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• Complete immobilization of zinc(II) phthalocyanines accomplished in AlMCM-41.  

• Efficient photodegradation of model pesticides achieved using 365 nm irradiation. 

• Sodium azide experiments showed the involvement of singlet oxygen (1O2). 
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ABSTRACT 

 

In the present study the authors investigated a set of three new zinc(II) phthalocyanines 

(zinc(II) tetranitrophthalocyanine (ZnTNPc), zinc(II) tetra(phenyloxy)phthalocyanine 

(ZnTPhOPc) and the tetraiodide salt of zinc(II)tetra(N,N,N-trimethylaminoethyloxy) 

phthalocyaninate (ZnTTMAEOPcI)) immobilized into Al-MCM-41 prepared via ship-in-a-

bottle methodology. The samples were fully characterized by diffuse reflectance-UV-Vis 

spectroscopy (DRS-UV-Vis), luminescence, thermogravimetric analysis (TG/DSC), N2 



Page 4 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

4 

 

adsorption techniques and elemental analysis. A comparative study was made of the 

photocatalytic performance upon irradiation within the wavelength range 320-460 nm of these 

three systems in the degradation of pesticides fenamiphos and pentachlorophenol. 

ZnTNPc@Al-MCM-41 and ZnTTMAEOPcI@Al-MCM-41 were found to be the most active 

systems, with the best performance observed with the immobilized cationic phthalocyanine, 

ZnTTMAEOPcI@Al-MCM-41. This system showed high activity even after three 

photocatalytic cycles. LC-MS product characterization and mechanistic studies indicate that 

singlet oxygen (1O2), produced by excitation of these immobilized photosensitizers, is a key 

intermediate in the photocatalytic degradation of both pesticides. 

 

Keywords: Zinc(II) Phthalocyanines, Al-MCM-41, photocatalysis, pesticide, singlet oxygen 

 

 

 The authors dedicate this paper to the memory of Fernando Ramôa Ribeiro, Full Professor of 

the Instituto Superior Técnico and Rector of the Technical University of Lisbon, who 

contributed greatly to the development of heterogeneous catalysis, but sadly passed away on 

29th August 2011. 

 

 

1. Introduction 

 

The search for new methodologies to promote the photodecomposition of organic pesticides 

is of major relevance for the elimination of pollutants under a variety of environmental 

situations. Although many of these molecules can undergo direct photochemical 

decomposition with the UV component of natural solar light, this can be markedly enhanced 



Page 5 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

5 

 

through advanced oxidation processes (AOPs), like H2O2/UV, O3/UV and H2O2/O3/UV, 

heterogeneous photocatalysis, homogeneous photo Fenton, etc., have been proposed for 

treatment of polluted water by pesticides [1,2]. 

In particular, heterogeneous photocatalysis is an efficient technique to eliminate organic 

pollutants in water [3,4]. Semiconductors (TiO2, ZnO, Fe2O3, ZnS, etc.) can act as sensitizers 

for light induced redox processes and the photocatalytic experiments showed that the addition 

of semiconductors in tandem with the oxidant (Na2S2O8) strongly enhances the degradation 

rate [5]. 

In the last decade, increased interest has developed on the immobilization/adsorption of 

tetrapyrrole macrocyclic sensitizers into solid supports. These organic-inorganic hybrid 

materials combine stability under a variety of reaction conditions with intense absorption in 

both the blue and red regions of the visible spectrum, such that they can collect up to 50% of 

solar energy and act as potentially viable photocatalysts [6-20]. 

Exploitation of supported, photoactive metallophthalocyanines as catalysts to treat organic 

pollutants has emerged as an active research topic due to both good stability and ease of 

recovery, resulting from their incorporation into an inert matrix [6,8-10,14,18,20,21]. 

The confinement of metal complexes within the constrained environment of ordered 

mesoporous oxides is particularly important, and has been actively developed since the 

discovery of M41S family [16-18,20,22-29]. Although there are reports on the use of 

metallophthalocyanines anchored onto the surface of Al-MCM-41 as catalysts in the oxidation 

of aromatic compounds [17,23-29], their employment as photocatalysts has not received much 

attention [16,18,20,21]. 

