommonCommands/1_1_QueryTEDS.vh"

xfile add "/home/labserver/www/labserver/

 programTIM/TIM/ieee1451_infrastructure/StatusState_Controller/main.v"

xfile add "/home/labserver/www/labserver/

 programTIM/TIM/ieee1451_infrastructure/TEDS_Controller/memory_3.v"

xfile add "/home/labserver/www/labserver/

 programTIM/TIM/ieee1451_infrastructure/Transducers/tc_update.vh"

xfile add "/home/labserver/www/labserver/

 programTIM/TIM/ieee1451_infrastructure/user_configurations/mpp_1.v"

(…)

project set top "TIM_main"

process run "Generate Programming File"

project close

#---

#Code used to manage server applications (after Generate Programming File):

exec cp /home/labserver/www/labserver/programTIM/

 user_00/ise_project/ise_results.txt /home/labserver/www/labserver/programTIM/user_00/

 list_reports_files/Syn_2013-11-25_18:34:20.rep

Annex L: Reconfiguration 281

#---------creates the mail.txt to send after finishing this process-----------------

set fid [open "/home/labserver/www/labserver/programTIM/user_00/mail.txt" w]

set systemTime [clock seconds]

puts $fid "Date: [clock format $systemTime -format {%a %d-%m-%Y %H:%M}]"

puts $fid "To: johan.zackrisson@bth.se"

puts $fid "Subject: Weblab reconfiguration operation has finished"

puts $fid "From: ricardo.jgsn.costa@gmail.com"

puts $fid "Dear user,"

puts $fid ""

puts $fid "The synthesis operation initiated on 2013-11-25_18:34:20 has finished."

puts $fid "Please consult

 the portal address http://www.laboris.isep.ipp.pt:8082/labserver/programTIM/progTIM.php for results."

puts $fid "Check the generated report file named 'Syn_2013-11-25_18:34:20.rep' on the portal."

puts $fid ""

puts $fid "Best regards,"

puts $fid " The weblab administrator"

puts $fid " (ricardo.jgsn.costa@gmail.com)"

close $fid

#---

cd /home/labserver/www/labserver/programTIM/TIM/..

exec ./sendMAIL.sh /home/labserver/www/labserver/programTIM/user_00/mail.txt

#---

file delete /home/labserver/www/labserver/programTIM/TIM/ieee1451_infrastructure/BUSY_1

exec cp /home/labserver/www/labserver/programTIM/

 user_00/ise_project/TIM_main.bit /home/labserver/www/labserver/programTIM/

 user_00/list_reconf_files/2013-11-25_18:34:20.bit

282 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Annex M: Validation & Verification 283

 Annex M

Validation & Verification

M.1 - Supporting webpage: the main page

Figure M.1 presents the main webpage used in the validation & verification process.

1 2

3 4

5 6

Figure M.1: Screenshots of the supporting webpage front panels.

284 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

M.2 - Screenshots of videos exemplifying the interaction with

the weblab

Figure M.2 exemplifies the videos provided to the researchers during the validation

& verification process. These videos were created using the CamStudio recorder

software
129

 and then placed in the YouTube platform
130

. They are also available in the

DVD annexed to this thesis.

Figure M.2: Videos exemplifying the interaction with the weblab.

129

 http://camstudio.org
130 http://www.youtube.com/channel/UCHuj2wC3glXwa0Uls2FXzlA/videos

http://camstudio.org/
http://www.youtube.com/channel/UCHuj2wC3glXwa0Uls2FXzlA/videos

Annex M: Validation & Verification 285

M.3 - Questionnaires provided for the researchers

This annex provides the questionnaire provided for each researcher.

This questionnaire is divided in 3 sections

· section 1- current weblab problems;

· section 2- implemented infrastructure (validation sequence);

· section 3- relevance of the proposed solution.

Open questions are very important to be completed as much as you can.

You can answer in Portuguese or in Spanish !