In this study, we describe the immobilization of three phthalocyanines, ZnTNPc, 

ZnTPhOPc and ZnTTMAEOPcI into Al-MCM-41 by post-synthesis method (ship-in-a-

bottle). The resulting solid products were characterized by various techniques (DRS–UV-Vis, 
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luminescence, TG/DSC, N2 adsorption and elemental analysis). The materials were evaluated 

for the photocatalytic decomposition of the important, and representative, pollutants 

fenamiphos and pentachlorophenol. To obtain mechanistic information, the influence of the 

oxygen concentration in solution, the amount of the catalyst, pH and the presence of singlet 

oxygen quencher on the degradation rate have been investigated. Photoproducts have been 

identified by LC-MS. To test for potential practical applications, studies on the continued 

photocatalytic efficiency of recovered immobilized sensitizers are also presented. 
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2. Experimental  

 

2.1. Materials 

 

All solvents were purchased from Aldrich and used as received. Al-MCM-41 (Si/Al~40) 

was from Aldrich and pre-treated in an oven at 500 ºC during 18 h under self-generated 

atmosphere. It was subsequently allowed to equilibrate at room temperature in air. The 

zinc(II) acetate dihydrate (>97%), anhydrous potassium carbonate (pure reagent) and 

anhydrous sodium sulfate (>98%) were obtained from Fluka, fenamiphos (99.9% purity) from 

Riedel-de Häen and pentachlorophenol (97% purity) from Carlo Erba. They were used 
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without further purification. Sodium azide was from Sigma-Aldrich (≥99.5%). All aqueous 

solutions were prepared with water from a Millipore Milli-Q ultrapure water system having a 

resistivity >18 MΩ cm−1.  

 

2.2. Catalyst preparation: “Ship-in-a-bottle” synthesis of zinc phthalocyanines 

 

The immobilization of phthalocyanine complexes in the mesoporous aluminosilicate MCM-

41, Fig. 1, was carried out by mixing the corresponding substituted phthalonitrile (4 mmol), 

zinc (II) acetate dihydrate (1.3 mmol), Al-MCM-41 (1 g) and DMF (10 mL) under vigorous 

stirring, at 130 ºC, during 12 h. After cooling to room temperature, the prepared materials, 

ZnTNPc@Al-MCM-41 (2a), ZnTPhOPc@Al-MCM-41 (2b) and ZnTDMAEOPc@Al-MCM-

41 (2c) were filtered off, sequentially Soxhlet extracted with acetone, CH2Cl2, THF, 

H2O:CH3OH (1:5) and finally with acetone until no phthalocyanine or precursor molecules 

were detected, in the solution, by UV-Vis spectroscopy. The resulting immobilized sensitizers 

were dried in an oven at 70 ºC during 24 h. 

The transformation of ZnTDMAEOPc@Al-MCM-41 (2c) into its corresponding 

tetraalkylammonium cationic species was carried out by reacting 2c with methyl iodide (5.96 

g, 40 mmol) in dichloromethane under reflux for 8 h. Finally, the resulting solid 

ZnTTMAEOPcI@Al-MCM-41 (3) was washed and dried as described above. The full 

characterization of the catalysts is described in the next section. 
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Fig. 1. Synthesis of immobilized phthalocyanines 2a-2c and 3. Reagents and conditions: a) 

Zn(OAc)2·2H2O, Al-MCM-41, DMF, 130 ºC, 12 h (for 2a, 2b and 2c), and b) CH3I, CH2Cl2, 

40 ºC, 8 h (for 3). 

 

For comparison, the free metallophthalocyanines were also prepared and characterized 

using the same spectroscopic techniques. ZnTNPc, ZnTPhOPc and ZnTTMAEOPcI were 

synthesized with slight modifications of literature procedures, and characterization data are in 

agreement with reported values [30-32]. 

 

2.3. Instrumentation  
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UV-Vis absorption spectra in solution were measured over the range 200–800 nm on a 

Shimadzu UV-2010 double-beam spectrometer. 

Luminescence spectra were obtained on a SPEX Fluorolog 3-22 spectrophotometer, using a 

300 W xenon arc lamp as excitation source. The luminescence spectra were measured on solid 

samples using a specially designed metal support with a quartz window. 

DRS-UV-Vis spectra of solid samples were recorded over the range 300–800 nm on a 

Shimadzu UV-2450 double-beam spectrometer with an integrating sphere (with barium 

sulphate as reference material). 

Thermogravimetric analyses were made in air using Setaram TG/DSC 92 with a heating 

rate of 10 ºC min−1 to a maximum temperature of 800 ºC. All the samples were saturated in a 

humid atmosphere (90%) before measurements. 

Nitrogen adsorption measurements were carried out with a Micromeritics ASAP 2010 

apparatus. Prior to analysis, all samples were pre-treated for 6 h at 110 ºC under vacuum.  

The zinc and aluminium contents were evaluated by inductively coupled plasma-optical 

emission spectrometry (ICP-OES) measured on a Perkin Elmer Optima 2000 DV instrument; 

the silicon content was obtained by Atomic Absorption Spectrometry (AAS) on a Perkin 

Elmer Analyst 300; other elements were determined by Elemental Analysis (EA) using a 

Fisons Instruments EA 1108 (CHNS-O). 

HPLC analysis was performed using a Millenium system equipped with a photodiode array 

detector (DAD). The detection wavelength was set at 220 nm (pentachlorophenol) or at 250 

nm (fenamiphos). The elution for pentachlorophenol was accomplished using a reverse phase 

C8, Agilent XDB column (250 mm×4.5 mm i.d., 5 μm) with water (0.1% formic acid) and 

methanol (20:80 by volume) as eluents. The flow rate was 1.0 mL min−1 and an injection 

volume of 25 μL was used. For fenamiphos, the elution was made using a reverse phase C18, 

Agilent XDB column (250 mm×4.5 mm i.d., 5 μm) with water (0.1% formic acid) and 
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methanol (30:70 by volume) as eluents. The flow rate was 1.0 mL min−1 and an injection 

volume of 50 μL was used.  

Liquid chromatography-mass spectrometry (LC–MS) studies were carried out with Q-TOF-

Micro/waters 2699 equipped with an electro spray ionization source (ESI) and a Waters 

photodiode array detector. Each experiment permitted the simultaneous recording of both UV 

chromatograms at a pre-selected wavelength and a full ESI-MS scan. Data acquisition and 

processing were performed by Mass Lynx NT 3.5 system. A Nucleosil 100-5 C18 ec (250 

mm×4.6 mm, 5 μm) column was used. Samples (5–10 μL) were injected either directly or 

after evaporation of the solvent for better detection. A gradient program (Table 1) was 

employed, using water with 0.4 vol% acetic acid (A) and acetonitrile (B) as eluents, and a 

flow of 1 mL min-1.  

 

Table 1 

Gradient program for LC-MS. 

Time, min Eluent A (%) Eluent B (%) 

0 95 5 

15 5 95 

25 5 95 

35 95 5 

 

2.4. Irradiation set-up 

 

Photocatalytic experiments were carried out at room temperature using a laboratory-built 

photoreactor consisting of three Philips HPW125 mercury discharge blacklight lamps (I=125 
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W and η=50 lm W-1). The reactions were carried out in a 50 mL glass flask, with the top open 

to allow entrance of air. For these experiments, 25 mL of substrate solution and 25 mg of the 

desired sensitizer immobilized into Al-MCM-41 were mixed. The pH values of the freshly 

prepared solutions of fenamiphos and pentachlorophenol were 7 and 5, respectively. The 

initial concentration in all experiments was 1×10−4 mol L−1 for fenamiphos and 1×10−5 mol 

L−1 for pentachlorophenol. Before irradiation, a catalyst suspension containing the pesticide 

was allowed to equilibrate for 90 min in the dark. The adsorption of pesticide onto the catalyst 

surface was negligible (<1% adsorption, as confirmed by HPLC experiments). The solutions 

were irradiated with polychromatic light within the wavelength range 320-460 nm (λmax=365 

nm) for 180-300 min. Aliquots were taken at regular time intervals (0, 30, 60, 90, 120, 180, 

240 and 300 min) from the irradiated solution.  

The solution was centrifuged twice to remove the catalyst particles before analysis. Both, 

the disappearance of the pesticide and formation of the photoproducts were monitored using 

HPLC. Product identification was performed by LC-MS without any extraction or pre-

concentration procedures. In the experiment with fenamiphos, the participation of 1O2 in the 

photolysis was evaluated by the effect of NaN3 (1O2 quencher) on the photolysis using 2a as 

sensitizer. 

 

2.5. Recycling of the catalyst  

 

After the first cycle, the selected catalysts (2a and 3) were collected by centrifugation as 

described above. The catalyst was washed with acetonitrile and stirred for 10 min. The 

mixture was centrifuged, and the solvent removed. This procedure was repeated three times. 

Finally, the catalyst was dried in an oven at 70 ºC. 
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The second and third cycles were carried out with 1.0 g L−1 recycled catalyst added to a 

fenamiphos solution (1×10-4 mol L−1) under the same irradiation conditions. 

Leaching of the sensitizers was checked by UV-Vis spectrometry and the presence of the 

sensitizers within the Al-MCM-41 was monitored by DRS-UV-Vis spectra. 