Section 1 - Current weblabs’ problems

Name (your name):___________ E-mail: ___________

The following sentences indicate some problems currently faced by weblab

infrastructures. Please classify them according to their relevance. low relevance (1) to

high relevance (5)

 1 2 3 4 5

There is a lack of standards for developing weblab architectures.

There is a lack of standards to access weblab modules.

It is impossible to share/replicate weblab modules through different infrastructures.

There is a low flexibility in current weblabs, which difficults redesigning experiments
using the same infrastructure.

Typically, the costs can be high for developing weblabs and designing experiments.

There is a reduced collaboration among institutions in the development of weblabs.

Enumerate other problem/s you think relevant, and classify it/them according to

its/their relevance, like you did in the previous list. low relevance (1) to high relevance (5)

Comments you may want to provide about weblabs’ problems related to

infrastructural issues and/or comments about your previous answers.

Section 2 - Implemented infrastructure (validation

sequence)

This section is divided in three subsections with questions related to the:

· configurations;

· verify configurations;

· weblab modules’ control.

286 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

Name (your name):___________ E-mail: ___________

Configurations:

Please classify your agreement level with each sentence.(1- I don’t agree to 5- I totally

agree)

 1 2 3 4 5

It was easy to configure the weblab infrastructure.

The layout of the RecTool interface was easy to use and understand.

The reports provided were fundamental to verify the success of each step.

It was ease to change the configuration of the weblab infrastructure.

The approach applied in the configuration steps is satisfactory for designing remote

experiments without changing the infrastructure.

During reconfigurations, the step(s) that I considered more difficult was/were:

 upload files to the RecTool

 build the weblab project

 synthesize the weblab project

 configuring the infrastructure

 none

Please leave your comments about the configurations (difficulties, suggestions,

comments about your previous answers, etc.).

Verify configurations:

Please classify your agreement level with the sentences. (1- I don’t agree to 5- I totally

agree):

 1 2 3 4 5

After configuring the weblab I sent several IEEE1451.0 commands and the replies
were useful to verify the correct configuration of the weblab infrastructure.

I feel that if I understand all details of the IEEE1451.0 Std. the replies returned from

the issued commands will be better understood.

In configuration 1 I easily got the expected result after issuing the ReadRawTEDS

[XdrcName-TC1], i.e, an error code=24599 indicating that the weblab module

controlled by TC1 does not had any associated XdrcName TEDS.

In configuration 1 I easily got the expected result after issuing the ReadRawTEDS

[Meta-TEDS].

In configuration 1 I easily got the expected result after issuing the ReadRawTEDS
[MD-TEDS]

In configuration 2 I easily got the names of all weblab modules after issuing the
ReadRawTEDS [XdrcName-TCx] commands.

In configuration 2 I easily got the expected result after issuing the ReadRawTEDS

[Meta-TEDS].

In configuration 2 I easily got the expected result after issuing the ReadRawTEDS

[MD-TEDS], i.e, an error code=24599 indicating that the weblab module controlled

by TC3 does not had any associated MD-TEDS.

In configuration 2 the results retrieved after issuing IEEE1451.0 commands indicated
me clearly that the weblab has a new configuration.

Annex M: Validation & Verification 287

Please leave your comments about the verifying configurations (general aspects that

you may want to share, comments about your previous answers, etc.).

weblab modules’ control:

Please classify your agreement level with each sentence. (1- I don’t agree to 5- I totally

agree):
 1 2 3 4 5

I/O Modules used in the feedback connection:

In configuration 1 it was easy to control the I/O modules.

In configuration 1 the retrieved replies during the control of the I/O modules were
satisfactory.

In configuration 2 it was easy to control the I/O Modules.

In configuration 2 the retrieved replies during the control of the I/O modules were
satisfactory.

Step-motor control:

In configuration 1 the control of the step-motor was easy to do using the SMCM.