 

 

3. Results and discussion 

 

3.1. Ship-in-a-bottle synthesis of zinc phthalocyanines  

Our recent experience on the immobilization of porphyrins into Al-MCM-41 has shown 

that the “ship-in-a-bottle” method is more efficient than simple adsorption to incorporate 

polypyrrole macrocycles into these porous matrices [16,18]. In this paper we extend this 

synthetic methodology to the immobilization of zinc phthalocyanines (ZnPcs). The special 

properties of mesoporous materials as hosts in terms of site isolation, space 

compartmentalization, polarity and the presence of acidic and other sites are very interesting 

and contribute to the operation and design of these hybrid solids.  

 

3.2. Characterization of the immobilized zinc phthalocyanines 

3.2.1. Electronic absorption spectra and luminescence spectroscopy 

 

The absorption spectra of ZnTNPc, ZnTPhOPc and ZnTTMAEOPcI, in DMF, were 

recorded and the extinction coefficients determined for comparison with the corresponding 

immobilized sensitizers. The tetrasubstituted ZnPcs have a typical dark green color and show 

two characteristic Q bands between 600 and 750 nm in their UV-Vis spectra, Table 2, with 

the main absorption maximum around 700 nm, in agreement with previous reports [30,31]. 



Page 13 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

13 

 

 

Table 2 

Electronic Absorption Spectral Data of Tetra substituted ZnPcs Complexes 

Catalyst Q band in solutiona, nm (ε/mol-1 L cm-1) Q band in Al-MCM-41b, nm 

ZnTNPc 647 (n.d.), 688 (n.d.) 650 (sh), 690 

ZnTPhOPc 608 (27799), 677 (149531) 650 (sh), 690 

ZnTTMAEOPcI 611 (60500), 678 (304000) 640, 680 

a Electronic absorption spectra in DMF. 

b Diffuse reflectance spectra. 

n.d..not determined. 

 

Fig. 2 shows the DRS–UV-Vis absorption spectra of the solids Al-MCM-41, ZnTNPc@Al-

MCM-41 (2a), ZnTPhOPc@Al-MCM-41 (2b) and ZnTTMAEOPcI@Al-MCM-41 (3). The 

spectrum of 2a presents a broad band at 690 nm and a shoulder at 650 nm, close to the values 

in the absorption spectrum in DMF solution (Table 2).  

In contrast, the DRS-UV-Vis spectra of 2b and 3 are red shifted compared with the 

corresponding UV-Vis spectra of ZnTPhOPc and ZnTTMAEOPcI, in DMF solution, from 

608 to 620 nm and from 611 to 640 nm, respectively. These spectral changes may result from 

structural distortions of the phthalocyanines due to interactions with the pore walls of Al-

MCM-41. Similar effects have been reported for immobilized Cu and Ru phthalocyanines 

[14,24]. 
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Fig. 2. DRS–UV-Vis absorption spectra of the Al-MCM-41, ZnTNPc@Al-MCM-41 (2a), 

ZnTPhOPc@Al-MCM-41 (2b) and ZnTTMAEOPcI@Al-MCM-41 (3) (BaSO4 as reference). 

 

The fluorescence emission and excitation spectra of ZnTNPc@Al-MCM-41 (2a), 

ZnTPhOPc@Al-MCM-41 (2b) and ZnTTMAEOPcI@Al-MCM-41 (3) are shown in Fig. 3. 

With 2a and 3, the diffuse reflectance and fluorescence excitation spectra are very similar, 

and there is a negligible Stokes shift between absorption and emission band maxima, which 

indicates no structural change between the ground and excited states of the immobilized 

phthalocyanines. In contrast, with the nitro-substituted compound 2b, a Stokes shift of about 

13 nm is seen and, concomitantly, with a shoulder at 680 nm, which may be attributed to the 

existence of aggregation. 
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Fig. 3. Emission (λexc=610 nm) and excitation (λem=710 nm) spectra of ZnTNPc@AlMCM-

41 (2a), ZnTPhOPc@Al-MCM-41 (2b) and ZnTTMAEOPcI@Al-MCM-41 (3).  

 

3.2.2. Thermogravimetric analysis  

 

TG/DSC analysis of the solids ZnTNPc@Al-MCM-41 (2a), ZnTPhOPc@Al-MCM-41 

(2b), and ZnTTMAEOPcI@Al-MCM-41 (3) are presented in Fig. 4. For comparison, results 

for the Al-MCM-41 sample are also presented. With all the phthalocyanine containing 

samples, a broad endothermic peak was observed in the range of 25-200 ºC, corresponding to 

a weight loss of about 10%. This is attributed to the removal of physically adsorbed water 

molecules. However, these water losses are much lower when compared with pure 

mesoporous Al-MCM-41, even though samples have been saturated with H2O vapor. This 

observation is in line with the phthalocyanine complexes being incorporated within the 

interior of the mesopores, giving a more hydrophobic surface with less space for water to 

adsorb. The mass loss in the range 200-700 ºC corresponds to approximately 10%, and 
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matches an exothermic peak observed, which is indicative of the phthalocyanine molecule 

decomposition.  
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Fig. 4. Thermoanalysis of ZnTNPc@Al-MCM-41 (2a), ZnTPhOPc@Al-MCM-41 (2b) and 

ZnTTMAEOPcI@Al-MCM-41 (3). 

 

Results of thermoanalysis of the pure phthalocyanines is presented in Fig. 5. An increase in 

the decomposition temperature was observed on going from the non-immobilized to the 

immobilized phthalocyanines, providing support for immobilization and indicating that 

incorporation of ZnPcs into Al-MCM-41 increases their thermal stability. 
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Fig. 5. Thermoanalysis of ZnTNPc, ZnTPhOPc and ZnTTMAEOPcI. 

 

3.2.3. Nitrogen adsorption analysis 

 

Nitrogen adsorption isotherms of Al-MCM-41, 2a, 2b and 3 are presented in Fig. 6. All the 

systems display the typical type IV adsorption isotherm characteristic of mesoporous solids. 

The Al-MCM-41 support presents an isotherm with a sharp inflection (capillary condensation 

step) at about 0.4 relative pressure (P/P0), indicating a narrow pore size distribution. In 

contrast, with the isotherms of the mesoporous materials loaded with zinc phthalocyanines, 

the condensation step is shifted to lower P/P0
 values (0.3-0.35) while the total amount of N2 

adsorbed, calculated from the top of the adsorption step, decreases significantly. The textural 

parameters, SBET and Vmeso, obtained from the adsorption isotherms, decrease compared with 

pure Al-MCM-41 (Table 3). These observations are in complete agreement with successful 

immobilization of zinc phthalocyanines within the pores of the MCM-41 [24]. As expected, 

the maxima of the pore size distribution obtained from the BJH method also decreases with 

the incorporation of the ZnPcs (Table 3). 
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Fig. 6. Nitrogen adsorption isotherms of Al-MCM-41, ZnTNPc@Al-MCM-41 (2a), 

ZnTPhOPc@Al-MCM-41 (2b) and ZnTTMAEOPcI@Al-MCM-41 (3). 

 

Table 3 

Textural parameters of the catalysts samples 

Catalyst SBET (m2 g−1)a Vmeso (mL g−1)b DBJH (nm)c 

Al-MCM-41 785 0.65 3.1 

ZnTNPc@Al-MCM-41 (2a) 700 0.53 2.7 

ZnTPhOPc@Al-MCM-41 (2b) 680 0.50 2.6 

ZnTTMAEOPcI@Al-MCM-41 (3) 655 0.48 2.5 

a SBET is the surface area derived from BET equation. 

b Vmeso is the mesopore volume calculated from the adsorption step. 

c DBJH is the maxima of the pore size distribution obtained from BJH method. 

 

3.2.4. Elemental analysis 
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Elemental analysis was also used, in conjunction with the TG/DSC and nitrogen adsorption 

measurements, to characterize the catalysts. In Table 4 are the atomic ratios on the 

ZnPcs@Al-MCM-41. The weight percentage of Zn on Al-MCM-41 is variable. The lower 

C/Zn atomic ratio obtained (when compared with pure phthalocyanine complexes) can be 

attributed to the presence of extra Zn(II) species probably compensating the negative charges 

generated by the presence of Al in the mesoporous silica framework. 

The theoretical carbon/nitrogen atomic ratio (C/N), based on the structures of the non-

immobilized phthalocyanines is 2.7 for ZnTNPc, 7.0 for ZnTPhOPc and 4.3 for 

ZnTTMAEOPcI. The values for the corresponding immobilized systems are 5.8 (2a), 5.5 (2b) 

and 4.7 (3) (Table 4). Although the other techniques provide good evidence for immobilized 

phthalocyanines, the observed ratios for 2a and 2b are different from those expected. This 

may be due to the presence of trace impurities. 

From elemental analysis results, the amount of zinc(II) phthalocyanines immobilized 

depends on the structure of the photosensitizer, but is within the range 0.13-0.23 mmol g-1. 

This is in good agreement with values obtained by thermogravimetry. 

 

Table 4 

Elemental analysis data (% wt) and amount of ZnPcs immobilized in Al-MCM-41. 