In configuration 1 the ability of redefining the MD-TEDS of the SMCM to control
the step-motor is an interesting solution for controlling every type of weblab module.

In configuration 1 the use of the ReadRawTEDS[MD-TEDS] command gave me a
concrete understanding that I was changing the contents of the MD-TEDS.

In configuration 2 it was easy to control the step-motor using the output module.

Please leave your comments about the weblab modules’ control and about your

previous answers (what you think about the followed approach, the use of TEDS,

etc…).

Section 3 - Relevance of the proposed solution)

Name (your name):___________ E-mail: ___________

Please classify your agreement level with the sentences. (1- I don’t agree to 5- I totally

agree):

 1 2 3 4 5

The IEEE1451.0 Std. is interesting for implementing weblabs architectures.

The IEEE1451.0-HTTP API provides a useful standard to access the weblab
modules.

The proposed weblab architecture (reconfigurable and standard-based) enables
sharing/replicating weblab modules by different infrastructures.

The proposed weblab architecture (reconfigurable and standard-based) increases the
flexibility for designing experiments using the same the infrastructure.

The proposed weblab architecture (reconfigurable and standard-based) contributes for
reducing the costs involved in the development of weblab infrastructures and in the
design of experiments.

The proposed weblab architecture (reconfigurable and standard-based) increases the

collaboration among institutions in the design of experiments and in the development
of weblabs infrastructures.

288 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

The proposed weblab architecture (reconfigurable and standard-based) is interesting,

since it enables defining different configurations and weblab modules to access target
experiments without changing the physical platform that implements the underlying
infrastructure (e.g. the feedback connection lines and the step-motor).

In the future I consider the use of an infrastructure similar to this one in my
institution/classes.

In the future I consider developing more weblab modules compatible with

infrastructures similar to this one (eventually as a supervisor of a student).

Creating a worldwide repository of weblab modules will be an interesting solution to
use similar weblabs.

Please leave your comments about the infrastructure (current implementation,

objectives and added value to remote experimentation, etc.).

The validation process and the scenario of utilization (you can suggest other

scenarios).

Please give me your opinion about the advantages and disadvantages of using the

proposed solution in the point of view of each actor (Students, Teachers, Developers,

Technicians and Administrators).

- Students:

Conduct experiments remotely using a device connected to the Internet. The access to control/monitor

a weblab, comprising several weblab modules and the experiment(s), is made using a web interface.

Real data is retrieved from the weblab so students can analyze it as they would do in a traditional

laboratory.

- Teachers:

Provide the theoretical and practical framework needed by students to conduct a remote experiment.

They can take the role of assistants/tutors providing pedagogical support during a laboratorial

activity, as they would do in a traditional laboratory.

- Developers:

Have the task of developing the entire weblab infrastructure so students, teachers and technical staff

may control/monitor the experiment(s) and, in some cases, the entire infrastructure (namely when it

may be remotely reconfigurable). Developers may be teachers. However, it depends on the domain of

the experiment, because providing a weblab requires informatics and electrical skills teachers may not

have.

Annex M: Validation & Verification 289

- Technicians:

Must ensure that the weblab infrastructure and the experiments are always ready to be accessed.

Guaranteeing that the weblab modules are always up and running (with network communications up)

and the setup of specific experiments, are the main requirements that technicians should be aware of;

- Administrators:

They are the institutional managers that should be concerned with the supporting tools required to

provide remote experiments. They should be aware of issues like: i) ensure that collaborative tools are

available; ii) the institutional network infrastructure is always up and running; iii) guarantee the

correct access scheduling to the weblab, etc.

Other comments you fell interesting to give me (e.g. future work, ideas, etc.).

Thanks for your cooperation!

M.4 - Examples of webpages with the provided methodology

This annex presents screenshots of the supporting webpage, namely the stages

followed by the researchers (figure M.3) and some examples of the webpages used

during the validation and verification process (figure M.4).