Catalyst Si Al C N Zn [ZnPcs]/

mmol g-1 

Al-MCM-41 41.0 1.1 0 0 0 - 

ZnTNPc@Al-MCM-41 (2a) 32.0 1.0 6.0 1.2 3.7 0.23 

ZnTPhOPc@Al-MCM-41 (2b) 33.0 0.9 6.1 1.3 2.1 0.13 
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ZnTTMAEOPcI@Al-MCM-41 (3) 29.0 0.8 7.7 1.9 3.9 0.20 

 

3.2.5. Photocatalytic studies 

 

The absorption spectra of the two selected pesticides, fenamiphos and pentachlorophenol, 

in aqueous solution, at pH 7 and 5, respectively, are given in Fig. 7. The former presents an 

absorption maximum at 249 nm and a shoulder at 280 nm while the latter shows two well 

defined absorption bands at 249 nm and 315 nm.  
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Fig. 7. UV-vis spectra of fenamiphos (1.0×10-4 mol L-1, pH=7) and pentachlorophenol 

(1.0×10-5 mol L-1, pH=5), in aqueous solution. 

 

The effect of the immobilized phthalocyanines 2a, 2b and 3 on the kinetics of 

photodegradation of fenamiphos and pentachlorophenol was studied. Initially, a suspension of 

photocatalyst in solution of the desired pesticide was allowed to equilibrate in the dark during 

90 min. The UV-Vis spectra revealed that no significant adsorption of pesticide occurs onto 

the catalyst surface. After this equilibration period, the suspensions were irradiated with UV 



Page 21 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

21 

 

light (λmax=365 nm). Aliquots were taken at regular time intervals, and the reaction followed 

by HPLC/DAD. Kinetic data for the photodegradation of fenamiphos and pentachlorophenol 

are presented in Figs. 8a and 8b, respectively. 
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Fig. 8. a) Kinetics of fenamiphos photodegradation (C0=1.0×10-4 mol L-1) using 2a, 2b and 3 

as catalysts, and b) Kinetics of pentachlorophenol photodegradation (C0=1.0×10-5 mol L-1) 

using 2a, 2b and 3 as catalysts (C0=1.0×10-5 mol L-1). 

 

Irradiation of aqueous solutions of fenamiphos (1.0×10-4 mol L-1, pH=7) or 

pentachorophenol (1.0×10-5 mol L-1, pH=5) in the presence of ZnPcs immobilized onto Al-

MCM-41 led to a decrease of pesticide concentration, which depends on the structure of the 

immobilized phthalocyanine. In the case of fenamiphos, almost complete degradation was 

observed within 300 min irradiation. With all catalysts (2a, 2b and 3) photodegradation 

follows pseudo first-order kinetics in fenamiphos, with rate constants 8.5×10-3 min-1, 3.0×10-3 

min-1 and 8.1×10-3 min-1, respectively (Fig. 8a). It should be noted that under the above 

experimental conditions, no significant degradation of either pesticide was observed when the 

reaction was performed in the dark or just with Al-MCM-41. Similarly, no photodegradation 

of the pesticides occurred upon 365 nm irradiation in the absence of catalyst, even for longer 

irradiation times (12 h). 
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Irradiation of pentachlorophenol in the presence of the same catalysts (2a, 2b and 3) for 

300 min, led to significantly less photodegradation than with fenamiphos. Pseudo first-order 

kinetics in pentachlorophenol were followed, with rate constants 7.3×10-4 min-1, 2.7x10-4 min-

1 and 1.1×10-3 min-1, respectively (Fig. 8b). 

Concerning the oxygen dependence, within experimental error the kinetics are independent 

of [O2] in the fenamiphos’ experiments, but shows an oxygen dependence, with order less 

than one in the pentachlorophenol case. 

With both pesticides, the observed rate constants follow the order kZnTTMAEOPcI@Al-MCM-41 (3) 

≥kZnTNPc@Al-MCM-41 (2a)>kZnTPOPc@Al-MCM-41 (2b), with 2a and 3 being the most efficient catalysts 

to promote their photodegradation. 

The effect of the amount of catalyst 2a, within the range 0.25–2.0 g L-1, on the 

photodegradation rate of both pesticides was also investigated and the results are presented in 

Fig. 9.  
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Fig. 9. Degradation analysed by HPLC/DAD of fenamiphos (a), C0=1.0×10-4 mol L-1, and 

pentachorophenol (b), C0=1.0×10-5 mol L-1, as a function of 2a concentration (t=300 min). 
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The observed non-linear plots, as well as the limiting value of the percentage of conversion 

(plateau), are most likely to result from decreased light transmission due to scattering at high 

catalyst concentrations due to an inner filter effect, as had already been reported with 

porphyrins immobilized into Al-MCM-41 [18]. This was observed when the concentration of 

ZnTNPc@Al-MCM-41 was greater than 1.0 g L−1. 