Figure M.3: Table grid provided in the supporting webpage with the different stages of

the adopted methodology in the validation and reconfiguration process.

290 An IEEE1451.0-compliant FPGA-based reconfigurable weblab

11 2

3

4 5

Figure M.4: Examples of webpages used during the validation and verification process.

(1- steps followed during a reconfiguration; 2- control of the step motor in the second configuration;

3- image illustrating the second configuration of the infrastructure; 4- verification of the first

configuration ; 5- control the step-motor rotation in the first configuration)

	Cover
	Abstract
	Resumo
	Acknowledgments
	Notes to the reader
	Contents
	Figures
	Tables
	Acronyms and abbreviations
	Glossary
	Chapter 1 Introduction
	1.1. Background and motivation
	1.2. Innovative aspects
	1.3. Structure and organization

	Chapter 2 Weblabs in engineering education
	2.1. The role of experimental work in engineering education
	2.2. Laboratory types for conducting experimental work
	2.3. Contextual analysis of weblabs
	2.3.1 Fundamentals of the Actor-Network Theory
	2.3.2 Influencing contexts
	2.3.3 Involved actors and associations

	2.4. Pedagogical and technical considerations on weblabs
	2.4.1 Meeting experimental learning goals with weblabs
	2.4.2 Mapping pedagogical goals against weblabs’ capabilities
	2.4.3 Traditional weblab architecture
	2.4.4 Involved technologies for implementing weblabs

	2.5. Weblab architectures: a brief overview
	2.5.1 MIT iLab project
	2.5.2 NetLab
	2.5.3 The VISIR project
	2.5.4 Other weblabs and projects

	2.6. Current limitations and problems of weblabs
	2.7. Summary

	Chapter 3 Considerations for designing standard and reconfigurable weblabs
	3.1. Weblab architectures based on instrumentation standards
	3.1.1 Stand-alone and modular instrumentation
	3.1.2 Instrumentation standards
	3.1.3 Hybrid architectures
	3.1.4 Embedded instrumentation

	3.2. On-going initiatives for weblabs standardization: GOLC and IEEEp1876 Std.
	3.3. Using and extending the IEEE1451.0 Std. for designing weblabs
	3.3.1 Overview of the IEEE1451.0 Std.
	3.3.2 Overview of current projects and research
	3.3.3 Adopting the IEEE1451.0 Std. for weblabs

	3.4. Providing reconfigurability to weblabs through FPGAs
	3.4.1 Infrastructure
	3.4.2 Remote access
	Hybrid solution
	SoC solution

	3.5. Summary

	Chapter 4 The IEEE1451.0 Std. as a smart framework for weblabs
	4.1. Reference model: NCAP and TIM smart modules
	4.2. Transducer Electronic Data Sheets
	4.3. Smart modules: access and operation
	4.3.1 Addressing mechanism
	4.3.2 Operating states and modes
	4.3.3 Status registers and the status-event protocol
	4.3.4 Message structures at the PHY channel
	4.3.5 Commands

	4.4. The APIs: module communication, transducer services and HTTP
	4.5. Suggested weblab infrastructures compliant with the IEEE1451.0 Std.
	4.6. Extending the IEEE1451.0 Std. to enhance weblab architectures
	4.6.1 Suggested architecture
	4.6.2 LabTEDS
	4.6.3 Operational sequence
	Registration
	Discovery
	Access (reconfiguration and logging)

	4.7. A thin implementation of the IEEE1451.0 Std. applied to weblabs
	4.8. Summary

	Chapter 5 A weblab implementation supported by FPGA-based boards
	5.1. Overall architecture: weblab server and underlying infrastructure
	5.2. The weblab infrastructure: NCAP and FPGA-based TIM
	5.2.1 The NCAP-TIM interface
	5.2.2 The NCAP
	5.2.3 The TIM

	5.3. An IEEE1451.0-compliant module for binding weblab modules
	5.4. Weblab accessing mechanisms
	5.5. The weblab reconfiguration tool
	5.6. Summary