 

3.2.6. Mechanistic studies and photoproduct characterization 

 

Mechanisms of sensitized photodegradation of pesticides in the presence of oxygen and 

porphyrin or phthalocyanines, either immobilized [18,20,33] or in solution [34-37], may 

involve both type I (electron or atom transfer) [18,20,34,36] and/or type II (singlet oxygen) 

[33,35,37-39] processes. To test whether the mechanism of reactions of the systems in these 

studies involves electron transfer and/or singlet oxygen, photodegradation reactions were 

carried out in the presence and absence of oxygen and in the presence of sodium azide, used 

as a singlet oxygen quencher. Since ZnTNPc@Al-MCM-41 (2a) showed good catalytic 

activity for photodegradation of both pesticides, the mechanistic studies and photoproduct 

characterization were performed exclusively with this catalyst. 

The photodegradation of both pesticides catalyzed by ZnTNPc@Al-MCM-41 (2a) was 

performed in air, oxygen saturated solutions and in a solution degassed with nitrogen, Figs. 

10a and 10b. Within experimental error, the photodegradation of fenamiphos was virtually 

complete after 300 min irradiation when experiments were carried out in air or oxygen-

saturated solutions, while under oxygen-free conditions less than 3% conversion was achieved 

(Fig. 10a). It is worth noting that during these experiments no substantial change of pH was 

observed during the reaction period. Similar behaviour was observed for the photodegradation 

of pentachorophenol with the same catalyst (2a), (Fig. 10b). 
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Fig. 10. a) Effect of oxygen on the kinetics of fenamiphos photodegradation (C0=1.0×10-4 mol L-

1), and b) Effect of oxygen on the kinetics of pentachlorophenol photodegradation (C0=1.0×10-5 

mol L-1). 

 

To test the possible involvement of singlet oxygen in the photodegradation of fenamiphos 

in the presence of catalyst 2a, some experiments were performed in the presence of sodium 

azide (Fig. 11). An aerated solution of 2a (1.0 g L-1) and fenamiphos (1.0×10−4 mol L−1) was 

irradiated with UV light at λmax=365 with sodium azide (1.0×10−2 mol L−1). A rate constant of 

3.1×10-3 min-1 was obtained, which is significantly smaller than that in the absence of sodium 

azide (1.0x10-2 min-1), strongly suggesting that singlet oxygen is involved in the mechanism 

of photodegradation (type II mechanism). 
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Fig. 11. Kinetics of fenamiphos degradation in aerated solution in the presence of 2a 

(C0=1.0×10-4 mol L-1). 

 

From these studies (Figs. 10a, 10b and 11) it is possible to conclude that the presence of 

oxygen is essential for the photodegradation of both pesticides. However, since complete 

inhibition was not observed when the reaction was carried out in the presence of sodium 

azide, the contribution to the overall photodegradation by radical species (type I mechanism) 

should not be excluded. This is similar to what was observed using porphyrins immobilized 

into Al-MCM-41 as sensitizers [18].  

The transformation of fenamiphos in aerated solutions by excitation of 2a at 365 nm led to 

98% conversion after 300 min irradiation. The main photoproducts, characterized by LC–MS 

in the positive mode, were the corresponding fenamiphos-sulfoxide, [M+1]=320 (retention 

time of 11.1 min), and fenamiphos-sulfone, with [M+1]=336 (retention time of 12.2 min), 

Scheme 1.  
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Scheme 1. Fenamiphos photodegradation products 

 

The characterized fenamiphos photoproducts, sulfoxide and sulfone, are well documented 

and in agreement with the involvement of both singlet oxygen [40,41] (type II) and electron 

transfer process [42-44]. Fenamiphos photoproducts (sulfone and sulfoxide) are less toxic 

than the source compound, as determined by Cáceres et al. [45], where the oxidation products 

of fenamiphos (FSO and FSO2) did not show any toxicity to both algal species tested up to a 

concentration of 100 mg L−1. The photoproducts obtained from the pentachlorophenol 

photodegradation, in aerated solutions in the presence of 2a, after 300 min of irradiation, were 

also characterized by LC–MS in negative mode. The main photoproduct has been identified 

as 2,3,5,6-tetrachloro-hydroquinone [M-1]=245, retention time 13.6 min, Scheme 2. The 

formation of this photoproduct has previously been described in photocatalytic reactions of 

this compound involving a radical mechanism [46-48]. However, the pentachlorophenol 

photoproducts can be more toxic than the corresponding source material as determined by 

Jardim et al. [49], where acute toxicity tests of samples at different time intervals of light 

exposure, were carried out by measuring the respiratory inhibition in the bacteria Escherichia 

coli. Implications of such findings are discussed, considering the fact that, under certain 

circumstances, the photocatalytic degradation of chlorinated organics can yield compounds 

that are more toxic than the original pollutant to be destroyed.” 
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Scheme 2. Pentachlorophenol photodegradation products. 