	Chapter 6 The weblab reconfigurable framework
	6.1. Involved resources and tools
	6.2. Structure and functionality of the IEEE1451.0-compliant module
	6.2.1 Decoder/Controller Module (DCM)
	6.2.2 TEDS-Module (TEDS-M)
	6.2.3 Status/State Module (SSM)
	6.2.4 UART Module (UART-M)

	6.3. The weblab connecting modules: layout and interface
	6.3.1 Internal architecture
	6.3.2 Required Transducer Channels
	6.3.3 TC-tasks
	6.3.4 Development methodology

	6.4. The reconfiguration process
	6.4.1 The reconfiguration sequence
	6.4.2 The role of the configuration file
	6.4.3 Implementation issues of the RecTool

	6.5. Summary

	Chapter 7 Validation & verification
	7.1. Adopted strategy: scenario and objectives
	7.2. Actors involved: researchers, experiments and tools
	The invited researchers
	The target experiments, adopted modules and layouts
	Tools (supporting webpage and videos)

	7.3. Applied methodology
	7.4. Reported results and corresponding analysis
	7.4.1 Current weblabs’ problems
	7.4.2 Operation of the implemented weblab
	7.4.3 Relevance of the proposed solution

	7.5. Summary

	Chapter 8 Conclusions and future work
	8.1. Adopted architecture: implications for the experimental work in engineering education
	8.2. Future work perspectives
	8.3. Concluding remarks

	References
	Annexes
	Annex A FPGA internal architecture overview
	Annex B Example of an FPGA-based board
	Annex C FPGA reconfiguration: options for weblabs
	Annex D TEDS: examples, attributes and status
	Annex E Sensors and actuators trigger states
	Annex F IEEE1451.0 status bits
	Annex G New IEEE1451.0 HTTP API methods and interfaces
	Annex H Mapping IEEE1451.0 HTTP API methods and commands
	Annex I Error codes retrieved from the NCAP
	Annex J The IEEE1451.0-compliant module
	J.1 - DCM Internal registers
	J.2 - DCM internal and command tasks
	J.2.1 - Internal tasks
	J.2.2 - Command-tasks

	J.3 - DCM schematics
	J.4 - The DCM-MB interface
	J.5 - The DCM-MT interface
	J.6 - DCM registers and buses for implementing the error detection mechanism
	J.7 - Error codes specified in the IEEE1451.0-Module
	J.8 - TEDS-M: schematics and interface
	J.8.1 - Internal variables
	J.8.2 - Schematics and signals
	J.8.3 - Handshake protocol
	J.8.4 - Hardware API

	J.9 - SSM: schematics and interface
	J.9.1 - Internal variables
	J.9.2 - Schematics and signals
	J.9.3 - Handshake protocol
	J.9.4 - Hardware API

	J.10 - UART-M: schematics and interface
	J.10.1 - Schematics and signals
	J.10.2 - Handshake protocol

	Annex K Weblab modules: specification and design
	K.1 - Definition of TC-tasks
	K.2 - Design of TEDSs and MTs
	K.3 - Examples of weblab modules
	K.3.1 - Digital I/O modules
	K.3.2 - Step-Motor Controller Module (SMCM)
	K.3.3 - Event sensor

	Annex L Reconfiguration
	L.1 - Examples of report files created during the reconfiguration process
	L.2 - Example of a configuration file
	L.3 - The reconfiguration schematics
	L.4 - Some examples of HDL files created by the reconfiguration process
	L.5 - Examples of FPGA resources utilization
	L.6 - Example of TCL file created during reconfiguration

	Annex M Validation & Verification
	M.1 - Supporting webpage: the main page
	M.2 - Screenshots of videos exemplifying the interaction with the weblab
	M.3 - Questionnaires provided for the researchers
	M.4 - Examples of webpages with the provided methodology