 

3.2.7. Recycling of the ZnTNPc@AlMCM-41 and ZnTTAEOPcI@AlMCM-41 after 

photodecomposition of fenamiphos 

 

Recycling experiments were carried out to evaluate the stability and reusability of the 

catalysts 2a and 3, and the results are presented in Fig. 12. 

For each new cycle, the catalysts were separated from the reaction mixture, washed 

extensively with methanol and water, dried and re-used under the same experimental 

conditions. Fig. 12 shows the conversion (%) of fenamiphos as a function of number of cycles 

performed with ZnTNPc@Al-MCM-41 (2a) and ZnTTAEOPcI@Al-MCM-41 (3), for a 

constant irradiation time (180 minutes). 

The conversion of fenamiphos achieved was 80%, 37% and 19%, respectively, for the 1st, 

2nd and 3rd reuse for 2a catalyst, and 80%, 70% and 65%, respectively, for the 1st, 2nd and 3rd 

reuse using 3 as catalyst, under the above conditions.  

The UV-Vis spectra of the washes did not reveal the presence of catalyst in solution, within 

the detection limits. Therefore, the deactivation of catalyst 2a cannot be explained by a 

leaching process, but must come, essentially, from its degradation under the irradiation 

conditions. The high activity retained by the cationic catalyst (3) after three cycles (65%) 

should be noted. This may result from the high affinity of the cationic sensitizer for the 

support walls, which, consequently, inhibits photodegradation of this catalyst. 
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Fig. 12. Photodegradation(%) of fenamiphos with catalysts 2a and 3, after three cycles (180 

min of irradiation). 

 

Our long-term goal is the mineralization of the pesticides. However, because of the 

synthetic problems of preparing sizeable quantities of immobilized photocatalysts, in the 

present work we have concentrated on identifying the best immobilized systems on the 

laboratory scale level for continuous use in appropriate (probably flat-bed) photoreactors and 

have not looked at prolonged irradiation. 

 

4. Conclusions 

 

Efficient ship-in-a-bottle synthesis of ZnPcs within the Al-MCM-41 mesoporous channels 

was achieved, and three new immobilized phthalocyanines were successfully characterized by 

various techniques. The amount of immobilized phthalocyanines are within 0.13-0-23 mmol 

g-1, depending on the photosensitizer. 
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These systems are photoactive and a comparative study of the effect of the substituted 

group in the immobilized phthalocyanines on the photodegradation of the pesticides, 

fenamiphos and pentachlorophenol, in aerated solutions, shows that ZnTNPc@Al-MCM-41 

and ZnTTMAEOPcI@Al-MCM-41 are the catalysts with the best performances for both 

pesticides. 

The photodegradation in aqueous solutions of the herbicide fenamiphos in the presence of 

ZnTNPc@Al-MCM-41 leads to the sulfoxide and sulfone as the main photoproducts. This 

follows pseudo-first order kinetics with respect to pesticide, in an oxygen dependent process, 

without photodegradation in deaerated solution, with around 70-80% of conversion in the 

presence of air and in oxygen saturated solution after 180 min of irradiation. 

Product analysis following pentachlorophenol photodegradation with ZnTNPc@Al-MCM-

41 shows that 2,3,5,6-tetrachloro-hydroquinone is the main photoproduct. Pseudo-first order 

kinetics are followed in an oxygen dependent process (order lower than one), with no 

photodegradation in deaerated solution after 180 min of irradiation. 

The presence of oxygen is revealed to be essential for photodegradation, and the decreased 

reactivity observed in the presence of sodium azide indicates that 1O2 is involved in the 

mechanism, although involvement of radical species is also relevant. 

Finally, the best in recycling is the cationic ZnTTAEOPcI@Al-MCM-41 (3), which 

presents high photocatalytic activity even after three cycles. This immobilized phthalocyanine 

is an excellent candidate for future studies on the photocatalysed degradation of other organic 

pollutants. These photocatalysts will be used in similar reactors to those currently being 

applied in the photocatalytic degradation of pollutants using titanium dioxide and other 

inorganic catalysts. But because of their enhanced spectral response, these photocatalysts will 

have the advantage of more efficient use of the irradiating light source. 
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